1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved.
24 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
25 */
26
27 #include <errno.h>
28 #include <fcntl.h>
29 #include <dirent.h>
30 #include <stddef.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <strings.h>
34 #include <unistd.h>
35 #include <thread.h>
36 #include <sys/auxv.h>
37 #include <sys/brand.h>
38 #include <sys/inttypes.h>
39 #include <sys/lwp.h>
40 #include <sys/syscall.h>
41 #include <sys/systm.h>
42 #include <sys/utsname.h>
43 #include <sys/sysconfig.h>
44 #include <sys/systeminfo.h>
45 #include <sys/zone.h>
46 #include <sys/stat.h>
47 #include <sys/mntent.h>
48 #include <sys/ctfs.h>
49 #include <sys/priv.h>
50 #include <sys/acctctl.h>
51 #include <libgen.h>
52 #include <bsm/audit.h>
53 #include <sys/crypto/ioctl.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/ucontext.h>
57 #include <sys/mntio.h>
58 #include <sys/mnttab.h>
59 #include <sys/attr.h>
60 #include <sys/lofi.h>
61 #include <atomic.h>
62 #include <sys/acl.h>
63 #include <sys/socket.h>
64
65 #include <s10_brand.h>
66 #include <brand_misc.h>
67 #include <s10_misc.h>
68 #include <s10_signal.h>
69
70 /*
71 * See usr/src/lib/brand/shared/brand/common/brand_util.c for general
72 * emulation notes.
73 */
74
75 static zoneid_t zoneid;
76 static boolean_t emul_global_zone = B_FALSE;
77 static s10_emul_bitmap_t emul_bitmap;
78 pid_t zone_init_pid;
79
80 /*
81 * S10_FEATURE_IS_PRESENT is a macro that helps facilitate conditional
82 * emulation. For each constant N defined in the s10_emulated_features
83 * enumeration in usr/src/uts/common/brand/solaris10/s10_brand.h,
84 * S10_FEATURE_IS_PRESENT(N) is true iff the feature/backport represented by N
85 * is present in the Solaris 10 image hosted within the zone. In other words,
86 * S10_FEATURE_IS_PRESENT(N) is true iff the file /usr/lib/brand/solaris10/M,
87 * where M is the enum value of N, was present in the zone when the zone booted.
88 *
89 *
90 * *** Sample Usage
91 *
92 * Suppose that you need to backport a fix to Solaris 10 and there is
93 * emulation in place for the fix. Suppose further that the emulation won't be
94 * needed if the fix is backported (i.e., if the fix is present in the hosted
95 * Solaris 10 environment, then the brand won't need the emulation). Then if
96 * you add a constant named "S10_FEATURE_X" to the end of the
97 * s10_emulated_features enumeration that represents the backported fix and
98 * S10_FEATURE_X evaluates to four, then you should create a file named
99 * /usr/lib/brand/solaris10/4 as part of your backport. Additionally, you
100 * should retain the aforementioned emulation but modify it so that it's
101 * performed only when S10_FEATURE_IS_PRESENT(S10_FEATURE_X) is false. Thus the
102 * emulation function should look something like the following:
103 *
104 * static int
105 * my_emul_function(sysret_t *rv, ...)
106 * {
107 * if (S10_FEATURE_IS_PRESENT(S10_FEATURE_X)) {
108 * // Don't emulate
109 * return (__systemcall(rv, ...));
110 * } else {
111 * // Emulate whatever needs to be emulated when the
112 * // backport isn't present in the Solaris 10 image.
113 * }
114 * }
115 */
116 #define S10_FEATURE_IS_PRESENT(s10_emulated_features_constant) \
117 ((emul_bitmap[(s10_emulated_features_constant) >> 3] & \
118 (1 << ((s10_emulated_features_constant) & 0x7))) != 0)
119
120 brand_sysent_table_t brand_sysent_table[];
121
122 #define S10_UTS_RELEASE "5.10"
123 #define S10_UTS_VERSION "Generic_Virtual"
124
125 /*
126 * If the ioctl fd's major doesn't match "major", then pass through the
127 * ioctl, since it is not the expected device. major should be a
128 * pointer to a static dev_t initialized to -1, and devname should be
129 * the path of the device.
130 *
131 * Returns 1 if the ioctl was handled (in which case *err contains the
132 * error code), or 0 if it still needs handling.
133 */
134 static int
passthru_otherdev_ioctl(dev_t * majordev,const char * devname,int * err,sysret_t * rval,int fdes,int cmd,intptr_t arg)135 passthru_otherdev_ioctl(dev_t *majordev, const char *devname, int *err,
136 sysret_t *rval, int fdes, int cmd, intptr_t arg)
137 {
138 struct stat sbuf;
139
140 if (*majordev == (dev_t)-1) {
141 if ((*err = __systemcall(rval, SYS_fstatat + 1024,
142 AT_FDCWD, devname, &sbuf, 0) != 0) != 0)
143 goto doioctl;
144
145 *majordev = major(sbuf.st_rdev);
146 }
147
148 if ((*err = __systemcall(rval, SYS_fstatat + 1024, fdes,
149 NULL, &sbuf, 0)) != 0)
150 goto doioctl;
151
152 if (major(sbuf.st_rdev) == *majordev)
153 return (0);
154
155 doioctl:
156 *err = (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
157 return (1);
158 }
159
160 /*
161 * Figures out the PID of init for the zone. Also returns a boolean
162 * indicating whether this process currently has that pid: if so,
163 * then at this moment, we are init.
164 */
165 static boolean_t
get_initpid_info(void)166 get_initpid_info(void)
167 {
168 pid_t pid;
169 sysret_t rval;
170 int err;
171
172 /*
173 * Determine the current process PID and the PID of the zone's init.
174 * We use care not to call getpid() here, because we're not supposed
175 * to call getpid() until after the program is fully linked-- the
176 * first call to getpid() is a signal from the linker to debuggers
177 * that linking has been completed.
178 */
179 if ((err = __systemcall(&rval, SYS_brand,
180 B_S10_PIDINFO, &pid, &zone_init_pid)) != 0) {
181 brand_abort(err, "Failed to get init's pid");
182 }
183
184 /*
185 * Note that we need to be cautious with the pid we get back--
186 * it should not be stashed and used in place of getpid(), since
187 * we might fork(2). So we keep zone_init_pid and toss the pid
188 * we otherwise got.
189 */
190 if (pid == zone_init_pid)
191 return (B_TRUE);
192
193 return (B_FALSE);
194 }
195
196 /* Free the thread-local storage provided by mntfs_get_mntentbuf(). */
197 static void
mntfs_free_mntentbuf(void * arg)198 mntfs_free_mntentbuf(void *arg)
199 {
200 struct mntentbuf *embufp = arg;
201
202 if (embufp == NULL)
203 return;
204 if (embufp->mbuf_emp)
205 free(embufp->mbuf_emp);
206 if (embufp->mbuf_buf)
207 free(embufp->mbuf_buf);
208 bzero(embufp, sizeof (struct mntentbuf));
209 free(embufp);
210 }
211
212 /* Provide the thread-local storage required by mntfs_ioctl(). */
213 static struct mntentbuf *
mntfs_get_mntentbuf(size_t size)214 mntfs_get_mntentbuf(size_t size)
215 {
216 static mutex_t keylock;
217 static thread_key_t key;
218 static int once_per_keyname = 0;
219 void *tsd = NULL;
220 struct mntentbuf *embufp;
221
222 /* Create the key. */
223 if (!once_per_keyname) {
224 (void) mutex_lock(&keylock);
225 if (!once_per_keyname) {
226 if (thr_keycreate(&key, mntfs_free_mntentbuf)) {
227 (void) mutex_unlock(&keylock);
228 return (NULL);
229 } else {
230 once_per_keyname++;
231 }
232 }
233 (void) mutex_unlock(&keylock);
234 }
235
236 /*
237 * The thread-specific datum for this key is the address of a struct
238 * mntentbuf. If this is the first time here then we allocate the struct
239 * and its contents, and associate its address with the thread; if there
240 * are any problems then we abort.
241 */
242 if (thr_getspecific(key, &tsd))
243 return (NULL);
244 if (tsd == NULL) {
245 if (!(embufp = calloc(1, sizeof (struct mntentbuf))) ||
246 !(embufp->mbuf_emp = malloc(sizeof (struct extmnttab))) ||
247 thr_setspecific(key, embufp)) {
248 mntfs_free_mntentbuf(embufp);
249 return (NULL);
250 }
251 } else {
252 embufp = tsd;
253 }
254
255 /* Return the buffer, resizing it if necessary. */
256 if (size > embufp->mbuf_bufsize) {
257 if (embufp->mbuf_buf)
258 free(embufp->mbuf_buf);
259 if ((embufp->mbuf_buf = malloc(size)) == NULL) {
260 embufp->mbuf_bufsize = 0;
261 return (NULL);
262 } else {
263 embufp->mbuf_bufsize = size;
264 }
265 }
266 return (embufp);
267 }
268
269 /*
270 * The MNTIOC_GETMNTENT command in this release differs from that in early
271 * versions of Solaris 10.
272 *
273 * Previously, the command would copy a pointer to a struct extmnttab to an
274 * address provided as an argument. The pointer would be somewhere within a
275 * mapping already present within the user's address space. In addition, the
276 * text to which the struct's members pointed would also be within a
277 * pre-existing mapping. Now, the user is required to allocate memory for both
278 * the struct and the text buffer, and to pass the address of each within a
279 * struct mntentbuf. In order to conceal these details from a Solaris 10 client
280 * we allocate some thread-local storage in which to create the necessary data
281 * structures; this is static, thread-safe memory that will be cleaned up
282 * without the caller's intervention.
283 *
284 * MNTIOC_GETEXTMNTENT and MNTIOC_GETMNTANY are new in this release; they should
285 * not work for older clients.
286 */
287 int
mntfs_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)288 mntfs_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
289 {
290 int err;
291 struct stat statbuf;
292 struct mntentbuf *embufp;
293 static size_t bufsize = MNT_LINE_MAX;
294
295 /* Do not emulate mntfs commands from up-to-date clients. */
296 if (S10_FEATURE_IS_PRESENT(S10_FEATURE_ALTERED_MNTFS_IOCTL))
297 return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
298
299 /* Do not emulate mntfs commands directed at other file systems. */
300 if ((err = __systemcall(rval, SYS_fstatat + 1024,
301 fdes, NULL, &statbuf, 0)) != 0)
302 return (err);
303 if (strcmp(statbuf.st_fstype, MNTTYPE_MNTFS) != 0)
304 return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
305
306 if (cmd == MNTIOC_GETEXTMNTENT || cmd == MNTIOC_GETMNTANY)
307 return (EINVAL);
308
309 if ((embufp = mntfs_get_mntentbuf(bufsize)) == NULL)
310 return (ENOMEM);
311
312 /*
313 * MNTIOC_GETEXTMNTENT advances the file pointer once it has
314 * successfully copied out the result to the address provided. We
315 * therefore need to check the user-supplied address now since the
316 * one we'll be providing is guaranteed to work.
317 */
318 if (brand_uucopy(&embufp->mbuf_emp, (void *)arg, sizeof (void *)) != 0)
319 return (EFAULT);
320
321 /*
322 * Keep retrying for as long as we fail for want of a large enough
323 * buffer.
