1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_vm.h" 40 #include "amdgpu_trace.h" 41 #include "amdgpu_amdkfd.h" 42 #include "amdgpu_gmc.h" 43 #include "amdgpu_xgmi.h" 44 #include "amdgpu_dma_buf.h" 45 #include "amdgpu_res_cursor.h" 46 #include "kfd_svm.h" 47 48 /** 49 * DOC: GPUVM 50 * 51 * GPUVM is the MMU functionality provided on the GPU. 52 * GPUVM is similar to the legacy GART on older asics, however 53 * rather than there being a single global GART table 54 * for the entire GPU, there can be multiple GPUVM page tables active 55 * at any given time. The GPUVM page tables can contain a mix 56 * VRAM pages and system pages (both memory and MMIO) and system pages 57 * can be mapped as snooped (cached system pages) or unsnooped 58 * (uncached system pages). 59 * 60 * Each active GPUVM has an ID associated with it and there is a page table 61 * linked with each VMID. When executing a command buffer, 62 * the kernel tells the engine what VMID to use for that command 63 * buffer. VMIDs are allocated dynamically as commands are submitted. 64 * The userspace drivers maintain their own address space and the kernel 65 * sets up their pages tables accordingly when they submit their 66 * command buffers and a VMID is assigned. 67 * The hardware supports up to 16 active GPUVMs at any given time. 68 * 69 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 70 * on the ASIC family. GPUVM supports RWX attributes on each page as well 71 * as other features such as encryption and caching attributes. 72 * 73 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 74 * addition to an aperture managed by a page table, VMID 0 also has 75 * several other apertures. There is an aperture for direct access to VRAM 76 * and there is a legacy AGP aperture which just forwards accesses directly 77 * to the matching system physical addresses (or IOVAs when an IOMMU is 78 * present). These apertures provide direct access to these memories without 79 * incurring the overhead of a page table. VMID 0 is used by the kernel 80 * driver for tasks like memory management. 81 * 82 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 83 * For user applications, each application can have their own unique GPUVM 84 * address space. The application manages the address space and the kernel 85 * driver manages the GPUVM page tables for each process. If an GPU client 86 * accesses an invalid page, it will generate a GPU page fault, similar to 87 * accessing an invalid page on a CPU. 88 */ 89 90 #define START(node) ((node)->start) 91 #define LAST(node) ((node)->last) 92 93 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 94 START, LAST, static, amdgpu_vm_it) 95 96 #undef START 97 #undef LAST 98 99 /** 100 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 101 */ 102 struct amdgpu_prt_cb { 103 104 /** 105 * @adev: amdgpu device 106 */ 107 struct amdgpu_device *adev; 108 109 /** 110 * @cb: callback 111 */ 112 struct dma_fence_cb cb; 113 }; 114 115 /** 116 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 117 */ 118 struct amdgpu_vm_tlb_seq_struct { 119 /** 120 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 121 */ 122 struct amdgpu_vm *vm; 123 124 /** 125 * @cb: callback 126 */ 127 struct dma_fence_cb cb; 128 }; 129 130 /** 131 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 132 * 133 * @adev: amdgpu_device pointer 134 * @vm: amdgpu_vm pointer 135 * @pasid: the pasid the VM is using on this GPU 136 * 137 * Set the pasid this VM is using on this GPU, can also be used to remove the 138 * pasid by passing in zero. 139 * 140 */ 141 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 142 u32 pasid) 143 { 144 int r; 145 146 if (vm->pasid == pasid) 147 return 0; 148 149 if (vm->pasid) { 150 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 151 if (r < 0) 152 return r; 153 154 vm->pasid = 0; 155 } 156 157 if (pasid) { 158 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 159 GFP_KERNEL)); 160 if (r < 0) 161 return r; 162 163 vm->pasid = pasid; 164 } 165 166 167 return 0; 168 } 169 170 /** 171 * amdgpu_vm_bo_evicted - vm_bo is evicted 172 * 173 * @vm_bo: vm_bo which is evicted 174 * 175 * State for PDs/PTs and per VM BOs which are not at the location they should 176 * be. 177 */ 178 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 179 { 180 struct amdgpu_vm *vm = vm_bo->vm; 181 struct amdgpu_bo *bo = vm_bo->bo; 182 183 vm_bo->moved = true; 184 spin_lock(&vm_bo->vm->status_lock); 185 if (bo->tbo.type == ttm_bo_type_kernel) 186 list_move(&vm_bo->vm_status, &vm->evicted); 187 else 188 list_move_tail(&vm_bo->vm_status, &vm->evicted); 189 spin_unlock(&vm_bo->vm->status_lock); 190 } 191 /** 192 * amdgpu_vm_bo_moved - vm_bo is moved 193 * 194 * @vm_bo: vm_bo which is moved 195 * 196 * State for per VM BOs which are moved, but that change is not yet reflected 197 * in the page tables. 198 */ 199 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 200 { 201 spin_lock(&vm_bo->vm->status_lock); 202 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 203 spin_unlock(&vm_bo->vm->status_lock); 204 } 205 206 /** 207 * amdgpu_vm_bo_idle - vm_bo is idle 208 * 209 * @vm_bo: vm_bo which is now idle 210 * 211 * State for PDs/PTs and per VM BOs which have gone through the state machine 212 * and are now idle. 213 */ 214 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 215 { 216 spin_lock(&vm_bo->vm->status_lock); 217 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 218 spin_unlock(&vm_bo->vm->status_lock); 219 vm_bo->moved = false; 220 } 221 222 /** 223 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 224 * 225 * @vm_bo: vm_bo which is now invalidated 226 * 227 * State for normal BOs which are invalidated and that change not yet reflected 228 * in the PTs. 229 */ 230 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 231 { 232 spin_lock(&vm_bo->vm->status_lock); 233 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 234 spin_unlock(&vm_bo->vm->status_lock); 235 } 236 237 /** 238 * amdgpu_vm_bo_evicted_user - vm_bo is evicted 239 * 240 * @vm_bo: vm_bo which is evicted 241 * 242 * State for BOs used by user mode queues which are not at the location they 243 * should be. 244 */ 245 static void amdgpu_vm_bo_evicted_user(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 vm_bo->moved = true; 248 spin_lock(&vm_bo->vm->status_lock); 249 list_move(&vm_bo->vm_status, &vm_bo->vm->evicted_user); 250 spin_unlock(&vm_bo->vm->status_lock); 251 } 252 253 /** 254 * amdgpu_vm_bo_relocated - vm_bo is reloacted 255 * 256 * @vm_bo: vm_bo which is relocated 257 * 258 * State for PDs/PTs which needs to update their parent PD. 259 * For the root PD, just move to idle state. 260 */ 261 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 262 { 263 if (vm_bo->bo->parent) { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } else { 268 amdgpu_vm_bo_idle(vm_bo); 269 } 270 } 271 272 /** 273 * amdgpu_vm_bo_done - vm_bo is done 274 * 275 * @vm_bo: vm_bo which is now done 276 * 277 * State for normal BOs which are invalidated and that change has been updated 278 * in the PTs. 279 */ 280 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 spin_lock(&vm_bo->vm->status_lock); 283 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 284 spin_unlock(&vm_bo->vm->status_lock); 285 } 286 287 /** 288 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 289 * @vm: the VM which state machine to reset 290 * 291 * Move all vm_bo object in the VM into a state where they will be updated 292 * again during validation. 293 */ 294 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 295 { 296 struct amdgpu_vm_bo_base *vm_bo, *tmp; 297 298 spin_lock(&vm->status_lock); 299 list_splice_init(&vm->done, &vm->invalidated); 300 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 301 vm_bo->moved = true; 302 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 303 struct amdgpu_bo *bo = vm_bo->bo; 304 305 vm_bo->moved = true; 306 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 307 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 308 else if (bo->parent) 309 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 310 } 311 spin_unlock(&vm->status_lock); 312 } 313 314 /** 315 * amdgpu_vm_update_shared - helper to update shared memory stat 316 * @base: base structure for tracking BO usage in a VM 317 * 318 * Takes the vm status_lock and updates the shared memory stat. If the basic 319 * stat changed (e.g. buffer was moved) amdgpu_vm_update_stats need to be called 320 * as well. 321 */ 322 static void amdgpu_vm_update_shared(struct amdgpu_vm_bo_base *base) 323 { 324 struct amdgpu_vm *vm = base->vm; 325 struct amdgpu_bo *bo = base->bo; 326 uint64_t size = amdgpu_bo_size(bo); 327 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 328 bool shared; 329 330 spin_lock(&vm->status_lock); 331 shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 332 if (base->shared != shared) { 333 base->shared = shared; 334 if (shared) { 335 vm->stats[bo_memtype].drm.shared += size; 336 vm->stats[bo_memtype].drm.private -= size; 337 } else { 338 vm->stats[bo_memtype].drm.shared -= size; 339 vm->stats[bo_memtype].drm.private += size; 340 } 341 } 342 spin_unlock(&vm->status_lock); 343 } 344 345 /** 346 * amdgpu_vm_bo_update_shared - callback when bo gets shared/unshared 347 * @bo: amdgpu buffer object 348 * 349 * Update the per VM stats for all the vm if needed from private to shared or 350 * vice versa. 351 */ 352 void amdgpu_vm_bo_update_shared(struct amdgpu_bo *bo) 353 { 354 struct amdgpu_vm_bo_base *base; 355 356 for (base = bo->vm_bo; base; base = base->next) 357 amdgpu_vm_update_shared(base); 358 } 359 360 /** 361 * amdgpu_vm_update_stats_locked - helper to update normal memory stat 362 * @base: base structure for tracking BO usage in a VM 363 * @res: the ttm_resource to use for the purpose of accounting, may or may not 364 * be bo->tbo.resource 365 * @sign: if we should add (+1) or subtract (-1) from the stat 366 * 367 * Caller need to have the vm status_lock held. Useful for when multiple update 368 * need to happen at the same time. 369 */ 370 static void amdgpu_vm_update_stats_locked(struct amdgpu_vm_bo_base *base, 371 struct ttm_resource *res, int sign) 372 { 373 struct amdgpu_vm *vm = base->vm; 374 struct amdgpu_bo *bo = base->bo; 375 int64_t size = sign * amdgpu_bo_size(bo); 376 uint32_t bo_memtype = amdgpu_bo_mem_stats_placement(bo); 377 378 /* For drm-total- and drm-shared-, BO are accounted by their preferred 379 * placement, see also amdgpu_bo_mem_stats_placement. 380 */ 381 if (base->shared) 382 vm->stats[bo_memtype].drm.shared += size; 383 else 384 vm->stats[bo_memtype].drm.private += size; 385 386 if (res && res->mem_type < __AMDGPU_PL_NUM) { 387 uint32_t res_memtype = res->mem_type; 388 389 vm->stats[res_memtype].drm.resident += size; 390 /* BO only count as purgeable if it is resident, 391 * since otherwise there's nothing to purge. 392 */ 393 if (bo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) 394 vm->stats[res_memtype].drm.purgeable += size; 395 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(res_memtype))) 396 vm->stats[bo_memtype].evicted += size; 397 } 398 } 399 400 /** 401 * amdgpu_vm_update_stats - helper to update normal memory stat 402 * @base: base structure for tracking BO usage in a VM 403 * @res: the ttm_resource to use for the purpose of accounting, may or may not 404 * be bo->tbo.resource 405 * @sign: if we should add (+1) or subtract (-1) from the stat 406 * 407 * Updates the basic memory stat when bo is added/deleted/moved. 