1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40
41 /**
42 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43 *
44 * @adev: amdgpu_device pointer
45 *
46 * Allocate video memory for pdb0 and map it for CPU access
47 * Returns 0 for success, error for failure.
48 */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51 int r;
52 struct amdgpu_bo_param bp;
53 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56
57 memset(&bp, 0, sizeof(bp));
58 bp.size = PAGE_ALIGN((npdes + 1) * 8);
59 bp.byte_align = PAGE_SIZE;
60 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63 bp.type = ttm_bo_type_kernel;
64 bp.resv = NULL;
65 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66
67 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68 if (r)
69 return r;
70
71 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72 if (unlikely(r != 0))
73 goto bo_reserve_failure;
74
75 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76 if (r)
77 goto bo_pin_failure;
78 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79 if (r)
80 goto bo_kmap_failure;
81
82 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83 return 0;
84
85 bo_kmap_failure:
86 amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90 amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91 return r;
92 }
93
94 /**
95 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96 *
97 * @bo: the BO to get the PDE for
98 * @level: the level in the PD hirarchy
99 * @addr: resulting addr
100 * @flags: resulting flags
101 *
102 * Get the address and flags to be used for a PDE (Page Directory Entry).
103 */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105 uint64_t *addr, uint64_t *flags)
106 {
107 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108
109 switch (bo->tbo.resource->mem_type) {
110 case TTM_PL_TT:
111 *addr = bo->tbo.ttm->dma_address[0];
112 break;
113 case TTM_PL_VRAM:
114 *addr = amdgpu_bo_gpu_offset(bo);
115 break;
116 default:
117 *addr = 0;
118 break;
119 }
120 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121 amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123
124 /*
125 * amdgpu_gmc_pd_addr - return the address of the root directory
126 */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130 uint64_t pd_addr;
131
132 /* TODO: move that into ASIC specific code */
133 if (adev->asic_type >= CHIP_VEGA10) {
134 uint64_t flags = AMDGPU_PTE_VALID;
135
136 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137 pd_addr |= flags;
138 } else {
139 pd_addr = amdgpu_bo_gpu_offset(bo);
140 }
141 return pd_addr;
142 }
143
144 /**
145 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146 *
147 * @adev: amdgpu_device pointer
148 * @cpu_pt_addr: cpu address of the page table
149 * @gpu_page_idx: entry in the page table to update
150 * @addr: dst addr to write into pte/pde
151 * @flags: access flags
152 *
153 * Update the page tables using CPU.
154 */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156 uint32_t gpu_page_idx, uint64_t addr,
157 uint64_t flags)
158 {
159 void __iomem *ptr = (void *)cpu_pt_addr;
160 uint64_t value;
161
162 /*
163 * The following is for PTE only. GART does not have PDEs.
164 */
165 value = addr & 0x0000FFFFFFFFF000ULL;
166 value |= flags;
167 writeq(value, ptr + (gpu_page_idx * 8));
168
169 return 0;
170 }
171
172 /**
173 * amdgpu_gmc_agp_addr - return the address in the AGP address space
174 *
175 * @bo: TTM BO which needs the address, must be in GTT domain
176 *
177 * Tries to figure out how to access the BO through the AGP aperture. Returns
178 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179 */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183
184 if (!bo->ttm)
185 return AMDGPU_BO_INVALID_OFFSET;
186
187 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188 return AMDGPU_BO_INVALID_OFFSET;
189
190 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191 return AMDGPU_BO_INVALID_OFFSET;
192
193 return adev->gmc.agp_start + bo->ttm->dma_address[0];
194 }
195
196 /**
197 * amdgpu_gmc_vram_location - try to find VRAM location
198 *
199 * @adev: amdgpu device structure holding all necessary information
200 * @mc: memory controller structure holding memory information
201 * @base: base address at which to put VRAM
202 *
203 * Function will try to place VRAM at base address provided
204 * as parameter.
205 */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207 u64 base)
208 {
209 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211
212 mc->vram_start = base;
213 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214 if (limit < mc->real_vram_size)
215 mc->real_vram_size = limit;
216
217 if (vis_limit && vis_limit < mc->visible_vram_size)
218 mc->visible_vram_size = vis_limit;
219
220 if (mc->real_vram_size < mc->visible_vram_size)
221 mc->visible_vram_size = mc->real_vram_size;
222
223 if (mc->xgmi.num_physical_nodes == 0) {
224 mc->fb_start = mc->vram_start;
225 mc->fb_end = mc->vram_end;
226 }
227 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228 mc->mc_vram_size >> 20, mc->vram_start,
229 mc->vram_end, mc->real_vram_size >> 20);
230 }
231
232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233 *
234 * @adev: amdgpu device structure holding all necessary information
235 * @mc: memory controller structure holding memory information
236 *
237 * This function is only used if use GART for FB translation. In such
238 * case, we use sysvm aperture (vmid0 page tables) for both vram
239 * and gart (aka system memory) access.
