1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Nokia Corporation
4 * Author: Tomi Valkeinen <tomi.valkeinen@ti.com>
5 *
6 * Some code and ideas taken from drivers/video/omap/ driver
7 * by Imre Deak.
8 */
9
10 #define DSS_SUBSYS_NAME "DISPC"
11
12 #include <linux/kernel.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/vmalloc.h>
15 #include <linux/export.h>
16 #include <linux/clk.h>
17 #include <linux/io.h>
18 #include <linux/jiffies.h>
19 #include <linux/seq_file.h>
20 #include <linux/delay.h>
21 #include <linux/workqueue.h>
22 #include <linux/hardirq.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/property.h>
26 #include <linux/sizes.h>
27 #include <linux/mfd/syscon.h>
28 #include <linux/regmap.h>
29 #include <linux/of.h>
30 #include <linux/component.h>
31 #include <linux/sys_soc.h>
32 #include <drm/drm_fourcc.h>
33 #include <drm/drm_blend.h>
34
35 #include "omapdss.h"
36 #include "dss.h"
37 #include "dispc.h"
38
39 struct dispc_device;
40
41 /* DISPC */
42 #define DISPC_SZ_REGS SZ_4K
43
44 enum omap_burst_size {
45 BURST_SIZE_X2 = 0,
46 BURST_SIZE_X4 = 1,
47 BURST_SIZE_X8 = 2,
48 };
49
50 #define REG_GET(dispc, idx, start, end) \
51 FLD_GET(dispc_read_reg(dispc, idx), start, end)
52
53 #define REG_FLD_MOD(dispc, idx, val, start, end) \
54 dispc_write_reg(dispc, idx, \
55 FLD_MOD(dispc_read_reg(dispc, idx), val, start, end))
56
57 /* DISPC has feature id */
58 enum dispc_feature_id {
59 FEAT_LCDENABLEPOL,
60 FEAT_LCDENABLESIGNAL,
61 FEAT_PCKFREEENABLE,
62 FEAT_FUNCGATED,
63 FEAT_MGR_LCD2,
64 FEAT_MGR_LCD3,
65 FEAT_LINEBUFFERSPLIT,
66 FEAT_ROWREPEATENABLE,
67 FEAT_RESIZECONF,
68 /* Independent core clk divider */
69 FEAT_CORE_CLK_DIV,
70 FEAT_HANDLE_UV_SEPARATE,
71 FEAT_ATTR2,
72 FEAT_CPR,
73 FEAT_PRELOAD,
74 FEAT_FIR_COEF_V,
75 FEAT_ALPHA_FIXED_ZORDER,
76 FEAT_ALPHA_FREE_ZORDER,
77 FEAT_FIFO_MERGE,
78 /* An unknown HW bug causing the normal FIFO thresholds not to work */
79 FEAT_OMAP3_DSI_FIFO_BUG,
80 FEAT_BURST_2D,
81 FEAT_MFLAG,
82 };
83
84 struct dispc_features {
85 u8 sw_start;
86 u8 fp_start;
87 u8 bp_start;
88 u16 sw_max;
89 u16 vp_max;
90 u16 hp_max;
91 u8 mgr_width_start;
92 u8 mgr_height_start;
93 u16 mgr_width_max;
94 u16 mgr_height_max;
95 u16 ovl_width_max;
96 u16 ovl_height_max;
97 unsigned long max_lcd_pclk;
98 unsigned long max_tv_pclk;
99 unsigned int max_downscale;
100 unsigned int max_line_width;
101 unsigned int min_pcd;
102 int (*calc_scaling)(struct dispc_device *dispc,
103 unsigned long pclk, unsigned long lclk,
104 const struct videomode *vm,
105 u16 width, u16 height, u16 out_width, u16 out_height,
106 u32 fourcc, bool *five_taps,
107 int *x_predecim, int *y_predecim, int *decim_x, int *decim_y,
108 u16 pos_x, unsigned long *core_clk, bool mem_to_mem);
109 unsigned long (*calc_core_clk) (unsigned long pclk,
110 u16 width, u16 height, u16 out_width, u16 out_height,
111 bool mem_to_mem);
112 u8 num_fifos;
113 const enum dispc_feature_id *features;
114 unsigned int num_features;
115 const struct dss_reg_field *reg_fields;
116 const unsigned int num_reg_fields;
117 const enum omap_overlay_caps *overlay_caps;
118 const u32 **supported_color_modes;
119 const u32 *supported_scaler_color_modes;
120 unsigned int num_mgrs;
121 unsigned int num_ovls;
122 unsigned int buffer_size_unit;
123 unsigned int burst_size_unit;
124
125 /* swap GFX & WB fifos */
126 bool gfx_fifo_workaround:1;
127
128 /* no DISPC_IRQ_FRAMEDONETV on this SoC */
129 bool no_framedone_tv:1;
130
131 /* revert to the OMAP4 mechanism of DISPC Smart Standby operation */
132 bool mstandby_workaround:1;
133
134 bool set_max_preload:1;
135
136 /* PIXEL_INC is not added to the last pixel of a line */
137 bool last_pixel_inc_missing:1;
138
139 /* POL_FREQ has ALIGN bit */
140 bool supports_sync_align:1;
141
142 bool has_writeback:1;
143
144 bool supports_double_pixel:1;
145
146 /*
147 * Field order for VENC is different than HDMI. We should handle this in
148 * some intelligent manner, but as the SoCs have either HDMI or VENC,
149 * never both, we can just use this flag for now.
150 */
151 bool reverse_ilace_field_order:1;
152
153 bool has_gamma_table:1;
154
155 bool has_gamma_i734_bug:1;
156 };
157
158 #define DISPC_MAX_NR_FIFOS 5
159 #define DISPC_MAX_CHANNEL_GAMMA 4
160
161 struct dispc_device {
162 struct platform_device *pdev;
163 void __iomem *base;
164 struct dss_device *dss;
165
166 struct dss_debugfs_entry *debugfs;
167
168 int irq;
169 irq_handler_t user_handler;
170 void *user_data;
171
172 unsigned long core_clk_rate;
173 unsigned long tv_pclk_rate;
174
175 u32 fifo_size[DISPC_MAX_NR_FIFOS];
176 /* maps which plane is using a fifo. fifo-id -> plane-id */
177 int fifo_assignment[DISPC_MAX_NR_FIFOS];
178
179 bool ctx_valid;
180 u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
181
182 u32 *gamma_table[DISPC_MAX_CHANNEL_GAMMA];
183
184 const struct dispc_features *feat;
185
186 bool is_enabled;
187
188 struct regmap *syscon_pol;
189 u32 syscon_pol_offset;
190 };
191
192 enum omap_color_component {
193 /* used for all color formats for OMAP3 and earlier
194 * and for RGB and Y color component on OMAP4
195 */
196 DISPC_COLOR_COMPONENT_RGB_Y = 1 << 0,
197 /* used for UV component for
198 * DRM_FORMAT_YUYV, DRM_FORMAT_UYVY, DRM_FORMAT_NV12
199 * color formats on OMAP4
200 */
201 DISPC_COLOR_COMPONENT_UV = 1 << 1,
202 };
203
204 enum mgr_reg_fields {
205 DISPC_MGR_FLD_ENABLE,
206 DISPC_MGR_FLD_STNTFT,
207 DISPC_MGR_FLD_GO,
208 DISPC_MGR_FLD_TFTDATALINES,
209 DISPC_MGR_FLD_STALLMODE,
210 DISPC_MGR_FLD_TCKENABLE,
211 DISPC_MGR_FLD_TCKSELECTION,
212 DISPC_MGR_FLD_CPR,
213 DISPC_MGR_FLD_FIFOHANDCHECK,
214 /* used to maintain a count of the above fields */
215 DISPC_MGR_FLD_NUM,
216 };
217
218 /* DISPC register field id */
219 enum dispc_feat_reg_field {
220 FEAT_REG_FIRHINC,
221 FEAT_REG_FIRVINC,
222 FEAT_REG_FIFOHIGHTHRESHOLD,
223 FEAT_REG_FIFOLOWTHRESHOLD,
224 FEAT_REG_FIFOSIZE,
225 FEAT_REG_HORIZONTALACCU,
226 FEAT_REG_VERTICALACCU,
227 };
228
229 struct dispc_reg_field {
230 u16 reg;
231 u8 high;
232 u8 low;
233 };
234
235 struct dispc_gamma_desc {
236 u32 len;
237 u32 bits;
238 u16 reg;
239 bool has_index;
240 };
241
242 static const struct {
243 const char *name;
244 u32 vsync_irq;
245 u32 framedone_irq;
246 u32 sync_lost_irq;
247 struct dispc_gamma_desc gamma;
248 struct dispc_reg_field reg_desc[DISPC_MGR_FLD_NUM];
249 } mgr_desc[] = {
250 [OMAP_DSS_CHANNEL_LCD] = {
251 .name = "LCD",
252 .vsync_irq = DISPC_IRQ_VSYNC,
253 .framedone_irq = DISPC_IRQ_FRAMEDONE,
254 .sync_lost_irq = DISPC_IRQ_SYNC_LOST,
255 .gamma = {
256 .len = 256,
257 .bits = 8,
258 .reg = DISPC_GAMMA_TABLE0,
259 .has_index = true,
260 },
261 .reg_desc = {
262 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 0, 0 },
263 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL, 3, 3 },
264 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 5, 5 },
265 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL, 9, 8 },
266 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL, 11, 11 },
267 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 10, 10 },
268 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 11, 11 },
269 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG, 15, 15 },
270 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
271 },
272 },
273 [OMAP_DSS_CHANNEL_DIGIT] = {
274 .name = "DIGIT",
275 .vsync_irq = DISPC_IRQ_EVSYNC_ODD | DISPC_IRQ_EVSYNC_EVEN,
276 .framedone_irq = DISPC_IRQ_FRAMEDONETV,
277 .sync_lost_irq = DISPC_IRQ_SYNC_LOST_DIGIT,
278 .gamma = {
279 .len = 1024,
280 .bits = 10,
281 .reg = DISPC_GAMMA_TABLE2,
282 .has_index = false,
283 },
284 .reg_desc = {
285 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL, 1, 1 },
286 [DISPC_MGR_FLD_STNTFT] = { },
287 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL, 6, 6 },
288 [DISPC_MGR_FLD_TFTDATALINES] = { },
289 [DISPC_MGR_FLD_STALLMODE] = { },
290 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG, 12, 12 },
291 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG, 13, 13 },
292 [DISPC_MGR_FLD_CPR] = { },
293 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG, 16, 16 },
294 },
295 },
296 [OMAP_DSS_CHANNEL_LCD2] = {
297 .name = "LCD2",
298 .vsync_irq = DISPC_IRQ_VSYNC2,
299 .framedone_irq = DISPC_IRQ_FRAMEDONE2,
300 .sync_lost_irq = DISPC_IRQ_SYNC_LOST2,
301 .gamma = {
302 .len = 256,
303 .bits = 8,
304 .reg = DISPC_GAMMA_TABLE1,
305 .has_index = true,
306 },
307 .reg_desc = {
308 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL2, 0, 0 },
309 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL2, 3, 3 },
310 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL2, 5, 5 },
311 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL2, 9, 8 },
312 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL2, 11, 11 },
313 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG2, 10, 10 },
314 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG2, 11, 11 },
315 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG2, 15, 15 },
316 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG2, 16, 16 },
317 },
318 },
319 [OMAP_DSS_CHANNEL_LCD3] = {
320 .name = "LCD3",
321 .vsync_irq = DISPC_IRQ_VSYNC3,
322 .framedone_irq = DISPC_IRQ_FRAMEDONE3,
323 .sync_lost_irq = DISPC_IRQ_SYNC_LOST3,
324 .gamma = {
325 .len = 256,
326 .bits = 8,
327 .reg = DISPC_GAMMA_TABLE3,
328 .has_index = true,
329 },
330 .reg_desc = {
331 [DISPC_MGR_FLD_ENABLE] = { DISPC_CONTROL3, 0, 0 },
332 [DISPC_MGR_FLD_STNTFT] = { DISPC_CONTROL3, 3, 3 },
333 [DISPC_MGR_FLD_GO] = { DISPC_CONTROL3, 5, 5 },
334 [DISPC_MGR_FLD_TFTDATALINES] = { DISPC_CONTROL3, 9, 8 },
335 [DISPC_MGR_FLD_STALLMODE] = { DISPC_CONTROL3, 11, 11 },
336 [DISPC_MGR_FLD_TCKENABLE] = { DISPC_CONFIG3, 10, 10 },
337 [DISPC_MGR_FLD_TCKSELECTION] = { DISPC_CONFIG3, 11, 11 },
338 [DISPC_MGR_FLD_CPR] = { DISPC_CONFIG3, 15, 15 },
339 [DISPC_MGR_FLD_FIFOHANDCHECK] = { DISPC_CONFIG3, 16, 16 },
340 },
341 },
342 };
343
344 static unsigned long dispc_fclk_rate(struct dispc_device *dispc);
345 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc);
346 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
347 enum omap_channel channel);
348 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
349 enum omap_channel channel);
350
351 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
352 enum omap_plane_id plane);
353 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
354 enum omap_plane_id plane);
355
dispc_write_reg(struct dispc_device * dispc,u16 idx,u32 val)356 static inline void dispc_write_reg(struct dispc_device *dispc, u16 idx, u32 val)
357 {
358 __raw_writel(val, dispc->base + idx);
359 }
360
dispc_read_reg(struct dispc_device * dispc,u16 idx)361 static inline u32 dispc_read_reg(struct dispc_device *dispc, u16 idx)
362 {
363 return __raw_readl(dispc->base + idx);
364 }
365
mgr_fld_read(struct dispc_device * dispc,enum omap_channel channel,enum mgr_reg_fields regfld)366 static u32 mgr_fld_read(struct dispc_device *dispc, enum omap_channel channel,
367 enum mgr_reg_fields regfld)
368 {
369 const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
370
371 return REG_GET(dispc, rfld->reg, rfld->high, rfld->low);
372 }
373
mgr_fld_write(struct dispc_device * dispc,enum omap_channel channel,enum mgr_reg_fields regfld,int val)374 static void mgr_fld_write(struct dispc_device *dispc, enum omap_channel channel,
375 enum mgr_reg_fields regfld, int val)
376 {
377 const struct dispc_reg_field *rfld = &mgr_desc[channel].reg_desc[regfld];
378
379 REG_FLD_MOD(dispc, rfld->reg, val, rfld->high, rfld->low);
380 }
381
dispc_get_num_ovls(struct dispc_device * dispc)382 int dispc_get_num_ovls(struct dispc_device *dispc)
383 {
384 return dispc->feat->num_ovls;
385 }
386
dispc_get_num_mgrs(struct dispc_device * dispc)387 int dispc_get_num_mgrs(struct dispc_device *dispc)
388 {
389 return dispc->feat->num_mgrs;
390 }
391
dispc_get_reg_field(struct dispc_device * dispc,enum dispc_feat_reg_field id,u8 * start,u8 * end)392 static void dispc_get_reg_field(struct dispc_device *dispc,
393 enum dispc_feat_reg_field id,
394 u8 *start, u8 *end)
395 {
396 BUG_ON(id >= dispc->feat->num_reg_fields);
397
398 *start = dispc->feat->reg_fields[id].start;
399 *end = dispc->feat->reg_fields[id].end;
400 }
401
dispc_has_feature(struct dispc_device * dispc,enum dispc_feature_id id)402 static bool dispc_has_feature(struct dispc_device *dispc,
403 enum dispc_feature_id id)
404 {
405 unsigned int i;
406
407 for (i = 0; i < dispc->feat->num_features; i++) {
408 if (dispc->feat->features[i] == id)
409 return true;
410 }
411
412 return false;
413 }
414
415 #define SR(dispc, reg) \
416 dispc->ctx[DISPC_##reg / sizeof(u32)] = dispc_read_reg(dispc, DISPC_##reg)
417 #define RR(dispc, reg) \
418 dispc_write_reg(dispc, DISPC_##reg, dispc->ctx[DISPC_##reg / sizeof(u32)])
419
dispc_save_context(struct dispc_device * dispc)420 static void dispc_save_context(struct dispc_device *dispc)
421 {
422 int i, j;
423
424 DSSDBG("dispc_save_context\n");
425
426 SR(dispc, IRQENABLE);
427 SR(dispc, CONTROL);
428 SR(dispc, CONFIG);
429 SR(dispc, LINE_NUMBER);
430 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
431 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
432 SR(dispc, GLOBAL_ALPHA);
433 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
434 SR(dispc, CONTROL2);
435 SR(dispc, CONFIG2);
436 }
437 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
438 SR(dispc, CONTROL3);
439 SR(dispc, CONFIG3);
440 }
441
442 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
443 SR(dispc, DEFAULT_COLOR(i));
444 SR(dispc, TRANS_COLOR(i));
445 SR(dispc, SIZE_MGR(i));
446 if (i == OMAP_DSS_CHANNEL_DIGIT)
447 continue;
448 SR(dispc, TIMING_H(i));
449 SR(dispc, TIMING_V(i));
450 SR(dispc, POL_FREQ(i));
451 SR(dispc, DIVISORo(i));
452
453 SR(dispc, DATA_CYCLE1(i));
454 SR(dispc, DATA_CYCLE2(i));
455 SR(dispc, DATA_CYCLE3(i));
456
457 if (dispc_has_feature(dispc, FEAT_CPR)) {
458 SR(dispc, CPR_COEF_R(i));
459 SR(dispc, CPR_COEF_G(i));
460 SR(dispc, CPR_COEF_B(i));
461 }
462 }
463
464 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
465 SR(dispc, OVL_BA0(i));
466 SR(dispc, OVL_BA1(i));
467 SR(dispc, OVL_POSITION(i));
468 SR(dispc, OVL_SIZE(i));
469 SR(dispc, OVL_ATTRIBUTES(i));
470 SR(dispc, OVL_FIFO_THRESHOLD(i));
471 SR(dispc, OVL_ROW_INC(i));
472 SR(dispc, OVL_PIXEL_INC(i));
473 if (dispc_has_feature(dispc, FEAT_PRELOAD))
474 SR(dispc, OVL_PRELOAD(i));
475 if (i == OMAP_DSS_GFX) {
476 SR(dispc, OVL_WINDOW_SKIP(i));
477 SR(dispc, OVL_TABLE_BA(i));
478 continue;
479 }
480 SR(dispc, OVL_FIR(i));
481 SR(dispc, OVL_PICTURE_SIZE(i));
482 SR(dispc, OVL_ACCU0(i));
483 SR(dispc, OVL_ACCU1(i));
484
485 for (j = 0; j < 8; j++)
486 SR(dispc, OVL_FIR_COEF_H(i, j));
487
488 for (j = 0; j < 8; j++)
489 SR(dispc, OVL_FIR_COEF_HV(i, j));
490
491 for (j = 0; j < 5; j++)
492 SR(dispc, OVL_CONV_COEF(i, j));
493
494 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
495 for (j = 0; j < 8; j++)
496 SR(dispc, OVL_FIR_COEF_V(i, j));
497 }
498
499 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
500 SR(dispc, OVL_BA0_UV(i));
501 SR(dispc, OVL_BA1_UV(i));
502 SR(dispc, OVL_FIR2(i));
503 SR(dispc, OVL_ACCU2_0(i));
504 SR(dispc, OVL_ACCU2_1(i));
505
506 for (j = 0; j < 8; j++)
507 SR(dispc, OVL_FIR_COEF_H2(i, j));
508
509 for (j = 0; j < 8; j++)
510 SR(dispc, OVL_FIR_COEF_HV2(i, j));
511
512 for (j = 0; j < 8; j++)
513 SR(dispc, OVL_FIR_COEF_V2(i, j));
514 }
515 if (dispc_has_feature(dispc, FEAT_ATTR2))
516 SR(dispc, OVL_ATTRIBUTES2(i));
517 }
518
519 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
520 SR(dispc, DIVISOR);
521
522 dispc->ctx_valid = true;
523
524 DSSDBG("context saved\n");
525 }
526
dispc_restore_context(struct dispc_device * dispc)527 static void dispc_restore_context(struct dispc_device *dispc)
528 {
529 int i, j;
530
531 DSSDBG("dispc_restore_context\n");
532
533 if (!dispc->ctx_valid)
534 return;
535
536 /*RR(dispc, IRQENABLE);*/
537 /*RR(dispc, CONTROL);*/
538 RR(dispc, CONFIG);
539 RR(dispc, LINE_NUMBER);
540 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
541 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
542 RR(dispc, GLOBAL_ALPHA);
543 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
544 RR(dispc, CONFIG2);
545 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
546 RR(dispc, CONFIG3);
547
548 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
549 RR(dispc, DEFAULT_COLOR(i));
550 RR(dispc, TRANS_COLOR(i));
551 RR(dispc, SIZE_MGR(i));
552 if (i == OMAP_DSS_CHANNEL_DIGIT)
553 continue;
554 RR(dispc, TIMING_H(i));
555 RR(dispc, TIMING_V(i));
556 RR(dispc, POL_FREQ(i));
557 RR(dispc, DIVISORo(i));
558
559 RR(dispc, DATA_CYCLE1(i));
560 RR(dispc, DATA_CYCLE2(i));
561 RR(dispc, DATA_CYCLE3(i));
562
563 if (dispc_has_feature(dispc, FEAT_CPR)) {
564 RR(dispc, CPR_COEF_R(i));
565 RR(dispc, CPR_COEF_G(i));
566 RR(dispc, CPR_COEF_B(i));
567 }
568 }
569
570 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
571 RR(dispc, OVL_BA0(i));
572 RR(dispc, OVL_BA1(i));
573 RR(dispc, OVL_POSITION(i));
574 RR(dispc, OVL_SIZE(i));
575 RR(dispc, OVL_ATTRIBUTES(i));
576 RR(dispc, OVL_FIFO_THRESHOLD(i));
577 RR(dispc, OVL_ROW_INC(i));
578 RR(dispc, OVL_PIXEL_INC(i));
579 if (dispc_has_feature(dispc, FEAT_PRELOAD))
580 RR(dispc, OVL_PRELOAD(i));
581 if (i == OMAP_DSS_GFX) {
582 RR(dispc, OVL_WINDOW_SKIP(i));
583 RR(dispc, OVL_TABLE_BA(i));
584 continue;
585 }
586 RR(dispc, OVL_FIR(i));
587 RR(dispc, OVL_PICTURE_SIZE(i));
588 RR(dispc, OVL_ACCU0(i));
589 RR(dispc, OVL_ACCU1(i));
590
591 for (j = 0; j < 8; j++)
592 RR(dispc, OVL_FIR_COEF_H(i, j));
593
594 for (j = 0; j < 8; j++)
595 RR(dispc, OVL_FIR_COEF_HV(i, j));
596
597 for (j = 0; j < 5; j++)
598 RR(dispc, OVL_CONV_COEF(i, j));
599
600 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
601 for (j = 0; j < 8; j++)
602 RR(dispc, OVL_FIR_COEF_V(i, j));
603 }
604
605 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
606 RR(dispc, OVL_BA0_UV(i));
607 RR(dispc, OVL_BA1_UV(i));
608 RR(dispc, OVL_FIR2(i));
609 RR(dispc, OVL_ACCU2_0(i));
610 RR(dispc, OVL_ACCU2_1(i));
611
612 for (j = 0; j < 8; j++)
613 RR(dispc, OVL_FIR_COEF_H2(i, j));
614
615 for (j = 0; j < 8; j++)
616 RR(dispc, OVL_FIR_COEF_HV2(i, j));
617
618 for (j = 0; j < 8; j++)
619 RR(dispc, OVL_FIR_COEF_V2(i, j));
620 }
621 if (dispc_has_feature(dispc, FEAT_ATTR2))
622 RR(dispc, OVL_ATTRIBUTES2(i));
623 }
624
625 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
626 RR(dispc, DIVISOR);
627
628 /* enable last, because LCD & DIGIT enable are here */
629 RR(dispc, CONTROL);
630 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
631 RR(dispc, CONTROL2);
632 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
633 RR(dispc, CONTROL3);
634 /* clear spurious SYNC_LOST_DIGIT interrupts */
635 dispc_clear_irqstatus(dispc, DISPC_IRQ_SYNC_LOST_DIGIT);
636
637 /*
638 * enable last so IRQs won't trigger before
639 * the context is fully restored
640 */
641 RR(dispc, IRQENABLE);
642
643 DSSDBG("context restored\n");
644 }
645
646 #undef SR
647 #undef RR
648
dispc_runtime_get(struct dispc_device * dispc)649 int dispc_runtime_get(struct dispc_device *dispc)
650 {
651 int r;
652
653 DSSDBG("dispc_runtime_get\n");
654
655 r = pm_runtime_get_sync(&dispc->pdev->dev);
656 if (WARN_ON(r < 0)) {
657 pm_runtime_put_noidle(&dispc->pdev->dev);
658 return r;
659 }
660 return 0;
661 }
662
dispc_runtime_put(struct dispc_device * dispc)663 void dispc_runtime_put(struct dispc_device *dispc)
664 {
665 int r;
666
667 DSSDBG("dispc_runtime_put\n");
668
669 r = pm_runtime_put_sync(&dispc->pdev->dev);
670 WARN_ON(r < 0 && r != -ENOSYS);
671 }
672
dispc_mgr_get_vsync_irq(struct dispc_device * dispc,enum omap_channel channel)673 u32 dispc_mgr_get_vsync_irq(struct dispc_device *dispc,
674 enum omap_channel channel)
675 {
676 return mgr_desc[channel].vsync_irq;
677 }
678
dispc_mgr_get_framedone_irq(struct dispc_device * dispc,enum omap_channel channel)679 u32 dispc_mgr_get_framedone_irq(struct dispc_device *dispc,
680 enum omap_channel channel)
681 {
682 if (channel == OMAP_DSS_CHANNEL_DIGIT && dispc->feat->no_framedone_tv)
683 return 0;
684
685 return mgr_desc[channel].framedone_irq;
686 }
687
dispc_mgr_get_sync_lost_irq(struct dispc_device * dispc,enum omap_channel channel)688 u32 dispc_mgr_get_sync_lost_irq(struct dispc_device *dispc,
689 enum omap_channel channel)
690 {
691 return mgr_desc[channel].sync_lost_irq;
692 }
693
dispc_mgr_enable(struct dispc_device * dispc,enum omap_channel channel,bool enable)694 void dispc_mgr_enable(struct dispc_device *dispc,
695 enum omap_channel channel, bool enable)
696 {
697 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_ENABLE, enable);
698 /* flush posted write */
699 mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
700 }
701
dispc_mgr_is_enabled(struct dispc_device * dispc,enum omap_channel channel)702 static bool dispc_mgr_is_enabled(struct dispc_device *dispc,
703 enum omap_channel channel)
704 {
705 return !!mgr_fld_read(dispc, channel, DISPC_MGR_FLD_ENABLE);
706 }
707
dispc_mgr_go_busy(struct dispc_device * dispc,enum omap_channel channel)708 bool dispc_mgr_go_busy(struct dispc_device *dispc,
709 enum omap_channel channel)
710 {
711 return mgr_fld_read(dispc, channel, DISPC_MGR_FLD_GO) == 1;
712 }
713
dispc_mgr_go(struct dispc_device * dispc,enum omap_channel channel)714 void dispc_mgr_go(struct dispc_device *dispc, enum omap_channel channel)
715 {
716 WARN_ON(!dispc_mgr_is_enabled(dispc, channel));
717 WARN_ON(dispc_mgr_go_busy(dispc, channel));
718
719 DSSDBG("GO %s\n", mgr_desc[channel].name);
720
721 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_GO, 1);