324 */
325 for (;;) {
326 if ((err = __systemcall(rval, SYS_ioctl + 1024, fdes,
327 MNTIOC_GETEXTMNTENT, embufp)) != 0)
328 return (err);
329
330 if (rval->sys_rval1 == MNTFS_TOOLONG) {
331 /* The buffer wasn't large enough. */
332 (void) atomic_swap_ulong((unsigned long *)&bufsize,
333 2 * embufp->mbuf_bufsize);
334 if ((embufp = mntfs_get_mntentbuf(bufsize)) == NULL)
335 return (ENOMEM);
336 } else {
337 break;
338 }
339 }
340
341 if (brand_uucopy(&embufp->mbuf_emp, (void *)arg, sizeof (void *)) != 0)
342 return (EFAULT);
343
344 return (0);
345 }
346
347 /*
348 * Assign the structure member value from the s (source) structure to the
349 * d (dest) structure.
350 */
351 #define struct_assign(d, s, val) (((d).val) = ((s).val))
352
353 /*
354 * The CRYPTO_GET_FUNCTION_LIST parameter structure crypto_function_list_t
355 * changed between S10 and Nevada, so we have to emulate the old S10
356 * crypto_function_list_t structure when interposing on the ioctl syscall.
357 */
358 typedef struct s10_crypto_function_list {
359 boolean_t fl_digest_init;
360 boolean_t fl_digest;
361 boolean_t fl_digest_update;
362 boolean_t fl_digest_key;
363 boolean_t fl_digest_final;
364
365 boolean_t fl_encrypt_init;
366 boolean_t fl_encrypt;
367 boolean_t fl_encrypt_update;
368 boolean_t fl_encrypt_final;
369
370 boolean_t fl_decrypt_init;
371 boolean_t fl_decrypt;
372 boolean_t fl_decrypt_update;
373 boolean_t fl_decrypt_final;
374
375 boolean_t fl_mac_init;
376 boolean_t fl_mac;
377 boolean_t fl_mac_update;
378 boolean_t fl_mac_final;
379
380 boolean_t fl_sign_init;
381 boolean_t fl_sign;
382 boolean_t fl_sign_update;
383 boolean_t fl_sign_final;
384 boolean_t fl_sign_recover_init;
385 boolean_t fl_sign_recover;
386
387 boolean_t fl_verify_init;
388 boolean_t fl_verify;
389 boolean_t fl_verify_update;
390 boolean_t fl_verify_final;
391 boolean_t fl_verify_recover_init;
392 boolean_t fl_verify_recover;
393
394 boolean_t fl_digest_encrypt_update;
395 boolean_t fl_decrypt_digest_update;
396 boolean_t fl_sign_encrypt_update;
397 boolean_t fl_decrypt_verify_update;
398
399 boolean_t fl_seed_random;
400 boolean_t fl_generate_random;
401
402 boolean_t fl_session_open;
403 boolean_t fl_session_close;
404 boolean_t fl_session_login;
405 boolean_t fl_session_logout;
406
407 boolean_t fl_object_create;
408 boolean_t fl_object_copy;
409 boolean_t fl_object_destroy;
410 boolean_t fl_object_get_size;
411 boolean_t fl_object_get_attribute_value;
412 boolean_t fl_object_set_attribute_value;
413 boolean_t fl_object_find_init;
414 boolean_t fl_object_find;
415 boolean_t fl_object_find_final;
416
417 boolean_t fl_key_generate;
418 boolean_t fl_key_generate_pair;
419 boolean_t fl_key_wrap;
420 boolean_t fl_key_unwrap;
421 boolean_t fl_key_derive;
422
423 boolean_t fl_init_token;
424 boolean_t fl_init_pin;
425 boolean_t fl_set_pin;
426
427 boolean_t prov_is_hash_limited;
428 uint32_t prov_hash_threshold;
429 uint32_t prov_hash_limit;
430 } s10_crypto_function_list_t;
431
432 typedef struct s10_crypto_get_function_list {
433 uint_t fl_return_value;
434 crypto_provider_id_t fl_provider_id;
435 s10_crypto_function_list_t fl_list;
436 } s10_crypto_get_function_list_t;
437
438 /*
439 * The structure returned by the CRYPTO_GET_FUNCTION_LIST ioctl on /dev/crypto
440 * increased in size due to:
441 * 6482533 Threshold for HW offload via PKCS11 interface
442 * between S10 and Nevada. This is a relatively simple process of filling
443 * in the S10 structure fields with the Nevada data.
444 *
445 * We stat the device to make sure that the ioctl is meant for /dev/crypto.
446 *
447 */
448 static int
crypto_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)449 crypto_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
450 {
451 int err;
452 s10_crypto_get_function_list_t s10_param;
453 crypto_get_function_list_t native_param;
454 static dev_t crypto_dev = (dev_t)-1;
455
456 if (passthru_otherdev_ioctl(&crypto_dev, "/dev/crypto", &err,
457 rval, fdes, cmd, arg) == 1)
458 return (err);
459
460 if (brand_uucopy((const void *)arg, &s10_param, sizeof (s10_param))
461 != 0)
462 return (EFAULT);
463 struct_assign(native_param, s10_param, fl_provider_id);
464 if ((err = __systemcall(rval, SYS_ioctl + 1024, fdes, cmd,
465 &native_param)) != 0)
466 return (err);
467
468 struct_assign(s10_param, native_param, fl_return_value);
469 struct_assign(s10_param, native_param, fl_provider_id);
470
471 struct_assign(s10_param, native_param, fl_list.fl_digest_init);
472 struct_assign(s10_param, native_param, fl_list.fl_digest);
473 struct_assign(s10_param, native_param, fl_list.fl_digest_update);
474 struct_assign(s10_param, native_param, fl_list.fl_digest_key);
475 struct_assign(s10_param, native_param, fl_list.fl_digest_final);
476
477 struct_assign(s10_param, native_param, fl_list.fl_encrypt_init);
478 struct_assign(s10_param, native_param, fl_list.fl_encrypt);
479 struct_assign(s10_param, native_param, fl_list.fl_encrypt_update);
480 struct_assign(s10_param, native_param, fl_list.fl_encrypt_final);
481
482 struct_assign(s10_param, native_param, fl_list.fl_decrypt_init);
483 struct_assign(s10_param, native_param, fl_list.fl_decrypt);
484 struct_assign(s10_param, native_param, fl_list.fl_decrypt_update);
485 struct_assign(s10_param, native_param, fl_list.fl_decrypt_final);
486
487 struct_assign(s10_param, native_param, fl_list.fl_mac_init);
488 struct_assign(s10_param, native_param, fl_list.fl_mac);
489 struct_assign(s10_param, native_param, fl_list.fl_mac_update);
490 struct_assign(s10_param, native_param, fl_list.fl_mac_final);
491
492 struct_assign(s10_param, native_param, fl_list.fl_sign_init);
493 struct_assign(s10_param, native_param, fl_list.fl_sign);
494 struct_assign(s10_param, native_param, fl_list.fl_sign_update);
495 struct_assign(s10_param, native_param, fl_list.fl_sign_final);
496 struct_assign(s10_param, native_param, fl_list.fl_sign_recover_init);
497 struct_assign(s10_param, native_param, fl_list.fl_sign_recover);
498
499 struct_assign(s10_param, native_param, fl_list.fl_verify_init);
500 struct_assign(s10_param, native_param, fl_list.fl_verify);
501 struct_assign(s10_param, native_param, fl_list.fl_verify_update);
502 struct_assign(s10_param, native_param, fl_list.fl_verify_final);
503 struct_assign(s10_param, native_param, fl_list.fl_verify_recover_init);
504 struct_assign(s10_param, native_param, fl_list.fl_verify_recover);
505
506 struct_assign(s10_param, native_param,
507 fl_list.fl_digest_encrypt_update);
508 struct_assign(s10_param, native_param,
509 fl_list.fl_decrypt_digest_update);
510 struct_assign(s10_param, native_param, fl_list.fl_sign_encrypt_update);
511 struct_assign(s10_param, native_param,
512 fl_list.fl_decrypt_verify_update);
513
514 struct_assign(s10_param, native_param, fl_list.fl_seed_random);
515 struct_assign(s10_param, native_param, fl_list.fl_generate_random);
516
517 struct_assign(s10_param, native_param, fl_list.fl_session_open);
518 struct_assign(s10_param, native_param, fl_list.fl_session_close);
519 struct_assign(s10_param, native_param, fl_list.fl_session_login);
520 struct_assign(s10_param, native_param, fl_list.fl_session_logout);
521
522 struct_assign(s10_param, native_param, fl_list.fl_object_create);
523 struct_assign(s10_param, native_param, fl_list.fl_object_copy);
524 struct_assign(s10_param, native_param, fl_list.fl_object_destroy);
525 struct_assign(s10_param, native_param, fl_list.fl_object_get_size);
526 struct_assign(s10_param, native_param,
527 fl_list.fl_object_get_attribute_value);
528 struct_assign(s10_param, native_param,
529 fl_list.fl_object_set_attribute_value);
530 struct_assign(s10_param, native_param, fl_list.fl_object_find_init);
531 struct_assign(s10_param, native_param, fl_list.fl_object_find);
532 struct_assign(s10_param, native_param, fl_list.fl_object_find_final);
533
534 struct_assign(s10_param, native_param, fl_list.fl_key_generate);
535 struct_assign(s10_param, native_param, fl_list.fl_key_generate_pair);
536 struct_assign(s10_param, native_param, fl_list.fl_key_wrap);
537 struct_assign(s10_param, native_param, fl_list.fl_key_unwrap);
538 struct_assign(s10_param, native_param, fl_list.fl_key_derive);
539
540 struct_assign(s10_param, native_param, fl_list.fl_init_token);
541 struct_assign(s10_param, native_param, fl_list.fl_init_pin);
542 struct_assign(s10_param, native_param, fl_list.fl_set_pin);
543
544 struct_assign(s10_param, native_param, fl_list.prov_is_hash_limited);
545 struct_assign(s10_param, native_param, fl_list.prov_hash_threshold);
546 struct_assign(s10_param, native_param, fl_list.prov_hash_limit);
547
548 return (brand_uucopy(&s10_param, (void *)arg, sizeof (s10_param)));
549 }
550
551 /*
552 * The process contract CT_TGET and CT_TSET parameter structure ct_param_t
553 * changed between S10 and Nevada, so we have to emulate the old S10
554 * ct_param_t structure when interposing on the ioctl syscall.
555 */
556 typedef struct s10_ct_param {
557 uint32_t ctpm_id;
558 uint32_t ctpm_pad;
559 uint64_t ctpm_value;
560 } s10_ct_param_t;
561
562 /*
563 * We have to emulate process contract ioctls for init(1M) because the
564 * ioctl parameter structure changed between S10 and Nevada. This is
565 * a relatively simple process of filling Nevada structure fields,
566 * shuffling values, and initiating a native system call.
567 *
568 * For now, we'll assume that all consumers of CT_TGET and CT_TSET will
569 * need emulation. We'll issue a stat to make sure that the ioctl
570 * is meant for the contract file system.
571 *
572 */
573 static int
ctfs_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)574 ctfs_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
575 {
576 int err;
577 s10_ct_param_t s10param;
578 ct_param_t param;
579 struct stat statbuf;
580
581 if ((err = __systemcall(rval, SYS_fstatat + 1024,
582 fdes, NULL, &statbuf, 0)) != 0)
583 return (err);
584 if (strcmp(statbuf.st_fstype, MNTTYPE_CTFS) != 0)
585 return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
586
587 if (brand_uucopy((const void *)arg, &s10param, sizeof (s10param)) != 0)
588 return (EFAULT);
589 param.ctpm_id = s10param.ctpm_id;
590 param.ctpm_size = sizeof (uint64_t);
591 param.ctpm_value = &s10param.ctpm_value;
592 if ((err = __systemcall(rval, SYS_ioctl + 1024, fdes, cmd, ¶m))
593 != 0)
594 return (err);
595
596 if (cmd == CT_TGET)
597 return (brand_uucopy(&s10param, (void *)arg,
598 sizeof (s10param)));
599
600 return (0);
601 }
602
603 /*
604 * ZFS ioctls have changed in each Solaris 10 (S10) release as well as in
605 * Solaris Next. The brand wraps ZFS commands so that the native commands
606 * are used, but we want to be sure no command sneaks in that uses ZFS
607 * without our knowledge. We'll abort the process if we see a ZFS ioctl.
