1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS("DMA_BUF"); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->num_placement = 1; 112 return; 113 } 114 115 abo = ttm_to_amdgpu_bo(bo); 116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 117 placement->num_placement = 0; 118 return; 119 } 120 121 switch (bo->resource->mem_type) { 122 case AMDGPU_PL_GDS: 123 case AMDGPU_PL_GWS: 124 case AMDGPU_PL_OA: 125 case AMDGPU_PL_DOORBELL: 126 placement->num_placement = 0; 127 return; 128 129 case TTM_PL_VRAM: 130 if (!adev->mman.buffer_funcs_enabled) { 131 /* Move to system memory */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 133 134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 136 amdgpu_res_cpu_visible(adev, bo->resource)) { 137 138 /* Try evicting to the CPU inaccessible part of VRAM 139 * first, but only set GTT as busy placement, so this 140 * BO will be evicted to GTT rather than causing other 141 * BOs to be evicted from VRAM 142 */ 143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 144 AMDGPU_GEM_DOMAIN_GTT | 145 AMDGPU_GEM_DOMAIN_CPU); 146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 147 abo->placements[0].lpfn = 0; 148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED; 149 } else { 150 /* Move to GTT memory */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 152 AMDGPU_GEM_DOMAIN_CPU); 153 } 154 break; 155 case TTM_PL_TT: 156 case AMDGPU_PL_PREEMPT: 157 default: 158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 159 break; 160 } 161 *placement = abo->placement; 162 } 163 164 /** 165 * amdgpu_ttm_map_buffer - Map memory into the GART windows 166 * @bo: buffer object to map 167 * @mem: memory object to map 168 * @mm_cur: range to map 169 * @window: which GART window to use 170 * @ring: DMA ring to use for the copy 171 * @tmz: if we should setup a TMZ enabled mapping 172 * @size: in number of bytes to map, out number of bytes mapped 173 * @addr: resulting address inside the MC address space 174 * 175 * Setup one of the GART windows to access a specific piece of memory or return 176 * the physical address for local memory. 177 */ 178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 179 struct ttm_resource *mem, 180 struct amdgpu_res_cursor *mm_cur, 181 unsigned int window, struct amdgpu_ring *ring, 182 bool tmz, uint64_t *size, uint64_t *addr) 183 { 184 struct amdgpu_device *adev = ring->adev; 185 unsigned int offset, num_pages, num_dw, num_bytes; 186 uint64_t src_addr, dst_addr; 187 struct amdgpu_job *job; 188 void *cpu_addr; 189 uint64_t flags; 190 unsigned int i; 191 int r; 192 193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 195 196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 197 return -EINVAL; 198 199 /* Map only what can't be accessed directly */ 200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 202 mm_cur->start; 203 return 0; 204 } 205 206 207 /* 208 * If start begins at an offset inside the page, then adjust the size 209 * and addr accordingly 210 */ 211 offset = mm_cur->start & ~PAGE_MASK; 212 213 num_pages = PFN_UP(*size + offset); 214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 215 216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += offset; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 227 AMDGPU_FENCE_OWNER_UNDEFINED, 228 num_dw * 4 + num_bytes, 229 AMDGPU_IB_POOL_DELAYED, &job); 230 if (r) 231 return r; 232 233 src_addr = num_dw * 4; 234 src_addr += job->ibs[0].gpu_addr; 235 236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 239 dst_addr, num_bytes, 0); 240 241 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 242 WARN_ON(job->ibs[0].length_dw > num_dw); 243 244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 245 if (tmz) 246 flags |= AMDGPU_PTE_TMZ; 247 248 cpu_addr = &job->ibs[0].ptr[num_dw]; 249 250 if (mem->mem_type == TTM_PL_TT) { 251 dma_addr_t *dma_addr; 252 253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 255 } else { 256 dma_addr_t dma_address; 257 258 dma_address = mm_cur->start; 259 dma_address += adev->vm_manager.vram_base_offset; 260 261 for (i = 0; i < num_pages; ++i) { 262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 263 flags, cpu_addr); 264 dma_address += PAGE_SIZE; 265 } 266 } 267 268 dma_fence_put(amdgpu_job_submit(job)); 269 return 0; 270 } 271 272 /** 273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 274 * @adev: amdgpu device 275 * @src: buffer/address where to read from 276 * @dst: buffer/address where to write to 277 * @size: number of bytes to copy 278 * @tmz: if a secure copy should be used 279 * @resv: resv object to sync to 280 * @f: Returns the last fence if multiple jobs are submitted. 281 * 282 * The function copies @size bytes from {src->mem + src->offset} to 283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 284 * move and different for a BO to BO copy. 285 * 286 */ 287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 288 const struct amdgpu_copy_mem *src, 289 const struct amdgpu_copy_mem *dst, 290 uint64_t size, bool tmz, 291 struct dma_resv *resv, 292 struct dma_fence **f) 293 { 294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 295 struct amdgpu_res_cursor src_mm, dst_mm; 296 struct dma_fence *fence = NULL; 297 int r = 0; 298 uint32_t copy_flags = 0; 299 struct amdgpu_bo *abo_src, *abo_dst; 300 301 if (!adev->mman.buffer_funcs_enabled) { 302 DRM_ERROR("Trying to move memory with ring turned off.\n"); 303 return -EINVAL; 304 } 305 306 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 308 309 mutex_lock(&adev->mman.gtt_window_lock); 310 while (src_mm.remaining) { 311 uint64_t from, to, cur_size, tiling_flags; 312 uint32_t num_type, data_format, max_com, write_compress_disable; 313 struct dma_fence *next; 314 315 /* Never copy more than 256MiB at once to avoid a timeout */ 316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 317 318 /* Map src to window 0 and dst to window 1. */ 319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 320 0, ring, tmz, &cur_size, &from); 321 if (r) 322 goto error; 323 324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 325 1, ring, tmz, &cur_size, &to); 326 if (r) 327 goto error; 328 329 abo_src = ttm_to_amdgpu_bo(src->bo); 330 abo_dst = ttm_to_amdgpu_bo(dst->bo); 331 if (tmz) 332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ; 333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM)) 335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED; 336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) && 337 (dst->mem->mem_type == TTM_PL_VRAM)) { 338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED; 339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags); 340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK); 341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE); 342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT); 343 write_compress_disable = 344 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE); 345 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) | 346 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) | 347 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) | 348 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE, 349 write_compress_disable)); 350 } 351 352 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv, 353 &next, false, true, copy_flags); 354 if (r) 355 goto error; 356 357 dma_fence_put(fence); 358 fence = next; 359 360 amdgpu_res_next(&src_mm, cur_size); 361 amdgpu_res_next(&dst_mm, cur_size); 362 } 363 error: 364 mutex_unlock(&adev->mman.gtt_window_lock); 365 if (f) 366 *f = dma_fence_get(fence); 367 dma_fence_put(fence); 368 return r; 369 } 370 371 /* 372 * amdgpu_move_blit - Copy an entire buffer to another buffer 373 * 374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 375 * help move buffers to and from VRAM. 376 */ 377 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 378 bool evict, 379 struct ttm_resource *new_mem, 380 struct ttm_resource *old_mem) 381 { 382 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 383 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 384 struct amdgpu_copy_mem src, dst; 385 struct dma_fence *fence = NULL; 386 int r; 387 388 src.bo = bo; 389 dst.bo = bo; 390 src.mem = old_mem; 391 dst.mem = new_mem; 392 src.offset = 0; 393 dst.offset = 0; 394 395 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 396 new_mem->size, 397 amdgpu_bo_encrypted(abo), 398 bo->base.resv, &fence); 399 if (r) 400 goto error; 401 402 /* clear the space being freed */ 403 if (old_mem->mem_type == TTM_PL_VRAM && 404 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 405 struct dma_fence *wipe_fence = NULL; 406 407 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence, 408 false); 409 if (r) { 410 goto error; 411 } else if (wipe_fence) { 412 amdgpu_vram_mgr_set_cleared(bo->resource); 413 dma_fence_put(fence); 414 fence = wipe_fence; 415 } 416 } 417 418 /* Always block for VM page tables before committing the new location */ 419 if (bo->type == ttm_bo_type_kernel) 420 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 421 else 422 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 423 dma_fence_put(fence); 424 return r; 425 426 error: 427 if (fence) 428 dma_fence_wait(fence, false); 429 dma_fence_put(fence); 430 return r; 431 } 432 433 /** 434 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 435 * @adev: amdgpu device 436 * @res: the resource to check 437 * 438 * Returns: true if the full resource is CPU visible, false otherwise. 