xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 785151f50ddacac06c7a3c5f3d31642794507fdf)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 /**
42  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
43  *
44  * @adev: amdgpu_device pointer
45  *
46  * Allocate video memory for pdb0 and map it for CPU access
47  * Returns 0 for success, error for failure.
48  */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)49 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
50 {
51 	int r;
52 	struct amdgpu_bo_param bp;
53 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
54 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
55 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
56 
57 	memset(&bp, 0, sizeof(bp));
58 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
59 	bp.byte_align = PAGE_SIZE;
60 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
61 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
62 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
63 	bp.type = ttm_bo_type_kernel;
64 	bp.resv = NULL;
65 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
66 
67 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
68 	if (r)
69 		return r;
70 
71 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
72 	if (unlikely(r != 0))
73 		goto bo_reserve_failure;
74 
75 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
76 	if (r)
77 		goto bo_pin_failure;
78 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
79 	if (r)
80 		goto bo_kmap_failure;
81 
82 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
83 	return 0;
84 
85 bo_kmap_failure:
86 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
87 bo_pin_failure:
88 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
89 bo_reserve_failure:
90 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
91 	return r;
92 }
93 
94 /**
95  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
96  *
97  * @bo: the BO to get the PDE for
98  * @level: the level in the PD hirarchy
99  * @addr: resulting addr
100  * @flags: resulting flags
101  *
102  * Get the address and flags to be used for a PDE (Page Directory Entry).
103  */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)104 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
105 			       uint64_t *addr, uint64_t *flags)
106 {
107 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
108 
109 	switch (bo->tbo.resource->mem_type) {
110 	case TTM_PL_TT:
111 		*addr = bo->tbo.ttm->dma_address[0];
112 		break;
113 	case TTM_PL_VRAM:
114 		*addr = amdgpu_bo_gpu_offset(bo);
115 		break;
116 	default:
117 		*addr = 0;
118 		break;
119 	}
120 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
121 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
122 }
123 
124 /*
125  * amdgpu_gmc_pd_addr - return the address of the root directory
126  */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)127 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
128 {
129 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
130 	uint64_t pd_addr;
131 
132 	/* TODO: move that into ASIC specific code */
133 	if (adev->asic_type >= CHIP_VEGA10) {
134 		uint64_t flags = AMDGPU_PTE_VALID;
135 
136 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
137 		pd_addr |= flags;
138 	} else {
139 		pd_addr = amdgpu_bo_gpu_offset(bo);
140 	}
141 	return pd_addr;
142 }
143 
144 /**
145  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
146  *
147  * @adev: amdgpu_device pointer
148  * @cpu_pt_addr: cpu address of the page table
149  * @gpu_page_idx: entry in the page table to update
150  * @addr: dst addr to write into pte/pde
151  * @flags: access flags
152  *
153  * Update the page tables using CPU.
154  */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)155 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
156 				uint32_t gpu_page_idx, uint64_t addr,
157 				uint64_t flags)
158 {
159 	void __iomem *ptr = (void *)cpu_pt_addr;
160 	uint64_t value;
161 
162 	/*
163 	 * The following is for PTE only. GART does not have PDEs.
164 	*/
165 	value = addr & 0x0000FFFFFFFFF000ULL;
166 	value |= flags;
167 	writeq(value, ptr + (gpu_page_idx * 8));
168 
169 	return 0;
170 }
171 
172 /**
173  * amdgpu_gmc_agp_addr - return the address in the AGP address space
174  *
175  * @bo: TTM BO which needs the address, must be in GTT domain
176  *
177  * Tries to figure out how to access the BO through the AGP aperture. Returns
178  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
179  */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)180 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
181 {
182 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
183 
184 	if (!bo->ttm)
185 		return AMDGPU_BO_INVALID_OFFSET;
186 
187 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
188 		return AMDGPU_BO_INVALID_OFFSET;
189 
190 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
191 		return AMDGPU_BO_INVALID_OFFSET;
192 
193 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
194 }
195 
196 /**
197  * amdgpu_gmc_vram_location - try to find VRAM location
198  *
199  * @adev: amdgpu device structure holding all necessary information
200  * @mc: memory controller structure holding memory information
201  * @base: base address at which to put VRAM
202  *
203  * Function will try to place VRAM at base address provided
204  * as parameter.
205  */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)206 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
207 			      u64 base)
208 {
209 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
210 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
211 
212 	mc->vram_start = base;
213 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
214 	if (limit < mc->real_vram_size)
215 		mc->real_vram_size = limit;
216 
217 	if (vis_limit && vis_limit < mc->visible_vram_size)
218 		mc->visible_vram_size = vis_limit;
219 
220 	if (mc->real_vram_size < mc->visible_vram_size)
221 		mc->visible_vram_size = mc->real_vram_size;
222 
223 	if (mc->xgmi.num_physical_nodes == 0) {
224 		mc->fb_start = mc->vram_start;
225 		mc->fb_end = mc->vram_end;
226 	}
227 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
228 			mc->mc_vram_size >> 20, mc->vram_start,
229 			mc->vram_end, mc->real_vram_size >> 20);
230 }
231 
232 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
233  *
234  * @adev: amdgpu device structure holding all necessary information
235  * @mc: memory controller structure holding memory information
236  *
237  * This function is only used if use GART for FB translation. In such
238  * case, we use sysvm aperture (vmid0 page tables) for both vram
239  * and gart (aka system memory) access.