608 */
609 static int
zfs_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)610 zfs_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
611 {
612 static dev_t zfs_dev = (dev_t)-1;
613 int err;
614
615 if (passthru_otherdev_ioctl(&zfs_dev, ZFS_DEV, &err,
616 rval, fdes, cmd, arg) == 1)
617 return (err);
618
619 brand_abort(0, "ZFS ioctl!");
620 /*NOTREACHED*/
621 return (0);
622 }
623
624 struct s10_lofi_ioctl {
625 uint32_t li_minor;
626 boolean_t li_force;
627 char li_filename[MAXPATHLEN + 1];
628 };
629
630 static int
lofi_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)631 lofi_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
632 {
633 static dev_t lofi_dev = (dev_t)-1;
634 struct s10_lofi_ioctl s10_param;
635 struct lofi_ioctl native_param;
636 int err;
637
638 if (passthru_otherdev_ioctl(&lofi_dev, "/dev/lofictl", &err,
639 rval, fdes, cmd, arg) == 1)
640 return (err);
641
642 if (brand_uucopy((const void *)arg, &s10_param,
643 sizeof (s10_param)) != 0)
644 return (EFAULT);
645
646 /*
647 * Somewhat weirdly, EIO is what the S10 lofi driver would
648 * return for unrecognised cmds.
649 */
650 if (cmd >= LOFI_CHECK_COMPRESSED)
651 return (EIO);
652
653 bzero(&native_param, sizeof (native_param));
654
655 struct_assign(native_param, s10_param, li_minor);
656 struct_assign(native_param, s10_param, li_force);
657
658 /*
659 * Careful here, this has changed from [MAXPATHLEN + 1] to
660 * [MAXPATHLEN].
661 */
662 bcopy(s10_param.li_filename, native_param.li_filename,
663 sizeof (native_param.li_filename));
664 native_param.li_filename[MAXPATHLEN - 1] = '\0';
665
666 err = __systemcall(rval, SYS_ioctl + 1024, fdes, cmd, &native_param);
667
668 struct_assign(s10_param, native_param, li_minor);
669 /* li_force is input-only */
670
671 bcopy(native_param.li_filename, s10_param.li_filename,
672 sizeof (native_param.li_filename));
673
674 (void) brand_uucopy(&s10_param, (void *)arg, sizeof (s10_param));
675 return (err);
676 }
677
678 int
s10_ioctl(sysret_t * rval,int fdes,int cmd,intptr_t arg)679 s10_ioctl(sysret_t *rval, int fdes, int cmd, intptr_t arg)
680 {
681 switch (cmd) {
682 case CRYPTO_GET_FUNCTION_LIST:
683 return (crypto_ioctl(rval, fdes, cmd, arg));
684 case CT_TGET:
685 /*FALLTHRU*/
686 case CT_TSET:
687 return (ctfs_ioctl(rval, fdes, cmd, arg));
688 case MNTIOC_GETMNTENT:
689 /*FALLTHRU*/
690 case MNTIOC_GETEXTMNTENT:
691 /*FALLTHRU*/
692 case MNTIOC_GETMNTANY:
693 return (mntfs_ioctl(rval, fdes, cmd, arg));
694 }
695
696 switch (cmd & ~0xff) {
697 case ZFS_IOC:
698 return (zfs_ioctl(rval, fdes, cmd, arg));
699
700 case LOFI_IOC_BASE:
701 return (lofi_ioctl(rval, fdes, cmd, arg));
702
703 default:
704 break;
705 }
706
707 return (__systemcall(rval, SYS_ioctl + 1024, fdes, cmd, arg));
708 }
709
710 /*
711 * Unfortunately, pwrite()'s behavior differs between S10 and Nevada when
712 * applied to files opened with O_APPEND. The offset argument is ignored and
713 * the buffer is appended to the target file in S10, whereas the current file
714 * position is ignored in Nevada (i.e., pwrite() acts as though the target file
715 * wasn't opened with O_APPEND). This is a result of the fix for CR 6655660
716 * (pwrite() must ignore the O_APPEND/FAPPEND flag).
717 *
718 * We emulate the old S10 pwrite() behavior by checking whether the target file
719 * was opened with O_APPEND. If it was, then invoke the write() system call
720 * instead of pwrite(); otherwise, invoke the pwrite() system call as usual.
721 */
722 static int
s10_pwrite(sysret_t * rval,int fd,const void * bufferp,size_t num_bytes,off_t offset)723 s10_pwrite(sysret_t *rval, int fd, const void *bufferp, size_t num_bytes,
724 off_t offset)
725 {
726 int err;
727
728 if ((err = __systemcall(rval, SYS_fcntl + 1024, fd, F_GETFL)) != 0)
729 return (err);
730 if (rval->sys_rval1 & O_APPEND)
731 return (__systemcall(rval, SYS_write + 1024, fd, bufferp,
732 num_bytes));
733 return (__systemcall(rval, SYS_pwrite + 1024, fd, bufferp, num_bytes,
734 offset));
735 }
736
737 #if !defined(_LP64)
738 /*
739 * This is the large file version of the pwrite() system call for 32-bit
740 * processes. This exists for the same reason that s10_pwrite() exists; see
741 * the comment above s10_pwrite().
742 */
743 static int
s10_pwrite64(sysret_t * rval,int fd,const void * bufferp,size32_t num_bytes,uint32_t offset_1,uint32_t offset_2)744 s10_pwrite64(sysret_t *rval, int fd, const void *bufferp, size32_t num_bytes,
745 uint32_t offset_1, uint32_t offset_2)
746 {
747 int err;
748
749 if ((err = __systemcall(rval, SYS_fcntl + 1024, fd, F_GETFL)) != 0)
750 return (err);
751 if (rval->sys_rval1 & O_APPEND)
752 return (__systemcall(rval, SYS_write + 1024, fd, bufferp,
753 num_bytes));
754 return (__systemcall(rval, SYS_pwrite64 + 1024, fd, bufferp,
755 num_bytes, offset_1, offset_2));
756 }
757 #endif /* !_LP64 */
758
759 /*
760 * These are convenience macros that s10_getdents_common() uses. Both treat
761 * their arguments, which should be character pointers, as dirent pointers or
762 * dirent64 pointers and yield their d_name and d_reclen fields. These
763 * macros shouldn't be used outside of s10_getdents_common().
764 */
765 #define dirent_name(charptr) ((charptr) + name_offset)
766 #define dirent_reclen(charptr) \
767 (*(unsigned short *)(uintptr_t)((charptr) + reclen_offset))
768
769 /*
770 * This function contains code that is common to both s10_getdents() and
771 * s10_getdents64(). See the comment above s10_getdents() for details.
772 *
773 * rval, fd, buf, and nbyte should be passed unmodified from s10_getdents()
774 * and s10_getdents64(). getdents_syscall_id should be either SYS_getdents
775 * or SYS_getdents64. name_offset should be the the byte offset of
776 * the d_name field in the dirent structures passed to the kernel via the
777 * syscall represented by getdents_syscall_id. reclen_offset should be
778 * the byte offset of the d_reclen field in the aforementioned dirent
779 * structures.
780 */
781 static int
s10_getdents_common(sysret_t * rval,int fd,char * buf,size_t nbyte,int getdents_syscall_id,size_t name_offset,size_t reclen_offset)782 s10_getdents_common(sysret_t *rval, int fd, char *buf, size_t nbyte,
783 int getdents_syscall_id, size_t name_offset, size_t reclen_offset)
784 {
785 int err;
786 size_t buf_size;
787 char *local_buf;
788 char *buf_current;
789
790 /*
791 * Use a special brand operation, B_S10_ISFDXATTRDIR, to determine
792 * whether the specified file descriptor refers to an extended file
793 * attribute directory. If it doesn't, then SYS_getdents won't
794 * reveal extended file attributes, in which case we can simply
795 * hand the syscall to the native kernel.
796 */
797 if ((err = __systemcall(rval, SYS_brand + 1024, B_S10_ISFDXATTRDIR,
798 fd)) != 0)
799 return (err);
800 if (rval->sys_rval1 == 0)
801 return (__systemcall(rval, getdents_syscall_id + 1024, fd, buf,
802 nbyte));
803
804 /*
805 * The file descriptor refers to an extended file attributes directory.
806 * We need to create a dirent buffer that's as large as buf into which
807 * the native SYS_getdents will store the special extended file
808 * attribute directory's entries. We can't dereference buf because
809 * it might be an invalid pointer!
810 */
811 if (nbyte > MAXGETDENTS_SIZE)
812 nbyte = MAXGETDENTS_SIZE;
813 local_buf = (char *)malloc(nbyte);
814 if (local_buf == NULL) {
815 /*
816 * getdents(2) doesn't return an error code indicating a memory
817 * allocation error and it doesn't make sense to return any of
818 * its documented error codes for a malloc(3C) failure. We'll
819 * use ENOMEM even though getdents(2) doesn't use it because it
820 * best describes the failure.
821 */
822 (void) B_TRUSS_POINT_3(rval, getdents_syscall_id, ENOMEM, fd,
823 buf, nbyte);
824 rval->sys_rval1 = -1;
825 rval->sys_rval2 = 0;
826 return (EIO);
827 }
828
829 /*
830 * Issue a native SYS_getdents syscall but use our local dirent buffer
831 * instead of buf. This will allow us to examine the returned dirent
832 * structures immediately and copy them to buf later. That way the
833 * calling process won't be able to see the dirent structures until
834 * we finish examining them.
835 */
836 if ((err = __systemcall(rval, getdents_syscall_id + 1024, fd, local_buf,
837 nbyte)) != 0) {
838 free(local_buf);
839 return (err);
840 }
841 buf_size = rval->sys_rval1;
842 if (buf_size == 0) {
843 free(local_buf);
844 return (0);
845 }
846
847 /*
848 * Look for SUNWattr_ro (VIEW_READONLY) and SUNWattr_rw
849 * (VIEW_READWRITE) in the directory entries and remove them
850 * from the dirent buffer.
851 */
852 for (buf_current = local_buf;
853 (size_t)(buf_current - local_buf) < buf_size; /* cstyle */) {
854 if (strcmp(dirent_name(buf_current), VIEW_READONLY) != 0 &&
855 strcmp(dirent_name(buf_current), VIEW_READWRITE) != 0) {
856 /*
857 * The dirent refers to an attribute that should
858 * be visible to Solaris 10 processes. Keep it
859 * and examine the next entry in the buffer.
860 */
861 buf_current += dirent_reclen(buf_current);
862 } else {
863 /*
864 * We found either SUNWattr_ro (VIEW_READONLY)
865 * or SUNWattr_rw (VIEW_READWRITE). Remove it
866 * from the dirent buffer by decrementing
867 * buf_size by the size of the entry and
868 * overwriting the entry with the remaining
869 * entries.
870 */
871 buf_size -= dirent_reclen(buf_current);
872 (void) memmove(buf_current, buf_current +
873 dirent_reclen(buf_current), buf_size -
874 (size_t)(buf_current - local_buf));
875 }
876 }
877
878 /*
879 * Copy local_buf into buf so that the calling process can see
880 * the results.
881 */
882 if ((err = brand_uucopy(local_buf, buf, buf_size)) != 0) {
883 free(local_buf);
884 rval->sys_rval1 = -1;
885 rval->sys_rval2 = 0;
886 return (err);
887 }
888 rval->sys_rval1 = buf_size;
889 free(local_buf);
890 return (0);
891 }
892
893 /*
894 * Solaris Next added two special extended file attributes, SUNWattr_ro and
895 * SUNWattr_rw, which are called "extended system attributes". They have
896 * special semantics (e.g., a process cannot unlink SUNWattr_ro) and should
897 * not appear in solaris10-branded zones because no Solaris 10 applications,
898 * including system commands such as tar(1), are coded to correctly handle these
899 * special attributes.