722 }
723
dispc_ovl_write_firh_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)724 static void dispc_ovl_write_firh_reg(struct dispc_device *dispc,
725 enum omap_plane_id plane, int reg,
726 u32 value)
727 {
728 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H(plane, reg), value);
729 }
730
dispc_ovl_write_firhv_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)731 static void dispc_ovl_write_firhv_reg(struct dispc_device *dispc,
732 enum omap_plane_id plane, int reg,
733 u32 value)
734 {
735 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV(plane, reg), value);
736 }
737
dispc_ovl_write_firv_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)738 static void dispc_ovl_write_firv_reg(struct dispc_device *dispc,
739 enum omap_plane_id plane, int reg,
740 u32 value)
741 {
742 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V(plane, reg), value);
743 }
744
dispc_ovl_write_firh2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)745 static void dispc_ovl_write_firh2_reg(struct dispc_device *dispc,
746 enum omap_plane_id plane, int reg,
747 u32 value)
748 {
749 BUG_ON(plane == OMAP_DSS_GFX);
750
751 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_H2(plane, reg), value);
752 }
753
dispc_ovl_write_firhv2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)754 static void dispc_ovl_write_firhv2_reg(struct dispc_device *dispc,
755 enum omap_plane_id plane, int reg,
756 u32 value)
757 {
758 BUG_ON(plane == OMAP_DSS_GFX);
759
760 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_HV2(plane, reg), value);
761 }
762
dispc_ovl_write_firv2_reg(struct dispc_device * dispc,enum omap_plane_id plane,int reg,u32 value)763 static void dispc_ovl_write_firv2_reg(struct dispc_device *dispc,
764 enum omap_plane_id plane, int reg,
765 u32 value)
766 {
767 BUG_ON(plane == OMAP_DSS_GFX);
768
769 dispc_write_reg(dispc, DISPC_OVL_FIR_COEF_V2(plane, reg), value);
770 }
771
dispc_ovl_set_scale_coef(struct dispc_device * dispc,enum omap_plane_id plane,int fir_hinc,int fir_vinc,int five_taps,enum omap_color_component color_comp)772 static void dispc_ovl_set_scale_coef(struct dispc_device *dispc,
773 enum omap_plane_id plane, int fir_hinc,
774 int fir_vinc, int five_taps,
775 enum omap_color_component color_comp)
776 {
777 const struct dispc_coef *h_coef, *v_coef;
778 int i;
779
780 h_coef = dispc_ovl_get_scale_coef(fir_hinc, true);
781 v_coef = dispc_ovl_get_scale_coef(fir_vinc, five_taps);
782
783 if (!h_coef || !v_coef) {
784 dev_err(&dispc->pdev->dev, "%s: failed to find scale coefs\n",
785 __func__);
786 return;
787 }
788
789 for (i = 0; i < 8; i++) {
790 u32 h, hv;
791
792 h = FLD_VAL(h_coef[i].hc0_vc00, 7, 0)
793 | FLD_VAL(h_coef[i].hc1_vc0, 15, 8)
794 | FLD_VAL(h_coef[i].hc2_vc1, 23, 16)
795 | FLD_VAL(h_coef[i].hc3_vc2, 31, 24);
796 hv = FLD_VAL(h_coef[i].hc4_vc22, 7, 0)
797 | FLD_VAL(v_coef[i].hc1_vc0, 15, 8)
798 | FLD_VAL(v_coef[i].hc2_vc1, 23, 16)
799 | FLD_VAL(v_coef[i].hc3_vc2, 31, 24);
800
801 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
802 dispc_ovl_write_firh_reg(dispc, plane, i, h);
803 dispc_ovl_write_firhv_reg(dispc, plane, i, hv);
804 } else {
805 dispc_ovl_write_firh2_reg(dispc, plane, i, h);
806 dispc_ovl_write_firhv2_reg(dispc, plane, i, hv);
807 }
808
809 }
810
811 if (five_taps) {
812 for (i = 0; i < 8; i++) {
813 u32 v;
814 v = FLD_VAL(v_coef[i].hc0_vc00, 7, 0)
815 | FLD_VAL(v_coef[i].hc4_vc22, 15, 8);
816 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y)
817 dispc_ovl_write_firv_reg(dispc, plane, i, v);
818 else
819 dispc_ovl_write_firv2_reg(dispc, plane, i, v);
820 }
821 }
822 }
823
824 struct csc_coef_yuv2rgb {
825 int ry, rcb, rcr, gy, gcb, gcr, by, bcb, bcr;
826 bool full_range;
827 };
828
dispc_ovl_write_color_conv_coef(struct dispc_device * dispc,enum omap_plane_id plane,const struct csc_coef_yuv2rgb * ct)829 static void dispc_ovl_write_color_conv_coef(struct dispc_device *dispc,
830 enum omap_plane_id plane,
831 const struct csc_coef_yuv2rgb *ct)
832 {
833 #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
834
835 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 0), CVAL(ct->rcr, ct->ry));
836 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 1), CVAL(ct->gy, ct->rcb));
837 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 2), CVAL(ct->gcb, ct->gcr));
838 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 3), CVAL(ct->bcr, ct->by));
839 dispc_write_reg(dispc, DISPC_OVL_CONV_COEF(plane, 4), CVAL(0, ct->bcb));
840
841 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), ct->full_range, 11, 11);
842
843 #undef CVAL
844 }
845
846 /* YUV -> RGB, ITU-R BT.601, full range */
847 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_full = {
848 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/
849 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/
850 256, 452, 0, /* by, bcb, bcr |1.000 1.772 0.000|*/
851 true, /* full range */
852 };
853
854 /* YUV -> RGB, ITU-R BT.601, limited range */
855 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt601_lim = {
856 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/
857 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/
858 298, 516, 0, /* by, bcb, bcr |1.164 2.017 0.000|*/
859 false, /* limited range */
860 };
861
862 /* YUV -> RGB, ITU-R BT.709, full range */
863 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_full = {
864 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/
865 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/
866 256, 475, 0, /* by, bcb, bcr |1.000 1.856 0.000|*/
867 true, /* full range */
868 };
869
870 /* YUV -> RGB, ITU-R BT.709, limited range */
871 static const struct csc_coef_yuv2rgb coefs_yuv2rgb_bt709_lim = {
872 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/
873 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/
874 298, 541, 0, /* by, bcb, bcr |1.164 2.112 0.000|*/
875 false, /* limited range */
876 };
877
dispc_ovl_set_csc(struct dispc_device * dispc,enum omap_plane_id plane,enum drm_color_encoding color_encoding,enum drm_color_range color_range)878 static void dispc_ovl_set_csc(struct dispc_device *dispc,
879 enum omap_plane_id plane,
880 enum drm_color_encoding color_encoding,
881 enum drm_color_range color_range)
882 {
883 const struct csc_coef_yuv2rgb *csc;
884
885 switch (color_encoding) {
886 default:
887 case DRM_COLOR_YCBCR_BT601:
888 if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
889 csc = &coefs_yuv2rgb_bt601_full;
890 else
891 csc = &coefs_yuv2rgb_bt601_lim;
892 break;
893 case DRM_COLOR_YCBCR_BT709:
894 if (color_range == DRM_COLOR_YCBCR_FULL_RANGE)
895 csc = &coefs_yuv2rgb_bt709_full;
896 else
897 csc = &coefs_yuv2rgb_bt709_lim;
898 break;
899 }
900
901 dispc_ovl_write_color_conv_coef(dispc, plane, csc);
902 }
903
dispc_ovl_set_ba0(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)904 static void dispc_ovl_set_ba0(struct dispc_device *dispc,
905 enum omap_plane_id plane, u32 paddr)
906 {
907 dispc_write_reg(dispc, DISPC_OVL_BA0(plane), paddr);
908 }
909
dispc_ovl_set_ba1(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)910 static void dispc_ovl_set_ba1(struct dispc_device *dispc,
911 enum omap_plane_id plane, u32 paddr)
912 {
913 dispc_write_reg(dispc, DISPC_OVL_BA1(plane), paddr);
914 }
915
dispc_ovl_set_ba0_uv(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)916 static void dispc_ovl_set_ba0_uv(struct dispc_device *dispc,
917 enum omap_plane_id plane, u32 paddr)
918 {
919 dispc_write_reg(dispc, DISPC_OVL_BA0_UV(plane), paddr);
920 }
921
dispc_ovl_set_ba1_uv(struct dispc_device * dispc,enum omap_plane_id plane,u32 paddr)922 static void dispc_ovl_set_ba1_uv(struct dispc_device *dispc,
923 enum omap_plane_id plane, u32 paddr)
924 {
925 dispc_write_reg(dispc, DISPC_OVL_BA1_UV(plane), paddr);
926 }
927
dispc_ovl_set_pos(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,int x,int y)928 static void dispc_ovl_set_pos(struct dispc_device *dispc,
929 enum omap_plane_id plane,
930 enum omap_overlay_caps caps, int x, int y)
931 {
932 u32 val;
933
934 if ((caps & OMAP_DSS_OVL_CAP_POS) == 0)
935 return;
936
937 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
938
939 dispc_write_reg(dispc, DISPC_OVL_POSITION(plane), val);
940 }
941
dispc_ovl_set_input_size(struct dispc_device * dispc,enum omap_plane_id plane,int width,int height)942 static void dispc_ovl_set_input_size(struct dispc_device *dispc,
943 enum omap_plane_id plane, int width,
944 int height)
945 {
946 u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
947
948 if (plane == OMAP_DSS_GFX || plane == OMAP_DSS_WB)
949 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
950 else
951 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
952 }
953
dispc_ovl_set_output_size(struct dispc_device * dispc,enum omap_plane_id plane,int width,int height)954 static void dispc_ovl_set_output_size(struct dispc_device *dispc,
955 enum omap_plane_id plane, int width,
956 int height)
957 {
958 u32 val;
959
960 BUG_ON(plane == OMAP_DSS_GFX);
961
962 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
963
964 if (plane == OMAP_DSS_WB)
965 dispc_write_reg(dispc, DISPC_OVL_PICTURE_SIZE(plane), val);
966 else
967 dispc_write_reg(dispc, DISPC_OVL_SIZE(plane), val);
968 }
969
dispc_ovl_set_zorder(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u8 zorder)970 static void dispc_ovl_set_zorder(struct dispc_device *dispc,
971 enum omap_plane_id plane,
972 enum omap_overlay_caps caps, u8 zorder)
973 {
974 if ((caps & OMAP_DSS_OVL_CAP_ZORDER) == 0)
975 return;
976
977 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), zorder, 27, 26);
978 }
979
dispc_ovl_enable_zorder_planes(struct dispc_device * dispc)980 static void dispc_ovl_enable_zorder_planes(struct dispc_device *dispc)
981 {
982 int i;
983
984 if (!dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
985 return;
986
987 for (i = 0; i < dispc_get_num_ovls(dispc); i++)
988 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(i), 1, 25, 25);
989 }
990
dispc_ovl_set_pre_mult_alpha(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,bool enable)991 static void dispc_ovl_set_pre_mult_alpha(struct dispc_device *dispc,
992 enum omap_plane_id plane,
993 enum omap_overlay_caps caps,
994 bool enable)
995 {
996 if ((caps & OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA) == 0)
997 return;
998
999 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 28, 28);
1000 }
1001
dispc_ovl_setup_global_alpha(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u8 global_alpha)1002 static void dispc_ovl_setup_global_alpha(struct dispc_device *dispc,
1003 enum omap_plane_id plane,
1004 enum omap_overlay_caps caps,
1005 u8 global_alpha)
1006 {
1007 static const unsigned int shifts[] = { 0, 8, 16, 24, };
1008 int shift;
1009
1010 if ((caps & OMAP_DSS_OVL_CAP_GLOBAL_ALPHA) == 0)
1011 return;
1012
1013 shift = shifts[plane];
1014 REG_FLD_MOD(dispc, DISPC_GLOBAL_ALPHA, global_alpha, shift + 7, shift);
1015 }
1016
dispc_ovl_set_pix_inc(struct dispc_device * dispc,enum omap_plane_id plane,s32 inc)1017 static void dispc_ovl_set_pix_inc(struct dispc_device *dispc,
1018 enum omap_plane_id plane, s32 inc)
1019 {
1020 dispc_write_reg(dispc, DISPC_OVL_PIXEL_INC(plane), inc);
1021 }
1022
dispc_ovl_set_row_inc(struct dispc_device * dispc,enum omap_plane_id plane,s32 inc)1023 static void dispc_ovl_set_row_inc(struct dispc_device *dispc,
1024 enum omap_plane_id plane, s32 inc)
1025 {
1026 dispc_write_reg(dispc, DISPC_OVL_ROW_INC(plane), inc);
1027 }
1028
dispc_ovl_set_color_mode(struct dispc_device * dispc,enum omap_plane_id plane,u32 fourcc)1029 static void dispc_ovl_set_color_mode(struct dispc_device *dispc,
1030 enum omap_plane_id plane, u32 fourcc)
1031 {
1032 u32 m = 0;
1033 if (plane != OMAP_DSS_GFX) {
1034 switch (fourcc) {
1035 case DRM_FORMAT_NV12:
1036 m = 0x0; break;
1037 case DRM_FORMAT_XRGB4444:
1038 m = 0x1; break;
1039 case DRM_FORMAT_RGBA4444:
1040 m = 0x2; break;
1041 case DRM_FORMAT_RGBX4444:
1042 m = 0x4; break;
1043 case DRM_FORMAT_ARGB4444:
1044 m = 0x5; break;
1045 case DRM_FORMAT_RGB565:
1046 m = 0x6; break;
1047 case DRM_FORMAT_ARGB1555:
1048 m = 0x7; break;
1049 case DRM_FORMAT_XRGB8888:
1050 m = 0x8; break;
1051 case DRM_FORMAT_RGB888:
1052 m = 0x9; break;
1053 case DRM_FORMAT_YUYV:
1054 m = 0xa; break;
1055 case DRM_FORMAT_UYVY:
1056 m = 0xb; break;
1057 case DRM_FORMAT_ARGB8888:
1058 m = 0xc; break;
1059 case DRM_FORMAT_RGBA8888:
1060 m = 0xd; break;
1061 case DRM_FORMAT_RGBX8888:
1062 m = 0xe; break;
1063 case DRM_FORMAT_XRGB1555:
1064 m = 0xf; break;
1065 default:
1066 BUG(); return;
1067 }
1068 } else {
1069 switch (fourcc) {
1070 case DRM_FORMAT_RGBX4444:
1071 m = 0x4; break;
1072 case DRM_FORMAT_ARGB4444:
1073 m = 0x5; break;
1074 case DRM_FORMAT_RGB565:
1075 m = 0x6; break;
1076 case DRM_FORMAT_ARGB1555:
1077 m = 0x7; break;
1078 case DRM_FORMAT_XRGB8888:
1079 m = 0x8; break;
1080 case DRM_FORMAT_RGB888:
1081 m = 0x9; break;
1082 case DRM_FORMAT_XRGB4444:
1083 m = 0xa; break;
1084 case DRM_FORMAT_RGBA4444:
1085 m = 0xb; break;
1086 case DRM_FORMAT_ARGB8888:
1087 m = 0xc; break;
1088 case DRM_FORMAT_RGBA8888:
1089 m = 0xd; break;
1090 case DRM_FORMAT_RGBX8888:
1091 m = 0xe; break;
1092 case DRM_FORMAT_XRGB1555:
1093 m = 0xf; break;
1094 default:
1095 BUG(); return;
1096 }
1097 }
1098
1099 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), m, 4, 1);
1100 }
1101
dispc_ovl_configure_burst_type(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_dss_rotation_type rotation)1102 static void dispc_ovl_configure_burst_type(struct dispc_device *dispc,
1103 enum omap_plane_id plane,
1104 enum omap_dss_rotation_type rotation)
1105 {
1106 if (dispc_has_feature(dispc, FEAT_BURST_2D) == 0)
1107 return;
1108
1109 if (rotation == OMAP_DSS_ROT_TILER)
1110 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 1, 29, 29);
1111 else
1112 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), 0, 29, 29);
1113 }
1114
dispc_ovl_set_channel_out(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_channel channel)1115 static void dispc_ovl_set_channel_out(struct dispc_device *dispc,
1116 enum omap_plane_id plane,
1117 enum omap_channel channel)
1118 {
1119 int shift;
1120 u32 val;
1121 int chan = 0, chan2 = 0;
1122
1123 switch (plane) {
1124 case OMAP_DSS_GFX:
1125 shift = 8;
1126 break;
1127 case OMAP_DSS_VIDEO1:
1128 case OMAP_DSS_VIDEO2:
1129 case OMAP_DSS_VIDEO3:
1130 shift = 16;
1131 break;
1132 default:
1133 BUG();
1134 return;
1135 }
1136
1137 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1138 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
1139 switch (channel) {
1140 case OMAP_DSS_CHANNEL_LCD:
1141 chan = 0;
1142 chan2 = 0;
1143 break;
1144 case OMAP_DSS_CHANNEL_DIGIT:
1145 chan = 1;
1146 chan2 = 0;
1147 break;
1148 case OMAP_DSS_CHANNEL_LCD2:
1149 chan = 0;
1150 chan2 = 1;
1151 break;
1152 case OMAP_DSS_CHANNEL_LCD3:
1153 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
1154 chan = 0;
1155 chan2 = 2;
1156 } else {
1157 BUG();
1158 return;
1159 }
1160 break;
1161 case OMAP_DSS_CHANNEL_WB:
1162 chan = 0;
1163 chan2 = 3;
1164 break;
1165 default:
1166 BUG();
1167 return;
1168 }
1169
1170 val = FLD_MOD(val, chan, shift, shift);
1171 val = FLD_MOD(val, chan2, 31, 30);
1172 } else {
1173 val = FLD_MOD(val, channel, shift, shift);
1174 }
1175 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1176 }
1177
dispc_ovl_get_channel_out(struct dispc_device * dispc,enum omap_plane_id plane)1178 static enum omap_channel dispc_ovl_get_channel_out(struct dispc_device *dispc,
1179 enum omap_plane_id plane)
1180 {
1181 int shift;
1182 u32 val;
1183
1184 switch (plane) {
1185 case OMAP_DSS_GFX:
1186 shift = 8;
1187 break;
1188 case OMAP_DSS_VIDEO1:
1189 case OMAP_DSS_VIDEO2:
1190 case OMAP_DSS_VIDEO3:
1191 shift = 16;
1192 break;
1193 default:
1194 BUG();
1195 return 0;
1196 }
1197
1198 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1199
1200 if (FLD_GET(val, shift, shift) == 1)
1201 return OMAP_DSS_CHANNEL_DIGIT;
1202
1203 if (!dispc_has_feature(dispc, FEAT_MGR_LCD2))
1204 return OMAP_DSS_CHANNEL_LCD;
1205
1206 switch (FLD_GET(val, 31, 30)) {
1207 case 0:
1208 default:
1209 return OMAP_DSS_CHANNEL_LCD;
1210 case 1:
1211 return OMAP_DSS_CHANNEL_LCD2;
1212 case 2:
1213 return OMAP_DSS_CHANNEL_LCD3;
1214 case 3:
1215 return OMAP_DSS_CHANNEL_WB;
1216 }
1217 }
1218
dispc_ovl_set_burst_size(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_burst_size burst_size)1219 static void dispc_ovl_set_burst_size(struct dispc_device *dispc,
1220 enum omap_plane_id plane,
1221 enum omap_burst_size burst_size)
1222 {
1223 static const unsigned int shifts[] = { 6, 14, 14, 14, 14, };
1224 int shift;
1225
1226 shift = shifts[plane];
1227 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), burst_size,
1228 shift + 1, shift);
1229 }
1230
dispc_configure_burst_sizes(struct dispc_device * dispc)1231 static void dispc_configure_burst_sizes(struct dispc_device *dispc)
1232 {
1233 int i;
1234 const int burst_size = BURST_SIZE_X8;
1235
1236 /* Configure burst size always to maximum size */
1237 for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1238 dispc_ovl_set_burst_size(dispc, i, burst_size);
1239 if (dispc->feat->has_writeback)
1240 dispc_ovl_set_burst_size(dispc, OMAP_DSS_WB, burst_size);
1241 }
1242
dispc_ovl_get_burst_size(struct dispc_device * dispc,enum omap_plane_id plane)1243 static u32 dispc_ovl_get_burst_size(struct dispc_device *dispc,
1244 enum omap_plane_id plane)
1245 {
1246 /* burst multiplier is always x8 (see dispc_configure_burst_sizes()) */
1247 return dispc->feat->burst_size_unit * 8;
1248 }
1249
dispc_ovl_color_mode_supported(struct dispc_device * dispc,enum omap_plane_id plane,u32 fourcc)1250 bool dispc_ovl_color_mode_supported(struct dispc_device *dispc,
1251 enum omap_plane_id plane, u32 fourcc)
1252 {
1253 const u32 *modes;
1254 unsigned int i;
1255
1256 modes = dispc->feat->supported_color_modes[plane];
1257
1258 for (i = 0; modes[i]; ++i) {
1259 if (modes[i] == fourcc)
1260 return true;
1261 }
1262
1263 return false;
1264 }
1265
dispc_ovl_get_color_modes(struct dispc_device * dispc,enum omap_plane_id plane)1266 const u32 *dispc_ovl_get_color_modes(struct dispc_device *dispc,
1267 enum omap_plane_id plane)
1268 {
1269 return dispc->feat->supported_color_modes[plane];
1270 }
1271
dispc_mgr_enable_cpr(struct dispc_device * dispc,enum omap_channel channel,bool enable)1272 static void dispc_mgr_enable_cpr(struct dispc_device *dispc,
1273 enum omap_channel channel, bool enable)
1274 {
1275 if (channel == OMAP_DSS_CHANNEL_DIGIT)
1276 return;
1277
1278 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_CPR, enable);
1279 }
1280
dispc_mgr_set_cpr_coef(struct dispc_device * dispc,enum omap_channel channel,const struct omap_dss_cpr_coefs * coefs)1281 static void dispc_mgr_set_cpr_coef(struct dispc_device *dispc,
1282 enum omap_channel channel,
1283 const struct omap_dss_cpr_coefs *coefs)
1284 {
1285 u32 coef_r, coef_g, coef_b;
1286
1287 if (!dss_mgr_is_lcd(channel))
1288 return;
1289
1290 coef_r = FLD_VAL(coefs->rr, 31, 22) | FLD_VAL(coefs->rg, 20, 11) |
1291 FLD_VAL(coefs->rb, 9, 0);
1292 coef_g = FLD_VAL(coefs->gr, 31, 22) | FLD_VAL(coefs->gg, 20, 11) |
1293 FLD_VAL(coefs->gb, 9, 0);
1294 coef_b = FLD_VAL(coefs->br, 31, 22) | FLD_VAL(coefs->bg, 20, 11) |
1295 FLD_VAL(coefs->bb, 9, 0);
1296
1297 dispc_write_reg(dispc, DISPC_CPR_COEF_R(channel), coef_r);
1298 dispc_write_reg(dispc, DISPC_CPR_COEF_G(channel), coef_g);
1299 dispc_write_reg(dispc, DISPC_CPR_COEF_B(channel), coef_b);
1300 }
1301
dispc_ovl_set_vid_color_conv(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)1302 static void dispc_ovl_set_vid_color_conv(struct dispc_device *dispc,
1303 enum omap_plane_id plane, bool enable)
1304 {
1305 u32 val;
1306
1307 BUG_ON(plane == OMAP_DSS_GFX);
1308
1309 val = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1310 val = FLD_MOD(val, enable, 9, 9);
1311 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), val);
1312 }
1313
dispc_ovl_enable_replication(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,bool enable)1314 static void dispc_ovl_enable_replication(struct dispc_device *dispc,
1315 enum omap_plane_id plane,
1316 enum omap_overlay_caps caps,
1317 bool enable)
1318 {
1319 static const unsigned int shifts[] = { 5, 10, 10, 10 };
1320 int shift;
1321
1322 if ((caps & OMAP_DSS_OVL_CAP_REPLICATION) == 0)
1323 return;
1324
1325 shift = shifts[plane];
1326 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, shift, shift);
1327 }
1328
dispc_mgr_set_size(struct dispc_device * dispc,enum omap_channel channel,u16 width,u16 height)1329 static void dispc_mgr_set_size(struct dispc_device *dispc,
1330 enum omap_channel channel, u16 width, u16 height)
1331 {
1332 u32 val;
1333
1334 val = FLD_VAL(height - 1, dispc->feat->mgr_height_start, 16) |
1335 FLD_VAL(width - 1, dispc->feat->mgr_width_start, 0);
1336
1337 dispc_write_reg(dispc, DISPC_SIZE_MGR(channel), val);
1338 }
1339
dispc_init_fifos(struct dispc_device * dispc)1340 static void dispc_init_fifos(struct dispc_device *dispc)
1341 {
1342 u32 size;
1343 int fifo;
1344 u8 start, end;
1345 u32 unit;
1346 int i;
1347
1348 unit = dispc->feat->buffer_size_unit;
1349
1350 dispc_get_reg_field(dispc, FEAT_REG_FIFOSIZE, &start, &end);
1351
1352 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1353 size = REG_GET(dispc, DISPC_OVL_FIFO_SIZE_STATUS(fifo),
1354 start, end);
1355 size *= unit;
1356 dispc->fifo_size[fifo] = size;
1357
1358 /*
1359 * By default fifos are mapped directly to overlays, fifo 0 to
1360 * ovl 0, fifo 1 to ovl 1, etc.