240 *
241 * GPUVM (and our organization of vmid0 page tables) require sysvm
242 * aperture to be placed at a location aligned with 8 times of native
243 * page size. For example, if vm_context0_cntl.page_table_block_size
244 * is 12, then native page size is 8G (2M*2^12), sysvm should start
245 * with a 64G aligned address. For simplicity, we just put sysvm at
246 * address 0. So vram start at address 0 and gart is right after vram.
247 */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249 {
250 u64 hive_vram_start = 0;
251 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254 mc->gart_start = hive_vram_end + 1;
255 mc->gart_end = mc->gart_start + mc->gart_size - 1;
256 mc->fb_start = hive_vram_start;
257 mc->fb_end = hive_vram_end;
258 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259 mc->mc_vram_size >> 20, mc->vram_start,
260 mc->vram_end, mc->real_vram_size >> 20);
261 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263 }
264
265 /**
266 * amdgpu_gmc_gart_location - try to find GART location
267 *
268 * @adev: amdgpu device structure holding all necessary information
269 * @mc: memory controller structure holding memory information
270 * @gart_placement: GART placement policy with respect to VRAM
271 *
272 * Function will try to place GART before or after VRAM.
273 * If GART size is bigger than space left then we ajust GART size.
274 * Thus function will never fails.
275 */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,enum amdgpu_gart_placement gart_placement)276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277 enum amdgpu_gart_placement gart_placement)
278 {
279 const uint64_t four_gb = 0x100000000ULL;
280 u64 size_af, size_bf;
281 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283
284 /* VCE doesn't like it when BOs cross a 4GB segment, so align
285 * the GART base on a 4GB boundary as well.
286 */
287 size_bf = mc->fb_start;
288 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289
290 if (mc->gart_size > max(size_bf, size_af)) {
291 dev_warn(adev->dev, "limiting GART\n");
292 mc->gart_size = max(size_bf, size_af);
293 }
294
295 switch (gart_placement) {
296 case AMDGPU_GART_PLACEMENT_HIGH:
297 mc->gart_start = max_mc_address - mc->gart_size + 1;
298 break;
299 case AMDGPU_GART_PLACEMENT_LOW:
300 mc->gart_start = 0;
301 break;
302 case AMDGPU_GART_PLACEMENT_BEST_FIT:
303 default:
304 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305 (size_af < mc->gart_size))
306 mc->gart_start = 0;
307 else
308 mc->gart_start = max_mc_address - mc->gart_size + 1;
309 break;
310 }
311
312 mc->gart_start &= ~(four_gb - 1);
313 mc->gart_end = mc->gart_start + mc->gart_size - 1;
314 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316 }
317
318 /**
319 * amdgpu_gmc_agp_location - try to find AGP location
320 * @adev: amdgpu device structure holding all necessary information
321 * @mc: memory controller structure holding memory information
322 *
323 * Function will place try to find a place for the AGP BAR in the MC address
324 * space.
325 *
326 * AGP BAR will be assigned the largest available hole in the address space.
327 * Should be called after VRAM and GART locations are setup.
328 */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330 {
331 const uint64_t sixteen_gb = 1ULL << 34;
332 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333 u64 size_af, size_bf;
334
335 if (mc->fb_start > mc->gart_start) {
336 size_bf = (mc->fb_start & sixteen_gb_mask) -
337 ALIGN(mc->gart_end + 1, sixteen_gb);
338 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339 } else {
340 size_bf = mc->fb_start & sixteen_gb_mask;
341 size_af = (mc->gart_start & sixteen_gb_mask) -
342 ALIGN(mc->fb_end + 1, sixteen_gb);
343 }
344
345 if (size_bf > size_af) {
346 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347 mc->agp_size = size_bf;
348 } else {
349 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350 mc->agp_size = size_af;
351 }
352
353 mc->agp_end = mc->agp_start + mc->agp_size - 1;
354 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355 mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356 }
357
358 /**
359 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360 * @adev: amdgpu device structure holding all necessary information
361 * @mc: memory controller structure holding memory information
362 *
363 * To disable the AGP aperture, you need to set the start to a larger
364 * value than the end. This function sets the default value which
365 * can then be overridden using amdgpu_gmc_agp_location() if you want
366 * to enable the AGP aperture on a specific chip.
367 *
368 */
amdgpu_gmc_set_agp_default(struct amdgpu_device * adev,struct amdgpu_gmc * mc)369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370 struct amdgpu_gmc *mc)
371 {
372 mc->agp_start = 0xffffffffffff;
373 mc->agp_end = 0;
374 mc->agp_size = 0;
375 }
376
377 /**
378 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379 *
380 * @addr: 48 bit physical address, page aligned (36 significant bits)
381 * @pasid: 16 bit process address space identifier
382 */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384 {
385 return addr << 4 | pasid;
386 }
387
388 /**
389 * amdgpu_gmc_filter_faults - filter VM faults
390 *
391 * @adev: amdgpu device structure
392 * @ih: interrupt ring that the fault received from
393 * @addr: address of the VM fault
394 * @pasid: PASID of the process causing the fault
395 * @timestamp: timestamp of the fault
396 *
397 * Returns:
398 * True if the fault was filtered and should not be processed further.