408 */ 409 void amdgpu_vm_update_stats(struct amdgpu_vm_bo_base *base, 410 struct ttm_resource *res, int sign) 411 { 412 struct amdgpu_vm *vm = base->vm; 413 414 spin_lock(&vm->status_lock); 415 amdgpu_vm_update_stats_locked(base, res, sign); 416 spin_unlock(&vm->status_lock); 417 } 418 419 /** 420 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 421 * 422 * @base: base structure for tracking BO usage in a VM 423 * @vm: vm to which bo is to be added 424 * @bo: amdgpu buffer object 425 * 426 * Initialize a bo_va_base structure and add it to the appropriate lists 427 * 428 */ 429 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 430 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 431 { 432 base->vm = vm; 433 base->bo = bo; 434 base->next = NULL; 435 INIT_LIST_HEAD(&base->vm_status); 436 437 if (!bo) 438 return; 439 base->next = bo->vm_bo; 440 bo->vm_bo = base; 441 442 spin_lock(&vm->status_lock); 443 base->shared = drm_gem_object_is_shared_for_memory_stats(&bo->tbo.base); 444 amdgpu_vm_update_stats_locked(base, bo->tbo.resource, +1); 445 spin_unlock(&vm->status_lock); 446 447 if (!amdgpu_vm_is_bo_always_valid(vm, bo)) 448 return; 449 450 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 451 452 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 453 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 454 amdgpu_vm_bo_relocated(base); 455 else 456 amdgpu_vm_bo_idle(base); 457 458 if (bo->preferred_domains & 459 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 460 return; 461 462 /* 463 * we checked all the prerequisites, but it looks like this per vm bo 464 * is currently evicted. add the bo to the evicted list to make sure it 465 * is validated on next vm use to avoid fault. 466 * */ 467 amdgpu_vm_bo_evicted(base); 468 } 469 470 /** 471 * amdgpu_vm_lock_pd - lock PD in drm_exec 472 * 473 * @vm: vm providing the BOs 474 * @exec: drm execution context 475 * @num_fences: number of extra fences to reserve 476 * 477 * Lock the VM root PD in the DRM execution context. 478 */ 479 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 480 unsigned int num_fences) 481 { 482 /* We need at least two fences for the VM PD/PT updates */ 483 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 484 2 + num_fences); 485 } 486 487 /** 488 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 489 * 490 * @adev: amdgpu device pointer 491 * @vm: vm providing the BOs 492 * 493 * Move all BOs to the end of LRU and remember their positions to put them 494 * together. 495 */ 496 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 497 struct amdgpu_vm *vm) 498 { 499 spin_lock(&adev->mman.bdev.lru_lock); 500 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 501 spin_unlock(&adev->mman.bdev.lru_lock); 502 } 503 504 /* Create scheduler entities for page table updates */ 505 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 506 struct amdgpu_vm *vm) 507 { 508 int r; 509 510 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 511 adev->vm_manager.vm_pte_scheds, 512 adev->vm_manager.vm_pte_num_scheds, NULL); 513 if (r) 514 goto error; 515 516 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 517 adev->vm_manager.vm_pte_scheds, 518 adev->vm_manager.vm_pte_num_scheds, NULL); 519 520 error: 521 drm_sched_entity_destroy(&vm->immediate); 522 return r; 523 } 524 525 /* Destroy the entities for page table updates again */ 526 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 527 { 528 drm_sched_entity_destroy(&vm->immediate); 529 drm_sched_entity_destroy(&vm->delayed); 530 } 531 532 /** 533 * amdgpu_vm_generation - return the page table re-generation counter 534 * @adev: the amdgpu_device 535 * @vm: optional VM to check, might be NULL 536 * 537 * Returns a page table re-generation token to allow checking if submissions 538 * are still valid to use this VM. The VM parameter might be NULL in which case 539 * just the VRAM lost counter will be used. 540 */ 541 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 542 { 543 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 544 545 if (!vm) 546 return result; 547 548 result += lower_32_bits(vm->generation); 549 /* Add one if the page tables will be re-generated on next CS */ 550 if (drm_sched_entity_error(&vm->delayed)) 551 ++result; 552 553 return result; 554 } 555 556 /** 557 * amdgpu_vm_validate - validate evicted BOs tracked in the VM 558 * 559 * @adev: amdgpu device pointer 560 * @vm: vm providing the BOs 561 * @ticket: optional reservation ticket used to reserve the VM 562 * @validate: callback to do the validation 563 * @param: parameter for the validation callback 564 * 565 * Validate the page table BOs and per-VM BOs on command submission if 566 * necessary. If a ticket is given, also try to validate evicted user queue 567 * BOs. They must already be reserved with the given ticket. 568 * 569 * Returns: 570 * Validation result. 571 */ 572 int amdgpu_vm_validate(struct amdgpu_device *adev, struct amdgpu_vm *vm, 573 struct ww_acquire_ctx *ticket, 574 int (*validate)(void *p, struct amdgpu_bo *bo), 575 void *param) 576 { 577 uint64_t new_vm_generation = amdgpu_vm_generation(adev, vm); 578 struct amdgpu_vm_bo_base *bo_base; 579 struct amdgpu_bo *bo; 580 int r; 581 582 if (vm->generation != new_vm_generation) { 583 vm->generation = new_vm_generation; 584 amdgpu_vm_bo_reset_state_machine(vm); 585 amdgpu_vm_fini_entities(vm); 586 r = amdgpu_vm_init_entities(adev, vm); 587 if (r) 588 return r; 589 } 590 591 spin_lock(&vm->status_lock); 592 while (!list_empty(&vm->evicted)) { 593 bo_base = list_first_entry(&vm->evicted, 594 struct amdgpu_vm_bo_base, 595 vm_status); 596 spin_unlock(&vm->status_lock); 597 598 bo = bo_base->bo; 599 600 r = validate(param, bo); 601 if (r) 602 return r; 603 604 if (bo->tbo.type != ttm_bo_type_kernel) { 605 amdgpu_vm_bo_moved(bo_base); 606 } else { 607 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 608 amdgpu_vm_bo_relocated(bo_base); 609 } 610 spin_lock(&vm->status_lock); 611 } 612 while (ticket && !list_empty(&vm->evicted_user)) { 613 bo_base = list_first_entry(&vm->evicted_user, 614 struct amdgpu_vm_bo_base, 615 vm_status); 616 spin_unlock(&vm->status_lock); 617 618 bo = bo_base->bo; 619 620 if (dma_resv_locking_ctx(bo->tbo.base.resv) != ticket) { 621 struct amdgpu_task_info *ti = amdgpu_vm_get_task_info_vm(vm); 622 623 pr_warn_ratelimited("Evicted user BO is not reserved\n"); 624 if (ti) { 625 pr_warn_ratelimited("pid %d\n", ti->pid); 626 amdgpu_vm_put_task_info(ti); 627 } 628 629 return -EINVAL; 630 } 631 632 r = validate(param, bo); 633 if (r) 634 return r; 635 636 amdgpu_vm_bo_invalidated(bo_base); 637 638 spin_lock(&vm->status_lock); 639 } 640 spin_unlock(&vm->status_lock); 641 642 amdgpu_vm_eviction_lock(vm); 643 vm->evicting = false; 644 amdgpu_vm_eviction_unlock(vm); 645 646 return 0; 647 } 648 649 /** 650 * amdgpu_vm_ready - check VM is ready for updates 651 * 652 * @vm: VM to check 653 * 654 * Check if all VM PDs/PTs are ready for updates 655 * 656 * Returns: 657 * True if VM is not evicting. 658 */ 659 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 660 { 661 bool empty; 662 bool ret; 663 664 amdgpu_vm_eviction_lock(vm); 665 ret = !vm->evicting; 666 amdgpu_vm_eviction_unlock(vm); 667 668 spin_lock(&vm->status_lock); 669 empty = list_empty(&vm->evicted); 670 spin_unlock(&vm->status_lock); 671 672 return ret && empty; 673 } 674 675 /** 676 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 677 * 678 * @adev: amdgpu_device pointer 679 */ 680 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 681 { 682 const struct amdgpu_ip_block *ip_block; 683 bool has_compute_vm_bug; 684 struct amdgpu_ring *ring; 685 int i; 686 687 has_compute_vm_bug = false; 688 689 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 690 if (ip_block) { 691 /* Compute has a VM bug for GFX version < 7. 692 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 693 if (ip_block->version->major <= 7) 694 has_compute_vm_bug = true; 695 else if (ip_block->version->major == 8) 696 if (adev->gfx.mec_fw_version < 673) 697 has_compute_vm_bug = true; 698 } 699 700 for (i = 0; i < adev->num_rings; i++) { 701 ring = adev->rings[i]; 702 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 703 /* only compute rings */ 704 ring->has_compute_vm_bug = has_compute_vm_bug; 705 else 706 ring->has_compute_vm_bug = false; 707 } 708 } 709 710 /** 711 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 712 * 713 * @ring: ring on which the job will be submitted 714 * @job: job to submit 715 * 716 * Returns: 717 * True if sync is needed. 718 */ 719 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 720 struct amdgpu_job *job) 721 { 722 struct amdgpu_device *adev = ring->adev; 723 unsigned vmhub = ring->vm_hub; 724 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 725 726 if (job->vmid == 0) 727 return false; 728 729 if (job->vm_needs_flush || ring->has_compute_vm_bug) 730 return true; 731 732 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 733 return true; 734 735 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 736 return true; 737 738 return false; 739 } 740 741 /** 742 * amdgpu_vm_flush - hardware flush the vm 743 * 744 * @ring: ring to use for flush 745 * @job: related job 746 * @need_pipe_sync: is pipe sync needed 747 * 748 * Emit a VM flush when it is necessary. 749 * 750 * Returns: 751 * 0 on success, errno otherwise. 