1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/types.h>
27 #include <sys/regset.h>
28 #include <sys/privregs.h>
29 #include <sys/pci_impl.h>
30 #include <sys/cpuvar.h>
31 #include <sys/x86_archext.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/pghw.h>
36 #include <sys/cyclic.h>
37 #include <sys/sysevent.h>
38 #include <sys/smbios.h>
39 #include <sys/mca_x86.h>
40 #include <sys/mca_amd.h>
41 #include <sys/mc.h>
42 #include <sys/mc_amd.h>
43 #include <sys/psw.h>
44 #include <sys/ddi.h>
45 #include <sys/sunddi.h>
46 #include <sys/sdt.h>
47 #include <sys/fm/util.h>
48 #include <sys/fm/protocol.h>
49 #include <sys/fm/cpu/AMD.h>
50 #include <sys/fm/smb/fmsmb.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpi/acpi_pci.h>
53 #include <sys/acpica.h>
54 #include <sys/cpu_module.h>
55
56 #include "ao.h"
57 #include "ao_mca_disp.h"
58
59 #define AO_F_REVS_FG (X86_CHIPREV_AMD_F_REV_F | X86_CHIPREV_AMD_F_REV_G)
60
61 int ao_mca_smi_disable = 1; /* attempt to disable SMI polling */
62
63 extern int x86gentopo_legacy; /* x86 generic topology support */
64
65 struct ao_ctl_init {
66 uint32_t ctl_revmask; /* rev(s) to which this applies */
67 uint64_t ctl_bits; /* mca ctl reg bitmask to set */
68 };
69
70 /*
71 * Additional NB MCA ctl initialization for revs F and G
72 */
73 static const struct ao_ctl_init ao_nb_ctl_init[] = {
74 { AO_F_REVS_FG, AMD_NB_CTL_INIT_REV_FG },
75 { X86_CHIPREV_UNKNOWN, 0 }
76 };
77
78 typedef struct ao_bank_cfg {
79 uint64_t bank_ctl_init_cmn; /* Common init value */
80 const struct ao_ctl_init *bank_ctl_init_extra; /* Extra for each rev */
81 void (*bank_misc_initfunc)(cmi_hdl_t, ao_ms_data_t *, uint32_t);
82 uint_t bank_ctl_mask;
83 } ao_bank_cfg_t;
84
85 static void nb_mcamisc_init(cmi_hdl_t, ao_ms_data_t *, uint32_t);
86
87 static const ao_bank_cfg_t ao_bank_cfgs[] = {
88 { AMD_DC_CTL_INIT_CMN, NULL, NULL, AMD_MSR_DC_MASK },
89 { AMD_IC_CTL_INIT_CMN, NULL, NULL, AMD_MSR_IC_MASK },
90 { AMD_BU_CTL_INIT_CMN, NULL, NULL, AMD_MSR_BU_MASK },
91 { AMD_LS_CTL_INIT_CMN, NULL, NULL, AMD_MSR_LS_MASK },
92 { AMD_NB_CTL_INIT_CMN, &ao_nb_ctl_init[0], nb_mcamisc_init,
93 AMD_MSR_NB_MASK },
94 };
95
96 static int ao_nbanks = sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfgs[0]);
97
98 /*
99 * This is quite awful but necessary to work around x86 system vendor's view of
100 * the world. Other operating systems (you know who you are) don't understand
101 * Opteron-specific error handling, so BIOS and system vendors often hide these
102 * conditions from them by using SMI polling to copy out any errors from the
103 * machine-check registers. When Solaris runs on a system with this feature,
104 * we want to disable the SMI polling so we can use FMA instead. Sadly, there
105 * isn't even a standard self-describing way to express the whole situation,
106 * so we have to resort to hard-coded values. This should all be changed to
107 * be a self-describing vendor-specific SMBIOS structure in the future.