240  *
241  * GPUVM (and our organization of vmid0 page tables) require sysvm
242  * aperture to be placed at a location aligned with 8 times of native
243  * page size. For example, if vm_context0_cntl.page_table_block_size
244  * is 12, then native page size is 8G (2M*2^12), sysvm should start
245  * with a 64G aligned address. For simplicity, we just put sysvm at
246  * address 0. So vram start at address 0 and gart is right after vram.
247  */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)248 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
249 {
250 	u64 hive_vram_start = 0;
251 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
252 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
253 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
254 	mc->gart_start = hive_vram_end + 1;
255 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
256 	mc->fb_start = hive_vram_start;
257 	mc->fb_end = hive_vram_end;
258 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
259 			mc->mc_vram_size >> 20, mc->vram_start,
260 			mc->vram_end, mc->real_vram_size >> 20);
261 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
262 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
263 }
264 
265 /**
266  * amdgpu_gmc_gart_location - try to find GART location
267  *
268  * @adev: amdgpu device structure holding all necessary information
269  * @mc: memory controller structure holding memory information
270  * @gart_placement: GART placement policy with respect to VRAM
271  *
272  * Function will try to place GART before or after VRAM.
273  * If GART size is bigger than space left then we ajust GART size.
274  * Thus function will never fails.
275  */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,enum amdgpu_gart_placement gart_placement)276 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
277 			      enum amdgpu_gart_placement gart_placement)
278 {
279 	const uint64_t four_gb = 0x100000000ULL;
280 	u64 size_af, size_bf;
281 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
282 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
283 
284 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
285 	 * the GART base on a 4GB boundary as well.
286 	 */
287 	size_bf = mc->fb_start;
288 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
289 
290 	if (mc->gart_size > max(size_bf, size_af)) {
291 		dev_warn(adev->dev, "limiting GART\n");
292 		mc->gart_size = max(size_bf, size_af);
293 	}
294 
295 	switch (gart_placement) {
296 	case AMDGPU_GART_PLACEMENT_HIGH:
297 		mc->gart_start = max_mc_address - mc->gart_size + 1;
298 		break;
299 	case AMDGPU_GART_PLACEMENT_LOW:
300 		mc->gart_start = 0;
301 		break;
302 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
303 	default:
304 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
305 		    (size_af < mc->gart_size))
306 			mc->gart_start = 0;
307 		else
308 			mc->gart_start = max_mc_address - mc->gart_size + 1;
309 		break;
310 	}
311 
312 	mc->gart_start &= ~(four_gb - 1);
313 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
314 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
315 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
316 }
317 
318 /**
319  * amdgpu_gmc_agp_location - try to find AGP location
320  * @adev: amdgpu device structure holding all necessary information
321  * @mc: memory controller structure holding memory information
322  *
323  * Function will place try to find a place for the AGP BAR in the MC address
324  * space.
325  *
326  * AGP BAR will be assigned the largest available hole in the address space.
327  * Should be called after VRAM and GART locations are setup.
328  */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)329 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
330 {
331 	const uint64_t sixteen_gb = 1ULL << 34;
332 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
333 	u64 size_af, size_bf;
334 
335 	if (mc->fb_start > mc->gart_start) {
336 		size_bf = (mc->fb_start & sixteen_gb_mask) -
337 			ALIGN(mc->gart_end + 1, sixteen_gb);
338 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
339 	} else {
340 		size_bf = mc->fb_start & sixteen_gb_mask;
341 		size_af = (mc->gart_start & sixteen_gb_mask) -
342 			ALIGN(mc->fb_end + 1, sixteen_gb);
343 	}
344 
345 	if (size_bf > size_af) {
346 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
347 		mc->agp_size = size_bf;
348 	} else {
349 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
350 		mc->agp_size = size_af;
351 	}
352 
353 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
354 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
355 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
356 }
357 
358 /**
359  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
360  * @adev: amdgpu device structure holding all necessary information
361  * @mc: memory controller structure holding memory information
362  *
363  * To disable the AGP aperture, you need to set the start to a larger
364  * value than the end.  This function sets the default value which
365  * can then be overridden using amdgpu_gmc_agp_location() if you want
366  * to enable the AGP aperture on a specific chip.
367  *
368  */
amdgpu_gmc_set_agp_default(struct amdgpu_device * adev,struct amdgpu_gmc * mc)369 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
370 				struct amdgpu_gmc *mc)
371 {
372 	mc->agp_start = 0xffffffffffff;
373 	mc->agp_end = 0;
374 	mc->agp_size = 0;
375 }
376 
377 /**
378  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
379  *
380  * @addr: 48 bit physical address, page aligned (36 significant bits)
381  * @pasid: 16 bit process address space identifier
382  */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)383 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
384 {
385 	return addr << 4 | pasid;
386 }
387 
388 /**
389  * amdgpu_gmc_filter_faults - filter VM faults
390  *
391  * @adev: amdgpu device structure
392  * @ih: interrupt ring that the fault received from
393  * @addr: address of the VM fault
394  * @pasid: PASID of the process causing the fault
395  * @timestamp: timestamp of the fault
396  *
397  * Returns:
398  * True if the fault was filtered and should not be processed further.
399  * False if the fault is a new one and needs to be handled.