399 * False if the fault is a new one and needs to be handled.
400 */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402 struct amdgpu_ih_ring *ih, uint64_t addr,
403 uint16_t pasid, uint64_t timestamp)
404 {
405 struct amdgpu_gmc *gmc = &adev->gmc;
406 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407 struct amdgpu_gmc_fault *fault;
408 uint32_t hash;
409
410 /* Stale retry fault if timestamp goes backward */
411 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412 return true;
413
414 /* If we don't have space left in the ring buffer return immediately */
415 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416 AMDGPU_GMC_FAULT_TIMEOUT;
417 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418 return true;
419
420 /* Try to find the fault in the hash */
421 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423 while (fault->timestamp >= stamp) {
424 uint64_t tmp;
425
426 if (atomic64_read(&fault->key) == key) {
427 /*
428 * if we get a fault which is already present in
429 * the fault_ring and the timestamp of
430 * the fault is after the expired timestamp,
431 * then this is a new fault that needs to be added
432 * into the fault ring.
433 */
434 if (fault->timestamp_expiry != 0 &&
435 amdgpu_ih_ts_after(fault->timestamp_expiry,
436 timestamp))
437 break;
438 else
439 return true;
440 }
441
442 tmp = fault->timestamp;
443 fault = &gmc->fault_ring[fault->next];
444
445 /* Check if the entry was reused */
446 if (fault->timestamp >= tmp)
447 break;
448 }
449
450 /* Add the fault to the ring */
451 fault = &gmc->fault_ring[gmc->last_fault];
452 atomic64_set(&fault->key, key);
453 fault->timestamp = timestamp;
454
455 /* And update the hash */
456 fault->next = gmc->fault_hash[hash].idx;
457 gmc->fault_hash[hash].idx = gmc->last_fault++;
458 return false;
459 }
460
461 /**
462 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463 *
464 * @adev: amdgpu device structure
465 * @addr: address of the VM fault
466 * @pasid: PASID of the process causing the fault
467 *
468 * Remove the address from fault filter, then future vm fault on this address
469 * will pass to retry fault handler to recover.
470 */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472 uint16_t pasid)
473 {
474 struct amdgpu_gmc *gmc = &adev->gmc;
475 uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476 struct amdgpu_ih_ring *ih;
477 struct amdgpu_gmc_fault *fault;
478 uint32_t last_wptr;
479 uint64_t last_ts;
480 uint32_t hash;
481 uint64_t tmp;
482
483 if (adev->irq.retry_cam_enabled)
484 return;
485
486 ih = &adev->irq.ih1;
487 /* Get the WPTR of the last entry in IH ring */
488 last_wptr = amdgpu_ih_get_wptr(adev, ih);
489 /* Order wptr with ring data. */
490 rmb();
491 /* Get the timetamp of the last entry in IH ring */
492 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493
494 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496 do {
497 if (atomic64_read(&fault->key) == key) {
498 /*
499 * Update the timestamp when this fault
500 * expired.
501 */
502 fault->timestamp_expiry = last_ts;
503 break;
504 }
505
506 tmp = fault->timestamp;
507 fault = &gmc->fault_ring[fault->next];
508 } while (fault->timestamp < tmp);
509 }
510
amdgpu_gmc_ras_sw_init(struct amdgpu_device * adev)511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512 {
513 int r;
514
515 /* umc ras block */
516 r = amdgpu_umc_ras_sw_init(adev);
517 if (r)
518 return r;
519
520 /* mmhub ras block */
521 r = amdgpu_mmhub_ras_sw_init(adev);
522 if (r)
523 return r;
524
525 /* hdp ras block */
526 r = amdgpu_hdp_ras_sw_init(adev);
527 if (r)
528 return r;
529
530 /* mca.x ras block */
531 r = amdgpu_mca_mp0_ras_sw_init(adev);
532 if (r)
533 return r;
534
535 r = amdgpu_mca_mp1_ras_sw_init(adev);
536 if (r)
537 return r;
538
539 r = amdgpu_mca_mpio_ras_sw_init(adev);
540 if (r)
541 return r;
542
543 /* xgmi ras block */
544 r = amdgpu_xgmi_ras_sw_init(adev);
545 if (r)
546 return r;
547
548 return 0;
549 }
550
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552 {
553 return 0;
554 }
555
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557 {
558
559 }
560
561 /*
562 * The latest engine allocation on gfx9/10 is:
563 * Engine 2, 3: firmware
564 * Engine 0, 1, 4~16: amdgpu ring,
565 * subject to change when ring number changes
566 * Engine 17: Gart flushes
567 */
568 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3
569
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571 {
572 struct amdgpu_ring *ring;
573 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574 unsigned i;
575 unsigned vmhub, inv_eng;
576 struct amdgpu_ring *shared_ring;
577
578 /* init the vm inv eng for all vmhubs */
579 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
580 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
581 /* reserve engine 5 for firmware */
582 if (adev->enable_mes)
583 vm_inv_engs[i] &= ~(1 << 5);
584 /* reserve mmhub engine 3 for firmware */
585 if (adev->enable_umsch_mm)
586 vm_inv_engs[i] &= ~(1 << 3);
587 }
588
589 for (i = 0; i < adev->num_rings; ++i) {
590 ring = adev->rings[i];
591 vmhub = ring->vm_hub;
592
593 if (ring == &adev->mes.ring[0] ||
594 ring == &adev->mes.ring[1] ||
595 ring == &adev->umsch_mm.ring ||
596 ring == &adev->cper.ring_buf)
597 continue;
598
599 /* Skip if the ring is a shared ring */
600 if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
601 continue;
602
603 inv_eng = ffs(vm_inv_engs[vmhub]);
604 if (!inv_eng) {
605 dev_err(adev->dev, "no VM inv eng for ring %s\n",
606 ring->name);
607 return -EINVAL;
608 }
609
610 ring->vm_inv_eng = inv_eng - 1;
611 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
612
613 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
614 ring->name, ring->vm_inv_eng, ring->vm_hub);
615 /* SDMA has a special packet which allows it to use the same
616 * invalidation engine for all the rings in one instance.