108 */
109 static const struct ao_smi_disable {
110 const char *asd_sys_vendor; /* SMB_TYPE_SYSTEM vendor prefix */
111 const char *asd_sys_product; /* SMB_TYPE_SYSTEM product prefix */
112 const char *asd_bios_vendor; /* SMB_TYPE_BIOS vendor prefix */
113 uint8_t asd_code; /* output code for SMI disable */
114 } ao_smi_disable[] = {
115 { "Sun Microsystems", "Galaxy12",
116 "American Megatrends", 0x59 },
117 { "Sun Microsystems", "Sun Fire X4100 Server",
118 "American Megatrends", 0x59 },
119 { "Sun Microsystems", "Sun Fire X4200 Server",
120 "American Megatrends", 0x59 },
121 { NULL, NULL, NULL, 0 }
122 };
123
124 static int
ao_disp_match_r4(uint16_t ref,uint8_t r4)125 ao_disp_match_r4(uint16_t ref, uint8_t r4)
126 {
127 static const uint16_t ao_r4_map[] = {
128 AO_MCA_R4_BIT_ERR, /* MCAX86_ERRCODE_RRRR_ERR */
129 AO_MCA_R4_BIT_RD, /* MCAX86_ERRCODE_RRRR_RD */
130 AO_MCA_R4_BIT_WR, /* MCAX86_ERRCODE_RRRR_WR */
131 AO_MCA_R4_BIT_DRD, /* MCAX86_ERRCODE_RRRR_DRD */
132 AO_MCA_R4_BIT_DWR, /* MCAX86_ERRCODE_RRRR_DWR */
133 AO_MCA_R4_BIT_IRD, /* MCAX86_ERRCODE_RRRR_IRD */
134 AO_MCA_R4_BIT_PREFETCH, /* MCAX86_ERRCODE_RRRR_PREFETCH */
135 AO_MCA_R4_BIT_EVICT, /* MCAX86_ERRCODE_RRRR_EVICT */
136 AO_MCA_R4_BIT_SNOOP /* MCAX86_ERRCODE_RRRR_SNOOP */
137 };
138
139 ASSERT(r4 < sizeof (ao_r4_map) / sizeof (uint16_t));
140
141 return ((ref & ao_r4_map[r4]) != 0);
142 }
143
144 static int
ao_disp_match_pp(uint8_t ref,uint8_t pp)145 ao_disp_match_pp(uint8_t ref, uint8_t pp)
146 {
147 static const uint8_t ao_pp_map[] = {
148 AO_MCA_PP_BIT_SRC, /* MCAX86_ERRCODE_PP_SRC */
149 AO_MCA_PP_BIT_RES, /* MCAX86_ERRCODE_PP_RES */
150 AO_MCA_PP_BIT_OBS, /* MCAX86_ERRCODE_PP_OBS */
151 AO_MCA_PP_BIT_GEN /* MCAX86_ERRCODE_PP_GEN */
152 };
153
154 ASSERT(pp < sizeof (ao_pp_map) / sizeof (uint8_t));
155
156 return ((ref & ao_pp_map[pp]) != 0);
157 }
158
159 static int
ao_disp_match_ii(uint8_t ref,uint8_t ii)160 ao_disp_match_ii(uint8_t ref, uint8_t ii)
161 {
162 static const uint8_t ao_ii_map[] = {
163 AO_MCA_II_BIT_MEM, /* MCAX86_ERRCODE_II_MEM */
164 0,
165 AO_MCA_II_BIT_IO, /* MCAX86_ERRCODE_II_IO */
166 AO_MCA_II_BIT_GEN /* MCAX86_ERRCODE_II_GEN */
167 };
168
169 ASSERT(ii < sizeof (ao_ii_map) / sizeof (uint8_t));
170
171 return ((ref & ao_ii_map[ii]) != 0);
172 }
173
174 static uint8_t
bit_strip(uint16_t * codep,uint16_t mask,uint16_t shift)175 bit_strip(uint16_t *codep, uint16_t mask, uint16_t shift)
176 {
177 uint8_t val = (*codep & mask) >> shift;
178 *codep &= ~mask;
179 return (val);
180 }
181
182 #define BIT_STRIP(codep, name) \
183 bit_strip(codep, MCAX86_ERRCODE_##name##_MASK, \
184 MCAX86_ERRCODE_##name##_SHIFT)
185
186 /*ARGSUSED*/
187 static int
ao_disp_match_one(const ao_error_disp_t * aed,uint64_t status,uint32_t rev,int bankno)188 ao_disp_match_one(const ao_error_disp_t *aed, uint64_t status, uint32_t rev,
189 int bankno)
190 {
191 uint16_t code = MCAX86_ERRCODE(status);
192 uint8_t extcode = AMD_EXT_ERRCODE(status);
193 uint64_t stat_mask = aed->aed_stat_mask;
194 uint64_t stat_mask_res = aed->aed_stat_mask_res;
195
196 /*
197 * If the bank's status register indicates overflow, then we can no
198 * longer rely on the value of CECC: our experience with actual fault
199 * injection has shown that multiple CE's overwriting each other shows
200 * AMD_BANK_STAT_CECC and AMD_BANK_STAT_UECC both set to zero. This
201 * should be clarified in a future BKDG or by the Revision Guide.
202 * This behaviour is fixed in revision F.
203 */
204 if (bankno == AMD_MCA_BANK_NB &&
205 !X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_F) &&
206 status & MSR_MC_STATUS_OVER) {
207 stat_mask &= ~AMD_BANK_STAT_CECC;
208 stat_mask_res &= ~AMD_BANK_STAT_CECC;
209 }
210
211 if ((status & stat_mask) != stat_mask_res)
212 return (0);
213
214 /*
215 * r4 and pp bits are stored separately, so we mask off and compare them
216 * for the code types that use them. Once we've taken the r4 and pp
217 * bits out of the equation, we can directly compare the resulting code
218 * with the one stored in the ao_error_disp_t.