752 */ 753 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 754 bool need_pipe_sync) 755 { 756 struct amdgpu_device *adev = ring->adev; 757 struct amdgpu_isolation *isolation = &adev->isolation[ring->xcp_id]; 758 unsigned vmhub = ring->vm_hub; 759 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 760 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 761 bool spm_update_needed = job->spm_update_needed; 762 bool gds_switch_needed = ring->funcs->emit_gds_switch && 763 job->gds_switch_needed; 764 bool vm_flush_needed = job->vm_needs_flush; 765 bool cleaner_shader_needed = false; 766 bool pasid_mapping_needed = false; 767 struct dma_fence *fence = NULL; 768 unsigned int patch; 769 int r; 770 771 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 772 gds_switch_needed = true; 773 vm_flush_needed = true; 774 pasid_mapping_needed = true; 775 spm_update_needed = true; 776 } 777 778 mutex_lock(&id_mgr->lock); 779 if (id->pasid != job->pasid || !id->pasid_mapping || 780 !dma_fence_is_signaled(id->pasid_mapping)) 781 pasid_mapping_needed = true; 782 mutex_unlock(&id_mgr->lock); 783 784 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 785 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 786 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 787 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 788 ring->funcs->emit_wreg; 789 790 cleaner_shader_needed = adev->gfx.enable_cleaner_shader && 791 ring->funcs->emit_cleaner_shader && job->base.s_fence && 792 &job->base.s_fence->scheduled == isolation->spearhead; 793 794 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync && 795 !cleaner_shader_needed) 796 return 0; 797 798 amdgpu_ring_ib_begin(ring); 799 if (ring->funcs->init_cond_exec) 800 patch = amdgpu_ring_init_cond_exec(ring, 801 ring->cond_exe_gpu_addr); 802 803 if (need_pipe_sync) 804 amdgpu_ring_emit_pipeline_sync(ring); 805 806 if (cleaner_shader_needed) 807 ring->funcs->emit_cleaner_shader(ring); 808 809 if (vm_flush_needed) { 810 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 811 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 812 } 813 814 if (pasid_mapping_needed) 815 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 816 817 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 818 adev->gfx.rlc.funcs->update_spm_vmid(adev, ring, job->vmid); 819 820 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 821 gds_switch_needed) { 822 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 823 job->gds_size, job->gws_base, 824 job->gws_size, job->oa_base, 825 job->oa_size); 826 } 827 828 if (vm_flush_needed || pasid_mapping_needed || cleaner_shader_needed) { 829 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 830 if (r) 831 return r; 832 } 833 834 if (vm_flush_needed) { 835 mutex_lock(&id_mgr->lock); 836 dma_fence_put(id->last_flush); 837 id->last_flush = dma_fence_get(fence); 838 id->current_gpu_reset_count = 839 atomic_read(&adev->gpu_reset_counter); 840 mutex_unlock(&id_mgr->lock); 841 } 842 843 if (pasid_mapping_needed) { 844 mutex_lock(&id_mgr->lock); 845 id->pasid = job->pasid; 846 dma_fence_put(id->pasid_mapping); 847 id->pasid_mapping = dma_fence_get(fence); 848 mutex_unlock(&id_mgr->lock); 849 } 850 851 /* 852 * Make sure that all other submissions wait for the cleaner shader to 853 * finish before we push them to the HW. 854 */ 855 if (cleaner_shader_needed) { 856 trace_amdgpu_cleaner_shader(ring, fence); 857 mutex_lock(&adev->enforce_isolation_mutex); 858 dma_fence_put(isolation->spearhead); 859 isolation->spearhead = dma_fence_get(fence); 860 mutex_unlock(&adev->enforce_isolation_mutex); 861 } 862 dma_fence_put(fence); 863 864 amdgpu_ring_patch_cond_exec(ring, patch); 865 866 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 867 if (ring->funcs->emit_switch_buffer) { 868 amdgpu_ring_emit_switch_buffer(ring); 869 amdgpu_ring_emit_switch_buffer(ring); 870 } 871 872 amdgpu_ring_ib_end(ring); 873 return 0; 874 } 875 876 /** 877 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 878 * 879 * @vm: requested vm 880 * @bo: requested buffer object 881 * 882 * Find @bo inside the requested vm. 883 * Search inside the @bos vm list for the requested vm 884 * Returns the found bo_va or NULL if none is found 885 * 886 * Object has to be reserved! 887 * 888 * Returns: 889 * Found bo_va or NULL. 890 */ 891 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 892 struct amdgpu_bo *bo) 893 { 894 struct amdgpu_vm_bo_base *base; 895 896 for (base = bo->vm_bo; base; base = base->next) { 897 if (base->vm != vm) 898 continue; 899 900 return container_of(base, struct amdgpu_bo_va, base); 901 } 902 return NULL; 903 } 904 905 /** 906 * amdgpu_vm_map_gart - Resolve gart mapping of addr 907 * 908 * @pages_addr: optional DMA address to use for lookup 909 * @addr: the unmapped addr 910 * 911 * Look up the physical address of the page that the pte resolves 912 * to. 913 * 914 * Returns: 915 * The pointer for the page table entry. 916 */ 917 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 918 { 919 uint64_t result; 920 921 /* page table offset */ 922 result = pages_addr[addr >> PAGE_SHIFT]; 923 924 /* in case cpu page size != gpu page size*/ 925 result |= addr & (~PAGE_MASK); 926 927 result &= 0xFFFFFFFFFFFFF000ULL; 928 929 return result; 930 } 931 932 /** 933 * amdgpu_vm_update_pdes - make sure that all directories are valid 934 * 935 * @adev: amdgpu_device pointer 936 * @vm: requested vm 937 * @immediate: submit immediately to the paging queue 938 * 939 * Makes sure all directories are up to date. 940 * 941 * Returns: 942 * 0 for success, error for failure. 943 */ 944 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 945 struct amdgpu_vm *vm, bool immediate) 946 { 947 struct amdgpu_vm_update_params params; 948 struct amdgpu_vm_bo_base *entry; 949 bool flush_tlb_needed = false; 950 LIST_HEAD(relocated); 951 int r, idx; 952 953 spin_lock(&vm->status_lock); 954 list_splice_init(&vm->relocated, &relocated); 955 spin_unlock(&vm->status_lock); 956 957 if (list_empty(&relocated)) 958 return 0; 959 960 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 961 return -ENODEV; 962 963 memset(¶ms, 0, sizeof(params)); 964 params.adev = adev; 965 params.vm = vm; 966 params.immediate = immediate; 967 968 r = vm->update_funcs->prepare(¶ms, NULL); 969 if (r) 970 goto error; 971 972 list_for_each_entry(entry, &relocated, vm_status) { 973 /* vm_flush_needed after updating moved PDEs */ 974 flush_tlb_needed |= entry->moved; 975 976 r = amdgpu_vm_pde_update(¶ms, entry); 977 if (r) 978 goto error; 979 } 980 981 r = vm->update_funcs->commit(¶ms, &vm->last_update); 982 if (r) 983 goto error; 984 985 if (flush_tlb_needed) 986 atomic64_inc(&vm->tlb_seq); 987 988 while (!list_empty(&relocated)) { 989 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 990 vm_status); 991 amdgpu_vm_bo_idle(entry); 992 } 993 994 error: 995 drm_dev_exit(idx); 996 return r; 997 } 998 999 /** 1000 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 1001 * @fence: unused 1002 * @cb: the callback structure 1003 * 1004 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1005 */ 1006 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 1007 struct dma_fence_cb *cb) 1008 { 1009 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1010 1011 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 1012 atomic64_inc(&tlb_cb->vm->tlb_seq); 1013 kfree(tlb_cb); 1014 } 1015 1016 /** 1017 * amdgpu_vm_tlb_flush - prepare TLB flush 1018 * 1019 * @params: parameters for update 1020 * @fence: input fence to sync TLB flush with 1021 * @tlb_cb: the callback structure 1022 * 1023 * Increments the tlb sequence to make sure that future CS execute a VM flush. 1024 */ 1025 static void 1026 amdgpu_vm_tlb_flush(struct amdgpu_vm_update_params *params, 1027 struct dma_fence **fence, 1028 struct amdgpu_vm_tlb_seq_struct *tlb_cb) 1029 { 1030 struct amdgpu_vm *vm = params->vm; 1031 1032 tlb_cb->vm = vm; 1033 if (!fence || !*fence) { 1034 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1035 return; 1036 } 1037 1038 if (!dma_fence_add_callback(*fence, &tlb_cb->cb, 1039 amdgpu_vm_tlb_seq_cb)) { 1040 dma_fence_put(vm->last_tlb_flush); 1041 vm->last_tlb_flush = dma_fence_get(*fence); 1042 } else { 1043 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 1044 } 1045 1046 /* Prepare a TLB flush fence to be attached to PTs */ 1047 if (!params->unlocked && vm->is_compute_context) { 1048 amdgpu_vm_tlb_fence_create(params->adev, vm, fence); 1049 1050 /* Makes sure no PD/PT is freed before the flush */ 1051 dma_resv_add_fence(vm->root.bo->tbo.base.resv, *fence, 1052 DMA_RESV_USAGE_BOOKKEEP); 1053 } 1054 } 1055 1056 /** 1057 * amdgpu_vm_update_range - update a range in the vm page table 1058 * 1059 * @adev: amdgpu_device pointer to use for commands 1060 * @vm: the VM to update the range 1061 * @immediate: immediate submission in a page fault 1062 * @unlocked: unlocked invalidation during MM callback 1063 * @flush_tlb: trigger tlb invalidation after update completed 1064 * @allow_override: change MTYPE for local NUMA nodes 1065 * @sync: fences we need to sync to 1066 * @start: start of mapped range 1067 * @last: last mapped entry 1068 * @flags: flags for the entries 1069 * @offset: offset into nodes and pages_addr 1070 * @vram_base: base for vram mappings 1071 * @res: ttm_resource to map 1072 * @pages_addr: DMA addresses to use for mapping 1073 * @fence: optional resulting fence 1074 * 1075 * Fill in the page table entries between @start and @last. 1076 * 1077 * Returns: 1078 * 0 for success, negative erro code for failure. 1079 */ 1080 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1081 bool immediate, bool unlocked, bool flush_tlb, 1082 bool allow_override, struct amdgpu_sync *sync, 1083 uint64_t start, uint64_t last, uint64_t flags, 1084 uint64_t offset, uint64_t vram_base, 1085 struct ttm_resource *res, dma_addr_t *pages_addr, 1086 struct dma_fence **fence) 1087 { 1088 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 1089 struct amdgpu_vm_update_params params; 1090 struct amdgpu_res_cursor cursor; 1091 int r, idx; 1092 1093 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1094 return -ENODEV; 1095 1096 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 1097 if (!tlb_cb) { 1098 drm_dev_exit(idx); 1099 return -ENOMEM; 1100 } 1101 1102 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 1103 * heavy-weight flush TLB unconditionally. 1104 */ 1105 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 1106 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 0); 1107 1108 /* 1109 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 1110 */ 1111 flush_tlb |= amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 0, 0); 1112 1113 memset(¶ms, 0, sizeof(params)); 1114 params.adev = adev; 1115 params.vm = vm; 1116 params.immediate = immediate; 1117 params.pages_addr = pages_addr; 1118 params.unlocked = unlocked; 1119 params.needs_flush = flush_tlb; 1120 params.allow_override = allow_override; 1121 INIT_LIST_HEAD(¶ms.tlb_flush_waitlist); 1122 1123 amdgpu_vm_eviction_lock(vm); 1124 if (vm->evicting) { 1125 r = -EBUSY; 1126 goto error_free; 1127 } 1128 1129 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1130 struct dma_fence *tmp = dma_fence_get_stub(); 1131 1132 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1133 swap(vm->last_unlocked, tmp); 1134 dma_fence_put(tmp); 1135 } 1136 1137 r = vm->update_funcs->prepare(¶ms, sync); 1138 if (r) 1139 goto error_free; 1140 1141 amdgpu_res_first(pages_addr ? NULL : res, offset, 1142 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1143 while (cursor.remaining) { 1144 uint64_t tmp, num_entries, addr; 1145 1146 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1147 if (pages_addr) { 1148 bool contiguous = true; 1149 1150 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1151 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1152 uint64_t count; 1153 1154 contiguous = pages_addr[pfn + 1] == 1155 pages_addr[pfn] + PAGE_SIZE; 1156 1157 tmp = num_entries / 1158 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1159 for (count = 2; count < tmp; ++count) { 1160 uint64_t idx = pfn + count; 1161 1162 if (contiguous != (pages_addr[idx] == 1163 pages_addr[idx - 1] + PAGE_SIZE)) 1164 break; 1165 } 1166 if (!contiguous) 1167 count--; 1168 num_entries = count * 1169 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1170 } 1171 1172 if (!contiguous) { 1173 addr = cursor.start; 1174 params.pages_addr = pages_addr; 1175 } else { 1176 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1177 params.pages_addr = NULL; 1178 } 1179 1180 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT_FLAG(adev))) { 1181 addr = vram_base + cursor.start; 1182 } else { 1183 addr = 0; 1184 } 1185 1186 tmp = start + num_entries; 1187 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 1188 if (r) 1189 goto error_free; 1190 1191 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1192 start = tmp; 1193 } 1194 1195 r = vm->update_funcs->commit(¶ms, fence); 1196 if (r) 1197 goto error_free; 1198 1199 if (params.needs_flush) { 1200 amdgpu_vm_tlb_flush(¶ms, fence, tlb_cb); 1201 tlb_cb = NULL; 1202 } 1203 1204 amdgpu_vm_pt_free_list(adev, ¶ms); 1205 1206 error_free: 1207 kfree(tlb_cb); 1208 amdgpu_vm_eviction_unlock(vm); 1209 drm_dev_exit(idx); 1210 return r; 1211 } 1212 1213 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1214 struct amdgpu_mem_stats stats[__AMDGPU_PL_NUM]) 1215 { 1216 spin_lock(&vm->status_lock); 1217 memcpy(stats, vm->stats, sizeof(*stats) * __AMDGPU_PL_NUM); 1218 spin_unlock(&vm->status_lock); 1219 } 1220 1221 /** 1222 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1223 * 1224 * @adev: amdgpu_device pointer 1225 * @bo_va: requested BO and VM object 1226 * @clear: if true clear the entries 1227 * 1228 * Fill in the page table entries for @bo_va. 1229 * 1230 * Returns: 1231 * 0 for success, -EINVAL for failure. 