xref: /linux/drivers/iommu/amd/iommu.c (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/idr.h>
22 #include <linux/iommu-helper.h>
23 #include <linux/delay.h>
24 #include <linux/amd-iommu.h>
25 #include <linux/notifier.h>
26 #include <linux/export.h>
27 #include <linux/irq.h>
28 #include <linux/msi.h>
29 #include <linux/irqdomain.h>
30 #include <linux/percpu.h>
31 #include <linux/io-pgtable.h>
32 #include <linux/cc_platform.h>
33 #include <asm/irq_remapping.h>
34 #include <asm/io_apic.h>
35 #include <asm/apic.h>
36 #include <asm/hw_irq.h>
37 #include <asm/proto.h>
38 #include <asm/iommu.h>
39 #include <asm/gart.h>
40 #include <asm/dma.h>
41 #include <uapi/linux/iommufd.h>
42 
43 #include "amd_iommu.h"
44 #include "../dma-iommu.h"
45 #include "../irq_remapping.h"
46 #include "../iommu-pages.h"
47 
48 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49 
50 /* Reserved IOVA ranges */
51 #define MSI_RANGE_START		(0xfee00000)
52 #define MSI_RANGE_END		(0xfeefffff)
53 #define HT_RANGE_START		(0xfd00000000ULL)
54 #define HT_RANGE_END		(0xffffffffffULL)
55 
56 LIST_HEAD(ioapic_map);
57 LIST_HEAD(hpet_map);
58 LIST_HEAD(acpihid_map);
59 
60 const struct iommu_ops amd_iommu_ops;
61 static const struct iommu_dirty_ops amd_dirty_ops;
62 
63 int amd_iommu_max_glx_val = -1;
64 
65 /*
66  * general struct to manage commands send to an IOMMU
67  */
68 struct iommu_cmd {
69 	u32 data[4];
70 };
71 
72 /*
73  * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
74  * to know which ones are already in use.
75  */
76 DEFINE_IDA(pdom_ids);
77 
78 static int amd_iommu_attach_device(struct iommu_domain *dom,
79 				   struct device *dev);
80 
81 static void set_dte_entry(struct amd_iommu *iommu,
82 			  struct iommu_dev_data *dev_data);
83 
84 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
85 
86 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
87 
88 /****************************************************************************
89  *
90  * Helper functions
91  *
92  ****************************************************************************/
93 
amd_iommu_atomic128_set(__int128 * ptr,__int128 val)94 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
95 {
96 	/*
97 	 * Note:
98 	 * We use arch_cmpxchg128_local() because:
99 	 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
100 	 *   (not necessary for cmpxchg since this function is already
101 	 *   protected by a spin_lock for this DTE).
102 	 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
103 	 */
104 	arch_cmpxchg128_local(ptr, *ptr, val);
105 }
106 
write_dte_upper128(struct dev_table_entry * ptr,struct dev_table_entry * new)107 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
108 {
109 	struct dev_table_entry old;
110 
111 	old.data128[1] = ptr->data128[1];
112 	/*
113 	 * Preserve DTE_DATA2_INTR_MASK. This needs to be
114 	 * done here since it requires to be inside
115 	 * spin_lock(&dev_data->dte_lock) context.
116 	 */
117 	new->data[2] &= ~DTE_DATA2_INTR_MASK;
118 	new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
119 
120 	amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
121 }
122 
write_dte_lower128(struct dev_table_entry * ptr,struct dev_table_entry * new)123 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
124 {
125 	amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
126 }
127 
128 /*
129  * Note:
130  * IOMMU reads the entire Device Table entry in a single 256-bit transaction
131  * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
132  * need to ensure the following:
133  *   - DTE[V|GV] bit is being written last when setting.
134  *   - DTE[V|GV] bit is being written first when clearing.
135  *
136  * This function is used only by code, which updates DMA translation part of the DTE.
137  * So, only consider control bits related to DMA when updating the entry.
138  */
update_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * new)139 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
140 			  struct dev_table_entry *new)
141 {
142 	unsigned long flags;
143 	struct dev_table_entry *dev_table = get_dev_table(iommu);
144 	struct dev_table_entry *ptr = &dev_table[dev_data->devid];
145 
146 	spin_lock_irqsave(&dev_data->dte_lock, flags);
147 
148 	if (!(ptr->data[0] & DTE_FLAG_V)) {
149 		/* Existing DTE is not valid. */
150 		write_dte_upper128(ptr, new);
151 		write_dte_lower128(ptr, new);
152 		iommu_flush_dte_sync(iommu, dev_data->devid);
153 	} else if (!(new->data[0] & DTE_FLAG_V)) {
154 		/* Existing DTE is valid. New DTE is not valid.  */
155 		write_dte_lower128(ptr, new);
156 		write_dte_upper128(ptr, new);
157 		iommu_flush_dte_sync(iommu, dev_data->devid);
158 	} else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
159 		/*
160 		 * Both DTEs are valid.
161 		 * Existing DTE has no guest page table.
162 		 */
163 		write_dte_upper128(ptr, new);
164 		write_dte_lower128(ptr, new);
165 		iommu_flush_dte_sync(iommu, dev_data->devid);
166 	} else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
167 		/*
168 		 * Both DTEs are valid.
169 		 * Existing DTE has guest page table,
170 		 * new DTE has no guest page table,
171 		 */
172 		write_dte_lower128(ptr, new);
173 		write_dte_upper128(ptr, new);
174 		iommu_flush_dte_sync(iommu, dev_data->devid);
175 	} else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
176 		   FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
177 		/*
178 		 * Both DTEs are valid and have guest page table,
179 		 * but have different number of levels. So, we need
180 		 * to upadte both upper and lower 128-bit value, which
181 		 * require disabling and flushing.
182 		 */
183 		struct dev_table_entry clear = {};
184 
185 		/* First disable DTE */
186 		write_dte_lower128(ptr, &clear);
187 		iommu_flush_dte_sync(iommu, dev_data->devid);
188 
189 		/* Then update DTE */
190 		write_dte_upper128(ptr, new);
191 		write_dte_lower128(ptr, new);
192 		iommu_flush_dte_sync(iommu, dev_data->devid);
193 	} else {
194 		/*
195 		 * Both DTEs are valid and have guest page table,
196 		 * and same number of levels. We just need to only
197 		 * update the lower 128-bit. So no need to disable DTE.
198 		 */
199 		write_dte_lower128(ptr, new);
200 	}
201 
202 	spin_unlock_irqrestore(&dev_data->dte_lock, flags);
203 }
204 
get_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * dte)205 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
206 		      struct dev_table_entry *dte)
207 {
208 	unsigned long flags;
209 	struct dev_table_entry *ptr;
210 	struct dev_table_entry *dev_table = get_dev_table(iommu);
211 
212 	ptr = &dev_table[dev_data->devid];
213 
214 	spin_lock_irqsave(&dev_data->dte_lock, flags);
215 	dte->data128[0] = ptr->data128[0];
216 	dte->data128[1] = ptr->data128[1];
217 	spin_unlock_irqrestore(&dev_data->dte_lock, flags);
218 }
219 
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)220 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
221 {
222 	return (pdom && (pdom->pd_mode == PD_MODE_V2));
223 }
224 
pdom_is_in_pt_mode(struct protection_domain * pdom)225 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
226 {
227 	return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
228 }
229 
230 /*
231  * We cannot support PASID w/ existing v1 page table in the same domain
232  * since it will be nested. However, existing domain w/ v2 page table
233  * or passthrough mode can be used for PASID.
234  */
pdom_is_sva_capable(struct protection_domain * pdom)235 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
236 {
237 	return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
238 }
239 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)240 static inline int get_acpihid_device_id(struct device *dev,
241 					struct acpihid_map_entry **entry)
242 {
243 	struct acpi_device *adev = ACPI_COMPANION(dev);
244 	struct acpihid_map_entry *p;
245 
246 	if (!adev)
247 		return -ENODEV;
248 
249 	list_for_each_entry(p, &acpihid_map, list) {
250 		if (acpi_dev_hid_uid_match(adev, p->hid,
251 					   p->uid[0] ? p->uid : NULL)) {
252 			if (entry)
253 				*entry = p;
254 			return p->devid;
255 		}
256 	}
257 	return -EINVAL;
258 }
259 
get_device_sbdf_id(struct device * dev)260 static inline int get_device_sbdf_id(struct device *dev)
261 {
262 	int sbdf;
263 
264 	if (dev_is_pci(dev))
265 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
266 	else
267 		sbdf = get_acpihid_device_id(dev, NULL);
268 
269 	return sbdf;
270 }
271 
get_dev_table(struct amd_iommu * iommu)272 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
273 {
274 	struct dev_table_entry *dev_table;
275 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
276 
277 	BUG_ON(pci_seg == NULL);
278 	dev_table = pci_seg->dev_table;
279 	BUG_ON(dev_table == NULL);
280 
281 	return dev_table;
282 }
283 
get_device_segment(struct device * dev)284 static inline u16 get_device_segment(struct device *dev)
285 {
286 	u16 seg;
287 
288 	if (dev_is_pci(dev)) {
289 		struct pci_dev *pdev = to_pci_dev(dev);
290 
291 		seg = pci_domain_nr(pdev->bus);
292 	} else {
293 		u32 devid = get_acpihid_device_id(dev, NULL);
294 
295 		seg = PCI_SBDF_TO_SEGID(devid);
296 	}
297 
298 	return seg;
299 }
300 
301 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)302 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
303 {
304 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
305 
306 	pci_seg->rlookup_table[devid] = iommu;
307 }
308 
__rlookup_amd_iommu(u16 seg,u16 devid)309 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
310 {
311 	struct amd_iommu_pci_seg *pci_seg;
312 
313 	for_each_pci_segment(pci_seg) {
314 		if (pci_seg->id == seg)
315 			return pci_seg->rlookup_table[devid];
316 	}
317 	return NULL;
318 }
319 
rlookup_amd_iommu(struct device * dev)320 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
321 {
322 	u16 seg = get_device_segment(dev);
323 	int devid = get_device_sbdf_id(dev);
324 
325 	if (devid < 0)
326 		return NULL;
327 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
328 }
329 
alloc_dev_data(struct amd_iommu * iommu,u16 devid)330 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
331 {
332 	struct iommu_dev_data *dev_data;
333 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
334 
335 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
336 	if (!dev_data)
337 		return NULL;
338 
339 	mutex_init(&dev_data->mutex);
340 	spin_lock_init(&dev_data->dte_lock);
341 	dev_data->devid = devid;
342 	ratelimit_default_init(&dev_data->rs);
343 
344 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
345 	return dev_data;
346 }
347 
search_dev_data(struct amd_iommu * iommu,u16 devid)348 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
349 {
350 	struct iommu_dev_data *dev_data;
351 	struct llist_node *node;
352 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
353 
354 	if (llist_empty(&pci_seg->dev_data_list))
355 		return NULL;
356 
357 	node = pci_seg->dev_data_list.first;
358 	llist_for_each_entry(dev_data, node, dev_data_list) {
359 		if (dev_data->devid == devid)
360 			return dev_data;
361 	}
362 
363 	return NULL;
364 }
365 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)366 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
367 {
368 	struct dev_table_entry new;
369 	struct amd_iommu *iommu;
370 	struct iommu_dev_data *dev_data, *alias_data;
371 	u16 devid = pci_dev_id(pdev);
372 	int ret = 0;
373 
374 	if (devid == alias)
375 		return 0;
376 
377 	iommu = rlookup_amd_iommu(&pdev->dev);
378 	if (!iommu)
379 		return 0;
380 
381 	/* Copy the data from pdev */
382 	dev_data = dev_iommu_priv_get(&pdev->dev);
383 	if (!dev_data) {
384 		pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
385 		ret = -EINVAL;
386 		goto out;
387 	}
388 	get_dte256(iommu, dev_data, &new);
389 
390 	/* Setup alias */
391 	alias_data = find_dev_data(iommu, alias);
392 	if (!alias_data) {
393 		pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
394 		ret = -EINVAL;
395 		goto out;
396 	}
397 	update_dte256(iommu, alias_data, &new);
398 
399 	amd_iommu_set_rlookup_table(iommu, alias);
400 out:
401 	return ret;
402 }
403 
clone_aliases(struct amd_iommu * iommu,struct device * dev)404 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
405 {
406 	struct pci_dev *pdev;
407 
408 	if (!dev_is_pci(dev))
409 		return;
410 	pdev = to_pci_dev(dev);
411 
412 	/*
413 	 * The IVRS alias stored in the alias table may not be
414 	 * part of the PCI DMA aliases if it's bus differs
415 	 * from the original device.
416 	 */
417 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
418 
419 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
420 }
421 
setup_aliases(struct amd_iommu * iommu,struct device * dev)422 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
423 {
424 	struct pci_dev *pdev = to_pci_dev(dev);
425 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
426 	u16 ivrs_alias;
427 
428 	/* For ACPI HID devices, there are no aliases */
429 	if (!dev_is_pci(dev))
430 		return;
431 
432 	/*
433 	 * Add the IVRS alias to the pci aliases if it is on the same
434 	 * bus. The IVRS table may know about a quirk that we don't.
435 	 */
436 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
437 	if (ivrs_alias != pci_dev_id(pdev) &&
438 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
439 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
440 
441 	clone_aliases(iommu, dev);
442 }
443 
find_dev_data(struct amd_iommu * iommu,u16 devid)444 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
445 {
446 	struct iommu_dev_data *dev_data;
447 
448 	dev_data = search_dev_data(iommu, devid);
449 
450 	if (dev_data == NULL) {
451 		dev_data = alloc_dev_data(iommu, devid);
452 		if (!dev_data)
453 			return NULL;
454 
455 		if (translation_pre_enabled(iommu))
456 			dev_data->defer_attach = true;
457 	}
458 
459 	return dev_data;
460 }
461 
462 /*
463 * Find or create an IOMMU group for a acpihid device.
464 */
acpihid_device_group(struct device * dev)465 static struct iommu_group *acpihid_device_group(struct device *dev)
466 {
467 	struct acpihid_map_entry *p, *entry = NULL;
468 	int devid;
469 
470 	devid = get_acpihid_device_id(dev, &entry);
471 	if (devid < 0)
472 		return ERR_PTR(devid);
473 
474 	list_for_each_entry(p, &acpihid_map, list) {
475 		if ((devid == p->devid) && p->group)
476 			entry->group = p->group;
477 	}
478 
479 	if (!entry->group)
480 		entry->group = generic_device_group(dev);
481 	else
482 		iommu_group_ref_get(entry->group);
483 
484 	return entry->group;
485 }
486 
pdev_pasid_supported(struct iommu_dev_data * dev_data)487 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
488 {
489 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
490 }
491 
pdev_get_caps(struct pci_dev * pdev)492 static u32 pdev_get_caps(struct pci_dev *pdev)
493 {
494 	int features;
495 	u32 flags = 0;
496 
497 	if (pci_ats_supported(pdev))
498 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
499 
500 	if (pci_pri_supported(pdev))
501 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
502 
503 	features = pci_pasid_features(pdev);
504 	if (features >= 0) {
505 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
506 
507 		if (features & PCI_PASID_CAP_EXEC)
508 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
509 
510 		if (features & PCI_PASID_CAP_PRIV)
511 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
512 	}
513 
514 	return flags;
515 }
516 
pdev_enable_cap_ats(struct pci_dev * pdev)517 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
518 {
519 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
520 	int ret = -EINVAL;
521 
522 	if (dev_data->ats_enabled)
523 		return 0;
524 
525 	if (amd_iommu_iotlb_sup &&
526 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
527 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
528 		if (!ret) {
529 			dev_data->ats_enabled = 1;
530 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
531 		}
532 	}
533 
534 	return ret;
535 }
536 
pdev_disable_cap_ats(struct pci_dev * pdev)537 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
538 {
539 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
540 
541 	if (dev_data->ats_enabled) {
542 		pci_disable_ats(pdev);
543 		dev_data->ats_enabled = 0;
544 	}
545 }
546 
pdev_enable_cap_pri(struct pci_dev * pdev)547 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
548 {
549 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
550 	int ret = -EINVAL;
551 
552 	if (dev_data->pri_enabled)
553 		return 0;
554 
555 	if (!dev_data->ats_enabled)
556 		return 0;
557 
558 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
559 		/*
560 		 * First reset the PRI state of the device.