219 */
220 if (AMD_ERRCODE_ISMEM(code)) {
221 uint8_t r4 = BIT_STRIP(&code, RRRR);
222
223 if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4))
224 return (0);
225
226 } else if (AMD_ERRCODE_ISBUS(code)) {
227 uint8_t r4 = BIT_STRIP(&code, RRRR);
228 uint8_t pp = BIT_STRIP(&code, PP);
229 uint8_t ii = BIT_STRIP(&code, II);
230
231 if (!ao_disp_match_r4(aed->aed_stat_r4_bits, r4) ||
232 !ao_disp_match_pp(aed->aed_stat_pp_bits, pp) ||
233 !ao_disp_match_ii(aed->aed_stat_ii_bits, ii))
234 return (0);
235 }
236
237 return (code == aed->aed_stat_code && extcode == aed->aed_stat_extcode);
238 }
239
240 /*ARGSUSED*/
241 cms_cookie_t
ao_ms_disp_match(cmi_hdl_t hdl,int ismc,int banknum,uint64_t status,uint64_t addr,uint64_t misc,void * mslogout)242 ao_ms_disp_match(cmi_hdl_t hdl, int ismc, int banknum, uint64_t status,
243 uint64_t addr, uint64_t misc, void *mslogout)
244 {
245 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl);
246 uint32_t rev = ao->ao_ms_shared->aos_chiprev;
247 const ao_error_disp_t *aed;
248
249 for (aed = ao_error_disp[banknum]; aed->aed_stat_mask != 0; aed++) {
250 if (ao_disp_match_one(aed, status, rev, banknum))
251 return ((cms_cookie_t)aed);
252 }
253
254 return (NULL);
255 }
256
257 /*ARGSUSED*/
258 void
ao_ms_ereport_class(cmi_hdl_t hdl,cms_cookie_t mscookie,const char ** cpuclsp,const char ** leafclsp)259 ao_ms_ereport_class(cmi_hdl_t hdl, cms_cookie_t mscookie,
260 const char **cpuclsp, const char **leafclsp)
261 {
262 const ao_error_disp_t *aed = mscookie;
263
264 if (aed != NULL) {
265 *cpuclsp = FM_EREPORT_CPU_AMD;
266 *leafclsp = aed->aed_class;
267 }
268 }
269
270 static int
ao_chip_once(ao_ms_data_t * ao,enum ao_cfgonce_bitnum what)271 ao_chip_once(ao_ms_data_t *ao, enum ao_cfgonce_bitnum what)
272 {
273 return (atomic_set_long_excl(&ao->ao_ms_shared->aos_cfgonce,
274 what) == 0 ? B_TRUE : B_FALSE);
275 }
276
277 /*
278 * This knob exists in case any platform has a problem with our default
279 * policy of disabling any interrupt registered in the NB MC4_MISC
280 * register. Setting this may cause Solaris and external entities
281 * who also have an interest in this register to argue over available
282 * telemetry (so setting it is generally not recommended).
283 */
284 int ao_nb_cfg_mc4misc_noseize = 0;
285
286 /*
287 * The BIOS may have setup to receive SMI on counter overflow. It may also
288 * have locked various fields or made them read-only. We will clear any
289 * SMI request and leave the register locked. We will also clear the
290 * counter and enable counting - while we don't use the counter it is nice
291 * to have it enabled for verification and debug work.
292 */
293 static void
nb_mcamisc_init(cmi_hdl_t hdl,ao_ms_data_t * ao,uint32_t rev)294 nb_mcamisc_init(cmi_hdl_t hdl, ao_ms_data_t *ao, uint32_t rev)
295 {
296 uint64_t val, nval;
297
298 if (!X86_CHIPREV_MATCH(rev, AO_F_REVS_FG))
299 return;
300
301 if (cmi_hdl_rdmsr(hdl, AMD_MSR_NB_MISC, &val) != CMI_SUCCESS)
302 return;
303
304 ao->ao_ms_shared->aos_bcfg_nb_misc = val;
305
306 if (ao_nb_cfg_mc4misc_noseize)
307 return; /* stash BIOS value, but no changes */
308
309
310 /*
311 * The Valid bit tells us whether the CtrP bit is defined; if it
312 * is the CtrP bit tells us whether an ErrCount field is present.
313 * If not then there is nothing for us to do.
314 */
315 if (!(val & AMD_NB_MISC_VALID) || !(val & AMD_NB_MISC_CTRP))
316 return;
317
318
319 nval = val;
320 nval |= AMD_NB_MISC_CNTEN; /* enable ECC error counting */
321 nval &= ~AMD_NB_MISC_ERRCOUNT_MASK; /* clear ErrCount */
322 nval &= ~AMD_NB_MISC_OVRFLW; /* clear Ovrflw */
323 nval &= ~AMD_NB_MISC_INTTYPE_MASK; /* no interrupt on overflow */
324 nval |= AMD_NB_MISC_LOCKED;
325
326 if (nval != val) {
327 uint64_t locked = val & AMD_NB_MISC_LOCKED;
328
329 if (locked)
330 ao_bankstatus_prewrite(hdl, ao);
331
332 (void) cmi_hdl_wrmsr(hdl, AMD_MSR_NB_MISC, nval);
333
334 if (locked)
335 ao_bankstatus_postwrite(hdl, ao);
336 }
337 }
338
339 /*
340 * NorthBridge (NB) MCA Configuration.
341 *
342 * We add and remove bits from the BIOS-configured value, rather than
343 * writing an absolute value. The variables ao_nb_cfg_{add,remove}_cmn and
344 * ap_nb_cfg_{add,remove}_revFG are available for modification via kmdb
345 * and /etc/system. The revision-specific adds and removes are applied
346 * after the common changes, and one write is made to the config register.
347 * These are not intended for watchdog configuration via these variables -
348 * use the watchdog policy below.
349 */
350
351 /*
352 * Bits to be added to the NB configuration register - all revs.
353 */
354 uint32_t ao_nb_cfg_add_cmn = AMD_NB_CFG_ADD_CMN;
355
356 /*
357 * Bits to be cleared from the NB configuration register - all revs.
358 */
359 uint32_t ao_nb_cfg_remove_cmn = AMD_NB_CFG_REMOVE_CMN;
360
361 /*
362 * Bits to be added to the NB configuration register - revs F and G.
