1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/sysmacros.h>
30 #include <sys/signal.h>
31 #include <sys/stack.h>
32 #include <sys/pcb.h>
33 #include <sys/user.h>
34 #include <sys/systm.h>
35 #include <sys/sysinfo.h>
36 #include <sys/errno.h>
37 #include <sys/cmn_err.h>
38 #include <sys/cred.h>
39 #include <sys/resource.h>
40 #include <sys/task.h>
41 #include <sys/project.h>
42 #include <sys/proc.h>
43 #include <sys/debug.h>
44 #include <sys/disp.h>
45 #include <sys/class.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kp.h>
48 #include <sys/machlock.h>
49 #include <sys/kmem.h>
50 #include <sys/varargs.h>
51 #include <sys/turnstile.h>
52 #include <sys/poll.h>
53 #include <sys/vtrace.h>
54 #include <sys/callb.h>
55 #include <c2/audit.h>
56 #include <sys/tnf.h>
57 #include <sys/sobject.h>
58 #include <sys/cpupart.h>
59 #include <sys/pset.h>
60 #include <sys/door.h>
61 #include <sys/spl.h>
62 #include <sys/copyops.h>
63 #include <sys/rctl.h>
64 #include <sys/brand.h>
65 #include <sys/pool.h>
66 #include <sys/zone.h>
67 #include <sys/tsol/label.h>
68 #include <sys/tsol/tndb.h>
69 #include <sys/cpc_impl.h>
70 #include <sys/sdt.h>
71 #include <sys/reboot.h>
72 #include <sys/kdi.h>
73 #include <sys/schedctl.h>
74 #include <sys/waitq.h>
75 #include <sys/cpucaps.h>
76 #include <sys/kiconv.h>
77
78 struct kmem_cache *thread_cache; /* cache of free threads */
79 struct kmem_cache *lwp_cache; /* cache of free lwps */
80 struct kmem_cache *turnstile_cache; /* cache of free turnstiles */
81
82 /*
83 * allthreads is only for use by kmem_readers. All kernel loops can use
84 * the current thread as a start/end point.
85 */
86 kthread_t *allthreads = &t0; /* circular list of all threads */
87
88 static kcondvar_t reaper_cv; /* synchronization var */
89 kthread_t *thread_deathrow; /* circular list of reapable threads */
90 kthread_t *lwp_deathrow; /* circular list of reapable threads */
91 kmutex_t reaplock; /* protects lwp and thread deathrows */
92 int thread_reapcnt = 0; /* number of threads on deathrow */
93 int lwp_reapcnt = 0; /* number of lwps on deathrow */
94 int reaplimit = 16; /* delay reaping until reaplimit */
95
96 thread_free_lock_t *thread_free_lock;
97 /* protects tick thread from reaper */
98
99 extern int nthread;
100
101 /* System Scheduling classes. */
102 id_t syscid; /* system scheduling class ID */
103 id_t sysdccid = CLASS_UNUSED; /* reset when SDC loads */
104
105 void *segkp_thread; /* cookie for segkp pool */
106
107 int lwp_cache_sz = 32;
108 int t_cache_sz = 8;
109 static kt_did_t next_t_id = 1;
110
111 /* Default mode for thread binding to CPUs and processor sets */
112 int default_binding_mode = TB_ALLHARD;
113
114 /*
115 * Min/Max stack sizes for stack size parameters
116 */
117 #define MAX_STKSIZE (32 * DEFAULTSTKSZ)
118 #define MIN_STKSIZE DEFAULTSTKSZ
119
120 /*
121 * default_stksize overrides lwp_default_stksize if it is set.
122 */
123 int default_stksize;
124 int lwp_default_stksize;
125
126 static zone_key_t zone_thread_key;
127
128 unsigned int kmem_stackinfo; /* stackinfo feature on-off */
129 kmem_stkinfo_t *kmem_stkinfo_log; /* stackinfo circular log */
130 static kmutex_t kmem_stkinfo_lock; /* protects kmem_stkinfo_log */
131
132 /*
133 * forward declarations for internal thread specific data (tsd)
134 */
135 static void *tsd_realloc(void *, size_t, size_t);
136
137 void thread_reaper(void);
138
139 /* forward declarations for stackinfo feature */
140 static void stkinfo_begin(kthread_t *);
141 static void stkinfo_end(kthread_t *);
142 static size_t stkinfo_percent(caddr_t, caddr_t, caddr_t);
143
144 /*ARGSUSED*/
145 static int
turnstile_constructor(void * buf,void * cdrarg,int kmflags)146 turnstile_constructor(void *buf, void *cdrarg, int kmflags)
147 {
148 bzero(buf, sizeof (turnstile_t));
149 return (0);
150 }
151
152 /*ARGSUSED*/
153 static void
turnstile_destructor(void * buf,void * cdrarg)154 turnstile_destructor(void *buf, void *cdrarg)
155 {
156 turnstile_t *ts = buf;
157
158 ASSERT(ts->ts_free == NULL);
159 ASSERT(ts->ts_waiters == 0);
160 ASSERT(ts->ts_inheritor == NULL);
161 ASSERT(ts->ts_sleepq[0].sq_first == NULL);
162 ASSERT(ts->ts_sleepq[1].sq_first == NULL);
163 }
164
165 void
thread_init(void)166 thread_init(void)
167 {
168 kthread_t *tp;
169 extern char sys_name[];
170 extern void idle();
171 struct cpu *cpu = CPU;
172 int i;
173 kmutex_t *lp;
174
175 mutex_init(&reaplock, NULL, MUTEX_SPIN, (void *)ipltospl(DISP_LEVEL));
176 thread_free_lock =
177 kmem_alloc(sizeof (thread_free_lock_t) * THREAD_FREE_NUM, KM_SLEEP);
178 for (i = 0; i < THREAD_FREE_NUM; i++) {
179 lp = &thread_free_lock[i].tf_lock;
180 mutex_init(lp, NULL, MUTEX_DEFAULT, NULL);
181 }
182
183 #if defined(__i386) || defined(__amd64)
184 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
185 PTR24_ALIGN, NULL, NULL, NULL, NULL, NULL, 0);
186
187 /*
188 * "struct _klwp" includes a "struct pcb", which includes a
189 * "struct fpu", which needs to be 64-byte aligned on amd64
190 * (and even on i386) for xsave/xrstor.