561 		 * FIXME: Hardcode number of outstanding requests for now
562 		 */
563 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
564 			dev_data->pri_enabled = 1;
565 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
566 
567 			ret = 0;
568 		}
569 	}
570 
571 	return ret;
572 }
573 
pdev_disable_cap_pri(struct pci_dev * pdev)574 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
575 {
576 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
577 
578 	if (dev_data->pri_enabled) {
579 		pci_disable_pri(pdev);
580 		dev_data->pri_enabled = 0;
581 	}
582 }
583 
pdev_enable_cap_pasid(struct pci_dev * pdev)584 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
585 {
586 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
587 	int ret = -EINVAL;
588 
589 	if (dev_data->pasid_enabled)
590 		return 0;
591 
592 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
593 		/* Only allow access to user-accessible pages */
594 		ret = pci_enable_pasid(pdev, 0);
595 		if (!ret)
596 			dev_data->pasid_enabled = 1;
597 	}
598 
599 	return ret;
600 }
601 
pdev_disable_cap_pasid(struct pci_dev * pdev)602 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
603 {
604 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
605 
606 	if (dev_data->pasid_enabled) {
607 		pci_disable_pasid(pdev);
608 		dev_data->pasid_enabled = 0;
609 	}
610 }
611 
pdev_enable_caps(struct pci_dev * pdev)612 static void pdev_enable_caps(struct pci_dev *pdev)
613 {
614 	pdev_enable_cap_ats(pdev);
615 	pdev_enable_cap_pasid(pdev);
616 	pdev_enable_cap_pri(pdev);
617 }
618 
pdev_disable_caps(struct pci_dev * pdev)619 static void pdev_disable_caps(struct pci_dev *pdev)
620 {
621 	pdev_disable_cap_ats(pdev);
622 	pdev_disable_cap_pasid(pdev);
623 	pdev_disable_cap_pri(pdev);
624 }
625 
626 /*
627  * This function checks if the driver got a valid device from the caller to
628  * avoid dereferencing invalid pointers.
629  */
check_device(struct device * dev)630 static bool check_device(struct device *dev)
631 {
632 	struct amd_iommu_pci_seg *pci_seg;
633 	struct amd_iommu *iommu;
634 	int devid, sbdf;
635 
636 	if (!dev)
637 		return false;
638 
639 	sbdf = get_device_sbdf_id(dev);
640 	if (sbdf < 0)
641 		return false;
642 	devid = PCI_SBDF_TO_DEVID(sbdf);
643 
644 	iommu = rlookup_amd_iommu(dev);
645 	if (!iommu)
646 		return false;
647 
648 	/* Out of our scope? */
649 	pci_seg = iommu->pci_seg;
650 	if (devid > pci_seg->last_bdf)
651 		return false;
652 
653 	return true;
654 }
655 
iommu_init_device(struct amd_iommu * iommu,struct device * dev)656 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
657 {
658 	struct iommu_dev_data *dev_data;
659 	int devid, sbdf;
660 
661 	if (dev_iommu_priv_get(dev))
662 		return 0;
663 
664 	sbdf = get_device_sbdf_id(dev);
665 	if (sbdf < 0)
666 		return sbdf;
667 
668 	devid = PCI_SBDF_TO_DEVID(sbdf);
669 	dev_data = find_dev_data(iommu, devid);
670 	if (!dev_data)
671 		return -ENOMEM;
672 
673 	dev_data->dev = dev;
674 
675 	/*
676 	 * The dev_iommu_priv_set() needes to be called before setup_aliases.
677 	 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
678 	 */
679 	dev_iommu_priv_set(dev, dev_data);
680 	setup_aliases(iommu, dev);
681 
682 	/*
683 	 * By default we use passthrough mode for IOMMUv2 capable device.
684 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
685 	 * invalid address), we ignore the capability for the device so
686 	 * it'll be forced to go into translation mode.
687 	 */
688 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
689 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
690 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
691 	}
692 
693 	return 0;
694 }
695 
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)696 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
697 {
698 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
699 	struct dev_table_entry *dev_table = get_dev_table(iommu);
700 	int devid, sbdf;
701 
702 	sbdf = get_device_sbdf_id(dev);
703 	if (sbdf < 0)
704 		return;
705 
706 	devid = PCI_SBDF_TO_DEVID(sbdf);
707 	pci_seg->rlookup_table[devid] = NULL;
708 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
709 
710 	setup_aliases(iommu, dev);
711 }
712 
713 
714 /****************************************************************************
715  *
716  * Interrupt handling functions
717  *
718  ****************************************************************************/
719 
dump_dte_entry(struct amd_iommu * iommu,u16 devid)720 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
721 {
722 	int i;
723 	struct dev_table_entry dte;
724 	struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
725 
726 	get_dte256(iommu, dev_data, &dte);
727 
728 	for (i = 0; i < 4; ++i)
729 		pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
730 }
731 
dump_command(unsigned long phys_addr)732 static void dump_command(unsigned long phys_addr)
733 {
734 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
735 	int i;
736 
737 	for (i = 0; i < 4; ++i)
738 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
739 }
740 
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)741 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
742 {
743 	struct iommu_dev_data *dev_data = NULL;
744 	int devid, vmg_tag, flags;
745 	struct pci_dev *pdev;
746 	u64 spa;
747 
748 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
749 	vmg_tag = (event[1]) & 0xFFFF;
750 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
751 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
752 
753 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
754 					   devid & 0xff);
755 	if (pdev)
756 		dev_data = dev_iommu_priv_get(&pdev->dev);
757 
758 	if (dev_data) {
759 		if (__ratelimit(&dev_data->rs)) {
760 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
761 				vmg_tag, spa, flags);
762 		}
763 	} else {
764 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
765 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
766 			vmg_tag, spa, flags);
767 	}
768 
769 	if (pdev)
770 		pci_dev_put(pdev);
771 }
772 
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)773 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
774 {
775 	struct iommu_dev_data *dev_data = NULL;
776 	int devid, flags_rmp, vmg_tag, flags;
777 	struct pci_dev *pdev;
778 	u64 gpa;
779 
780 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
781 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
782 	vmg_tag   = (event[1]) & 0xFFFF;
783 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
784 	gpa       = ((u64)event[3] << 32) | event[2];
785 
786 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
787 					   devid & 0xff);
788 	if (pdev)
789 		dev_data = dev_iommu_priv_get(&pdev->dev);
790 
791 	if (dev_data) {
792 		if (__ratelimit(&dev_data->rs)) {
793 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
794 				vmg_tag, gpa, flags_rmp, flags);
795 		}
796 	} else {
797 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
798 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
799 			vmg_tag, gpa, flags_rmp, flags);
800 	}
801 
802 	if (pdev)
803 		pci_dev_put(pdev);
804 }
805 
806 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
807 	(((flags) & EVENT_FLAG_I) == 0)
808 
809 #define IS_WRITE_REQUEST(flags)			\
810 	((flags) & EVENT_FLAG_RW)
811 
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)812 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
813 					u16 devid, u16 domain_id,
814 					u64 address, int flags)
815 {
816 	struct iommu_dev_data *dev_data = NULL;
817 	struct pci_dev *pdev;
818 
819 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
820 					   devid & 0xff);
821 	if (pdev)
822 		dev_data = dev_iommu_priv_get(&pdev->dev);
823 
824 	if (dev_data) {
825 		/*
826 		 * If this is a DMA fault (for which the I(nterrupt)
827 		 * bit will be unset), allow report_iommu_fault() to
828 		 * prevent logging it.
829 		 */
830 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
831 			/* Device not attached to domain properly */
832 			if (dev_data->domain == NULL) {
833 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
834 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
835 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
836 						   PCI_FUNC(devid), domain_id);
837 				goto out;
838 			}
839 
840 			if (!report_iommu_fault(&dev_data->domain->domain,
841 						&pdev->dev, address,
842 						IS_WRITE_REQUEST(flags) ?
843 							IOMMU_FAULT_WRITE :
844 							IOMMU_FAULT_READ))
845 				goto out;
846 		}
847 
848 		if (__ratelimit(&dev_data->rs)) {
849 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
850 				domain_id, address, flags);
851 		}
852 	} else {
853 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
854 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
855 			domain_id, address, flags);
856 	}
857 
858 out:
859 	if (pdev)
860 		pci_dev_put(pdev);
861 }
862 
iommu_print_event(struct amd_iommu * iommu,void * __evt)863 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
864 {
865 	struct device *dev = iommu->iommu.dev;
866 	int type, devid, flags, tag;
867 	volatile u32 *event = __evt;
868 	int count = 0;
869 	u64 address, ctrl;
870 	u32 pasid;
871 
872 retry:
873 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
874 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
875 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
876 		  (event[1] & EVENT_DOMID_MASK_LO);
877 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
878 	address = (u64)(((u64)event[3]) << 32) | event[2];
879 	ctrl    = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
880 
881 	if (type == 0) {
882 		/* Did we hit the erratum? */
883 		if (++count == LOOP_TIMEOUT) {
884 			pr_err("No event written to event log\n");
885 			return;
886 		}
887 		udelay(1);
888 		goto retry;
889 	}
890 
891 	if (type == EVENT_TYPE_IO_FAULT) {
892 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
893 		return;
894 	}
895 
896 	switch (type) {
897 	case EVENT_TYPE_ILL_DEV:
898 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
899 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
900 			pasid, address, flags);
901 		dev_err(dev, "Control Reg : 0x%llx\n", ctrl);
902 		dump_dte_entry(iommu, devid);
903 		break;
904 	case EVENT_TYPE_DEV_TAB_ERR:
905 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
906 			"address=0x%llx flags=0x%04x]\n",
907 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
908 			address, flags);
909 		break;
910 	case EVENT_TYPE_PAGE_TAB_ERR:
911 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
912 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
913 			pasid, address, flags);
914 		break;
915 	case EVENT_TYPE_ILL_CMD:
916 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
917 		dump_command(address);
918 		break;
919 	case EVENT_TYPE_CMD_HARD_ERR:
920 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
921 			address, flags);
922 		break;
923 	case EVENT_TYPE_IOTLB_INV_TO:
924 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
925 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
926 			address);
927 		break;
928 	case EVENT_TYPE_INV_DEV_REQ:
929 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
930 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
931 			pasid, address, flags);
932 		break;
933 	case EVENT_TYPE_RMP_FAULT:
934 		amd_iommu_report_rmp_fault(iommu, event);
935 		break;
936 	case EVENT_TYPE_RMP_HW_ERR:
937 		amd_iommu_report_rmp_hw_error(iommu, event);
938 		break;
939 	case EVENT_TYPE_INV_PPR_REQ:
940 		pasid = PPR_PASID(*((u64 *)__evt));
941 		tag = event[1] & 0x03FF;
942 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
943 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
944 			pasid, address, flags, tag);
945 		break;
946 	default:
947 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
948 			event[0], event[1], event[2], event[3]);
949 	}
950 
951 	/*
952 	 * To detect the hardware errata 732 we need to clear the
953 	 * entry back to zero. This issue does not exist on SNP
954 	 * enabled system. Also this buffer is not writeable on
955 	 * SNP enabled system.
956 	 */
957 	if (!amd_iommu_snp_en)
958 		memset(__evt, 0, 4 * sizeof(u32));
959 }
960 
iommu_poll_events(struct amd_iommu * iommu)961 static void iommu_poll_events(struct amd_iommu *iommu)
962 {
963 	u32 head, tail;
964 
965 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
966 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
967 
968 	while (head != tail) {
969 		iommu_print_event(iommu, iommu->evt_buf + head);
970 
971 		/* Update head pointer of hardware ring-buffer */
972 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
973 		writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
974 	}
975 
976 }
977 
978 #ifdef CONFIG_IRQ_REMAP
979 static int (*iommu_ga_log_notifier)(u32);
980 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))981 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
982 {
983 	iommu_ga_log_notifier = notifier;
984 
985 	return 0;
986 }
987 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
988 
iommu_poll_ga_log(struct amd_iommu * iommu)989 static void iommu_poll_ga_log(struct amd_iommu *iommu)
990 {
991 	u32 head, tail;
992 
993 	if (iommu->ga_log == NULL)
994 		return;
995 
996 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
997 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
998 
999 	while (head != tail) {
1000 		volatile u64 *raw;
1001 		u64 log_entry;
1002 
1003 		raw = (u64 *)(iommu->ga_log + head);
1004 
1005 		/* Avoid memcpy function-call overhead */
1006 		log_entry = *raw;
1007 
1008 		/* Update head pointer of hardware ring-buffer */
1009 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1010 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1011 
1012 		/* Handle GA entry */
1013 		switch (GA_REQ_TYPE(log_entry)) {
1014 		case GA_GUEST_NR:
1015 			if (!iommu_ga_log_notifier)
1016 				break;
1017 
1018 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1019 				 __func__, GA_DEVID(log_entry),
1020 				 GA_TAG(log_entry));
1021 
1022 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1023 				pr_err("GA log notifier failed.\n");
1024 			break;
1025 		default:
1026 			break;
1027 		}
1028 	}
1029 }
1030 
1031 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1032 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1033 {
1034 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1035 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1036 		return;
1037 
1038 	dev_set_msi_domain(dev, iommu->ir_domain);
1039 }
1040 
1041 #else /* CONFIG_IRQ_REMAP */
1042 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1043 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1044 #endif /* !CONFIG_IRQ_REMAP */
1045 
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))1046 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1047 				 u32 int_mask, u32 overflow_mask,
1048 				 void (*int_handler)(struct amd_iommu *),
1049 				 void (*overflow_handler)(struct amd_iommu *))
1050 {
1051 	struct amd_iommu *iommu = (struct amd_iommu *) data;
1052 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1053 	u32 mask = int_mask | overflow_mask;
1054 
1055 	while (status & mask) {
1056 		/* Enable interrupt sources again */
1057 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1058 
1059 		if (int_handler) {
1060 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1061 				 iommu->index, evt_type);
1062 			int_handler(iommu);
1063 		}
1064 
1065 		if ((status & overflow_mask) && overflow_handler)
1066 			overflow_handler(iommu);
1067 
1068 		/*
1069 		 * Hardware bug: ERBT1312
1070 		 * When re-enabling interrupt (by writing 1
1071 		 * to clear the bit), the hardware might also try to set
1072 		 * the interrupt bit in the event status register.
1073 		 * In this scenario, the bit will be set, and disable
1074 		 * subsequent interrupts.
1075 		 *
1076 		 * Workaround: The IOMMU driver should read back the
1077 		 * status register and check if the interrupt bits are cleared.