400  */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)401 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
402 			      struct amdgpu_ih_ring *ih, uint64_t addr,
403 			      uint16_t pasid, uint64_t timestamp)
404 {
405 	struct amdgpu_gmc *gmc = &adev->gmc;
406 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
407 	struct amdgpu_gmc_fault *fault;
408 	uint32_t hash;
409 
410 	/* Stale retry fault if timestamp goes backward */
411 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
412 		return true;
413 
414 	/* If we don't have space left in the ring buffer return immediately */
415 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
416 		AMDGPU_GMC_FAULT_TIMEOUT;
417 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
418 		return true;
419 
420 	/* Try to find the fault in the hash */
421 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
422 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
423 	while (fault->timestamp >= stamp) {
424 		uint64_t tmp;
425 
426 		if (atomic64_read(&fault->key) == key) {
427 			/*
428 			 * if we get a fault which is already present in
429 			 * the fault_ring and the timestamp of
430 			 * the fault is after the expired timestamp,
431 			 * then this is a new fault that needs to be added
432 			 * into the fault ring.
433 			 */
434 			if (fault->timestamp_expiry != 0 &&
435 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
436 					       timestamp))
437 				break;
438 			else
439 				return true;
440 		}
441 
442 		tmp = fault->timestamp;
443 		fault = &gmc->fault_ring[fault->next];
444 
445 		/* Check if the entry was reused */
446 		if (fault->timestamp >= tmp)
447 			break;
448 	}
449 
450 	/* Add the fault to the ring */
451 	fault = &gmc->fault_ring[gmc->last_fault];
452 	atomic64_set(&fault->key, key);
453 	fault->timestamp = timestamp;
454 
455 	/* And update the hash */
456 	fault->next = gmc->fault_hash[hash].idx;
457 	gmc->fault_hash[hash].idx = gmc->last_fault++;
458 	return false;
459 }
460 
461 /**
462  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
463  *
464  * @adev: amdgpu device structure
465  * @addr: address of the VM fault
466  * @pasid: PASID of the process causing the fault
467  *
468  * Remove the address from fault filter, then future vm fault on this address
469  * will pass to retry fault handler to recover.
470  */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)471 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
472 				     uint16_t pasid)
473 {
474 	struct amdgpu_gmc *gmc = &adev->gmc;
475 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
476 	struct amdgpu_ih_ring *ih;
477 	struct amdgpu_gmc_fault *fault;
478 	uint32_t last_wptr;
479 	uint64_t last_ts;
480 	uint32_t hash;
481 	uint64_t tmp;
482 
483 	if (adev->irq.retry_cam_enabled)
484 		return;
485 
486 	ih = &adev->irq.ih1;
487 	/* Get the WPTR of the last entry in IH ring */
488 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
489 	/* Order wptr with ring data. */
490 	rmb();
491 	/* Get the timetamp of the last entry in IH ring */
492 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
493 
494 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
495 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
496 	do {
497 		if (atomic64_read(&fault->key) == key) {
498 			/*
499 			 * Update the timestamp when this fault
500 			 * expired.
501 			 */
502 			fault->timestamp_expiry = last_ts;
503 			break;
504 		}
505 
506 		tmp = fault->timestamp;
507 		fault = &gmc->fault_ring[fault->next];
508 	} while (fault->timestamp < tmp);
509 }
510 
amdgpu_gmc_ras_sw_init(struct amdgpu_device * adev)511 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
512 {
513 	int r;
514 
515 	/* umc ras block */
516 	r = amdgpu_umc_ras_sw_init(adev);
517 	if (r)
518 		return r;
519 
520 	/* mmhub ras block */
521 	r = amdgpu_mmhub_ras_sw_init(adev);
522 	if (r)
523 		return r;
524 
525 	/* hdp ras block */
526 	r = amdgpu_hdp_ras_sw_init(adev);
527 	if (r)
528 		return r;
529 
530 	/* mca.x ras block */
531 	r = amdgpu_mca_mp0_ras_sw_init(adev);
532 	if (r)
533 		return r;
534 
535 	r = amdgpu_mca_mp1_ras_sw_init(adev);
536 	if (r)
537 		return r;
538 
539 	r = amdgpu_mca_mpio_ras_sw_init(adev);
540 	if (r)
541 		return r;
542 
543 	/* xgmi ras block */
544 	r = amdgpu_xgmi_ras_sw_init(adev);
545 	if (r)
546 		return r;
547 
548 	return 0;
549 }
550 
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)551 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
552 {
553 	return 0;
554 }
555 
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)556 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
557 {
558 
559 }
560 
561 	/*
562 	 * The latest engine allocation on gfx9/10 is:
563 	 * Engine 2, 3: firmware
564 	 * Engine 0, 1, 4~16: amdgpu ring,
565 	 *                    subject to change when ring number changes
566 	 * Engine 17: Gart flushes
567 	 */
568 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
569 
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)570 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
571 {
572 	struct amdgpu_ring *ring;
573 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
574 	unsigned i;
575 	unsigned vmhub, inv_eng;
576 	struct amdgpu_ring *shared_ring;
577 
578 	/* init the vm inv eng for all vmhubs */
579 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
580 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
581 		/* reserve engine 5 for firmware */
582 		if (adev->enable_mes)
583 			vm_inv_engs[i] &= ~(1 << 5);
584 		/* reserve mmhub engine 3 for firmware */
585 		if (adev->enable_umsch_mm)
586 			vm_inv_engs[i] &= ~(1 << 3);
587 	}
588 
589 	for (i = 0; i < adev->num_rings; ++i) {
590 		ring = adev->rings[i];
591 		vmhub = ring->vm_hub;
592 
593 		if (ring == &adev->mes.ring[0] ||
594 		    ring == &adev->mes.ring[1] ||
595 		    ring == &adev->umsch_mm.ring ||
596 		    ring == &adev->cper.ring_buf)
597 			continue;
598 
599 		/* Skip if the ring is a shared ring */
600 		if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
601 			continue;
602 
603 		inv_eng = ffs(vm_inv_engs[vmhub]);
604 		if (!inv_eng) {
605 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
606 				ring->name);
607 			return -EINVAL;
608 		}
609 
610 		ring->vm_inv_eng = inv_eng - 1;
611 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
612 
613 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
614 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
615 		/* SDMA has a special packet which allows it to use the same
616 		 * invalidation engine for all the rings in one instance.