1232 */ 1233 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1234 bool clear) 1235 { 1236 struct amdgpu_bo *bo = bo_va->base.bo; 1237 struct amdgpu_vm *vm = bo_va->base.vm; 1238 struct amdgpu_bo_va_mapping *mapping; 1239 struct dma_fence **last_update; 1240 dma_addr_t *pages_addr = NULL; 1241 struct ttm_resource *mem; 1242 struct amdgpu_sync sync; 1243 bool flush_tlb = clear; 1244 uint64_t vram_base; 1245 uint64_t flags; 1246 bool uncached; 1247 int r; 1248 1249 amdgpu_sync_create(&sync); 1250 if (clear) { 1251 mem = NULL; 1252 1253 /* Implicitly sync to command submissions in the same VM before 1254 * unmapping. 1255 */ 1256 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1257 AMDGPU_SYNC_EQ_OWNER, vm); 1258 if (r) 1259 goto error_free; 1260 if (bo) { 1261 r = amdgpu_sync_kfd(&sync, bo->tbo.base.resv); 1262 if (r) 1263 goto error_free; 1264 } 1265 } else if (!bo) { 1266 mem = NULL; 1267 1268 /* PRT map operations don't need to sync to anything. */ 1269 1270 } else { 1271 struct drm_gem_object *obj = &bo->tbo.base; 1272 1273 if (obj->import_attach && bo_va->is_xgmi) { 1274 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1275 struct drm_gem_object *gobj = dma_buf->priv; 1276 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1277 1278 if (abo->tbo.resource && 1279 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1280 bo = gem_to_amdgpu_bo(gobj); 1281 } 1282 mem = bo->tbo.resource; 1283 if (mem && (mem->mem_type == TTM_PL_TT || 1284 mem->mem_type == AMDGPU_PL_PREEMPT)) 1285 pages_addr = bo->tbo.ttm->dma_address; 1286 1287 /* Implicitly sync to moving fences before mapping anything */ 1288 r = amdgpu_sync_resv(adev, &sync, bo->tbo.base.resv, 1289 AMDGPU_SYNC_EXPLICIT, vm); 1290 if (r) 1291 goto error_free; 1292 } 1293 1294 if (bo) { 1295 struct amdgpu_device *bo_adev; 1296 1297 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1298 1299 if (amdgpu_bo_encrypted(bo)) 1300 flags |= AMDGPU_PTE_TMZ; 1301 1302 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1303 vram_base = bo_adev->vm_manager.vram_base_offset; 1304 uncached = (bo->flags & AMDGPU_GEM_CREATE_UNCACHED) != 0; 1305 } else { 1306 flags = 0x0; 1307 vram_base = 0; 1308 uncached = false; 1309 } 1310 1311 if (clear || amdgpu_vm_is_bo_always_valid(vm, bo)) 1312 last_update = &vm->last_update; 1313 else 1314 last_update = &bo_va->last_pt_update; 1315 1316 if (!clear && bo_va->base.moved) { 1317 flush_tlb = true; 1318 list_splice_init(&bo_va->valids, &bo_va->invalids); 1319 1320 } else if (bo_va->cleared != clear) { 1321 list_splice_init(&bo_va->valids, &bo_va->invalids); 1322 } 1323 1324 list_for_each_entry(mapping, &bo_va->invalids, list) { 1325 uint64_t update_flags = flags; 1326 1327 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1328 * but in case of something, we filter the flags in first place 1329 */ 1330 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1331 update_flags &= ~AMDGPU_PTE_READABLE; 1332 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1333 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1334 1335 /* Apply ASIC specific mapping flags */ 1336 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1337 1338 trace_amdgpu_vm_bo_update(mapping); 1339 1340 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1341 !uncached, &sync, mapping->start, 1342 mapping->last, update_flags, 1343 mapping->offset, vram_base, mem, 1344 pages_addr, last_update); 1345 if (r) 1346 goto error_free; 1347 } 1348 1349 /* If the BO is not in its preferred location add it back to 1350 * the evicted list so that it gets validated again on the 1351 * next command submission. 1352 */ 1353 if (amdgpu_vm_is_bo_always_valid(vm, bo)) { 1354 if (bo->tbo.resource && 1355 !(bo->preferred_domains & 1356 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))) 1357 amdgpu_vm_bo_evicted(&bo_va->base); 1358 else 1359 amdgpu_vm_bo_idle(&bo_va->base); 1360 } else { 1361 amdgpu_vm_bo_done(&bo_va->base); 1362 } 1363 1364 list_splice_init(&bo_va->invalids, &bo_va->valids); 1365 bo_va->cleared = clear; 1366 bo_va->base.moved = false; 1367 1368 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1369 list_for_each_entry(mapping, &bo_va->valids, list) 1370 trace_amdgpu_vm_bo_mapping(mapping); 1371 } 1372 1373 error_free: 1374 amdgpu_sync_free(&sync); 1375 return r; 1376 } 1377 1378 /** 1379 * amdgpu_vm_update_prt_state - update the global PRT state 1380 * 1381 * @adev: amdgpu_device pointer 1382 */ 1383 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1384 { 1385 unsigned long flags; 1386 bool enable; 1387 1388 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1389 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1390 adev->gmc.gmc_funcs->set_prt(adev, enable); 1391 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1392 } 1393 1394 /** 1395 * amdgpu_vm_prt_get - add a PRT user 1396 * 1397 * @adev: amdgpu_device pointer 1398 */ 1399 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1400 { 1401 if (!adev->gmc.gmc_funcs->set_prt) 1402 return; 1403 1404 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1405 amdgpu_vm_update_prt_state(adev); 1406 } 1407 1408 /** 1409 * amdgpu_vm_prt_put - drop a PRT user 1410 * 1411 * @adev: amdgpu_device pointer 1412 */ 1413 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1414 { 1415 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1416 amdgpu_vm_update_prt_state(adev); 1417 } 1418 1419 /** 1420 * amdgpu_vm_prt_cb - callback for updating the PRT status 1421 * 1422 * @fence: fence for the callback 1423 * @_cb: the callback function 1424 */ 1425 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1426 { 1427 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1428 1429 amdgpu_vm_prt_put(cb->adev); 1430 kfree(cb); 1431 } 1432 1433 /** 1434 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1435 * 1436 * @adev: amdgpu_device pointer 1437 * @fence: fence for the callback 1438 */ 1439 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1440 struct dma_fence *fence) 1441 { 1442 struct amdgpu_prt_cb *cb; 1443 1444 if (!adev->gmc.gmc_funcs->set_prt) 1445 return; 1446 1447 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1448 if (!cb) { 1449 /* Last resort when we are OOM */ 1450 if (fence) 1451 dma_fence_wait(fence, false); 1452 1453 amdgpu_vm_prt_put(adev); 1454 } else { 1455 cb->adev = adev; 1456 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1457 amdgpu_vm_prt_cb)) 1458 amdgpu_vm_prt_cb(fence, &cb->cb); 1459 } 1460 } 1461 1462 /** 1463 * amdgpu_vm_free_mapping - free a mapping 1464 * 1465 * @adev: amdgpu_device pointer 1466 * @vm: requested vm 1467 * @mapping: mapping to be freed 1468 * @fence: fence of the unmap operation 1469 * 1470 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1471 */ 1472 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1473 struct amdgpu_vm *vm, 1474 struct amdgpu_bo_va_mapping *mapping, 1475 struct dma_fence *fence) 1476 { 1477 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1478 amdgpu_vm_add_prt_cb(adev, fence); 1479 kfree(mapping); 1480 } 1481 1482 /** 1483 * amdgpu_vm_prt_fini - finish all prt mappings 1484 * 1485 * @adev: amdgpu_device pointer 1486 * @vm: requested vm 1487 * 1488 * Register a cleanup callback to disable PRT support after VM dies. 1489 */ 1490 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1491 { 1492 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1493 struct dma_resv_iter cursor; 1494 struct dma_fence *fence; 1495 1496 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1497 /* Add a callback for each fence in the reservation object */ 1498 amdgpu_vm_prt_get(adev); 1499 amdgpu_vm_add_prt_cb(adev, fence); 1500 } 1501 } 1502 1503 /** 1504 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1505 * 1506 * @adev: amdgpu_device pointer 1507 * @vm: requested vm 1508 * @fence: optional resulting fence (unchanged if no work needed to be done 1509 * or if an error occurred) 1510 * 1511 * Make sure all freed BOs are cleared in the PT. 1512 * PTs have to be reserved and mutex must be locked! 1513 * 1514 * Returns: 1515 * 0 for success. 1516 * 1517 */ 1518 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1519 struct amdgpu_vm *vm, 1520 struct dma_fence **fence) 1521 { 1522 struct amdgpu_bo_va_mapping *mapping; 1523 struct dma_fence *f = NULL; 1524 struct amdgpu_sync sync; 1525 int r; 1526 1527 1528 /* 1529 * Implicitly sync to command submissions in the same VM before 1530 * unmapping. 1531 */ 1532 amdgpu_sync_create(&sync); 1533 r = amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.base.resv, 1534 AMDGPU_SYNC_EQ_OWNER, vm); 1535 if (r) 1536 goto error_free; 1537 1538 while (!list_empty(&vm->freed)) { 1539 mapping = list_first_entry(&vm->freed, 1540 struct amdgpu_bo_va_mapping, list); 1541 list_del(&mapping->list); 1542 1543 r = amdgpu_vm_update_range(adev, vm, false, false, true, false, 1544 &sync, mapping->start, mapping->last, 1545 0, 0, 0, NULL, NULL, &f); 1546 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1547 if (r) { 1548 dma_fence_put(f); 1549 goto error_free; 1550 } 1551 } 1552 1553 if (fence && f) { 1554 dma_fence_put(*fence); 1555 *fence = f; 1556 } else { 1557 dma_fence_put(f); 1558 } 1559 1560 error_free: 1561 amdgpu_sync_free(&sync); 1562 return r; 1563 1564 } 1565 1566 /** 1567 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1568 * 1569 * @adev: amdgpu_device pointer 1570 * @vm: requested vm 1571 * @ticket: optional reservation ticket used to reserve the VM 1572 * 1573 * Make sure all BOs which are moved are updated in the PTs. 1574 * 1575 * Returns: 1576 * 0 for success. 1577 * 1578 * PTs have to be reserved! 