1361 */
1362 dispc->fifo_assignment[fifo] = fifo;
1363 }
1364
1365 /*
1366 * The GFX fifo on OMAP4 is smaller than the other fifos. The small fifo
1367 * causes problems with certain use cases, like using the tiler in 2D
1368 * mode. The below hack swaps the fifos of GFX and WB planes, thus
1369 * giving GFX plane a larger fifo. WB but should work fine with a
1370 * smaller fifo.
1371 */
1372 if (dispc->feat->gfx_fifo_workaround) {
1373 u32 v;
1374
1375 v = dispc_read_reg(dispc, DISPC_GLOBAL_BUFFER);
1376
1377 v = FLD_MOD(v, 4, 2, 0); /* GFX BUF top to WB */
1378 v = FLD_MOD(v, 4, 5, 3); /* GFX BUF bottom to WB */
1379 v = FLD_MOD(v, 0, 26, 24); /* WB BUF top to GFX */
1380 v = FLD_MOD(v, 0, 29, 27); /* WB BUF bottom to GFX */
1381
1382 dispc_write_reg(dispc, DISPC_GLOBAL_BUFFER, v);
1383
1384 dispc->fifo_assignment[OMAP_DSS_GFX] = OMAP_DSS_WB;
1385 dispc->fifo_assignment[OMAP_DSS_WB] = OMAP_DSS_GFX;
1386 }
1387
1388 /*
1389 * Setup default fifo thresholds.
1390 */
1391 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1392 u32 low, high;
1393 const bool use_fifomerge = false;
1394 const bool manual_update = false;
1395
1396 dispc_ovl_compute_fifo_thresholds(dispc, i, &low, &high,
1397 use_fifomerge, manual_update);
1398
1399 dispc_ovl_set_fifo_threshold(dispc, i, low, high);
1400 }
1401
1402 if (dispc->feat->has_writeback) {
1403 u32 low, high;
1404 const bool use_fifomerge = false;
1405 const bool manual_update = false;
1406
1407 dispc_ovl_compute_fifo_thresholds(dispc, OMAP_DSS_WB,
1408 &low, &high, use_fifomerge,
1409 manual_update);
1410
1411 dispc_ovl_set_fifo_threshold(dispc, OMAP_DSS_WB, low, high);
1412 }
1413 }
1414
dispc_ovl_get_fifo_size(struct dispc_device * dispc,enum omap_plane_id plane)1415 static u32 dispc_ovl_get_fifo_size(struct dispc_device *dispc,
1416 enum omap_plane_id plane)
1417 {
1418 int fifo;
1419 u32 size = 0;
1420
1421 for (fifo = 0; fifo < dispc->feat->num_fifos; ++fifo) {
1422 if (dispc->fifo_assignment[fifo] == plane)
1423 size += dispc->fifo_size[fifo];
1424 }
1425
1426 return size;
1427 }
1428
dispc_ovl_set_fifo_threshold(struct dispc_device * dispc,enum omap_plane_id plane,u32 low,u32 high)1429 void dispc_ovl_set_fifo_threshold(struct dispc_device *dispc,
1430 enum omap_plane_id plane,
1431 u32 low, u32 high)
1432 {
1433 u8 hi_start, hi_end, lo_start, lo_end;
1434 u32 unit;
1435
1436 unit = dispc->feat->buffer_size_unit;
1437
1438 WARN_ON(low % unit != 0);
1439 WARN_ON(high % unit != 0);
1440
1441 low /= unit;
1442 high /= unit;
1443
1444 dispc_get_reg_field(dispc, FEAT_REG_FIFOHIGHTHRESHOLD,
1445 &hi_start, &hi_end);
1446 dispc_get_reg_field(dispc, FEAT_REG_FIFOLOWTHRESHOLD,
1447 &lo_start, &lo_end);
1448
1449 DSSDBG("fifo(%d) threshold (bytes), old %u/%u, new %u/%u\n",
1450 plane,
1451 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1452 lo_start, lo_end) * unit,
1453 REG_GET(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1454 hi_start, hi_end) * unit,
1455 low * unit, high * unit);
1456
1457 dispc_write_reg(dispc, DISPC_OVL_FIFO_THRESHOLD(plane),
1458 FLD_VAL(high, hi_start, hi_end) |
1459 FLD_VAL(low, lo_start, lo_end));
1460
1461 /*
1462 * configure the preload to the pipeline's high threhold, if HT it's too
1463 * large for the preload field, set the threshold to the maximum value
1464 * that can be held by the preload register
1465 */
1466 if (dispc_has_feature(dispc, FEAT_PRELOAD) &&
1467 dispc->feat->set_max_preload && plane != OMAP_DSS_WB)
1468 dispc_write_reg(dispc, DISPC_OVL_PRELOAD(plane),
1469 min(high, 0xfffu));
1470 }
1471
dispc_ovl_compute_fifo_thresholds(struct dispc_device * dispc,enum omap_plane_id plane,u32 * fifo_low,u32 * fifo_high,bool use_fifomerge,bool manual_update)1472 void dispc_ovl_compute_fifo_thresholds(struct dispc_device *dispc,
1473 enum omap_plane_id plane,
1474 u32 *fifo_low, u32 *fifo_high,
1475 bool use_fifomerge, bool manual_update)
1476 {
1477 /*
1478 * All sizes are in bytes. Both the buffer and burst are made of
1479 * buffer_units, and the fifo thresholds must be buffer_unit aligned.
1480 */
1481 unsigned int buf_unit = dispc->feat->buffer_size_unit;
1482 unsigned int ovl_fifo_size, total_fifo_size, burst_size;
1483 int i;
1484
1485 burst_size = dispc_ovl_get_burst_size(dispc, plane);
1486 ovl_fifo_size = dispc_ovl_get_fifo_size(dispc, plane);
1487
1488 if (use_fifomerge) {
1489 total_fifo_size = 0;
1490 for (i = 0; i < dispc_get_num_ovls(dispc); ++i)
1491 total_fifo_size += dispc_ovl_get_fifo_size(dispc, i);
1492 } else {
1493 total_fifo_size = ovl_fifo_size;
1494 }
1495
1496 /*
1497 * We use the same low threshold for both fifomerge and non-fifomerge
1498 * cases, but for fifomerge we calculate the high threshold using the
1499 * combined fifo size
1500 */
1501
1502 if (manual_update && dispc_has_feature(dispc, FEAT_OMAP3_DSI_FIFO_BUG)) {
1503 *fifo_low = ovl_fifo_size - burst_size * 2;
1504 *fifo_high = total_fifo_size - burst_size;
1505 } else if (plane == OMAP_DSS_WB) {
1506 /*
1507 * Most optimal configuration for writeback is to push out data
1508 * to the interconnect the moment writeback pushes enough pixels
1509 * in the FIFO to form a burst
1510 */
1511 *fifo_low = 0;
1512 *fifo_high = burst_size;
1513 } else {
1514 *fifo_low = ovl_fifo_size - burst_size;
1515 *fifo_high = total_fifo_size - buf_unit;
1516 }
1517 }
1518
dispc_ovl_set_mflag(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)1519 static void dispc_ovl_set_mflag(struct dispc_device *dispc,
1520 enum omap_plane_id plane, bool enable)
1521 {
1522 int bit;
1523
1524 if (plane == OMAP_DSS_GFX)
1525 bit = 14;
1526 else
1527 bit = 23;
1528
1529 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable, bit, bit);
1530 }
1531
dispc_ovl_set_mflag_threshold(struct dispc_device * dispc,enum omap_plane_id plane,int low,int high)1532 static void dispc_ovl_set_mflag_threshold(struct dispc_device *dispc,
1533 enum omap_plane_id plane,
1534 int low, int high)
1535 {
1536 dispc_write_reg(dispc, DISPC_OVL_MFLAG_THRESHOLD(plane),
1537 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
1538 }
1539
dispc_init_mflag(struct dispc_device * dispc)1540 static void dispc_init_mflag(struct dispc_device *dispc)
1541 {
1542 int i;
1543
1544 /*
1545 * HACK: NV12 color format and MFLAG seem to have problems working
1546 * together: using two displays, and having an NV12 overlay on one of
1547 * the displays will cause underflows/synclosts when MFLAG_CTRL=2.
1548 * Changing MFLAG thresholds and PRELOAD to certain values seem to
1549 * remove the errors, but there doesn't seem to be a clear logic on
1550 * which values work and which not.
1551 *
1552 * As a work-around, set force MFLAG to always on.
1553 */
1554 dispc_write_reg(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE,
1555 (1 << 0) | /* MFLAG_CTRL = force always on */
1556 (0 << 2)); /* MFLAG_START = disable */
1557
1558 for (i = 0; i < dispc_get_num_ovls(dispc); ++i) {
1559 u32 size = dispc_ovl_get_fifo_size(dispc, i);
1560 u32 unit = dispc->feat->buffer_size_unit;
1561 u32 low, high;
1562
1563 dispc_ovl_set_mflag(dispc, i, true);
1564
1565 /*
1566 * Simulation team suggests below thesholds:
1567 * HT = fifosize * 5 / 8;
1568 * LT = fifosize * 4 / 8;
1569 */
1570
1571 low = size * 4 / 8 / unit;
1572 high = size * 5 / 8 / unit;
1573
1574 dispc_ovl_set_mflag_threshold(dispc, i, low, high);
1575 }
1576
1577 if (dispc->feat->has_writeback) {
1578 u32 size = dispc_ovl_get_fifo_size(dispc, OMAP_DSS_WB);
1579 u32 unit = dispc->feat->buffer_size_unit;
1580 u32 low, high;
1581
1582 dispc_ovl_set_mflag(dispc, OMAP_DSS_WB, true);
1583
1584 /*
1585 * Simulation team suggests below thesholds:
1586 * HT = fifosize * 5 / 8;
1587 * LT = fifosize * 4 / 8;
1588 */
1589
1590 low = size * 4 / 8 / unit;
1591 high = size * 5 / 8 / unit;
1592
1593 dispc_ovl_set_mflag_threshold(dispc, OMAP_DSS_WB, low, high);
1594 }
1595 }
1596
dispc_ovl_set_fir(struct dispc_device * dispc,enum omap_plane_id plane,int hinc,int vinc,enum omap_color_component color_comp)1597 static void dispc_ovl_set_fir(struct dispc_device *dispc,
1598 enum omap_plane_id plane,
1599 int hinc, int vinc,
1600 enum omap_color_component color_comp)
1601 {
1602 u32 val;
1603
1604 if (color_comp == DISPC_COLOR_COMPONENT_RGB_Y) {
1605 u8 hinc_start, hinc_end, vinc_start, vinc_end;
1606
1607 dispc_get_reg_field(dispc, FEAT_REG_FIRHINC,
1608 &hinc_start, &hinc_end);
1609 dispc_get_reg_field(dispc, FEAT_REG_FIRVINC,
1610 &vinc_start, &vinc_end);
1611 val = FLD_VAL(vinc, vinc_start, vinc_end) |
1612 FLD_VAL(hinc, hinc_start, hinc_end);
1613
1614 dispc_write_reg(dispc, DISPC_OVL_FIR(plane), val);
1615 } else {
1616 val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
1617 dispc_write_reg(dispc, DISPC_OVL_FIR2(plane), val);
1618 }
1619 }
1620
dispc_ovl_set_vid_accu0(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1621 static void dispc_ovl_set_vid_accu0(struct dispc_device *dispc,
1622 enum omap_plane_id plane, int haccu,
1623 int vaccu)
1624 {
1625 u32 val;
1626 u8 hor_start, hor_end, vert_start, vert_end;
1627
1628 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1629 &hor_start, &hor_end);
1630 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1631 &vert_start, &vert_end);
1632
1633 val = FLD_VAL(vaccu, vert_start, vert_end) |
1634 FLD_VAL(haccu, hor_start, hor_end);
1635
1636 dispc_write_reg(dispc, DISPC_OVL_ACCU0(plane), val);
1637 }
1638
dispc_ovl_set_vid_accu1(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1639 static void dispc_ovl_set_vid_accu1(struct dispc_device *dispc,
1640 enum omap_plane_id plane, int haccu,
1641 int vaccu)
1642 {
1643 u32 val;
1644 u8 hor_start, hor_end, vert_start, vert_end;
1645
1646 dispc_get_reg_field(dispc, FEAT_REG_HORIZONTALACCU,
1647 &hor_start, &hor_end);
1648 dispc_get_reg_field(dispc, FEAT_REG_VERTICALACCU,
1649 &vert_start, &vert_end);
1650
1651 val = FLD_VAL(vaccu, vert_start, vert_end) |
1652 FLD_VAL(haccu, hor_start, hor_end);
1653
1654 dispc_write_reg(dispc, DISPC_OVL_ACCU1(plane), val);
1655 }
1656
dispc_ovl_set_vid_accu2_0(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1657 static void dispc_ovl_set_vid_accu2_0(struct dispc_device *dispc,
1658 enum omap_plane_id plane, int haccu,
1659 int vaccu)
1660 {
1661 u32 val;
1662
1663 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1664 dispc_write_reg(dispc, DISPC_OVL_ACCU2_0(plane), val);
1665 }
1666
dispc_ovl_set_vid_accu2_1(struct dispc_device * dispc,enum omap_plane_id plane,int haccu,int vaccu)1667 static void dispc_ovl_set_vid_accu2_1(struct dispc_device *dispc,
1668 enum omap_plane_id plane, int haccu,
1669 int vaccu)
1670 {
1671 u32 val;
1672
1673 val = FLD_VAL(vaccu, 26, 16) | FLD_VAL(haccu, 10, 0);
1674 dispc_write_reg(dispc, DISPC_OVL_ACCU2_1(plane), val);
1675 }
1676
dispc_ovl_set_scale_param(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool five_taps,u8 rotation,enum omap_color_component color_comp)1677 static void dispc_ovl_set_scale_param(struct dispc_device *dispc,
1678 enum omap_plane_id plane,
1679 u16 orig_width, u16 orig_height,
1680 u16 out_width, u16 out_height,
1681 bool five_taps, u8 rotation,
1682 enum omap_color_component color_comp)
1683 {
1684 int fir_hinc, fir_vinc;
1685
1686 fir_hinc = 1024 * orig_width / out_width;
1687 fir_vinc = 1024 * orig_height / out_height;
1688
1689 dispc_ovl_set_scale_coef(dispc, plane, fir_hinc, fir_vinc, five_taps,
1690 color_comp);
1691 dispc_ovl_set_fir(dispc, plane, fir_hinc, fir_vinc, color_comp);
1692 }
1693
dispc_ovl_set_accu_uv(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,u32 fourcc,u8 rotation)1694 static void dispc_ovl_set_accu_uv(struct dispc_device *dispc,
1695 enum omap_plane_id plane,
1696 u16 orig_width, u16 orig_height,
1697 u16 out_width, u16 out_height,
1698 bool ilace, u32 fourcc, u8 rotation)
1699 {
1700 int h_accu2_0, h_accu2_1;
1701 int v_accu2_0, v_accu2_1;
1702 int chroma_hinc, chroma_vinc;
1703 int idx;
1704
1705 struct accu {
1706 s8 h0_m, h0_n;
1707 s8 h1_m, h1_n;
1708 s8 v0_m, v0_n;
1709 s8 v1_m, v1_n;
1710 };
1711
1712 const struct accu *accu_table;
1713 const struct accu *accu_val;
1714
1715 static const struct accu accu_nv12[4] = {
1716 { 0, 1, 0, 1 , -1, 2, 0, 1 },
1717 { 1, 2, -3, 4 , 0, 1, 0, 1 },
1718 { -1, 1, 0, 1 , -1, 2, 0, 1 },
1719 { -1, 2, -1, 2 , -1, 1, 0, 1 },
1720 };
1721
1722 static const struct accu accu_nv12_ilace[4] = {
1723 { 0, 1, 0, 1 , -3, 4, -1, 4 },
1724 { -1, 4, -3, 4 , 0, 1, 0, 1 },
1725 { -1, 1, 0, 1 , -1, 4, -3, 4 },
1726 { -3, 4, -3, 4 , -1, 1, 0, 1 },
1727 };
1728
1729 static const struct accu accu_yuv[4] = {
1730 { 0, 1, 0, 1, 0, 1, 0, 1 },
1731 { 0, 1, 0, 1, 0, 1, 0, 1 },
1732 { -1, 1, 0, 1, 0, 1, 0, 1 },
1733 { 0, 1, 0, 1, -1, 1, 0, 1 },
1734 };
1735
1736 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1737 switch (rotation & DRM_MODE_ROTATE_MASK) {
1738 default:
1739 case DRM_MODE_ROTATE_0:
1740 idx = 0;
1741 break;
1742 case DRM_MODE_ROTATE_90:
1743 idx = 3;
1744 break;
1745 case DRM_MODE_ROTATE_180:
1746 idx = 2;
1747 break;
1748 case DRM_MODE_ROTATE_270:
1749 idx = 1;
1750 break;
1751 }
1752
1753 switch (fourcc) {
1754 case DRM_FORMAT_NV12:
1755 if (ilace)
1756 accu_table = accu_nv12_ilace;
1757 else
1758 accu_table = accu_nv12;
1759 break;
1760 case DRM_FORMAT_YUYV:
1761 case DRM_FORMAT_UYVY:
1762 accu_table = accu_yuv;
1763 break;
1764 default:
1765 BUG();
1766 return;
1767 }
1768
1769 accu_val = &accu_table[idx];
1770
1771 chroma_hinc = 1024 * orig_width / out_width;
1772 chroma_vinc = 1024 * orig_height / out_height;
1773
1774 h_accu2_0 = (accu_val->h0_m * chroma_hinc / accu_val->h0_n) % 1024;
1775 h_accu2_1 = (accu_val->h1_m * chroma_hinc / accu_val->h1_n) % 1024;
1776 v_accu2_0 = (accu_val->v0_m * chroma_vinc / accu_val->v0_n) % 1024;
1777 v_accu2_1 = (accu_val->v1_m * chroma_vinc / accu_val->v1_n) % 1024;
1778
1779 dispc_ovl_set_vid_accu2_0(dispc, plane, h_accu2_0, v_accu2_0);
1780 dispc_ovl_set_vid_accu2_1(dispc, plane, h_accu2_1, v_accu2_1);
1781 }
1782
dispc_ovl_set_scaling_common(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1783 static void dispc_ovl_set_scaling_common(struct dispc_device *dispc,
1784 enum omap_plane_id plane,
1785 u16 orig_width, u16 orig_height,
1786 u16 out_width, u16 out_height,
1787 bool ilace, bool five_taps,
1788 bool fieldmode, u32 fourcc,
1789 u8 rotation)
1790 {
1791 int accu0 = 0;
1792 int accu1 = 0;
1793 u32 l;
1794
1795 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1796 out_width, out_height, five_taps,
1797 rotation, DISPC_COLOR_COMPONENT_RGB_Y);
1798 l = dispc_read_reg(dispc, DISPC_OVL_ATTRIBUTES(plane));
1799
1800 /* RESIZEENABLE and VERTICALTAPS */
1801 l &= ~((0x3 << 5) | (0x1 << 21));
1802 l |= (orig_width != out_width) ? (1 << 5) : 0;
1803 l |= (orig_height != out_height) ? (1 << 6) : 0;
1804 l |= five_taps ? (1 << 21) : 0;
1805
1806 /* VRESIZECONF and HRESIZECONF */
1807 if (dispc_has_feature(dispc, FEAT_RESIZECONF)) {
1808 l &= ~(0x3 << 7);
1809 l |= (orig_width <= out_width) ? 0 : (1 << 7);
1810 l |= (orig_height <= out_height) ? 0 : (1 << 8);
1811 }
1812
1813 /* LINEBUFFERSPLIT */
1814 if (dispc_has_feature(dispc, FEAT_LINEBUFFERSPLIT)) {
1815 l &= ~(0x1 << 22);
1816 l |= five_taps ? (1 << 22) : 0;
1817 }
1818
1819 dispc_write_reg(dispc, DISPC_OVL_ATTRIBUTES(plane), l);
1820
1821 /*
1822 * field 0 = even field = bottom field
1823 * field 1 = odd field = top field
1824 */
1825 if (ilace && !fieldmode) {
1826 accu1 = 0;
1827 accu0 = ((1024 * orig_height / out_height) / 2) & 0x3ff;
1828 if (accu0 >= 1024/2) {
1829 accu1 = 1024/2;
1830 accu0 -= accu1;
1831 }
1832 }
1833
1834 dispc_ovl_set_vid_accu0(dispc, plane, 0, accu0);
1835 dispc_ovl_set_vid_accu1(dispc, plane, 0, accu1);
1836 }
1837
dispc_ovl_set_scaling_uv(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1838 static void dispc_ovl_set_scaling_uv(struct dispc_device *dispc,
1839 enum omap_plane_id plane,
1840 u16 orig_width, u16 orig_height,
1841 u16 out_width, u16 out_height,
1842 bool ilace, bool five_taps,
1843 bool fieldmode, u32 fourcc,
1844 u8 rotation)
1845 {
1846 int scale_x = out_width != orig_width;
1847 int scale_y = out_height != orig_height;
1848 bool chroma_upscale = plane != OMAP_DSS_WB;
1849 const struct drm_format_info *info;
1850
1851 info = drm_format_info(fourcc);
1852
1853 if (!dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE))
1854 return;
1855
1856 if (!info->is_yuv) {
1857 /* reset chroma resampling for RGB formats */
1858 if (plane != OMAP_DSS_WB)
1859 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1860 0, 8, 8);
1861 return;
1862 }
1863
1864 dispc_ovl_set_accu_uv(dispc, plane, orig_width, orig_height, out_width,
1865 out_height, ilace, fourcc, rotation);
1866
1867 switch (fourcc) {
1868 case DRM_FORMAT_NV12:
1869 if (chroma_upscale) {
1870 /* UV is subsampled by 2 horizontally and vertically */
1871 orig_height >>= 1;
1872 orig_width >>= 1;
1873 } else {
1874 /* UV is downsampled by 2 horizontally and vertically */
1875 orig_height <<= 1;
1876 orig_width <<= 1;
1877 }
1878
1879 break;
1880 case DRM_FORMAT_YUYV:
1881 case DRM_FORMAT_UYVY:
1882 /* For YUV422 with 90/270 rotation, we don't upsample chroma */
1883 if (!drm_rotation_90_or_270(rotation)) {
1884 if (chroma_upscale)
1885 /* UV is subsampled by 2 horizontally */
1886 orig_width >>= 1;
1887 else
1888 /* UV is downsampled by 2 horizontally */
1889 orig_width <<= 1;
1890 }
1891
1892 /* must use FIR for YUV422 if rotated */
1893 if ((rotation & DRM_MODE_ROTATE_MASK) != DRM_MODE_ROTATE_0)
1894 scale_x = scale_y = true;
1895
1896 break;
1897 default:
1898 BUG();
1899 return;
1900 }
1901
1902 if (out_width != orig_width)
1903 scale_x = true;
1904 if (out_height != orig_height)
1905 scale_y = true;
1906
1907 dispc_ovl_set_scale_param(dispc, plane, orig_width, orig_height,
1908 out_width, out_height, five_taps,
1909 rotation, DISPC_COLOR_COMPONENT_UV);
1910
1911 if (plane != OMAP_DSS_WB)
1912 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES2(plane),
1913 (scale_x || scale_y) ? 1 : 0, 8, 8);
1914
1915 /* set H scaling */
1916 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_x ? 1 : 0, 5, 5);
1917 /* set V scaling */
1918 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), scale_y ? 1 : 0, 6, 6);
1919 }
1920
dispc_ovl_set_scaling(struct dispc_device * dispc,enum omap_plane_id plane,u16 orig_width,u16 orig_height,u16 out_width,u16 out_height,bool ilace,bool five_taps,bool fieldmode,u32 fourcc,u8 rotation)1921 static void dispc_ovl_set_scaling(struct dispc_device *dispc,
1922 enum omap_plane_id plane,
1923 u16 orig_width, u16 orig_height,
1924 u16 out_width, u16 out_height,
1925 bool ilace, bool five_taps,
1926 bool fieldmode, u32 fourcc,
1927 u8 rotation)
1928 {
1929 BUG_ON(plane == OMAP_DSS_GFX);
1930
1931 dispc_ovl_set_scaling_common(dispc, plane, orig_width, orig_height,
1932 out_width, out_height, ilace, five_taps,
1933 fieldmode, fourcc, rotation);
1934
1935 dispc_ovl_set_scaling_uv(dispc, plane, orig_width, orig_height,
1936 out_width, out_height, ilace, five_taps,
1937 fieldmode, fourcc, rotation);
1938 }
1939
dispc_ovl_set_rotation_attrs(struct dispc_device * dispc,enum omap_plane_id plane,u8 rotation,enum omap_dss_rotation_type rotation_type,u32 fourcc)1940 static void dispc_ovl_set_rotation_attrs(struct dispc_device *dispc,
1941 enum omap_plane_id plane, u8 rotation,
1942 enum omap_dss_rotation_type rotation_type,
1943 u32 fourcc)
1944 {
1945 bool row_repeat = false;
1946 int vidrot = 0;
1947
1948 /* Note: DSS HW rotates clockwise, DRM_MODE_ROTATE_* counter-clockwise */
1949 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) {
1950
1951 if (rotation & DRM_MODE_REFLECT_X) {
1952 switch (rotation & DRM_MODE_ROTATE_MASK) {
1953 case DRM_MODE_ROTATE_0:
1954 vidrot = 2;
1955 break;
1956 case DRM_MODE_ROTATE_90:
1957 vidrot = 1;
1958 break;
1959 case DRM_MODE_ROTATE_180:
1960 vidrot = 0;
1961 break;
1962 case DRM_MODE_ROTATE_270:
1963 vidrot = 3;
1964 break;
1965 }
1966 } else {
1967 switch (rotation & DRM_MODE_ROTATE_MASK) {
1968 case DRM_MODE_ROTATE_0:
1969 vidrot = 0;
1970 break;
1971 case DRM_MODE_ROTATE_90:
1972 vidrot = 3;
1973 break;
1974 case DRM_MODE_ROTATE_180:
1975 vidrot = 2;
1976 break;
1977 case DRM_MODE_ROTATE_270:
1978 vidrot = 1;
1979 break;
1980 }
1981 }
1982
1983 if (drm_rotation_90_or_270(rotation))
1984 row_repeat = true;
1985 else
1986 row_repeat = false;
1987 }
1988
1989 /*
1990 * OMAP4/5 Errata i631:
1991 * NV12 in 1D mode must use ROTATION=1. Otherwise DSS will fetch extra
1992 * rows beyond the framebuffer, which may cause OCP error.