617 		 * Therefore, we do not allocate a separate VM invalidation engine
618 		 * for SDMA page rings. Instead, they share the VM invalidation
619 		 * engine with the SDMA gfx ring. This change ensures efficient
620 		 * resource management and avoids the issue of insufficient VM
621 		 * invalidation engines.
622 		 */
623 		shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
624 		if (shared_ring) {
625 			shared_ring->vm_inv_eng = ring->vm_inv_eng;
626 			dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
627 					ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
628 			continue;
629 		}
630 	}
631 
632 	return 0;
633 }
634 
amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device * adev,uint32_t vmid,uint32_t vmhub,uint32_t flush_type)635 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
636 			      uint32_t vmhub, uint32_t flush_type)
637 {
638 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
639 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
640 	struct dma_fence *fence;
641 	struct amdgpu_job *job;
642 	int r;
643 
644 	if (!hub->sdma_invalidation_workaround || vmid ||
645 	    !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
646 	    !ring->sched.ready) {
647 		/*
648 		 * A GPU reset should flush all TLBs anyway, so no need to do
649 		 * this while one is ongoing.
650 		 */
651 		if (!down_read_trylock(&adev->reset_domain->sem))
652 			return;
653 
654 		if (adev->gmc.flush_tlb_needs_extra_type_2)
655 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
656 							   vmhub, 2);
657 
658 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
659 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
660 							   vmhub, 0);
661 
662 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
663 						   flush_type);
664 		up_read(&adev->reset_domain->sem);
665 		return;
666 	}
667 
668 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
669 	 * corruption if an invalidation happens at the same time as an VA
670 	 * translation. Avoid this by doing the invalidation from the SDMA
671 	 * itself at least for GART.
672 	 */
673 	mutex_lock(&adev->mman.gtt_window_lock);
674 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
675 				     AMDGPU_FENCE_OWNER_UNDEFINED,
676 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
677 				     &job);
678 	if (r)
679 		goto error_alloc;
680 
681 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
682 	job->vm_needs_flush = true;
683 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
684 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
685 	fence = amdgpu_job_submit(job);
686 	mutex_unlock(&adev->mman.gtt_window_lock);
687 
688 	dma_fence_wait(fence, false);
689 	dma_fence_put(fence);
690 
691 	return;
692 
693 error_alloc:
694 	mutex_unlock(&adev->mman.gtt_window_lock);
695 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
696 }
697 
amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device * adev,uint16_t pasid,uint32_t flush_type,bool all_hub,uint32_t inst)698 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
699 				   uint32_t flush_type, bool all_hub,
700 				   uint32_t inst)
701 {
702 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
703 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
704 	unsigned int ndw;
705 	int r, cnt = 0;
706 	uint32_t seq;
707 
708 	/*
709 	 * A GPU reset should flush all TLBs anyway, so no need to do
710 	 * this while one is ongoing.