617 * Therefore, we do not allocate a separate VM invalidation engine
618 * for SDMA page rings. Instead, they share the VM invalidation
619 * engine with the SDMA gfx ring. This change ensures efficient
620 * resource management and avoids the issue of insufficient VM
621 * invalidation engines.
622 */
623 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
624 if (shared_ring) {
625 shared_ring->vm_inv_eng = ring->vm_inv_eng;
626 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
627 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
628 continue;
629 }
630 }
631
632 return 0;
633 }
634
amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device * adev,uint32_t vmid,uint32_t vmhub,uint32_t flush_type)635 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
636 uint32_t vmhub, uint32_t flush_type)
637 {
638 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
639 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
640 struct dma_fence *fence;
641 struct amdgpu_job *job;
642 int r;
643
644 if (!hub->sdma_invalidation_workaround || vmid ||
645 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
646 !ring->sched.ready) {
647 /*
648 * A GPU reset should flush all TLBs anyway, so no need to do
649 * this while one is ongoing.
650 */
651 if (!down_read_trylock(&adev->reset_domain->sem))
652 return;
653
654 if (adev->gmc.flush_tlb_needs_extra_type_2)
655 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
656 vmhub, 2);
657
658 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
659 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
660 vmhub, 0);
661
662 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
663 flush_type);
664 up_read(&adev->reset_domain->sem);
665 return;
666 }
667
668 /* The SDMA on Navi 1x has a bug which can theoretically result in memory
669 * corruption if an invalidation happens at the same time as an VA
670 * translation. Avoid this by doing the invalidation from the SDMA
671 * itself at least for GART.
672 */
673 mutex_lock(&adev->mman.gtt_window_lock);
674 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
675 AMDGPU_FENCE_OWNER_UNDEFINED,
676 16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
677 &job);
678 if (r)
679 goto error_alloc;
680
681 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
682 job->vm_needs_flush = true;
683 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
684 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
685 fence = amdgpu_job_submit(job);
686 mutex_unlock(&adev->mman.gtt_window_lock);
687
688 dma_fence_wait(fence, false);
689 dma_fence_put(fence);
690
691 return;
692
693 error_alloc:
694 mutex_unlock(&adev->mman.gtt_window_lock);
695 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
696 }
697
amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device * adev,uint16_t pasid,uint32_t flush_type,bool all_hub,uint32_t inst)698 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
699 uint32_t flush_type, bool all_hub,
700 uint32_t inst)
701 {
702 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
703 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
704 unsigned int ndw;
705 int r, cnt = 0;
706 uint32_t seq;
707
708 /*
709 * A GPU reset should flush all TLBs anyway, so no need to do
710 * this while one is ongoing.