191 */
192 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
193 64, NULL, NULL, NULL, NULL, NULL, 0);
194 #else
195 /*
196 * Allocate thread structures from static_arena. This prevents
197 * issues where a thread tries to relocate its own thread
198 * structure and touches it after the mapping has been suspended.
199 */
200 thread_cache = kmem_cache_create("thread_cache", sizeof (kthread_t),
201 PTR24_ALIGN, NULL, NULL, NULL, NULL, static_arena, 0);
202
203 lwp_stk_cache_init();
204
205 lwp_cache = kmem_cache_create("lwp_cache", sizeof (klwp_t),
206 0, NULL, NULL, NULL, NULL, NULL, 0);
207 #endif
208
209 turnstile_cache = kmem_cache_create("turnstile_cache",
210 sizeof (turnstile_t), 0,
211 turnstile_constructor, turnstile_destructor, NULL, NULL, NULL, 0);
212
213 label_init();
214 cred_init();
215
216 /*
217 * Initialize various resource management facilities.
218 */
219 rctl_init();
220 cpucaps_init();
221 /*
222 * Zone_init() should be called before project_init() so that project ID
223 * for the first project is initialized correctly.
224 */
225 zone_init();
226 project_init();
227 brand_init();
228 kiconv_init();
229 task_init();
230 tcache_init();
231 pool_init();
232
233 curthread->t_ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
234
235 /*
236 * Originally, we had two parameters to set default stack
237 * size: one for lwp's (lwp_default_stksize), and one for
238 * kernel-only threads (DEFAULTSTKSZ, a.k.a. _defaultstksz).
239 * Now we have a third parameter that overrides both if it is
240 * set to a legal stack size, called default_stksize.
241 */
242
243 if (default_stksize == 0) {
244 default_stksize = DEFAULTSTKSZ;
245 } else if (default_stksize % PAGESIZE != 0 ||
246 default_stksize > MAX_STKSIZE ||
247 default_stksize < MIN_STKSIZE) {
248 cmn_err(CE_WARN, "Illegal stack size. Using %d",
249 (int)DEFAULTSTKSZ);
250 default_stksize = DEFAULTSTKSZ;
251 } else {
252 lwp_default_stksize = default_stksize;
253 }
254
255 if (lwp_default_stksize == 0) {
256 lwp_default_stksize = default_stksize;
257 } else if (lwp_default_stksize % PAGESIZE != 0 ||
258 lwp_default_stksize > MAX_STKSIZE ||
259 lwp_default_stksize < MIN_STKSIZE) {
260 cmn_err(CE_WARN, "Illegal stack size. Using %d",
261 default_stksize);
262 lwp_default_stksize = default_stksize;
263 }
264
265 segkp_lwp = segkp_cache_init(segkp, lwp_cache_sz,
266 lwp_default_stksize,
267 (KPD_NOWAIT | KPD_HASREDZONE | KPD_LOCKED));
268
269 segkp_thread = segkp_cache_init(segkp, t_cache_sz,
270 default_stksize, KPD_HASREDZONE | KPD_LOCKED | KPD_NO_ANON);
271
272 (void) getcid(sys_name, &syscid);
273 curthread->t_cid = syscid; /* current thread is t0 */
274
275 /*
276 * Set up the first CPU's idle thread.
277 * It runs whenever the CPU has nothing worthwhile to do.
278 */
279 tp = thread_create(NULL, 0, idle, NULL, 0, &p0, TS_STOPPED, -1);
280 cpu->cpu_idle_thread = tp;
281 tp->t_preempt = 1;
282 tp->t_disp_queue = cpu->cpu_disp;
283 ASSERT(tp->t_disp_queue != NULL);
284 tp->t_bound_cpu = cpu;
285 tp->t_affinitycnt = 1;
286
287 /*
288 * Registering a thread in the callback table is usually
289 * done in the initialization code of the thread. In this
290 * case, we do it right after thread creation to avoid
291 * blocking idle thread while registering itself. It also
292 * avoids the possibility of reregistration in case a CPU
293 * restarts its idle thread.