1993 */
1994 if (fourcc == DRM_FORMAT_NV12 && rotation_type != OMAP_DSS_ROT_TILER)
1995 vidrot = 1;
1996
1997 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), vidrot, 13, 12);
1998 if (dispc_has_feature(dispc, FEAT_ROWREPEATENABLE))
1999 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2000 row_repeat ? 1 : 0, 18, 18);
2001
2002 if (dispc_ovl_color_mode_supported(dispc, plane, DRM_FORMAT_NV12)) {
2003 bool doublestride =
2004 fourcc == DRM_FORMAT_NV12 &&
2005 rotation_type == OMAP_DSS_ROT_TILER &&
2006 !drm_rotation_90_or_270(rotation);
2007
2008 /* DOUBLESTRIDE */
2009 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane),
2010 doublestride, 22, 22);
2011 }
2012 }
2013
color_mode_to_bpp(u32 fourcc)2014 static int color_mode_to_bpp(u32 fourcc)
2015 {
2016 switch (fourcc) {
2017 case DRM_FORMAT_NV12:
2018 return 8;
2019 case DRM_FORMAT_RGBX4444:
2020 case DRM_FORMAT_RGB565:
2021 case DRM_FORMAT_ARGB4444:
2022 case DRM_FORMAT_YUYV:
2023 case DRM_FORMAT_UYVY:
2024 case DRM_FORMAT_RGBA4444:
2025 case DRM_FORMAT_XRGB4444:
2026 case DRM_FORMAT_ARGB1555:
2027 case DRM_FORMAT_XRGB1555:
2028 return 16;
2029 case DRM_FORMAT_RGB888:
2030 return 24;
2031 case DRM_FORMAT_XRGB8888:
2032 case DRM_FORMAT_ARGB8888:
2033 case DRM_FORMAT_RGBA8888:
2034 case DRM_FORMAT_RGBX8888:
2035 return 32;
2036 default:
2037 BUG();
2038 return 0;
2039 }
2040 }
2041
pixinc(int pixels,u8 ps)2042 static s32 pixinc(int pixels, u8 ps)
2043 {
2044 if (pixels == 1)
2045 return 1;
2046 else if (pixels > 1)
2047 return 1 + (pixels - 1) * ps;
2048 else if (pixels < 0)
2049 return 1 - (-pixels + 1) * ps;
2050
2051 BUG();
2052 }
2053
calc_offset(u16 screen_width,u16 width,u32 fourcc,bool fieldmode,unsigned int field_offset,unsigned int * offset0,unsigned int * offset1,s32 * row_inc,s32 * pix_inc,int x_predecim,int y_predecim,enum omap_dss_rotation_type rotation_type,u8 rotation)2054 static void calc_offset(u16 screen_width, u16 width,
2055 u32 fourcc, bool fieldmode, unsigned int field_offset,
2056 unsigned int *offset0, unsigned int *offset1,
2057 s32 *row_inc, s32 *pix_inc, int x_predecim, int y_predecim,
2058 enum omap_dss_rotation_type rotation_type, u8 rotation)
2059 {
2060 u8 ps;
2061
2062 ps = color_mode_to_bpp(fourcc) / 8;
2063
2064 DSSDBG("scrw %d, width %d\n", screen_width, width);
2065
2066 if (rotation_type == OMAP_DSS_ROT_TILER &&
2067 (fourcc == DRM_FORMAT_UYVY || fourcc == DRM_FORMAT_YUYV) &&
2068 drm_rotation_90_or_270(rotation)) {
2069 /*
2070 * HACK: ROW_INC needs to be calculated with TILER units.
2071 * We get such 'screen_width' that multiplying it with the
2072 * YUV422 pixel size gives the correct TILER container width.
2073 * However, 'width' is in pixels and multiplying it with YUV422
2074 * pixel size gives incorrect result. We thus multiply it here
2075 * with 2 to match the 32 bit TILER unit size.
2076 */
2077 width *= 2;
2078 }
2079
2080 /*
2081 * field 0 = even field = bottom field
2082 * field 1 = odd field = top field
2083 */
2084 *offset0 = field_offset * screen_width * ps;
2085 *offset1 = 0;
2086
2087 *row_inc = pixinc(1 + (y_predecim * screen_width - width * x_predecim) +
2088 (fieldmode ? screen_width : 0), ps);
2089 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2090 *pix_inc = pixinc(x_predecim, 2 * ps);
2091 else
2092 *pix_inc = pixinc(x_predecim, ps);
2093 }
2094
2095 /*
2096 * This function is used to avoid synclosts in OMAP3, because of some
2097 * undocumented horizontal position and timing related limitations.
2098 */
check_horiz_timing_omap3(unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 pos_x,u16 width,u16 height,u16 out_width,u16 out_height,bool five_taps)2099 static int check_horiz_timing_omap3(unsigned long pclk, unsigned long lclk,
2100 const struct videomode *vm, u16 pos_x,
2101 u16 width, u16 height, u16 out_width, u16 out_height,
2102 bool five_taps)
2103 {
2104 const int ds = DIV_ROUND_UP(height, out_height);
2105 unsigned long nonactive;
2106 static const u8 limits[3] = { 8, 10, 20 };
2107 u64 val, blank;
2108 int i;
2109
2110 nonactive = vm->hactive + vm->hfront_porch + vm->hsync_len +
2111 vm->hback_porch - out_width;
2112
2113 i = 0;
2114 if (out_height < height)
2115 i++;
2116 if (out_width < width)
2117 i++;
2118 blank = div_u64((u64)(vm->hback_porch + vm->hsync_len + vm->hfront_porch) *
2119 lclk, pclk);
2120 DSSDBG("blanking period + ppl = %llu (limit = %u)\n", blank, limits[i]);
2121 if (blank <= limits[i])
2122 return -EINVAL;
2123
2124 /* FIXME add checks for 3-tap filter once the limitations are known */
2125 if (!five_taps)
2126 return 0;
2127
2128 /*
2129 * Pixel data should be prepared before visible display point starts.
2130 * So, atleast DS-2 lines must have already been fetched by DISPC
2131 * during nonactive - pos_x period.
2132 */
2133 val = div_u64((u64)(nonactive - pos_x) * lclk, pclk);
2134 DSSDBG("(nonactive - pos_x) * pcd = %llu max(0, DS - 2) * width = %d\n",
2135 val, max(0, ds - 2) * width);
2136 if (val < max(0, ds - 2) * width)
2137 return -EINVAL;
2138
2139 /*
2140 * All lines need to be refilled during the nonactive period of which
2141 * only one line can be loaded during the active period. So, atleast
2142 * DS - 1 lines should be loaded during nonactive period.
2143 */
2144 val = div_u64((u64)nonactive * lclk, pclk);
2145 DSSDBG("nonactive * pcd = %llu, max(0, DS - 1) * width = %d\n",
2146 val, max(0, ds - 1) * width);
2147 if (val < max(0, ds - 1) * width)
2148 return -EINVAL;
2149
2150 return 0;
2151 }
2152
calc_core_clk_five_taps(unsigned long pclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc)2153 static unsigned long calc_core_clk_five_taps(unsigned long pclk,
2154 const struct videomode *vm, u16 width,
2155 u16 height, u16 out_width, u16 out_height,
2156 u32 fourcc)
2157 {
2158 u32 core_clk = 0;
2159 u64 tmp;
2160
2161 if (height <= out_height && width <= out_width)
2162 return (unsigned long) pclk;
2163
2164 if (height > out_height) {
2165 unsigned int ppl = vm->hactive;
2166
2167 tmp = (u64)pclk * height * out_width;
2168 do_div(tmp, 2 * out_height * ppl);
2169 core_clk = tmp;
2170
2171 if (height > 2 * out_height) {
2172 if (ppl == out_width)
2173 return 0;
2174
2175 tmp = (u64)pclk * (height - 2 * out_height) * out_width;
2176 do_div(tmp, 2 * out_height * (ppl - out_width));
2177 core_clk = max_t(u32, core_clk, tmp);
2178 }
2179 }
2180
2181 if (width > out_width) {
2182 tmp = (u64)pclk * width;
2183 do_div(tmp, out_width);
2184 core_clk = max_t(u32, core_clk, tmp);
2185
2186 if (fourcc == DRM_FORMAT_XRGB8888)
2187 core_clk <<= 1;
2188 }
2189
2190 return core_clk;
2191 }
2192
calc_core_clk_24xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2193 static unsigned long calc_core_clk_24xx(unsigned long pclk, u16 width,
2194 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2195 {
2196 if (height > out_height && width > out_width)
2197 return pclk * 4;
2198 else
2199 return pclk * 2;
2200 }
2201
calc_core_clk_34xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2202 static unsigned long calc_core_clk_34xx(unsigned long pclk, u16 width,
2203 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2204 {
2205 unsigned int hf, vf;
2206
2207 /*
2208 * FIXME how to determine the 'A' factor
2209 * for the no downscaling case ?
2210 */
2211
2212 if (width > 3 * out_width)
2213 hf = 4;
2214 else if (width > 2 * out_width)
2215 hf = 3;
2216 else if (width > out_width)
2217 hf = 2;
2218 else
2219 hf = 1;
2220 if (height > out_height)
2221 vf = 2;
2222 else
2223 vf = 1;
2224
2225 return pclk * vf * hf;
2226 }
2227
calc_core_clk_44xx(unsigned long pclk,u16 width,u16 height,u16 out_width,u16 out_height,bool mem_to_mem)2228 static unsigned long calc_core_clk_44xx(unsigned long pclk, u16 width,
2229 u16 height, u16 out_width, u16 out_height, bool mem_to_mem)
2230 {
2231 /*
2232 * If the overlay/writeback is in mem to mem mode, there are no
2233 * downscaling limitations with respect to pixel clock, return 1 as
2234 * required core clock to represent that we have sufficient enough
2235 * core clock to do maximum downscaling
2236 */
2237 if (mem_to_mem)
2238 return 1;
2239
2240 if (width > out_width)
2241 return DIV_ROUND_UP(pclk, out_width) * width;
2242 else
2243 return pclk;
2244 }
2245
dispc_ovl_calc_scaling_24xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2246 static int dispc_ovl_calc_scaling_24xx(struct dispc_device *dispc,
2247 unsigned long pclk, unsigned long lclk,
2248 const struct videomode *vm,
2249 u16 width, u16 height,
2250 u16 out_width, u16 out_height,
2251 u32 fourcc, bool *five_taps,
2252 int *x_predecim, int *y_predecim,
2253 int *decim_x, int *decim_y,
2254 u16 pos_x, unsigned long *core_clk,
2255 bool mem_to_mem)
2256 {
2257 int error;
2258 u16 in_width, in_height;
2259 int min_factor = min(*decim_x, *decim_y);
2260 const int maxsinglelinewidth = dispc->feat->max_line_width;
2261
2262 *five_taps = false;
2263
2264 do {
2265 in_height = height / *decim_y;
2266 in_width = width / *decim_x;
2267 *core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2268 in_height, out_width, out_height, mem_to_mem);
2269 error = (in_width > maxsinglelinewidth || !*core_clk ||
2270 *core_clk > dispc_core_clk_rate(dispc));
2271 if (error) {
2272 if (*decim_x == *decim_y) {
2273 *decim_x = min_factor;
2274 ++*decim_y;
2275 } else {
2276 swap(*decim_x, *decim_y);
2277 if (*decim_x < *decim_y)
2278 ++*decim_x;
2279 }
2280 }
2281 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2282
2283 if (error) {
2284 DSSERR("failed to find scaling settings\n");
2285 return -EINVAL;
2286 }
2287
2288 if (in_width > maxsinglelinewidth) {
2289 DSSERR("Cannot scale max input width exceeded\n");
2290 return -EINVAL;
2291 }
2292 return 0;
2293 }
2294
dispc_ovl_calc_scaling_34xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2295 static int dispc_ovl_calc_scaling_34xx(struct dispc_device *dispc,
2296 unsigned long pclk, unsigned long lclk,
2297 const struct videomode *vm,
2298 u16 width, u16 height,
2299 u16 out_width, u16 out_height,
2300 u32 fourcc, bool *five_taps,
2301 int *x_predecim, int *y_predecim,
2302 int *decim_x, int *decim_y,
2303 u16 pos_x, unsigned long *core_clk,
2304 bool mem_to_mem)
2305 {
2306 int error;
2307 u16 in_width, in_height;
2308 const int maxsinglelinewidth = dispc->feat->max_line_width;
2309
2310 do {
2311 in_height = height / *decim_y;
2312 in_width = width / *decim_x;
2313 *five_taps = in_height > out_height;
2314
2315 if (in_width > maxsinglelinewidth)
2316 if (in_height > out_height &&
2317 in_height < out_height * 2)
2318 *five_taps = false;
2319 again:
2320 if (*five_taps)
2321 *core_clk = calc_core_clk_five_taps(pclk, vm,
2322 in_width, in_height, out_width,
2323 out_height, fourcc);
2324 else
2325 *core_clk = dispc->feat->calc_core_clk(pclk, in_width,
2326 in_height, out_width, out_height,
2327 mem_to_mem);
2328
2329 error = check_horiz_timing_omap3(pclk, lclk, vm,
2330 pos_x, in_width, in_height, out_width,
2331 out_height, *five_taps);
2332 if (error && *five_taps) {
2333 *five_taps = false;
2334 goto again;
2335 }
2336
2337 error = (error || in_width > maxsinglelinewidth * 2 ||
2338 (in_width > maxsinglelinewidth && *five_taps) ||
2339 !*core_clk || *core_clk > dispc_core_clk_rate(dispc));
2340
2341 if (!error) {
2342 /* verify that we're inside the limits of scaler */
2343 if (in_width / 4 > out_width)
2344 error = 1;
2345
2346 if (*five_taps) {
2347 if (in_height / 4 > out_height)
2348 error = 1;
2349 } else {
2350 if (in_height / 2 > out_height)
2351 error = 1;
2352 }
2353 }
2354
2355 if (error)
2356 ++*decim_y;
2357 } while (*decim_x <= *x_predecim && *decim_y <= *y_predecim && error);
2358
2359 if (error) {
2360 DSSERR("failed to find scaling settings\n");
2361 return -EINVAL;
2362 }
2363
2364 if (check_horiz_timing_omap3(pclk, lclk, vm, pos_x, in_width,
2365 in_height, out_width, out_height, *five_taps)) {
2366 DSSERR("horizontal timing too tight\n");
2367 return -EINVAL;
2368 }
2369
2370 if (in_width > (maxsinglelinewidth * 2)) {
2371 DSSERR("Cannot setup scaling\n");
2372 DSSERR("width exceeds maximum width possible\n");
2373 return -EINVAL;
2374 }
2375
2376 if (in_width > maxsinglelinewidth && *five_taps) {
2377 DSSERR("cannot setup scaling with five taps\n");
2378 return -EINVAL;
2379 }
2380 return 0;
2381 }
2382
dispc_ovl_calc_scaling_44xx(struct dispc_device * dispc,unsigned long pclk,unsigned long lclk,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,int * decim_x,int * decim_y,u16 pos_x,unsigned long * core_clk,bool mem_to_mem)2383 static int dispc_ovl_calc_scaling_44xx(struct dispc_device *dispc,
2384 unsigned long pclk, unsigned long lclk,
2385 const struct videomode *vm,
2386 u16 width, u16 height,
2387 u16 out_width, u16 out_height,
2388 u32 fourcc, bool *five_taps,
2389 int *x_predecim, int *y_predecim,
2390 int *decim_x, int *decim_y,
2391 u16 pos_x, unsigned long *core_clk,
2392 bool mem_to_mem)
2393 {
2394 u16 in_width, in_width_max;
2395 int decim_x_min = *decim_x;
2396 u16 in_height = height / *decim_y;
2397 const int maxsinglelinewidth = dispc->feat->max_line_width;
2398 const int maxdownscale = dispc->feat->max_downscale;
2399
2400 if (mem_to_mem) {
2401 in_width_max = out_width * maxdownscale;
2402 } else {
2403 in_width_max = dispc_core_clk_rate(dispc)
2404 / DIV_ROUND_UP(pclk, out_width);
2405 }
2406
2407 *decim_x = DIV_ROUND_UP(width, in_width_max);
2408
2409 *decim_x = max(*decim_x, decim_x_min);
2410 if (*decim_x > *x_predecim)
2411 return -EINVAL;
2412
2413 do {
2414 in_width = width / *decim_x;
2415 } while (*decim_x <= *x_predecim &&
2416 in_width > maxsinglelinewidth && ++*decim_x);
2417
2418 if (in_width > maxsinglelinewidth) {
2419 DSSERR("Cannot scale width exceeds max line width\n");
2420 return -EINVAL;
2421 }
2422
2423 if (*decim_x > 4 && fourcc != DRM_FORMAT_NV12) {
2424 /*
2425 * Let's disable all scaling that requires horizontal
2426 * decimation with higher factor than 4, until we have
2427 * better estimates of what we can and can not
2428 * do. However, NV12 color format appears to work Ok
2429 * with all decimation factors.
2430 *
2431 * When decimating horizontally by more that 4 the dss
2432 * is not able to fetch the data in burst mode. When
2433 * this happens it is hard to tell if there enough
2434 * bandwidth. Despite what theory says this appears to
2435 * be true also for 16-bit color formats.
2436 */
2437 DSSERR("Not enough bandwidth, too much downscaling (x-decimation factor %d > 4)\n", *decim_x);
2438
2439 return -EINVAL;
2440 }
2441
2442 *core_clk = dispc->feat->calc_core_clk(pclk, in_width, in_height,
2443 out_width, out_height, mem_to_mem);
2444 return 0;
2445 }
2446
dispc_ovl_get_caps(struct dispc_device * dispc,enum omap_plane_id plane)2447 enum omap_overlay_caps dispc_ovl_get_caps(struct dispc_device *dispc, enum omap_plane_id plane)
2448 {
2449 return dispc->feat->overlay_caps[plane];
2450 }
2451
2452 #define DIV_FRAC(dividend, divisor) \
2453 ((dividend) * 100 / (divisor) - ((dividend) / (divisor) * 100))
2454
dispc_ovl_calc_scaling(struct dispc_device * dispc,enum omap_plane_id plane,unsigned long pclk,unsigned long lclk,enum omap_overlay_caps caps,const struct videomode * vm,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,bool * five_taps,int * x_predecim,int * y_predecim,u16 pos_x,enum omap_dss_rotation_type rotation_type,bool mem_to_mem)2455 static int dispc_ovl_calc_scaling(struct dispc_device *dispc,
2456 enum omap_plane_id plane,
2457 unsigned long pclk, unsigned long lclk,
2458 enum omap_overlay_caps caps,
2459 const struct videomode *vm,
2460 u16 width, u16 height,
2461 u16 out_width, u16 out_height,
2462 u32 fourcc, bool *five_taps,
2463 int *x_predecim, int *y_predecim, u16 pos_x,
2464 enum omap_dss_rotation_type rotation_type,
2465 bool mem_to_mem)
2466 {
2467 int maxhdownscale = dispc->feat->max_downscale;
2468 int maxvdownscale = dispc->feat->max_downscale;
2469 const int max_decim_limit = 16;
2470 unsigned long core_clk = 0;
2471 int decim_x, decim_y, ret;
2472
2473 if (width == out_width && height == out_height)
2474 return 0;
2475
2476 if (dispc->feat->supported_scaler_color_modes) {
2477 const u32 *modes = dispc->feat->supported_scaler_color_modes;
2478 unsigned int i;
2479
2480 for (i = 0; modes[i]; ++i) {
2481 if (modes[i] == fourcc)
2482 break;
2483 }
2484
2485 if (modes[i] == 0)
2486 return -EINVAL;
2487 }
2488
2489 if (plane == OMAP_DSS_WB) {
2490 switch (fourcc) {
2491 case DRM_FORMAT_NV12:
2492 maxhdownscale = maxvdownscale = 2;
2493 break;
2494 case DRM_FORMAT_YUYV:
2495 case DRM_FORMAT_UYVY:
2496 maxhdownscale = 2;
2497 maxvdownscale = 4;
2498 break;
2499 default:
2500 break;
2501 }
2502 }
2503 if (!mem_to_mem && (pclk == 0 || vm->pixelclock == 0)) {
2504 DSSERR("cannot calculate scaling settings: pclk is zero\n");
2505 return -EINVAL;
2506 }
2507
2508 if ((caps & OMAP_DSS_OVL_CAP_SCALE) == 0)
2509 return -EINVAL;
2510
2511 if (mem_to_mem) {
2512 *x_predecim = *y_predecim = 1;
2513 } else {
2514 *x_predecim = max_decim_limit;
2515 *y_predecim = (rotation_type == OMAP_DSS_ROT_TILER &&
2516 dispc_has_feature(dispc, FEAT_BURST_2D)) ?