1579 */ 1580 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1581 struct amdgpu_vm *vm, 1582 struct ww_acquire_ctx *ticket) 1583 { 1584 struct amdgpu_bo_va *bo_va; 1585 struct dma_resv *resv; 1586 bool clear, unlock; 1587 int r; 1588 1589 spin_lock(&vm->status_lock); 1590 while (!list_empty(&vm->moved)) { 1591 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1592 base.vm_status); 1593 spin_unlock(&vm->status_lock); 1594 1595 /* Per VM BOs never need to bo cleared in the page tables */ 1596 r = amdgpu_vm_bo_update(adev, bo_va, false); 1597 if (r) 1598 return r; 1599 spin_lock(&vm->status_lock); 1600 } 1601 1602 while (!list_empty(&vm->invalidated)) { 1603 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1604 base.vm_status); 1605 resv = bo_va->base.bo->tbo.base.resv; 1606 spin_unlock(&vm->status_lock); 1607 1608 /* Try to reserve the BO to avoid clearing its ptes */ 1609 if (!adev->debug_vm && dma_resv_trylock(resv)) { 1610 clear = false; 1611 unlock = true; 1612 /* The caller is already holding the reservation lock */ 1613 } else if (ticket && dma_resv_locking_ctx(resv) == ticket) { 1614 clear = false; 1615 unlock = false; 1616 /* Somebody else is using the BO right now */ 1617 } else { 1618 clear = true; 1619 unlock = false; 1620 } 1621 1622 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1623 1624 if (unlock) 1625 dma_resv_unlock(resv); 1626 if (r) 1627 return r; 1628 1629 /* Remember evicted DMABuf imports in compute VMs for later 1630 * validation 1631 */ 1632 if (vm->is_compute_context && 1633 bo_va->base.bo->tbo.base.import_attach && 1634 (!bo_va->base.bo->tbo.resource || 1635 bo_va->base.bo->tbo.resource->mem_type == TTM_PL_SYSTEM)) 1636 amdgpu_vm_bo_evicted_user(&bo_va->base); 1637 1638 spin_lock(&vm->status_lock); 1639 } 1640 spin_unlock(&vm->status_lock); 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * amdgpu_vm_flush_compute_tlb - Flush TLB on compute VM 1647 * 1648 * @adev: amdgpu_device pointer 1649 * @vm: requested vm 1650 * @flush_type: flush type 1651 * @xcc_mask: mask of XCCs that belong to the compute partition in need of a TLB flush. 1652 * 1653 * Flush TLB if needed for a compute VM. 1654 * 1655 * Returns: 1656 * 0 for success. 1657 */ 1658 int amdgpu_vm_flush_compute_tlb(struct amdgpu_device *adev, 1659 struct amdgpu_vm *vm, 1660 uint32_t flush_type, 1661 uint32_t xcc_mask) 1662 { 1663 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm); 1664 bool all_hub = false; 1665 int xcc = 0, r = 0; 1666 1667 WARN_ON_ONCE(!vm->is_compute_context); 1668 1669 /* 1670 * It can be that we race and lose here, but that is extremely unlikely 1671 * and the worst thing which could happen is that we flush the changes 1672 * into the TLB once more which is harmless. 1673 */ 1674 if (atomic64_xchg(&vm->kfd_last_flushed_seq, tlb_seq) == tlb_seq) 1675 return 0; 1676 1677 if (adev->family == AMDGPU_FAMILY_AI || 1678 adev->family == AMDGPU_FAMILY_RV) 1679 all_hub = true; 1680 1681 for_each_inst(xcc, xcc_mask) { 1682 r = amdgpu_gmc_flush_gpu_tlb_pasid(adev, vm->pasid, flush_type, 1683 all_hub, xcc); 1684 if (r) 1685 break; 1686 } 1687 return r; 1688 } 1689 1690 /** 1691 * amdgpu_vm_bo_add - add a bo to a specific vm 1692 * 1693 * @adev: amdgpu_device pointer 1694 * @vm: requested vm 1695 * @bo: amdgpu buffer object 1696 * 1697 * Add @bo into the requested vm. 1698 * Add @bo to the list of bos associated with the vm 1699 * 1700 * Returns: 1701 * Newly added bo_va or NULL for failure 1702 * 1703 * Object has to be reserved! 1704 */ 1705 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1706 struct amdgpu_vm *vm, 1707 struct amdgpu_bo *bo) 1708 { 1709 struct amdgpu_bo_va *bo_va; 1710 1711 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1712 if (bo_va == NULL) { 1713 return NULL; 1714 } 1715 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1716 1717 bo_va->ref_count = 1; 1718 bo_va->last_pt_update = dma_fence_get_stub(); 1719 INIT_LIST_HEAD(&bo_va->valids); 1720 INIT_LIST_HEAD(&bo_va->invalids); 1721 1722 if (!bo) 1723 return bo_va; 1724 1725 dma_resv_assert_held(bo->tbo.base.resv); 1726 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1727 bo_va->is_xgmi = true; 1728 /* Power up XGMI if it can be potentially used */ 1729 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1730 } 1731 1732 return bo_va; 1733 } 1734 1735 1736 /** 1737 * amdgpu_vm_bo_insert_map - insert a new mapping 1738 * 1739 * @adev: amdgpu_device pointer 1740 * @bo_va: bo_va to store the address 1741 * @mapping: the mapping to insert 1742 * 1743 * Insert a new mapping into all structures. 1744 */ 1745 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1746 struct amdgpu_bo_va *bo_va, 1747 struct amdgpu_bo_va_mapping *mapping) 1748 { 1749 struct amdgpu_vm *vm = bo_va->base.vm; 1750 struct amdgpu_bo *bo = bo_va->base.bo; 1751 1752 mapping->bo_va = bo_va; 1753 list_add(&mapping->list, &bo_va->invalids); 1754 amdgpu_vm_it_insert(mapping, &vm->va); 1755 1756 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev)) 1757 amdgpu_vm_prt_get(adev); 1758 1759 if (amdgpu_vm_is_bo_always_valid(vm, bo) && !bo_va->base.moved) 1760 amdgpu_vm_bo_moved(&bo_va->base); 1761 1762 trace_amdgpu_vm_bo_map(bo_va, mapping); 1763 } 1764 1765 /* Validate operation parameters to prevent potential abuse */ 1766 static int amdgpu_vm_verify_parameters(struct amdgpu_device *adev, 1767 struct amdgpu_bo *bo, 1768 uint64_t saddr, 1769 uint64_t offset, 1770 uint64_t size) 1771 { 1772 uint64_t tmp, lpfn; 1773 1774 if (saddr & AMDGPU_GPU_PAGE_MASK 1775 || offset & AMDGPU_GPU_PAGE_MASK 1776 || size & AMDGPU_GPU_PAGE_MASK) 1777 return -EINVAL; 1778 1779 if (check_add_overflow(saddr, size, &tmp) 1780 || check_add_overflow(offset, size, &tmp) 1781 || size == 0 /* which also leads to end < begin */) 1782 return -EINVAL; 1783 1784 /* make sure object fit at this offset */ 1785 if (bo && offset + size > amdgpu_bo_size(bo)) 1786 return -EINVAL; 1787 1788 /* Ensure last pfn not exceed max_pfn */ 1789 lpfn = (saddr + size - 1) >> AMDGPU_GPU_PAGE_SHIFT; 1790 if (lpfn >= adev->vm_manager.max_pfn) 1791 return -EINVAL; 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * amdgpu_vm_bo_map - map bo inside a vm 1798 * 1799 * @adev: amdgpu_device pointer 1800 * @bo_va: bo_va to store the address 1801 * @saddr: where to map the BO 1802 * @offset: requested offset in the BO 1803 * @size: BO size in bytes 1804 * @flags: attributes of pages (read/write/valid/etc.) 1805 * 1806 * Add a mapping of the BO at the specefied addr into the VM. 1807 * 1808 * Returns: 1809 * 0 for success, error for failure. 1810 * 1811 * Object has to be reserved and unreserved outside! 1812 */ 1813 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1814 struct amdgpu_bo_va *bo_va, 1815 uint64_t saddr, uint64_t offset, 1816 uint64_t size, uint64_t flags) 1817 { 1818 struct amdgpu_bo_va_mapping *mapping, *tmp; 1819 struct amdgpu_bo *bo = bo_va->base.bo; 1820 struct amdgpu_vm *vm = bo_va->base.vm; 1821 uint64_t eaddr; 1822 int r; 1823 1824 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1825 if (r) 1826 return r; 1827 1828 saddr /= AMDGPU_GPU_PAGE_SIZE; 1829 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1830 1831 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1832 if (tmp) { 1833 /* bo and tmp overlap, invalid addr */ 1834 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1835 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1836 tmp->start, tmp->last + 1); 1837 return -EINVAL; 1838 } 1839 1840 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1841 if (!mapping) 1842 return -ENOMEM; 1843 1844 mapping->start = saddr; 1845 mapping->last = eaddr; 1846 mapping->offset = offset; 1847 mapping->flags = flags; 1848 1849 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1850 1851 return 0; 1852 } 1853 1854 /** 1855 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1856 * 1857 * @adev: amdgpu_device pointer 1858 * @bo_va: bo_va to store the address 1859 * @saddr: where to map the BO 1860 * @offset: requested offset in the BO 1861 * @size: BO size in bytes 1862 * @flags: attributes of pages (read/write/valid/etc.) 1863 * 1864 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1865 * mappings as we do so. 1866 * 1867 * Returns: 1868 * 0 for success, error for failure. 1869 * 1870 * Object has to be reserved and unreserved outside! 1871 */ 1872 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1873 struct amdgpu_bo_va *bo_va, 1874 uint64_t saddr, uint64_t offset, 1875 uint64_t size, uint64_t flags) 1876 { 1877 struct amdgpu_bo_va_mapping *mapping; 1878 struct amdgpu_bo *bo = bo_va->base.bo; 1879 uint64_t eaddr; 1880 int r; 1881 1882 r = amdgpu_vm_verify_parameters(adev, bo, saddr, offset, size); 1883 if (r) 1884 return r; 1885 1886 /* Allocate all the needed memory */ 1887 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1888 if (!mapping) 1889 return -ENOMEM; 1890 1891 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1892 if (r) { 1893 kfree(mapping); 1894 return r; 1895 } 1896 1897 saddr /= AMDGPU_GPU_PAGE_SIZE; 1898 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1899 1900 mapping->start = saddr; 1901 mapping->last = eaddr; 1902 mapping->offset = offset; 1903 mapping->flags = flags; 1904 1905 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1906 1907 return 0; 1908 } 1909 1910 /** 1911 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1912 * 1913 * @adev: amdgpu_device pointer 1914 * @bo_va: bo_va to remove the address from 1915 * @saddr: where to the BO is mapped 1916 * 1917 * Remove a mapping of the BO at the specefied addr from the VM. 1918 * 1919 * Returns: 1920 * 0 for success, error for failure. 1921 * 1922 * Object has to be reserved and unreserved outside! 1923 */ 1924 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1925 struct amdgpu_bo_va *bo_va, 1926 uint64_t saddr) 1927 { 1928 struct amdgpu_bo_va_mapping *mapping; 1929 struct amdgpu_vm *vm = bo_va->base.vm; 1930 bool valid = true; 1931 1932 saddr /= AMDGPU_GPU_PAGE_SIZE; 1933 1934 list_for_each_entry(mapping, &bo_va->valids, list) { 1935 if (mapping->start == saddr) 1936 break; 1937 } 1938 1939 if (&mapping->list == &bo_va->valids) { 1940 valid = false; 1941 1942 list_for_each_entry(mapping, &bo_va->invalids, list) { 1943 if (mapping->start == saddr) 1944 break; 1945 } 1946 1947 if (&mapping->list == &bo_va->invalids) 1948 return -ENOENT; 1949 } 1950 1951 list_del(&mapping->list); 1952 amdgpu_vm_it_remove(mapping, &vm->va); 1953 mapping->bo_va = NULL; 1954 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1955 1956 if (valid) 1957 list_add(&mapping->list, &vm->freed); 1958 else 1959 amdgpu_vm_free_mapping(adev, vm, mapping, 1960 bo_va->last_pt_update); 1961 1962 return 0; 1963 } 1964 1965 /** 1966 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1967 * 1968 * @adev: amdgpu_device pointer 1969 * @vm: VM structure to use 1970 * @saddr: start of the range 1971 * @size: size of the range 1972 * 1973 * Remove all mappings in a range, split them as appropriate. 1974 * 1975 * Returns: 1976 * 0 for success, error for failure. 