711 	 */
712 	if (!down_read_trylock(&adev->reset_domain->sem))
713 		return 0;
714 
715 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
716 		if (adev->gmc.flush_tlb_needs_extra_type_2)
717 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
718 								 2, all_hub,
719 								 inst);
720 
721 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
722 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
723 								 0, all_hub,
724 								 inst);
725 
726 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
727 							 flush_type, all_hub,
728 							 inst);
729 		r = 0;
730 	} else {
731 		/* 2 dwords flush + 8 dwords fence */
732 		ndw = kiq->pmf->invalidate_tlbs_size + 8;
733 
734 		if (adev->gmc.flush_tlb_needs_extra_type_2)
735 			ndw += kiq->pmf->invalidate_tlbs_size;
736 
737 		if (adev->gmc.flush_tlb_needs_extra_type_0)
738 			ndw += kiq->pmf->invalidate_tlbs_size;
739 
740 		spin_lock(&adev->gfx.kiq[inst].ring_lock);
741 		r = amdgpu_ring_alloc(ring, ndw);
742 		if (r) {
743 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
744 			goto error_unlock_reset;
745 		}
746 		if (adev->gmc.flush_tlb_needs_extra_type_2)
747 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
748 
749 		if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
750 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
751 
752 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
753 		r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
754 		if (r) {
755 			amdgpu_ring_undo(ring);
756 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
757 			goto error_unlock_reset;
758 		}
759 
760 		amdgpu_ring_commit(ring);
761 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
762 
763 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
764 
765 		might_sleep();
766 		while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
767 		       !amdgpu_reset_pending(adev->reset_domain)) {
768 			msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
769 			r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
770 		}
771 
772 		if (cnt > MAX_KIQ_REG_TRY) {
773 			dev_err(adev->dev, "timeout waiting for kiq fence\n");
774 			r = -ETIME;
775 		} else
776 			r = 0;
777 	}
778 
779 error_unlock_reset:
780 	up_read(&adev->reset_domain->sem);
781 	return r;
782 }
783 
amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device * adev,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask,uint32_t xcc_inst)784 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
785 				      uint32_t reg0, uint32_t reg1,
786 				      uint32_t ref, uint32_t mask,
787 				      uint32_t xcc_inst)
788 {
789 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
790 	struct amdgpu_ring *ring = &kiq->ring;
791 	signed long r, cnt = 0;
792 	unsigned long flags;
793 	uint32_t seq;
794 
795 	if (adev->mes.ring[0].sched.ready) {
796 		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
797 					      ref, mask);
798 		return;
799 	}
800 
801 	spin_lock_irqsave(&kiq->ring_lock, flags);
802 	amdgpu_ring_alloc(ring, 32);
803 	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
804 					    ref, mask);
805 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
806 	if (r)
807 		goto failed_undo;
808 
809 	amdgpu_ring_commit(ring);
810 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
811 
812 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
813 
814 	/* don't wait anymore for IRQ context */
815 	if (r < 1 && in_interrupt())
816 		goto failed_kiq;
817 
818 	might_sleep();
819 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
820 	       !amdgpu_reset_pending(adev->reset_domain)) {
821 
822 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
823 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
824 	}
825 
826 	if (cnt > MAX_KIQ_REG_TRY)
827 		goto failed_kiq;
828 
829 	return;
830 
831 failed_undo:
832 	amdgpu_ring_undo(ring);
833 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
834 failed_kiq:
835 	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
836 }
837 
838 /**
839  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
840  * @adev: amdgpu_device pointer
841  *
842  * Check and set if an the device @adev supports Trusted Memory
843  * Zones (TMZ).
844  */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)845 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
846 {
847 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
848 	/* RAVEN */
849 	case IP_VERSION(9, 2, 2):
850 	case IP_VERSION(9, 1, 0):
851 	/* RENOIR looks like RAVEN */
852 	case IP_VERSION(9, 3, 0):
853 	/* GC 10.3.7 */
854 	case IP_VERSION(10, 3, 7):
855 	/* GC 11.0.1 */
856 	case IP_VERSION(11, 0, 1):
857 		if (amdgpu_tmz == 0) {
858 			adev->gmc.tmz_enabled = false;
859 			dev_info(adev->dev,
860 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
861 		} else {
862 			adev->gmc.tmz_enabled = true;
863 			dev_info(adev->dev,
864 				 "Trusted Memory Zone (TMZ) feature enabled\n");
865 		}
866 		break;
867 	case IP_VERSION(10, 1, 10):
868 	case IP_VERSION(10, 1, 1):
869 	case IP_VERSION(10, 1, 2):
870 	case IP_VERSION(10, 1, 3):
871 	case IP_VERSION(10, 3, 0):
872 	case IP_VERSION(10, 3, 2):
873 	case IP_VERSION(10, 3, 4):
874 	case IP_VERSION(10, 3, 5):
875 	case IP_VERSION(10, 3, 6):
876 	/* VANGOGH */
877 	case IP_VERSION(10, 3, 1):
878 	/* YELLOW_CARP*/
879 	case IP_VERSION(10, 3, 3):
880 	case IP_VERSION(11, 0, 4):
881 	case IP_VERSION(11, 5, 0):
882 	case IP_VERSION(11, 5, 1):
883 	case IP_VERSION(11, 5, 2):
884 	case IP_VERSION(11, 5, 3):
885 		/* Don't enable it by default yet.
886 		 */
887 		if (amdgpu_tmz < 1) {
888 			adev->gmc.tmz_enabled = false;
889 			dev_info(adev->dev,
890 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
891 		} else {
892 			adev->gmc.tmz_enabled = true;
893 			dev_info(adev->dev,
894 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
895 		}
896 		break;
897 	default:
898 		adev->gmc.tmz_enabled = false;
899 		dev_info(adev->dev,
900 			 "Trusted Memory Zone (TMZ) feature not supported\n");
901 		break;
902 	}
903 }
904 
905 /**
906  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
907  * @adev: amdgpu_device pointer
908  *
909  * Set a per asic default for the no-retry parameter.
910  *
911  */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)912 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
913 {
914 	struct amdgpu_gmc *gmc = &adev->gmc;
915 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
916 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
917 				gc_ver == IP_VERSION(9, 4, 0) ||
918 				gc_ver == IP_VERSION(9, 4, 1) ||
919 				gc_ver == IP_VERSION(9, 4, 2) ||
920 				gc_ver == IP_VERSION(9, 4, 3) ||
921 				gc_ver == IP_VERSION(9, 4, 4) ||
922 				gc_ver == IP_VERSION(9, 5, 0) ||
923 				gc_ver >= IP_VERSION(10, 3, 0));
924 
925 	if (!amdgpu_sriov_xnack_support(adev))
926 		gmc->noretry = 1;
927 	else
928 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
929 }
930 
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)931 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
932 				   bool enable)
933 {
934 	struct amdgpu_vmhub *hub;
935 	u32 tmp, reg, i;
936 
937 	hub = &adev->vmhub[hub_type];
938 	for (i = 0; i < 16; i++) {
939 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
940 
941 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
942 			RREG32_SOC15_IP(GC, reg) :
943 			RREG32_SOC15_IP(MMHUB, reg);
944 
945 		if (enable)
946 			tmp |= hub->vm_cntx_cntl_vm_fault;
947 		else
948 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
949 
950 		(hub_type == AMDGPU_GFXHUB(0)) ?