2517 2 : max_decim_limit;
2518 }
2519
2520 decim_x = DIV_ROUND_UP(DIV_ROUND_UP(width, out_width), maxhdownscale);
2521 decim_y = DIV_ROUND_UP(DIV_ROUND_UP(height, out_height), maxvdownscale);
2522
2523 if (decim_x > *x_predecim || out_width > width * 8)
2524 return -EINVAL;
2525
2526 if (decim_y > *y_predecim || out_height > height * 8)
2527 return -EINVAL;
2528
2529 ret = dispc->feat->calc_scaling(dispc, pclk, lclk, vm, width, height,
2530 out_width, out_height, fourcc,
2531 five_taps, x_predecim, y_predecim,
2532 &decim_x, &decim_y, pos_x, &core_clk,
2533 mem_to_mem);
2534 if (ret)
2535 return ret;
2536
2537 DSSDBG("%dx%d -> %dx%d (%d.%02d x %d.%02d), decim %dx%d %dx%d (%d.%02d x %d.%02d), taps %d, req clk %lu, cur clk %lu\n",
2538 width, height,
2539 out_width, out_height,
2540 out_width / width, DIV_FRAC(out_width, width),
2541 out_height / height, DIV_FRAC(out_height, height),
2542
2543 decim_x, decim_y,
2544 width / decim_x, height / decim_y,
2545 out_width / (width / decim_x), DIV_FRAC(out_width, width / decim_x),
2546 out_height / (height / decim_y), DIV_FRAC(out_height, height / decim_y),
2547
2548 *five_taps ? 5 : 3,
2549 core_clk, dispc_core_clk_rate(dispc));
2550
2551 if (!core_clk || core_clk > dispc_core_clk_rate(dispc)) {
2552 DSSERR("failed to set up scaling, "
2553 "required core clk rate = %lu Hz, "
2554 "current core clk rate = %lu Hz\n",
2555 core_clk, dispc_core_clk_rate(dispc));
2556 return -EINVAL;
2557 }
2558
2559 *x_predecim = decim_x;
2560 *y_predecim = decim_y;
2561 return 0;
2562 }
2563
dispc_ovl_get_max_size(struct dispc_device * dispc,u16 * width,u16 * height)2564 void dispc_ovl_get_max_size(struct dispc_device *dispc, u16 *width, u16 *height)
2565 {
2566 *width = dispc->feat->ovl_width_max;
2567 *height = dispc->feat->ovl_height_max;
2568 }
2569
dispc_ovl_setup_common(struct dispc_device * dispc,enum omap_plane_id plane,enum omap_overlay_caps caps,u32 paddr,u32 p_uv_addr,u16 screen_width,int pos_x,int pos_y,u16 width,u16 height,u16 out_width,u16 out_height,u32 fourcc,u8 rotation,u8 zorder,u8 pre_mult_alpha,u8 global_alpha,enum omap_dss_rotation_type rotation_type,bool replication,const struct videomode * vm,bool mem_to_mem,enum drm_color_encoding color_encoding,enum drm_color_range color_range)2570 static int dispc_ovl_setup_common(struct dispc_device *dispc,
2571 enum omap_plane_id plane,
2572 enum omap_overlay_caps caps,
2573 u32 paddr, u32 p_uv_addr,
2574 u16 screen_width, int pos_x, int pos_y,
2575 u16 width, u16 height,
2576 u16 out_width, u16 out_height,
2577 u32 fourcc, u8 rotation, u8 zorder,
2578 u8 pre_mult_alpha, u8 global_alpha,
2579 enum omap_dss_rotation_type rotation_type,
2580 bool replication, const struct videomode *vm,
2581 bool mem_to_mem,
2582 enum drm_color_encoding color_encoding,
2583 enum drm_color_range color_range)
2584 {
2585 bool five_taps = true;
2586 bool fieldmode = false;
2587 int r, cconv = 0;
2588 unsigned int offset0, offset1;
2589 s32 row_inc;
2590 s32 pix_inc;
2591 u16 frame_width;
2592 unsigned int field_offset = 0;
2593 u16 in_height = height;
2594 u16 in_width = width;
2595 int x_predecim = 1, y_predecim = 1;
2596 bool ilace = !!(vm->flags & DISPLAY_FLAGS_INTERLACED);
2597 unsigned long pclk = dispc_plane_pclk_rate(dispc, plane);
2598 unsigned long lclk = dispc_plane_lclk_rate(dispc, plane);
2599 const struct drm_format_info *info;
2600
2601 info = drm_format_info(fourcc);
2602
2603 /* when setting up WB, dispc_plane_pclk_rate() returns 0 */
2604 if (plane == OMAP_DSS_WB)
2605 pclk = vm->pixelclock;
2606
2607 if (paddr == 0 && rotation_type != OMAP_DSS_ROT_TILER)
2608 return -EINVAL;
2609
2610 if (info->is_yuv && (in_width & 1)) {
2611 DSSERR("input width %d is not even for YUV format\n", in_width);
2612 return -EINVAL;
2613 }
2614
2615 out_width = out_width == 0 ? width : out_width;
2616 out_height = out_height == 0 ? height : out_height;
2617
2618 if (plane != OMAP_DSS_WB) {
2619 if (ilace && height == out_height)
2620 fieldmode = true;
2621
2622 if (ilace) {
2623 if (fieldmode)
2624 in_height /= 2;
2625 pos_y /= 2;
2626 out_height /= 2;
2627
2628 DSSDBG("adjusting for ilace: height %d, pos_y %d, out_height %d\n",
2629 in_height, pos_y, out_height);
2630 }
2631 }
2632
2633 if (!dispc_ovl_color_mode_supported(dispc, plane, fourcc))
2634 return -EINVAL;
2635
2636 r = dispc_ovl_calc_scaling(dispc, plane, pclk, lclk, caps, vm, in_width,
2637 in_height, out_width, out_height, fourcc,
2638 &five_taps, &x_predecim, &y_predecim, pos_x,
2639 rotation_type, mem_to_mem);
2640 if (r)
2641 return r;
2642
2643 in_width = in_width / x_predecim;
2644 in_height = in_height / y_predecim;
2645
2646 if (x_predecim > 1 || y_predecim > 1)
2647 DSSDBG("predecimation %d x %x, new input size %d x %d\n",
2648 x_predecim, y_predecim, in_width, in_height);
2649
2650 if (info->is_yuv && (in_width & 1)) {
2651 DSSDBG("predecimated input width is not even for YUV format\n");
2652 DSSDBG("adjusting input width %d -> %d\n",
2653 in_width, in_width & ~1);
2654
2655 in_width &= ~1;
2656 }
2657
2658 if (info->is_yuv)
2659 cconv = 1;
2660
2661 if (ilace && !fieldmode) {
2662 /*
2663 * when downscaling the bottom field may have to start several
2664 * source lines below the top field. Unfortunately ACCUI
2665 * registers will only hold the fractional part of the offset
2666 * so the integer part must be added to the base address of the
2667 * bottom field.
2668 */
2669 if (!in_height || in_height == out_height)
2670 field_offset = 0;
2671 else
2672 field_offset = in_height / out_height / 2;
2673 }
2674
2675 /* Fields are independent but interleaved in memory. */
2676 if (fieldmode)
2677 field_offset = 1;
2678
2679 offset0 = 0;
2680 offset1 = 0;
2681 row_inc = 0;
2682 pix_inc = 0;
2683
2684 if (plane == OMAP_DSS_WB)
2685 frame_width = out_width;
2686 else
2687 frame_width = in_width;
2688
2689 calc_offset(screen_width, frame_width,
2690 fourcc, fieldmode, field_offset,
2691 &offset0, &offset1, &row_inc, &pix_inc,
2692 x_predecim, y_predecim,
2693 rotation_type, rotation);
2694
2695 DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
2696 offset0, offset1, row_inc, pix_inc);
2697
2698 dispc_ovl_set_color_mode(dispc, plane, fourcc);
2699
2700 dispc_ovl_configure_burst_type(dispc, plane, rotation_type);
2701
2702 if (dispc->feat->reverse_ilace_field_order)
2703 swap(offset0, offset1);
2704
2705 dispc_ovl_set_ba0(dispc, plane, paddr + offset0);
2706 dispc_ovl_set_ba1(dispc, plane, paddr + offset1);
2707
2708 if (fourcc == DRM_FORMAT_NV12) {
2709 dispc_ovl_set_ba0_uv(dispc, plane, p_uv_addr + offset0);
2710 dispc_ovl_set_ba1_uv(dispc, plane, p_uv_addr + offset1);
2711 }
2712
2713 if (dispc->feat->last_pixel_inc_missing)
2714 row_inc += pix_inc - 1;
2715
2716 dispc_ovl_set_row_inc(dispc, plane, row_inc);
2717 dispc_ovl_set_pix_inc(dispc, plane, pix_inc);
2718
2719 DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, in_width,
2720 in_height, out_width, out_height);
2721
2722 dispc_ovl_set_pos(dispc, plane, caps, pos_x, pos_y);
2723
2724 dispc_ovl_set_input_size(dispc, plane, in_width, in_height);
2725
2726 if (caps & OMAP_DSS_OVL_CAP_SCALE) {
2727 dispc_ovl_set_scaling(dispc, plane, in_width, in_height,
2728 out_width, out_height, ilace, five_taps,
2729 fieldmode, fourcc, rotation);
2730 dispc_ovl_set_output_size(dispc, plane, out_width, out_height);
2731 dispc_ovl_set_vid_color_conv(dispc, plane, cconv);
2732
2733 if (plane != OMAP_DSS_WB)
2734 dispc_ovl_set_csc(dispc, plane, color_encoding, color_range);
2735 }
2736
2737 dispc_ovl_set_rotation_attrs(dispc, plane, rotation, rotation_type,
2738 fourcc);
2739
2740 dispc_ovl_set_zorder(dispc, plane, caps, zorder);
2741 dispc_ovl_set_pre_mult_alpha(dispc, plane, caps, pre_mult_alpha);
2742 dispc_ovl_setup_global_alpha(dispc, plane, caps, global_alpha);
2743
2744 dispc_ovl_enable_replication(dispc, plane, caps, replication);
2745
2746 return 0;
2747 }
2748
dispc_ovl_setup(struct dispc_device * dispc,enum omap_plane_id plane,const struct omap_overlay_info * oi,const struct videomode * vm,bool mem_to_mem,enum omap_channel channel)2749 int dispc_ovl_setup(struct dispc_device *dispc,
2750 enum omap_plane_id plane,
2751 const struct omap_overlay_info *oi,
2752 const struct videomode *vm, bool mem_to_mem,
2753 enum omap_channel channel)
2754 {
2755 int r;
2756 enum omap_overlay_caps caps = dispc->feat->overlay_caps[plane];
2757 const bool replication = true;
2758
2759 DSSDBG("dispc_ovl_setup %d, pa %pad, pa_uv %pad, sw %d, %d,%d, %dx%d ->"
2760 " %dx%d, cmode %x, rot %d, chan %d repl %d\n",
2761 plane, &oi->paddr, &oi->p_uv_addr, oi->screen_width, oi->pos_x,
2762 oi->pos_y, oi->width, oi->height, oi->out_width, oi->out_height,
2763 oi->fourcc, oi->rotation, channel, replication);
2764
2765 dispc_ovl_set_channel_out(dispc, plane, channel);
2766
2767 r = dispc_ovl_setup_common(dispc, plane, caps, oi->paddr, oi->p_uv_addr,
2768 oi->screen_width, oi->pos_x, oi->pos_y, oi->width, oi->height,
2769 oi->out_width, oi->out_height, oi->fourcc, oi->rotation,
2770 oi->zorder, oi->pre_mult_alpha, oi->global_alpha,
2771 oi->rotation_type, replication, vm, mem_to_mem,
2772 oi->color_encoding, oi->color_range);
2773
2774 return r;
2775 }
2776
dispc_ovl_enable(struct dispc_device * dispc,enum omap_plane_id plane,bool enable)2777 int dispc_ovl_enable(struct dispc_device *dispc,
2778 enum omap_plane_id plane, bool enable)
2779 {
2780 DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
2781
2782 REG_FLD_MOD(dispc, DISPC_OVL_ATTRIBUTES(plane), enable ? 1 : 0, 0, 0);
2783
2784 return 0;
2785 }
2786
dispc_lcd_enable_signal_polarity(struct dispc_device * dispc,bool act_high)2787 static void dispc_lcd_enable_signal_polarity(struct dispc_device *dispc,
2788 bool act_high)
2789 {
2790 if (!dispc_has_feature(dispc, FEAT_LCDENABLEPOL))
2791 return;
2792
2793 REG_FLD_MOD(dispc, DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
2794 }
2795
dispc_lcd_enable_signal(struct dispc_device * dispc,bool enable)2796 void dispc_lcd_enable_signal(struct dispc_device *dispc, bool enable)
2797 {
2798 if (!dispc_has_feature(dispc, FEAT_LCDENABLESIGNAL))
2799 return;
2800
2801 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 28, 28);
2802 }
2803
dispc_pck_free_enable(struct dispc_device * dispc,bool enable)2804 void dispc_pck_free_enable(struct dispc_device *dispc, bool enable)
2805 {
2806 if (!dispc_has_feature(dispc, FEAT_PCKFREEENABLE))
2807 return;
2808
2809 REG_FLD_MOD(dispc, DISPC_CONTROL, enable ? 1 : 0, 27, 27);
2810 }
2811
dispc_mgr_enable_fifohandcheck(struct dispc_device * dispc,enum omap_channel channel,bool enable)2812 static void dispc_mgr_enable_fifohandcheck(struct dispc_device *dispc,
2813 enum omap_channel channel,
2814 bool enable)
2815 {
2816 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_FIFOHANDCHECK, enable);
2817 }
2818
2819
dispc_mgr_set_lcd_type_tft(struct dispc_device * dispc,enum omap_channel channel)2820 static void dispc_mgr_set_lcd_type_tft(struct dispc_device *dispc,
2821 enum omap_channel channel)
2822 {
2823 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STNTFT, 1);
2824 }
2825
dispc_set_loadmode(struct dispc_device * dispc,enum omap_dss_load_mode mode)2826 static void dispc_set_loadmode(struct dispc_device *dispc,
2827 enum omap_dss_load_mode mode)
2828 {
2829 REG_FLD_MOD(dispc, DISPC_CONFIG, mode, 2, 1);
2830 }
2831
2832
dispc_mgr_set_default_color(struct dispc_device * dispc,enum omap_channel channel,u32 color)2833 static void dispc_mgr_set_default_color(struct dispc_device *dispc,
2834 enum omap_channel channel, u32 color)
2835 {
2836 dispc_write_reg(dispc, DISPC_DEFAULT_COLOR(channel), color);
2837 }
2838
dispc_mgr_set_trans_key(struct dispc_device * dispc,enum omap_channel ch,enum omap_dss_trans_key_type type,u32 trans_key)2839 static void dispc_mgr_set_trans_key(struct dispc_device *dispc,
2840 enum omap_channel ch,
2841 enum omap_dss_trans_key_type type,
2842 u32 trans_key)
2843 {
2844 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKSELECTION, type);
2845
2846 dispc_write_reg(dispc, DISPC_TRANS_COLOR(ch), trans_key);
2847 }
2848
dispc_mgr_enable_trans_key(struct dispc_device * dispc,enum omap_channel ch,bool enable)2849 static void dispc_mgr_enable_trans_key(struct dispc_device *dispc,
2850 enum omap_channel ch, bool enable)
2851 {
2852 mgr_fld_write(dispc, ch, DISPC_MGR_FLD_TCKENABLE, enable);
2853 }
2854
dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device * dispc,enum omap_channel ch,bool enable)2855 static void dispc_mgr_enable_alpha_fixed_zorder(struct dispc_device *dispc,
2856 enum omap_channel ch,
2857 bool enable)
2858 {
2859 if (!dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER))
2860 return;
2861
2862 if (ch == OMAP_DSS_CHANNEL_LCD)
2863 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 18, 18);
2864 else if (ch == OMAP_DSS_CHANNEL_DIGIT)
2865 REG_FLD_MOD(dispc, DISPC_CONFIG, enable, 19, 19);
2866 }
2867
dispc_mgr_setup(struct dispc_device * dispc,enum omap_channel channel,const struct omap_overlay_manager_info * info)2868 void dispc_mgr_setup(struct dispc_device *dispc,
2869 enum omap_channel channel,
2870 const struct omap_overlay_manager_info *info)
2871 {
2872 dispc_mgr_set_default_color(dispc, channel, info->default_color);
2873 dispc_mgr_set_trans_key(dispc, channel, info->trans_key_type,
2874 info->trans_key);
2875 dispc_mgr_enable_trans_key(dispc, channel, info->trans_enabled);
2876 dispc_mgr_enable_alpha_fixed_zorder(dispc, channel,
2877 info->partial_alpha_enabled);
2878 if (dispc_has_feature(dispc, FEAT_CPR)) {
2879 dispc_mgr_enable_cpr(dispc, channel, info->cpr_enable);
2880 dispc_mgr_set_cpr_coef(dispc, channel, &info->cpr_coefs);
2881 }
2882 }
2883
dispc_mgr_set_tft_data_lines(struct dispc_device * dispc,enum omap_channel channel,u8 data_lines)2884 static void dispc_mgr_set_tft_data_lines(struct dispc_device *dispc,
2885 enum omap_channel channel,
2886 u8 data_lines)
2887 {
2888 int code;
2889
2890 switch (data_lines) {
2891 case 12:
2892 code = 0;
2893 break;
2894 case 16:
2895 code = 1;
2896 break;
2897 case 18:
2898 code = 2;
2899 break;
2900 case 24:
2901 code = 3;
2902 break;
2903 default:
2904 BUG();
2905 return;
2906 }
2907
2908 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_TFTDATALINES, code);
2909 }
2910
dispc_mgr_set_io_pad_mode(struct dispc_device * dispc,enum dss_io_pad_mode mode)2911 static void dispc_mgr_set_io_pad_mode(struct dispc_device *dispc,
2912 enum dss_io_pad_mode mode)
2913 {
2914 u32 l;
2915 int gpout0, gpout1;
2916
2917 switch (mode) {
2918 case DSS_IO_PAD_MODE_RESET:
2919 gpout0 = 0;
2920 gpout1 = 0;
2921 break;
2922 case DSS_IO_PAD_MODE_RFBI:
2923 gpout0 = 1;
2924 gpout1 = 0;
2925 break;
2926 case DSS_IO_PAD_MODE_BYPASS:
2927 gpout0 = 1;
2928 gpout1 = 1;
2929 break;
2930 default:
2931 BUG();
2932 return;
2933 }
2934
2935 l = dispc_read_reg(dispc, DISPC_CONTROL);
2936 l = FLD_MOD(l, gpout0, 15, 15);
2937 l = FLD_MOD(l, gpout1, 16, 16);
2938 dispc_write_reg(dispc, DISPC_CONTROL, l);
2939 }
2940
dispc_mgr_enable_stallmode(struct dispc_device * dispc,enum omap_channel channel,bool enable)2941 static void dispc_mgr_enable_stallmode(struct dispc_device *dispc,
2942 enum omap_channel channel, bool enable)
2943 {
2944 mgr_fld_write(dispc, channel, DISPC_MGR_FLD_STALLMODE, enable);
2945 }
2946
dispc_mgr_set_lcd_config(struct dispc_device * dispc,enum omap_channel channel,const struct dss_lcd_mgr_config * config)2947 void dispc_mgr_set_lcd_config(struct dispc_device *dispc,
2948 enum omap_channel channel,
2949 const struct dss_lcd_mgr_config *config)
2950 {
2951 dispc_mgr_set_io_pad_mode(dispc, config->io_pad_mode);
2952
2953 dispc_mgr_enable_stallmode(dispc, channel, config->stallmode);
2954 dispc_mgr_enable_fifohandcheck(dispc, channel, config->fifohandcheck);
2955
2956 dispc_mgr_set_clock_div(dispc, channel, &config->clock_info);
2957
2958 dispc_mgr_set_tft_data_lines(dispc, channel, config->video_port_width);
2959
2960 dispc_lcd_enable_signal_polarity(dispc, config->lcden_sig_polarity);
2961
2962 dispc_mgr_set_lcd_type_tft(dispc, channel);
2963 }
2964
_dispc_mgr_size_ok(struct dispc_device * dispc,u16 width,u16 height)2965 static bool _dispc_mgr_size_ok(struct dispc_device *dispc,
2966 u16 width, u16 height)
2967 {
2968 return width <= dispc->feat->mgr_width_max &&
2969 height <= dispc->feat->mgr_height_max;
2970 }
2971
_dispc_lcd_timings_ok(struct dispc_device * dispc,int hsync_len,int hfp,int hbp,int vsw,int vfp,int vbp)2972 static bool _dispc_lcd_timings_ok(struct dispc_device *dispc,
2973 int hsync_len, int hfp, int hbp,
2974 int vsw, int vfp, int vbp)
2975 {
2976 if (hsync_len < 1 || hsync_len > dispc->feat->sw_max ||
2977 hfp < 1 || hfp > dispc->feat->hp_max ||
2978 hbp < 1 || hbp > dispc->feat->hp_max ||
2979 vsw < 1 || vsw > dispc->feat->sw_max ||
2980 vfp < 0 || vfp > dispc->feat->vp_max ||
2981 vbp < 0 || vbp > dispc->feat->vp_max)
2982 return false;
2983 return true;
2984 }
2985
_dispc_mgr_pclk_ok(struct dispc_device * dispc,enum omap_channel channel,unsigned long pclk)2986 static bool _dispc_mgr_pclk_ok(struct dispc_device *dispc,
2987 enum omap_channel channel,
2988 unsigned long pclk)
2989 {
2990 if (dss_mgr_is_lcd(channel))
2991 return pclk <= dispc->feat->max_lcd_pclk;
2992 else
2993 return pclk <= dispc->feat->max_tv_pclk;
2994 }
2995
dispc_mgr_check_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)2996 int dispc_mgr_check_timings(struct dispc_device *dispc,
2997 enum omap_channel channel,
2998 const struct videomode *vm)
2999 {
3000 if (!_dispc_mgr_size_ok(dispc, vm->hactive, vm->vactive))
3001 return MODE_BAD;
3002
3003 if (!_dispc_mgr_pclk_ok(dispc, channel, vm->pixelclock))
3004 return MODE_BAD;
3005
3006 if (dss_mgr_is_lcd(channel)) {
3007 /* TODO: OMAP4+ supports interlace for LCD outputs */
3008 if (vm->flags & DISPLAY_FLAGS_INTERLACED)
3009 return MODE_BAD;
3010
3011 if (!_dispc_lcd_timings_ok(dispc, vm->hsync_len,
3012 vm->hfront_porch, vm->hback_porch,
3013 vm->vsync_len, vm->vfront_porch,
3014 vm->vback_porch))
3015 return MODE_BAD;
3016 }
3017
3018 return MODE_OK;
3019 }
3020
_dispc_mgr_set_lcd_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3021 static void _dispc_mgr_set_lcd_timings(struct dispc_device *dispc,
3022 enum omap_channel channel,
3023 const struct videomode *vm)
3024 {
3025 u32 timing_h, timing_v, l;
3026 bool onoff, rf, ipc, vs, hs, de;
3027
3028 timing_h = FLD_VAL(vm->hsync_len - 1, dispc->feat->sw_start, 0) |
3029 FLD_VAL(vm->hfront_porch - 1, dispc->feat->fp_start, 8) |
3030 FLD_VAL(vm->hback_porch - 1, dispc->feat->bp_start, 20);
3031 timing_v = FLD_VAL(vm->vsync_len - 1, dispc->feat->sw_start, 0) |
3032 FLD_VAL(vm->vfront_porch, dispc->feat->fp_start, 8) |
3033 FLD_VAL(vm->vback_porch, dispc->feat->bp_start, 20);
3034