711 */
712 if (!down_read_trylock(&adev->reset_domain->sem))
713 return 0;
714
715 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
716 if (adev->gmc.flush_tlb_needs_extra_type_2)
717 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
718 2, all_hub,
719 inst);
720
721 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
722 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
723 0, all_hub,
724 inst);
725
726 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
727 flush_type, all_hub,
728 inst);
729 r = 0;
730 } else {
731 /* 2 dwords flush + 8 dwords fence */
732 ndw = kiq->pmf->invalidate_tlbs_size + 8;
733
734 if (adev->gmc.flush_tlb_needs_extra_type_2)
735 ndw += kiq->pmf->invalidate_tlbs_size;
736
737 if (adev->gmc.flush_tlb_needs_extra_type_0)
738 ndw += kiq->pmf->invalidate_tlbs_size;
739
740 spin_lock(&adev->gfx.kiq[inst].ring_lock);
741 r = amdgpu_ring_alloc(ring, ndw);
742 if (r) {
743 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
744 goto error_unlock_reset;
745 }
746 if (adev->gmc.flush_tlb_needs_extra_type_2)
747 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
748
749 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
750 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
751
752 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
753 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
754 if (r) {
755 amdgpu_ring_undo(ring);
756 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
757 goto error_unlock_reset;
758 }
759
760 amdgpu_ring_commit(ring);
761 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
762
763 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
764
765 might_sleep();
766 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
767 !amdgpu_reset_pending(adev->reset_domain)) {
768 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
769 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
770 }
771
772 if (cnt > MAX_KIQ_REG_TRY) {
773 dev_err(adev->dev, "timeout waiting for kiq fence\n");
774 r = -ETIME;
775 } else
776 r = 0;
777 }
778
779 error_unlock_reset:
780 up_read(&adev->reset_domain->sem);
781 return r;
782 }
783
amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device * adev,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask,uint32_t xcc_inst)784 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
785 uint32_t reg0, uint32_t reg1,
786 uint32_t ref, uint32_t mask,
787 uint32_t xcc_inst)
788 {
789 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
790 struct amdgpu_ring *ring = &kiq->ring;
791 signed long r, cnt = 0;
792 unsigned long flags;
793 uint32_t seq;
794
795 if (adev->mes.ring[0].sched.ready) {
796 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
797 ref, mask);
798 return;
799 }
800
801 spin_lock_irqsave(&kiq->ring_lock, flags);
802 amdgpu_ring_alloc(ring, 32);
803 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
804 ref, mask);
805 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
806 if (r)
807 goto failed_undo;
808
809 amdgpu_ring_commit(ring);
810 spin_unlock_irqrestore(&kiq->ring_lock, flags);
811
812 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
813
814 /* don't wait anymore for IRQ context */
815 if (r < 1 && in_interrupt())
816 goto failed_kiq;
817
818 might_sleep();
819 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
820 !amdgpu_reset_pending(adev->reset_domain)) {
821
822 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
823 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
824 }
825
826 if (cnt > MAX_KIQ_REG_TRY)
827 goto failed_kiq;
828
829 return;
830
831 failed_undo:
832 amdgpu_ring_undo(ring);
833 spin_unlock_irqrestore(&kiq->ring_lock, flags);
834 failed_kiq:
835 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
836 }
837
838 /**
839 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
840 * @adev: amdgpu_device pointer
841 *
842 * Check and set if an the device @adev supports Trusted Memory
843 * Zones (TMZ).
844 */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)845 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
846 {
847 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
848 /* RAVEN */
849 case IP_VERSION(9, 2, 2):
850 case IP_VERSION(9, 1, 0):
851 /* RENOIR looks like RAVEN */
852 case IP_VERSION(9, 3, 0):
853 /* GC 10.3.7 */
854 case IP_VERSION(10, 3, 7):
855 /* GC 11.0.1 */
856 case IP_VERSION(11, 0, 1):
857 if (amdgpu_tmz == 0) {
858 adev->gmc.tmz_enabled = false;
859 dev_info(adev->dev,
860 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
861 } else {
862 adev->gmc.tmz_enabled = true;
863 dev_info(adev->dev,
864 "Trusted Memory Zone (TMZ) feature enabled\n");
865 }
866 break;
867 case IP_VERSION(10, 1, 10):
868 case IP_VERSION(10, 1, 1):
869 case IP_VERSION(10, 1, 2):
870 case IP_VERSION(10, 1, 3):
871 case IP_VERSION(10, 3, 0):
872 case IP_VERSION(10, 3, 2):
873 case IP_VERSION(10, 3, 4):
874 case IP_VERSION(10, 3, 5):
875 case IP_VERSION(10, 3, 6):
876 /* VANGOGH */
877 case IP_VERSION(10, 3, 1):
878 /* YELLOW_CARP*/
879 case IP_VERSION(10, 3, 3):
880 case IP_VERSION(11, 0, 4):
881 case IP_VERSION(11, 5, 0):
882 case IP_VERSION(11, 5, 1):
883 case IP_VERSION(11, 5, 2):
884 case IP_VERSION(11, 5, 3):
885 /* Don't enable it by default yet.
886 */
887 if (amdgpu_tmz < 1) {
888 adev->gmc.tmz_enabled = false;
889 dev_info(adev->dev,
890 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
891 } else {
892 adev->gmc.tmz_enabled = true;
893 dev_info(adev->dev,
894 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
895 }
896 break;
897 default:
898 adev->gmc.tmz_enabled = false;
899 dev_info(adev->dev,
900 "Trusted Memory Zone (TMZ) feature not supported\n");
901 break;
902 }
903 }
904
905 /**
906 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
907 * @adev: amdgpu_device pointer
908 *
909 * Set a per asic default for the no-retry parameter.