363 */
364 uint32_t ao_nb_cfg_add_revFG = AMD_NB_CFG_ADD_REV_FG;
365
366 /*
367 * Bits to be cleared from the NB configuration register - revs F and G.
368 */
369 uint32_t ao_nb_cfg_remove_revFG = AMD_NB_CFG_REMOVE_REV_FG;
370
371 struct ao_nb_cfg {
372 uint32_t cfg_revmask;
373 uint32_t *cfg_add_p;
374 uint32_t *cfg_remove_p;
375 };
376
377 static const struct ao_nb_cfg ao_cfg_extra[] = {
378 { AO_F_REVS_FG, &ao_nb_cfg_add_revFG, &ao_nb_cfg_remove_revFG },
379 { X86_CHIPREV_UNKNOWN, NULL, NULL }
380 };
381
382 /*
383 * Bits to be used if we configure the NorthBridge (NB) Watchdog. The watchdog
384 * triggers a machine check exception when no response to an NB system access
385 * occurs within a specified time interval.
386 */
387 uint32_t ao_nb_cfg_wdog =
388 AMD_NB_CFG_WDOGTMRCNTSEL_4095 |
389 AMD_NB_CFG_WDOGTMRBASESEL_1MS;
390
391 /*
392 * The default watchdog policy is to enable it (at the above rate) if it
393 * is disabled; if it is enabled then we leave it enabled at the rate
394 * chosen by the BIOS.
395 */
396 enum {
397 AO_NB_WDOG_LEAVEALONE, /* Don't touch watchdog config */
398 AO_NB_WDOG_DISABLE, /* Always disable watchdog */
399 AO_NB_WDOG_ENABLE_IF_DISABLED, /* If disabled, enable at our rate */
400 AO_NB_WDOG_ENABLE_FORCE_RATE /* Enable and set our rate */
401 } ao_nb_watchdog_policy = AO_NB_WDOG_ENABLE_IF_DISABLED;
402
403 static void
ao_nb_cfg(ao_ms_data_t * ao,uint32_t rev)404 ao_nb_cfg(ao_ms_data_t *ao, uint32_t rev)
405 {
406 const struct ao_nb_cfg *nbcp = &ao_cfg_extra[0];
407 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE);
408 uint32_t val;
409
410 /*
411 * Read the NorthBridge (NB) configuration register in PCI space,
412 * modify the settings accordingly, and store the new value back.
413 * Note that the stashed BIOS config value aos_bcfg_nb_cfg is used
414 * in ereport payload population to determine ECC syndrome type for
415 * memory errors.
416 */
417 ao->ao_ms_shared->aos_bcfg_nb_cfg = val =
418 ao_pcicfg_read(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG);
419
420 switch (ao_nb_watchdog_policy) {
421 case AO_NB_WDOG_LEAVEALONE:
422 break;
423
424 case AO_NB_WDOG_DISABLE:
425 val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK;
426 val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK;
427 val |= AMD_NB_CFG_WDOGTMRDIS;
428 break;
429
430 default:
431 cmn_err(CE_NOTE, "ao_nb_watchdog_policy=%d unrecognised, "
432 "using default policy", ao_nb_watchdog_policy);
433 /*FALLTHRU*/
434
435 case AO_NB_WDOG_ENABLE_IF_DISABLED:
436 if (!(val & AMD_NB_CFG_WDOGTMRDIS))
437 break; /* if enabled leave rate intact */
438 /*FALLTHRU*/
439
440 case AO_NB_WDOG_ENABLE_FORCE_RATE:
441 val &= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK;
442 val &= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK;
443 val &= ~AMD_NB_CFG_WDOGTMRDIS;
444 val |= ao_nb_cfg_wdog;
445 break;
446 }
447
448 /*
449 * Now apply bit adds and removes, first those common to all revs
450 * and then the revision-specific ones.
451 */
452 val &= ~ao_nb_cfg_remove_cmn;
453 val |= ao_nb_cfg_add_cmn;
454
455 while (nbcp->cfg_revmask != X86_CHIPREV_UNKNOWN) {
456 if (X86_CHIPREV_MATCH(rev, nbcp->cfg_revmask)) {
457 val &= ~(*nbcp->cfg_remove_p);
458 val |= *nbcp->cfg_add_p;
459 }
460 nbcp++;
461 }
462
463 ao_pcicfg_write(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG, val);
464 }
465
466 static void
ao_dram_cfg(ao_ms_data_t * ao,uint32_t rev)467 ao_dram_cfg(ao_ms_data_t *ao, uint32_t rev)
468 {
469 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE);
470 union mcreg_dramcfg_lo dcfglo;
471
472 ao->ao_ms_shared->aos_bcfg_dcfg_lo = MCREG_VAL32(&dcfglo) =
473 ao_pcicfg_read(procnodeid, MC_FUNC_DRAMCTL, MC_DC_REG_DRAMCFGLO);
474 ao->ao_ms_shared->aos_bcfg_dcfg_hi =
475 ao_pcicfg_read(procnodeid, MC_FUNC_DRAMCTL, MC_DC_REG_DRAMCFGHI);
476 #ifdef OPTERON_ERRATUM_172
477 if (X86_CHIPREV_MATCH(rev, AO_F_REVS_FG) &&
478 MCREG_FIELD_F_revFG(&dcfglo, ParEn)) {
479 MCREG_FIELD_F_revFG(&dcfglo, ParEn) = 0;
480 ao_pcicfg_write(procnodeid, MC_FUNC_DRAMCTL,
481 MC_DC_REG_DRAMCFGLO, MCREG_VAL32(&dcfglo));
482 }
483 #endif
484 }
485
486 /*
487 * This knob exists in case any platform has a problem with our default
488 * policy of disabling any interrupt registered in the online spare
489 * control register. Setting this may cause Solaris and external entities
490 * who also have an interest in this register to argue over available
491 * telemetry (so setting it is generally not recommended).