900 *
901 * This emulation function solves the aforementioned problem by emulating
902 * the getdents(2) syscall and filtering both system attributes out of resulting
903 * directory entry lists. The emulation function only filters results when
904 * the given file descriptor refers to an extended file attribute directory.
905 * Filtering getdents(2) results is expensive because it requires dynamic
906 * memory allocation; however, the performance cost is tolerable because
907 * we don't expect Solaris 10 processes to frequently examine extended file
908 * attribute directories.
909 *
910 * The brand's emulation library needs two getdents(2) emulation functions
911 * because getdents(2) comes in two flavors: non-largefile-aware getdents(2)
912 * and largefile-aware getdents64(2). s10_getdents() handles the non-largefile-
913 * aware case for 32-bit processes and all getdents(2) syscalls for 64-bit
914 * processes (64-bit processes use largefile-aware interfaces by default).
915 * See s10_getdents64() below for the largefile-aware getdents64(2) emulation
916 * function for 32-bit processes.
917 */
918 static int
s10_getdents(sysret_t * rval,int fd,struct dirent * buf,size_t nbyte)919 s10_getdents(sysret_t *rval, int fd, struct dirent *buf, size_t nbyte)
920 {
921 return (s10_getdents_common(rval, fd, (char *)buf, nbyte, SYS_getdents,
922 offsetof(struct dirent, d_name),
923 offsetof(struct dirent, d_reclen)));
924 }
925
926 #ifndef _LP64
927 /*
928 * This is the largefile-aware version of getdents(2) for 32-bit processes.
929 * This exists for the same reason that s10_getdents() exists. See the comment
930 * above s10_getdents().
931 */
932 static int
s10_getdents64(sysret_t * rval,int fd,struct dirent64 * buf,size_t nbyte)933 s10_getdents64(sysret_t *rval, int fd, struct dirent64 *buf, size_t nbyte)
934 {
935 return (s10_getdents_common(rval, fd, (char *)buf, nbyte,
936 SYS_getdents64, offsetof(struct dirent64, d_name),
937 offsetof(struct dirent64, d_reclen)));
938 }
939 #endif /* !_LP64 */
940
941 #define S10_TRIVIAL_ACL_CNT 6
942 #define NATIVE_TRIVIAL_ACL_CNT 3
943
944 /*
945 * Check if the ACL qualifies as a trivial ACL based on the native
946 * interpretation.
947 */
948 static boolean_t
has_trivial_native_acl(int cmd,int cnt,const char * fname,int fd)949 has_trivial_native_acl(int cmd, int cnt, const char *fname, int fd)
950 {
951 int i, err;
952 sysret_t rval;
953 ace_t buf[NATIVE_TRIVIAL_ACL_CNT];
954
955 if (fname != NULL)
956 err = __systemcall(&rval, SYS_pathconf + 1024, fname,
957 _PC_ACL_ENABLED);
958 else
959 err = __systemcall(&rval, SYS_fpathconf + 1024, fd,
960 _PC_ACL_ENABLED);
961 if (err != 0 || rval.sys_rval1 != _ACL_ACE_ENABLED)
962 return (B_FALSE);
963
964 /*
965 * If we just got the ACL cnt, we don't need to get it again, its
966 * passed in as the cnt arg.
967 */
968 if (cmd != ACE_GETACLCNT) {
969 if (fname != NULL) {
970 if (__systemcall(&rval, SYS_acl + 1024, fname,
971 ACE_GETACLCNT, 0, NULL) != 0)
972 return (B_FALSE);
973 } else {
974 if (__systemcall(&rval, SYS_facl + 1024, fd,
975 ACE_GETACLCNT, 0, NULL) != 0)
976 return (B_FALSE);
977 }
978 cnt = rval.sys_rval1;
979 }
980
981 if (cnt != NATIVE_TRIVIAL_ACL_CNT)
982 return (B_FALSE);
983
984 if (fname != NULL) {
985 if (__systemcall(&rval, SYS_acl + 1024, fname, ACE_GETACL, cnt,
986 buf) != 0)
987 return (B_FALSE);
988 } else {
989 if (__systemcall(&rval, SYS_facl + 1024, fd, ACE_GETACL, cnt,
990 buf) != 0)
991 return (B_FALSE);
992 }
993
994 /*
995 * The following is based on the logic from the native OS
996 * ace_trivial_common() to determine if the native ACL is trivial.
997 */
998 for (i = 0; i < cnt; i++) {
999 switch (buf[i].a_flags & ACE_TYPE_FLAGS) {
1000 case ACE_OWNER:
1001 case ACE_GROUP|ACE_IDENTIFIER_GROUP:
1002 case ACE_EVERYONE:
1003 break;
1004 default:
1005 return (B_FALSE);
1006 }
1007
1008 if (buf[i].a_flags & (ACE_FILE_INHERIT_ACE|
1009 ACE_DIRECTORY_INHERIT_ACE|ACE_NO_PROPAGATE_INHERIT_ACE|
1010 ACE_INHERIT_ONLY_ACE))
1011 return (B_FALSE);
1012
1013 /*
1014 * Special check for some special bits
1015 *
1016 * Don't allow anybody to deny reading basic
1017 * attributes or a files ACL.
1018 */
1019 if (buf[i].a_access_mask & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
1020 buf[i].a_type == ACE_ACCESS_DENIED_ACE_TYPE)
1021 return (B_FALSE);
1022
1023 /*
1024 * Delete permissions are never set by default
1025 */
1026 if (buf[i].a_access_mask & (ACE_DELETE|ACE_DELETE_CHILD))
1027 return (B_FALSE);
1028 /*
1029 * only allow owner@ to have
1030 * write_acl/write_owner/write_attributes/write_xattr/
1031 */
1032 if (buf[i].a_type == ACE_ACCESS_ALLOWED_ACE_TYPE &&
1033 (!(buf[i].a_flags & ACE_OWNER) && (buf[i].a_access_mask &
1034 (ACE_WRITE_OWNER|ACE_WRITE_ACL| ACE_WRITE_ATTRIBUTES|
1035 ACE_WRITE_NAMED_ATTRS))))
1036 return (B_FALSE);
1037
1038 }
1039
1040 return (B_TRUE);
1041 }
1042
1043 /*
1044 * The following logic is based on the S10 adjust_ace_pair_common() code.
1045 */
1046 static void
s10_adjust_ace_mask(void * pair,size_t access_off,size_t pairsize,mode_t mode)1047 s10_adjust_ace_mask(void *pair, size_t access_off, size_t pairsize, mode_t mode)
1048 {
1049 char *datap = (char *)pair;
1050 uint32_t *amask0 = (uint32_t *)(uintptr_t)(datap + access_off);
1051 uint32_t *amask1 = (uint32_t *)(uintptr_t)(datap + pairsize +
1052 access_off);
1053
1054 if (mode & S_IROTH)
1055 *amask1 |= ACE_READ_DATA;
1056 else
1057 *amask0 |= ACE_READ_DATA;
1058 if (mode & S_IWOTH)
1059 *amask1 |= ACE_WRITE_DATA|ACE_APPEND_DATA;
1060 else
1061 *amask0 |= ACE_WRITE_DATA|ACE_APPEND_DATA;
1062 if (mode & S_IXOTH)
1063 *amask1 |= ACE_EXECUTE;
1064 else
1065 *amask0 |= ACE_EXECUTE;
1066 }
1067
1068 /*
1069 * Construct a trivial S10 style ACL.
1070 */
1071 static int
make_trivial_s10_acl(const char * fname,int fd,ace_t * bp)1072 make_trivial_s10_acl(const char *fname, int fd, ace_t *bp)
1073 {
1074 int err;
1075 sysret_t rval;
1076 struct stat64 buf;
1077 ace_t trivial_s10_acl[] = {
1078 {(uint_t)-1, 0, ACE_OWNER, ACE_ACCESS_DENIED_ACE_TYPE},
1079 {(uint_t)-1, ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES|
1080 ACE_WRITE_NAMED_ATTRS, ACE_OWNER,
1081 ACE_ACCESS_ALLOWED_ACE_TYPE},
1082 {(uint_t)-1, 0, ACE_GROUP|ACE_IDENTIFIER_GROUP,
1083 ACE_ACCESS_DENIED_ACE_TYPE},
1084 {(uint_t)-1, 0, ACE_GROUP|ACE_IDENTIFIER_GROUP,
1085 ACE_ACCESS_ALLOWED_ACE_TYPE},
1086 {(uint_t)-1, ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES|
1087 ACE_WRITE_NAMED_ATTRS, ACE_EVERYONE,
1088 ACE_ACCESS_DENIED_ACE_TYPE},
1089 {(uint_t)-1, ACE_READ_ACL|ACE_READ_ATTRIBUTES|
1090 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE, ACE_EVERYONE,
1091 ACE_ACCESS_ALLOWED_ACE_TYPE}
1092 };
1093
1094 if (fname != NULL) {
1095 if ((err = __systemcall(&rval, SYS_fstatat64 + 1024, AT_FDCWD,
1096 fname, &buf, 0)) != 0)
1097 return (err);
1098 } else {
1099 if ((err = __systemcall(&rval, SYS_fstatat64 + 1024, fd,
1100 NULL, &buf, 0)) != 0)
1101 return (err);
1102 }
1103
1104 s10_adjust_ace_mask(&trivial_s10_acl[0], offsetof(ace_t, a_access_mask),
1105 sizeof (ace_t), (buf.st_mode & 0700) >> 6);
1106 s10_adjust_ace_mask(&trivial_s10_acl[2], offsetof(ace_t, a_access_mask),
1107 sizeof (ace_t), (buf.st_mode & 0070) >> 3);
1108 s10_adjust_ace_mask(&trivial_s10_acl[4], offsetof(ace_t, a_access_mask),
1109 sizeof (ace_t), buf.st_mode & 0007);
1110
1111 if (brand_uucopy(&trivial_s10_acl, bp, sizeof (trivial_s10_acl)) != 0)
1112 return (EFAULT);
1113
1114 return (0);
1115 }
1116
1117 /*
1118 * The definition of a trivial ace-style ACL (used by ZFS and NFSv4) has been
1119 * simplified since S10. Instead of 6 entries on a trivial S10 ACE ACL we now
1120 * have 3 streamlined entries. The new, simpler trivial style confuses S10
1121 * commands such as 'ls -v' or 'cp -p' which don't see the expected S10 trivial
1122 * ACL entries and thus assume that there is a complex ACL on the file.
1123 *
1124 * See: PSARC/2010/029 Improved ACL interoperability
1125 *
1126 * Note that the trival ACL detection code is implemented in acl_trival() in
1127 * lib/libsec/common/aclutils.c. It always uses the acl() syscall (not the
1128 * facl syscall) to determine if an ACL is trivial. However, we emulate both
1129 * acl() and facl() so that the two provide consistent results.
1130 *
1131 * We don't currently try to emulate setting of ACLs since the primary
1132 * consumer of this feature is SMB or NFSv4 servers, neither of which are
1133 * supported in solaris10-branded zones. If ACLs are used they must be set on
1134 * files using the native OS interpretation.