1078 		 * If not, driver will need to go through the interrupt handler
1079 		 * again and re-clear the bits
1080 		 */
1081 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1082 	}
1083 }
1084 
amd_iommu_int_thread_evtlog(int irq,void * data)1085 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1086 {
1087 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1088 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
1089 			     iommu_poll_events, amd_iommu_restart_event_logging);
1090 
1091 	return IRQ_HANDLED;
1092 }
1093 
amd_iommu_int_thread_pprlog(int irq,void * data)1094 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1095 {
1096 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1097 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
1098 			     amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1099 
1100 	return IRQ_HANDLED;
1101 }
1102 
amd_iommu_int_thread_galog(int irq,void * data)1103 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1104 {
1105 #ifdef CONFIG_IRQ_REMAP
1106 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1107 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1108 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1109 #endif
1110 
1111 	return IRQ_HANDLED;
1112 }
1113 
amd_iommu_int_thread(int irq,void * data)1114 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1115 {
1116 	amd_iommu_int_thread_evtlog(irq, data);
1117 	amd_iommu_int_thread_pprlog(irq, data);
1118 	amd_iommu_int_thread_galog(irq, data);
1119 
1120 	return IRQ_HANDLED;
1121 }
1122 
amd_iommu_int_handler(int irq,void * data)1123 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1124 {
1125 	return IRQ_WAKE_THREAD;
1126 }
1127 
1128 /****************************************************************************
1129  *
1130  * IOMMU command queuing functions
1131  *
1132  ****************************************************************************/
1133 
wait_on_sem(struct amd_iommu * iommu,u64 data)1134 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1135 {
1136 	int i = 0;
1137 
1138 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1139 		udelay(1);
1140 		i += 1;
1141 	}
1142 
1143 	if (i == LOOP_TIMEOUT) {
1144 		pr_alert("Completion-Wait loop timed out\n");
1145 		return -EIO;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1151 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1152 			       struct iommu_cmd *cmd)
1153 {
1154 	u8 *target;
1155 	u32 tail;
1156 
1157 	/* Copy command to buffer */
1158 	tail = iommu->cmd_buf_tail;
1159 	target = iommu->cmd_buf + tail;
1160 	memcpy(target, cmd, sizeof(*cmd));
1161 
1162 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1163 	iommu->cmd_buf_tail = tail;
1164 
1165 	/* Tell the IOMMU about it */
1166 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1167 }
1168 
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1169 static void build_completion_wait(struct iommu_cmd *cmd,
1170 				  struct amd_iommu *iommu,
1171 				  u64 data)
1172 {
1173 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1174 
1175 	memset(cmd, 0, sizeof(*cmd));
1176 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1177 	cmd->data[1] = upper_32_bits(paddr);
1178 	cmd->data[2] = lower_32_bits(data);
1179 	cmd->data[3] = upper_32_bits(data);
1180 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1181 }
1182 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1183 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1184 {
1185 	memset(cmd, 0, sizeof(*cmd));
1186 	cmd->data[0] = devid;
1187 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1188 }
1189 
1190 /*
1191  * Builds an invalidation address which is suitable for one page or multiple
1192  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1193  */
build_inv_address(u64 address,size_t size)1194 static inline u64 build_inv_address(u64 address, size_t size)
1195 {
1196 	u64 pages, end, msb_diff;
1197 
1198 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1199 
1200 	if (pages == 1)
1201 		return address & PAGE_MASK;
1202 
1203 	end = address + size - 1;
1204 
1205 	/*
1206 	 * msb_diff would hold the index of the most significant bit that
1207 	 * flipped between the start and end.
1208 	 */
1209 	msb_diff = fls64(end ^ address) - 1;
1210 
1211 	/*
1212 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1213 	 * between the start and the end, invalidate everything.
1214 	 */
1215 	if (unlikely(msb_diff > 51)) {
1216 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1217 	} else {
1218 		/*
1219 		 * The msb-bit must be clear on the address. Just set all the
1220 		 * lower bits.
1221 		 */
1222 		address |= (1ull << msb_diff) - 1;
1223 	}
1224 
1225 	/* Clear bits 11:0 */
1226 	address &= PAGE_MASK;
1227 
1228 	/* Set the size bit - we flush more than one 4kb page */
1229 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1230 }
1231 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1232 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1233 				  size_t size, u16 domid,
1234 				  ioasid_t pasid, bool gn)
1235 {
1236 	u64 inv_address = build_inv_address(address, size);
1237 
1238 	memset(cmd, 0, sizeof(*cmd));
1239 
1240 	cmd->data[1] |= domid;
1241 	cmd->data[2]  = lower_32_bits(inv_address);
1242 	cmd->data[3]  = upper_32_bits(inv_address);
1243 	/* PDE bit - we want to flush everything, not only the PTEs */
1244 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1245 	if (gn) {
1246 		cmd->data[0] |= pasid;
1247 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1248 	}
1249 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1250 }
1251 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1252 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1253 				  u64 address, size_t size,
1254 				  ioasid_t pasid, bool gn)
1255 {
1256 	u64 inv_address = build_inv_address(address, size);
1257 
1258 	memset(cmd, 0, sizeof(*cmd));
1259 
1260 	cmd->data[0]  = devid;
1261 	cmd->data[0] |= (qdep & 0xff) << 24;
1262 	cmd->data[1]  = devid;
1263 	cmd->data[2]  = lower_32_bits(inv_address);
1264 	cmd->data[3]  = upper_32_bits(inv_address);
1265 	if (gn) {
1266 		cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1267 		cmd->data[1] |= (pasid & 0xff) << 16;
1268 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1269 	}
1270 
1271 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1272 }
1273 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1274 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1275 			       int status, int tag, u8 gn)
1276 {
1277 	memset(cmd, 0, sizeof(*cmd));
1278 
1279 	cmd->data[0]  = devid;
1280 	if (gn) {
1281 		cmd->data[1]  = pasid;
1282 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1283 	}
1284 	cmd->data[3]  = tag & 0x1ff;
1285 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1286 
1287 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1288 }
1289 
build_inv_all(struct iommu_cmd * cmd)1290 static void build_inv_all(struct iommu_cmd *cmd)
1291 {
1292 	memset(cmd, 0, sizeof(*cmd));
1293 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1294 }
1295 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1296 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1297 {
1298 	memset(cmd, 0, sizeof(*cmd));
1299 	cmd->data[0] = devid;
1300 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1301 }
1302 
1303 /*
1304  * Writes the command to the IOMMUs command buffer and informs the
1305  * hardware about the new command.
1306  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1307 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1308 				      struct iommu_cmd *cmd,
1309 				      bool sync)
1310 {
1311 	unsigned int count = 0;
1312 	u32 left, next_tail;
1313 
1314 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1315 again:
1316 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1317 
1318 	if (left <= 0x20) {
1319 		/* Skip udelay() the first time around */
1320 		if (count++) {
1321 			if (count == LOOP_TIMEOUT) {
1322 				pr_err("Command buffer timeout\n");
1323 				return -EIO;
1324 			}
1325 
1326 			udelay(1);
1327 		}
1328 
1329 		/* Update head and recheck remaining space */
1330 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1331 					    MMIO_CMD_HEAD_OFFSET);
1332 
1333 		goto again;
1334 	}
1335 
1336 	copy_cmd_to_buffer(iommu, cmd);
1337 
1338 	/* Do we need to make sure all commands are processed? */
1339 	iommu->need_sync = sync;
1340 
1341 	return 0;
1342 }
1343 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1344 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1345 				    struct iommu_cmd *cmd,
1346 				    bool sync)
1347 {
1348 	unsigned long flags;
1349 	int ret;
1350 
1351 	raw_spin_lock_irqsave(&iommu->lock, flags);
1352 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1353 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1354 
1355 	return ret;
1356 }
1357 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1358 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1359 {
1360 	return iommu_queue_command_sync(iommu, cmd, true);
1361 }
1362 
1363 /*
1364  * This function queues a completion wait command into the command
1365  * buffer of an IOMMU
1366  */
iommu_completion_wait(struct amd_iommu * iommu)1367 static int iommu_completion_wait(struct amd_iommu *iommu)
1368 {
1369 	struct iommu_cmd cmd;
1370 	unsigned long flags;
1371 	int ret;
1372 	u64 data;
1373 
1374 	if (!iommu->need_sync)
1375 		return 0;
1376 
1377 	data = atomic64_inc_return(&iommu->cmd_sem_val);
1378 	build_completion_wait(&cmd, iommu, data);
1379 
1380 	raw_spin_lock_irqsave(&iommu->lock, flags);
1381 
1382 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1383 	if (ret)
1384 		goto out_unlock;
1385 
1386 	ret = wait_on_sem(iommu, data);
1387 
1388 out_unlock:
1389 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1390 
1391 	return ret;
1392 }
1393 
domain_flush_complete(struct protection_domain * domain)1394 static void domain_flush_complete(struct protection_domain *domain)
1395 {
1396 	struct pdom_iommu_info *pdom_iommu_info;
1397 	unsigned long i;
1398 
1399 	lockdep_assert_held(&domain->lock);
1400 
1401 	/*
1402 	 * Devices of this domain are behind this IOMMU
1403 	 * We need to wait for completion of all commands.
1404 	 */
1405 	 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1406 		iommu_completion_wait(pdom_iommu_info->iommu);
1407 }
1408 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1409 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1410 {
1411 	struct iommu_cmd cmd;
1412 
1413 	build_inv_dte(&cmd, devid);
1414 
1415 	return iommu_queue_command(iommu, &cmd);
1416 }
1417 
iommu_flush_dte_sync(struct amd_iommu * iommu,u16 devid)1418 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1419 {
1420 	int ret;
1421 
1422 	ret = iommu_flush_dte(iommu, devid);
1423 	if (!ret)
1424 		iommu_completion_wait(iommu);
1425 }
1426 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1427 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1428 {
1429 	u32 devid;
1430 	u16 last_bdf = iommu->pci_seg->last_bdf;
1431 
1432 	for (devid = 0; devid <= last_bdf; ++devid)
1433 		iommu_flush_dte(iommu, devid);
1434 
1435 	iommu_completion_wait(iommu);
1436 }
1437 
1438 /*
1439  * This function uses heavy locking and may disable irqs for some time. But
1440  * this is no issue because it is only called during resume.
1441  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1442 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1443 {
1444 	u32 dom_id;
1445 	u16 last_bdf = iommu->pci_seg->last_bdf;
1446 
1447 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1448 		struct iommu_cmd cmd;
1449 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1450 				      dom_id, IOMMU_NO_PASID, false);
1451 		iommu_queue_command(iommu, &cmd);
1452 	}
1453 
1454 	iommu_completion_wait(iommu);
1455 }
1456 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1457 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1458 {
1459 	struct iommu_cmd cmd;
1460 
1461 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1462 			      dom_id, IOMMU_NO_PASID, false);
1463 	iommu_queue_command(iommu, &cmd);
1464 
1465 	iommu_completion_wait(iommu);
1466 }
1467 
amd_iommu_flush_all(struct amd_iommu * iommu)1468 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1469 {
1470 	struct iommu_cmd cmd;
1471 
1472 	build_inv_all(&cmd);
1473 
1474 	iommu_queue_command(iommu, &cmd);
1475 	iommu_completion_wait(iommu);
1476 }
1477 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1478 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1479 {
1480 	struct iommu_cmd cmd;
1481 
1482 	build_inv_irt(&cmd, devid);
1483 
1484 	iommu_queue_command(iommu, &cmd);
1485 }
1486 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1487 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1488 {
1489 	u32 devid;
1490 	u16 last_bdf = iommu->pci_seg->last_bdf;
1491 
1492 	if (iommu->irtcachedis_enabled)
1493 		return;
1494 
1495 	for (devid = 0; devid <= last_bdf; devid++)
1496 		iommu_flush_irt(iommu, devid);
1497 
1498 	iommu_completion_wait(iommu);
1499 }
1500 
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1501 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1502 {
1503 	if (check_feature(FEATURE_IA)) {
1504 		amd_iommu_flush_all(iommu);
1505 	} else {
1506 		amd_iommu_flush_dte_all(iommu);
1507 		amd_iommu_flush_irt_all(iommu);
1508 		amd_iommu_flush_tlb_all(iommu);
1509 	}
1510 }
1511 
1512 /*
1513  * Command send function for flushing on-device TLB
1514  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1515 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1516 			      size_t size, ioasid_t pasid, bool gn)
1517 {
1518 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1519 	struct iommu_cmd cmd;
1520 	int qdep = dev_data->ats_qdep;
1521 
1522 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1523 			      size, pasid, gn);
1524 
1525 	return iommu_queue_command(iommu, &cmd);
1526 }
1527 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1528 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1529 {
1530 	struct amd_iommu *iommu = data;
1531 
1532 	return iommu_flush_dte(iommu, alias);
1533 }
1534 
1535 /*
1536  * Command send function for invalidating a device table entry
1537  */
device_flush_dte(struct iommu_dev_data * dev_data)1538 static int device_flush_dte(struct iommu_dev_data *dev_data)
1539 {
1540 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1541 	struct pci_dev *pdev = NULL;
1542 	struct amd_iommu_pci_seg *pci_seg;
1543 	u16 alias;
1544 	int ret;
1545 
1546 	if (dev_is_pci(dev_data->dev))
1547 		pdev = to_pci_dev(dev_data->dev);
1548 
1549 	if (pdev)
1550 		ret = pci_for_each_dma_alias(pdev,
1551 					     device_flush_dte_alias, iommu);
1552 	else
1553 		ret = iommu_flush_dte(iommu, dev_data->devid);
1554 	if (ret)
1555 		return ret;
1556 
1557 	pci_seg = iommu->pci_seg;
1558 	alias = pci_seg->alias_table[dev_data->devid];
1559 	if (alias != dev_data->devid) {
1560 		ret = iommu_flush_dte(iommu, alias);
1561 		if (ret)
1562 			return ret;
1563 	}
1564 
1565 	if (dev_data->ats_enabled) {
1566 		/* Invalidate the entire contents of an IOTLB */
1567 		ret = device_flush_iotlb(dev_data, 0, ~0UL,
1568 					 IOMMU_NO_PASID, false);
1569 	}
1570 
1571 	return ret;
1572 }
1573 
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1574 static int domain_flush_pages_v2(struct protection_domain *pdom,
1575 				 u64 address, size_t size)
1576 {
1577 	struct iommu_dev_data *dev_data;
1578 	struct iommu_cmd cmd;
1579 	int ret = 0;
1580 
1581 	lockdep_assert_held(&pdom->lock);
1582 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
1583 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1584 		u16 domid = dev_data->gcr3_info.domid;
1585 
1586 		build_inv_iommu_pages(&cmd, address, size,
1587 				      domid, IOMMU_NO_PASID, true);
1588 
1589 		ret |= iommu_queue_command(iommu, &cmd);
1590 	}
1591 
1592 	return ret;
1593 }
1594 
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1595 static int domain_flush_pages_v1(struct protection_domain *pdom,
1596 				 u64 address, size_t size)
1597 {
1598 	struct pdom_iommu_info *pdom_iommu_info;
1599 	struct iommu_cmd cmd;
1600 	int ret = 0;
1601 	unsigned long i;
1602 
1603 	lockdep_assert_held(&pdom->lock);
1604 
1605 	build_inv_iommu_pages(&cmd, address, size,
1606 			      pdom->id, IOMMU_NO_PASID, false);
1607 
1608 	xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1609 		/*
1610 		 * Devices of this domain are behind this IOMMU
1611 		 * We need a TLB flush
1612 		 */
1613 		ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 /*
1620  * TLB invalidation function which is called from the mapping functions.