492 */
493 int ao_nb_cfg_sparectl_noseize = 0;
494
495 /*
496 * Setup the online spare control register (revs F and G). We disable
497 * any interrupt registered by the BIOS and zero all error counts.
498 */
499 static void
ao_sparectl_cfg(ao_ms_data_t * ao)500 ao_sparectl_cfg(ao_ms_data_t *ao)
501 {
502 uint_t procnodeid = pg_plat_hw_instance_id(CPU, PGHW_PROCNODE);
503 union mcreg_sparectl sparectl;
504 int chan, cs;
505
506 ao->ao_ms_shared->aos_bcfg_nb_sparectl = MCREG_VAL32(&sparectl) =
507 ao_pcicfg_read(procnodeid, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL);
508
509 if (ao_nb_cfg_sparectl_noseize)
510 return; /* stash BIOS value, but no changes */
511
512 /*
513 * If the BIOS has requested SMI interrupt type for ECC count
514 * overflow for a chip-select or channel force those off.
515 */
516 MCREG_FIELD_F_revFG(&sparectl, EccErrInt) = 0;
517 MCREG_FIELD_F_revFG(&sparectl, SwapDoneInt) = 0;
518
519 /*
520 * Zero EccErrCnt and write this back to all chan/cs combinations.
521 */
522 MCREG_FIELD_F_revFG(&sparectl, EccErrCntWrEn) = 1;
523 MCREG_FIELD_F_revFG(&sparectl, EccErrCnt) = 0;
524 for (chan = 0; chan < MC_CHIP_NDRAMCHAN; chan++) {
525 MCREG_FIELD_F_revFG(&sparectl, EccErrCntDramChan) = chan;
526
527 for (cs = 0; cs < MC_CHIP_NCS; cs++) {
528 MCREG_FIELD_F_revFG(&sparectl, EccErrCntDramCs) = cs;
529 ao_pcicfg_write(procnodeid, MC_FUNC_MISCCTL,
530 MC_CTL_REG_SPARECTL, MCREG_VAL32(&sparectl));
531 }
532 }
533 }
534
535 int ao_forgive_uc = 0; /* For test/debug only */
536 int ao_forgive_pcc = 0; /* For test/debug only */
537 int ao_fake_poison = 0; /* For test/debug only */
538
539 uint32_t
ao_ms_error_action(cmi_hdl_t hdl,int ismc,int banknum,uint64_t status,uint64_t addr,uint64_t misc,void * mslogout)540 ao_ms_error_action(cmi_hdl_t hdl, int ismc, int banknum,
541 uint64_t status, uint64_t addr, uint64_t misc, void *mslogout)
542 {
543 const ao_error_disp_t *aed;
544 uint32_t retval = 0;
545 uint8_t when;
546 int en;
547
548 if (ao_forgive_uc)
549 retval |= CMS_ERRSCOPE_CLEARED_UC;
550
551 if (ao_forgive_pcc)
552 retval |= CMS_ERRSCOPE_CURCONTEXT_OK;
553
554 if (ao_fake_poison && status & MSR_MC_STATUS_UC)
555 retval |= CMS_ERRSCOPE_POISONED;
556
557 if (retval)
558 return (retval);
559
560 aed = ao_ms_disp_match(hdl, ismc, banknum, status, addr, misc,
561 mslogout);
562
563 /*
564 * If we do not recognise the error let the cpu module apply
565 * the generic criteria to decide how to react.
566 */
567 if (aed == NULL)
568 return (0);
569
570 en = (status & MSR_MC_STATUS_EN) != 0;
571
572 if ((when = aed->aed_panic_when) == AO_AED_PANIC_NEVER)
573 retval |= CMS_ERRSCOPE_IGNORE_ERR;
574
575 if ((when & AO_AED_PANIC_ALWAYS) ||
576 ((when & AO_AED_PANIC_IFMCE) && (en || ismc)))
577 retval |= CMS_ERRSCOPE_FORCE_FATAL;
578
579 /*
580 * The original AMD implementation would panic on a machine check
581 * (not a poll) if the status overflow bit was set, with an
582 * exception for the case of rev F or later with an NB error
583 * indicating CECC. This came from the perception that the
584 * overflow bit was not correctly managed on rev E and earlier, for
585 * example that repeated correctable memeory errors did not set
586 * OVER but somehow clear CECC.
587 *
588 * We will leave the generic support to evaluate overflow errors
589 * and decide to panic on their individual merits, e.g., if PCC
590 * is set and so on. The AMD docs do say (as Intel does) that
591 * the status information is *all* from the higher-priority
592 * error in the case of an overflow, so it is at least as serious
593 * as the original and we can decide panic etc based on it.