1135 */
1136 int
s10_acl(sysret_t * rval,const char * fname,int cmd,int nentries,void * aclbufp)1137 s10_acl(sysret_t *rval, const char *fname, int cmd, int nentries, void *aclbufp)
1138 {
1139 int res;
1140
1141 res = __systemcall(rval, SYS_acl + 1024, fname, cmd, nentries, aclbufp);
1142
1143 switch (cmd) {
1144 case ACE_GETACLCNT:
1145 if (res == 0 && has_trivial_native_acl(ACE_GETACLCNT,
1146 rval->sys_rval1, fname, 0)) {
1147 rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1148 }
1149 break;
1150 case ACE_GETACL:
1151 if (res == 0 &&
1152 has_trivial_native_acl(ACE_GETACL, 0, fname, 0) &&
1153 nentries >= S10_TRIVIAL_ACL_CNT) {
1154 res = make_trivial_s10_acl(fname, 0, aclbufp);
1155 rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1156 }
1157 break;
1158 }
1159
1160 return (res);
1161 }
1162
1163 int
s10_facl(sysret_t * rval,int fdes,int cmd,int nentries,void * aclbufp)1164 s10_facl(sysret_t *rval, int fdes, int cmd, int nentries, void *aclbufp)
1165 {
1166 int res;
1167
1168 res = __systemcall(rval, SYS_facl + 1024, fdes, cmd, nentries, aclbufp);
1169
1170 switch (cmd) {
1171 case ACE_GETACLCNT:
1172 if (res == 0 && has_trivial_native_acl(ACE_GETACLCNT,
1173 rval->sys_rval1, NULL, fdes)) {
1174 rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1175 }
1176 break;
1177 case ACE_GETACL:
1178 if (res == 0 &&
1179 has_trivial_native_acl(ACE_GETACL, 0, NULL, fdes) &&
1180 nentries >= S10_TRIVIAL_ACL_CNT) {
1181 res = make_trivial_s10_acl(NULL, fdes, aclbufp);
1182 rval->sys_rval1 = S10_TRIVIAL_ACL_CNT;
1183 }
1184 break;
1185 }
1186
1187 return (res);
1188 }
1189
1190 #define S10_AC_PROC (0x1 << 28)
1191 #define S10_AC_TASK (0x2 << 28)
1192 #define S10_AC_FLOW (0x4 << 28)
1193 #define S10_AC_MODE(x) ((x) & 0xf0000000)
1194 #define S10_AC_OPTION(x) ((x) & 0x0fffffff)
1195
1196 /*
1197 * The mode shift, mode mask and option mask for acctctl have changed. The
1198 * mode is currently the top full byte and the option is the lower 3 full bytes.
1199 */
1200 int
s10_acctctl(sysret_t * rval,int cmd,void * buf,size_t bufsz)1201 s10_acctctl(sysret_t *rval, int cmd, void *buf, size_t bufsz)
1202 {
1203 int mode = S10_AC_MODE(cmd);
1204 int option = S10_AC_OPTION(cmd);
1205
1206 switch (mode) {
1207 case S10_AC_PROC:
1208 mode = AC_PROC;
1209 break;
1210 case S10_AC_TASK:
1211 mode = AC_TASK;
1212 break;
1213 case S10_AC_FLOW:
1214 mode = AC_FLOW;
1215 break;
1216 default:
1217 return (B_TRUSS_POINT_3(rval, SYS_acctctl, EINVAL, cmd, buf,
1218 bufsz));
1219 }
1220
1221 return (__systemcall(rval, SYS_acctctl + 1024, mode | option, buf,
1222 bufsz));
1223 }
1224
1225 /*
1226 * The Audit Policy parameters have changed due to:
1227 * 6466722 audituser and AUDIT_USER are defined, unused, undocumented and
1228 * should be removed.
1229 *
1230 * In S10 we had the following flag:
1231 * #define AUDIT_USER 0x0040
1232 * which doesn't exist in Solaris Next where the subsequent flags are shifted
1233 * down. For example, in S10 we had:
1234 * #define AUDIT_GROUP 0x0080
1235 * but on Solaris Next we have:
1236 * #define AUDIT_GROUP 0x0040
1237 * AUDIT_GROUP has the value AUDIT_USER had in S10 and all of the subsequent
1238 * bits are also shifted one place.
1239 *
1240 * When we're getting or setting the Audit Policy parameters we need to
1241 * shift the outgoing or incoming bits into their proper positions. Since
1242 * S10_AUDIT_USER was always unused, we always clear that bit on A_GETPOLICY.
1243 *
1244 * The command we care about, BSM_AUDITCTL, passes the most parameters (3),
1245 * so declare this function to take up to 4 args and just pass them on.
1246 * The number of parameters for s10_auditsys needs to be equal to the BSM_*
1247 * subcommand that has the most parameters, since we want to pass all
1248 * parameters through, regardless of which subcommands we interpose on.
1249 *
1250 * Note that the auditsys system call uses the SYSENT_AP macro wrapper instead
1251 * of the more common SYSENT_CI macro. This means the return value is a
1252 * SE_64RVAL so the syscall table uses RV_64RVAL.
1253 */
1254
1255 #define S10_AUDIT_HMASK 0xffffffc0
1256 #define S10_AUDIT_LMASK 0x3f
1257 #define S10_AUC_NOSPACE 0x3
1258
1259 int
s10_auditsys(sysret_t * rval,int bsmcmd,intptr_t a0,intptr_t a1,intptr_t a2)1260 s10_auditsys(sysret_t *rval, int bsmcmd, intptr_t a0, intptr_t a1, intptr_t a2)
1261 {
1262 int err;
1263 uint32_t m;
1264
1265 if (bsmcmd != BSM_AUDITCTL)
1266 return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, a1,
1267 a2));
1268
1269 if ((int)a0 == A_GETPOLICY) {
1270 if ((err = __systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0,
1271 &m, a2)) != 0)
1272 return (err);
1273 m = ((m & S10_AUDIT_HMASK) << 1) | (m & S10_AUDIT_LMASK);
1274 if (brand_uucopy(&m, (void *)a1, sizeof (m)) != 0)
1275 return (EFAULT);
1276 return (0);
1277
1278 } else if ((int)a0 == A_SETPOLICY) {
1279 if (brand_uucopy((const void *)a1, &m, sizeof (m)) != 0)
1280 return (EFAULT);
1281 m = ((m >> 1) & S10_AUDIT_HMASK) | (m & S10_AUDIT_LMASK);
1282 return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, &m,
1283 a2));
1284 } else if ((int)a0 == A_GETCOND) {
1285 if ((err = __systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0,
1286 &m, a2)) != 0)
1287 return (err);
1288 if (m == AUC_NOSPACE)
1289 m = S10_AUC_NOSPACE;
1290 if (brand_uucopy(&m, (void *)a1, sizeof (m)) != 0)
1291 return (EFAULT);
1292 return (0);
1293 } else if ((int)a0 == A_SETCOND) {
1294 if (brand_uucopy((const void *)a1, &m, sizeof (m)) != 0)
1295 return (EFAULT);
1296 if (m == S10_AUC_NOSPACE)
1297 m = AUC_NOSPACE;
1298 return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, &m,
1299 a2));
1300 }
1301
1302 return (__systemcall(rval, SYS_auditsys + 1024, bsmcmd, a0, a1, a2));
1303 }
1304
1305 /*
1306 * Determine whether the executable passed to SYS_exec or SYS_execve is a
1307 * native executable. The s10_npreload.so invokes the B_S10_NATIVE brand
1308 * operation which patches up the processes exec info to eliminate any trace
1309 * of the wrapper. That will make pgrep and other commands that examine
1310 * process' executable names and command-line parameters work properly.
1311 */
1312 static int
s10_exec_native(sysret_t * rval,const char * fname,const char ** argp,const char ** envp)1313 s10_exec_native(sysret_t *rval, const char *fname, const char **argp,
1314 const char **envp)
1315 {
1316 const char *filename = fname;
1317 char path[64];
1318 int err;
1319
1320 /* Get a copy of the executable we're trying to run */
1321 path[0] = '\0';
1322 (void) brand_uucopystr(filename, path, sizeof (path));
1323
1324 /* Check if we're trying to run a native binary */
1325 if (strncmp(path, "/.SUNWnative/usr/lib/brand/solaris10/s10_native",
1326 sizeof (path)) != 0)
1327 return (0);
1328
1329 /* Skip the first element in the argv array */
1330 argp++;
1331
1332 /*
1333 * The the path of the dynamic linker is the second parameter
1334 * of s10_native_exec().
1335 */
1336 if (brand_uucopy(argp, &filename, sizeof (char *)) != 0)
1337 return (EFAULT);
1338
1339 /* If an exec call succeeds, it never returns */
1340 err = __systemcall(rval, SYS_brand + 1024, B_EXEC_NATIVE, filename,
1341 argp, envp, NULL, NULL, NULL);
1342 brand_assert(err != 0);
1343 return (err);
1344 }
1345
1346 /*
1347 * Interpose on the SYS_exec syscall to detect native wrappers.
1348 */
1349 int
s10_exec(sysret_t * rval,const char * fname,const char ** argp)1350 s10_exec(sysret_t *rval, const char *fname, const char **argp)
1351 {
1352 int err;
1353
1354 if ((err = s10_exec_native(rval, fname, argp, NULL)) != 0)
1355 return (err);
1356
1357 /* If an exec call succeeds, it never returns */
1358 err = __systemcall(rval, SYS_execve + 1024, fname, argp, NULL);
1359 brand_assert(err != 0);
1360 return (err);
1361 }
1362
1363 /*
1364 * Interpose on the SYS_execve syscall to detect native wrappers.
1365 */
1366 int
s10_execve(sysret_t * rval,const char * fname,const char ** argp,const char ** envp)1367 s10_execve(sysret_t *rval, const char *fname, const char **argp,
1368 const char **envp)
1369 {
1370 int err;
1371
1372 if ((err = s10_exec_native(rval, fname, argp, envp)) != 0)
1373 return (err);
1374
1375 /* If an exec call succeeds, it never returns */
1376 err = __systemcall(rval, SYS_execve + 1024, fname, argp, envp);
1377 brand_assert(err != 0);
1378 return (err);
1379 }
1380
1381 /*
1382 * S10's issetugid() syscall is now a subcode to privsys().
1383 */
1384 static int
s10_issetugid(sysret_t * rval)1385 s10_issetugid(sysret_t *rval)
1386 {
1387 return (__systemcall(rval, SYS_privsys + 1024, PRIVSYS_ISSETUGID,
1388 0, 0, 0, 0, 0));
1389 }
1390
1391 /*
1392 * S10's socket() syscall does not split type and flags
1393 */
1394 static int
s10_so_socket(sysret_t * rval,int domain,int type,int protocol,char * devpath,int version)1395 s10_so_socket(sysret_t *rval, int domain, int type, int protocol,
1396 char *devpath, int version)
1397 {
1398 if ((type & ~SOCK_TYPE_MASK) != 0) {
1399 errno = EINVAL;
1400 return (-1);
1401 }
1402 return (__systemcall(rval, SYS_so_socket + 1024, domain, type,
1403 protocol, devpath, version));
1404 }
1405
1406 /*
1407 * S10's pipe() syscall has a different calling convention
1408 */
1409 static int
s10_pipe(sysret_t * rval)1410 s10_pipe(sysret_t *rval)
1411 {
1412 int fds[2], err;
1413 if ((err = __systemcall(rval, SYS_pipe + 1024, fds, 0)) != 0)
1414 return (err);
1415
1416 rval->sys_rval1 = fds[0];
1417 rval->sys_rval2 = fds[1];
1418 return (0);
1419 }
1420
1421 /*
1422 * S10's accept() syscall takes three arguments
1423 */
1424 static int
s10_accept(sysret_t * rval,int sock,struct sockaddr * addr,uint_t * addrlen,int version)1425 s10_accept(sysret_t *rval, int sock, struct sockaddr *addr, uint_t *addrlen,
1426 int version)
1427 {
1428 return (__systemcall(rval, SYS_accept + 1024, sock, addr, addrlen,
1429 version, 0));
1430 }
1431
1432 static long
s10_uname(sysret_t * rv,uintptr_t p1)1433 s10_uname(sysret_t *rv, uintptr_t p1)
1434 {
1435 struct utsname un, *unp = (struct utsname *)p1;
1436 int rev, err;
1437
1438 if ((err = __systemcall(rv, SYS_uname + 1024, &un)) != 0)
1439 return (err);
1440
1441 rev = atoi(&un.release[2]);
1442 brand_assert(rev >= 11);
1443 bzero(un.release, _SYS_NMLN);
1444 (void) strlcpy(un.release, S10_UTS_RELEASE, _SYS_NMLN);
1445 bzero(un.version, _SYS_NMLN);
1446 (void) strlcpy(un.version, S10_UTS_VERSION, _SYS_NMLN);
1447
1448 /* copy out the modified uname info */
1449 return (brand_uucopy(&un, unp, sizeof (un)));
1450 }
1451
1452 int
s10_sysconfig(sysret_t * rv,int which)1453 s10_sysconfig(sysret_t *rv, int which)
1454 {
1455 long value;
1456
1457 /*
1458 * We must interpose on the sysconfig(2) requests
1459 * that deal with the realtime signal number range.