1977 */ 1978 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1979 struct amdgpu_vm *vm, 1980 uint64_t saddr, uint64_t size) 1981 { 1982 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1983 LIST_HEAD(removed); 1984 uint64_t eaddr; 1985 int r; 1986 1987 r = amdgpu_vm_verify_parameters(adev, NULL, saddr, 0, size); 1988 if (r) 1989 return r; 1990 1991 saddr /= AMDGPU_GPU_PAGE_SIZE; 1992 eaddr = saddr + (size - 1) / AMDGPU_GPU_PAGE_SIZE; 1993 1994 /* Allocate all the needed memory */ 1995 before = kzalloc(sizeof(*before), GFP_KERNEL); 1996 if (!before) 1997 return -ENOMEM; 1998 INIT_LIST_HEAD(&before->list); 1999 2000 after = kzalloc(sizeof(*after), GFP_KERNEL); 2001 if (!after) { 2002 kfree(before); 2003 return -ENOMEM; 2004 } 2005 INIT_LIST_HEAD(&after->list); 2006 2007 /* Now gather all removed mappings */ 2008 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2009 while (tmp) { 2010 /* Remember mapping split at the start */ 2011 if (tmp->start < saddr) { 2012 before->start = tmp->start; 2013 before->last = saddr - 1; 2014 before->offset = tmp->offset; 2015 before->flags = tmp->flags; 2016 before->bo_va = tmp->bo_va; 2017 list_add(&before->list, &tmp->bo_va->invalids); 2018 } 2019 2020 /* Remember mapping split at the end */ 2021 if (tmp->last > eaddr) { 2022 after->start = eaddr + 1; 2023 after->last = tmp->last; 2024 after->offset = tmp->offset; 2025 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2026 after->flags = tmp->flags; 2027 after->bo_va = tmp->bo_va; 2028 list_add(&after->list, &tmp->bo_va->invalids); 2029 } 2030 2031 list_del(&tmp->list); 2032 list_add(&tmp->list, &removed); 2033 2034 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2035 } 2036 2037 /* And free them up */ 2038 list_for_each_entry_safe(tmp, next, &removed, list) { 2039 amdgpu_vm_it_remove(tmp, &vm->va); 2040 list_del(&tmp->list); 2041 2042 if (tmp->start < saddr) 2043 tmp->start = saddr; 2044 if (tmp->last > eaddr) 2045 tmp->last = eaddr; 2046 2047 tmp->bo_va = NULL; 2048 list_add(&tmp->list, &vm->freed); 2049 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2050 } 2051 2052 /* Insert partial mapping before the range */ 2053 if (!list_empty(&before->list)) { 2054 struct amdgpu_bo *bo = before->bo_va->base.bo; 2055 2056 amdgpu_vm_it_insert(before, &vm->va); 2057 if (before->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2058 amdgpu_vm_prt_get(adev); 2059 2060 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2061 !before->bo_va->base.moved) 2062 amdgpu_vm_bo_moved(&before->bo_va->base); 2063 } else { 2064 kfree(before); 2065 } 2066 2067 /* Insert partial mapping after the range */ 2068 if (!list_empty(&after->list)) { 2069 struct amdgpu_bo *bo = after->bo_va->base.bo; 2070 2071 amdgpu_vm_it_insert(after, &vm->va); 2072 if (after->flags & AMDGPU_PTE_PRT_FLAG(adev)) 2073 amdgpu_vm_prt_get(adev); 2074 2075 if (amdgpu_vm_is_bo_always_valid(vm, bo) && 2076 !after->bo_va->base.moved) 2077 amdgpu_vm_bo_moved(&after->bo_va->base); 2078 } else { 2079 kfree(after); 2080 } 2081 2082 return 0; 2083 } 2084 2085 /** 2086 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2087 * 2088 * @vm: the requested VM 2089 * @addr: the address 2090 * 2091 * Find a mapping by it's address. 2092 * 2093 * Returns: 2094 * The amdgpu_bo_va_mapping matching for addr or NULL 2095 * 2096 */ 2097 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2098 uint64_t addr) 2099 { 2100 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2101 } 2102 2103 /** 2104 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2105 * 2106 * @vm: the requested vm 2107 * @ticket: CS ticket 2108 * 2109 * Trace all mappings of BOs reserved during a command submission. 2110 */ 2111 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2112 { 2113 struct amdgpu_bo_va_mapping *mapping; 2114 2115 if (!trace_amdgpu_vm_bo_cs_enabled()) 2116 return; 2117 2118 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2119 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2120 if (mapping->bo_va && mapping->bo_va->base.bo) { 2121 struct amdgpu_bo *bo; 2122 2123 bo = mapping->bo_va->base.bo; 2124 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2125 ticket) 2126 continue; 2127 } 2128 2129 trace_amdgpu_vm_bo_cs(mapping); 2130 } 2131 } 2132 2133 /** 2134 * amdgpu_vm_bo_del - remove a bo from a specific vm 2135 * 2136 * @adev: amdgpu_device pointer 2137 * @bo_va: requested bo_va 2138 * 2139 * Remove @bo_va->bo from the requested vm. 2140 * 2141 * Object have to be reserved! 2142 */ 2143 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2144 struct amdgpu_bo_va *bo_va) 2145 { 2146 struct amdgpu_bo_va_mapping *mapping, *next; 2147 struct amdgpu_bo *bo = bo_va->base.bo; 2148 struct amdgpu_vm *vm = bo_va->base.vm; 2149 struct amdgpu_vm_bo_base **base; 2150 2151 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2152 2153 if (bo) { 2154 dma_resv_assert_held(bo->tbo.base.resv); 2155 if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2156 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2157 2158 for (base = &bo_va->base.bo->vm_bo; *base; 2159 base = &(*base)->next) { 2160 if (*base != &bo_va->base) 2161 continue; 2162 2163 amdgpu_vm_update_stats(*base, bo->tbo.resource, -1); 2164 *base = bo_va->base.next; 2165 break; 2166 } 2167 } 2168 2169 spin_lock(&vm->status_lock); 2170 list_del(&bo_va->base.vm_status); 2171 spin_unlock(&vm->status_lock); 2172 2173 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2174 list_del(&mapping->list); 2175 amdgpu_vm_it_remove(mapping, &vm->va); 2176 mapping->bo_va = NULL; 2177 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2178 list_add(&mapping->list, &vm->freed); 2179 } 2180 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2181 list_del(&mapping->list); 2182 amdgpu_vm_it_remove(mapping, &vm->va); 2183 amdgpu_vm_free_mapping(adev, vm, mapping, 2184 bo_va->last_pt_update); 2185 } 2186 2187 dma_fence_put(bo_va->last_pt_update); 2188 2189 if (bo && bo_va->is_xgmi) 2190 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2191 2192 kfree(bo_va); 2193 } 2194 2195 /** 2196 * amdgpu_vm_evictable - check if we can evict a VM 2197 * 2198 * @bo: A page table of the VM. 2199 * 2200 * Check if it is possible to evict a VM. 2201 */ 2202 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2203 { 2204 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2205 2206 /* Page tables of a destroyed VM can go away immediately */ 2207 if (!bo_base || !bo_base->vm) 2208 return true; 2209 2210 /* Don't evict VM page tables while they are busy */ 2211 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2212 return false; 2213 2214 /* Try to block ongoing updates */ 2215 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2216 return false; 2217 2218 /* Don't evict VM page tables while they are updated */ 2219 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2220 amdgpu_vm_eviction_unlock(bo_base->vm); 2221 return false; 2222 } 2223 2224 bo_base->vm->evicting = true; 2225 amdgpu_vm_eviction_unlock(bo_base->vm); 2226 return true; 2227 } 2228 2229 /** 2230 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2231 * 2232 * @bo: amdgpu buffer object 2233 * @evicted: is the BO evicted 2234 * 2235 * Mark @bo as invalid. 2236 */ 2237 void amdgpu_vm_bo_invalidate(struct amdgpu_bo *bo, bool evicted) 2238 { 2239 struct amdgpu_vm_bo_base *bo_base; 2240 2241 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2242 struct amdgpu_vm *vm = bo_base->vm; 2243 2244 if (evicted && amdgpu_vm_is_bo_always_valid(vm, bo)) { 2245 amdgpu_vm_bo_evicted(bo_base); 2246 continue; 2247 } 2248 2249 if (bo_base->moved) 2250 continue; 2251 bo_base->moved = true; 2252 2253 if (bo->tbo.type == ttm_bo_type_kernel) 2254 amdgpu_vm_bo_relocated(bo_base); 2255 else if (amdgpu_vm_is_bo_always_valid(vm, bo)) 2256 amdgpu_vm_bo_moved(bo_base); 2257 else 2258 amdgpu_vm_bo_invalidated(bo_base); 2259 } 2260 } 2261 2262 /** 2263 * amdgpu_vm_bo_move - handle BO move 2264 * 2265 * @bo: amdgpu buffer object 2266 * @new_mem: the new placement of the BO move 2267 * @evicted: is the BO evicted 2268 * 2269 * Update the memory stats for the new placement and mark @bo as invalid. 2270 */ 2271 void amdgpu_vm_bo_move(struct amdgpu_bo *bo, struct ttm_resource *new_mem, 2272 bool evicted) 2273 { 2274 struct amdgpu_vm_bo_base *bo_base; 2275 2276 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2277 struct amdgpu_vm *vm = bo_base->vm; 2278 2279 spin_lock(&vm->status_lock); 2280 amdgpu_vm_update_stats_locked(bo_base, bo->tbo.resource, -1); 2281 amdgpu_vm_update_stats_locked(bo_base, new_mem, +1); 2282 spin_unlock(&vm->status_lock); 2283 } 2284 2285 amdgpu_vm_bo_invalidate(bo, evicted); 2286 } 2287 2288 /** 2289 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2290 * 2291 * @vm_size: VM size 2292 * 2293 * Returns: 2294 * VM page table as power of two 2295 */ 2296 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2297 { 2298 /* Total bits covered by PD + PTs */ 2299 unsigned bits = ilog2(vm_size) + 18; 2300 2301 /* Make sure the PD is 4K in size up to 8GB address space. 2302 Above that split equal between PD and PTs */ 2303 if (vm_size <= 8) 2304 return (bits - 9); 2305 else 2306 return ((bits + 3) / 2); 2307 } 2308 2309 /** 2310 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2311 * 2312 * @adev: amdgpu_device pointer 2313 * @min_vm_size: the minimum vm size in GB if it's set auto 2314 * @fragment_size_default: Default PTE fragment size 2315 * @max_level: max VMPT level 2316 * @max_bits: max address space size in bits 2317 * 2318 */ 2319 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2320 uint32_t fragment_size_default, unsigned max_level, 2321 unsigned max_bits) 2322 { 2323 unsigned int max_size = 1 << (max_bits - 30); 2324 unsigned int vm_size; 2325 uint64_t tmp; 2326 2327 /* adjust vm size first */ 2328 if (amdgpu_vm_size != -1) { 2329 vm_size = amdgpu_vm_size; 2330 if (vm_size > max_size) { 2331 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2332 amdgpu_vm_size, max_size); 2333 vm_size = max_size; 2334 } 2335 } else { 2336 struct sysinfo si; 2337 unsigned int phys_ram_gb; 2338 2339 /* Optimal VM size depends on the amount of physical 2340 * RAM available. Underlying requirements and 2341 * assumptions: 2342 * 2343 * - Need to map system memory and VRAM from all GPUs 2344 * - VRAM from other GPUs not known here 2345 * - Assume VRAM <= system memory 2346 * - On GFX8 and older, VM space can be segmented for 2347 * different MTYPEs 2348 * - Need to allow room for fragmentation, guard pages etc. 2349 * 2350 * This adds up to a rough guess of system memory x3. 2351 * Round up to power of two to maximize the available 2352 * VM size with the given page table size. 2353 */ 2354 si_meminfo(&si); 2355 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2356 (1 << 30) - 1) >> 30; 2357 vm_size = roundup_pow_of_two( 2358 clamp(phys_ram_gb * 3, min_vm_size, max_size)); 2359 } 2360 2361 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2362 2363 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2364 if (amdgpu_vm_block_size != -1) 2365 tmp >>= amdgpu_vm_block_size - 9; 2366 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2367 adev->vm_manager.num_level = min_t(unsigned int, max_level, tmp); 2368 switch (adev->vm_manager.num_level) { 2369 case 3: 2370 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2371 break; 2372 case 2: 2373 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2374 break; 2375 case 1: 2376 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2377 break; 2378 default: 2379 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2380 } 2381 /* block size depends on vm size and hw setup*/ 2382 if (amdgpu_vm_block_size != -1) 2383 adev->vm_manager.block_size = 2384 min((unsigned)amdgpu_vm_block_size, max_bits 2385 - AMDGPU_GPU_PAGE_SHIFT 2386 - 9 * adev->vm_manager.num_level); 2387 else if (adev->vm_manager.num_level > 1) 2388 adev->vm_manager.block_size = 9; 2389 else 2390 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2391 2392 if (amdgpu_vm_fragment_size == -1) 2393 adev->vm_manager.fragment_size = fragment_size_default; 2394 else 2395 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2396 2397 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2398 vm_size, adev->vm_manager.num_level + 1, 2399 adev->vm_manager.block_size, 2400 adev->vm_manager.fragment_size); 2401 } 2402 2403 /** 2404 * amdgpu_vm_wait_idle - wait for the VM to become idle 2405 * 2406 * @vm: VM object to wait for 2407 * @timeout: timeout to wait for VM to become idle 2408 */ 2409 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2410 { 2411 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2412 DMA_RESV_USAGE_BOOKKEEP, 2413 true, timeout); 2414 if (timeout <= 0) 2415 return timeout; 2416 2417 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2418 } 2419 2420 static void amdgpu_vm_destroy_task_info(struct kref *kref) 2421 { 2422 struct amdgpu_task_info *ti = container_of(kref, struct amdgpu_task_info, refcount); 2423 2424 kfree(ti); 2425 } 2426 2427 static inline struct amdgpu_vm * 2428 amdgpu_vm_get_vm_from_pasid(struct amdgpu_device *adev, u32 pasid) 2429 { 2430 struct amdgpu_vm *vm; 2431 unsigned long flags; 2432 2433 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2434 vm = xa_load(&adev->vm_manager.pasids, pasid); 2435 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2436 2437 return vm; 2438 } 2439 2440 /** 2441 * amdgpu_vm_put_task_info - reference down the vm task_info ptr 2442 * 2443 * @task_info: task_info struct under discussion. 