439 */ 440 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 441 struct ttm_resource *res) 442 { 443 struct amdgpu_res_cursor cursor; 444 445 if (!res) 446 return false; 447 448 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 449 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 450 return true; 451 452 if (res->mem_type != TTM_PL_VRAM) 453 return false; 454 455 amdgpu_res_first(res, 0, res->size, &cursor); 456 while (cursor.remaining) { 457 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 458 return false; 459 amdgpu_res_next(&cursor, cursor.size); 460 } 461 462 return true; 463 } 464 465 /* 466 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 467 * 468 * Called by amdgpu_bo_move() 469 */ 470 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 471 struct ttm_resource *mem) 472 { 473 if (!amdgpu_res_cpu_visible(adev, mem)) 474 return false; 475 476 /* ttm_resource_ioremap only supports contiguous memory */ 477 if (mem->mem_type == TTM_PL_VRAM && 478 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 479 return false; 480 481 return true; 482 } 483 484 /* 485 * amdgpu_bo_move - Move a buffer object to a new memory location 486 * 487 * Called by ttm_bo_handle_move_mem() 488 */ 489 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 490 struct ttm_operation_ctx *ctx, 491 struct ttm_resource *new_mem, 492 struct ttm_place *hop) 493 { 494 struct amdgpu_device *adev; 495 struct amdgpu_bo *abo; 496 struct ttm_resource *old_mem = bo->resource; 497 int r; 498 499 if (new_mem->mem_type == TTM_PL_TT || 500 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 501 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 502 if (r) 503 return r; 504 } 505 506 abo = ttm_to_amdgpu_bo(bo); 507 adev = amdgpu_ttm_adev(bo->bdev); 508 509 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 510 bo->ttm == NULL)) { 511 amdgpu_bo_move_notify(bo, evict, new_mem); 512 ttm_bo_move_null(bo, new_mem); 513 return 0; 514 } 515 if (old_mem->mem_type == TTM_PL_SYSTEM && 516 (new_mem->mem_type == TTM_PL_TT || 517 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 518 amdgpu_bo_move_notify(bo, evict, new_mem); 519 ttm_bo_move_null(bo, new_mem); 520 return 0; 521 } 522 if ((old_mem->mem_type == TTM_PL_TT || 523 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 524 new_mem->mem_type == TTM_PL_SYSTEM) { 525 r = ttm_bo_wait_ctx(bo, ctx); 526 if (r) 527 return r; 528 529 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 530 amdgpu_bo_move_notify(bo, evict, new_mem); 531 ttm_resource_free(bo, &bo->resource); 532 ttm_bo_assign_mem(bo, new_mem); 533 return 0; 534 } 535 536 if (old_mem->mem_type == AMDGPU_PL_GDS || 537 old_mem->mem_type == AMDGPU_PL_GWS || 538 old_mem->mem_type == AMDGPU_PL_OA || 539 old_mem->mem_type == AMDGPU_PL_DOORBELL || 540 new_mem->mem_type == AMDGPU_PL_GDS || 541 new_mem->mem_type == AMDGPU_PL_GWS || 542 new_mem->mem_type == AMDGPU_PL_OA || 543 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 544 /* Nothing to save here */ 545 amdgpu_bo_move_notify(bo, evict, new_mem); 546 ttm_bo_move_null(bo, new_mem); 547 return 0; 548 } 549 550 if (bo->type == ttm_bo_type_device && 551 new_mem->mem_type == TTM_PL_VRAM && 552 old_mem->mem_type != TTM_PL_VRAM) { 553 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 554 * accesses the BO after it's moved. 555 */ 556 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 557 } 558 559 if (adev->mman.buffer_funcs_enabled && 560 ((old_mem->mem_type == TTM_PL_SYSTEM && 561 new_mem->mem_type == TTM_PL_VRAM) || 562 (old_mem->mem_type == TTM_PL_VRAM && 563 new_mem->mem_type == TTM_PL_SYSTEM))) { 564 hop->fpfn = 0; 565 hop->lpfn = 0; 566 hop->mem_type = TTM_PL_TT; 567 hop->flags = TTM_PL_FLAG_TEMPORARY; 568 return -EMULTIHOP; 569 } 570 571 amdgpu_bo_move_notify(bo, evict, new_mem); 572 if (adev->mman.buffer_funcs_enabled) 573 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 574 else 575 r = -ENODEV; 576 577 if (r) { 578 /* Check that all memory is CPU accessible */ 579 if (!amdgpu_res_copyable(adev, old_mem) || 580 !amdgpu_res_copyable(adev, new_mem)) { 581 pr_err("Move buffer fallback to memcpy unavailable\n"); 582 return r; 583 } 584 585 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 586 if (r) 587 return r; 588 } 589 590 /* update statistics after the move */ 591 if (evict) 592 atomic64_inc(&adev->num_evictions); 593 atomic64_add(bo->base.size, &adev->num_bytes_moved); 594 return 0; 595 } 596 597 /* 598 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 599 * 600 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 601 */ 602 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 603 struct ttm_resource *mem) 604 { 605 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 606 607 switch (mem->mem_type) { 608 case TTM_PL_SYSTEM: 609 /* system memory */ 610 return 0; 611 case TTM_PL_TT: 612 case AMDGPU_PL_PREEMPT: 613 break; 614 case TTM_PL_VRAM: 615 mem->bus.offset = mem->start << PAGE_SHIFT; 616 617 if (adev->mman.aper_base_kaddr && 618 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 619 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 620 mem->bus.offset; 621 622 mem->bus.offset += adev->gmc.aper_base; 623 mem->bus.is_iomem = true; 624 break; 625 case AMDGPU_PL_DOORBELL: 626 mem->bus.offset = mem->start << PAGE_SHIFT; 627 mem->bus.offset += adev->doorbell.base; 628 mem->bus.is_iomem = true; 629 mem->bus.caching = ttm_uncached; 630 break; 631 default: 632 return -EINVAL; 633 } 634 return 0; 635 } 636 637 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 638 unsigned long page_offset) 639 { 640 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 641 struct amdgpu_res_cursor cursor; 642 643 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 644 &cursor); 645 646 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 647 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 648 649 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 650 } 651 652 /** 653 * amdgpu_ttm_domain_start - Returns GPU start address 654 * @adev: amdgpu device object 655 * @type: type of the memory 656 * 657 * Returns: 658 * GPU start address of a memory domain 659 */ 660 661 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 662 { 663 switch (type) { 664 case TTM_PL_TT: 665 return adev->gmc.gart_start; 666 case TTM_PL_VRAM: 667 return adev->gmc.vram_start; 668 } 669 670 return 0; 671 } 672 673 /* 674 * TTM backend functions. 675 */ 676 struct amdgpu_ttm_tt { 677 struct ttm_tt ttm; 678 struct drm_gem_object *gobj; 679 u64 offset; 680 uint64_t userptr; 681 struct task_struct *usertask; 682 uint32_t userflags; 683 bool bound; 684 int32_t pool_id; 685 }; 686 687 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 688 689 #ifdef CONFIG_DRM_AMDGPU_USERPTR 690 /* 691 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 692 * memory and start HMM tracking CPU page table update 693 * 694 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 695 * once afterwards to stop HMM tracking 696 */ 697 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 698 struct hmm_range **range) 699 { 700 struct ttm_tt *ttm = bo->tbo.ttm; 701 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 702 unsigned long start = gtt->userptr; 703 struct vm_area_struct *vma; 704 struct mm_struct *mm; 705 bool readonly; 706 int r = 0; 707 708 /* Make sure get_user_pages_done() can cleanup gracefully */ 709 *range = NULL; 710 711 mm = bo->notifier.mm; 712 if (unlikely(!mm)) { 713 DRM_DEBUG_DRIVER("BO is not registered?\n"); 714 return -EFAULT; 715 } 716 717 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 718 return -ESRCH; 719 720 mmap_read_lock(mm); 721 vma = vma_lookup(mm, start); 722 if (unlikely(!vma)) { 723 r = -EFAULT; 724 goto out_unlock; 725 } 726 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 727 vma->vm_file)) { 728 r = -EPERM; 729 goto out_unlock; 730 } 731 732 readonly = amdgpu_ttm_tt_is_readonly(ttm); 733 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 734 readonly, NULL, pages, range); 735 out_unlock: 736 mmap_read_unlock(mm); 737 if (r) 738 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 739 740 mmput(mm); 741 742 return r; 743 } 744 745 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 746 */ 747 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 748 struct hmm_range *range) 749 { 750 struct amdgpu_ttm_tt *gtt = (void *)ttm; 751 752 if (gtt && gtt->userptr && range) 753 amdgpu_hmm_range_get_pages_done(range); 754 } 755 756 /* 757 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 758 * Check if the pages backing this ttm range have been invalidated 759 * 760 * Returns: true if pages are still valid 761 */ 762 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 763 struct hmm_range *range) 764 { 765 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 766 767 if (!gtt || !gtt->userptr || !range) 768 return false; 769 770 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 771 gtt->userptr, ttm->num_pages); 772 773 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 774 775 return !amdgpu_hmm_range_get_pages_done(range); 776 } 777 #endif 778 779 /* 780 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 781 * 782 * Called by amdgpu_cs_list_validate(). This creates the page list 783 * that backs user memory and will ultimately be mapped into the device 784 * address space. 