910 *
911 */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)912 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
913 {
914 struct amdgpu_gmc *gmc = &adev->gmc;
915 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
916 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
917 gc_ver == IP_VERSION(9, 4, 0) ||
918 gc_ver == IP_VERSION(9, 4, 1) ||
919 gc_ver == IP_VERSION(9, 4, 2) ||
920 gc_ver == IP_VERSION(9, 4, 3) ||
921 gc_ver == IP_VERSION(9, 4, 4) ||
922 gc_ver == IP_VERSION(9, 5, 0) ||
923 gc_ver >= IP_VERSION(10, 3, 0));
924
925 if (!amdgpu_sriov_xnack_support(adev))
926 gmc->noretry = 1;
927 else
928 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
929 }
930
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)931 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
932 bool enable)
933 {
934 struct amdgpu_vmhub *hub;
935 u32 tmp, reg, i;
936
937 hub = &adev->vmhub[hub_type];
938 for (i = 0; i < 16; i++) {
939 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
940
941 tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
942 RREG32_SOC15_IP(GC, reg) :
943 RREG32_SOC15_IP(MMHUB, reg);
944
945 if (enable)
946 tmp |= hub->vm_cntx_cntl_vm_fault;
947 else
948 tmp &= ~hub->vm_cntx_cntl_vm_fault;
949
950 (hub_type == AMDGPU_GFXHUB(0)) ?
951 WREG32_SOC15_IP(GC, reg, tmp) :
952 WREG32_SOC15_IP(MMHUB, reg, tmp);
953 }
954 }
955
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)956 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
957 {
958 unsigned size;
959
960 /*
961 * Some ASICs need to reserve a region of video memory to avoid access
962 * from driver
963 */
964 adev->mman.stolen_reserved_offset = 0;
965 adev->mman.stolen_reserved_size = 0;
966
967 /*
968 * TODO:
969 * Currently there is a bug where some memory client outside
970 * of the driver writes to first 8M of VRAM on S3 resume,
971 * this overrides GART which by default gets placed in first 8M and
972 * causes VM_FAULTS once GTT is accessed.
973 * Keep the stolen memory reservation until the while this is not solved.
974 */
975 switch (adev->asic_type) {
976 case CHIP_VEGA10:
977 adev->mman.keep_stolen_vga_memory = true;
978 /*
979 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
980 */
981 #ifdef CONFIG_X86
982 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
983 adev->mman.stolen_reserved_offset = 0x500000;
984 adev->mman.stolen_reserved_size = 0x200000;
985 }
986 #endif
987 break;
988 case CHIP_RAVEN:
989 case CHIP_RENOIR:
990 adev->mman.keep_stolen_vga_memory = true;
991 break;
992 default:
993 adev->mman.keep_stolen_vga_memory = false;
994 break;
995 }
996
997 if (amdgpu_sriov_vf(adev) ||
998 !amdgpu_device_has_display_hardware(adev)) {
999 size = 0;
1000 } else {
1001 size = amdgpu_gmc_get_vbios_fb_size(adev);
1002
1003 if (adev->mman.keep_stolen_vga_memory)
1004 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1005 }
1006
1007 /* set to 0 if the pre-OS buffer uses up most of vram */
1008 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1009 size = 0;
1010
1011 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1012 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1013 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1014 } else {
1015 adev->mman.stolen_vga_size = size;
1016 adev->mman.stolen_extended_size = 0;
1017 }
1018 }
1019
1020 /**
1021 * amdgpu_gmc_init_pdb0 - initialize PDB0
1022 *
1023 * @adev: amdgpu_device pointer
1024 *
1025 * This function is only used when GART page table is used
1026 * for FB address translatioin. In such a case, we construct
1027 * a 2-level system VM page table: PDB0->PTB, to cover both
1028 * VRAM of the hive and system memory.
1029 *
1030 * PDB0 is static, initialized once on driver initialization.
1031 * The first n entries of PDB0 are used as PTE by setting
1032 * P bit to 1, pointing to VRAM. The n+1'th entry points
1033 * to a big PTB covering system memory.
1034 *
1035 */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)1036 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1037 {
1038 int i;
1039 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1040 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1041 */
1042 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1043 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1044 u64 vram_addr = adev->vm_manager.vram_base_offset -
1045 adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1046 u64 vram_end = vram_addr + vram_size;
1047 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1048 int idx;
1049
1050 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1051 return;
1052
1053 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1054 flags |= AMDGPU_PTE_WRITEABLE;
1055 flags |= AMDGPU_PTE_SNOOPED;
1056 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1057 flags |= AMDGPU_PDE_PTE_FLAG(adev);
1058
1059 /* The first n PDE0 entries are used as PTE,
1060 * pointing to vram
1061 */
1062 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1063 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1064
1065 /* The n+1'th PDE0 entry points to a huge
1066 * PTB who has more than 512 entries each
1067 * pointing to a 4K system page
1068 */
1069 flags = AMDGPU_PTE_VALID;
1070 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1071 /* Requires gart_ptb_gpu_pa to be 4K aligned */
1072 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1073 drm_dev_exit(idx);
1074 }
1075
1076 /**
1077 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1078 * address
1079 *
1080 * @adev: amdgpu_device pointer
1081 * @mc_addr: MC address of buffer
1082 */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)1083 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1084 {
1085 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1086 }
1087
1088 /**
1089 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1090 * GPU's view
1091 *
1092 * @adev: amdgpu_device pointer
1093 * @bo: amdgpu buffer object
1094 */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)1095 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1096 {
1097 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1098 }
1099
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)1100 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1101 {
1102 struct amdgpu_bo *vram_bo = NULL;
1103 uint64_t vram_gpu = 0;
1104 void *vram_ptr = NULL;
1105
1106 int ret, size = 0x100000;
1107 uint8_t cptr[10];
1108
1109 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1110 AMDGPU_GEM_DOMAIN_VRAM,
1111 &vram_bo,
1112 &vram_gpu,
1113 &vram_ptr);
1114 if (ret)
1115 return ret;
1116
1117 memset(vram_ptr, 0x86, size);
1118 memset(cptr, 0x86, 10);
1119
1120 /**
1121 * Check the start, the mid, and the end of the memory if the content of
1122 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1123 * workable.