2444 * 2445 * frees the vm task_info ptr at the last put 2446 */ 2447 void amdgpu_vm_put_task_info(struct amdgpu_task_info *task_info) 2448 { 2449 kref_put(&task_info->refcount, amdgpu_vm_destroy_task_info); 2450 } 2451 2452 /** 2453 * amdgpu_vm_get_task_info_vm - Extracts task info for a vm. 2454 * 2455 * @vm: VM to get info from 2456 * 2457 * Returns the reference counted task_info structure, which must be 2458 * referenced down with amdgpu_vm_put_task_info. 2459 */ 2460 struct amdgpu_task_info * 2461 amdgpu_vm_get_task_info_vm(struct amdgpu_vm *vm) 2462 { 2463 struct amdgpu_task_info *ti = NULL; 2464 2465 if (vm) { 2466 ti = vm->task_info; 2467 kref_get(&vm->task_info->refcount); 2468 } 2469 2470 return ti; 2471 } 2472 2473 /** 2474 * amdgpu_vm_get_task_info_pasid - Extracts task info for a PASID. 2475 * 2476 * @adev: drm device pointer 2477 * @pasid: PASID identifier for VM 2478 * 2479 * Returns the reference counted task_info structure, which must be 2480 * referenced down with amdgpu_vm_put_task_info. 2481 */ 2482 struct amdgpu_task_info * 2483 amdgpu_vm_get_task_info_pasid(struct amdgpu_device *adev, u32 pasid) 2484 { 2485 return amdgpu_vm_get_task_info_vm( 2486 amdgpu_vm_get_vm_from_pasid(adev, pasid)); 2487 } 2488 2489 static int amdgpu_vm_create_task_info(struct amdgpu_vm *vm) 2490 { 2491 vm->task_info = kzalloc(sizeof(struct amdgpu_task_info), GFP_KERNEL); 2492 if (!vm->task_info) 2493 return -ENOMEM; 2494 2495 kref_init(&vm->task_info->refcount); 2496 return 0; 2497 } 2498 2499 /** 2500 * amdgpu_vm_set_task_info - Sets VMs task info. 2501 * 2502 * @vm: vm for which to set the info 2503 */ 2504 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2505 { 2506 if (!vm->task_info) 2507 return; 2508 2509 if (vm->task_info->pid == current->pid) 2510 return; 2511 2512 vm->task_info->pid = current->pid; 2513 get_task_comm(vm->task_info->task_name, current); 2514 2515 if (current->group_leader->mm != current->mm) 2516 return; 2517 2518 vm->task_info->tgid = current->group_leader->pid; 2519 get_task_comm(vm->task_info->process_name, current->group_leader); 2520 } 2521 2522 /** 2523 * amdgpu_vm_init - initialize a vm instance 2524 * 2525 * @adev: amdgpu_device pointer 2526 * @vm: requested vm 2527 * @xcp_id: GPU partition selection id 2528 * 2529 * Init @vm fields. 2530 * 2531 * Returns: 2532 * 0 for success, error for failure. 2533 */ 2534 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2535 int32_t xcp_id) 2536 { 2537 struct amdgpu_bo *root_bo; 2538 struct amdgpu_bo_vm *root; 2539 int r, i; 2540 2541 vm->va = RB_ROOT_CACHED; 2542 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2543 vm->reserved_vmid[i] = NULL; 2544 INIT_LIST_HEAD(&vm->evicted); 2545 INIT_LIST_HEAD(&vm->evicted_user); 2546 INIT_LIST_HEAD(&vm->relocated); 2547 INIT_LIST_HEAD(&vm->moved); 2548 INIT_LIST_HEAD(&vm->idle); 2549 INIT_LIST_HEAD(&vm->invalidated); 2550 spin_lock_init(&vm->status_lock); 2551 INIT_LIST_HEAD(&vm->freed); 2552 INIT_LIST_HEAD(&vm->done); 2553 INIT_KFIFO(vm->faults); 2554 2555 r = amdgpu_vm_init_entities(adev, vm); 2556 if (r) 2557 return r; 2558 2559 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 2560 2561 vm->is_compute_context = false; 2562 2563 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2564 AMDGPU_VM_USE_CPU_FOR_GFX); 2565 2566 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2567 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2568 WARN_ONCE((vm->use_cpu_for_update && 2569 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2570 "CPU update of VM recommended only for large BAR system\n"); 2571 2572 if (vm->use_cpu_for_update) 2573 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2574 else 2575 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2576 2577 vm->last_update = dma_fence_get_stub(); 2578 vm->last_unlocked = dma_fence_get_stub(); 2579 vm->last_tlb_flush = dma_fence_get_stub(); 2580 vm->generation = amdgpu_vm_generation(adev, NULL); 2581 2582 mutex_init(&vm->eviction_lock); 2583 vm->evicting = false; 2584 vm->tlb_fence_context = dma_fence_context_alloc(1); 2585 2586 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2587 false, &root, xcp_id); 2588 if (r) 2589 goto error_free_delayed; 2590 2591 root_bo = amdgpu_bo_ref(&root->bo); 2592 r = amdgpu_bo_reserve(root_bo, true); 2593 if (r) { 2594 amdgpu_bo_unref(&root_bo); 2595 goto error_free_delayed; 2596 } 2597 2598 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2599 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2600 if (r) 2601 goto error_free_root; 2602 2603 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2604 if (r) 2605 goto error_free_root; 2606 2607 r = amdgpu_vm_create_task_info(vm); 2608 if (r) 2609 DRM_DEBUG("Failed to create task info for VM\n"); 2610 2611 amdgpu_bo_unreserve(vm->root.bo); 2612 amdgpu_bo_unref(&root_bo); 2613 2614 return 0; 2615 2616 error_free_root: 2617 amdgpu_vm_pt_free_root(adev, vm); 2618 amdgpu_bo_unreserve(vm->root.bo); 2619 amdgpu_bo_unref(&root_bo); 2620 2621 error_free_delayed: 2622 dma_fence_put(vm->last_tlb_flush); 2623 dma_fence_put(vm->last_unlocked); 2624 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2625 amdgpu_vm_fini_entities(vm); 2626 2627 return r; 2628 } 2629 2630 /** 2631 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2632 * 2633 * @adev: amdgpu_device pointer 2634 * @vm: requested vm 2635 * 2636 * This only works on GFX VMs that don't have any BOs added and no 2637 * page tables allocated yet. 2638 * 2639 * Changes the following VM parameters: 2640 * - use_cpu_for_update 2641 * - pte_supports_ats 2642 * 2643 * Reinitializes the page directory to reflect the changed ATS 2644 * setting. 2645 * 2646 * Returns: 2647 * 0 for success, -errno for errors. 2648 */ 2649 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2650 { 2651 int r; 2652 2653 r = amdgpu_bo_reserve(vm->root.bo, true); 2654 if (r) 2655 return r; 2656 2657 /* Update VM state */ 2658 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2659 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2660 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2661 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2662 WARN_ONCE((vm->use_cpu_for_update && 2663 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2664 "CPU update of VM recommended only for large BAR system\n"); 2665 2666 if (vm->use_cpu_for_update) { 2667 /* Sync with last SDMA update/clear before switching to CPU */ 2668 r = amdgpu_bo_sync_wait(vm->root.bo, 2669 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2670 if (r) 2671 goto unreserve_bo; 2672 2673 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2674 r = amdgpu_vm_pt_map_tables(adev, vm); 2675 if (r) 2676 goto unreserve_bo; 2677 2678 } else { 2679 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2680 } 2681 2682 dma_fence_put(vm->last_update); 2683 vm->last_update = dma_fence_get_stub(); 2684 vm->is_compute_context = true; 2685 2686 unreserve_bo: 2687 amdgpu_bo_unreserve(vm->root.bo); 2688 return r; 2689 } 2690 2691 static int amdgpu_vm_stats_is_zero(struct amdgpu_vm *vm) 2692 { 2693 for (int i = 0; i < __AMDGPU_PL_NUM; ++i) { 2694 if (!(drm_memory_stats_is_zero(&vm->stats[i].drm) && 2695 vm->stats[i].evicted == 0)) 2696 return false; 2697 } 2698 return true; 2699 } 2700 2701 /** 2702 * amdgpu_vm_fini - tear down a vm instance 2703 * 2704 * @adev: amdgpu_device pointer 2705 * @vm: requested vm 2706 * 2707 * Tear down @vm. 2708 * Unbind the VM and remove all bos from the vm bo list 2709 */ 2710 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2711 { 2712 struct amdgpu_bo_va_mapping *mapping, *tmp; 2713 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2714 struct amdgpu_bo *root; 2715 unsigned long flags; 2716 int i; 2717 2718 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2719 2720 root = amdgpu_bo_ref(vm->root.bo); 2721 amdgpu_bo_reserve(root, true); 2722 amdgpu_vm_set_pasid(adev, vm, 0); 2723 dma_fence_wait(vm->last_unlocked, false); 2724 dma_fence_put(vm->last_unlocked); 2725 dma_fence_wait(vm->last_tlb_flush, false); 2726 /* Make sure that all fence callbacks have completed */ 2727 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2728 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2729 dma_fence_put(vm->last_tlb_flush); 2730 2731 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2732 if (mapping->flags & AMDGPU_PTE_PRT_FLAG(adev) && prt_fini_needed) { 2733 amdgpu_vm_prt_fini(adev, vm); 2734 prt_fini_needed = false; 2735 } 2736 2737 list_del(&mapping->list); 2738 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2739 } 2740 2741 amdgpu_vm_pt_free_root(adev, vm); 2742 amdgpu_bo_unreserve(root); 2743 amdgpu_bo_unref(&root); 2744 WARN_ON(vm->root.bo); 2745 2746 amdgpu_vm_fini_entities(vm); 2747 2748 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2749 dev_err(adev->dev, "still active bo inside vm\n"); 2750 } 2751 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2752 &vm->va.rb_root, rb) { 2753 /* Don't remove the mapping here, we don't want to trigger a 2754 * rebalance and the tree is about to be destroyed anyway. 2755 */ 2756 list_del(&mapping->list); 2757 kfree(mapping); 2758 } 2759 2760 dma_fence_put(vm->last_update); 2761 2762 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2763 if (vm->reserved_vmid[i]) { 2764 amdgpu_vmid_free_reserved(adev, i); 2765 vm->reserved_vmid[i] = false; 2766 } 2767 } 2768 2769 ttm_lru_bulk_move_fini(&adev->mman.bdev, &vm->lru_bulk_move); 2770 2771 if (!amdgpu_vm_stats_is_zero(vm)) { 2772 struct amdgpu_task_info *ti = vm->task_info; 2773 2774 dev_warn(adev->dev, 2775 "VM memory stats for proc %s(%d) task %s(%d) is non-zero when fini\n", 2776 ti->process_name, ti->pid, ti->task_name, ti->tgid); 2777 } 2778 2779 amdgpu_vm_put_task_info(vm->task_info); 2780 } 2781 2782 /** 2783 * amdgpu_vm_manager_init - init the VM manager 2784 * 2785 * @adev: amdgpu_device pointer 2786 * 2787 * Initialize the VM manager structures 2788 */ 2789 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2790 { 2791 unsigned i; 2792 2793 /* Concurrent flushes are only possible starting with Vega10 and 2794 * are broken on Navi10 and Navi14. 