785 */ 786 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 787 { 788 unsigned long i; 789 790 for (i = 0; i < ttm->num_pages; ++i) 791 ttm->pages[i] = pages ? pages[i] : NULL; 792 } 793 794 /* 795 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 796 * 797 * Called by amdgpu_ttm_backend_bind() 798 **/ 799 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 800 struct ttm_tt *ttm) 801 { 802 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 803 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 804 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 805 enum dma_data_direction direction = write ? 806 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 807 int r; 808 809 /* Allocate an SG array and squash pages into it */ 810 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 811 (u64)ttm->num_pages << PAGE_SHIFT, 812 GFP_KERNEL); 813 if (r) 814 goto release_sg; 815 816 /* Map SG to device */ 817 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 818 if (r) 819 goto release_sg_table; 820 821 /* convert SG to linear array of pages and dma addresses */ 822 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 823 ttm->num_pages); 824 825 return 0; 826 827 release_sg_table: 828 sg_free_table(ttm->sg); 829 release_sg: 830 kfree(ttm->sg); 831 ttm->sg = NULL; 832 return r; 833 } 834 835 /* 836 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 837 */ 838 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 839 struct ttm_tt *ttm) 840 { 841 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 842 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 843 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 844 enum dma_data_direction direction = write ? 845 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 846 847 /* double check that we don't free the table twice */ 848 if (!ttm->sg || !ttm->sg->sgl) 849 return; 850 851 /* unmap the pages mapped to the device */ 852 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 853 sg_free_table(ttm->sg); 854 } 855 856 /* 857 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 858 * MQDn+CtrlStackn where n is the number of XCCs per partition. 859 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 860 * and uses memory type default, UC. The rest of pages_per_xcc are 861 * Ctrl stack and modify their memory type to NC. 862 */ 863 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 864 struct ttm_tt *ttm, uint64_t flags) 865 { 866 struct amdgpu_ttm_tt *gtt = (void *)ttm; 867 uint64_t total_pages = ttm->num_pages; 868 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 869 uint64_t page_idx, pages_per_xcc; 870 int i; 871 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC); 872 873 pages_per_xcc = total_pages; 874 do_div(pages_per_xcc, num_xcc); 875 876 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 877 /* MQD page: use default flags */ 878 amdgpu_gart_bind(adev, 879 gtt->offset + (page_idx << PAGE_SHIFT), 880 1, >t->ttm.dma_address[page_idx], flags); 881 /* 882 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 883 * the second page of the BO onward. 884 */ 885 amdgpu_gart_bind(adev, 886 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 887 pages_per_xcc - 1, 888 >t->ttm.dma_address[page_idx + 1], 889 ctrl_flags); 890 } 891 } 892 893 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 894 struct ttm_buffer_object *tbo, 895 uint64_t flags) 896 { 897 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 898 struct ttm_tt *ttm = tbo->ttm; 899 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 900 901 if (amdgpu_bo_encrypted(abo)) 902 flags |= AMDGPU_PTE_TMZ; 903 904 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 905 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 906 } else { 907 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 908 gtt->ttm.dma_address, flags); 909 } 910 gtt->bound = true; 911 } 912 913 /* 914 * amdgpu_ttm_backend_bind - Bind GTT memory 915 * 916 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 917 * This handles binding GTT memory to the device address space. 918 */ 919 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 920 struct ttm_tt *ttm, 921 struct ttm_resource *bo_mem) 922 { 923 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 924 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 925 uint64_t flags; 926 int r; 927 928 if (!bo_mem) 929 return -EINVAL; 930 931 if (gtt->bound) 932 return 0; 933 934 if (gtt->userptr) { 935 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 936 if (r) { 937 DRM_ERROR("failed to pin userptr\n"); 938 return r; 939 } 940 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 941 if (!ttm->sg) { 942 struct dma_buf_attachment *attach; 943 struct sg_table *sgt; 944 945 attach = gtt->gobj->import_attach; 946 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 947 if (IS_ERR(sgt)) 948 return PTR_ERR(sgt); 949 950 ttm->sg = sgt; 951 } 952 953 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 954 ttm->num_pages); 955 } 956 957 if (!ttm->num_pages) { 958 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 959 ttm->num_pages, bo_mem, ttm); 960 } 961 962 if (bo_mem->mem_type != TTM_PL_TT || 963 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 964 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 965 return 0; 966 } 967 968 /* compute PTE flags relevant to this BO memory */ 969 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 970 971 /* bind pages into GART page tables */ 972 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 973 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 974 gtt->ttm.dma_address, flags); 975 gtt->bound = true; 976 return 0; 977 } 978 979 /* 980 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 981 * through AGP or GART aperture. 982 * 983 * If bo is accessible through AGP aperture, then use AGP aperture 984 * to access bo; otherwise allocate logical space in GART aperture 985 * and map bo to GART aperture. 986 */ 987 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 988 { 989 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 990 struct ttm_operation_ctx ctx = { false, false }; 991 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 992 struct ttm_placement placement; 993 struct ttm_place placements; 994 struct ttm_resource *tmp; 995 uint64_t addr, flags; 996 int r; 997 998 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 999 return 0; 1000 1001 addr = amdgpu_gmc_agp_addr(bo); 1002 if (addr != AMDGPU_BO_INVALID_OFFSET) 1003 return 0; 1004 1005 /* allocate GART space */ 1006 placement.num_placement = 1; 1007 placement.placement = &placements; 1008 placements.fpfn = 0; 1009 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1010 placements.mem_type = TTM_PL_TT; 1011 placements.flags = bo->resource->placement; 1012 1013 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1014 if (unlikely(r)) 1015 return r; 1016 1017 /* compute PTE flags for this buffer object */ 1018 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1019 1020 /* Bind pages */ 1021 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1022 amdgpu_ttm_gart_bind(adev, bo, flags); 1023 amdgpu_gart_invalidate_tlb(adev); 1024 ttm_resource_free(bo, &bo->resource); 1025 ttm_bo_assign_mem(bo, tmp); 1026 1027 return 0; 1028 } 1029 1030 /* 1031 * amdgpu_ttm_recover_gart - Rebind GTT pages 1032 * 1033 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1034 * rebind GTT pages during a GPU reset. 1035 */ 1036 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1037 { 1038 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1039 uint64_t flags; 1040 1041 if (!tbo->ttm) 1042 return; 1043 1044 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1045 amdgpu_ttm_gart_bind(adev, tbo, flags); 1046 } 1047 1048 /* 1049 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1050 * 1051 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1052 * ttm_tt_destroy(). 