3035 dispc_write_reg(dispc, DISPC_TIMING_H(channel), timing_h);
3036 dispc_write_reg(dispc, DISPC_TIMING_V(channel), timing_v);
3037
3038 vs = !!(vm->flags & DISPLAY_FLAGS_VSYNC_LOW);
3039 hs = !!(vm->flags & DISPLAY_FLAGS_HSYNC_LOW);
3040 de = !!(vm->flags & DISPLAY_FLAGS_DE_LOW);
3041 ipc = !!(vm->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
3042 onoff = true; /* always use the 'rf' setting */
3043 rf = !!(vm->flags & DISPLAY_FLAGS_SYNC_POSEDGE);
3044
3045 l = FLD_VAL(onoff, 17, 17) |
3046 FLD_VAL(rf, 16, 16) |
3047 FLD_VAL(de, 15, 15) |
3048 FLD_VAL(ipc, 14, 14) |
3049 FLD_VAL(hs, 13, 13) |
3050 FLD_VAL(vs, 12, 12);
3051
3052 /* always set ALIGN bit when available */
3053 if (dispc->feat->supports_sync_align)
3054 l |= (1 << 18);
3055
3056 dispc_write_reg(dispc, DISPC_POL_FREQ(channel), l);
3057
3058 if (dispc->syscon_pol) {
3059 const int shifts[] = {
3060 [OMAP_DSS_CHANNEL_LCD] = 0,
3061 [OMAP_DSS_CHANNEL_LCD2] = 1,
3062 [OMAP_DSS_CHANNEL_LCD3] = 2,
3063 };
3064
3065 u32 mask, val;
3066
3067 mask = (1 << 0) | (1 << 3) | (1 << 6);
3068 val = (rf << 0) | (ipc << 3) | (onoff << 6);
3069
3070 mask <<= 16 + shifts[channel];
3071 val <<= 16 + shifts[channel];
3072
3073 regmap_update_bits(dispc->syscon_pol, dispc->syscon_pol_offset,
3074 mask, val);
3075 }
3076 }
3077
vm_flag_to_int(enum display_flags flags,enum display_flags high,enum display_flags low)3078 static int vm_flag_to_int(enum display_flags flags, enum display_flags high,
3079 enum display_flags low)
3080 {
3081 if (flags & high)
3082 return 1;
3083 if (flags & low)
3084 return -1;
3085 return 0;
3086 }
3087
3088 /* change name to mode? */
dispc_mgr_set_timings(struct dispc_device * dispc,enum omap_channel channel,const struct videomode * vm)3089 void dispc_mgr_set_timings(struct dispc_device *dispc,
3090 enum omap_channel channel,
3091 const struct videomode *vm)
3092 {
3093 unsigned int xtot, ytot;
3094 unsigned long ht, vt;
3095 struct videomode t = *vm;
3096
3097 DSSDBG("channel %d xres %u yres %u\n", channel, t.hactive, t.vactive);
3098
3099 if (dispc_mgr_check_timings(dispc, channel, &t)) {
3100 BUG();
3101 return;
3102 }
3103
3104 if (dss_mgr_is_lcd(channel)) {
3105 _dispc_mgr_set_lcd_timings(dispc, channel, &t);
3106
3107 xtot = t.hactive + t.hfront_porch + t.hsync_len + t.hback_porch;
3108 ytot = t.vactive + t.vfront_porch + t.vsync_len + t.vback_porch;
3109
3110 ht = vm->pixelclock / xtot;
3111 vt = vm->pixelclock / xtot / ytot;
3112
3113 DSSDBG("pck %lu\n", vm->pixelclock);
3114 DSSDBG("hsync_len %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
3115 t.hsync_len, t.hfront_porch, t.hback_porch,
3116 t.vsync_len, t.vfront_porch, t.vback_porch);
3117 DSSDBG("vsync_level %d hsync_level %d data_pclk_edge %d de_level %d sync_pclk_edge %d\n",
3118 vm_flag_to_int(t.flags, DISPLAY_FLAGS_VSYNC_HIGH, DISPLAY_FLAGS_VSYNC_LOW),
3119 vm_flag_to_int(t.flags, DISPLAY_FLAGS_HSYNC_HIGH, DISPLAY_FLAGS_HSYNC_LOW),
3120 vm_flag_to_int(t.flags, DISPLAY_FLAGS_PIXDATA_POSEDGE, DISPLAY_FLAGS_PIXDATA_NEGEDGE),
3121 vm_flag_to_int(t.flags, DISPLAY_FLAGS_DE_HIGH, DISPLAY_FLAGS_DE_LOW),
3122 vm_flag_to_int(t.flags, DISPLAY_FLAGS_SYNC_POSEDGE, DISPLAY_FLAGS_SYNC_NEGEDGE));
3123
3124 DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
3125 } else {
3126 if (t.flags & DISPLAY_FLAGS_INTERLACED)
3127 t.vactive /= 2;
3128
3129 if (dispc->feat->supports_double_pixel)
3130 REG_FLD_MOD(dispc, DISPC_CONTROL,
3131 !!(t.flags & DISPLAY_FLAGS_DOUBLECLK),
3132 19, 17);
3133 }
3134
3135 dispc_mgr_set_size(dispc, channel, t.hactive, t.vactive);
3136 }
3137
dispc_mgr_set_lcd_divisor(struct dispc_device * dispc,enum omap_channel channel,u16 lck_div,u16 pck_div)3138 static void dispc_mgr_set_lcd_divisor(struct dispc_device *dispc,
3139 enum omap_channel channel, u16 lck_div,
3140 u16 pck_div)
3141 {
3142 BUG_ON(lck_div < 1);
3143 BUG_ON(pck_div < 1);
3144
3145 dispc_write_reg(dispc, DISPC_DIVISORo(channel),
3146 FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
3147
3148 if (!dispc_has_feature(dispc, FEAT_CORE_CLK_DIV) &&
3149 channel == OMAP_DSS_CHANNEL_LCD)
3150 dispc->core_clk_rate = dispc_fclk_rate(dispc) / lck_div;
3151 }
3152
dispc_mgr_get_lcd_divisor(struct dispc_device * dispc,enum omap_channel channel,int * lck_div,int * pck_div)3153 static void dispc_mgr_get_lcd_divisor(struct dispc_device *dispc,
3154 enum omap_channel channel, int *lck_div,
3155 int *pck_div)
3156 {
3157 u32 l;
3158 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3159 *lck_div = FLD_GET(l, 23, 16);
3160 *pck_div = FLD_GET(l, 7, 0);
3161 }
3162
dispc_fclk_rate(struct dispc_device * dispc)3163 static unsigned long dispc_fclk_rate(struct dispc_device *dispc)
3164 {
3165 unsigned long r;
3166 enum dss_clk_source src;
3167
3168 src = dss_get_dispc_clk_source(dispc->dss);
3169
3170 if (src == DSS_CLK_SRC_FCK) {
3171 r = dss_get_dispc_clk_rate(dispc->dss);
3172 } else {
3173 struct dss_pll *pll;
3174 unsigned int clkout_idx;
3175
3176 pll = dss_pll_find_by_src(dispc->dss, src);
3177 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3178
3179 r = pll->cinfo.clkout[clkout_idx];
3180 }
3181
3182 return r;
3183 }
3184
dispc_mgr_lclk_rate(struct dispc_device * dispc,enum omap_channel channel)3185 static unsigned long dispc_mgr_lclk_rate(struct dispc_device *dispc,
3186 enum omap_channel channel)
3187 {
3188 int lcd;
3189 unsigned long r;
3190 enum dss_clk_source src;
3191
3192 /* for TV, LCLK rate is the FCLK rate */
3193 if (!dss_mgr_is_lcd(channel))
3194 return dispc_fclk_rate(dispc);
3195
3196 src = dss_get_lcd_clk_source(dispc->dss, channel);
3197
3198 if (src == DSS_CLK_SRC_FCK) {
3199 r = dss_get_dispc_clk_rate(dispc->dss);
3200 } else {
3201 struct dss_pll *pll;
3202 unsigned int clkout_idx;
3203
3204 pll = dss_pll_find_by_src(dispc->dss, src);
3205 clkout_idx = dss_pll_get_clkout_idx_for_src(src);
3206
3207 r = pll->cinfo.clkout[clkout_idx];
3208 }
3209
3210 lcd = REG_GET(dispc, DISPC_DIVISORo(channel), 23, 16);
3211
3212 return r / lcd;
3213 }
3214
dispc_mgr_pclk_rate(struct dispc_device * dispc,enum omap_channel channel)3215 static unsigned long dispc_mgr_pclk_rate(struct dispc_device *dispc,
3216 enum omap_channel channel)
3217 {
3218 unsigned long r;
3219
3220 if (dss_mgr_is_lcd(channel)) {
3221 int pcd;
3222 u32 l;
3223
3224 l = dispc_read_reg(dispc, DISPC_DIVISORo(channel));
3225
3226 pcd = FLD_GET(l, 7, 0);
3227
3228 r = dispc_mgr_lclk_rate(dispc, channel);
3229
3230 return r / pcd;
3231 } else {
3232 return dispc->tv_pclk_rate;
3233 }
3234 }
3235
dispc_set_tv_pclk(struct dispc_device * dispc,unsigned long pclk)3236 void dispc_set_tv_pclk(struct dispc_device *dispc, unsigned long pclk)
3237 {
3238 dispc->tv_pclk_rate = pclk;
3239 }
3240
dispc_core_clk_rate(struct dispc_device * dispc)3241 static unsigned long dispc_core_clk_rate(struct dispc_device *dispc)
3242 {
3243 return dispc->core_clk_rate;
3244 }
3245
dispc_plane_pclk_rate(struct dispc_device * dispc,enum omap_plane_id plane)3246 static unsigned long dispc_plane_pclk_rate(struct dispc_device *dispc,
3247 enum omap_plane_id plane)
3248 {
3249 enum omap_channel channel;
3250
3251 if (plane == OMAP_DSS_WB)
3252 return 0;
3253
3254 channel = dispc_ovl_get_channel_out(dispc, plane);
3255
3256 return dispc_mgr_pclk_rate(dispc, channel);
3257 }
3258
dispc_plane_lclk_rate(struct dispc_device * dispc,enum omap_plane_id plane)3259 static unsigned long dispc_plane_lclk_rate(struct dispc_device *dispc,
3260 enum omap_plane_id plane)
3261 {
3262 enum omap_channel channel;
3263
3264 if (plane == OMAP_DSS_WB)
3265 return 0;
3266
3267 channel = dispc_ovl_get_channel_out(dispc, plane);
3268
3269 return dispc_mgr_lclk_rate(dispc, channel);
3270 }
3271
dispc_dump_clocks_channel(struct dispc_device * dispc,struct seq_file * s,enum omap_channel channel)3272 static void dispc_dump_clocks_channel(struct dispc_device *dispc,
3273 struct seq_file *s,
3274 enum omap_channel channel)
3275 {
3276 int lcd, pcd;
3277 enum dss_clk_source lcd_clk_src;
3278
3279 seq_printf(s, "- %s -\n", mgr_desc[channel].name);
3280
3281 lcd_clk_src = dss_get_lcd_clk_source(dispc->dss, channel);
3282
3283 seq_printf(s, "%s clk source = %s\n", mgr_desc[channel].name,
3284 dss_get_clk_source_name(lcd_clk_src));
3285
3286 dispc_mgr_get_lcd_divisor(dispc, channel, &lcd, &pcd);
3287
3288 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3289 dispc_mgr_lclk_rate(dispc, channel), lcd);
3290 seq_printf(s, "pck\t\t%-16lupck div\t%u\n",
3291 dispc_mgr_pclk_rate(dispc, channel), pcd);
3292 }
3293
dispc_dump_clocks(struct dispc_device * dispc,struct seq_file * s)3294 void dispc_dump_clocks(struct dispc_device *dispc, struct seq_file *s)
3295 {
3296 enum dss_clk_source dispc_clk_src;
3297 int lcd;
3298 u32 l;
3299
3300 if (dispc_runtime_get(dispc))
3301 return;
3302
3303 seq_printf(s, "- DISPC -\n");
3304
3305 dispc_clk_src = dss_get_dispc_clk_source(dispc->dss);
3306 seq_printf(s, "dispc fclk source = %s\n",
3307 dss_get_clk_source_name(dispc_clk_src));
3308
3309 seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate(dispc));
3310
3311 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3312 seq_printf(s, "- DISPC-CORE-CLK -\n");
3313 l = dispc_read_reg(dispc, DISPC_DIVISOR);
3314 lcd = FLD_GET(l, 23, 16);
3315
3316 seq_printf(s, "lck\t\t%-16lulck div\t%u\n",
3317 (dispc_fclk_rate(dispc)/lcd), lcd);
3318 }
3319
3320 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD);
3321
3322 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3323 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD2);
3324 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3325 dispc_dump_clocks_channel(dispc, s, OMAP_DSS_CHANNEL_LCD3);
3326
3327 dispc_runtime_put(dispc);
3328 }
3329
dispc_dump_regs(struct seq_file * s,void * p)3330 static int dispc_dump_regs(struct seq_file *s, void *p)
3331 {
3332 struct dispc_device *dispc = s->private;
3333 int i, j;
3334 const char *mgr_names[] = {
3335 [OMAP_DSS_CHANNEL_LCD] = "LCD",
3336 [OMAP_DSS_CHANNEL_DIGIT] = "TV",
3337 [OMAP_DSS_CHANNEL_LCD2] = "LCD2",
3338 [OMAP_DSS_CHANNEL_LCD3] = "LCD3",
3339 };
3340 const char *ovl_names[] = {
3341 [OMAP_DSS_GFX] = "GFX",
3342 [OMAP_DSS_VIDEO1] = "VID1",
3343 [OMAP_DSS_VIDEO2] = "VID2",
3344 [OMAP_DSS_VIDEO3] = "VID3",
3345 [OMAP_DSS_WB] = "WB",
3346 };
3347 const char **p_names;
3348
3349 #define DUMPREG(dispc, r) \
3350 seq_printf(s, "%-50s %08x\n", #r, dispc_read_reg(dispc, r))
3351
3352 if (dispc_runtime_get(dispc))
3353 return 0;
3354
3355 /* DISPC common registers */
3356 DUMPREG(dispc, DISPC_REVISION);
3357 DUMPREG(dispc, DISPC_SYSCONFIG);
3358 DUMPREG(dispc, DISPC_SYSSTATUS);
3359 DUMPREG(dispc, DISPC_IRQSTATUS);
3360 DUMPREG(dispc, DISPC_IRQENABLE);
3361 DUMPREG(dispc, DISPC_CONTROL);
3362 DUMPREG(dispc, DISPC_CONFIG);
3363 DUMPREG(dispc, DISPC_CAPABLE);
3364 DUMPREG(dispc, DISPC_LINE_STATUS);
3365 DUMPREG(dispc, DISPC_LINE_NUMBER);
3366 if (dispc_has_feature(dispc, FEAT_ALPHA_FIXED_ZORDER) ||
3367 dispc_has_feature(dispc, FEAT_ALPHA_FREE_ZORDER))
3368 DUMPREG(dispc, DISPC_GLOBAL_ALPHA);
3369 if (dispc_has_feature(dispc, FEAT_MGR_LCD2)) {
3370 DUMPREG(dispc, DISPC_CONTROL2);
3371 DUMPREG(dispc, DISPC_CONFIG2);
3372 }
3373 if (dispc_has_feature(dispc, FEAT_MGR_LCD3)) {
3374 DUMPREG(dispc, DISPC_CONTROL3);
3375 DUMPREG(dispc, DISPC_CONFIG3);
3376 }
3377 if (dispc_has_feature(dispc, FEAT_MFLAG))
3378 DUMPREG(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE);
3379
3380 #undef DUMPREG
3381
3382 #define DISPC_REG(i, name) name(i)
3383 #define DUMPREG(dispc, i, r) seq_printf(s, "%s(%s)%*s %08x\n", #r, p_names[i], \
3384 (int)(48 - strlen(#r) - strlen(p_names[i])), " ", \
3385 dispc_read_reg(dispc, DISPC_REG(i, r)))
3386
3387 p_names = mgr_names;
3388
3389 /* DISPC channel specific registers */
3390 for (i = 0; i < dispc_get_num_mgrs(dispc); i++) {
3391 DUMPREG(dispc, i, DISPC_DEFAULT_COLOR);
3392 DUMPREG(dispc, i, DISPC_TRANS_COLOR);
3393 DUMPREG(dispc, i, DISPC_SIZE_MGR);
3394
3395 if (i == OMAP_DSS_CHANNEL_DIGIT)
3396 continue;
3397
3398 DUMPREG(dispc, i, DISPC_TIMING_H);
3399 DUMPREG(dispc, i, DISPC_TIMING_V);
3400 DUMPREG(dispc, i, DISPC_POL_FREQ);
3401 DUMPREG(dispc, i, DISPC_DIVISORo);
3402
3403 DUMPREG(dispc, i, DISPC_DATA_CYCLE1);
3404 DUMPREG(dispc, i, DISPC_DATA_CYCLE2);
3405 DUMPREG(dispc, i, DISPC_DATA_CYCLE3);
3406
3407 if (dispc_has_feature(dispc, FEAT_CPR)) {
3408 DUMPREG(dispc, i, DISPC_CPR_COEF_R);
3409 DUMPREG(dispc, i, DISPC_CPR_COEF_G);
3410 DUMPREG(dispc, i, DISPC_CPR_COEF_B);
3411 }
3412 }
3413
3414 p_names = ovl_names;
3415
3416 for (i = 0; i < dispc_get_num_ovls(dispc); i++) {
3417 DUMPREG(dispc, i, DISPC_OVL_BA0);
3418 DUMPREG(dispc, i, DISPC_OVL_BA1);
3419 DUMPREG(dispc, i, DISPC_OVL_POSITION);
3420 DUMPREG(dispc, i, DISPC_OVL_SIZE);
3421 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3422 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3423 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3424 DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3425 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3426
3427 if (dispc_has_feature(dispc, FEAT_PRELOAD))
3428 DUMPREG(dispc, i, DISPC_OVL_PRELOAD);
3429 if (dispc_has_feature(dispc, FEAT_MFLAG))
3430 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3431
3432 if (i == OMAP_DSS_GFX) {
3433 DUMPREG(dispc, i, DISPC_OVL_WINDOW_SKIP);
3434 DUMPREG(dispc, i, DISPC_OVL_TABLE_BA);
3435 continue;
3436 }
3437
3438 DUMPREG(dispc, i, DISPC_OVL_FIR);
3439 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3440 DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3441 DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3442 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3443 DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3444 DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3445 DUMPREG(dispc, i, DISPC_OVL_FIR2);
3446 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3447 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3448 }
3449 if (dispc_has_feature(dispc, FEAT_ATTR2))
3450 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3451 }
3452
3453 if (dispc->feat->has_writeback) {
3454 i = OMAP_DSS_WB;
3455 DUMPREG(dispc, i, DISPC_OVL_BA0);
3456 DUMPREG(dispc, i, DISPC_OVL_BA1);
3457 DUMPREG(dispc, i, DISPC_OVL_SIZE);
3458 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES);
3459 DUMPREG(dispc, i, DISPC_OVL_FIFO_THRESHOLD);
3460 DUMPREG(dispc, i, DISPC_OVL_FIFO_SIZE_STATUS);
3461 DUMPREG(dispc, i, DISPC_OVL_ROW_INC);
3462 DUMPREG(dispc, i, DISPC_OVL_PIXEL_INC);
3463
3464 if (dispc_has_feature(dispc, FEAT_MFLAG))
3465 DUMPREG(dispc, i, DISPC_OVL_MFLAG_THRESHOLD);
3466
3467 DUMPREG(dispc, i, DISPC_OVL_FIR);
3468 DUMPREG(dispc, i, DISPC_OVL_PICTURE_SIZE);
3469 DUMPREG(dispc, i, DISPC_OVL_ACCU0);
3470 DUMPREG(dispc, i, DISPC_OVL_ACCU1);
3471 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3472 DUMPREG(dispc, i, DISPC_OVL_BA0_UV);
3473 DUMPREG(dispc, i, DISPC_OVL_BA1_UV);
3474 DUMPREG(dispc, i, DISPC_OVL_FIR2);
3475 DUMPREG(dispc, i, DISPC_OVL_ACCU2_0);
3476 DUMPREG(dispc, i, DISPC_OVL_ACCU2_1);
3477 }
3478 if (dispc_has_feature(dispc, FEAT_ATTR2))
3479 DUMPREG(dispc, i, DISPC_OVL_ATTRIBUTES2);
3480 }
3481
3482 #undef DISPC_REG
3483 #undef DUMPREG
3484
3485 #define DISPC_REG(plane, name, i) name(plane, i)
3486 #define DUMPREG(dispc, plane, name, i) \
3487 seq_printf(s, "%s_%d(%s)%*s %08x\n", #name, i, p_names[plane], \
3488 (int)(46 - strlen(#name) - strlen(p_names[plane])), " ", \
3489 dispc_read_reg(dispc, DISPC_REG(plane, name, i)))
3490
3491 /* Video pipeline coefficient registers */
3492
3493 /* start from OMAP_DSS_VIDEO1 */
3494 for (i = 1; i < dispc_get_num_ovls(dispc); i++) {
3495 for (j = 0; j < 8; j++)
3496 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H, j);
3497
3498 for (j = 0; j < 8; j++)
3499 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV, j);
3500
3501 for (j = 0; j < 5; j++)
3502 DUMPREG(dispc, i, DISPC_OVL_CONV_COEF, j);
3503
3504 if (dispc_has_feature(dispc, FEAT_FIR_COEF_V)) {
3505 for (j = 0; j < 8; j++)
3506 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V, j);
3507 }
3508
3509 if (dispc_has_feature(dispc, FEAT_HANDLE_UV_SEPARATE)) {
3510 for (j = 0; j < 8; j++)
3511 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_H2, j);
3512
3513 for (j = 0; j < 8; j++)
3514 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_HV2, j);
3515
3516 for (j = 0; j < 8; j++)
3517 DUMPREG(dispc, i, DISPC_OVL_FIR_COEF_V2, j);
3518 }
3519 }
3520
3521 dispc_runtime_put(dispc);
3522
3523 #undef DISPC_REG
3524 #undef DUMPREG
3525
3526 return 0;
3527 }
3528
3529 /* calculate clock rates using dividers in cinfo */
dispc_calc_clock_rates(struct dispc_device * dispc,unsigned long dispc_fclk_rate,struct dispc_clock_info * cinfo)3530 int dispc_calc_clock_rates(struct dispc_device *dispc,
3531 unsigned long dispc_fclk_rate,
3532 struct dispc_clock_info *cinfo)
3533 {
3534 if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
3535 return -EINVAL;
3536 if (cinfo->pck_div < 1 || cinfo->pck_div > 255)
3537 return -EINVAL;
3538
3539 cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
3540 cinfo->pck = cinfo->lck / cinfo->pck_div;
3541
3542 return 0;
3543 }
3544
dispc_div_calc(struct dispc_device * dispc,unsigned long dispc_freq,unsigned long pck_min,unsigned long pck_max,dispc_div_calc_func func,void * data)3545 bool dispc_div_calc(struct dispc_device *dispc, unsigned long dispc_freq,
3546 unsigned long pck_min, unsigned long pck_max,
3547 dispc_div_calc_func func, void *data)
3548 {
3549 int lckd, lckd_start, lckd_stop;
3550 int pckd, pckd_start, pckd_stop;
3551 unsigned long pck, lck;
3552 unsigned long lck_max;
3553 unsigned long pckd_hw_min, pckd_hw_max;
3554 unsigned int min_fck_per_pck;
3555 unsigned long fck;
3556
3557 #ifdef CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
3558 min_fck_per_pck = CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK;
3559 #else
3560 min_fck_per_pck = 0;
3561 #endif
3562
3563 pckd_hw_min = dispc->feat->min_pcd;
3564 pckd_hw_max = 255;
3565
3566 lck_max = dss_get_max_fck_rate(dispc->dss);
3567
3568 pck_min = pck_min ? pck_min : 1;
3569 pck_max = pck_max ? pck_max : ULONG_MAX;
3570
3571 lckd_start = max(DIV_ROUND_UP(dispc_freq, lck_max), 1ul);
3572 lckd_stop = min(dispc_freq / pck_min, 255ul);
3573
3574 for (lckd = lckd_start; lckd <= lckd_stop; ++lckd) {
3575 lck = dispc_freq / lckd;
3576
3577 pckd_start = max(DIV_ROUND_UP(lck, pck_max), pckd_hw_min);
3578 pckd_stop = min(lck / pck_min, pckd_hw_max);
3579
3580 for (pckd = pckd_start; pckd <= pckd_stop; ++pckd) {
3581 pck = lck / pckd;
3582
3583 /*
3584 * For OMAP2/3 the DISPC fclk is the same as LCD's logic
3585 * clock, which means we're configuring DISPC fclk here
3586 * also. Thus we need to use the calculated lck. For
3587 * OMAP4+ the DISPC fclk is a separate clock.