1124 *
1125 * Note: If check the each byte of whole 1M bo, it will cost too many
1126 * seconds, so here, we just pick up three parts for emulation.
1127 */
1128 ret = memcmp(vram_ptr, cptr, 10);
1129 if (ret) {
1130 ret = -EIO;
1131 goto release_buffer;
1132 }
1133
1134 ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1135 if (ret) {
1136 ret = -EIO;
1137 goto release_buffer;
1138 }
1139
1140 ret = memcmp(vram_ptr + size - 10, cptr, 10);
1141 if (ret) {
1142 ret = -EIO;
1143 goto release_buffer;
1144 }
1145
1146 release_buffer:
1147 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1148 &vram_ptr);
1149
1150 return ret;
1151 }
1152
1153 static const char *nps_desc[] = {
1154 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1155 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1156 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1157 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1158 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1159 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1160 };
1161
available_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1162 static ssize_t available_memory_partition_show(struct device *dev,
1163 struct device_attribute *addr,
1164 char *buf)
1165 {
1166 struct drm_device *ddev = dev_get_drvdata(dev);
1167 struct amdgpu_device *adev = drm_to_adev(ddev);
1168 int size = 0, mode;
1169 char *sep = "";
1170
1171 for_each_inst(mode, adev->gmc.supported_nps_modes) {
1172 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1173 sep = ", ";
1174 }
1175 size += sysfs_emit_at(buf, size, "\n");
1176
1177 return size;
1178 }
1179
current_memory_partition_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1180 static ssize_t current_memory_partition_store(struct device *dev,
1181 struct device_attribute *attr,
1182 const char *buf, size_t count)
1183 {
1184 struct drm_device *ddev = dev_get_drvdata(dev);
1185 struct amdgpu_device *adev = drm_to_adev(ddev);
1186 enum amdgpu_memory_partition mode;
1187 struct amdgpu_hive_info *hive;
1188 int i;
1189
1190 mode = UNKNOWN_MEMORY_PARTITION_MODE;
1191 for_each_inst(i, adev->gmc.supported_nps_modes) {
1192 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1193 mode = i;
1194 break;
1195 }
1196 }
1197
1198 if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1199 return -EINVAL;
1200
1201 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1202 dev_info(
1203 adev->dev,
1204 "requested NPS mode is same as current NPS mode, skipping\n");
1205 return count;
1206 }
1207
1208 /* If device is part of hive, all devices in the hive should request the
1209 * same mode. Hence store the requested mode in hive.
1210 */
1211 hive = amdgpu_get_xgmi_hive(adev);
1212 if (hive) {
1213 atomic_set(&hive->requested_nps_mode, mode);
1214 amdgpu_put_xgmi_hive(hive);
1215 } else {
1216 adev->gmc.requested_nps_mode = mode;
1217 }
1218
1219 dev_info(
1220 adev->dev,
1221 "NPS mode change requested, please remove and reload the driver\n");
1222
1223 return count;
1224 }
1225
current_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1226 static ssize_t current_memory_partition_show(
1227 struct device *dev, struct device_attribute *addr, char *buf)
1228 {
1229 struct drm_device *ddev = dev_get_drvdata(dev);
1230 struct amdgpu_device *adev = drm_to_adev(ddev);
1231 enum amdgpu_memory_partition mode;
1232
1233 /* Only minimal precaution taken to reject requests while in reset */
1234 if (amdgpu_in_reset(adev))
1235 return -EPERM;
1236
1237 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1238 if ((mode >= ARRAY_SIZE(nps_desc)) ||
1239 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1240 return sysfs_emit(buf, "UNKNOWN\n");
1241
1242 return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1243 }
1244
1245 static DEVICE_ATTR_RW(current_memory_partition);
1246 static DEVICE_ATTR_RO(available_memory_partition);
1247
amdgpu_gmc_sysfs_init(struct amdgpu_device * adev)1248 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1249 {
1250 bool nps_switch_support;
1251 int r = 0;
1252
1253 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1254 return 0;
1255
1256 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1257 AMDGPU_ALL_NPS_MASK) > 1);
1258 if (!nps_switch_support)
1259 dev_attr_current_memory_partition.attr.mode &=
1260 ~(S_IWUSR | S_IWGRP | S_IWOTH);
1261 else
1262 r = device_create_file(adev->dev,
1263 &dev_attr_available_memory_partition);
1264
1265 if (r)
1266 return r;
1267
1268 return device_create_file(adev->dev,
1269 &dev_attr_current_memory_partition);
1270 }
1271
amdgpu_gmc_sysfs_fini(struct amdgpu_device * adev)1272 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1273 {
1274 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1275 return;
1276
1277 device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1278 device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1279 }
1280
amdgpu_gmc_get_nps_memranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges,uint8_t * exp_ranges)1281 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1282 struct amdgpu_mem_partition_info *mem_ranges,
1283 uint8_t *exp_ranges)
1284 {
1285 struct amdgpu_gmc_memrange *ranges;
1286 int range_cnt, ret, i, j;
1287 uint32_t nps_type;
1288 bool refresh;
1289
1290 if (!mem_ranges || !exp_ranges)
1291 return -EINVAL;
1292
1293 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1294 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1295 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1296 &range_cnt, refresh);
1297
1298 if (ret)
1299 return ret;
1300
1301 /* TODO: For now, expect ranges and partition count to be the same.