1053 */ 1054 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1055 struct ttm_tt *ttm) 1056 { 1057 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1058 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1059 1060 /* if the pages have userptr pinning then clear that first */ 1061 if (gtt->userptr) { 1062 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1063 } else if (ttm->sg && gtt->gobj->import_attach) { 1064 struct dma_buf_attachment *attach; 1065 1066 attach = gtt->gobj->import_attach; 1067 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1068 ttm->sg = NULL; 1069 } 1070 1071 if (!gtt->bound) 1072 return; 1073 1074 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1075 return; 1076 1077 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1078 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1079 gtt->bound = false; 1080 } 1081 1082 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1083 struct ttm_tt *ttm) 1084 { 1085 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1086 1087 if (gtt->usertask) 1088 put_task_struct(gtt->usertask); 1089 1090 ttm_tt_fini(>t->ttm); 1091 kfree(gtt); 1092 } 1093 1094 /** 1095 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1096 * 1097 * @bo: The buffer object to create a GTT ttm_tt object around 1098 * @page_flags: Page flags to be added to the ttm_tt object 1099 * 1100 * Called by ttm_tt_create(). 1101 */ 1102 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1103 uint32_t page_flags) 1104 { 1105 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1106 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1107 struct amdgpu_ttm_tt *gtt; 1108 enum ttm_caching caching; 1109 1110 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1111 if (!gtt) 1112 return NULL; 1113 1114 gtt->gobj = &bo->base; 1115 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1116 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1117 else 1118 gtt->pool_id = abo->xcp_id; 1119 1120 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1121 caching = ttm_write_combined; 1122 else 1123 caching = ttm_cached; 1124 1125 /* allocate space for the uninitialized page entries */ 1126 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1127 kfree(gtt); 1128 return NULL; 1129 } 1130 return >t->ttm; 1131 } 1132 1133 /* 1134 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1135 * 1136 * Map the pages of a ttm_tt object to an address space visible 1137 * to the underlying device. 1138 */ 1139 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1140 struct ttm_tt *ttm, 1141 struct ttm_operation_ctx *ctx) 1142 { 1143 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1144 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1145 struct ttm_pool *pool; 1146 pgoff_t i; 1147 int ret; 1148 1149 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1150 if (gtt->userptr) { 1151 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1152 if (!ttm->sg) 1153 return -ENOMEM; 1154 return 0; 1155 } 1156 1157 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1158 return 0; 1159 1160 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1161 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1162 else 1163 pool = &adev->mman.bdev.pool; 1164 ret = ttm_pool_alloc(pool, ttm, ctx); 1165 if (ret) 1166 return ret; 1167 1168 for (i = 0; i < ttm->num_pages; ++i) 1169 ttm->pages[i]->mapping = bdev->dev_mapping; 1170 1171 return 0; 1172 } 1173 1174 /* 1175 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1176 * 1177 * Unmaps pages of a ttm_tt object from the device address space and 1178 * unpopulates the page array backing it. 1179 */ 1180 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1181 struct ttm_tt *ttm) 1182 { 1183 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1184 struct amdgpu_device *adev; 1185 struct ttm_pool *pool; 1186 pgoff_t i; 1187 1188 amdgpu_ttm_backend_unbind(bdev, ttm); 1189 1190 if (gtt->userptr) { 1191 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1192 kfree(ttm->sg); 1193 ttm->sg = NULL; 1194 return; 1195 } 1196 1197 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1198 return; 1199 1200 for (i = 0; i < ttm->num_pages; ++i) 1201 ttm->pages[i]->mapping = NULL; 1202 1203 adev = amdgpu_ttm_adev(bdev); 1204 1205 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1206 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1207 else 1208 pool = &adev->mman.bdev.pool; 1209 1210 return ttm_pool_free(pool, ttm); 1211 } 1212 1213 /** 1214 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1215 * task 1216 * 1217 * @tbo: The ttm_buffer_object that contains the userptr 1218 * @user_addr: The returned value 1219 */ 1220 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1221 uint64_t *user_addr) 1222 { 1223 struct amdgpu_ttm_tt *gtt; 1224 1225 if (!tbo->ttm) 1226 return -EINVAL; 1227 1228 gtt = (void *)tbo->ttm; 1229 *user_addr = gtt->userptr; 1230 return 0; 1231 } 1232 1233 /** 1234 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1235 * task 1236 * 1237 * @bo: The ttm_buffer_object to bind this userptr to 1238 * @addr: The address in the current tasks VM space to use 1239 * @flags: Requirements of userptr object. 1240 * 1241 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1242 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1243 * initialize GPU VM for a KFD process. 1244 */ 1245 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1246 uint64_t addr, uint32_t flags) 1247 { 1248 struct amdgpu_ttm_tt *gtt; 1249 1250 if (!bo->ttm) { 1251 /* TODO: We want a separate TTM object type for userptrs */ 1252 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1253 if (bo->ttm == NULL) 1254 return -ENOMEM; 1255 } 1256 1257 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1258 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1259 1260 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1261 gtt->userptr = addr; 1262 gtt->userflags = flags; 1263 1264 if (gtt->usertask) 1265 put_task_struct(gtt->usertask); 1266 gtt->usertask = current->group_leader; 1267 get_task_struct(gtt->usertask); 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1274 */ 1275 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1276 { 1277 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1278 1279 if (gtt == NULL) 1280 return NULL; 1281 1282 if (gtt->usertask == NULL) 1283 return NULL; 1284 1285 return gtt->usertask->mm; 1286 } 1287 1288 /* 1289 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1290 * address range for the current task. 1291 * 1292 */ 1293 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1294 unsigned long end, unsigned long *userptr) 1295 { 1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1297 unsigned long size; 1298 1299 if (gtt == NULL || !gtt->userptr) 1300 return false; 1301 1302 /* Return false if no part of the ttm_tt object lies within 1303 * the range 1304 */ 1305 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1306 if (gtt->userptr > end || gtt->userptr + size <= start) 1307 return false; 1308 1309 if (userptr) 1310 *userptr = gtt->userptr; 1311 return true; 1312 } 1313 1314 /* 1315 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1316 */ 1317 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1318 { 1319 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1320 1321 if (gtt == NULL || !gtt->userptr) 1322 return false; 1323 1324 return true; 1325 } 1326 1327 /* 1328 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1329 */ 1330 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1331 { 1332 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1333 1334 if (gtt == NULL) 1335 return false; 1336 1337 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1338 } 1339 1340 /** 1341 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1342 * 1343 * @ttm: The ttm_tt object to compute the flags for 1344 * @mem: The memory registry backing this ttm_tt object 1345 * 1346 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1347 */ 1348 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1349 { 1350 uint64_t flags = 0; 1351 1352 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1353 flags |= AMDGPU_PTE_VALID; 1354 1355 if (mem && (mem->mem_type == TTM_PL_TT || 1356 mem->mem_type == AMDGPU_PL_DOORBELL || 1357 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1358 flags |= AMDGPU_PTE_SYSTEM; 1359 1360 if (ttm->caching == ttm_cached) 1361 flags |= AMDGPU_PTE_SNOOPED; 1362 } 1363 1364 if (mem && mem->mem_type == TTM_PL_VRAM && 1365 mem->bus.caching == ttm_cached) 1366 flags |= AMDGPU_PTE_SNOOPED; 1367 1368 return flags; 1369 } 1370 1371 /** 1372 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1373 * 1374 * @adev: amdgpu_device pointer 1375 * @ttm: The ttm_tt object to compute the flags for 1376 * @mem: The memory registry backing this ttm_tt object 1377 * 1378 * Figure out the flags to use for a VM PTE (Page Table Entry). 1379 */ 1380 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1381 struct ttm_resource *mem) 1382 { 1383 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1384 1385 flags |= adev->gart.gart_pte_flags; 1386 flags |= AMDGPU_PTE_READABLE; 1387 1388 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1389 flags |= AMDGPU_PTE_WRITEABLE; 1390 1391 return flags; 1392 } 1393 1394 /* 1395 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1396 * object. 1397 * 1398 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1399 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1400 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1401 * used to clean out a memory space. 