1621  * It flushes range of PTEs of the domain.
1622  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1623 static void __domain_flush_pages(struct protection_domain *domain,
1624 				 u64 address, size_t size)
1625 {
1626 	struct iommu_dev_data *dev_data;
1627 	int ret = 0;
1628 	ioasid_t pasid = IOMMU_NO_PASID;
1629 	bool gn = false;
1630 
1631 	lockdep_assert_held(&domain->lock);
1632 
1633 	if (pdom_is_v2_pgtbl_mode(domain)) {
1634 		gn = true;
1635 		ret = domain_flush_pages_v2(domain, address, size);
1636 	} else {
1637 		ret = domain_flush_pages_v1(domain, address, size);
1638 	}
1639 
1640 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1641 
1642 		if (!dev_data->ats_enabled)
1643 			continue;
1644 
1645 		ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1646 	}
1647 
1648 	WARN_ON(ret);
1649 }
1650 
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1651 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1652 				  u64 address, size_t size)
1653 {
1654 	lockdep_assert_held(&domain->lock);
1655 
1656 	if (likely(!amd_iommu_np_cache)) {
1657 		__domain_flush_pages(domain, address, size);
1658 
1659 		/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1660 		domain_flush_complete(domain);
1661 
1662 		return;
1663 	}
1664 
1665 	/*
1666 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1667 	 * In such setups it is best to avoid flushes of ranges which are not
1668 	 * naturally aligned, since it would lead to flushes of unmodified
1669 	 * PTEs. Such flushes would require the hypervisor to do more work than
1670 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1671 	 * until you cover the range. Each iteration flushes the smaller
1672 	 * between the natural alignment of the address that we flush and the
1673 	 * greatest naturally aligned region that fits in the range.
1674 	 */
1675 	while (size != 0) {
1676 		int addr_alignment = __ffs(address);
1677 		int size_alignment = __fls(size);
1678 		int min_alignment;
1679 		size_t flush_size;
1680 
1681 		/*
1682 		 * size is always non-zero, but address might be zero, causing
1683 		 * addr_alignment to be negative. As the casting of the
1684 		 * argument in __ffs(address) to long might trim the high bits
1685 		 * of the address on x86-32, cast to long when doing the check.
1686 		 */
1687 		if (likely((unsigned long)address != 0))
1688 			min_alignment = min(addr_alignment, size_alignment);
1689 		else
1690 			min_alignment = size_alignment;
1691 
1692 		flush_size = 1ul << min_alignment;
1693 
1694 		__domain_flush_pages(domain, address, flush_size);
1695 		address += flush_size;
1696 		size -= flush_size;
1697 	}
1698 
1699 	/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1700 	domain_flush_complete(domain);
1701 }
1702 
1703 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1704 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1705 {
1706 	amd_iommu_domain_flush_pages(domain, 0,
1707 				     CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1708 }
1709 
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1710 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1711 				     ioasid_t pasid, u64 address, size_t size)
1712 {
1713 	struct iommu_cmd cmd;
1714 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1715 
1716 	build_inv_iommu_pages(&cmd, address, size,
1717 			      dev_data->gcr3_info.domid, pasid, true);
1718 	iommu_queue_command(iommu, &cmd);
1719 
1720 	if (dev_data->ats_enabled)
1721 		device_flush_iotlb(dev_data, address, size, pasid, true);
1722 
1723 	iommu_completion_wait(iommu);
1724 }
1725 
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1726 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1727 				ioasid_t pasid)
1728 {
1729 	amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1730 					CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1731 }
1732 
1733 /* Flush the not present cache if it exists */
domain_flush_np_cache(struct protection_domain * domain,dma_addr_t iova,size_t size)1734 static void domain_flush_np_cache(struct protection_domain *domain,
1735 		dma_addr_t iova, size_t size)
1736 {
1737 	if (unlikely(amd_iommu_np_cache)) {
1738 		unsigned long flags;
1739 
1740 		spin_lock_irqsave(&domain->lock, flags);
1741 		amd_iommu_domain_flush_pages(domain, iova, size);
1742 		spin_unlock_irqrestore(&domain->lock, flags);
1743 	}
1744 }
1745 
1746 
1747 /*
1748  * This function flushes the DTEs for all devices in domain
1749  */
amd_iommu_update_and_flush_device_table(struct protection_domain * domain)1750 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1751 {
1752 	struct iommu_dev_data *dev_data;
1753 
1754 	lockdep_assert_held(&domain->lock);
1755 
1756 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1757 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1758 
1759 		set_dte_entry(iommu, dev_data);
1760 		clone_aliases(iommu, dev_data->dev);
1761 	}
1762 
1763 	list_for_each_entry(dev_data, &domain->dev_list, list)
1764 		device_flush_dte(dev_data);
1765 
1766 	domain_flush_complete(domain);
1767 }
1768 
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1769 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1770 {
1771 	struct iommu_dev_data *dev_data;
1772 	struct amd_iommu *iommu;
1773 	struct iommu_cmd cmd;
1774 
1775 	dev_data = dev_iommu_priv_get(dev);
1776 	iommu    = get_amd_iommu_from_dev(dev);
1777 
1778 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1779 			   tag, dev_data->pri_tlp);
1780 
1781 	return iommu_queue_command(iommu, &cmd);
1782 }
1783 
1784 /****************************************************************************
1785  *
1786  * The next functions belong to the domain allocation. A domain is
1787  * allocated for every IOMMU as the default domain. If device isolation
1788  * is enabled, every device get its own domain. The most important thing
1789  * about domains is the page table mapping the DMA address space they
1790  * contain.
1791  *
1792  ****************************************************************************/
1793 
pdom_id_alloc(void)1794 static int pdom_id_alloc(void)
1795 {
1796 	return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1797 }
1798 
pdom_id_free(int id)1799 static void pdom_id_free(int id)
1800 {
1801 	ida_free(&pdom_ids, id);
1802 }
1803 
free_gcr3_tbl_level1(u64 * tbl)1804 static void free_gcr3_tbl_level1(u64 *tbl)
1805 {
1806 	u64 *ptr;
1807 	int i;
1808 
1809 	for (i = 0; i < 512; ++i) {
1810 		if (!(tbl[i] & GCR3_VALID))
1811 			continue;
1812 
1813 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1814 
1815 		iommu_free_page(ptr);
1816 	}
1817 }
1818 
free_gcr3_tbl_level2(u64 * tbl)1819 static void free_gcr3_tbl_level2(u64 *tbl)
1820 {
1821 	u64 *ptr;
1822 	int i;
1823 
1824 	for (i = 0; i < 512; ++i) {
1825 		if (!(tbl[i] & GCR3_VALID))
1826 			continue;
1827 
1828 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1829 
1830 		free_gcr3_tbl_level1(ptr);
1831 	}
1832 }
1833 
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1834 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1835 {
1836 	if (gcr3_info->glx == 2)
1837 		free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1838 	else if (gcr3_info->glx == 1)
1839 		free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1840 	else
1841 		WARN_ON_ONCE(gcr3_info->glx != 0);
1842 
1843 	gcr3_info->glx = 0;
1844 
1845 	/* Free per device domain ID */
1846 	pdom_id_free(gcr3_info->domid);
1847 
1848 	iommu_free_page(gcr3_info->gcr3_tbl);
1849 	gcr3_info->gcr3_tbl = NULL;
1850 }
1851 
1852 /*
1853  * Number of GCR3 table levels required. Level must be 4-Kbyte
1854  * page and can contain up to 512 entries.
1855  */
get_gcr3_levels(int pasids)1856 static int get_gcr3_levels(int pasids)
1857 {
1858 	int levels;
1859 
1860 	if (pasids == -1)
1861 		return amd_iommu_max_glx_val;
1862 
1863 	levels = get_count_order(pasids);
1864 
1865 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1866 }
1867 
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1868 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1869 			    struct amd_iommu *iommu, int pasids)
1870 {
1871 	int levels = get_gcr3_levels(pasids);
1872 	int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1873 	int domid;
1874 
1875 	if (levels > amd_iommu_max_glx_val)
1876 		return -EINVAL;
1877 
1878 	if (gcr3_info->gcr3_tbl)
1879 		return -EBUSY;
1880 
1881 	/* Allocate per device domain ID */
1882 	domid = pdom_id_alloc();
1883 	if (domid <= 0)
1884 		return -ENOSPC;
1885 	gcr3_info->domid = domid;
1886 
1887 	gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
1888 	if (gcr3_info->gcr3_tbl == NULL) {
1889 		pdom_id_free(domid);
1890 		return -ENOMEM;
1891 	}
1892 
1893 	gcr3_info->glx = levels;
1894 
1895 	return 0;
1896 }
1897 
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1898 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1899 			   ioasid_t pasid, bool alloc)
1900 {
1901 	int index;
1902 	u64 *pte;
1903 	u64 *root = gcr3_info->gcr3_tbl;
1904 	int level = gcr3_info->glx;
1905 
1906 	while (true) {
1907 
1908 		index = (pasid >> (9 * level)) & 0x1ff;
1909 		pte   = &root[index];
1910 
1911 		if (level == 0)
1912 			break;
1913 
1914 		if (!(*pte & GCR3_VALID)) {
1915 			if (!alloc)
1916 				return NULL;
1917 
1918 			root = (void *)get_zeroed_page(GFP_ATOMIC);
1919 			if (root == NULL)
1920 				return NULL;
1921 
1922 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
1923 		}
1924 
1925 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
1926 
1927 		level -= 1;
1928 	}
1929 
1930 	return pte;
1931 }
1932 
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1933 static int update_gcr3(struct iommu_dev_data *dev_data,
1934 		       ioasid_t pasid, unsigned long gcr3, bool set)
1935 {
1936 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1937 	u64 *pte;
1938 
1939 	pte = __get_gcr3_pte(gcr3_info, pasid, true);
1940 	if (pte == NULL)
1941 		return -ENOMEM;
1942 
1943 	if (set)
1944 		*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1945 	else
1946 		*pte = 0;
1947 
1948 	dev_flush_pasid_all(dev_data, pasid);
1949 	return 0;
1950 }
1951 
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1952 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1953 		       unsigned long gcr3)
1954 {
1955 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1956 	int ret;
1957 
1958 	iommu_group_mutex_assert(dev_data->dev);
1959 
1960 	ret = update_gcr3(dev_data, pasid, gcr3, true);
1961 	if (ret)
1962 		return ret;
1963 
1964 	gcr3_info->pasid_cnt++;
1965 	return ret;
1966 }
1967 
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1968 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1969 {
1970 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1971 	int ret;
1972 
1973 	iommu_group_mutex_assert(dev_data->dev);
1974 
1975 	ret = update_gcr3(dev_data, pasid, 0, false);
1976 	if (ret)
1977 		return ret;
1978 
1979 	gcr3_info->pasid_cnt--;
1980 	return ret;
1981 }
1982 
make_clear_dte(struct iommu_dev_data * dev_data,struct dev_table_entry * ptr,struct dev_table_entry * new)1983 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
1984 			   struct dev_table_entry *new)
1985 {
1986 	/* All existing DTE must have V bit set */
1987 	new->data128[0] = DTE_FLAG_V;
1988 	new->data128[1] = 0;
1989 }
1990 
1991 /*
1992  * Note:
1993  * The old value for GCR3 table and GPT have been cleared from caller.
1994  */
set_dte_gcr3_table(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * target)1995 static void set_dte_gcr3_table(struct amd_iommu *iommu,
1996 			       struct iommu_dev_data *dev_data,
1997 			       struct dev_table_entry *target)
1998 {
1999 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2000 	u64 gcr3;
2001 
2002 	if (!gcr3_info->gcr3_tbl)
2003 		return;
2004 
2005 	pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2006 		 __func__, dev_data->devid, gcr3_info->glx,
2007 		 (unsigned long long)gcr3_info->gcr3_tbl);
2008 
2009 	gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2010 
2011 	target->data[0] |= DTE_FLAG_GV |
2012 			   FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2013 			   FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2014 	if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2015 		target->data[0] |= DTE_FLAG_GIOV;
2016 
2017 	target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2018 			   FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2019 
2020 	/* Guest page table can only support 4 and 5 levels  */
2021 	if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2022 		target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2023 	else
2024 		target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2025 }
2026 
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2027 static void set_dte_entry(struct amd_iommu *iommu,
2028 			  struct iommu_dev_data *dev_data)
2029 {
2030 	u16 domid;
2031 	u32 old_domid;
2032 	struct dev_table_entry *initial_dte;
2033 	struct dev_table_entry new = {};
2034 	struct protection_domain *domain = dev_data->domain;
2035 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2036 	struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2037 
2038 	if (gcr3_info && gcr3_info->gcr3_tbl)
2039 		domid = dev_data->gcr3_info.domid;
2040 	else
2041 		domid = domain->id;
2042 
2043 	make_clear_dte(dev_data, dte, &new);
2044 
2045 	if (domain->iop.mode != PAGE_MODE_NONE)
2046 		new.data[0] |= iommu_virt_to_phys(domain->iop.root);
2047 
2048 	new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
2049 		    << DEV_ENTRY_MODE_SHIFT;
2050 
2051 	new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2052 
2053 	/*
2054 	 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2055 	 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2056 	 * do_iommu_domain_alloc().
2057 	 */
2058 	WARN_ON(amd_iommu_snp_en && (domid == 0));
2059 	new.data[0] |= DTE_FLAG_TV;
2060 
2061 	if (dev_data->ppr)
2062 		new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2063 
2064 	if (domain->dirty_tracking)
2065 		new.data[0] |= DTE_FLAG_HAD;
2066 
2067 	if (dev_data->ats_enabled)
2068 		new.data[1] |= DTE_FLAG_IOTLB;
2069 
2070 	old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2071 	new.data[1] |= domid;
2072 
2073 	/*
2074 	 * Restore cached persistent DTE bits, which can be set by information
2075 	 * in IVRS table. See set_dev_entry_from_acpi().
2076 	 */
2077 	initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2078 	if (initial_dte) {
2079 		new.data128[0] |= initial_dte->data128[0];
2080 		new.data128[1] |= initial_dte->data128[1];
2081 	}
2082 
2083 	set_dte_gcr3_table(iommu, dev_data, &new);
2084 
2085 	update_dte256(iommu, dev_data, &new);
2086 
2087 	/*
2088 	 * A kdump kernel might be replacing a domain ID that was copied from
2089 	 * the previous kernel--if so, it needs to flush the translation cache
2090 	 * entries for the old domain ID that is being overwritten
2091 	 */
2092 	if (old_domid) {
2093 		amd_iommu_flush_tlb_domid(iommu, old_domid);
2094 	}
2095 }
2096 
2097 /*
2098  * Clear DMA-remap related flags to block all DMA (blockeded domain)
2099  */
clear_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2100 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2101 {
2102 	struct dev_table_entry new = {};
2103 	struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2104 
2105 	make_clear_dte(dev_data, dte, &new);
2106 	update_dte256(iommu, dev_data, &new);
2107 }
2108 
2109 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)2110 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2111 {
2112 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2113 
2114 	if (set)
2115 		set_dte_entry(iommu, dev_data);
2116 	else
2117 		clear_dte_entry(iommu, dev_data);
2118 
2119 	clone_aliases(iommu, dev_data->dev);
2120 	device_flush_dte(dev_data);
2121 	iommu_completion_wait(iommu);
2122 }
2123 
2124 /*
2125  * If domain is SVA capable then initialize GCR3 table. Also if domain is
2126  * in v2 page table mode then update GCR3[0].