1460 * All others get passed to the native sysconfig(2).
1461 */
1462 switch (which) {
1463 case _CONFIG_RTSIG_MAX:
1464 value = S10_SIGRTMAX - S10_SIGRTMIN + 1;
1465 break;
1466 case _CONFIG_SIGRT_MIN:
1467 value = S10_SIGRTMIN;
1468 break;
1469 case _CONFIG_SIGRT_MAX:
1470 value = S10_SIGRTMAX;
1471 break;
1472 default:
1473 return (__systemcall(rv, SYS_sysconfig + 1024, which));
1474 }
1475
1476 (void) B_TRUSS_POINT_1(rv, SYS_sysconfig, 0, which);
1477 rv->sys_rval1 = value;
1478 rv->sys_rval2 = 0;
1479
1480 return (0);
1481 }
1482
1483 int
s10_sysinfo(sysret_t * rv,int command,char * buf,long count)1484 s10_sysinfo(sysret_t *rv, int command, char *buf, long count)
1485 {
1486 char *value;
1487 int len;
1488
1489 /*
1490 * We must interpose on the sysinfo(2) commands SI_RELEASE and
1491 * SI_VERSION; all others get passed to the native sysinfo(2)
1492 * command.
1493 */
1494 switch (command) {
1495 case SI_RELEASE:
1496 value = S10_UTS_RELEASE;
1497 break;
1498
1499 case SI_VERSION:
1500 value = S10_UTS_VERSION;
1501 break;
1502
1503 default:
1504 /*
1505 * The default action is to pass the command to the
1506 * native sysinfo(2) syscall.
1507 */
1508 return (__systemcall(rv, SYS_systeminfo + 1024,
1509 command, buf, count));
1510 }
1511
1512 len = strlen(value) + 1;
1513 if (count > 0) {
1514 if (brand_uucopystr(value, buf, count) != 0)
1515 return (EFAULT);
1516
1517 /*
1518 * Assure NULL termination of buf as brand_uucopystr() doesn't.
1519 */
1520 if (len > count && brand_uucopy("\0", buf + (count - 1), 1)
1521 != 0)
1522 return (EFAULT);
1523 }
1524
1525 /*
1526 * On success, sysinfo(2) returns the size of buffer required to hold
1527 * the complete value plus its terminating NULL byte.
1528 */
1529 (void) B_TRUSS_POINT_3(rv, SYS_systeminfo, 0, command, buf, count);
1530 rv->sys_rval1 = len;
1531 rv->sys_rval2 = 0;
1532 return (0);
1533 }
1534
1535 #if defined(__x86)
1536 #if defined(__amd64)
1537 /*
1538 * 64-bit x86 LWPs created by SYS_lwp_create start here if they need to set
1539 * their %fs registers to the legacy Solaris 10 selector value.
1540 *
1541 * This function does three things:
1542 *
1543 * 1. Trap to the kernel so that it can set %fs to the legacy Solaris 10
1544 * selector value.
1545 * 2. Read the LWP's true entry point (the entry point supplied by libc
1546 * when SYS_lwp_create was invoked) from %r14.
1547 * 3. Eliminate this function's stack frame and pass control to the LWP's
1548 * true entry point.
1549 *
1550 * See the comment above s10_lwp_create_correct_fs() (see below) for the reason
1551 * why this function exists.
1552 */
1553 /*ARGSUSED*/
1554 static void
s10_lwp_create_entry_point(void * ulwp_structp)1555 s10_lwp_create_entry_point(void *ulwp_structp)
1556 {
1557 sysret_t rval;
1558
1559 /*
1560 * The new LWP's %fs register is initially zero, but libc won't
1561 * function correctly when %fs is zero. Change the LWP's %fs register
1562 * via SYS_brand.
1563 */
1564 (void) __systemcall(&rval, SYS_brand + 1024, B_S10_FSREGCORRECTION);
1565
1566 /*
1567 * Jump to the true entry point, which is stored in %r14.
1568 * Remove our stack frame before jumping so that
1569 * s10_lwp_create_entry_point() won't be seen in stack traces.
1570 *
1571 * NOTE: s10_lwp_create_entry_point() pushes %r12 onto its stack frame
1572 * so that it can use it as a temporary register. We don't restore %r12
1573 * in this assembly block because we don't care about its value (and
1574 * neither does _lwp_start()). Besides, the System V ABI AMD64
1575 * Actirecture Processor Supplement doesn't specify that %r12 should
1576 * have a special value when LWPs start, so we can ignore its value when
1577 * we jump to the true entry point. Furthermore, %r12 is a callee-saved
1578 * register, so the true entry point should push %r12 onto its stack
1579 * before using the register. We ignore %r14 after we read it for
1580 * similar reasons.
1581 *
1582 * NOTE: The compiler will generate a function epilogue for this
1583 * function despite the fact that the LWP will never execute it.
1584 * We could hand-code this entire function in assembly to eliminate
1585 * the epilogue, but the epilogue is only three or four instructions,
1586 * so we wouldn't save much space. Besides, why would we want
1587 * to create yet another ugly, hard-to-maintain assembly function when
1588 * we could write most of it in C?
1589 */
1590 __asm__ __volatile__(
1591 "movq %0, %%rdi\n\t" /* pass ulwp_structp as arg1 */
1592 "movq %%rbp, %%rsp\n\t" /* eliminate the stack frame */
1593 "popq %%rbp\n\t"
1594 "jmp *%%r14\n\t" /* jump to the true entry point */
1595 : : "r" (ulwp_structp));
1596 /*NOTREACHED*/
1597 }
1598
1599 /*
1600 * The S10 libc expects that %fs will be nonzero for new 64-bit x86 LWPs but the
1601 * Nevada kernel clears %fs for such LWPs. Unforunately, new LWPs do not issue
1602 * SYS_lwp_private (see s10_lwp_private() below) after they are created, so
1603 * we must ensure that new LWPs invoke a brand operation that sets %fs to a
1604 * nonzero value immediately after their creation.
1605 *
1606 * The easiest way to do this is to make new LWPs start at a special function,
1607 * s10_lwp_create_entry_point() (see its definition above), that invokes the
1608 * brand operation that corrects %fs. We'll store the entry points of new LWPs
1609 * in their %r14 registers so that s10_lwp_create_entry_point() can find and
1610 * call them after invoking the special brand operation. %r14 is a callee-saved
1611 * register; therefore, any functions invoked by s10_lwp_create_entry_point()
1612 * and all functions dealing with signals (e.g., sigacthandler()) will preserve
1613 * %r14 for s10_lwp_create_entry_point().
1614 *
1615 * The Nevada kernel can safely work with nonzero %fs values because the kernel
1616 * configures per-thread %fs segment descriptors so that the legacy %fs selector
1617 * value will still work. See the comment in lwp_load() regarding %fs and
1618 * %fsbase in 64-bit x86 processes.
1619 *
1620 * This emulation exists thanks to CRs 6467491 and 6501650.
1621 */
1622 static int
s10_lwp_create_correct_fs(sysret_t * rval,ucontext_t * ucp,int flags,id_t * new_lwp)1623 s10_lwp_create_correct_fs(sysret_t *rval, ucontext_t *ucp, int flags,
1624 id_t *new_lwp)
1625 {
1626 ucontext_t s10_uc;
1627
1628 /*
1629 * Copy the supplied ucontext_t structure to the local stack
1630 * frame and store the new LWP's entry point (the value of %rip
1631 * stored in the ucontext_t) in the new LWP's %r14 register.
1632 * Then make s10_lwp_create_entry_point() the new LWP's entry
1633 * point.
1634 */
1635 if (brand_uucopy(ucp, &s10_uc, sizeof (s10_uc)) != 0)
1636 return (EFAULT);
1637
1638 s10_uc.uc_mcontext.gregs[REG_R14] = s10_uc.uc_mcontext.gregs[REG_RIP];
1639 s10_uc.uc_mcontext.gregs[REG_RIP] = (greg_t)s10_lwp_create_entry_point;
1640
1641 /* fix up the signal mask */
1642 if (s10_uc.uc_flags & UC_SIGMASK)
1643 (void) s10sigset_to_native(&s10_uc.uc_sigmask,
1644 &s10_uc.uc_sigmask);
1645
1646 /*
1647 * Issue SYS_lwp_create to create the new LWP. We pass the
1648 * modified ucontext_t to make sure that the new LWP starts at
1649 * s10_lwp_create_entry_point().
1650 */
1651 return (__systemcall(rval, SYS_lwp_create + 1024, &s10_uc,
1652 flags, new_lwp));
1653 }
1654 #endif /* __amd64 */
1655
1656 /*
1657 * SYS_lwp_private is issued by libc_init() to set %fsbase in 64-bit x86
1658 * processes. The Nevada kernel sets %fs to zero but the S10 libc expects
1659 * %fs to be nonzero. We'll pass the issued system call to the kernel untouched
1660 * and invoke a brand operation to set %fs to the legacy S10 selector value.
1661 *
1662 * This emulation exists thanks to CRs 6467491 and 6501650.
1663 */
1664 static int
s10_lwp_private(sysret_t * rval,int cmd,int which,uintptr_t base)1665 s10_lwp_private(sysret_t *rval, int cmd, int which, uintptr_t base)
1666 {
1667 #if defined(__amd64)
1668 int err;
1669
1670 /*
1671 * The current LWP's %fs register should be zero. Determine whether the
1672 * Solaris 10 libc with which we're working functions correctly when %fs
1673 * is zero by calling thr_main() after issuing the SYS_lwp_private
1674 * syscall. If thr_main() barfs (returns -1), then change the LWP's %fs
1675 * register via SYS_brand and patch brand_sysent_table so that issuing
1676 * SYS_lwp_create executes s10_lwp_create_correct_fs() rather than the
1677 * default s10_lwp_create(). s10_lwp_create_correct_fs() will
1678 * guarantee that new LWPs will have correct %fs values.
1679 */
1680 if ((err = __systemcall(rval, SYS_lwp_private + 1024, cmd, which,
1681 base)) != 0)
1682 return (err);
1683 if (thr_main() == -1) {
1684 /*
1685 * SYS_lwp_private is only issued by libc_init(), which is
1686 * executed when libc is first loaded by ld.so.1. Thus we
1687 * are guaranteed to be single-threaded at this point. Even
1688 * if we were multithreaded at this point, writing a 64-bit
1689 * value to the st_callc field of a brand_sysent_table
1690 * entry is guaranteed to be atomic on 64-bit x86 chips
1691 * as long as the field is not split across cache lines
1692 * (It shouldn't be.). See chapter 8, section 1.1 of
1693 * "The Intel 64 and IA32 Architectures Software Developer's
1694 * Manual," Volume 3A for more details.