1402 */ 1403 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1404 const struct ttm_place *place) 1405 { 1406 struct dma_resv_iter resv_cursor; 1407 struct dma_fence *f; 1408 1409 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1410 return ttm_bo_eviction_valuable(bo, place); 1411 1412 /* Swapout? */ 1413 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1414 return true; 1415 1416 if (bo->type == ttm_bo_type_kernel && 1417 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1418 return false; 1419 1420 /* If bo is a KFD BO, check if the bo belongs to the current process. 1421 * If true, then return false as any KFD process needs all its BOs to 1422 * be resident to run successfully 1423 */ 1424 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1425 DMA_RESV_USAGE_BOOKKEEP, f) { 1426 if (amdkfd_fence_check_mm(f, current->mm) && 1427 !(place->flags & TTM_PL_FLAG_CONTIGUOUS)) 1428 return false; 1429 } 1430 1431 /* Preemptible BOs don't own system resources managed by the 1432 * driver (pages, VRAM, GART space). They point to resources 1433 * owned by someone else (e.g. pageable memory in user mode 1434 * or a DMABuf). They are used in a preemptible context so we 1435 * can guarantee no deadlocks and good QoS in case of MMU 1436 * notifiers or DMABuf move notifiers from the resource owner. 1437 */ 1438 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1439 return false; 1440 1441 if (bo->resource->mem_type == TTM_PL_TT && 1442 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1443 return false; 1444 1445 return ttm_bo_eviction_valuable(bo, place); 1446 } 1447 1448 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1449 void *buf, size_t size, bool write) 1450 { 1451 while (size) { 1452 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1453 uint64_t bytes = 4 - (pos & 0x3); 1454 uint32_t shift = (pos & 0x3) * 8; 1455 uint32_t mask = 0xffffffff << shift; 1456 uint32_t value = 0; 1457 1458 if (size < bytes) { 1459 mask &= 0xffffffff >> (bytes - size) * 8; 1460 bytes = size; 1461 } 1462 1463 if (mask != 0xffffffff) { 1464 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1465 if (write) { 1466 value &= ~mask; 1467 value |= (*(uint32_t *)buf << shift) & mask; 1468 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1469 } else { 1470 value = (value & mask) >> shift; 1471 memcpy(buf, &value, bytes); 1472 } 1473 } else { 1474 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1475 } 1476 1477 pos += bytes; 1478 buf += bytes; 1479 size -= bytes; 1480 } 1481 } 1482 1483 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1484 unsigned long offset, void *buf, 1485 int len, int write) 1486 { 1487 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1488 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1489 struct amdgpu_res_cursor src_mm; 1490 struct amdgpu_job *job; 1491 struct dma_fence *fence; 1492 uint64_t src_addr, dst_addr; 1493 unsigned int num_dw; 1494 int r, idx; 1495 1496 if (len != PAGE_SIZE) 1497 return -EINVAL; 1498 1499 if (!adev->mman.sdma_access_ptr) 1500 return -EACCES; 1501 1502 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1503 return -ENODEV; 1504 1505 if (write) 1506 memcpy(adev->mman.sdma_access_ptr, buf, len); 1507 1508 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1509 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1510 AMDGPU_FENCE_OWNER_UNDEFINED, 1511 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1512 &job); 1513 if (r) 1514 goto out; 1515 1516 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1517 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1518 src_mm.start; 1519 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1520 if (write) 1521 swap(src_addr, dst_addr); 1522 1523 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1524 PAGE_SIZE, 0); 1525 1526 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1527 WARN_ON(job->ibs[0].length_dw > num_dw); 1528 1529 fence = amdgpu_job_submit(job); 1530 1531 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1532 r = -ETIMEDOUT; 1533 dma_fence_put(fence); 1534 1535 if (!(r || write)) 1536 memcpy(buf, adev->mman.sdma_access_ptr, len); 1537 out: 1538 drm_dev_exit(idx); 1539 return r; 1540 } 1541 1542 /** 1543 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1544 * 1545 * @bo: The buffer object to read/write 1546 * @offset: Offset into buffer object 1547 * @buf: Secondary buffer to write/read from 1548 * @len: Length in bytes of access 1549 * @write: true if writing 1550 * 1551 * This is used to access VRAM that backs a buffer object via MMIO 1552 * access for debugging purposes. 1553 */ 1554 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1555 unsigned long offset, void *buf, int len, 1556 int write) 1557 { 1558 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1559 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1560 struct amdgpu_res_cursor cursor; 1561 int ret = 0; 1562 1563 if (bo->resource->mem_type != TTM_PL_VRAM) 1564 return -EIO; 1565 1566 if (amdgpu_device_has_timeouts_enabled(adev) && 1567 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1568 return len; 1569 1570 amdgpu_res_first(bo->resource, offset, len, &cursor); 1571 while (cursor.remaining) { 1572 size_t count, size = cursor.size; 1573 loff_t pos = cursor.start; 1574 1575 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1576 size -= count; 1577 if (size) { 1578 /* using MM to access rest vram and handle un-aligned address */ 1579 pos += count; 1580 buf += count; 1581 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1582 } 1583 1584 ret += cursor.size; 1585 buf += cursor.size; 1586 amdgpu_res_next(&cursor, cursor.size); 1587 } 1588 1589 return ret; 1590 } 1591 1592 static void 1593 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1594 { 1595 amdgpu_bo_move_notify(bo, false, NULL); 1596 } 1597 1598 static struct ttm_device_funcs amdgpu_bo_driver = { 1599 .ttm_tt_create = &amdgpu_ttm_tt_create, 1600 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1601 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1602 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1603 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1604 .evict_flags = &amdgpu_evict_flags, 1605 .move = &amdgpu_bo_move, 1606 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1607 .release_notify = &amdgpu_bo_release_notify, 1608 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1609 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1610 .access_memory = &amdgpu_ttm_access_memory, 1611 }; 1612 1613 /* 1614 * Firmware Reservation functions 1615 */ 1616 /** 1617 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1618 * 1619 * @adev: amdgpu_device pointer 1620 * 1621 * free fw reserved vram if it has been reserved. 1622 */ 1623 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1624 { 1625 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1626 NULL, &adev->mman.fw_vram_usage_va); 1627 } 1628 1629 /* 1630 * Driver Reservation functions 1631 */ 1632 /** 1633 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1634 * 1635 * @adev: amdgpu_device pointer 1636 * 1637 * free drv reserved vram if it has been reserved. 1638 */ 1639 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1640 { 1641 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1642 NULL, 1643 &adev->mman.drv_vram_usage_va); 1644 } 1645 1646 /** 1647 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1648 * 1649 * @adev: amdgpu_device pointer 1650 * 1651 * create bo vram reservation from fw. 1652 */ 1653 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1654 { 1655 uint64_t vram_size = adev->gmc.visible_vram_size; 1656 1657 adev->mman.fw_vram_usage_va = NULL; 1658 adev->mman.fw_vram_usage_reserved_bo = NULL; 1659 1660 if (adev->mman.fw_vram_usage_size == 0 || 1661 adev->mman.fw_vram_usage_size > vram_size) 1662 return 0; 1663 1664 return amdgpu_bo_create_kernel_at(adev, 1665 adev->mman.fw_vram_usage_start_offset, 1666 adev->mman.fw_vram_usage_size, 1667 &adev->mman.fw_vram_usage_reserved_bo, 1668 &adev->mman.fw_vram_usage_va); 1669 } 1670 1671 /** 1672 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1673 * 1674 * @adev: amdgpu_device pointer 1675 * 1676 * create bo vram reservation from drv. 1677 */ 1678 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1679 { 1680 u64 vram_size = adev->gmc.visible_vram_size; 1681 1682 adev->mman.drv_vram_usage_va = NULL; 1683 adev->mman.drv_vram_usage_reserved_bo = NULL; 1684 1685 if (adev->mman.drv_vram_usage_size == 0 || 1686 adev->mman.drv_vram_usage_size > vram_size) 1687 return 0; 1688 1689 return amdgpu_bo_create_kernel_at(adev, 1690 adev->mman.drv_vram_usage_start_offset, 1691 adev->mman.drv_vram_usage_size, 1692 &adev->mman.drv_vram_usage_reserved_bo, 1693 &adev->mman.drv_vram_usage_va); 1694 } 1695 1696 /* 1697 * Memoy training reservation functions 1698 */ 1699 1700 /** 1701 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1702 * 1703 * @adev: amdgpu_device pointer 1704 * 1705 * free memory training reserved vram if it has been reserved. 