951 			WREG32_SOC15_IP(GC, reg, tmp) :
952 			WREG32_SOC15_IP(MMHUB, reg, tmp);
953 	}
954 }
955 
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)956 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
957 {
958 	unsigned size;
959 
960 	/*
961 	 * Some ASICs need to reserve a region of video memory to avoid access
962 	 * from driver
963 	 */
964 	adev->mman.stolen_reserved_offset = 0;
965 	adev->mman.stolen_reserved_size = 0;
966 
967 	/*
968 	 * TODO:
969 	 * Currently there is a bug where some memory client outside
970 	 * of the driver writes to first 8M of VRAM on S3 resume,
971 	 * this overrides GART which by default gets placed in first 8M and
972 	 * causes VM_FAULTS once GTT is accessed.
973 	 * Keep the stolen memory reservation until the while this is not solved.
974 	 */
975 	switch (adev->asic_type) {
976 	case CHIP_VEGA10:
977 		adev->mman.keep_stolen_vga_memory = true;
978 		/*
979 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
980 		 */
981 #ifdef CONFIG_X86
982 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
983 			adev->mman.stolen_reserved_offset = 0x500000;
984 			adev->mman.stolen_reserved_size = 0x200000;
985 		}
986 #endif
987 		break;
988 	case CHIP_RAVEN:
989 	case CHIP_RENOIR:
990 		adev->mman.keep_stolen_vga_memory = true;
991 		break;
992 	default:
993 		adev->mman.keep_stolen_vga_memory = false;
994 		break;
995 	}
996 
997 	if (amdgpu_sriov_vf(adev) ||
998 	    !amdgpu_device_has_display_hardware(adev)) {
999 		size = 0;
1000 	} else {
1001 		size = amdgpu_gmc_get_vbios_fb_size(adev);
1002 
1003 		if (adev->mman.keep_stolen_vga_memory)
1004 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1005 	}
1006 
1007 	/* set to 0 if the pre-OS buffer uses up most of vram */
1008 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1009 		size = 0;
1010 
1011 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1012 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1013 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1014 	} else {
1015 		adev->mman.stolen_vga_size = size;
1016 		adev->mman.stolen_extended_size = 0;
1017 	}
1018 }
1019 
1020 /**
1021  * amdgpu_gmc_init_pdb0 - initialize PDB0
1022  *
1023  * @adev: amdgpu_device pointer
1024  *
1025  * This function is only used when GART page table is used
1026  * for FB address translatioin. In such a case, we construct
1027  * a 2-level system VM page table: PDB0->PTB, to cover both
1028  * VRAM of the hive and system memory.
1029  *
1030  * PDB0 is static, initialized once on driver initialization.
1031  * The first n entries of PDB0 are used as PTE by setting
1032  * P bit to 1, pointing to VRAM. The n+1'th entry points
1033  * to a big PTB covering system memory.
1034  *
1035  */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)1036 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1037 {
1038 	int i;
1039 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1040 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1041 	 */
1042 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1043 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1044 	u64 vram_addr = adev->vm_manager.vram_base_offset -
1045 		adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1046 	u64 vram_end = vram_addr + vram_size;
1047 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1048 	int idx;
1049 
1050 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1051 		return;
1052 
1053 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1054 	flags |= AMDGPU_PTE_WRITEABLE;
1055 	flags |= AMDGPU_PTE_SNOOPED;
1056 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1057 	flags |= AMDGPU_PDE_PTE_FLAG(adev);
1058 
1059 	/* The first n PDE0 entries are used as PTE,
1060 	 * pointing to vram
1061 	 */
1062 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1063 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1064 
1065 	/* The n+1'th PDE0 entry points to a huge
1066 	 * PTB who has more than 512 entries each
1067 	 * pointing to a 4K system page
1068 	 */
1069 	flags = AMDGPU_PTE_VALID;
1070 	flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1071 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1072 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1073 	drm_dev_exit(idx);
1074 }
1075 
1076 /**
1077  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1078  * address
1079  *
1080  * @adev: amdgpu_device pointer
1081  * @mc_addr: MC address of buffer
1082  */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)1083 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1084 {
1085 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1086 }
1087 
1088 /**
1089  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1090  * GPU's view
1091  *
1092  * @adev: amdgpu_device pointer
1093  * @bo: amdgpu buffer object
1094  */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)1095 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1096 {
1097 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1098 }
1099 
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)1100 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1101 {
1102 	struct amdgpu_bo *vram_bo = NULL;
1103 	uint64_t vram_gpu = 0;
1104 	void *vram_ptr = NULL;
1105 
1106 	int ret, size = 0x100000;
1107 	uint8_t cptr[10];
1108 
1109 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1110 				AMDGPU_GEM_DOMAIN_VRAM,
1111 				&vram_bo,
1112 				&vram_gpu,
1113 				&vram_ptr);
1114 	if (ret)
1115 		return ret;
1116 
1117 	memset(vram_ptr, 0x86, size);
1118 	memset(cptr, 0x86, 10);
1119 
1120 	/**
1121 	 * Check the start, the mid, and the end of the memory if the content of
1122 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1123 	 * workable.