594 */
595
596 return (retval);
597 }
598
599 /*
600 * Will need to change for family 0x10
601 */
602 static uint_t
ao_ereport_synd(ao_ms_data_t * ao,uint64_t status,uint_t * typep,int is_nb)603 ao_ereport_synd(ao_ms_data_t *ao, uint64_t status, uint_t *typep,
604 int is_nb)
605 {
606 if (is_nb) {
607 if (ao->ao_ms_shared->aos_bcfg_nb_cfg &
608 AMD_NB_CFG_CHIPKILLECCEN) {
609 *typep = AMD_SYNDTYPE_CHIPKILL;
610 return (AMD_NB_STAT_CKSYND(status));
611 } else {
612 *typep = AMD_SYNDTYPE_ECC;
613 return (AMD_BANK_SYND(status));
614 }
615 } else {
616 *typep = AMD_SYNDTYPE_ECC;
617 return (AMD_BANK_SYND(status));
618 }
619 }
620
621 static nvlist_t *
ao_ereport_create_resource_elem(cmi_hdl_t hdl,nv_alloc_t * nva,mc_unum_t * unump,int dimmnum)622 ao_ereport_create_resource_elem(cmi_hdl_t hdl, nv_alloc_t *nva,
623 mc_unum_t *unump, int dimmnum)
624 {
625 nvlist_t *nvl, *snvl;
626 nvlist_t *board_list = NULL;
627
628 if ((nvl = fm_nvlist_create(nva)) == NULL) /* freed by caller */
629 return (NULL);
630
631 if ((snvl = fm_nvlist_create(nva)) == NULL) {
632 fm_nvlist_destroy(nvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE);
633 return (NULL);
634 }
635
636 (void) nvlist_add_uint64(snvl, FM_FMRI_HC_SPECIFIC_OFFSET,
637 unump->unum_offset);
638
639 if (!x86gentopo_legacy) {
640 board_list = cmi_hdl_smb_bboard(hdl);
641
642 if (board_list == NULL) {
643 fm_nvlist_destroy(nvl,
644 nva ? FM_NVA_RETAIN : FM_NVA_FREE);
645 fm_nvlist_destroy(snvl,
646 nva ? FM_NVA_RETAIN : FM_NVA_FREE);
647 return (NULL);
648 }
649
650 fm_fmri_hc_create(nvl, FM_HC_SCHEME_VERSION, NULL, snvl,
651 board_list, 4,
652 "chip", cmi_hdl_smb_chipid(hdl),
653 "memory-controller", unump->unum_mc,
654 "dimm", unump->unum_dimms[dimmnum],
655 "rank", unump->unum_rank);
656 } else {
657 fm_fmri_hc_set(nvl, FM_HC_SCHEME_VERSION, NULL, snvl, 5,
658 "motherboard", unump->unum_board,
659 "chip", unump->unum_chip,
660 "memory-controller", unump->unum_mc,
661 "dimm", unump->unum_dimms[dimmnum],
662 "rank", unump->unum_rank);
663 }
664
665 fm_nvlist_destroy(snvl, nva ? FM_NVA_RETAIN : FM_NVA_FREE);
666
667 return (nvl);
668 }
669
670 static void
ao_ereport_add_resource(cmi_hdl_t hdl,nvlist_t * payload,nv_alloc_t * nva,mc_unum_t * unump)671 ao_ereport_add_resource(cmi_hdl_t hdl, nvlist_t *payload, nv_alloc_t *nva,
672 mc_unum_t *unump)
673 {
674
675 nvlist_t *elems[MC_UNUM_NDIMM];
676 int nelems = 0;
677 int i;
678
679 for (i = 0; i < MC_UNUM_NDIMM; i++) {
680 if (unump->unum_dimms[i] == MC_INVALNUM)
681 break;
682
683 if ((elems[nelems] = ao_ereport_create_resource_elem(hdl, nva,
684 unump, i)) == NULL)
685 break;
686
687 nelems++;
688 }
689
690 if (nelems == 0)
691 return;
692
693 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_RESOURCE,
694 DATA_TYPE_NVLIST_ARRAY, nelems, elems, NULL);
695
696 for (i = 0; i < nelems; i++)
697 fm_nvlist_destroy(elems[i], nva ? FM_NVA_RETAIN : FM_NVA_FREE);
698 }
699
700 /*ARGSUSED*/
701 void
ao_ms_ereport_add_logout(cmi_hdl_t hdl,nvlist_t * ereport,nv_alloc_t * nva,int banknum,uint64_t status,uint64_t addr,uint64_t misc,void * mslogout,cms_cookie_t mscookie)702 ao_ms_ereport_add_logout(cmi_hdl_t hdl, nvlist_t *ereport,
703 nv_alloc_t *nva, int banknum, uint64_t status, uint64_t addr,
704 uint64_t misc, void *mslogout, cms_cookie_t mscookie)
705 {
706 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl);
707 const ao_error_disp_t *aed = mscookie;
708 uint_t synd, syndtype;
709 uint64_t members;
710
711 if (aed == NULL)
712 return;
713
714 members = aed->aed_ereport_members;
715
716 synd = ao_ereport_synd(ao, status, &syndtype,
717 banknum == AMD_MCA_BANK_NB);