1706 */ 1707 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1708 { 1709 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1710 1711 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1712 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1713 ctx->c2p_bo = NULL; 1714 1715 return 0; 1716 } 1717 1718 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1719 uint32_t reserve_size) 1720 { 1721 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1722 1723 memset(ctx, 0, sizeof(*ctx)); 1724 1725 ctx->c2p_train_data_offset = 1726 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1727 ctx->p2c_train_data_offset = 1728 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1729 ctx->train_data_size = 1730 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1731 1732 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1733 ctx->train_data_size, 1734 ctx->p2c_train_data_offset, 1735 ctx->c2p_train_data_offset); 1736 } 1737 1738 /* 1739 * reserve TMR memory at the top of VRAM which holds 1740 * IP Discovery data and is protected by PSP. 1741 */ 1742 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1743 { 1744 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1745 bool mem_train_support = false; 1746 uint32_t reserve_size = 0; 1747 int ret; 1748 1749 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1750 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1751 mem_train_support = true; 1752 else 1753 DRM_DEBUG("memory training does not support!\n"); 1754 } 1755 1756 /* 1757 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1758 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1759 * 1760 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1761 * discovery data and G6 memory training data respectively 1762 */ 1763 if (adev->bios) 1764 reserve_size = 1765 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1766 1767 if (!adev->bios && 1768 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || 1769 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) || 1770 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0))) 1771 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1772 else if (!reserve_size) 1773 reserve_size = DISCOVERY_TMR_OFFSET; 1774 1775 if (mem_train_support) { 1776 /* reserve vram for mem train according to TMR location */ 1777 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1778 ret = amdgpu_bo_create_kernel_at(adev, 1779 ctx->c2p_train_data_offset, 1780 ctx->train_data_size, 1781 &ctx->c2p_bo, 1782 NULL); 1783 if (ret) { 1784 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1785 amdgpu_ttm_training_reserve_vram_fini(adev); 1786 return ret; 1787 } 1788 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1789 } 1790 1791 if (!adev->gmc.is_app_apu) { 1792 ret = amdgpu_bo_create_kernel_at( 1793 adev, adev->gmc.real_vram_size - reserve_size, 1794 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1795 if (ret) { 1796 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1797 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1798 NULL, NULL); 1799 return ret; 1800 } 1801 } else { 1802 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1803 } 1804 1805 return 0; 1806 } 1807 1808 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1809 { 1810 int i; 1811 1812 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1813 return 0; 1814 1815 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1816 sizeof(*adev->mman.ttm_pools), 1817 GFP_KERNEL); 1818 if (!adev->mman.ttm_pools) 1819 return -ENOMEM; 1820 1821 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1822 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1823 adev->gmc.mem_partitions[i].numa.node, 1824 false, false); 1825 } 1826 return 0; 1827 } 1828 1829 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1830 { 1831 int i; 1832 1833 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1834 return; 1835 1836 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1837 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1838 1839 kfree(adev->mman.ttm_pools); 1840 adev->mman.ttm_pools = NULL; 1841 } 1842 1843 /* 1844 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1845 * gtt/vram related fields. 1846 * 1847 * This initializes all of the memory space pools that the TTM layer 1848 * will need such as the GTT space (system memory mapped to the device), 1849 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1850 * can be mapped per VMID. 1851 */ 1852 int amdgpu_ttm_init(struct amdgpu_device *adev) 1853 { 1854 uint64_t gtt_size; 1855 int r; 1856 1857 mutex_init(&adev->mman.gtt_window_lock); 1858 1859 dma_set_max_seg_size(adev->dev, UINT_MAX); 1860 /* No others user of address space so set it to 0 */ 1861 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1862 adev_to_drm(adev)->anon_inode->i_mapping, 1863 adev_to_drm(adev)->vma_offset_manager, 1864 adev->need_swiotlb, 1865 dma_addressing_limited(adev->dev)); 1866 if (r) { 1867 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1868 return r; 1869 } 1870 1871 r = amdgpu_ttm_pools_init(adev); 1872 if (r) { 1873 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1874 return r; 1875 } 1876 adev->mman.initialized = true; 1877 1878 /* Initialize VRAM pool with all of VRAM divided into pages */ 1879 r = amdgpu_vram_mgr_init(adev); 1880 if (r) { 1881 DRM_ERROR("Failed initializing VRAM heap.\n"); 1882 return r; 1883 } 1884 1885 /* Change the size here instead of the init above so only lpfn is affected */ 1886 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1887 #ifdef CONFIG_64BIT 1888 #ifdef CONFIG_X86 1889 if (adev->gmc.xgmi.connected_to_cpu) 1890 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1891 adev->gmc.visible_vram_size); 1892 1893 else if (adev->gmc.is_app_apu) 1894 DRM_DEBUG_DRIVER( 1895 "No need to ioremap when real vram size is 0\n"); 1896 else 1897 #endif 1898 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1899 adev->gmc.visible_vram_size); 1900 #endif 1901 1902 /* 1903 *The reserved vram for firmware must be pinned to the specified 1904 *place on the VRAM, so reserve it early. 1905 */ 1906 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1907 if (r) 1908 return r; 1909 1910 /* 1911 *The reserved vram for driver must be pinned to the specified 1912 *place on the VRAM, so reserve it early. 1913 */ 1914 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1915 if (r) 1916 return r; 1917 1918 /* 1919 * only NAVI10 and onwards ASIC support for IP discovery. 1920 * If IP discovery enabled, a block of memory should be 1921 * reserved for IP discovey. 1922 */ 1923 if (adev->mman.discovery_bin) { 1924 r = amdgpu_ttm_reserve_tmr(adev); 1925 if (r) 1926 return r; 1927 } 1928 1929 /* allocate memory as required for VGA 1930 * This is used for VGA emulation and pre-OS scanout buffers to 1931 * avoid display artifacts while transitioning between pre-OS 1932 * and driver. 1933 */ 1934 if (!adev->gmc.is_app_apu) { 1935 r = amdgpu_bo_create_kernel_at(adev, 0, 1936 adev->mman.stolen_vga_size, 1937 &adev->mman.stolen_vga_memory, 1938 NULL); 1939 if (r) 1940 return r; 1941 1942 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1943 adev->mman.stolen_extended_size, 1944 &adev->mman.stolen_extended_memory, 1945 NULL); 1946 1947 if (r) 1948 return r; 1949 1950 r = amdgpu_bo_create_kernel_at(adev, 1951 adev->mman.stolen_reserved_offset, 1952 adev->mman.stolen_reserved_size, 1953 &adev->mman.stolen_reserved_memory, 1954 NULL); 1955 if (r) 1956 return r; 1957 } else { 1958 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1959 } 1960 1961 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1962 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1963 1964 /* Compute GTT size, either based on TTM limit 1965 * or whatever the user passed on module init. 1966 */ 1967 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1968 if (amdgpu_gtt_size != -1) { 1969 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20; 1970 1971 drm_warn(&adev->ddev, 1972 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n"); 1973 if (gtt_size != configured_size) 1974 drm_warn(&adev->ddev, 1975 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n", 1976 configured_size, gtt_size); 1977 1978 gtt_size = configured_size; 1979 } 1980 1981 /* Initialize GTT memory pool */ 1982 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1983 if (r) { 1984 DRM_ERROR("Failed initializing GTT heap.\n"); 1985 return r; 1986 } 1987 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1988 (unsigned int)(gtt_size / (1024 * 1024))); 1989 1990 if (adev->flags & AMD_IS_APU) { 1991 if (adev->gmc.real_vram_size < gtt_size) 1992 adev->apu_prefer_gtt = true; 1993 } 1994 1995 /* Initialize doorbell pool on PCI BAR */ 1996 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1997 if (r) { 1998 DRM_ERROR("Failed initializing doorbell heap.