3588 */
3589 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV))
3590 fck = dispc_core_clk_rate(dispc);
3591 else
3592 fck = lck;
3593
3594 if (fck < pck * min_fck_per_pck)
3595 continue;
3596
3597 if (func(lckd, pckd, lck, pck, data))
3598 return true;
3599 }
3600 }
3601
3602 return false;
3603 }
3604
dispc_mgr_set_clock_div(struct dispc_device * dispc,enum omap_channel channel,const struct dispc_clock_info * cinfo)3605 void dispc_mgr_set_clock_div(struct dispc_device *dispc,
3606 enum omap_channel channel,
3607 const struct dispc_clock_info *cinfo)
3608 {
3609 DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
3610 DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
3611
3612 dispc_mgr_set_lcd_divisor(dispc, channel, cinfo->lck_div,
3613 cinfo->pck_div);
3614 }
3615
dispc_read_irqstatus(struct dispc_device * dispc)3616 u32 dispc_read_irqstatus(struct dispc_device *dispc)
3617 {
3618 return dispc_read_reg(dispc, DISPC_IRQSTATUS);
3619 }
3620
dispc_clear_irqstatus(struct dispc_device * dispc,u32 mask)3621 void dispc_clear_irqstatus(struct dispc_device *dispc, u32 mask)
3622 {
3623 dispc_write_reg(dispc, DISPC_IRQSTATUS, mask);
3624 }
3625
dispc_write_irqenable(struct dispc_device * dispc,u32 mask)3626 void dispc_write_irqenable(struct dispc_device *dispc, u32 mask)
3627 {
3628 u32 old_mask = dispc_read_reg(dispc, DISPC_IRQENABLE);
3629
3630 /* clear the irqstatus for newly enabled irqs */
3631 dispc_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
3632
3633 dispc_write_reg(dispc, DISPC_IRQENABLE, mask);
3634
3635 /* flush posted write */
3636 dispc_read_reg(dispc, DISPC_IRQENABLE);
3637 }
3638
dispc_enable_sidle(struct dispc_device * dispc)3639 void dispc_enable_sidle(struct dispc_device *dispc)
3640 {
3641 /* SIDLEMODE: smart idle */
3642 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 2, 4, 3);
3643 }
3644
dispc_disable_sidle(struct dispc_device * dispc)3645 void dispc_disable_sidle(struct dispc_device *dispc)
3646 {
3647 REG_FLD_MOD(dispc, DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
3648 }
3649
dispc_mgr_gamma_size(struct dispc_device * dispc,enum omap_channel channel)3650 u32 dispc_mgr_gamma_size(struct dispc_device *dispc,
3651 enum omap_channel channel)
3652 {
3653 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3654
3655 if (!dispc->feat->has_gamma_table)
3656 return 0;
3657
3658 return gdesc->len;
3659 }
3660
dispc_mgr_write_gamma_table(struct dispc_device * dispc,enum omap_channel channel)3661 static void dispc_mgr_write_gamma_table(struct dispc_device *dispc,
3662 enum omap_channel channel)
3663 {
3664 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3665 u32 *table = dispc->gamma_table[channel];
3666 unsigned int i;
3667
3668 DSSDBG("%s: channel %d\n", __func__, channel);
3669
3670 for (i = 0; i < gdesc->len; ++i) {
3671 u32 v = table[i];
3672
3673 if (gdesc->has_index)
3674 v |= i << 24;
3675 else if (i == 0)
3676 v |= 1 << 31;
3677
3678 dispc_write_reg(dispc, gdesc->reg, v);
3679 }
3680 }
3681
dispc_restore_gamma_tables(struct dispc_device * dispc)3682 static void dispc_restore_gamma_tables(struct dispc_device *dispc)
3683 {
3684 DSSDBG("%s()\n", __func__);
3685
3686 if (!dispc->feat->has_gamma_table)
3687 return;
3688
3689 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD);
3690
3691 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_DIGIT);
3692
3693 if (dispc_has_feature(dispc, FEAT_MGR_LCD2))
3694 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD2);
3695
3696 if (dispc_has_feature(dispc, FEAT_MGR_LCD3))
3697 dispc_mgr_write_gamma_table(dispc, OMAP_DSS_CHANNEL_LCD3);
3698 }
3699
3700 static const struct drm_color_lut dispc_mgr_gamma_default_lut[] = {
3701 { .red = 0, .green = 0, .blue = 0, },
3702 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
3703 };
3704
dispc_mgr_set_gamma(struct dispc_device * dispc,enum omap_channel channel,const struct drm_color_lut * lut,unsigned int length)3705 void dispc_mgr_set_gamma(struct dispc_device *dispc,
3706 enum omap_channel channel,
3707 const struct drm_color_lut *lut,
3708 unsigned int length)
3709 {
3710 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3711 u32 *table = dispc->gamma_table[channel];
3712 uint i;
3713
3714 DSSDBG("%s: channel %d, lut len %u, hw len %u\n", __func__,
3715 channel, length, gdesc->len);
3716
3717 if (!dispc->feat->has_gamma_table)
3718 return;
3719
3720 if (lut == NULL || length < 2) {
3721 lut = dispc_mgr_gamma_default_lut;
3722 length = ARRAY_SIZE(dispc_mgr_gamma_default_lut);
3723 }
3724
3725 for (i = 0; i < length - 1; ++i) {
3726 uint first = i * (gdesc->len - 1) / (length - 1);
3727 uint last = (i + 1) * (gdesc->len - 1) / (length - 1);
3728 uint w = last - first;
3729 u16 r, g, b;
3730 uint j;
3731
3732 if (w == 0)
3733 continue;
3734
3735 for (j = 0; j <= w; j++) {
3736 r = (lut[i].red * (w - j) + lut[i+1].red * j) / w;
3737 g = (lut[i].green * (w - j) + lut[i+1].green * j) / w;
3738 b = (lut[i].blue * (w - j) + lut[i+1].blue * j) / w;
3739
3740 r >>= 16 - gdesc->bits;
3741 g >>= 16 - gdesc->bits;
3742 b >>= 16 - gdesc->bits;
3743
3744 table[first + j] = (r << (gdesc->bits * 2)) |
3745 (g << gdesc->bits) | b;
3746 }
3747 }
3748
3749 if (dispc->is_enabled)
3750 dispc_mgr_write_gamma_table(dispc, channel);
3751 }
3752
dispc_init_gamma_tables(struct dispc_device * dispc)3753 static int dispc_init_gamma_tables(struct dispc_device *dispc)
3754 {
3755 int channel;
3756
3757 if (!dispc->feat->has_gamma_table)
3758 return 0;
3759
3760 for (channel = 0; channel < ARRAY_SIZE(dispc->gamma_table); channel++) {
3761 const struct dispc_gamma_desc *gdesc = &mgr_desc[channel].gamma;
3762 u32 *gt;
3763
3764 if (channel == OMAP_DSS_CHANNEL_LCD2 &&
3765 !dispc_has_feature(dispc, FEAT_MGR_LCD2))
3766 continue;
3767
3768 if (channel == OMAP_DSS_CHANNEL_LCD3 &&
3769 !dispc_has_feature(dispc, FEAT_MGR_LCD3))
3770 continue;
3771
3772 gt = devm_kmalloc_array(&dispc->pdev->dev, gdesc->len,
3773 sizeof(u32), GFP_KERNEL);
3774 if (!gt)
3775 return -ENOMEM;
3776
3777 dispc->gamma_table[channel] = gt;
3778
3779 dispc_mgr_set_gamma(dispc, channel, NULL, 0);
3780 }
3781 return 0;
3782 }
3783
_omap_dispc_initial_config(struct dispc_device * dispc)3784 static void _omap_dispc_initial_config(struct dispc_device *dispc)
3785 {
3786 u32 l;
3787
3788 /* Exclusively enable DISPC_CORE_CLK and set divider to 1 */
3789 if (dispc_has_feature(dispc, FEAT_CORE_CLK_DIV)) {
3790 l = dispc_read_reg(dispc, DISPC_DIVISOR);
3791 /* Use DISPC_DIVISOR.LCD, instead of DISPC_DIVISOR1.LCD */
3792 l = FLD_MOD(l, 1, 0, 0);
3793 l = FLD_MOD(l, 1, 23, 16);
3794 dispc_write_reg(dispc, DISPC_DIVISOR, l);
3795
3796 dispc->core_clk_rate = dispc_fclk_rate(dispc);
3797 }
3798
3799 /* Use gamma table mode, instead of palette mode */
3800 if (dispc->feat->has_gamma_table)
3801 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 3, 3);
3802
3803 /* For older DSS versions (FEAT_FUNCGATED) this enables
3804 * func-clock auto-gating. For newer versions
3805 * (dispc->feat->has_gamma_table) this enables tv-out gamma tables.
3806 */
3807 if (dispc_has_feature(dispc, FEAT_FUNCGATED) ||
3808 dispc->feat->has_gamma_table)
3809 REG_FLD_MOD(dispc, DISPC_CONFIG, 1, 9, 9);
3810
3811 dispc_set_loadmode(dispc, OMAP_DSS_LOAD_FRAME_ONLY);
3812
3813 dispc_init_fifos(dispc);
3814
3815 dispc_configure_burst_sizes(dispc);
3816
3817 dispc_ovl_enable_zorder_planes(dispc);
3818
3819 if (dispc->feat->mstandby_workaround)
3820 REG_FLD_MOD(dispc, DISPC_MSTANDBY_CTRL, 1, 0, 0);
3821
3822 if (dispc_has_feature(dispc, FEAT_MFLAG))
3823 dispc_init_mflag(dispc);
3824 }
3825
3826 static const enum dispc_feature_id omap2_dispc_features_list[] = {
3827 FEAT_LCDENABLEPOL,
3828 FEAT_LCDENABLESIGNAL,
3829 FEAT_PCKFREEENABLE,
3830 FEAT_FUNCGATED,
3831 FEAT_ROWREPEATENABLE,
3832 FEAT_RESIZECONF,
3833 };
3834
3835 static const enum dispc_feature_id omap3_dispc_features_list[] = {
3836 FEAT_LCDENABLEPOL,
3837 FEAT_LCDENABLESIGNAL,
3838 FEAT_PCKFREEENABLE,
3839 FEAT_FUNCGATED,
3840 FEAT_LINEBUFFERSPLIT,
3841 FEAT_ROWREPEATENABLE,
3842 FEAT_RESIZECONF,
3843 FEAT_CPR,
3844 FEAT_PRELOAD,
3845 FEAT_FIR_COEF_V,
3846 FEAT_ALPHA_FIXED_ZORDER,
3847 FEAT_FIFO_MERGE,
3848 FEAT_OMAP3_DSI_FIFO_BUG,
3849 };
3850
3851 static const enum dispc_feature_id am43xx_dispc_features_list[] = {
3852 FEAT_LCDENABLEPOL,
3853 FEAT_LCDENABLESIGNAL,
3854 FEAT_PCKFREEENABLE,
3855 FEAT_FUNCGATED,
3856 FEAT_LINEBUFFERSPLIT,
3857 FEAT_ROWREPEATENABLE,
3858 FEAT_RESIZECONF,
3859 FEAT_CPR,
3860 FEAT_PRELOAD,
3861 FEAT_FIR_COEF_V,
3862 FEAT_ALPHA_FIXED_ZORDER,
3863 FEAT_FIFO_MERGE,
3864 };
3865
3866 static const enum dispc_feature_id omap4_dispc_features_list[] = {
3867 FEAT_MGR_LCD2,
3868 FEAT_CORE_CLK_DIV,
3869 FEAT_HANDLE_UV_SEPARATE,
3870 FEAT_ATTR2,
3871 FEAT_CPR,
3872 FEAT_PRELOAD,
3873 FEAT_FIR_COEF_V,
3874 FEAT_ALPHA_FREE_ZORDER,
3875 FEAT_FIFO_MERGE,
3876 FEAT_BURST_2D,
3877 };
3878
3879 static const enum dispc_feature_id omap5_dispc_features_list[] = {
3880 FEAT_MGR_LCD2,
3881 FEAT_MGR_LCD3,
3882 FEAT_CORE_CLK_DIV,
3883 FEAT_HANDLE_UV_SEPARATE,
3884 FEAT_ATTR2,
3885 FEAT_CPR,
3886 FEAT_PRELOAD,
3887 FEAT_FIR_COEF_V,
3888 FEAT_ALPHA_FREE_ZORDER,
3889 FEAT_FIFO_MERGE,
3890 FEAT_BURST_2D,
3891 FEAT_MFLAG,
3892 };
3893
3894 static const struct dss_reg_field omap2_dispc_reg_fields[] = {
3895 [FEAT_REG_FIRHINC] = { 11, 0 },
3896 [FEAT_REG_FIRVINC] = { 27, 16 },
3897 [FEAT_REG_FIFOLOWTHRESHOLD] = { 8, 0 },
3898 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 24, 16 },
3899 [FEAT_REG_FIFOSIZE] = { 8, 0 },
3900 [FEAT_REG_HORIZONTALACCU] = { 9, 0 },
3901 [FEAT_REG_VERTICALACCU] = { 25, 16 },
3902 };
3903
3904 static const struct dss_reg_field omap3_dispc_reg_fields[] = {
3905 [FEAT_REG_FIRHINC] = { 12, 0 },
3906 [FEAT_REG_FIRVINC] = { 28, 16 },
3907 [FEAT_REG_FIFOLOWTHRESHOLD] = { 11, 0 },
3908 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 27, 16 },
3909 [FEAT_REG_FIFOSIZE] = { 10, 0 },
3910 [FEAT_REG_HORIZONTALACCU] = { 9, 0 },
3911 [FEAT_REG_VERTICALACCU] = { 25, 16 },
3912 };
3913
3914 static const struct dss_reg_field omap4_dispc_reg_fields[] = {
3915 [FEAT_REG_FIRHINC] = { 12, 0 },
3916 [FEAT_REG_FIRVINC] = { 28, 16 },
3917 [FEAT_REG_FIFOLOWTHRESHOLD] = { 15, 0 },
3918 [FEAT_REG_FIFOHIGHTHRESHOLD] = { 31, 16 },
3919 [FEAT_REG_FIFOSIZE] = { 15, 0 },
3920 [FEAT_REG_HORIZONTALACCU] = { 10, 0 },
3921 [FEAT_REG_VERTICALACCU] = { 26, 16 },
3922 };
3923
3924 static const enum omap_overlay_caps omap2_dispc_overlay_caps[] = {
3925 /* OMAP_DSS_GFX */
3926 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
3927
3928 /* OMAP_DSS_VIDEO1 */
3929 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
3930 OMAP_DSS_OVL_CAP_REPLICATION,
3931
3932 /* OMAP_DSS_VIDEO2 */
3933 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
3934 OMAP_DSS_OVL_CAP_REPLICATION,
3935 };
3936
3937 static const enum omap_overlay_caps omap3430_dispc_overlay_caps[] = {
3938 /* OMAP_DSS_GFX */
3939 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_POS |
3940 OMAP_DSS_OVL_CAP_REPLICATION,
3941
3942 /* OMAP_DSS_VIDEO1 */
3943 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
3944 OMAP_DSS_OVL_CAP_REPLICATION,
3945
3946 /* OMAP_DSS_VIDEO2 */
3947 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
3948 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
3949 };
3950
3951 static const enum omap_overlay_caps omap3630_dispc_overlay_caps[] = {
3952 /* OMAP_DSS_GFX */
3953 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
3954 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
3955
3956 /* OMAP_DSS_VIDEO1 */
3957 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_POS |
3958 OMAP_DSS_OVL_CAP_REPLICATION,
3959
3960 /* OMAP_DSS_VIDEO2 */
3961 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
3962 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_POS |
3963 OMAP_DSS_OVL_CAP_REPLICATION,
3964 };
3965
3966 static const enum omap_overlay_caps omap4_dispc_overlay_caps[] = {
3967 /* OMAP_DSS_GFX */
3968 OMAP_DSS_OVL_CAP_GLOBAL_ALPHA | OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA |
3969 OMAP_DSS_OVL_CAP_ZORDER | OMAP_DSS_OVL_CAP_POS |
3970 OMAP_DSS_OVL_CAP_REPLICATION,
3971
3972 /* OMAP_DSS_VIDEO1 */
3973 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
3974 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
3975 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
3976
3977 /* OMAP_DSS_VIDEO2 */
3978 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
3979 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
3980 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
3981
3982 /* OMAP_DSS_VIDEO3 */
3983 OMAP_DSS_OVL_CAP_SCALE | OMAP_DSS_OVL_CAP_GLOBAL_ALPHA |
3984 OMAP_DSS_OVL_CAP_PRE_MULT_ALPHA | OMAP_DSS_OVL_CAP_ZORDER |
3985 OMAP_DSS_OVL_CAP_POS | OMAP_DSS_OVL_CAP_REPLICATION,
3986 };
3987
3988 #define COLOR_ARRAY(arr...) (const u32[]) { arr, 0 }
3989
3990 static const u32 *omap2_dispc_supported_color_modes[] = {
3991
3992 /* OMAP_DSS_GFX */
3993 COLOR_ARRAY(
3994 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
3995 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888),
3996
3997 /* OMAP_DSS_VIDEO1 */
3998 COLOR_ARRAY(
3999 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4000 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4001 DRM_FORMAT_UYVY),
4002
4003 /* OMAP_DSS_VIDEO2 */
4004 COLOR_ARRAY(
4005 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4006 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4007 DRM_FORMAT_UYVY),
4008 };
4009
4010 static const u32 *omap3_dispc_supported_color_modes[] = {
4011 /* OMAP_DSS_GFX */
4012 COLOR_ARRAY(
4013 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4014 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4015 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4016 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4017
4018 /* OMAP_DSS_VIDEO1 */
4019 COLOR_ARRAY(
4020 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB888,
4021 DRM_FORMAT_RGBX4444, DRM_FORMAT_RGB565,
4022 DRM_FORMAT_YUYV, DRM_FORMAT_UYVY),
4023
4024 /* OMAP_DSS_VIDEO2 */
4025 COLOR_ARRAY(
4026 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4027 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4028 DRM_FORMAT_RGB888, DRM_FORMAT_YUYV,
4029 DRM_FORMAT_UYVY, DRM_FORMAT_ARGB8888,
4030 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888),
4031 };
4032
4033 static const u32 *omap4_dispc_supported_color_modes[] = {
4034 /* OMAP_DSS_GFX */
4035 COLOR_ARRAY(
4036 DRM_FORMAT_RGBX4444, DRM_FORMAT_ARGB4444,
4037 DRM_FORMAT_RGB565, DRM_FORMAT_XRGB8888,
4038 DRM_FORMAT_RGB888, DRM_FORMAT_ARGB8888,
4039 DRM_FORMAT_RGBA8888, DRM_FORMAT_RGBX8888,
4040 DRM_FORMAT_ARGB1555, DRM_FORMAT_XRGB4444,
4041 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB1555),
4042
4043 /* OMAP_DSS_VIDEO1 */
4044 COLOR_ARRAY(
4045 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4046 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4047 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4048 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4049 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4050 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4051 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4052 DRM_FORMAT_RGBX8888),
4053
4054 /* OMAP_DSS_VIDEO2 */
4055 COLOR_ARRAY(
4056 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4057 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4058 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4059 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4060 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4061 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4062 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4063 DRM_FORMAT_RGBX8888),
4064
4065 /* OMAP_DSS_VIDEO3 */
4066 COLOR_ARRAY(
4067 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4068 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4069 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4070 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4071 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4072 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4073 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4074 DRM_FORMAT_RGBX8888),
4075
4076 /* OMAP_DSS_WB */
4077 COLOR_ARRAY(
4078 DRM_FORMAT_RGB565, DRM_FORMAT_RGBX4444,
4079 DRM_FORMAT_YUYV, DRM_FORMAT_ARGB1555,
4080 DRM_FORMAT_RGBA8888, DRM_FORMAT_NV12,
4081 DRM_FORMAT_RGBA4444, DRM_FORMAT_XRGB8888,
4082 DRM_FORMAT_RGB888, DRM_FORMAT_UYVY,
4083 DRM_FORMAT_ARGB4444, DRM_FORMAT_XRGB1555,
4084 DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB4444,
4085 DRM_FORMAT_RGBX8888),
4086 };
4087
4088 static const u32 omap3_dispc_supported_scaler_color_modes[] = {
4089 DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_YUYV,
4090 DRM_FORMAT_UYVY,
4091 0,
4092 };
4093
4094 static const struct dispc_features omap24xx_dispc_feats = {
4095 .sw_start = 5,
4096 .fp_start = 15,
4097 .bp_start = 27,
4098 .sw_max = 64,
4099 .vp_max = 255,
4100 .hp_max = 256,
4101 .mgr_width_start = 10,
4102 .mgr_height_start = 26,
4103 .mgr_width_max = 2048,
4104 .mgr_height_max = 2048,
4105 .ovl_width_max = 2048,
4106 .ovl_height_max = 2048,
4107 .max_lcd_pclk = 66500000,
4108 .max_downscale = 2,
4109 /*
4110 * Assume the line width buffer to be 768 pixels as OMAP2 DISPC scaler
4111 * cannot scale an image width larger than 768.