2127  */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2128 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2129 			   struct protection_domain *pdom)
2130 {
2131 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2132 	int max_pasids = dev_data->max_pasids;
2133 	int ret = 0;
2134 
2135 	 /*
2136 	  * If domain is in pt mode then setup GCR3 table only if device
2137 	  * is PASID capable
2138 	  */
2139 	if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2140 		return ret;
2141 
2142 	/*
2143 	 * By default, setup GCR3 table to support MAX PASIDs
2144 	 * supported by the device/IOMMU.
2145 	 */
2146 	ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2147 			       max_pasids > 0 ?  max_pasids : 1);
2148 	if (ret)
2149 		return ret;
2150 
2151 	/* Setup GCR3[0] only if domain is setup with v2 page table mode */
2152 	if (!pdom_is_v2_pgtbl_mode(pdom))
2153 		return ret;
2154 
2155 	ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
2156 	if (ret)
2157 		free_gcr3_table(&dev_data->gcr3_info);
2158 
2159 	return ret;
2160 }
2161 
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2162 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2163 			       struct protection_domain *pdom)
2164 {
2165 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2166 
2167 	if (pdom_is_v2_pgtbl_mode(pdom))
2168 		update_gcr3(dev_data, 0, 0, false);
2169 
2170 	if (gcr3_info->gcr3_tbl == NULL)
2171 		return;
2172 
2173 	free_gcr3_table(gcr3_info);
2174 }
2175 
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2176 static int pdom_attach_iommu(struct amd_iommu *iommu,
2177 			     struct protection_domain *pdom)
2178 {
2179 	struct pdom_iommu_info *pdom_iommu_info, *curr;
2180 	unsigned long flags;
2181 	int ret = 0;
2182 
2183 	spin_lock_irqsave(&pdom->lock, flags);
2184 
2185 	pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2186 	if (pdom_iommu_info) {
2187 		pdom_iommu_info->refcnt++;
2188 		goto out_unlock;
2189 	}
2190 
2191 	pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2192 	if (!pdom_iommu_info) {
2193 		ret = -ENOMEM;
2194 		goto out_unlock;
2195 	}
2196 
2197 	pdom_iommu_info->iommu = iommu;
2198 	pdom_iommu_info->refcnt = 1;
2199 
2200 	curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2201 			  NULL, pdom_iommu_info, GFP_ATOMIC);
2202 	if (curr) {
2203 		kfree(pdom_iommu_info);
2204 		ret = -ENOSPC;
2205 		goto out_unlock;
2206 	}
2207 
2208 out_unlock:
2209 	spin_unlock_irqrestore(&pdom->lock, flags);
2210 	return ret;
2211 }
2212 
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2213 static void pdom_detach_iommu(struct amd_iommu *iommu,
2214 			      struct protection_domain *pdom)
2215 {
2216 	struct pdom_iommu_info *pdom_iommu_info;
2217 	unsigned long flags;
2218 
2219 	spin_lock_irqsave(&pdom->lock, flags);
2220 
2221 	pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2222 	if (!pdom_iommu_info) {
2223 		spin_unlock_irqrestore(&pdom->lock, flags);
2224 		return;
2225 	}
2226 
2227 	pdom_iommu_info->refcnt--;
2228 	if (pdom_iommu_info->refcnt == 0) {
2229 		xa_erase(&pdom->iommu_array, iommu->index);
2230 		kfree(pdom_iommu_info);
2231 	}
2232 
2233 	spin_unlock_irqrestore(&pdom->lock, flags);
2234 }
2235 
2236 /*
2237  * If a device is not yet associated with a domain, this function makes the
2238  * device visible in the domain
2239  */
attach_device(struct device * dev,struct protection_domain * domain)2240 static int attach_device(struct device *dev,
2241 			 struct protection_domain *domain)
2242 {
2243 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2244 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2245 	struct pci_dev *pdev;
2246 	unsigned long flags;
2247 	int ret = 0;
2248 
2249 	mutex_lock(&dev_data->mutex);
2250 
2251 	if (dev_data->domain != NULL) {
2252 		ret = -EBUSY;
2253 		goto out;
2254 	}
2255 
2256 	/* Do reference counting */
2257 	ret = pdom_attach_iommu(iommu, domain);
2258 	if (ret)
2259 		goto out;
2260 
2261 	/* Setup GCR3 table */
2262 	if (pdom_is_sva_capable(domain)) {
2263 		ret = init_gcr3_table(dev_data, domain);
2264 		if (ret) {
2265 			pdom_detach_iommu(iommu, domain);
2266 			goto out;
2267 		}
2268 	}
2269 
2270 	pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2271 	if (pdev && pdom_is_sva_capable(domain)) {
2272 		pdev_enable_caps(pdev);
2273 
2274 		/*
2275 		 * Device can continue to function even if IOPF
2276 		 * enablement failed. Hence in error path just
2277 		 * disable device PRI support.
2278 		 */
2279 		if (amd_iommu_iopf_add_device(iommu, dev_data))
2280 			pdev_disable_cap_pri(pdev);
2281 	} else if (pdev) {
2282 		pdev_enable_cap_ats(pdev);
2283 	}
2284 
2285 	/* Update data structures */
2286 	dev_data->domain = domain;
2287 	spin_lock_irqsave(&domain->lock, flags);
2288 	list_add(&dev_data->list, &domain->dev_list);
2289 	spin_unlock_irqrestore(&domain->lock, flags);
2290 
2291 	/* Update device table */
2292 	dev_update_dte(dev_data, true);
2293 
2294 out:
2295 	mutex_unlock(&dev_data->mutex);
2296 
2297 	return ret;
2298 }
2299 
2300 /*
2301  * Removes a device from a protection domain (with devtable_lock held)
2302  */
detach_device(struct device * dev)2303 static void detach_device(struct device *dev)
2304 {
2305 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2306 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2307 	struct protection_domain *domain = dev_data->domain;
2308 	unsigned long flags;
2309 
2310 	mutex_lock(&dev_data->mutex);
2311 
2312 	/*
2313 	 * First check if the device is still attached. It might already
2314 	 * be detached from its domain because the generic
2315 	 * iommu_detach_group code detached it and we try again here in
2316 	 * our alias handling.
2317 	 */
2318 	if (WARN_ON(!dev_data->domain))
2319 		goto out;
2320 
2321 	/* Remove IOPF handler */
2322 	if (dev_data->ppr) {
2323 		iopf_queue_flush_dev(dev);
2324 		amd_iommu_iopf_remove_device(iommu, dev_data);
2325 	}
2326 
2327 	if (dev_is_pci(dev))
2328 		pdev_disable_caps(to_pci_dev(dev));
2329 
2330 	/* Clear DTE and flush the entry */
2331 	dev_update_dte(dev_data, false);
2332 
2333 	/* Flush IOTLB and wait for the flushes to finish */
2334 	spin_lock_irqsave(&domain->lock, flags);
2335 	amd_iommu_domain_flush_all(domain);
2336 	list_del(&dev_data->list);
2337 	spin_unlock_irqrestore(&domain->lock, flags);
2338 
2339 	/* Clear GCR3 table */
2340 	if (pdom_is_sva_capable(domain))
2341 		destroy_gcr3_table(dev_data, domain);
2342 
2343 	/* Update data structures */
2344 	dev_data->domain = NULL;
2345 
2346 	/* decrease reference counters - needs to happen after the flushes */
2347 	pdom_detach_iommu(iommu, domain);
2348 
2349 out:
2350 	mutex_unlock(&dev_data->mutex);
2351 }
2352 
amd_iommu_probe_device(struct device * dev)2353 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2354 {
2355 	struct iommu_device *iommu_dev;
2356 	struct amd_iommu *iommu;
2357 	struct iommu_dev_data *dev_data;
2358 	int ret;
2359 
2360 	if (!check_device(dev))
2361 		return ERR_PTR(-ENODEV);
2362 
2363 	iommu = rlookup_amd_iommu(dev);
2364 	if (!iommu)
2365 		return ERR_PTR(-ENODEV);
2366 
2367 	/* Not registered yet? */
2368 	if (!iommu->iommu.ops)
2369 		return ERR_PTR(-ENODEV);
2370 
2371 	if (dev_iommu_priv_get(dev))
2372 		return &iommu->iommu;
2373 
2374 	ret = iommu_init_device(iommu, dev);
2375 	if (ret) {
2376 		dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2377 		iommu_dev = ERR_PTR(ret);
2378 		iommu_ignore_device(iommu, dev);
2379 		goto out_err;
2380 	}
2381 
2382 	amd_iommu_set_pci_msi_domain(dev, iommu);
2383 	iommu_dev = &iommu->iommu;
2384 
2385 	/*
2386 	 * If IOMMU and device supports PASID then it will contain max
2387 	 * supported PASIDs, else it will be zero.
2388 	 */
2389 	dev_data = dev_iommu_priv_get(dev);
2390 	if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2391 	    pdev_pasid_supported(dev_data)) {
2392 		dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2393 					     pci_max_pasids(to_pci_dev(dev)));
2394 	}
2395 
2396 out_err:
2397 
2398 	iommu_completion_wait(iommu);
2399 
2400 	if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
2401 		dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K;
2402 	else
2403 		dev_data->max_irqs = MAX_IRQS_PER_TABLE_512;
2404 
2405 	if (dev_is_pci(dev))
2406 		pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2407 
2408 	return iommu_dev;
2409 }
2410 
amd_iommu_release_device(struct device * dev)2411 static void amd_iommu_release_device(struct device *dev)
2412 {
2413 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2414 
2415 	WARN_ON(dev_data->domain);
2416 
2417 	/*
2418 	 * We keep dev_data around for unplugged devices and reuse it when the
2419 	 * device is re-plugged - not doing so would introduce a ton of races.
2420 	 */
2421 }
2422 
amd_iommu_device_group(struct device * dev)2423 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2424 {
2425 	if (dev_is_pci(dev))
2426 		return pci_device_group(dev);
2427 
2428 	return acpihid_device_group(dev);
2429 }
2430 
2431 /*****************************************************************************
2432  *
2433  * The following functions belong to the exported interface of AMD IOMMU
2434  *
2435  * This interface allows access to lower level functions of the IOMMU
2436  * like protection domain handling and assignement of devices to domains
2437  * which is not possible with the dma_ops interface.
2438  *
2439  *****************************************************************************/
2440 
protection_domain_init(struct protection_domain * domain)2441 static void protection_domain_init(struct protection_domain *domain)
2442 {
2443 	spin_lock_init(&domain->lock);
2444 	INIT_LIST_HEAD(&domain->dev_list);
2445 	INIT_LIST_HEAD(&domain->dev_data_list);
2446 	xa_init(&domain->iommu_array);
2447 }
2448 
protection_domain_alloc(void)2449 struct protection_domain *protection_domain_alloc(void)
2450 {
2451 	struct protection_domain *domain;
2452 	int domid;
2453 
2454 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2455 	if (!domain)
2456 		return NULL;
2457 
2458 	domid = pdom_id_alloc();
2459 	if (domid <= 0) {
2460 		kfree(domain);
2461 		return NULL;
2462 	}
2463 	domain->id = domid;
2464 
2465 	protection_domain_init(domain);
2466 
2467 	return domain;
2468 }
2469 
pdom_setup_pgtable(struct protection_domain * domain,struct device * dev)2470 static int pdom_setup_pgtable(struct protection_domain *domain,
2471 			      struct device *dev)
2472 {
2473 	struct io_pgtable_ops *pgtbl_ops;
2474 	enum io_pgtable_fmt fmt;
2475 
2476 	switch (domain->pd_mode) {
2477 	case PD_MODE_V1:
2478 		fmt = AMD_IOMMU_V1;
2479 		break;
2480 	case PD_MODE_V2:
2481 		fmt = AMD_IOMMU_V2;
2482 		break;
2483 	}
2484 
2485 	domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev);
2486 	pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain);
2487 	if (!pgtbl_ops)
2488 		return -ENOMEM;
2489 
2490 	return 0;
2491 }
2492 
dma_max_address(enum protection_domain_mode pgtable)2493 static inline u64 dma_max_address(enum protection_domain_mode pgtable)
2494 {
2495 	if (pgtable == PD_MODE_V1)
2496 		return ~0ULL;
2497 
2498 	/* V2 with 4/5 level page table */
2499 	return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2500 }
2501 
amd_iommu_hd_support(struct amd_iommu * iommu)2502 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2503 {
2504 	return iommu && (iommu->features & FEATURE_HDSUP);
2505 }
2506 
2507 static struct iommu_domain *
do_iommu_domain_alloc(struct device * dev,u32 flags,enum protection_domain_mode pgtable)2508 do_iommu_domain_alloc(struct device *dev, u32 flags,
2509 		      enum protection_domain_mode pgtable)
2510 {
2511 	bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2512 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2513 	struct protection_domain *domain;
2514 	int ret;
2515 
2516 	domain = protection_domain_alloc();
2517 	if (!domain)
2518 		return ERR_PTR(-ENOMEM);
2519 
2520 	domain->pd_mode = pgtable;
2521 	ret = pdom_setup_pgtable(domain, dev);
2522 	if (ret) {
2523 		pdom_id_free(domain->id);
2524 		kfree(domain);
2525 		return ERR_PTR(ret);
2526 	}
2527 
2528 	domain->domain.geometry.aperture_start = 0;
2529 	domain->domain.geometry.aperture_end   = dma_max_address(pgtable);
2530 	domain->domain.geometry.force_aperture = true;
2531 	domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2532 
2533 	domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
2534 	domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2535 
2536 	if (dirty_tracking)
2537 		domain->domain.dirty_ops = &amd_dirty_ops;
2538 
2539 	return &domain->domain;
2540 }
2541 
2542 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2543 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2544 				    const struct iommu_user_data *user_data)
2545 
2546 {
2547 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2548 	const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2549 						IOMMU_HWPT_ALLOC_PASID;
2550 
2551 	if ((flags & ~supported_flags) || user_data)
2552 		return ERR_PTR(-EOPNOTSUPP);
2553 
2554 	switch (flags & supported_flags) {
2555 	case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2556 		/* Allocate domain with v1 page table for dirty tracking */
2557 		if (!amd_iommu_hd_support(iommu))
2558 			break;
2559 		return do_iommu_domain_alloc(dev, flags, PD_MODE_V1);
2560 	case IOMMU_HWPT_ALLOC_PASID:
2561 		/* Allocate domain with v2 page table if IOMMU supports PASID. */
2562 		if (!amd_iommu_pasid_supported())
2563 			break;
2564 		return do_iommu_domain_alloc(dev, flags, PD_MODE_V2);
2565 	case 0:
2566 		/* If nothing specific is required use the kernel commandline default */
2567 		return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable);
2568 	default:
2569 		break;
2570 	}
2571 	return ERR_PTR(-EOPNOTSUPP);
2572 }
2573 
amd_iommu_domain_free(struct iommu_domain * dom)2574 void amd_iommu_domain_free(struct iommu_domain *dom)
2575 {
2576 	struct protection_domain *domain = to_pdomain(dom);
2577 
2578 	WARN_ON(!list_empty(&domain->dev_list));
2579 	if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2580 		free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2581 	pdom_id_free(domain->id);
2582 	kfree(domain);
2583 }
2584 
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev)2585 static int blocked_domain_attach_device(struct iommu_domain *domain,
2586 					struct device *dev)
2587 {
2588 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2589 
2590 	if (dev_data->domain)
2591 		detach_device(dev);
2592 
2593 	/* Clear DTE and flush the entry */
2594 	mutex_lock(&dev_data->mutex);
2595 	dev_update_dte(dev_data, false);
2596 	mutex_unlock(&dev_data->mutex);
2597 
2598 	return 0;
2599 }
2600 
blocked_domain_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old)2601 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2602 					struct device *dev, ioasid_t pasid,
2603 					struct iommu_domain *old)
2604 {
2605 	amd_iommu_remove_dev_pasid(dev, pasid, old);
2606 	return 0;
2607 }
2608 
2609 static struct iommu_domain blocked_domain = {
2610 	.type = IOMMU_DOMAIN_BLOCKED,
2611 	.ops = &(const struct iommu_domain_ops) {
2612 		.attach_dev     = blocked_domain_attach_device,
2613 		.set_dev_pasid  = blocked_domain_set_dev_pasid,
2614 	}
2615 };
2616 
2617 static struct protection_domain identity_domain;
2618 
2619 static const struct iommu_domain_ops identity_domain_ops = {
2620 	.attach_dev = amd_iommu_attach_device,
2621 };
2622 
amd_iommu_init_identity_domain(void)2623 void amd_iommu_init_identity_domain(void)
2624 {
2625 	struct iommu_domain *domain = &identity_domain.domain;
2626 
2627 	domain->type = IOMMU_DOMAIN_IDENTITY;
2628 	domain->ops = &identity_domain_ops;
2629 	domain->owner = &amd_iommu_ops;
2630 
2631 	identity_domain.id = pdom_id_alloc();
2632 
2633 	protection_domain_init(&identity_domain);
2634 }
2635 
2636 /* Same as blocked domain except it supports only ops->attach_dev() */
2637 static struct iommu_domain release_domain = {
2638 	.type = IOMMU_DOMAIN_BLOCKED,
2639 	.ops = &(const struct iommu_domain_ops) {
2640 		.attach_dev     = blocked_domain_attach_device,
2641 	}
2642 };
2643 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev)2644 static int amd_iommu_attach_device(struct iommu_domain *dom,
2645 				   struct device *dev)
2646 {
2647 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2648 	struct protection_domain *domain = to_pdomain(dom);
2649 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2650 	int ret;
2651 
2652 	/*
2653 	 * Skip attach device to domain if new domain is same as
2654 	 * devices current domain
2655 	 */
2656 	if (dev_data->domain == domain)
2657 		return 0;
2658 
2659 	dev_data->defer_attach = false;
2660 
2661 	/*
2662 	 * Restrict to devices with compatible IOMMU hardware support
2663 	 * when enforcement of dirty tracking is enabled.