\n"); 1999 return r; 2000 } 2001 2002 /* Create a boorbell page for kernel usages */ 2003 r = amdgpu_doorbell_create_kernel_doorbells(adev); 2004 if (r) { 2005 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 2006 return r; 2007 } 2008 2009 /* Initialize preemptible memory pool */ 2010 r = amdgpu_preempt_mgr_init(adev); 2011 if (r) { 2012 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 2013 return r; 2014 } 2015 2016 /* Initialize various on-chip memory pools */ 2017 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 2018 if (r) { 2019 DRM_ERROR("Failed initializing GDS heap.\n"); 2020 return r; 2021 } 2022 2023 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 2024 if (r) { 2025 DRM_ERROR("Failed initializing gws heap.\n"); 2026 return r; 2027 } 2028 2029 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 2030 if (r) { 2031 DRM_ERROR("Failed initializing oa heap.\n"); 2032 return r; 2033 } 2034 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 2035 AMDGPU_GEM_DOMAIN_GTT, 2036 &adev->mman.sdma_access_bo, NULL, 2037 &adev->mman.sdma_access_ptr)) 2038 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2039 2040 return 0; 2041 } 2042 2043 /* 2044 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2045 */ 2046 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2047 { 2048 int idx; 2049 2050 if (!adev->mman.initialized) 2051 return; 2052 2053 amdgpu_ttm_pools_fini(adev); 2054 2055 amdgpu_ttm_training_reserve_vram_fini(adev); 2056 /* return the stolen vga memory back to VRAM */ 2057 if (!adev->gmc.is_app_apu) { 2058 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2059 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2060 /* return the FW reserved memory back to VRAM */ 2061 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2062 NULL); 2063 if (adev->mman.stolen_reserved_size) 2064 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2065 NULL, NULL); 2066 } 2067 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2068 &adev->mman.sdma_access_ptr); 2069 amdgpu_ttm_fw_reserve_vram_fini(adev); 2070 amdgpu_ttm_drv_reserve_vram_fini(adev); 2071 2072 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2073 2074 if (adev->mman.aper_base_kaddr) 2075 iounmap(adev->mman.aper_base_kaddr); 2076 adev->mman.aper_base_kaddr = NULL; 2077 2078 drm_dev_exit(idx); 2079 } 2080 2081 amdgpu_vram_mgr_fini(adev); 2082 amdgpu_gtt_mgr_fini(adev); 2083 amdgpu_preempt_mgr_fini(adev); 2084 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2085 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2086 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2087 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL); 2088 ttm_device_fini(&adev->mman.bdev); 2089 adev->mman.initialized = false; 2090 DRM_INFO("amdgpu: ttm finalized\n"); 2091 } 2092 2093 /** 2094 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2095 * 2096 * @adev: amdgpu_device pointer 2097 * @enable: true when we can use buffer functions. 2098 * 2099 * Enable/disable use of buffer functions during suspend/resume. This should 2100 * only be called at bootup or when userspace isn't running. 2101 */ 2102 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2103 { 2104 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2105 uint64_t size; 2106 int r; 2107 2108 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2109 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2110 return; 2111 2112 if (enable) { 2113 struct amdgpu_ring *ring; 2114 struct drm_gpu_scheduler *sched; 2115 2116 ring = adev->mman.buffer_funcs_ring; 2117 sched = &ring->sched; 2118 r = drm_sched_entity_init(&adev->mman.high_pr, 2119 DRM_SCHED_PRIORITY_KERNEL, &sched, 2120 1, NULL); 2121 if (r) { 2122 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2123 r); 2124 return; 2125 } 2126 2127 r = drm_sched_entity_init(&adev->mman.low_pr, 2128 DRM_SCHED_PRIORITY_NORMAL, &sched, 2129 1, NULL); 2130 if (r) { 2131 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2132 r); 2133 goto error_free_entity; 2134 } 2135 } else { 2136 drm_sched_entity_destroy(&adev->mman.high_pr); 2137 drm_sched_entity_destroy(&adev->mman.low_pr); 2138 dma_fence_put(man->move); 2139 man->move = NULL; 2140 } 2141 2142 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2143 if (enable) 2144 size = adev->gmc.real_vram_size; 2145 else 2146 size = adev->gmc.visible_vram_size; 2147 man->size = size; 2148 adev->mman.buffer_funcs_enabled = enable; 2149 2150 return; 2151 2152 error_free_entity: 2153 drm_sched_entity_destroy(&adev->mman.high_pr); 2154 } 2155 2156 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2157 bool direct_submit, 2158 unsigned int num_dw, 2159 struct dma_resv *resv, 2160 bool vm_needs_flush, 2161 struct amdgpu_job **job, 2162 bool delayed) 2163 { 2164 enum amdgpu_ib_pool_type pool = direct_submit ? 2165 AMDGPU_IB_POOL_DIRECT : 2166 AMDGPU_IB_POOL_DELAYED; 2167 int r; 2168 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2169 &adev->mman.high_pr; 2170 r = amdgpu_job_alloc_with_ib(adev, entity, 2171 AMDGPU_FENCE_OWNER_UNDEFINED, 2172 num_dw * 4, pool, job); 2173 if (r) 2174 return r; 2175 2176 if (vm_needs_flush) { 2177 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2178 adev->gmc.pdb0_bo : 2179 adev->gart.bo); 2180 (*job)->vm_needs_flush = true; 2181 } 2182 if (!resv) 2183 return 0; 2184 2185 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2186 DMA_RESV_USAGE_BOOKKEEP); 2187 } 2188 2189 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2190 uint64_t dst_offset, uint32_t byte_count, 2191 struct dma_resv *resv, 2192 struct dma_fence **fence, bool direct_submit, 2193 bool vm_needs_flush, uint32_t copy_flags) 2194 { 2195 struct amdgpu_device *adev = ring->adev; 2196 unsigned int num_loops, num_dw; 2197 struct amdgpu_job *job; 2198 uint32_t max_bytes; 2199 unsigned int i; 2200 int r; 2201 2202 if (!direct_submit && !ring->sched.ready) { 2203 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2204 return -EINVAL; 2205 } 2206 2207 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2208 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2209 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2210 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2211 resv, vm_needs_flush, &job, false); 2212 if (r) 2213 return r; 2214 2215 for (i = 0; i < num_loops; i++) { 2216 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2217 2218 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2219 dst_offset, cur_size_in_bytes, copy_flags); 2220 src_offset += cur_size_in_bytes; 2221 dst_offset += cur_size_in_bytes; 2222 byte_count -= cur_size_in_bytes; 2223 } 2224 2225 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2226 WARN_ON(job->ibs[0].length_dw > num_dw); 2227 if (direct_submit) 2228 r = amdgpu_job_submit_direct(job, ring, fence); 2229 else 2230 *fence = amdgpu_job_submit(job); 2231 if (r) 2232 goto error_free; 2233 2234 return r; 2235 2236 error_free: 2237 amdgpu_job_free(job); 2238 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2239 return r; 2240 } 2241 2242 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2243 uint64_t dst_addr, uint32_t byte_count, 2244 struct dma_resv *resv, 2245 struct dma_fence **fence, 2246 bool vm_needs_flush, bool delayed) 2247 { 2248 struct amdgpu_device *adev = ring->adev; 2249 unsigned int num_loops, num_dw; 2250 struct amdgpu_job *job; 2251 uint32_t max_bytes; 2252 unsigned int i; 2253 int r; 2254 2255 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2256 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2257 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2258 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2259 &job, delayed); 2260 if (r) 2261 return r; 2262 2263 for (i = 0; i < num_loops; i++) { 2264 uint32_t cur_size = min(byte_count, max_bytes); 2265 2266 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2267 cur_size); 2268 2269 dst_addr += cur_size; 2270 byte_count -= cur_size; 2271 } 2272 2273 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2274 WARN_ON(job->ibs[0].length_dw > num_dw); 2275 *fence = amdgpu_job_submit(job); 2276 return 0; 2277 } 2278 2279 /** 2280 * amdgpu_ttm_clear_buffer - clear memory buffers 2281 * @bo: amdgpu buffer object 2282 * @resv: reservation object 2283 * @fence: dma_fence associated with the operation 2284 * 2285 * Clear the memory buffer resource. 2286 * 2287 * Returns: 2288 * 0 for success or a negative error code on failure. 