1124 	 *
1125 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1126 	 * seconds, so here, we just pick up three parts for emulation.
1127 	 */
1128 	ret = memcmp(vram_ptr, cptr, 10);
1129 	if (ret) {
1130 		ret = -EIO;
1131 		goto release_buffer;
1132 	}
1133 
1134 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1135 	if (ret) {
1136 		ret = -EIO;
1137 		goto release_buffer;
1138 	}
1139 
1140 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1141 	if (ret) {
1142 		ret = -EIO;
1143 		goto release_buffer;
1144 	}
1145 
1146 release_buffer:
1147 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1148 			&vram_ptr);
1149 
1150 	return ret;
1151 }
1152 
1153 static const char *nps_desc[] = {
1154 	[AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1155 	[AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1156 	[AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1157 	[AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1158 	[AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1159 	[AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1160 };
1161 
available_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1162 static ssize_t available_memory_partition_show(struct device *dev,
1163 					       struct device_attribute *addr,
1164 					       char *buf)
1165 {
1166 	struct drm_device *ddev = dev_get_drvdata(dev);
1167 	struct amdgpu_device *adev = drm_to_adev(ddev);
1168 	int size = 0, mode;
1169 	char *sep = "";
1170 
1171 	for_each_inst(mode, adev->gmc.supported_nps_modes) {
1172 		size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1173 		sep = ", ";
1174 	}
1175 	size += sysfs_emit_at(buf, size, "\n");
1176 
1177 	return size;
1178 }
1179 
current_memory_partition_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1180 static ssize_t current_memory_partition_store(struct device *dev,
1181 					      struct device_attribute *attr,
1182 					      const char *buf, size_t count)
1183 {
1184 	struct drm_device *ddev = dev_get_drvdata(dev);
1185 	struct amdgpu_device *adev = drm_to_adev(ddev);
1186 	enum amdgpu_memory_partition mode;
1187 	struct amdgpu_hive_info *hive;
1188 	int i;
1189 
1190 	mode = UNKNOWN_MEMORY_PARTITION_MODE;
1191 	for_each_inst(i, adev->gmc.supported_nps_modes) {
1192 		if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1193 			mode = i;
1194 			break;
1195 		}
1196 	}
1197 
1198 	if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1199 		return -EINVAL;
1200 
1201 	if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1202 		dev_info(
1203 			adev->dev,
1204 			"requested NPS mode is same as current NPS mode, skipping\n");
1205 		return count;
1206 	}
1207 
1208 	/* If device is part of hive, all devices in the hive should request the
1209 	 * same mode. Hence store the requested mode in hive.
1210 	 */
1211 	hive = amdgpu_get_xgmi_hive(adev);
1212 	if (hive) {
1213 		atomic_set(&hive->requested_nps_mode, mode);
1214 		amdgpu_put_xgmi_hive(hive);
1215 	} else {
1216 		adev->gmc.requested_nps_mode = mode;
1217 	}
1218 
1219 	dev_info(
1220 		adev->dev,
1221 		"NPS mode change requested, please remove and reload the driver\n");
1222 
1223 	return count;
1224 }
1225 
current_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1226 static ssize_t current_memory_partition_show(
1227 	struct device *dev, struct device_attribute *addr, char *buf)
1228 {
1229 	struct drm_device *ddev = dev_get_drvdata(dev);
1230 	struct amdgpu_device *adev = drm_to_adev(ddev);
1231 	enum amdgpu_memory_partition mode;
1232 
1233 	/* Only minimal precaution taken to reject requests while in reset */
1234 	if (amdgpu_in_reset(adev))
1235 		return -EPERM;
1236 
1237 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1238 	if ((mode >= ARRAY_SIZE(nps_desc)) ||
1239 	    (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1240 		return sysfs_emit(buf, "UNKNOWN\n");
1241 
1242 	return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1243 }
1244 
1245 static DEVICE_ATTR_RW(current_memory_partition);
1246 static DEVICE_ATTR_RO(available_memory_partition);
1247 
amdgpu_gmc_sysfs_init(struct amdgpu_device * adev)1248 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1249 {
1250 	bool nps_switch_support;
1251 	int r = 0;
1252 
1253 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1254 		return 0;
1255 
1256 	nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1257 					AMDGPU_ALL_NPS_MASK) > 1);
1258 	if (!nps_switch_support)
1259 		dev_attr_current_memory_partition.attr.mode &=
1260 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1261 	else
1262 		r = device_create_file(adev->dev,
1263 				       &dev_attr_available_memory_partition);
1264 
1265 	if (r)
1266 		return r;
1267 
1268 	return device_create_file(adev->dev,
1269 				  &dev_attr_current_memory_partition);
1270 }
1271 
amdgpu_gmc_sysfs_fini(struct amdgpu_device * adev)1272 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1273 {
1274 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1275 		return;
1276 
1277 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1278 	device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1279 }
1280 
amdgpu_gmc_get_nps_memranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges,uint8_t * exp_ranges)1281 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1282 				 struct amdgpu_mem_partition_info *mem_ranges,
1283 				 uint8_t *exp_ranges)
1284 {
1285 	struct amdgpu_gmc_memrange *ranges;
1286 	int range_cnt, ret, i, j;
1287 	uint32_t nps_type;
1288 	bool refresh;
1289 
1290 	if (!mem_ranges || !exp_ranges)
1291 		return -EINVAL;
1292 
1293 	refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1294 		  (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1295 	ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1296 					    &range_cnt, refresh);
1297 
1298 	if (ret)
1299 		return ret;
1300 
1301 	/* TODO: For now, expect ranges and partition count to be the same.