2664 	 */
2665 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2666 		return -EINVAL;
2667 
2668 	if (dev_data->domain)
2669 		detach_device(dev);
2670 
2671 	ret = attach_device(dev, domain);
2672 
2673 #ifdef CONFIG_IRQ_REMAP
2674 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2675 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2676 			dev_data->use_vapic = 1;
2677 		else
2678 			dev_data->use_vapic = 0;
2679 	}
2680 #endif
2681 
2682 	return ret;
2683 }
2684 
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2685 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2686 				    unsigned long iova, size_t size)
2687 {
2688 	struct protection_domain *domain = to_pdomain(dom);
2689 	struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2690 
2691 	if (ops->map_pages)
2692 		domain_flush_np_cache(domain, iova, size);
2693 	return 0;
2694 }
2695 
amd_iommu_map_pages(struct iommu_domain * dom,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int iommu_prot,gfp_t gfp,size_t * mapped)2696 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2697 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2698 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2699 {
2700 	struct protection_domain *domain = to_pdomain(dom);
2701 	struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2702 	int prot = 0;
2703 	int ret = -EINVAL;
2704 
2705 	if ((domain->pd_mode == PD_MODE_V1) &&
2706 	    (domain->iop.mode == PAGE_MODE_NONE))
2707 		return -EINVAL;
2708 
2709 	if (iommu_prot & IOMMU_READ)
2710 		prot |= IOMMU_PROT_IR;
2711 	if (iommu_prot & IOMMU_WRITE)
2712 		prot |= IOMMU_PROT_IW;
2713 
2714 	if (ops->map_pages) {
2715 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2716 				     pgcount, prot, gfp, mapped);
2717 	}
2718 
2719 	return ret;
2720 }
2721 
amd_iommu_iotlb_gather_add_page(struct iommu_domain * domain,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size)2722 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2723 					    struct iommu_iotlb_gather *gather,
2724 					    unsigned long iova, size_t size)
2725 {
2726 	/*
2727 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2728 	 * Unless we run in a virtual machine, which can be inferred according
2729 	 * to whether "non-present cache" is on, it is probably best to prefer
2730 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2731 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2732 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2733 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2734 	 * should be avoided.
2735 	 */
2736 	if (amd_iommu_np_cache &&
2737 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2738 		iommu_iotlb_sync(domain, gather);
2739 
2740 	iommu_iotlb_gather_add_range(gather, iova, size);
2741 }
2742 
amd_iommu_unmap_pages(struct iommu_domain * dom,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)2743 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2744 				    size_t pgsize, size_t pgcount,
2745 				    struct iommu_iotlb_gather *gather)
2746 {
2747 	struct protection_domain *domain = to_pdomain(dom);
2748 	struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2749 	size_t r;
2750 
2751 	if ((domain->pd_mode == PD_MODE_V1) &&
2752 	    (domain->iop.mode == PAGE_MODE_NONE))
2753 		return 0;
2754 
2755 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2756 
2757 	if (r)
2758 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2759 
2760 	return r;
2761 }
2762 
amd_iommu_iova_to_phys(struct iommu_domain * dom,dma_addr_t iova)2763 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2764 					  dma_addr_t iova)
2765 {
2766 	struct protection_domain *domain = to_pdomain(dom);
2767 	struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2768 
2769 	return ops->iova_to_phys(ops, iova);
2770 }
2771 
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2772 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2773 {
2774 	switch (cap) {
2775 	case IOMMU_CAP_CACHE_COHERENCY:
2776 		return true;
2777 	case IOMMU_CAP_NOEXEC:
2778 		return false;
2779 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2780 		return amdr_ivrs_remap_support;
2781 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2782 		return true;
2783 	case IOMMU_CAP_DEFERRED_FLUSH:
2784 		return true;
2785 	case IOMMU_CAP_DIRTY_TRACKING: {
2786 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2787 
2788 		return amd_iommu_hd_support(iommu);
2789 	}
2790 	default:
2791 		break;
2792 	}
2793 
2794 	return false;
2795 }
2796 
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2797 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2798 					bool enable)
2799 {
2800 	struct protection_domain *pdomain = to_pdomain(domain);
2801 	struct dev_table_entry *dte;
2802 	struct iommu_dev_data *dev_data;
2803 	bool domain_flush = false;
2804 	struct amd_iommu *iommu;
2805 	unsigned long flags;
2806 	u64 new;
2807 
2808 	spin_lock_irqsave(&pdomain->lock, flags);
2809 	if (!(pdomain->dirty_tracking ^ enable)) {
2810 		spin_unlock_irqrestore(&pdomain->lock, flags);
2811 		return 0;
2812 	}
2813 
2814 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2815 		spin_lock(&dev_data->dte_lock);
2816 		iommu = get_amd_iommu_from_dev_data(dev_data);
2817 		dte = &get_dev_table(iommu)[dev_data->devid];
2818 		new = dte->data[0];
2819 		new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2820 		dte->data[0] = new;
2821 		spin_unlock(&dev_data->dte_lock);
2822 
2823 		/* Flush device DTE */
2824 		device_flush_dte(dev_data);
2825 		domain_flush = true;
2826 	}
2827 
2828 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2829 	if (domain_flush)
2830 		amd_iommu_domain_flush_all(pdomain);
2831 
2832 	pdomain->dirty_tracking = enable;
2833 	spin_unlock_irqrestore(&pdomain->lock, flags);
2834 
2835 	return 0;
2836 }
2837 
amd_iommu_read_and_clear_dirty(struct iommu_domain * domain,unsigned long iova,size_t size,unsigned long flags,struct iommu_dirty_bitmap * dirty)2838 static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2839 					  unsigned long iova, size_t size,
2840 					  unsigned long flags,
2841 					  struct iommu_dirty_bitmap *dirty)
2842 {
2843 	struct protection_domain *pdomain = to_pdomain(domain);
2844 	struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2845 	unsigned long lflags;
2846 
2847 	if (!ops || !ops->read_and_clear_dirty)
2848 		return -EOPNOTSUPP;
2849 
2850 	spin_lock_irqsave(&pdomain->lock, lflags);
2851 	if (!pdomain->dirty_tracking && dirty->bitmap) {
2852 		spin_unlock_irqrestore(&pdomain->lock, lflags);
2853 		return -EINVAL;
2854 	}
2855 	spin_unlock_irqrestore(&pdomain->lock, lflags);
2856 
2857 	return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2858 }
2859 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2860 static void amd_iommu_get_resv_regions(struct device *dev,
2861 				       struct list_head *head)
2862 {
2863 	struct iommu_resv_region *region;
2864 	struct unity_map_entry *entry;
2865 	struct amd_iommu *iommu;
2866 	struct amd_iommu_pci_seg *pci_seg;
2867 	int devid, sbdf;
2868 
2869 	sbdf = get_device_sbdf_id(dev);
2870 	if (sbdf < 0)
2871 		return;
2872 
2873 	devid = PCI_SBDF_TO_DEVID(sbdf);
2874 	iommu = get_amd_iommu_from_dev(dev);
2875 	pci_seg = iommu->pci_seg;
2876 
2877 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2878 		int type, prot = 0;
2879 		size_t length;
2880 
2881 		if (devid < entry->devid_start || devid > entry->devid_end)
2882 			continue;
2883 
2884 		type   = IOMMU_RESV_DIRECT;
2885 		length = entry->address_end - entry->address_start;
2886 		if (entry->prot & IOMMU_PROT_IR)
2887 			prot |= IOMMU_READ;
2888 		if (entry->prot & IOMMU_PROT_IW)
2889 			prot |= IOMMU_WRITE;
2890 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2891 			/* Exclusion range */
2892 			type = IOMMU_RESV_RESERVED;
2893 
2894 		region = iommu_alloc_resv_region(entry->address_start,
2895 						 length, prot, type,
2896 						 GFP_KERNEL);
2897 		if (!region) {
2898 			dev_err(dev, "Out of memory allocating dm-regions\n");
2899 			return;
2900 		}
2901 		list_add_tail(&region->list, head);
2902 	}
2903 
2904 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2905 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2906 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2907 	if (!region)
2908 		return;
2909 	list_add_tail(&region->list, head);
2910 
2911 	region = iommu_alloc_resv_region(HT_RANGE_START,
2912 					 HT_RANGE_END - HT_RANGE_START + 1,
2913 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2914 	if (!region)
2915 		return;
2916 	list_add_tail(&region->list, head);
2917 }
2918 
amd_iommu_is_attach_deferred(struct device * dev)2919 static bool amd_iommu_is_attach_deferred(struct device *dev)
2920 {
2921 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2922 
2923 	return dev_data->defer_attach;
2924 }
2925 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2926 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2927 {
2928 	struct protection_domain *dom = to_pdomain(domain);
2929 	unsigned long flags;
2930 
2931 	spin_lock_irqsave(&dom->lock, flags);
2932 	amd_iommu_domain_flush_all(dom);
2933 	spin_unlock_irqrestore(&dom->lock, flags);
2934 }
2935 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2936 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2937 				 struct iommu_iotlb_gather *gather)
2938 {
2939 	struct protection_domain *dom = to_pdomain(domain);
2940 	unsigned long flags;
2941 
2942 	spin_lock_irqsave(&dom->lock, flags);
2943 	amd_iommu_domain_flush_pages(dom, gather->start,
2944 				     gather->end - gather->start + 1);
2945 	spin_unlock_irqrestore(&dom->lock, flags);
2946 }
2947 
amd_iommu_def_domain_type(struct device * dev)2948 static int amd_iommu_def_domain_type(struct device *dev)
2949 {
2950 	struct iommu_dev_data *dev_data;
2951 
2952 	dev_data = dev_iommu_priv_get(dev);
2953 	if (!dev_data)
2954 		return 0;
2955 
2956 	/* Always use DMA domain for untrusted device */
2957 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
2958 		return IOMMU_DOMAIN_DMA;
2959 
2960 	/*
2961 	 * Do not identity map IOMMUv2 capable devices when:
2962 	 *  - memory encryption is active, because some of those devices
2963 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2964 	 *    and require remapping.