2289 */ 2290 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo, 2291 struct dma_resv *resv, 2292 struct dma_fence **fence) 2293 { 2294 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2295 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2296 struct amdgpu_res_cursor cursor; 2297 u64 addr; 2298 int r = 0; 2299 2300 if (!adev->mman.buffer_funcs_enabled) 2301 return -EINVAL; 2302 2303 if (!fence) 2304 return -EINVAL; 2305 2306 *fence = dma_fence_get_stub(); 2307 2308 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor); 2309 2310 mutex_lock(&adev->mman.gtt_window_lock); 2311 while (cursor.remaining) { 2312 struct dma_fence *next = NULL; 2313 u64 size; 2314 2315 if (amdgpu_res_cleared(&cursor)) { 2316 amdgpu_res_next(&cursor, cursor.size); 2317 continue; 2318 } 2319 2320 /* Never clear more than 256MiB at once to avoid timeouts */ 2321 size = min(cursor.size, 256ULL << 20); 2322 2323 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor, 2324 1, ring, false, &size, &addr); 2325 if (r) 2326 goto err; 2327 2328 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv, 2329 &next, true, true); 2330 if (r) 2331 goto err; 2332 2333 dma_fence_put(*fence); 2334 *fence = next; 2335 2336 amdgpu_res_next(&cursor, size); 2337 } 2338 err: 2339 mutex_unlock(&adev->mman.gtt_window_lock); 2340 2341 return r; 2342 } 2343 2344 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2345 uint32_t src_data, 2346 struct dma_resv *resv, 2347 struct dma_fence **f, 2348 bool delayed) 2349 { 2350 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2351 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2352 struct dma_fence *fence = NULL; 2353 struct amdgpu_res_cursor dst; 2354 int r; 2355 2356 if (!adev->mman.buffer_funcs_enabled) { 2357 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2358 return -EINVAL; 2359 } 2360 2361 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2362 2363 mutex_lock(&adev->mman.gtt_window_lock); 2364 while (dst.remaining) { 2365 struct dma_fence *next; 2366 uint64_t cur_size, to; 2367 2368 /* Never fill more than 256MiB at once to avoid timeouts */ 2369 cur_size = min(dst.size, 256ULL << 20); 2370 2371 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2372 1, ring, false, &cur_size, &to); 2373 if (r) 2374 goto error; 2375 2376 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2377 &next, true, delayed); 2378 if (r) 2379 goto error; 2380 2381 dma_fence_put(fence); 2382 fence = next; 2383 2384 amdgpu_res_next(&dst, cur_size); 2385 } 2386 error: 2387 mutex_unlock(&adev->mman.gtt_window_lock); 2388 if (f) 2389 *f = dma_fence_get(fence); 2390 dma_fence_put(fence); 2391 return r; 2392 } 2393 2394 /** 2395 * amdgpu_ttm_evict_resources - evict memory buffers 2396 * @adev: amdgpu device object 2397 * @mem_type: evicted BO's memory type 2398 * 2399 * Evicts all @mem_type buffers on the lru list of the memory type. 2400 * 2401 * Returns: 2402 * 0 for success or a negative error code on failure. 2403 */ 2404 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2405 { 2406 struct ttm_resource_manager *man; 2407 2408 switch (mem_type) { 2409 case TTM_PL_VRAM: 2410 case TTM_PL_TT: 2411 case AMDGPU_PL_GWS: 2412 case AMDGPU_PL_GDS: 2413 case AMDGPU_PL_OA: 2414 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2415 break; 2416 default: 2417 DRM_ERROR("Trying to evict invalid memory type\n"); 2418 return -EINVAL; 2419 } 2420 2421 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2422 } 2423 2424 #if defined(CONFIG_DEBUG_FS) 2425 2426 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2427 { 2428 struct amdgpu_device *adev = m->private; 2429 2430 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2431 } 2432 2433 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2434 2435 /* 2436 * amdgpu_ttm_vram_read - Linear read access to VRAM 2437 * 2438 * Accesses VRAM via MMIO for debugging purposes. 2439 */ 2440 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2441 size_t size, loff_t *pos) 2442 { 2443 struct amdgpu_device *adev = file_inode(f)->i_private; 2444 ssize_t result = 0; 2445 2446 if (size & 0x3 || *pos & 0x3) 2447 return -EINVAL; 2448 2449 if (*pos >= adev->gmc.mc_vram_size) 2450 return -ENXIO; 2451 2452 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2453 while (size) { 2454 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2455 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2456 2457 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2458 if (copy_to_user(buf, value, bytes)) 2459 return -EFAULT; 2460 2461 result += bytes; 2462 buf += bytes; 2463 *pos += bytes; 2464 size -= bytes; 2465 } 2466 2467 return result; 2468 } 2469 2470 /* 2471 * amdgpu_ttm_vram_write - Linear write access to VRAM 2472 * 2473 * Accesses VRAM via MMIO for debugging purposes. 2474 */ 2475 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2476 size_t size, loff_t *pos) 2477 { 2478 struct amdgpu_device *adev = file_inode(f)->i_private; 2479 ssize_t result = 0; 2480 int r; 2481 2482 if (size & 0x3 || *pos & 0x3) 2483 return -EINVAL; 2484 2485 if (*pos >= adev->gmc.mc_vram_size) 2486 return -ENXIO; 2487 2488 while (size) { 2489 uint32_t value; 2490 2491 if (*pos >= adev->gmc.mc_vram_size) 2492 return result; 2493 2494 r = get_user(value, (uint32_t *)buf); 2495 if (r) 2496 return r; 2497 2498 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2499 2500 result += 4; 2501 buf += 4; 2502 *pos += 4; 2503 size -= 4; 2504 } 2505 2506 return result; 2507 } 2508 2509 static const struct file_operations amdgpu_ttm_vram_fops = { 2510 .owner = THIS_MODULE, 2511 .read = amdgpu_ttm_vram_read, 2512 .write = amdgpu_ttm_vram_write, 2513 .llseek = default_llseek, 2514 }; 2515 2516 /* 2517 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2518 * 2519 * This function is used to read memory that has been mapped to the 2520 * GPU and the known addresses are not physical addresses but instead 2521 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2522 */ 2523 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2524 size_t size, loff_t *pos) 2525 { 2526 struct amdgpu_device *adev = file_inode(f)->i_private; 2527 struct iommu_domain *dom; 2528 ssize_t result = 0; 2529 int r; 2530 2531 /* retrieve the IOMMU domain if any for this device */ 2532 dom = iommu_get_domain_for_dev(adev->dev); 2533 2534 while (size) { 2535 phys_addr_t addr = *pos & PAGE_MASK; 2536 loff_t off = *pos & ~PAGE_MASK; 2537 size_t bytes = PAGE_SIZE - off; 2538 unsigned long pfn; 2539 struct page *p; 2540 void *ptr; 2541 2542 bytes = min(bytes, size); 2543 2544 /* Translate the bus address to a physical address. If 2545 * the domain is NULL it means there is no IOMMU active 2546 * and the address translation is the identity 2547 */ 2548 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2549 2550 pfn = addr >> PAGE_SHIFT; 2551 if (!pfn_valid(pfn)) 2552 return -EPERM; 2553 2554 p = pfn_to_page(pfn); 2555 if (p->mapping != adev->mman.bdev.dev_mapping) 2556 return -EPERM; 2557 2558 ptr = kmap_local_page(p); 2559 r = copy_to_user(buf, ptr + off, bytes); 2560 kunmap_local(ptr); 2561 if (r) 2562 return -EFAULT; 2563 2564 size -= bytes; 2565 *pos += bytes; 2566 result += bytes; 2567 } 2568 2569 return result; 2570 } 2571 2572 /* 2573 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2574 * 2575 * This function is used to write memory that has been mapped to the 2576 * GPU and the known addresses are not physical addresses but instead 2577 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2578 */ 2579 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2580 size_t size, loff_t *pos) 2581 { 2582 struct amdgpu_device *adev = file_inode(f)->i_private; 2583 struct iommu_domain *dom; 2584 ssize_t result = 0; 2585 int r; 2586 2587 dom = iommu_get_domain_for_dev(adev->dev); 2588 2589 while (size) { 2590 phys_addr_t addr = *pos & PAGE_MASK; 2591 loff_t off = *pos & ~PAGE_MASK; 2592 size_t bytes = PAGE_SIZE - off; 2593 unsigned long pfn; 2594 struct page *p; 2595 void *ptr; 2596 2597 bytes = min(bytes, size); 2598 2599 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2600 2601 pfn = addr >> PAGE_SHIFT; 2602 if (!pfn_valid(pfn)) 2603 return -EPERM; 2604 2605 p = pfn_to_page(pfn); 2606 if (p->mapping != adev->mman.bdev.dev_mapping) 2607 return -EPERM; 2608 2609 ptr = kmap_local_page(p); 2610 r = copy_from_user(ptr + off, buf, bytes); 2611 kunmap_local(ptr); 2612 if (r) 2613 return -EFAULT; 2614 2615 size -= bytes; 2616 *pos += bytes; 2617 result += bytes; 2618 } 2619 2620 return result; 2621 } 2622 2623 static const struct file_operations amdgpu_ttm_iomem_fops = { 2624 .owner = THIS_MODULE, 2625 .read = amdgpu_iomem_read, 2626 .write = amdgpu_iomem_write, 2627 .llseek = default_llseek 2628 }; 2629 2630 #endif 2631 2632 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2633 { 2634 #if defined(CONFIG_DEBUG_FS) 2635 struct drm_minor *minor = adev_to_drm(adev)->primary; 2636 struct dentry *root = minor->debugfs_root; 2637 2638 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2639 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2640 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2641 &amdgpu_ttm_iomem_fops); 2642 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2643 &amdgpu_ttm_page_pool_fops); 2644 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2645 TTM_PL_VRAM), 2646 root, "amdgpu_vram_mm"); 2647 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2648 TTM_PL_TT), 2649 root, "amdgpu_gtt_mm"); 2650 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2651 AMDGPU_PL_GDS), 2652 root, "amdgpu_gds_mm"); 2653 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2654 AMDGPU_PL_GWS), 2655 root, "amdgpu_gws_mm"); 2656 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2657 AMDGPU_PL_OA), 2658 root, "amdgpu_oa_mm"); 2659 2660 #endif 2661 } 2662