1695 */
1696 brand_sysent_table[SYS_lwp_create].st_callc =
1697 (sysent_cb_t)s10_lwp_create_correct_fs;
1698 return (__systemcall(rval, SYS_brand + 1024,
1699 B_S10_FSREGCORRECTION));
1700 }
1701 return (0);
1702 #else /* !__amd64 */
1703 return (__systemcall(rval, SYS_lwp_private + 1024, cmd, which, base));
1704 #endif /* !__amd64 */
1705 }
1706 #endif /* __x86 */
1707
1708 /*
1709 * The Opensolaris versions of lwp_mutex_timedlock() and lwp_mutex_trylock()
1710 * add an extra argument to the interfaces, a uintptr_t value for the mutex's
1711 * mutex_owner field. The Solaris 10 libc assigns the mutex_owner field at
1712 * user-level, so we just make the extra argument be zero in both syscalls.
1713 */
1714
1715 static int
s10_lwp_mutex_timedlock(sysret_t * rval,lwp_mutex_t * lp,timespec_t * tsp)1716 s10_lwp_mutex_timedlock(sysret_t *rval, lwp_mutex_t *lp, timespec_t *tsp)
1717 {
1718 return (__systemcall(rval, SYS_lwp_mutex_timedlock + 1024, lp, tsp, 0));
1719 }
1720
1721 static int
s10_lwp_mutex_trylock(sysret_t * rval,lwp_mutex_t * lp)1722 s10_lwp_mutex_trylock(sysret_t *rval, lwp_mutex_t *lp)
1723 {
1724 return (__systemcall(rval, SYS_lwp_mutex_trylock + 1024, lp, 0));
1725 }
1726
1727 /*
1728 * If the emul_global_zone flag is set then emulate some aspects of the
1729 * zone system call. In particular, emulate the global zone ID on the
1730 * ZONE_LOOKUP subcommand and emulate some of the global zone attributes
1731 * on the ZONE_GETATTR subcommand. If the flag is not set or we're performing
1732 * some other operation, simply pass the calls through.
1733 */
1734 int
s10_zone(sysret_t * rval,int cmd,void * arg1,void * arg2,void * arg3,void * arg4)1735 s10_zone(sysret_t *rval, int cmd, void *arg1, void *arg2, void *arg3,
1736 void *arg4)
1737 {
1738 char *aval;
1739 int len;
1740 zoneid_t zid;
1741 int attr;
1742 char *buf;
1743 size_t bufsize;
1744
1745 /*
1746 * We only emulate the zone syscall for a subset of specific commands,
1747 * otherwise we just pass the call through.
1748 */
1749 if (!emul_global_zone)
1750 return (__systemcall(rval, SYS_zone + 1024, cmd, arg1, arg2,
1751 arg3, arg4));
1752
1753 switch (cmd) {
1754 case ZONE_LOOKUP:
1755 (void) B_TRUSS_POINT_1(rval, SYS_zone, 0, cmd);
1756 rval->sys_rval1 = GLOBAL_ZONEID;
1757 rval->sys_rval2 = 0;
1758 return (0);
1759
1760 case ZONE_GETATTR:
1761 zid = (zoneid_t)(uintptr_t)arg1;
1762 attr = (int)(uintptr_t)arg2;
1763 buf = (char *)arg3;
1764 bufsize = (size_t)arg4;
1765
1766 /*
1767 * If the request is for the global zone then we're emulating
1768 * that, otherwise pass this thru.
1769 */
1770 if (zid != GLOBAL_ZONEID)
1771 goto passthru;
1772
1773 switch (attr) {
1774 case ZONE_ATTR_NAME:
1775 aval = GLOBAL_ZONENAME;
1776 break;
1777
1778 case ZONE_ATTR_BRAND:
1779 aval = NATIVE_BRAND_NAME;
1780 break;
1781 default:
1782 /*
1783 * We only emulate a subset of the attrs, use the
1784 * real zone id to pass thru the rest.
1785 */
1786 arg1 = (void *)(uintptr_t)zoneid;
1787 goto passthru;
1788 }
1789
1790 (void) B_TRUSS_POINT_5(rval, SYS_zone, 0, cmd, zid, attr,
1791 buf, bufsize);
1792
1793 len = strlen(aval) + 1;
1794 if (len > bufsize)
1795 return (ENAMETOOLONG);
1796
1797 if (buf != NULL) {
1798 if (len == 1) {
1799 if (brand_uucopy("\0", buf, 1) != 0)
1800 return (EFAULT);
1801 } else {
1802 if (brand_uucopystr(aval, buf, len) != 0)
1803 return (EFAULT);
1804
1805 /*
1806 * Assure NULL termination of "buf" as
1807 * brand_uucopystr() does NOT.
1808 */
1809 if (brand_uucopy("\0", buf + (len - 1), 1) != 0)
1810 return (EFAULT);
1811 }
1812 }
1813
1814 rval->sys_rval1 = len;
1815 rval->sys_rval2 = 0;
1816 return (0);
1817
1818 default:
1819 break;
1820 }
1821
1822 passthru:
1823 return (__systemcall(rval, SYS_zone + 1024, cmd, arg1, arg2, arg3,
1824 arg4));
1825 }
1826
1827 /*ARGSUSED*/
1828 int
brand_init(int argc,char * argv[],char * envp[])1829 brand_init(int argc, char *argv[], char *envp[])
1830 {
1831 sysret_t rval;
1832 ulong_t ldentry;
1833 int err;
1834 char *bname;
1835
1836 brand_pre_init();
1837
1838 /*
1839 * Cache the pid of the zone's init process and determine if
1840 * we're init(1m) for the zone. Remember: we might be init
1841 * now, but as soon as we fork(2) we won't be.
1842 */
1843 (void) get_initpid_info();
1844
1845 /* get the current zoneid */
1846 err = __systemcall(&rval, SYS_zone, ZONE_LOOKUP, NULL);
1847 brand_assert(err == 0);
1848 zoneid = (zoneid_t)rval.sys_rval1;
1849
1850 /* Get the zone's emulation bitmap. */
1851 if ((err = __systemcall(&rval, SYS_zone, ZONE_GETATTR, zoneid,
1852 S10_EMUL_BITMAP, emul_bitmap, sizeof (emul_bitmap))) != 0) {
1853 brand_abort(err, "The zone's patch level is unsupported");
1854 /*NOTREACHED*/
1855 }
1856
1857 bname = basename(argv[0]);
1858
1859 /*
1860 * In general we want the S10 commands that are zone-aware to continue
1861 * to behave as they normally do within a zone. Since these commands
1862 * are zone-aware, they should continue to "do the right thing".
1863 * However, some zone-aware commands aren't going to work the way
1864 * we expect them to inside the branded zone. In particular, the pkg
1865 * and patch commands will not properly manage all pkgs/patches
1866 * unless the commands think they are running in the global zone. For
1867 * these commands we want to emulate the global zone.
1868 *
1869 * We don't do any emulation for pkgcond since it is typically used
1870 * in pkg/patch postinstall scripts and we want those scripts to do
1871 * the right thing inside a zone.
1872 *
1873 * One issue is the handling of hollow pkgs. Since the pkgs are
1874 * hollow, they won't use pkgcond in their postinstall scripts. These
1875 * pkgs typically are installing drivers so we handle that by
1876 * replacing add_drv and rem_drv in the s10_boot script.
1877 */
1878 if (strcmp("pkgadd", bname) == 0 || strcmp("pkgrm", bname) == 0 ||
1879 strcmp("patchadd", bname) == 0 || strcmp("patchrm", bname) == 0)
1880 emul_global_zone = B_TRUE;
1881
1882 ldentry = brand_post_init(S10_VERSION, argc, argv, envp);
1883
1884 brand_runexe(argv, ldentry);
1885 /*NOTREACHED*/
1886 brand_abort(0, "brand_runexe() returned");
1887 return (-1);
1888 }
1889
1890 /*
1891 * This table must have at least NSYSCALL entries in it.
1892 *
1893 * The second parameter of each entry in the brand_sysent_table
1894 * contains the number of parameters and flags that describe the
1895 * syscall return value encoding. See the block comments at the
1896 * top of this file for more information about the syscall return
1897 * value flags and when they should be used.