1302 * Adjust if there are holes expected in any NPS domain.
1303 */
1304 if (*exp_ranges && (range_cnt != *exp_ranges)) {
1305 dev_warn(
1306 adev->dev,
1307 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1308 *exp_ranges, nps_type, range_cnt);
1309 ret = -EINVAL;
1310 goto err;
1311 }
1312
1313 for (i = 0; i < range_cnt; ++i) {
1314 if (ranges[i].base_address >= ranges[i].limit_address) {
1315 dev_warn(
1316 adev->dev,
1317 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1318 nps_type, i, ranges[i].base_address,
1319 ranges[i].limit_address);
1320 ret = -EINVAL;
1321 goto err;
1322 }
1323
1324 /* Check for overlaps, not expecting any now */
1325 for (j = i - 1; j >= 0; j--) {
1326 if (max(ranges[j].base_address,
1327 ranges[i].base_address) <=
1328 min(ranges[j].limit_address,
1329 ranges[i].limit_address)) {
1330 dev_warn(
1331 adev->dev,
1332 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1333 ranges[j].base_address,
1334 ranges[j].limit_address,
1335 ranges[i].base_address,
1336 ranges[i].limit_address);
1337 ret = -EINVAL;
1338 goto err;
1339 }
1340 }
1341
1342 mem_ranges[i].range.fpfn =
1343 (ranges[i].base_address -
1344 adev->vm_manager.vram_base_offset) >>
1345 AMDGPU_GPU_PAGE_SHIFT;
1346 mem_ranges[i].range.lpfn =
1347 (ranges[i].limit_address -
1348 adev->vm_manager.vram_base_offset) >>
1349 AMDGPU_GPU_PAGE_SHIFT;
1350 mem_ranges[i].size =
1351 ranges[i].limit_address - ranges[i].base_address + 1;
1352 }
1353
1354 if (!*exp_ranges)
1355 *exp_ranges = range_cnt;
1356 err:
1357 kfree(ranges);
1358
1359 return ret;
1360 }
1361
amdgpu_gmc_request_memory_partition(struct amdgpu_device * adev,int nps_mode)1362 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1363 int nps_mode)
1364 {
1365 /* Not supported on VF devices and APUs */
1366 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1367 return -EOPNOTSUPP;
1368
1369 if (!adev->psp.funcs) {
1370 dev_err(adev->dev,
1371 "PSP interface not available for nps mode change request");
1372 return -EINVAL;
1373 }
1374
1375 return psp_memory_partition(&adev->psp, nps_mode);
1376 }
1377
amdgpu_gmc_need_nps_switch_req(struct amdgpu_device * adev,int req_nps_mode,int cur_nps_mode)1378 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1379 int req_nps_mode,
1380 int cur_nps_mode)
1381 {
1382 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1383 BIT(req_nps_mode)) &&
1384 req_nps_mode != cur_nps_mode);
1385 }
1386
amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device * adev)1387 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1388 {
1389 int req_nps_mode, cur_nps_mode, r;
1390 struct amdgpu_hive_info *hive;
1391
1392 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1393 !adev->gmc.gmc_funcs->request_mem_partition_mode)
1394 return;
1395
1396 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1397 hive = amdgpu_get_xgmi_hive(adev);
1398 if (hive) {
1399 req_nps_mode = atomic_read(&hive->requested_nps_mode);
1400 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1401 cur_nps_mode)) {
1402 amdgpu_put_xgmi_hive(hive);
1403 return;
1404 }
1405 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1406 amdgpu_put_xgmi_hive(hive);
1407 goto out;
1408 }
1409
1410 req_nps_mode = adev->gmc.requested_nps_mode;
1411 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1412 return;
1413
1414 /* even if this fails, we should let driver unload w/o blocking */
1415 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1416 out:
1417 if (r)
1418 dev_err(adev->dev, "NPS mode change request failed\n");
1419 else
1420 dev_info(
1421 adev->dev,
1422 "NPS mode change request done, reload driver to complete the change\n");
1423 }
1424
amdgpu_gmc_need_reset_on_init(struct amdgpu_device * adev)1425 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1426 {
1427 if (adev->gmc.gmc_funcs->need_reset_on_init)
1428 return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1429
1430 return false;
1431 }
1432