718
719 if (members & FM_EREPORT_PAYLOAD_FLAG_SYND) {
720 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_SYND,
721 DATA_TYPE_UINT16, synd, NULL);
722 }
723
724 if (members & FM_EREPORT_PAYLOAD_FLAG_SYND_TYPE) {
725 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_NAME_SYND_TYPE,
726 DATA_TYPE_STRING, (syndtype == AMD_SYNDTYPE_CHIPKILL ?
727 "C4" : "E"), NULL);
728 }
729
730 if (members & FM_EREPORT_PAYLOAD_FLAG_RESOURCE) {
731 mc_unum_t unum;
732
733 if (((aed->aed_flags & AO_AED_FLAGS_ADDRTYPE) ==
734 AO_AED_F_PHYSICAL) && (status & MSR_MC_STATUS_ADDRV) &&
735 cmi_mc_patounum(addr, aed->aed_addrvalid_hi,
736 aed->aed_addrvalid_lo, synd, syndtype, &unum) ==
737 CMI_SUCCESS)
738 ao_ereport_add_resource(hdl, ereport, nva, &unum);
739 }
740 }
741
742 /*ARGSUSED*/
743 boolean_t
ao_ms_ereport_includestack(cmi_hdl_t hdl,cms_cookie_t mscookie)744 ao_ms_ereport_includestack(cmi_hdl_t hdl, cms_cookie_t mscookie)
745 {
746 const ao_error_disp_t *aed = mscookie;
747
748 if (aed == NULL)
749 return (0);
750
751 return ((aed->aed_ereport_members &
752 FM_EREPORT_PAYLOAD_FLAG_STACK) != 0);
753 }
754
755 cms_errno_t
ao_ms_msrinject(cmi_hdl_t hdl,uint_t msr,uint64_t val)756 ao_ms_msrinject(cmi_hdl_t hdl, uint_t msr, uint64_t val)
757 {
758 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl);
759 cms_errno_t rv = CMSERR_BADMSRWRITE;
760
761 ao_bankstatus_prewrite(hdl, ao);
762 if (cmi_hdl_wrmsr(hdl, msr, val) == CMI_SUCCESS)
763 rv = CMS_SUCCESS;
764 ao_bankstatus_postwrite(hdl, ao);
765
766 return (rv);
767 }
768
769 /*ARGSUSED*/
770 uint64_t
ao_ms_mcgctl_val(cmi_hdl_t hdl,int nbanks,uint64_t def)771 ao_ms_mcgctl_val(cmi_hdl_t hdl, int nbanks, uint64_t def)
772 {
773 return ((1ULL << nbanks) - 1);
774 }
775
776 boolean_t
ao_ms_bankctl_skipinit(cmi_hdl_t hdl,int banknum)777 ao_ms_bankctl_skipinit(cmi_hdl_t hdl, int banknum)
778 {
779 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl);
780
781 if (banknum != AMD_MCA_BANK_NB)
782 return (B_FALSE);
783
784 /*
785 * If we are the first to atomically set the "I'll do it" bit
786 * then return B_FALSE (do not skip), otherwise skip with B_TRUE.
787 */
788 return (ao_chip_once(ao, AO_CFGONCE_NBMCA) == B_TRUE ?
789 B_FALSE : B_TRUE);
790 }
791
792 uint64_t
ao_ms_bankctl_val(cmi_hdl_t hdl,int banknum,uint64_t def)793 ao_ms_bankctl_val(cmi_hdl_t hdl, int banknum, uint64_t def)
794 {
795 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl);
796 const struct ao_ctl_init *extrap;
797 const ao_bank_cfg_t *bankcfg;
798 uint64_t mcictl;
799 uint32_t rev = ao->ao_ms_shared->aos_chiprev;
800
801 if (banknum >= sizeof (ao_bank_cfgs) / sizeof (ao_bank_cfgs[0]))
802 return (def);
803
804 bankcfg = &ao_bank_cfgs[banknum];
805 extrap = bankcfg->bank_ctl_init_extra;
806
807 mcictl = bankcfg->bank_ctl_init_cmn;
808
809 while (extrap != NULL && extrap->ctl_revmask != X86_CHIPREV_UNKNOWN) {
810 if (X86_CHIPREV_MATCH(rev, extrap->ctl_revmask))
811 mcictl |= extrap->ctl_bits;
812 extrap++;
813 }
814
815 return (mcictl);
816 }
817
818 /*ARGSUSED*/
819 void
ao_bankstatus_prewrite(cmi_hdl_t hdl,ao_ms_data_t * ao)820 ao_bankstatus_prewrite(cmi_hdl_t hdl, ao_ms_data_t *ao)
821 {
822 #ifndef __xpv
823 uint64_t hwcr;
824
825 if (cmi_hdl_rdmsr(hdl, MSR_AMD_HWCR, &hwcr) != CMI_SUCCESS)
826 return;
827
828 ao->ao_ms_hwcr_val = hwcr;
829
830 if (!(hwcr & AMD_HWCR_MCI_STATUS_WREN)) {
831 hwcr |= AMD_HWCR_MCI_STATUS_WREN;
832 (void) cmi_hdl_wrmsr(hdl, MSR_AMD_HWCR, hwcr);
833 }
834 #endif
835 }
836
837 /*ARGSUSED*/
838 void
ao_bankstatus_postwrite(cmi_hdl_t hdl,ao_ms_data_t * ao)839 ao_bankstatus_postwrite(cmi_hdl_t hdl, ao_ms_data_t *ao)
840 {
841 #ifndef __xpv
842 uint64_t hwcr = ao->ao_ms_hwcr_val;
843
844 if (!(hwcr & AMD_HWCR_MCI_STATUS_WREN)) {
845 hwcr &= ~AMD_HWCR_MCI_STATUS_WREN;
846 (void) cmi_hdl_wrmsr(hdl, MSR_AMD_HWCR, hwcr);
847 }
848 #endif
849 }
850
851 void
ao_ms_mca_init(cmi_hdl_t hdl,int nbanks)852 ao_ms_mca_init(cmi_hdl_t hdl, int nbanks)
853 {
854 ao_ms_data_t *ao = cms_hdl_getcmsdata(hdl);
855 uint32_t rev = ao->ao_ms_shared->aos_chiprev;
856 ao_ms_mca_t *mca = &ao->ao_ms_mca;
857 uint64_t *maskp;
858 int i;
859
860 maskp = mca->ao_mca_bios_cfg.bcfg_bank_mask = kmem_zalloc(nbanks *
861 sizeof (uint64_t), KM_SLEEP);
862
863 /*
864 * Read the bank ctl mask MSRs, but only as many as we know
865 * certainly exist - don't calculate the register address.