2965 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2966 	 */
2967 	if (pdev_pasid_supported(dev_data) &&
2968 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2969 	    !amd_iommu_snp_en) {
2970 		return IOMMU_DOMAIN_IDENTITY;
2971 	}
2972 
2973 	return 0;
2974 }
2975 
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)2976 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2977 {
2978 	/* IOMMU_PTE_FC is always set */
2979 	return true;
2980 }
2981 
2982 static const struct iommu_dirty_ops amd_dirty_ops = {
2983 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2984 	.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2985 };
2986 
amd_iommu_dev_enable_feature(struct device * dev,enum iommu_dev_features feat)2987 static int amd_iommu_dev_enable_feature(struct device *dev,
2988 					enum iommu_dev_features feat)
2989 {
2990 	int ret = 0;
2991 
2992 	switch (feat) {
2993 	case IOMMU_DEV_FEAT_IOPF:
2994 	case IOMMU_DEV_FEAT_SVA:
2995 		break;
2996 	default:
2997 		ret = -EINVAL;
2998 		break;
2999 	}
3000 	return ret;
3001 }
3002 
amd_iommu_dev_disable_feature(struct device * dev,enum iommu_dev_features feat)3003 static int amd_iommu_dev_disable_feature(struct device *dev,
3004 					 enum iommu_dev_features feat)
3005 {
3006 	int ret = 0;
3007 
3008 	switch (feat) {
3009 	case IOMMU_DEV_FEAT_IOPF:
3010 	case IOMMU_DEV_FEAT_SVA:
3011 		break;
3012 	default:
3013 		ret = -EINVAL;
3014 		break;
3015 	}
3016 	return ret;
3017 }
3018 
3019 const struct iommu_ops amd_iommu_ops = {
3020 	.capable = amd_iommu_capable,
3021 	.blocked_domain = &blocked_domain,
3022 	.release_domain = &release_domain,
3023 	.identity_domain = &identity_domain.domain,
3024 	.domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3025 	.domain_alloc_sva = amd_iommu_domain_alloc_sva,
3026 	.probe_device = amd_iommu_probe_device,
3027 	.release_device = amd_iommu_release_device,
3028 	.device_group = amd_iommu_device_group,
3029 	.get_resv_regions = amd_iommu_get_resv_regions,
3030 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3031 	.def_domain_type = amd_iommu_def_domain_type,
3032 	.dev_enable_feat = amd_iommu_dev_enable_feature,
3033 	.dev_disable_feat = amd_iommu_dev_disable_feature,
3034 	.page_response = amd_iommu_page_response,
3035 	.default_domain_ops = &(const struct iommu_domain_ops) {
3036 		.attach_dev	= amd_iommu_attach_device,
3037 		.map_pages	= amd_iommu_map_pages,
3038 		.unmap_pages	= amd_iommu_unmap_pages,
3039 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
3040 		.iova_to_phys	= amd_iommu_iova_to_phys,
3041 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
3042 		.iotlb_sync	= amd_iommu_iotlb_sync,
3043 		.free		= amd_iommu_domain_free,
3044 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
3045 	}
3046 };
3047 
3048 #ifdef CONFIG_IRQ_REMAP
3049 
3050 /*****************************************************************************
3051  *
3052  * Interrupt Remapping Implementation
3053  *
3054  *****************************************************************************/
3055 
3056 static struct irq_chip amd_ir_chip;
3057 static DEFINE_SPINLOCK(iommu_table_lock);
3058 
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)3059 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3060 {
3061 	int ret;
3062 	u64 data;
3063 	unsigned long flags;
3064 	struct iommu_cmd cmd, cmd2;
3065 
3066 	if (iommu->irtcachedis_enabled)
3067 		return;
3068 
3069 	build_inv_irt(&cmd, devid);
3070 	data = atomic64_inc_return(&iommu->cmd_sem_val);
3071 	build_completion_wait(&cmd2, iommu, data);
3072 
3073 	raw_spin_lock_irqsave(&iommu->lock, flags);
3074 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
3075 	if (ret)
3076 		goto out;
3077 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3078 	if (ret)
3079 		goto out;
3080 	wait_on_sem(iommu, data);
3081 out:
3082 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
3083 }
3084 
iommu_get_int_tablen(struct iommu_dev_data * dev_data)3085 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data)
3086 {
3087 	if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K)
3088 		return DTE_INTTABLEN_2K;
3089 	return DTE_INTTABLEN_512;
3090 }
3091 
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3092 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3093 			      struct irq_remap_table *table)
3094 {
3095 	u64 new;
3096 	struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3097 	struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3098 
3099 	if (dev_data)
3100 		spin_lock(&dev_data->dte_lock);
3101 
3102 	new = READ_ONCE(dte->data[2]);
3103 	new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3104 	new |= iommu_virt_to_phys(table->table);
3105 	new |= DTE_IRQ_REMAP_INTCTL;
3106 	new |= iommu_get_int_tablen(dev_data);
3107 	new |= DTE_IRQ_REMAP_ENABLE;
3108 	WRITE_ONCE(dte->data[2], new);
3109 
3110 	if (dev_data)
3111 		spin_unlock(&dev_data->dte_lock);
3112 }
3113 
get_irq_table(struct amd_iommu * iommu,u16 devid)3114 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3115 {
3116 	struct irq_remap_table *table;
3117 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3118 
3119 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3120 		      "%s: no iommu for devid %x:%x\n",
3121 		      __func__, pci_seg->id, devid))
3122 		return NULL;
3123 
3124 	table = pci_seg->irq_lookup_table[devid];
3125 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3126 		      __func__, pci_seg->id, devid))
3127 		return NULL;
3128 
3129 	return table;
3130 }
3131 
__alloc_irq_table(int nid,int order)3132 static struct irq_remap_table *__alloc_irq_table(int nid, int order)
3133 {
3134 	struct irq_remap_table *table;
3135 
3136 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3137 	if (!table)
3138 		return NULL;
3139 
3140 	table->table = iommu_alloc_pages_node(nid, GFP_KERNEL, order);
3141 	if (!table->table) {
3142 		kfree(table);
3143 		return NULL;
3144 	}
3145 	raw_spin_lock_init(&table->lock);
3146 
3147 	return table;
3148 }
3149 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3150 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3151 				  struct irq_remap_table *table)
3152 {
3153 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3154 
3155 	pci_seg->irq_lookup_table[devid] = table;
3156 	set_dte_irq_entry(iommu, devid, table);
3157 	iommu_flush_dte(iommu, devid);
3158 }
3159 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3160 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3161 				       void *data)
3162 {
3163 	struct irq_remap_table *table = data;
3164 	struct amd_iommu_pci_seg *pci_seg;
3165 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3166 
3167 	if (!iommu)
3168 		return -EINVAL;
3169 
3170 	pci_seg = iommu->pci_seg;
3171 	pci_seg->irq_lookup_table[alias] = table;
3172 	set_dte_irq_entry(iommu, alias, table);
3173 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3174 
3175 	return 0;
3176 }
3177 
get_irq_table_size(unsigned int max_irqs)3178 static inline size_t get_irq_table_size(unsigned int max_irqs)
3179 {
3180 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3181 		return max_irqs * sizeof(u32);
3182 
3183 	return max_irqs * (sizeof(u64) * 2);
3184 }
3185 
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev,unsigned int max_irqs)3186 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3187 					       u16 devid, struct pci_dev *pdev,
3188 					       unsigned int max_irqs)
3189 {
3190 	struct irq_remap_table *table = NULL;
3191 	struct irq_remap_table *new_table = NULL;
3192 	struct amd_iommu_pci_seg *pci_seg;
3193 	unsigned long flags;
3194 	int order = get_order(get_irq_table_size(max_irqs));
3195 	int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
3196 	u16 alias;
3197 
3198 	spin_lock_irqsave(&iommu_table_lock, flags);
3199 
3200 	pci_seg = iommu->pci_seg;
3201 	table = pci_seg->irq_lookup_table[devid];
3202 	if (table)
3203 		goto out_unlock;
3204 
3205 	alias = pci_seg->alias_table[devid];
3206 	table = pci_seg->irq_lookup_table[alias];
3207 	if (table) {
3208 		set_remap_table_entry(iommu, devid, table);
3209 		goto out_wait;
3210 	}
3211 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3212 
3213 	/* Nothing there yet, allocate new irq remapping table */
3214 	new_table = __alloc_irq_table(nid, order);
3215 	if (!new_table)
3216 		return NULL;
3217 
3218 	spin_lock_irqsave(&iommu_table_lock, flags);
3219 
3220 	table = pci_seg->irq_lookup_table[devid];
3221 	if (table)
3222 		goto out_unlock;
3223 
3224 	table = pci_seg->irq_lookup_table[alias];
3225 	if (table) {
3226 		set_remap_table_entry(iommu, devid, table);
3227 		goto out_wait;
3228 	}
3229 
3230 	table = new_table;
3231 	new_table = NULL;
3232 
3233 	if (pdev)
3234 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3235 				       table);
3236 	else
3237 		set_remap_table_entry(iommu, devid, table);
3238 
3239 	if (devid != alias)
3240 		set_remap_table_entry(iommu, alias, table);
3241 
3242 out_wait:
3243 	iommu_completion_wait(iommu);
3244 
3245 out_unlock:
3246 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3247 
3248 	if (new_table) {
3249 		iommu_free_pages(new_table->table, order);
3250 		kfree(new_table);
3251 	}
3252 	return table;
3253 }
3254 
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev,unsigned long max_irqs)3255 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3256 			   bool align, struct pci_dev *pdev,
3257 			   unsigned long max_irqs)
3258 {
3259 	struct irq_remap_table *table;
3260 	int index, c, alignment = 1;
3261 	unsigned long flags;
3262 
3263 	table = alloc_irq_table(iommu, devid, pdev, max_irqs);
3264 	if (!table)
3265 		return -ENODEV;
3266 
3267 	if (align)
3268 		alignment = roundup_pow_of_two(count);
3269 
3270 	raw_spin_lock_irqsave(&table->lock, flags);
3271 
3272 	/* Scan table for free entries */
3273 	for (index = ALIGN(table->min_index, alignment), c = 0;
3274 	     index < max_irqs;) {
3275 		if (!iommu->irte_ops->is_allocated(table, index)) {
3276 			c += 1;
3277 		} else {
3278 			c     = 0;
3279 			index = ALIGN(index + 1, alignment);
3280 			continue;
3281 		}
3282 
3283 		if (c == count)	{
3284 			for (; c != 0; --c)
3285 				iommu->irte_ops->set_allocated(table, index - c + 1);
3286 
3287 			index -= count - 1;
3288 			goto out;
3289 		}
3290 
3291 		index++;
3292 	}
3293 
3294 	index = -ENOSPC;
3295 
3296 out:
3297 	raw_spin_unlock_irqrestore(&table->lock, flags);
3298 
3299 	return index;
3300 }
3301 
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3302 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3303 			    struct irte_ga *irte)
3304 {
3305 	struct irq_remap_table *table;
3306 	struct irte_ga *entry;
3307 	unsigned long flags;
3308 	u128 old;
3309 
3310 	table = get_irq_table(iommu, devid);
3311 	if (!table)
3312 		return -ENOMEM;
3313 
3314 	raw_spin_lock_irqsave(&table->lock, flags);
3315 
3316 	entry = (struct irte_ga *)table->table;
3317 	entry = &entry[index];
3318 
3319 	/*
3320 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3321 	 * and it cannot be updated by the hardware or other processors
3322 	 * behind us, so the return value of cmpxchg16 should be the
3323 	 * same as the old value.
3324 	 */
3325 	old = entry->irte;
3326 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3327 
3328 	raw_spin_unlock_irqrestore(&table->lock, flags);
3329 
3330 	return 0;
3331 }
3332 
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3333 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3334 			  struct irte_ga *irte)
3335 {
3336 	bool ret;
3337 
3338 	ret = __modify_irte_ga(iommu, devid, index, irte);
3339 	if (ret)
3340 		return ret;
3341 
3342 	iommu_flush_irt_and_complete(iommu, devid);
3343 
3344 	return 0;
3345 }
3346 
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3347 static int modify_irte(struct amd_iommu *iommu,
3348 		       u16 devid, int index, union irte *irte)
3349 {
3350 	struct irq_remap_table *table;
3351 	unsigned long flags;
3352 
3353 	table = get_irq_table(iommu, devid);
3354 	if (!table)
3355 		return -ENOMEM;
3356 
3357 	raw_spin_lock_irqsave(&table->lock, flags);
3358 	table->table[index] = irte->val;
3359 	raw_spin_unlock_irqrestore(&table->lock, flags);
3360 
3361 	iommu_flush_irt_and_complete(iommu, devid);
3362 
3363 	return 0;
3364 }
3365 
free_irte(struct amd_iommu * iommu,u16 devid,int index)3366 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3367 {
3368 	struct irq_remap_table *table;
3369 	unsigned long flags;
3370 
3371 	table = get_irq_table(iommu, devid);
3372 	if (!table)
3373 		return;
3374 
3375 	raw_spin_lock_irqsave(&table->lock, flags);
3376 	iommu->irte_ops->clear_allocated(table, index);
3377 	raw_spin_unlock_irqrestore(&table->lock, flags);
3378 
3379 	iommu_flush_irt_and_complete(iommu, devid);
3380 }
3381 
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3382 static void irte_prepare(void *entry,
3383 			 u32 delivery_mode, bool dest_mode,
3384 			 u8 vector, u32 dest_apicid, int devid)
3385 {
3386 	union irte *irte = (union irte *) entry;
3387 
3388 	irte->val                = 0;
3389 	irte->fields.vector      = vector;
3390 	irte->fields.int_type    = delivery_mode;
3391 	irte->fields.destination = dest_apicid;
3392 	irte->fields.dm          = dest_mode;
3393 	irte->fields.valid       = 1;
3394 }
3395 
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3396 static void irte_ga_prepare(void *entry,
3397 			    u32 delivery_mode, bool dest_mode,
3398 			    u8 vector, u32 dest_apicid, int devid)
3399 {
3400 	struct irte_ga *irte = (struct irte_ga *) entry;
3401 
3402 	irte->lo.val                      = 0;
3403 	irte->hi.val                      = 0;
3404 	irte->lo.fields_remap.int_type    = delivery_mode;
3405 	irte->lo.fields_remap.dm          = dest_mode;
3406 	irte->hi.fields.vector            = vector;
3407 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3408 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3409 	irte->lo.fields_remap.valid       = 1;
3410 }
3411 
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3412 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3413 {
3414 	union irte *irte = (union irte *) entry;
3415 
3416 	irte->fields.valid = 1;
3417 	modify_irte(iommu, devid, index, irte);
3418 }
3419 
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3420 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3421 {
3422 	struct irte_ga *irte = (struct irte_ga *) entry;
3423 
3424 	irte->lo.fields_remap.valid = 1;
3425 	modify_irte_ga(iommu, devid, index, irte);
3426 }
3427 
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3428 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3429 {
3430 	union irte *irte = (union irte *) entry;
3431 
3432 	irte->fields.valid = 0;
3433 	modify_irte(iommu, devid, index, irte);
3434 }
3435 
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3436 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3437 {
3438 	struct irte_ga *irte = (struct irte_ga *) entry;
3439 
3440 	irte->lo.fields_remap.valid = 0;
3441 	modify_irte_ga(iommu, devid, index, irte);
3442 }
3443 
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3444 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3445 			      u8 vector, u32 dest_apicid)
3446 {
3447 	union irte *irte = (union irte *) entry;
3448 
3449 	irte->fields.vector = vector;
3450 	irte->fields.destination = dest_apicid;
3451 	modify_irte(iommu, devid, index, irte);
3452 }
3453 
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3454 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3455 				 u8 vector, u32 dest_apicid)
3456 {
3457 	struct irte_ga *irte = (struct irte_ga *) entry;
3458 
3459 	if (!irte->lo.fields_remap.guest_mode) {
3460 		irte->hi.fields.vector = vector;
3461 		irte->lo.fields_remap.destination =
3462 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3463 		irte->hi.fields.destination =
3464 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3465 		modify_irte_ga(iommu, devid, index, irte);
3466 	}
3467 }
3468 
3469 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3470 static void irte_set_allocated(struct irq_remap_table *table, int index)
3471 {
3472 	table->table[index] = IRTE_ALLOCATED;
3473 }
3474 
irte_ga_set_allocated(struct irq_remap_table * table,int index)3475 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3476 {
3477 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3478 	struct irte_ga *irte = &ptr[index];
3479 
3480 	memset(&irte->lo.val, 0, sizeof(u64));
3481 	memset(&irte->hi.val, 0, sizeof(u64));
3482 	irte->hi.fields.vector = 0xff;
3483 }
3484 
irte_is_allocated(struct irq_remap_table * table,int index)3485 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3486 {
3487 	union irte *ptr = (union irte *)table->table;
3488 	union irte *irte = &ptr[index];
3489 
3490 	return irte->val != 0;
3491 }
3492 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3493 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3494 {
3495 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3496 	struct irte_ga *irte = &ptr[index];
3497 
3498 	return irte->hi.fields.vector != 0;
3499 }
3500 
irte_clear_allocated(struct irq_remap_table * table,int index)3501 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3502 {
3503 	table->table[index] = 0;
3504 }
3505 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3506 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3507 {
3508 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3509 	struct irte_ga *irte = &ptr[index];
3510 
3511 	memset(&irte->lo.val, 0, sizeof(u64));
3512 	memset(&irte->hi.val, 0, sizeof(u64));
3513 }
3514 
get_devid(struct irq_alloc_info * info)3515 static int get_devid(struct irq_alloc_info *info)
3516 {
3517 	switch (info->type) {
3518 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3519 		return get_ioapic_devid(info->devid);
3520 	case X86_IRQ_ALLOC_TYPE_HPET:
3521 		return get_hpet_devid(info->devid);
3522 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3523 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3524 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3525 	default:
3526 		WARN_ON_ONCE(1);
3527 		return -1;
3528 	}
3529 }
3530 
3531 struct irq_remap_ops amd_iommu_irq_ops = {
3532 	.prepare		= amd_iommu_prepare,
3533 	.enable			= amd_iommu_enable,
3534 	.disable		= amd_iommu_disable,
3535 	.reenable		= amd_iommu_reenable,
3536 	.enable_faulting	= amd_iommu_enable_faulting,
3537 };
3538 
fill_msi_msg(struct msi_msg * msg,u32 index)3539 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3540 {
3541 	msg->data = index;
3542 	msg->address_lo = 0;
3543 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3544 	/*
3545 	 * The struct msi_msg.dest_mode_logical is used to set the DM bit
3546 	 * in MSI Message Address Register. For device w/ 2K int-remap support,
3547 	 * this is bit must be set to 1 regardless of the actual destination
3548 	 * mode, which is signified by the IRTE[DM].