1302 	 * Adjust if there are holes expected in any NPS domain.
1303 	 */
1304 	if (*exp_ranges && (range_cnt != *exp_ranges)) {
1305 		dev_warn(
1306 			adev->dev,
1307 			"NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1308 			*exp_ranges, nps_type, range_cnt);
1309 		ret = -EINVAL;
1310 		goto err;
1311 	}
1312 
1313 	for (i = 0; i < range_cnt; ++i) {
1314 		if (ranges[i].base_address >= ranges[i].limit_address) {
1315 			dev_warn(
1316 				adev->dev,
1317 				"Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1318 				nps_type, i, ranges[i].base_address,
1319 				ranges[i].limit_address);
1320 			ret = -EINVAL;
1321 			goto err;
1322 		}
1323 
1324 		/* Check for overlaps, not expecting any now */
1325 		for (j = i - 1; j >= 0; j--) {
1326 			if (max(ranges[j].base_address,
1327 				ranges[i].base_address) <=
1328 			    min(ranges[j].limit_address,
1329 				ranges[i].limit_address)) {
1330 				dev_warn(
1331 					adev->dev,
1332 					"overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1333 					ranges[j].base_address,
1334 					ranges[j].limit_address,
1335 					ranges[i].base_address,
1336 					ranges[i].limit_address);
1337 				ret = -EINVAL;
1338 				goto err;
1339 			}
1340 		}
1341 
1342 		mem_ranges[i].range.fpfn =
1343 			(ranges[i].base_address -
1344 			 adev->vm_manager.vram_base_offset) >>
1345 			AMDGPU_GPU_PAGE_SHIFT;
1346 		mem_ranges[i].range.lpfn =
1347 			(ranges[i].limit_address -
1348 			 adev->vm_manager.vram_base_offset) >>
1349 			AMDGPU_GPU_PAGE_SHIFT;
1350 		mem_ranges[i].size =
1351 			ranges[i].limit_address - ranges[i].base_address + 1;
1352 	}
1353 
1354 	if (!*exp_ranges)
1355 		*exp_ranges = range_cnt;
1356 err:
1357 	kfree(ranges);
1358 
1359 	return ret;
1360 }
1361 
amdgpu_gmc_request_memory_partition(struct amdgpu_device * adev,int nps_mode)1362 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1363 					int nps_mode)
1364 {
1365 	/* Not supported on VF devices and APUs */
1366 	if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1367 		return -EOPNOTSUPP;
1368 
1369 	if (!adev->psp.funcs) {
1370 		dev_err(adev->dev,
1371 			"PSP interface not available for nps mode change request");
1372 		return -EINVAL;
1373 	}
1374 
1375 	return psp_memory_partition(&adev->psp, nps_mode);
1376 }
1377 
amdgpu_gmc_need_nps_switch_req(struct amdgpu_device * adev,int req_nps_mode,int cur_nps_mode)1378 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1379 						  int req_nps_mode,
1380 						  int cur_nps_mode)
1381 {
1382 	return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1383 			BIT(req_nps_mode)) &&
1384 		req_nps_mode != cur_nps_mode);
1385 }
1386 
amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device * adev)1387 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1388 {
1389 	int req_nps_mode, cur_nps_mode, r;
1390 	struct amdgpu_hive_info *hive;
1391 
1392 	if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1393 	    !adev->gmc.gmc_funcs->request_mem_partition_mode)
1394 		return;
1395 
1396 	cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1397 	hive = amdgpu_get_xgmi_hive(adev);
1398 	if (hive) {
1399 		req_nps_mode = atomic_read(&hive->requested_nps_mode);
1400 		if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1401 						    cur_nps_mode)) {
1402 			amdgpu_put_xgmi_hive(hive);
1403 			return;
1404 		}
1405 		r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1406 		amdgpu_put_xgmi_hive(hive);
1407 		goto out;
1408 	}
1409 
1410 	req_nps_mode = adev->gmc.requested_nps_mode;
1411 	if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1412 		return;
1413 
1414 	/* even if this fails, we should let driver unload w/o blocking */
1415 	r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1416 out:
1417 	if (r)
1418 		dev_err(adev->dev, "NPS mode change request failed\n");
1419 	else
1420 		dev_info(
1421 			adev->dev,
1422 			"NPS mode change request done, reload driver to complete the change\n");
1423 }
1424 
amdgpu_gmc_need_reset_on_init(struct amdgpu_device * adev)1425 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1426 {
1427 	if (adev->gmc.gmc_funcs->need_reset_on_init)
1428 		return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1429 
1430 	return false;
1431 }
1432