4112 */
4113 .max_line_width = 768,
4114 .min_pcd = 2,
4115 .calc_scaling = dispc_ovl_calc_scaling_24xx,
4116 .calc_core_clk = calc_core_clk_24xx,
4117 .num_fifos = 3,
4118 .features = omap2_dispc_features_list,
4119 .num_features = ARRAY_SIZE(omap2_dispc_features_list),
4120 .reg_fields = omap2_dispc_reg_fields,
4121 .num_reg_fields = ARRAY_SIZE(omap2_dispc_reg_fields),
4122 .overlay_caps = omap2_dispc_overlay_caps,
4123 .supported_color_modes = omap2_dispc_supported_color_modes,
4124 .supported_scaler_color_modes = COLOR_ARRAY(DRM_FORMAT_XRGB8888),
4125 .num_mgrs = 2,
4126 .num_ovls = 3,
4127 .buffer_size_unit = 1,
4128 .burst_size_unit = 8,
4129 .no_framedone_tv = true,
4130 .set_max_preload = false,
4131 .last_pixel_inc_missing = true,
4132 };
4133
4134 static const struct dispc_features omap34xx_rev1_0_dispc_feats = {
4135 .sw_start = 5,
4136 .fp_start = 15,
4137 .bp_start = 27,
4138 .sw_max = 64,
4139 .vp_max = 255,
4140 .hp_max = 256,
4141 .mgr_width_start = 10,
4142 .mgr_height_start = 26,
4143 .mgr_width_max = 2048,
4144 .mgr_height_max = 2048,
4145 .ovl_width_max = 2048,
4146 .ovl_height_max = 2048,
4147 .max_lcd_pclk = 173000000,
4148 .max_tv_pclk = 59000000,
4149 .max_downscale = 4,
4150 .max_line_width = 1024,
4151 .min_pcd = 1,
4152 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4153 .calc_core_clk = calc_core_clk_34xx,
4154 .num_fifos = 3,
4155 .features = omap3_dispc_features_list,
4156 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4157 .reg_fields = omap3_dispc_reg_fields,
4158 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4159 .overlay_caps = omap3430_dispc_overlay_caps,
4160 .supported_color_modes = omap3_dispc_supported_color_modes,
4161 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4162 .num_mgrs = 2,
4163 .num_ovls = 3,
4164 .buffer_size_unit = 1,
4165 .burst_size_unit = 8,
4166 .no_framedone_tv = true,
4167 .set_max_preload = false,
4168 .last_pixel_inc_missing = true,
4169 };
4170
4171 static const struct dispc_features omap34xx_rev3_0_dispc_feats = {
4172 .sw_start = 7,
4173 .fp_start = 19,
4174 .bp_start = 31,
4175 .sw_max = 256,
4176 .vp_max = 4095,
4177 .hp_max = 4096,
4178 .mgr_width_start = 10,
4179 .mgr_height_start = 26,
4180 .mgr_width_max = 2048,
4181 .mgr_height_max = 2048,
4182 .ovl_width_max = 2048,
4183 .ovl_height_max = 2048,
4184 .max_lcd_pclk = 173000000,
4185 .max_tv_pclk = 59000000,
4186 .max_downscale = 4,
4187 .max_line_width = 1024,
4188 .min_pcd = 1,
4189 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4190 .calc_core_clk = calc_core_clk_34xx,
4191 .num_fifos = 3,
4192 .features = omap3_dispc_features_list,
4193 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4194 .reg_fields = omap3_dispc_reg_fields,
4195 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4196 .overlay_caps = omap3430_dispc_overlay_caps,
4197 .supported_color_modes = omap3_dispc_supported_color_modes,
4198 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4199 .num_mgrs = 2,
4200 .num_ovls = 3,
4201 .buffer_size_unit = 1,
4202 .burst_size_unit = 8,
4203 .no_framedone_tv = true,
4204 .set_max_preload = false,
4205 .last_pixel_inc_missing = true,
4206 };
4207
4208 static const struct dispc_features omap36xx_dispc_feats = {
4209 .sw_start = 7,
4210 .fp_start = 19,
4211 .bp_start = 31,
4212 .sw_max = 256,
4213 .vp_max = 4095,
4214 .hp_max = 4096,
4215 .mgr_width_start = 10,
4216 .mgr_height_start = 26,
4217 .mgr_width_max = 2048,
4218 .mgr_height_max = 2048,
4219 .ovl_width_max = 2048,
4220 .ovl_height_max = 2048,
4221 .max_lcd_pclk = 173000000,
4222 .max_tv_pclk = 59000000,
4223 .max_downscale = 4,
4224 .max_line_width = 1024,
4225 .min_pcd = 1,
4226 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4227 .calc_core_clk = calc_core_clk_34xx,
4228 .num_fifos = 3,
4229 .features = omap3_dispc_features_list,
4230 .num_features = ARRAY_SIZE(omap3_dispc_features_list),
4231 .reg_fields = omap3_dispc_reg_fields,
4232 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4233 .overlay_caps = omap3630_dispc_overlay_caps,
4234 .supported_color_modes = omap3_dispc_supported_color_modes,
4235 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4236 .num_mgrs = 2,
4237 .num_ovls = 3,
4238 .buffer_size_unit = 1,
4239 .burst_size_unit = 8,
4240 .no_framedone_tv = true,
4241 .set_max_preload = false,
4242 .last_pixel_inc_missing = true,
4243 };
4244
4245 static const struct dispc_features am43xx_dispc_feats = {
4246 .sw_start = 7,
4247 .fp_start = 19,
4248 .bp_start = 31,
4249 .sw_max = 256,
4250 .vp_max = 4095,
4251 .hp_max = 4096,
4252 .mgr_width_start = 10,
4253 .mgr_height_start = 26,
4254 .mgr_width_max = 2048,
4255 .mgr_height_max = 2048,
4256 .ovl_width_max = 2048,
4257 .ovl_height_max = 2048,
4258 .max_lcd_pclk = 173000000,
4259 .max_tv_pclk = 59000000,
4260 .max_downscale = 4,
4261 .max_line_width = 1024,
4262 .min_pcd = 1,
4263 .calc_scaling = dispc_ovl_calc_scaling_34xx,
4264 .calc_core_clk = calc_core_clk_34xx,
4265 .num_fifos = 3,
4266 .features = am43xx_dispc_features_list,
4267 .num_features = ARRAY_SIZE(am43xx_dispc_features_list),
4268 .reg_fields = omap3_dispc_reg_fields,
4269 .num_reg_fields = ARRAY_SIZE(omap3_dispc_reg_fields),
4270 .overlay_caps = omap3430_dispc_overlay_caps,
4271 .supported_color_modes = omap3_dispc_supported_color_modes,
4272 .supported_scaler_color_modes = omap3_dispc_supported_scaler_color_modes,
4273 .num_mgrs = 1,
4274 .num_ovls = 3,
4275 .buffer_size_unit = 1,
4276 .burst_size_unit = 8,
4277 .no_framedone_tv = true,
4278 .set_max_preload = false,
4279 .last_pixel_inc_missing = true,
4280 };
4281
4282 static const struct dispc_features omap44xx_dispc_feats = {
4283 .sw_start = 7,
4284 .fp_start = 19,
4285 .bp_start = 31,
4286 .sw_max = 256,
4287 .vp_max = 4095,
4288 .hp_max = 4096,
4289 .mgr_width_start = 10,
4290 .mgr_height_start = 26,
4291 .mgr_width_max = 2048,
4292 .mgr_height_max = 2048,
4293 .ovl_width_max = 2048,
4294 .ovl_height_max = 2048,
4295 .max_lcd_pclk = 170000000,
4296 .max_tv_pclk = 185625000,
4297 .max_downscale = 4,
4298 .max_line_width = 2048,
4299 .min_pcd = 1,
4300 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4301 .calc_core_clk = calc_core_clk_44xx,
4302 .num_fifos = 5,
4303 .features = omap4_dispc_features_list,
4304 .num_features = ARRAY_SIZE(omap4_dispc_features_list),
4305 .reg_fields = omap4_dispc_reg_fields,
4306 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
4307 .overlay_caps = omap4_dispc_overlay_caps,
4308 .supported_color_modes = omap4_dispc_supported_color_modes,
4309 .num_mgrs = 3,
4310 .num_ovls = 4,
4311 .buffer_size_unit = 16,
4312 .burst_size_unit = 16,
4313 .gfx_fifo_workaround = true,
4314 .set_max_preload = true,
4315 .supports_sync_align = true,
4316 .has_writeback = true,
4317 .supports_double_pixel = true,
4318 .reverse_ilace_field_order = true,
4319 .has_gamma_table = true,
4320 .has_gamma_i734_bug = true,
4321 };
4322
4323 static const struct dispc_features omap54xx_dispc_feats = {
4324 .sw_start = 7,
4325 .fp_start = 19,
4326 .bp_start = 31,
4327 .sw_max = 256,
4328 .vp_max = 4095,
4329 .hp_max = 4096,
4330 .mgr_width_start = 11,
4331 .mgr_height_start = 27,
4332 .mgr_width_max = 4096,
4333 .mgr_height_max = 4096,
4334 .ovl_width_max = 2048,
4335 .ovl_height_max = 4096,
4336 .max_lcd_pclk = 170000000,
4337 .max_tv_pclk = 192000000,
4338 .max_downscale = 4,
4339 .max_line_width = 2048,
4340 .min_pcd = 1,
4341 .calc_scaling = dispc_ovl_calc_scaling_44xx,
4342 .calc_core_clk = calc_core_clk_44xx,
4343 .num_fifos = 5,
4344 .features = omap5_dispc_features_list,
4345 .num_features = ARRAY_SIZE(omap5_dispc_features_list),
4346 .reg_fields = omap4_dispc_reg_fields,
4347 .num_reg_fields = ARRAY_SIZE(omap4_dispc_reg_fields),
4348 .overlay_caps = omap4_dispc_overlay_caps,
4349 .supported_color_modes = omap4_dispc_supported_color_modes,
4350 .num_mgrs = 4,
4351 .num_ovls = 4,
4352 .buffer_size_unit = 16,
4353 .burst_size_unit = 16,
4354 .gfx_fifo_workaround = true,
4355 .mstandby_workaround = true,
4356 .set_max_preload = true,
4357 .supports_sync_align = true,
4358 .has_writeback = true,
4359 .supports_double_pixel = true,
4360 .reverse_ilace_field_order = true,
4361 .has_gamma_table = true,
4362 .has_gamma_i734_bug = true,
4363 };
4364
dispc_irq_handler(int irq,void * arg)4365 static irqreturn_t dispc_irq_handler(int irq, void *arg)
4366 {
4367 struct dispc_device *dispc = arg;
4368
4369 if (!dispc->is_enabled)
4370 return IRQ_NONE;
4371
4372 return dispc->user_handler(irq, dispc->user_data);
4373 }
4374
dispc_request_irq(struct dispc_device * dispc,irq_handler_t handler,void * dev_id)4375 int dispc_request_irq(struct dispc_device *dispc, irq_handler_t handler,
4376 void *dev_id)
4377 {
4378 int r;
4379
4380 if (dispc->user_handler != NULL)
4381 return -EBUSY;
4382
4383 dispc->user_handler = handler;
4384 dispc->user_data = dev_id;
4385
4386 /* ensure the dispc_irq_handler sees the values above */
4387 smp_wmb();
4388
4389 r = devm_request_irq(&dispc->pdev->dev, dispc->irq, dispc_irq_handler,
4390 IRQF_SHARED, "OMAP DISPC", dispc);
4391 if (r) {
4392 dispc->user_handler = NULL;
4393 dispc->user_data = NULL;
4394 }
4395
4396 return r;
4397 }
4398
dispc_free_irq(struct dispc_device * dispc,void * dev_id)4399 void dispc_free_irq(struct dispc_device *dispc, void *dev_id)
4400 {
4401 devm_free_irq(&dispc->pdev->dev, dispc->irq, dispc);
4402
4403 dispc->user_handler = NULL;
4404 dispc->user_data = NULL;
4405 }
4406
dispc_get_memory_bandwidth_limit(struct dispc_device * dispc)4407 u32 dispc_get_memory_bandwidth_limit(struct dispc_device *dispc)
4408 {
4409 u32 limit = 0;
4410
4411 /* Optional maximum memory bandwidth */
4412 of_property_read_u32(dispc->pdev->dev.of_node, "max-memory-bandwidth",
4413 &limit);
4414
4415 return limit;
4416 }
4417
4418 /*
4419 * Workaround for errata i734 in DSS dispc
4420 * - LCD1 Gamma Correction Is Not Working When GFX Pipe Is Disabled
4421 *
4422 * For gamma tables to work on LCD1 the GFX plane has to be used at
4423 * least once after DSS HW has come out of reset. The workaround
4424 * sets up a minimal LCD setup with GFX plane and waits for one
4425 * vertical sync irq before disabling the setup and continuing with
4426 * the context restore. The physical outputs are gated during the
4427 * operation. This workaround requires that gamma table's LOADMODE
4428 * is set to 0x2 in DISPC_CONTROL1 register.
4429 *
4430 * For details see:
4431 * OMAP543x Multimedia Device Silicon Revision 2.0 Silicon Errata
4432 * Literature Number: SWPZ037E
4433 * Or some other relevant errata document for the DSS IP version.
4434 */
4435
4436 static const struct dispc_errata_i734_data {
4437 struct videomode vm;
4438 struct omap_overlay_info ovli;
4439 struct omap_overlay_manager_info mgri;
4440 struct dss_lcd_mgr_config lcd_conf;
4441 } i734 = {
4442 .vm = {
4443 .hactive = 8, .vactive = 1,
4444 .pixelclock = 16000000,
4445 .hsync_len = 8, .hfront_porch = 4, .hback_porch = 4,
4446 .vsync_len = 1, .vfront_porch = 1, .vback_porch = 1,
4447
4448 .flags = DISPLAY_FLAGS_HSYNC_LOW | DISPLAY_FLAGS_VSYNC_LOW |
4449 DISPLAY_FLAGS_DE_HIGH | DISPLAY_FLAGS_SYNC_POSEDGE |
4450 DISPLAY_FLAGS_PIXDATA_POSEDGE,
4451 },
4452 .ovli = {
4453 .screen_width = 1,
4454 .width = 1, .height = 1,
4455 .fourcc = DRM_FORMAT_XRGB8888,
4456 .rotation = DRM_MODE_ROTATE_0,
4457 .rotation_type = OMAP_DSS_ROT_NONE,
4458 .pos_x = 0, .pos_y = 0,
4459 .out_width = 0, .out_height = 0,
4460 .global_alpha = 0xff,
4461 .pre_mult_alpha = 0,
4462 .zorder = 0,
4463 },
4464 .mgri = {
4465 .default_color = 0,
4466 .trans_enabled = false,
4467 .partial_alpha_enabled = false,
4468 .cpr_enable = false,
4469 },
4470 .lcd_conf = {
4471 .io_pad_mode = DSS_IO_PAD_MODE_BYPASS,
4472 .stallmode = false,
4473 .fifohandcheck = false,
4474 .clock_info = {
4475 .lck_div = 1,
4476 .pck_div = 2,
4477 },
4478 .video_port_width = 24,
4479 .lcden_sig_polarity = 0,
4480 },
4481 };
4482
4483 static struct i734_buf {
4484 size_t size;
4485 dma_addr_t paddr;
4486 void *vaddr;
4487 } i734_buf;
4488
dispc_errata_i734_wa_init(struct dispc_device * dispc)4489 static int dispc_errata_i734_wa_init(struct dispc_device *dispc)
4490 {
4491 if (!dispc->feat->has_gamma_i734_bug)
4492 return 0;
4493
4494 i734_buf.size = i734.ovli.width * i734.ovli.height *
4495 color_mode_to_bpp(i734.ovli.fourcc) / 8;
4496
4497 i734_buf.vaddr = dma_alloc_wc(&dispc->pdev->dev, i734_buf.size,
4498 &i734_buf.paddr, GFP_KERNEL);
4499 if (!i734_buf.vaddr) {
4500 dev_err(&dispc->pdev->dev, "%s: dma_alloc_wc failed\n",
4501 __func__);
4502 return -ENOMEM;
4503 }
4504
4505 return 0;
4506 }
4507
dispc_errata_i734_wa_fini(struct dispc_device * dispc)4508 static void dispc_errata_i734_wa_fini(struct dispc_device *dispc)
4509 {
4510 if (!dispc->feat->has_gamma_i734_bug)
4511 return;
4512
4513 dma_free_wc(&dispc->pdev->dev, i734_buf.size, i734_buf.vaddr,
4514 i734_buf.paddr);
4515 }
4516
dispc_errata_i734_wa(struct dispc_device * dispc)4517 static void dispc_errata_i734_wa(struct dispc_device *dispc)
4518 {
4519 u32 framedone_irq = dispc_mgr_get_framedone_irq(dispc,
4520 OMAP_DSS_CHANNEL_LCD);
4521 struct omap_overlay_info ovli;
4522 struct dss_lcd_mgr_config lcd_conf;
4523 u32 gatestate;
4524 unsigned int count;
4525
4526 if (!dispc->feat->has_gamma_i734_bug)
4527 return;
4528
4529 gatestate = REG_GET(dispc, DISPC_CONFIG, 8, 4);
4530
4531 ovli = i734.ovli;
4532 ovli.paddr = i734_buf.paddr;
4533 lcd_conf = i734.lcd_conf;
4534
4535 /* Gate all LCD1 outputs */
4536 REG_FLD_MOD(dispc, DISPC_CONFIG, 0x1f, 8, 4);
4537
4538 /* Setup and enable GFX plane */
4539 dispc_ovl_setup(dispc, OMAP_DSS_GFX, &ovli, &i734.vm, false,
4540 OMAP_DSS_CHANNEL_LCD);
4541 dispc_ovl_enable(dispc, OMAP_DSS_GFX, true);
4542
4543 /* Set up and enable display manager for LCD1 */
4544 dispc_mgr_setup(dispc, OMAP_DSS_CHANNEL_LCD, &i734.mgri);
4545 dispc_calc_clock_rates(dispc, dss_get_dispc_clk_rate(dispc->dss),
4546 &lcd_conf.clock_info);
4547 dispc_mgr_set_lcd_config(dispc, OMAP_DSS_CHANNEL_LCD, &lcd_conf);
4548 dispc_mgr_set_timings(dispc, OMAP_DSS_CHANNEL_LCD, &i734.vm);
4549
4550 dispc_clear_irqstatus(dispc, framedone_irq);
4551
4552 /* Enable and shut the channel to produce just one frame */
4553 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, true);
4554 dispc_mgr_enable(dispc, OMAP_DSS_CHANNEL_LCD, false);
4555
4556 /* Busy wait for framedone. We can't fiddle with irq handlers
4557 * in PM resume. Typically the loop runs less than 5 times and
4558 * waits less than a micro second.
4559 */
4560 count = 0;
4561 while (!(dispc_read_irqstatus(dispc) & framedone_irq)) {
4562 if (count++ > 10000) {
4563 dev_err(&dispc->pdev->dev, "%s: framedone timeout\n",
4564 __func__);
4565 break;
4566 }
4567 }
4568 dispc_ovl_enable(dispc, OMAP_DSS_GFX, false);
4569
4570 /* Clear all irq bits before continuing */
4571 dispc_clear_irqstatus(dispc, 0xffffffff);
4572
4573 /* Restore the original state to LCD1 output gates */
4574 REG_FLD_MOD(dispc, DISPC_CONFIG, gatestate, 8, 4);
4575 }
4576
4577 /* DISPC HW IP initialisation */
4578 static const struct of_device_id dispc_of_match[] = {
4579 { .compatible = "ti,omap2-dispc", .data = &omap24xx_dispc_feats },
4580 { .compatible = "ti,omap3-dispc", .data = &omap36xx_dispc_feats },
4581 { .compatible = "ti,omap4-dispc", .data = &omap44xx_dispc_feats },
4582 { .compatible = "ti,omap5-dispc", .data = &omap54xx_dispc_feats },
4583 { .compatible = "ti,dra7-dispc", .data = &omap54xx_dispc_feats },
4584 {},
4585 };
4586
4587 static const struct soc_device_attribute dispc_soc_devices[] = {
4588 { .machine = "OMAP3[45]*",
4589 .revision = "ES[12].?", .data = &omap34xx_rev1_0_dispc_feats },
4590 { .machine = "OMAP3[45]*", .data = &omap34xx_rev3_0_dispc_feats },
4591 { .machine = "AM35*", .data = &omap34xx_rev3_0_dispc_feats },
4592 { .machine = "AM43*", .data = &am43xx_dispc_feats },
4593 { /* sentinel */ }
4594 };
4595
dispc_bind(struct device * dev,struct device * master,void * data)4596 static int dispc_bind(struct device *dev, struct device *master, void *data)
4597 {
4598 struct platform_device *pdev = to_platform_device(dev);
4599 const struct soc_device_attribute *soc;
4600 struct dss_device *dss = dss_get_device(master);
4601 struct dispc_device *dispc;
4602 u32 rev;
4603 int r = 0;
4604 struct device_node *np = pdev->dev.of_node;
4605
4606 dispc = kzalloc(sizeof(*dispc), GFP_KERNEL);
4607 if (!dispc)
4608 return -ENOMEM;
4609
4610 dispc->pdev = pdev;
4611 platform_set_drvdata(pdev, dispc);
4612 dispc->dss = dss;
4613
4614 /*
4615 * The OMAP3-based models can't be told apart using the compatible
4616 * string, use SoC device matching.
4617 */
4618 soc = soc_device_match(dispc_soc_devices);
4619 if (soc)
4620 dispc->feat = soc->data;
4621 else
4622 dispc->feat = device_get_match_data(&pdev->dev);
4623
4624 r = dispc_errata_i734_wa_init(dispc);
4625 if (r)
4626 goto err_free;
4627
4628 dispc->base = devm_platform_ioremap_resource(pdev, 0);
4629 if (IS_ERR(dispc->base)) {
4630 r = PTR_ERR(dispc->base);
4631 goto err_free;
4632 }
4633
4634 dispc->irq = platform_get_irq(dispc->pdev, 0);
4635 if (dispc->irq < 0) {
4636 DSSERR("platform_get_irq failed\n");
4637 r = -ENODEV;
4638 goto err_free;
4639 }
4640
4641 if (np && of_property_read_bool(np, "syscon-pol")) {
4642 dispc->syscon_pol = syscon_regmap_lookup_by_phandle(np, "syscon-pol");
4643 if (IS_ERR(dispc->syscon_pol)) {
4644 dev_err(&pdev->dev, "failed to get syscon-pol regmap\n");
4645 r = PTR_ERR(dispc->syscon_pol);
4646 goto err_free;
4647 }
4648
4649 if (of_property_read_u32_index(np, "syscon-pol", 1,
4650 &dispc->syscon_pol_offset)) {
4651 dev_err(&pdev->dev, "failed to get syscon-pol offset\n");
4652 r = -EINVAL;
4653 goto err_free;
4654 }
4655 }
4656
4657 r = dispc_init_gamma_tables(dispc);
4658 if (r)
4659 goto err_free;
4660
4661 pm_runtime_enable(&pdev->dev);
4662
4663 r = dispc_runtime_get(dispc);
4664 if (r)
4665 goto err_runtime_get;
4666
4667 _omap_dispc_initial_config(dispc);
4668
4669 rev = dispc_read_reg(dispc, DISPC_REVISION);
4670 dev_dbg(&pdev->dev, "OMAP DISPC rev %d.%d\n",
4671 FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
4672
4673 dispc_runtime_put(dispc);
4674
4675 dss->dispc = dispc;
4676
4677 dispc->debugfs = dss_debugfs_create_file(dss, "dispc", dispc_dump_regs,
4678 dispc);
4679
4680 return 0;
4681
4682 err_runtime_get:
4683 pm_runtime_disable(&pdev->dev);
4684 err_free:
4685 kfree(dispc);
4686 return r;
4687 }
4688
dispc_unbind(struct device * dev,struct device * master,void * data)4689 static void dispc_unbind(struct device *dev, struct device *master, void *data)
4690 {
4691 struct dispc_device *dispc = dev_get_drvdata(dev);
4692 struct dss_device *dss = dispc->dss;
4693
4694 dss_debugfs_remove_file(dispc->debugfs);
4695
4696 dss->dispc = NULL;
4697
4698 pm_runtime_disable(dev);
4699
4700 dispc_errata_i734_wa_fini(dispc);
4701
4702 kfree(dispc);
4703 }
4704
4705 static const struct component_ops dispc_component_ops = {
4706 .bind = dispc_bind,
4707 .unbind = dispc_unbind,
4708 };
4709
dispc_probe(struct platform_device * pdev)4710 static int dispc_probe(struct platform_device *pdev)
4711 {
4712 return component_add(&pdev->dev, &dispc_component_ops);
4713 }
4714
dispc_remove(struct platform_device * pdev)4715 static void dispc_remove(struct platform_device *pdev)
4716 {
4717 component_del(&pdev->dev, &dispc_component_ops);
4718 }
4719
dispc_runtime_suspend(struct device * dev)4720 static __maybe_unused int dispc_runtime_suspend(struct device *dev)
4721 {
4722 struct dispc_device *dispc = dev_get_drvdata(dev);
4723
4724 dispc->is_enabled = false;
4725 /* ensure the dispc_irq_handler sees the is_enabled value */
4726 smp_wmb();
4727 /* wait for current handler to finish before turning the DISPC off */
4728 synchronize_irq(dispc->irq);
4729
4730 dispc_save_context(dispc);
4731
4732 return 0;
4733 }
4734
dispc_runtime_resume(struct device * dev)4735 static __maybe_unused int dispc_runtime_resume(struct device *dev)
4736 {
4737 struct dispc_device *dispc = dev_get_drvdata(dev);
4738
4739 /*
4740 * The reset value for load mode is 0 (OMAP_DSS_LOAD_CLUT_AND_FRAME)
4741 * but we always initialize it to 2 (OMAP_DSS_LOAD_FRAME_ONLY) in
4742 * _omap_dispc_initial_config(). We can thus use it to detect if
4743 * we have lost register context.
4744 */
4745 if (REG_GET(dispc, DISPC_CONFIG, 2, 1) != OMAP_DSS_LOAD_FRAME_ONLY) {
4746 _omap_dispc_initial_config(dispc);
4747
4748 dispc_errata_i734_wa(dispc);
4749
4750 dispc_restore_context(dispc);
4751
4752 dispc_restore_gamma_tables(dispc);
4753 }
4754
4755 dispc->is_enabled = true;
4756 /* ensure the dispc_irq_handler sees the is_enabled value */
4757 smp_wmb();
4758
4759 return 0;
4760 }
4761
4762 static const struct dev_pm_ops dispc_pm_ops = {
4763 SET_RUNTIME_PM_OPS(dispc_runtime_suspend, dispc_runtime_resume, NULL)
4764 SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
4765 };
4766
4767 struct platform_driver omap_dispchw_driver = {
4768 .probe = dispc_probe,
4769 .remove = dispc_remove,
4770 .driver = {
4771 .name = "omapdss_dispc",
4772 .pm = &dispc_pm_ops,
4773 .of_match_table = dispc_of_match,
4774 .suppress_bind_attrs = true,
4775 },
4776 };
4777