3549 	 */
3550 	if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
3551 		msg->arch_addr_lo.dest_mode_logical = true;
3552 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3553 }
3554 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3555 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3556 				       struct irq_cfg *irq_cfg,
3557 				       struct irq_alloc_info *info,
3558 				       int devid, int index, int sub_handle)
3559 {
3560 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3561 	struct amd_iommu *iommu = data->iommu;
3562 
3563 	if (!iommu)
3564 		return;
3565 
3566 	data->irq_2_irte.devid = devid;
3567 	data->irq_2_irte.index = index + sub_handle;
3568 	iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3569 				 apic->dest_mode_logical, irq_cfg->vector,
3570 				 irq_cfg->dest_apicid, devid);
3571 
3572 	switch (info->type) {
3573 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3574 	case X86_IRQ_ALLOC_TYPE_HPET:
3575 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3576 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3577 		fill_msi_msg(&data->msi_entry, irte_info->index);
3578 		break;
3579 
3580 	default:
3581 		BUG_ON(1);
3582 		break;
3583 	}
3584 }
3585 
3586 struct amd_irte_ops irte_32_ops = {
3587 	.prepare = irte_prepare,
3588 	.activate = irte_activate,
3589 	.deactivate = irte_deactivate,
3590 	.set_affinity = irte_set_affinity,
3591 	.set_allocated = irte_set_allocated,
3592 	.is_allocated = irte_is_allocated,
3593 	.clear_allocated = irte_clear_allocated,
3594 };
3595 
3596 struct amd_irte_ops irte_128_ops = {
3597 	.prepare = irte_ga_prepare,
3598 	.activate = irte_ga_activate,
3599 	.deactivate = irte_ga_deactivate,
3600 	.set_affinity = irte_ga_set_affinity,
3601 	.set_allocated = irte_ga_set_allocated,
3602 	.is_allocated = irte_ga_is_allocated,
3603 	.clear_allocated = irte_ga_clear_allocated,
3604 };
3605 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3606 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3607 			       unsigned int nr_irqs, void *arg)
3608 {
3609 	struct irq_alloc_info *info = arg;
3610 	struct irq_data *irq_data;
3611 	struct amd_ir_data *data = NULL;
3612 	struct amd_iommu *iommu;
3613 	struct irq_cfg *cfg;
3614 	struct iommu_dev_data *dev_data;
3615 	unsigned long max_irqs;
3616 	int i, ret, devid, seg, sbdf;
3617 	int index;
3618 
3619 	if (!info)
3620 		return -EINVAL;
3621 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3622 		return -EINVAL;
3623 
3624 	sbdf = get_devid(info);
3625 	if (sbdf < 0)
3626 		return -EINVAL;
3627 
3628 	seg = PCI_SBDF_TO_SEGID(sbdf);
3629 	devid = PCI_SBDF_TO_DEVID(sbdf);
3630 	iommu = __rlookup_amd_iommu(seg, devid);
3631 	if (!iommu)
3632 		return -EINVAL;
3633 
3634 	dev_data = search_dev_data(iommu, devid);
3635 	max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512;
3636 
3637 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3638 	if (ret < 0)
3639 		return ret;
3640 
3641 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3642 		struct irq_remap_table *table;
3643 
3644 		table = alloc_irq_table(iommu, devid, NULL, max_irqs);
3645 		if (table) {
3646 			if (!table->min_index) {
3647 				/*
3648 				 * Keep the first 32 indexes free for IOAPIC
3649 				 * interrupts.
3650 				 */
3651 				table->min_index = 32;
3652 				for (i = 0; i < 32; ++i)
3653 					iommu->irte_ops->set_allocated(table, i);
3654 			}
3655 			WARN_ON(table->min_index != 32);
3656 			index = info->ioapic.pin;
3657 		} else {
3658 			index = -ENOMEM;
3659 		}
3660 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3661 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3662 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3663 
3664 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3665 					msi_desc_to_pci_dev(info->desc),
3666 					max_irqs);
3667 	} else {
3668 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL,
3669 					max_irqs);
3670 	}
3671 
3672 	if (index < 0) {
3673 		pr_warn("Failed to allocate IRTE\n");
3674 		ret = index;
3675 		goto out_free_parent;
3676 	}
3677 
3678 	for (i = 0; i < nr_irqs; i++) {
3679 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3680 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3681 		if (!cfg) {
3682 			ret = -EINVAL;
3683 			goto out_free_data;
3684 		}
3685 
3686 		ret = -ENOMEM;
3687 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3688 		if (!data)
3689 			goto out_free_data;
3690 
3691 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3692 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3693 		else
3694 			data->entry = kzalloc(sizeof(struct irte_ga),
3695 						     GFP_KERNEL);
3696 		if (!data->entry) {
3697 			kfree(data);
3698 			goto out_free_data;
3699 		}
3700 
3701 		data->iommu = iommu;
3702 		irq_data->hwirq = (devid << 16) + i;
3703 		irq_data->chip_data = data;
3704 		irq_data->chip = &amd_ir_chip;
3705 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3706 	}
3707 
3708 	return 0;
3709 
3710 out_free_data:
3711 	for (i--; i >= 0; i--) {
3712 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3713 		if (irq_data)
3714 			kfree(irq_data->chip_data);
3715 	}
3716 	for (i = 0; i < nr_irqs; i++)
3717 		free_irte(iommu, devid, index + i);
3718 out_free_parent:
3719 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3720 	return ret;
3721 }
3722 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3723 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3724 			       unsigned int nr_irqs)
3725 {
3726 	struct irq_2_irte *irte_info;
3727 	struct irq_data *irq_data;
3728 	struct amd_ir_data *data;
3729 	int i;
3730 
3731 	for (i = 0; i < nr_irqs; i++) {
3732 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3733 		if (irq_data && irq_data->chip_data) {
3734 			data = irq_data->chip_data;
3735 			irte_info = &data->irq_2_irte;
3736 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3737 			kfree(data->entry);
3738 			kfree(data);
3739 		}
3740 	}
3741 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3742 }
3743 
3744 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3745 			       struct amd_ir_data *ir_data,
3746 			       struct irq_2_irte *irte_info,
3747 			       struct irq_cfg *cfg);
3748 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3749 static int irq_remapping_activate(struct irq_domain *domain,
3750 				  struct irq_data *irq_data, bool reserve)
3751 {
3752 	struct amd_ir_data *data = irq_data->chip_data;
3753 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3754 	struct amd_iommu *iommu = data->iommu;
3755 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3756 
3757 	if (!iommu)
3758 		return 0;
3759 
3760 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3761 				  irte_info->index);
3762 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3763 	return 0;
3764 }
3765 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3766 static void irq_remapping_deactivate(struct irq_domain *domain,
3767 				     struct irq_data *irq_data)
3768 {
3769 	struct amd_ir_data *data = irq_data->chip_data;
3770 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3771 	struct amd_iommu *iommu = data->iommu;
3772 
3773 	if (iommu)
3774 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3775 					    irte_info->index);
3776 }
3777 
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3778 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3779 				enum irq_domain_bus_token bus_token)
3780 {
3781 	struct amd_iommu *iommu;
3782 	int devid = -1;
3783 
3784 	if (!amd_iommu_irq_remap)
3785 		return 0;
3786 
3787 	if (x86_fwspec_is_ioapic(fwspec))
3788 		devid = get_ioapic_devid(fwspec->param[0]);
3789 	else if (x86_fwspec_is_hpet(fwspec))
3790 		devid = get_hpet_devid(fwspec->param[0]);
3791 
3792 	if (devid < 0)
3793 		return 0;
3794 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3795 
3796 	return iommu && iommu->ir_domain == d;
3797 }
3798 
3799 static const struct irq_domain_ops amd_ir_domain_ops = {
3800 	.select = irq_remapping_select,
3801 	.alloc = irq_remapping_alloc,
3802 	.free = irq_remapping_free,
3803 	.activate = irq_remapping_activate,
3804 	.deactivate = irq_remapping_deactivate,
3805 };
3806 
amd_iommu_activate_guest_mode(void * data)3807 int amd_iommu_activate_guest_mode(void *data)
3808 {
3809 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3810 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3811 	u64 valid;
3812 
3813 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3814 		return 0;
3815 
3816 	valid = entry->lo.fields_vapic.valid;
3817 
3818 	entry->lo.val = 0;
3819 	entry->hi.val = 0;
3820 
3821 	entry->lo.fields_vapic.valid       = valid;
3822 	entry->lo.fields_vapic.guest_mode  = 1;
3823 	entry->lo.fields_vapic.ga_log_intr = 1;
3824 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3825 	entry->hi.fields.vector            = ir_data->ga_vector;
3826 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3827 
3828 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3829 			      ir_data->irq_2_irte.index, entry);
3830 }
3831 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3832 
amd_iommu_deactivate_guest_mode(void * data)3833 int amd_iommu_deactivate_guest_mode(void *data)
3834 {
3835 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3836 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3837 	struct irq_cfg *cfg = ir_data->cfg;
3838 	u64 valid;
3839 
3840 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3841 	    !entry || !entry->lo.fields_vapic.guest_mode)
3842 		return 0;
3843 
3844 	valid = entry->lo.fields_remap.valid;
3845 
3846 	entry->lo.val = 0;
3847 	entry->hi.val = 0;
3848 
3849 	entry->lo.fields_remap.valid       = valid;
3850 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3851 	entry->lo.fields_remap.int_type    = APIC_DELIVERY_MODE_FIXED;
3852 	entry->hi.fields.vector            = cfg->vector;
3853 	entry->lo.fields_remap.destination =
3854 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3855 	entry->hi.fields.destination =
3856 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3857 
3858 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3859 			      ir_data->irq_2_irte.index, entry);
3860 }
3861 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3862 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * vcpu_info)3863 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3864 {
3865 	int ret;
3866 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3867 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3868 	struct amd_ir_data *ir_data = data->chip_data;
3869 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3870 	struct iommu_dev_data *dev_data;
3871 
3872 	if (ir_data->iommu == NULL)
3873 		return -EINVAL;
3874 
3875 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3876 
3877 	/* Note:
3878 	 * This device has never been set up for guest mode.
3879 	 * we should not modify the IRTE
3880 	 */
3881 	if (!dev_data || !dev_data->use_vapic)
3882 		return 0;
3883 
3884 	ir_data->cfg = irqd_cfg(data);
3885 	pi_data->ir_data = ir_data;
3886 
3887 	/* Note:
3888 	 * SVM tries to set up for VAPIC mode, but we are in
3889 	 * legacy mode. So, we force legacy mode instead.
3890 	 */
3891 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3892 		pr_debug("%s: Fall back to using intr legacy remap\n",
3893 			 __func__);
3894 		pi_data->is_guest_mode = false;
3895 	}
3896 
3897 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3898 	if (pi_data->is_guest_mode) {
3899 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3900 		ir_data->ga_vector = vcpu_pi_info->vector;
3901 		ir_data->ga_tag = pi_data->ga_tag;
3902 		ret = amd_iommu_activate_guest_mode(ir_data);
3903 		if (!ret)
3904 			ir_data->cached_ga_tag = pi_data->ga_tag;
3905 	} else {
3906 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3907 
3908 		/*
3909 		 * This communicates the ga_tag back to the caller
3910 		 * so that it can do all the necessary clean up.
3911 		 */
3912 		if (!ret)
3913 			ir_data->cached_ga_tag = 0;
3914 	}
3915 
3916 	return ret;
3917 }
3918 
3919 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)3920 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3921 			       struct amd_ir_data *ir_data,
3922 			       struct irq_2_irte *irte_info,
3923 			       struct irq_cfg *cfg)
3924 {
3925 
3926 	/*
3927 	 * Atomically updates the IRTE with the new destination, vector
3928 	 * and flushes the interrupt entry cache.
3929 	 */
3930 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3931 				      irte_info->index, cfg->vector,
3932 				      cfg->dest_apicid);
3933 }
3934 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)3935 static int amd_ir_set_affinity(struct irq_data *data,
3936 			       const struct cpumask *mask, bool force)
3937 {
3938 	struct amd_ir_data *ir_data = data->chip_data;
3939 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3940 	struct irq_cfg *cfg = irqd_cfg(data);
3941 	struct irq_data *parent = data->parent_data;
3942 	struct amd_iommu *iommu = ir_data->iommu;
3943 	int ret;
3944 
3945 	if (!iommu)
3946 		return -ENODEV;
3947 
3948 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3949 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3950 		return ret;
3951 
3952 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3953 	/*
3954 	 * After this point, all the interrupts will start arriving
3955 	 * at the new destination. So, time to cleanup the previous
3956 	 * vector allocation.
3957 	 */
3958 	vector_schedule_cleanup(cfg);
3959 
3960 	return IRQ_SET_MASK_OK_DONE;
3961 }
3962 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)3963 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3964 {
3965 	struct amd_ir_data *ir_data = irq_data->chip_data;
3966 
3967 	*msg = ir_data->msi_entry;
3968 }
3969 
3970 static struct irq_chip amd_ir_chip = {
3971 	.name			= "AMD-IR",
3972 	.irq_ack		= apic_ack_irq,
3973 	.irq_set_affinity	= amd_ir_set_affinity,
3974 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3975 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3976 };
3977 
3978 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3979 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
3980 	.prefix			= "IR-",
3981 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3982 };
3983 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)3984 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3985 {
3986 	struct fwnode_handle *fn;
3987 
3988 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3989 	if (!fn)
3990 		return -ENOMEM;
3991 	iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3992 						       fn, &amd_ir_domain_ops, iommu);
3993 	if (!iommu->ir_domain) {
3994 		irq_domain_free_fwnode(fn);
3995 		return -ENOMEM;
3996 	}
3997 
3998 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_AMDVI);
3999 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
4000 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4001 	iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
4002 
4003 	return 0;
4004 }
4005 
amd_iommu_update_ga(int cpu,bool is_run,void * data)4006 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
4007 {
4008 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
4009 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
4010 
4011 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
4012 	    !entry || !entry->lo.fields_vapic.guest_mode)
4013 		return 0;
4014 
4015 	if (!ir_data->iommu)
4016 		return -ENODEV;
4017 
4018 	if (cpu >= 0) {
4019 		entry->lo.fields_vapic.destination =
4020 					APICID_TO_IRTE_DEST_LO(cpu);
4021 		entry->hi.fields.destination =
4022 					APICID_TO_IRTE_DEST_HI(cpu);
4023 	}
4024 	entry->lo.fields_vapic.is_run = is_run;
4025 
4026 	return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
4027 				ir_data->irq_2_irte.index, entry);
4028 }
4029 EXPORT_SYMBOL(amd_iommu_update_ga);
4030 #endif
4031