866 * Also initialize the MCi_MISC register where required.
867 */
868 for (i = 0; i < MIN(nbanks, ao_nbanks); i++) {
869 (void) cmi_hdl_rdmsr(hdl, ao_bank_cfgs[i].bank_ctl_mask,
870 maskp++);
871 if (ao_bank_cfgs[i].bank_misc_initfunc != NULL)
872 ao_bank_cfgs[i].bank_misc_initfunc(hdl, ao, rev);
873
874 }
875
876 if (ao_chip_once(ao, AO_CFGONCE_NBCFG) == B_TRUE) {
877 ao_nb_cfg(ao, rev);
878
879 if (X86_CHIPREV_MATCH(rev, AO_F_REVS_FG))
880 ao_sparectl_cfg(ao);
881 }
882
883 if (ao_chip_once(ao, AO_CFGONCE_DRAMCFG) == B_TRUE)
884 ao_dram_cfg(ao, rev);
885
886 ao_procnode_scrubber_enable(hdl, ao);
887 }
888
889 /*
890 * Note that although this cpu module is loaded before the PSMs are
891 * loaded (and hence before acpica is loaded), this function is
892 * called from post_startup(), after PSMs are initialized and acpica
893 * is loaded.
894 */
895 static int
ao_acpi_find_smicmd(int * asd_port)896 ao_acpi_find_smicmd(int *asd_port)
897 {
898 ACPI_TABLE_FADT *fadt = NULL;
899
900 /*
901 * AcpiGetTable works even if ACPI is disabled, so a failure
902 * here means we weren't able to retreive a pointer to the FADT.
903 */
904 if (AcpiGetTable(ACPI_SIG_FADT, 1, (ACPI_TABLE_HEADER **)&fadt) !=
905 AE_OK)
906 return (-1);
907
908 ASSERT(fadt != NULL);
909
910 *asd_port = fadt->SmiCommand;
911 return (0);
912 }
913
914 /*ARGSUSED*/
915 void
ao_ms_post_startup(cmi_hdl_t hdl)916 ao_ms_post_startup(cmi_hdl_t hdl)
917 {
918 const struct ao_smi_disable *asd;
919 id_t id;
920 int rv = -1, asd_port;
921
922 smbios_system_t sy;
923 smbios_bios_t sb;
924 smbios_info_t si;
925
926 /*
927 * Fetch the System and BIOS vendor strings from SMBIOS and see if they
928 * match a value in our table. If so, disable SMI error polling. This
929 * is grotesque and should be replaced by self-describing vendor-
930 * specific SMBIOS data or a specification enhancement instead.
931 */
932 if (ao_mca_smi_disable && ksmbios != NULL &&
933 smbios_info_bios(ksmbios, &sb) != SMB_ERR &&
934 (id = smbios_info_system(ksmbios, &sy)) != SMB_ERR &&
935 smbios_info_common(ksmbios, id, &si) != SMB_ERR) {
936
937 for (asd = ao_smi_disable; asd->asd_sys_vendor != NULL; asd++) {
938 if (strncmp(asd->asd_sys_vendor, si.smbi_manufacturer,
939 strlen(asd->asd_sys_vendor)) != 0 ||
940 strncmp(asd->asd_sys_product, si.smbi_product,
941 strlen(asd->asd_sys_product)) != 0 ||
942 strncmp(asd->asd_bios_vendor, sb.smbb_vendor,
943 strlen(asd->asd_bios_vendor)) != 0)
944 continue;
945
946 /*
947 * Look for the SMI_CMD port in the ACPI FADT,
948 * if the port is 0, this platform doesn't support
949 * SMM, so there is no SMI error polling to disable.
950 */
951 if ((rv = ao_acpi_find_smicmd(&asd_port)) == 0 &&
952 asd_port != 0) {
953 cmn_err(CE_CONT, "?SMI polling disabled in "
954 "favor of Solaris Fault Management for "
955 "AMD Processors\n");
956
957 outb(asd_port, asd->asd_code);
958
959 } else if (rv < 0) {
960 cmn_err(CE_CONT, "?Solaris Fault Management "
961 "for AMD Processors could not disable SMI "
962 "polling because an error occurred while "
963 "trying to determine the SMI command port "
964 "from the ACPI FADT table\n");
965 }
966 break;
967 }
968 }
969 }
970