2795 */ 2796 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2797 adev->asic_type == CHIP_NAVI10 || 2798 adev->asic_type == CHIP_NAVI14); 2799 amdgpu_vmid_mgr_init(adev); 2800 2801 adev->vm_manager.fence_context = 2802 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2803 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2804 adev->vm_manager.seqno[i] = 0; 2805 2806 spin_lock_init(&adev->vm_manager.prt_lock); 2807 atomic_set(&adev->vm_manager.num_prt_users, 0); 2808 2809 /* If not overridden by the user, by default, only in large BAR systems 2810 * Compute VM tables will be updated by CPU 2811 */ 2812 #ifdef CONFIG_X86_64 2813 if (amdgpu_vm_update_mode == -1) { 2814 /* For asic with VF MMIO access protection 2815 * avoid using CPU for VM table updates 2816 */ 2817 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2818 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2819 adev->vm_manager.vm_update_mode = 2820 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2821 else 2822 adev->vm_manager.vm_update_mode = 0; 2823 } else 2824 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2825 #else 2826 adev->vm_manager.vm_update_mode = 0; 2827 #endif 2828 2829 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2830 } 2831 2832 /** 2833 * amdgpu_vm_manager_fini - cleanup VM manager 2834 * 2835 * @adev: amdgpu_device pointer 2836 * 2837 * Cleanup the VM manager and free resources. 2838 */ 2839 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2840 { 2841 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2842 xa_destroy(&adev->vm_manager.pasids); 2843 2844 amdgpu_vmid_mgr_fini(adev); 2845 } 2846 2847 /** 2848 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2849 * 2850 * @dev: drm device pointer 2851 * @data: drm_amdgpu_vm 2852 * @filp: drm file pointer 2853 * 2854 * Returns: 2855 * 0 for success, -errno for errors. 2856 */ 2857 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2858 { 2859 union drm_amdgpu_vm *args = data; 2860 struct amdgpu_device *adev = drm_to_adev(dev); 2861 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2862 2863 /* No valid flags defined yet */ 2864 if (args->in.flags) 2865 return -EINVAL; 2866 2867 switch (args->in.op) { 2868 case AMDGPU_VM_OP_RESERVE_VMID: 2869 /* We only have requirement to reserve vmid from gfxhub */ 2870 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2871 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2872 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2873 } 2874 2875 break; 2876 case AMDGPU_VM_OP_UNRESERVE_VMID: 2877 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2878 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2879 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2880 } 2881 break; 2882 default: 2883 return -EINVAL; 2884 } 2885 2886 return 0; 2887 } 2888 2889 /** 2890 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2891 * @adev: amdgpu device pointer 2892 * @pasid: PASID of the VM 2893 * @ts: Timestamp of the fault 2894 * @vmid: VMID, only used for GFX 9.4.3. 2895 * @node_id: Node_id received in IH cookie. Only applicable for 2896 * GFX 9.4.3. 2897 * @addr: Address of the fault 2898 * @write_fault: true is write fault, false is read fault 2899 * 2900 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2901 * shouldn't be reported any more. 2902 */ 2903 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2904 u32 vmid, u32 node_id, uint64_t addr, uint64_t ts, 2905 bool write_fault) 2906 { 2907 bool is_compute_context = false; 2908 struct amdgpu_bo *root; 2909 unsigned long irqflags; 2910 uint64_t value, flags; 2911 struct amdgpu_vm *vm; 2912 int r; 2913 2914 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2915 vm = xa_load(&adev->vm_manager.pasids, pasid); 2916 if (vm) { 2917 root = amdgpu_bo_ref(vm->root.bo); 2918 is_compute_context = vm->is_compute_context; 2919 } else { 2920 root = NULL; 2921 } 2922 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2923 2924 if (!root) 2925 return false; 2926 2927 addr /= AMDGPU_GPU_PAGE_SIZE; 2928 2929 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2930 node_id, addr, ts, write_fault)) { 2931 amdgpu_bo_unref(&root); 2932 return true; 2933 } 2934 2935 r = amdgpu_bo_reserve(root, true); 2936 if (r) 2937 goto error_unref; 2938 2939 /* Double check that the VM still exists */ 2940 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2941 vm = xa_load(&adev->vm_manager.pasids, pasid); 2942 if (vm && vm->root.bo != root) 2943 vm = NULL; 2944 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2945 if (!vm) 2946 goto error_unlock; 2947 2948 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2949 AMDGPU_PTE_SYSTEM; 2950 2951 if (is_compute_context) { 2952 /* Intentionally setting invalid PTE flag 2953 * combination to force a no-retry-fault 2954 */ 2955 flags = AMDGPU_VM_NORETRY_FLAGS; 2956 value = 0; 2957 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2958 /* Redirect the access to the dummy page */ 2959 value = adev->dummy_page_addr; 2960 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2961 AMDGPU_PTE_WRITEABLE; 2962 2963 } else { 2964 /* Let the hw retry silently on the PTE */ 2965 value = 0; 2966 } 2967 2968 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2969 if (r) { 2970 pr_debug("failed %d to reserve fence slot\n", r); 2971 goto error_unlock; 2972 } 2973 2974 r = amdgpu_vm_update_range(adev, vm, true, false, false, false, 2975 NULL, addr, addr, flags, value, 0, NULL, NULL, NULL); 2976 if (r) 2977 goto error_unlock; 2978 2979 r = amdgpu_vm_update_pdes(adev, vm, true); 2980 2981 error_unlock: 2982 amdgpu_bo_unreserve(root); 2983 if (r < 0) 2984 DRM_ERROR("Can't handle page fault (%d)\n", r); 2985 2986 error_unref: 2987 amdgpu_bo_unref(&root); 2988 2989 return false; 2990 } 2991 2992 #if defined(CONFIG_DEBUG_FS) 2993 /** 2994 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2995 * 2996 * @vm: Requested VM for printing BO info 2997 * @m: debugfs file 2998 * 2999 * Print BO information in debugfs file for the VM 3000 */ 3001 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3002 { 3003 struct amdgpu_bo_va *bo_va, *tmp; 3004 u64 total_idle = 0; 3005 u64 total_evicted = 0; 3006 u64 total_relocated = 0; 3007 u64 total_moved = 0; 3008 u64 total_invalidated = 0; 3009 u64 total_done = 0; 3010 unsigned int total_idle_objs = 0; 3011 unsigned int total_evicted_objs = 0; 3012 unsigned int total_relocated_objs = 0; 3013 unsigned int total_moved_objs = 0; 3014 unsigned int total_invalidated_objs = 0; 3015 unsigned int total_done_objs = 0; 3016 unsigned int id = 0; 3017 3018 spin_lock(&vm->status_lock); 3019 seq_puts(m, "\tIdle BOs:\n"); 3020 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3021 if (!bo_va->base.bo) 3022 continue; 3023 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3024 } 3025 total_idle_objs = id; 3026 id = 0; 3027 3028 seq_puts(m, "\tEvicted BOs:\n"); 3029 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3030 if (!bo_va->base.bo) 3031 continue; 3032 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3033 } 3034 total_evicted_objs = id; 3035 id = 0; 3036 3037 seq_puts(m, "\tRelocated BOs:\n"); 3038 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3039 if (!bo_va->base.bo) 3040 continue; 3041 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3042 } 3043 total_relocated_objs = id; 3044 id = 0; 3045 3046 seq_puts(m, "\tMoved BOs:\n"); 3047 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3048 if (!bo_va->base.bo) 3049 continue; 3050 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3051 } 3052 total_moved_objs = id; 3053 id = 0; 3054 3055 seq_puts(m, "\tInvalidated BOs:\n"); 3056 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3057 if (!bo_va->base.bo) 3058 continue; 3059 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3060 } 3061 total_invalidated_objs = id; 3062 id = 0; 3063 3064 seq_puts(m, "\tDone BOs:\n"); 3065 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3066 if (!bo_va->base.bo) 3067 continue; 3068 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3069 } 3070 spin_unlock(&vm->status_lock); 3071 total_done_objs = id; 3072 3073 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3074 total_idle_objs); 3075 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3076 total_evicted_objs); 3077 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3078 total_relocated_objs); 3079 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3080 total_moved_objs); 3081 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3082 total_invalidated_objs); 3083 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3084 total_done_objs); 3085 } 3086 #endif 3087 3088 /** 3089 * amdgpu_vm_update_fault_cache - update cached fault into. 3090 * @adev: amdgpu device pointer 3091 * @pasid: PASID of the VM 3092 * @addr: Address of the fault 3093 * @status: GPUVM fault status register 3094 * @vmhub: which vmhub got the fault 3095 * 3096 * Cache the fault info for later use by userspace in debugging. 3097 */ 3098 void amdgpu_vm_update_fault_cache(struct amdgpu_device *adev, 3099 unsigned int pasid, 3100 uint64_t addr, 3101 uint32_t status, 3102 unsigned int vmhub) 3103 { 3104 struct amdgpu_vm *vm; 3105 unsigned long flags; 3106 3107 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3108 3109 vm = xa_load(&adev->vm_manager.pasids, pasid); 3110 /* Don't update the fault cache if status is 0. In the multiple 3111 * fault case, subsequent faults will return a 0 status which is 3112 * useless for userspace and replaces the useful fault status, so 3113 * only update if status is non-0. 3114 */ 3115 if (vm && status) { 3116 vm->fault_info.addr = addr; 3117 vm->fault_info.status = status; 3118 /* 3119 * Update the fault information globally for later usage 3120 * when vm could be stale or freed. 3121 */ 3122 adev->vm_manager.fault_info.addr = addr; 3123 adev->vm_manager.fault_info.vmhub = vmhub; 3124 adev->vm_manager.fault_info.status = status; 3125 3126 if (AMDGPU_IS_GFXHUB(vmhub)) { 3127 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_GFX; 3128 vm->fault_info.vmhub |= 3129 (vmhub - AMDGPU_GFXHUB_START) << AMDGPU_VMHUB_IDX_SHIFT; 3130 } else if (AMDGPU_IS_MMHUB0(vmhub)) { 3131 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM0; 3132 vm->fault_info.vmhub |= 3133 (vmhub - AMDGPU_MMHUB0_START) << AMDGPU_VMHUB_IDX_SHIFT; 3134 } else if (AMDGPU_IS_MMHUB1(vmhub)) { 3135 vm->fault_info.vmhub = AMDGPU_VMHUB_TYPE_MM1; 3136 vm->fault_info.vmhub |= 3137 (vmhub - AMDGPU_MMHUB1_START) << AMDGPU_VMHUB_IDX_SHIFT; 3138 } else { 3139 WARN_ONCE(1, "Invalid vmhub %u\n", vmhub); 3140 } 3141 } 3142 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3143 } 3144 3145 /** 3146 * amdgpu_vm_is_bo_always_valid - check if the BO is VM always valid 3147 * 3148 * @vm: VM to test against. 3149 * @bo: BO to be tested. 3150 * 3151 * Returns true if the BO shares the dma_resv object with the root PD and is 3152 * always guaranteed to be valid inside the VM. 3153 */ 3154 bool amdgpu_vm_is_bo_always_valid(struct amdgpu_vm *vm, struct amdgpu_bo *bo) 3155 { 3156 return bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv; 3157 } 3158