1898 */
1899 brand_sysent_table_t brand_sysent_table[] = {
1900 #if defined(__sparc) && !defined(__sparcv9)
1901 EMULATE(brand_indir, 9 | RV_64RVAL), /* 0 */
1902 #else
1903 NOSYS, /* 0 */
1904 #endif
1905 NOSYS, /* 1 */
1906 EMULATE(s10_forkall, 0 | RV_32RVAL2), /* 2 */
1907 NOSYS, /* 3 */
1908 NOSYS, /* 4 */
1909 EMULATE(s10_open, 3 | RV_DEFAULT), /* 5 */
1910 NOSYS, /* 6 */
1911 EMULATE(s10_wait, 0 | RV_32RVAL2), /* 7 */
1912 EMULATE(s10_creat, 2 | RV_DEFAULT), /* 8 */
1913 EMULATE(s10_link, 2 | RV_DEFAULT), /* 9 */
1914 EMULATE(s10_unlink, 1 | RV_DEFAULT), /* 10 */
1915 EMULATE(s10_exec, 2 | RV_DEFAULT), /* 11 */
1916 NOSYS, /* 12 */
1917 NOSYS, /* 13 */
1918 EMULATE(s10_mknod, 3 | RV_DEFAULT), /* 14 */
1919 EMULATE(s10_chmod, 2 | RV_DEFAULT), /* 15 */
1920 EMULATE(s10_chown, 3 | RV_DEFAULT), /* 16 */
1921 NOSYS, /* 17 */
1922 EMULATE(s10_stat, 2 | RV_DEFAULT), /* 18 */
1923 NOSYS, /* 19 */
1924 NOSYS, /* 20 */
1925 NOSYS, /* 21 */
1926 EMULATE(s10_umount, 1 | RV_DEFAULT), /* 22 */
1927 NOSYS, /* 23 */
1928 NOSYS, /* 24 */
1929 NOSYS, /* 25 */
1930 NOSYS, /* 26 */
1931 NOSYS, /* 27 */
1932 EMULATE(s10_fstat, 2 | RV_DEFAULT), /* 28 */
1933 NOSYS, /* 29 */
1934 EMULATE(s10_utime, 2 | RV_DEFAULT), /* 30 */
1935 NOSYS, /* 31 */
1936 NOSYS, /* 32 */
1937 EMULATE(s10_access, 2 | RV_DEFAULT), /* 33 */
1938 NOSYS, /* 34 */
1939 NOSYS, /* 35 */
1940 NOSYS, /* 36 */
1941 EMULATE(s10_kill, 2 | RV_DEFAULT), /* 37 */
1942 NOSYS, /* 38 */
1943 NOSYS, /* 39 */
1944 NOSYS, /* 40 */
1945 EMULATE(s10_dup, 1 | RV_DEFAULT), /* 41 */
1946 EMULATE(s10_pipe, 0 | RV_32RVAL2), /* 42 */
1947 NOSYS, /* 43 */
1948 NOSYS, /* 44 */
1949 NOSYS, /* 45 */
1950 NOSYS, /* 46 */
1951 NOSYS, /* 47 */
1952 NOSYS, /* 48 */
1953 NOSYS, /* 49 */
1954 NOSYS, /* 50 */
1955 NOSYS, /* 51 */
1956 NOSYS, /* 52 */
1957 NOSYS, /* 53 */
1958 EMULATE(s10_ioctl, 3 | RV_DEFAULT), /* 54 */
1959 NOSYS, /* 55 */
1960 NOSYS, /* 56 */
1961 NOSYS, /* 57 */
1962 NOSYS, /* 58 */
1963 EMULATE(s10_execve, 3 | RV_DEFAULT), /* 59 */
1964 NOSYS, /* 60 */
1965 NOSYS, /* 61 */
1966 NOSYS, /* 62 */
1967 NOSYS, /* 63 */
1968 NOSYS, /* 64 */
1969 NOSYS, /* 65 */
1970 NOSYS, /* 66 */
1971 NOSYS, /* 67 */
1972 NOSYS, /* 68 */
1973 NOSYS, /* 69 */
1974 NOSYS, /* 70 */
1975 EMULATE(s10_acctctl, 3 | RV_DEFAULT), /* 71 */
1976 NOSYS, /* 72 */
1977 NOSYS, /* 73 */
1978 NOSYS, /* 74 */
1979 EMULATE(s10_issetugid, 0 | RV_DEFAULT), /* 75 */
1980 EMULATE(s10_fsat, 6 | RV_DEFAULT), /* 76 */
1981 NOSYS, /* 77 */
1982 NOSYS, /* 78 */
1983 EMULATE(s10_rmdir, 1 | RV_DEFAULT), /* 79 */
1984 EMULATE(s10_mkdir, 2 | RV_DEFAULT), /* 80 */
1985 EMULATE(s10_getdents, 3 | RV_DEFAULT), /* 81 */
1986 NOSYS, /* 82 */
1987 NOSYS, /* 83 */
1988 NOSYS, /* 84 */
1989 NOSYS, /* 85 */
1990 NOSYS, /* 86 */
1991 EMULATE(s10_poll, 3 | RV_DEFAULT), /* 87 */
1992 EMULATE(s10_lstat, 2 | RV_DEFAULT), /* 88 */
1993 EMULATE(s10_symlink, 2 | RV_DEFAULT), /* 89 */
1994 EMULATE(s10_readlink, 3 | RV_DEFAULT), /* 90 */
1995 NOSYS, /* 91 */
1996 NOSYS, /* 92 */
1997 EMULATE(s10_fchmod, 2 | RV_DEFAULT), /* 93 */
1998 EMULATE(s10_fchown, 3 | RV_DEFAULT), /* 94 */
1999 EMULATE(s10_sigprocmask, 3 | RV_DEFAULT), /* 95 */
2000 EMULATE(s10_sigsuspend, 1 | RV_DEFAULT), /* 96 */
2001 NOSYS, /* 97 */
2002 EMULATE(s10_sigaction, 3 | RV_DEFAULT), /* 98 */
2003 EMULATE(s10_sigpending, 2 | RV_DEFAULT), /* 99 */
2004 NOSYS, /* 100 */
2005 NOSYS, /* 101 */
2006 NOSYS, /* 102 */
2007 NOSYS, /* 103 */
2008 NOSYS, /* 104 */
2009 NOSYS, /* 105 */
2010 NOSYS, /* 106 */
2011 EMULATE(s10_waitid, 4 | RV_DEFAULT), /* 107 */
2012 EMULATE(s10_sigsendsys, 2 | RV_DEFAULT), /* 108 */
2013 NOSYS, /* 109 */
2014 NOSYS, /* 110 */
2015 NOSYS, /* 111 */
2016 NOSYS, /* 112 */
2017 NOSYS, /* 113 */
2018 NOSYS, /* 114 */
2019 NOSYS, /* 115 */
2020 NOSYS, /* 116 */
2021 NOSYS, /* 117 */
2022 NOSYS, /* 118 */
2023 NOSYS, /* 119 */
2024 NOSYS, /* 120 */
2025 NOSYS, /* 121 */
2026 NOSYS, /* 122 */
2027 #if defined(__x86)
2028 EMULATE(s10_xstat, 3 | RV_DEFAULT), /* 123 */
2029 EMULATE(s10_lxstat, 3 | RV_DEFAULT), /* 124 */
2030 EMULATE(s10_fxstat, 3 | RV_DEFAULT), /* 125 */
2031 EMULATE(s10_xmknod, 4 | RV_DEFAULT), /* 126 */
2032 #else
2033 NOSYS, /* 123 */
2034 NOSYS, /* 124 */
2035 NOSYS, /* 125 */
2036 NOSYS, /* 126 */
2037 #endif
2038 NOSYS, /* 127 */
2039 NOSYS, /* 128 */
2040 NOSYS, /* 129 */
2041 EMULATE(s10_lchown, 3 | RV_DEFAULT), /* 130 */
2042 NOSYS, /* 131 */
2043 NOSYS, /* 132 */
2044 NOSYS, /* 133 */
2045 EMULATE(s10_rename, 2 | RV_DEFAULT), /* 134 */
2046 EMULATE(s10_uname, 1 | RV_DEFAULT), /* 135 */
2047 NOSYS, /* 136 */
2048 EMULATE(s10_sysconfig, 1 | RV_DEFAULT), /* 137 */
2049 NOSYS, /* 138 */
2050 EMULATE(s10_sysinfo, 3 | RV_DEFAULT), /* 139 */
2051 NOSYS, /* 140 */
2052 NOSYS, /* 141 */
2053 NOSYS, /* 142 */
2054 EMULATE(s10_fork1, 0 | RV_32RVAL2), /* 143 */
2055 EMULATE(s10_sigtimedwait, 3 | RV_DEFAULT), /* 144 */
2056 NOSYS, /* 145 */
2057 NOSYS, /* 146 */
2058 EMULATE(s10_lwp_sema_wait, 1 | RV_DEFAULT), /* 147 */
2059 NOSYS, /* 148 */
2060 NOSYS, /* 149 */
2061 NOSYS, /* 150 */
2062 NOSYS, /* 151 */
2063 NOSYS, /* 152 */
2064 NOSYS, /* 153 */
2065 EMULATE(s10_utimes, 2 | RV_DEFAULT), /* 154 */
2066 NOSYS, /* 155 */
2067 NOSYS, /* 156 */
2068 NOSYS, /* 157 */
2069 NOSYS, /* 158 */
2070 EMULATE(s10_lwp_create, 3 | RV_DEFAULT), /* 159 */
2071 NOSYS, /* 160 */
2072 NOSYS, /* 161 */
2073 NOSYS, /* 162 */
2074 EMULATE(s10_lwp_kill, 2 | RV_DEFAULT), /* 163 */
2075 NOSYS, /* 164 */
2076 EMULATE(s10_lwp_sigmask, 3 | RV_32RVAL2), /* 165 */
2077 #if defined(__x86)
2078 EMULATE(s10_lwp_private, 3 | RV_DEFAULT), /* 166 */
2079 #else
2080 NOSYS, /* 166 */
2081 #endif
2082 NOSYS, /* 167 */
2083 NOSYS, /* 168 */
2084 EMULATE(s10_lwp_mutex_lock, 1 | RV_DEFAULT), /* 169 */
2085 NOSYS, /* 170 */
2086 NOSYS, /* 171 */
2087 NOSYS, /* 172 */
2088 NOSYS, /* 173 */
2089 EMULATE(s10_pwrite, 4 | RV_DEFAULT), /* 174 */
2090 NOSYS, /* 175 */
2091 NOSYS, /* 176 */
2092 NOSYS, /* 177 */
2093 NOSYS, /* 178 */
2094 NOSYS, /* 179 */
2095 NOSYS, /* 180 */
2096 NOSYS, /* 181 */
2097 NOSYS, /* 182 */
2098 NOSYS, /* 183 */
2099 NOSYS, /* 184 */
2100 EMULATE(s10_acl, 4 | RV_DEFAULT), /* 185 */
2101 EMULATE(s10_auditsys, 4 | RV_64RVAL), /* 186 */
2102 NOSYS, /* 187 */
2103 NOSYS, /* 188 */
2104 NOSYS, /* 189 */
2105 EMULATE(s10_sigqueue, 4 | RV_DEFAULT), /* 190 */
2106 NOSYS, /* 191 */
2107 NOSYS, /* 192 */
2108 NOSYS, /* 193 */
2109 NOSYS, /* 194 */
2110 NOSYS, /* 195 */
2111 NOSYS, /* 196 */
2112 NOSYS, /* 197 */
2113 NOSYS, /* 198 */
2114 NOSYS, /* 199 */
2115 EMULATE(s10_facl, 4 | RV_DEFAULT), /* 200 */
2116 NOSYS, /* 201 */
2117 NOSYS, /* 202 */
2118 NOSYS, /* 203 */
2119 NOSYS, /* 204 */
2120 EMULATE(s10_signotify, 3 | RV_DEFAULT), /* 205 */
2121 NOSYS, /* 206 */
2122 NOSYS, /* 207 */
2123 NOSYS, /* 208 */
2124 NOSYS, /* 209 */
2125 EMULATE(s10_lwp_mutex_timedlock, 2 | RV_DEFAULT), /* 210 */
2126 NOSYS, /* 211 */
2127 NOSYS, /* 212 */
2128 #if defined(_LP64)
2129 NOSYS, /* 213 */
2130 #else
2131 EMULATE(s10_getdents64, 3 | RV_DEFAULT), /* 213 */
2132 #endif
2133 NOSYS, /* 214 */
2134 #if defined(_LP64)
2135 NOSYS, /* 215 */
2136 NOSYS, /* 216 */
2137 NOSYS, /* 217 */
2138 #else
2139 EMULATE(s10_stat64, 2 | RV_DEFAULT), /* 215 */
2140 EMULATE(s10_lstat64, 2 | RV_DEFAULT), /* 216 */
2141 EMULATE(s10_fstat64, 2 | RV_DEFAULT), /* 217 */
2142 #endif
2143 NOSYS, /* 218 */
2144 NOSYS, /* 219 */
2145 NOSYS, /* 220 */
2146 NOSYS, /* 221 */
2147 NOSYS, /* 222 */
2148 #if defined(_LP64)
2149 NOSYS, /* 223 */
2150 NOSYS, /* 224 */
2151 NOSYS, /* 225 */
2152 #else
2153 EMULATE(s10_pwrite64, 5 | RV_DEFAULT), /* 223 */
2154 EMULATE(s10_creat64, 2 | RV_DEFAULT), /* 224 */
2155 EMULATE(s10_open64, 3 | RV_DEFAULT), /* 225 */
2156 #endif
2157 NOSYS, /* 226 */
2158 EMULATE(s10_zone, 5 | RV_DEFAULT), /* 227 */
2159 NOSYS, /* 228 */
2160 NOSYS, /* 229 */
2161 EMULATE(s10_so_socket, 5 | RV_DEFAULT), /* 230 */
2162 NOSYS, /* 231 */
2163 NOSYS, /* 232 */
2164 NOSYS, /* 233 */
2165 EMULATE(s10_accept, 4 | RV_DEFAULT), /* 234 */
2166 NOSYS, /* 235 */
2167 NOSYS, /* 236 */
2168 NOSYS, /* 237 */
2169 NOSYS, /* 238 */
2170 NOSYS, /* 239 */
2171 NOSYS, /* 240 */
2172 NOSYS, /* 241 */
2173 NOSYS, /* 242 */
2174 NOSYS, /* 243 */
2175 NOSYS, /* 244 */
2176 NOSYS, /* 245 */
2177 NOSYS, /* 246 */
2178 NOSYS, /* 247 */
2179 NOSYS, /* 248 */
2180 NOSYS, /* 249 */
2181 NOSYS, /* 250 */
2182 EMULATE(s10_lwp_mutex_trylock, 1 | RV_DEFAULT), /* 251 */
2183 NOSYS, /* 252 */
2184 NOSYS, /* 253 */
2185 NOSYS, /* 254 */
2186 NOSYS /* 255 */
2187 };
2188