294 */
295 CALLB_CPR_INIT_SAFE(tp, "idle");
296
297 /*
298 * Create the thread_reaper daemon. From this point on, exited
299 * threads will get reaped.
300 */
301 (void) thread_create(NULL, 0, (void (*)())thread_reaper,
302 NULL, 0, &p0, TS_RUN, minclsyspri);
303
304 /*
305 * Finish initializing the kernel memory allocator now that
306 * thread_create() is available.
307 */
308 kmem_thread_init();
309
310 if (boothowto & RB_DEBUG)
311 kdi_dvec_thravail();
312 }
313
314 /*
315 * Create a thread.
316 *
317 * thread_create() blocks for memory if necessary. It never fails.
318 *
319 * If stk is NULL, the thread is created at the base of the stack
320 * and cannot be swapped.
321 */
322 kthread_t *
thread_create(caddr_t stk,size_t stksize,void (* proc)(),void * arg,size_t len,proc_t * pp,int state,pri_t pri)323 thread_create(
324 caddr_t stk,
325 size_t stksize,
326 void (*proc)(),
327 void *arg,
328 size_t len,
329 proc_t *pp,
330 int state,
331 pri_t pri)
332 {
333 kthread_t *t;
334 extern struct classfuncs sys_classfuncs;
335 turnstile_t *ts;
336
337 /*
338 * Every thread keeps a turnstile around in case it needs to block.
339 * The only reason the turnstile is not simply part of the thread
340 * structure is that we may have to break the association whenever
341 * more than one thread blocks on a given synchronization object.
342 * From a memory-management standpoint, turnstiles are like the
343 * "attached mblks" that hang off dblks in the streams allocator.
344 */
345 ts = kmem_cache_alloc(turnstile_cache, KM_SLEEP);
346
347 if (stk == NULL) {
348 /*
349 * alloc both thread and stack in segkp chunk
350 */
351
352 if (stksize < default_stksize)
353 stksize = default_stksize;
354
355 if (stksize == default_stksize) {
356 stk = (caddr_t)segkp_cache_get(segkp_thread);
357 } else {
358 stksize = roundup(stksize, PAGESIZE);
359 stk = (caddr_t)segkp_get(segkp, stksize,
360 (KPD_HASREDZONE | KPD_NO_ANON | KPD_LOCKED));
361 }
362
363 ASSERT(stk != NULL);
364
365 /*
366 * The machine-dependent mutex code may require that
367 * thread pointers (since they may be used for mutex owner
368 * fields) have certain alignment requirements.
369 * PTR24_ALIGN is the size of the alignment quanta.
370 * XXX - assumes stack grows toward low addresses.
371 */
372 if (stksize <= sizeof (kthread_t) + PTR24_ALIGN)
373 cmn_err(CE_PANIC, "thread_create: proposed stack size"
374 " too small to hold thread.");
375 #ifdef STACK_GROWTH_DOWN
376 stksize -= SA(sizeof (kthread_t) + PTR24_ALIGN - 1);
377 stksize &= -PTR24_ALIGN; /* make thread aligned */
378 t = (kthread_t *)(stk + stksize);
379 bzero(t, sizeof (kthread_t));
380 if (audit_active)
381 audit_thread_create(t);
382 t->t_stk = stk + stksize;
383 t->t_stkbase = stk;
384 #else /* stack grows to larger addresses */
385 stksize -= SA(sizeof (kthread_t));
386 t = (kthread_t *)(stk);
387 bzero(t, sizeof (kthread_t));
388 t->t_stk = stk + sizeof (kthread_t);
389 t->t_stkbase = stk + stksize + sizeof (kthread_t);
390 #endif /* STACK_GROWTH_DOWN */
391 t->t_flag |= T_TALLOCSTK;
392 t->t_swap = stk;
393 } else {
394 t = kmem_cache_alloc(thread_cache, KM_SLEEP);
395 bzero(t, sizeof (kthread_t));
396 ASSERT(((uintptr_t)t & (PTR24_ALIGN - 1)) == 0);
397 if (audit_active)
398 audit_thread_create(t);
399 /*
400 * Initialize t_stk to the kernel stack pointer to use
401 * upon entry to the kernel
402 */
403 #ifdef STACK_GROWTH_DOWN
404 t->t_stk = stk + stksize;
405 t->t_stkbase = stk;
406 #else
407 t->t_stk = stk; /* 3b2-like */
408 t->t_stkbase = stk + stksize;
409 #endif /* STACK_GROWTH_DOWN */
410 }
411
412 if (kmem_stackinfo != 0) {
413 stkinfo_begin(t);
414 }
415
416 t->t_ts = ts;
417
418 /*
419 * p_cred could be NULL if it thread_create is called before cred_init
420 * is called in main.
421 */
422 mutex_enter(&pp->p_crlock);
423 if (pp->p_cred)
424 crhold(t->t_cred = pp->p_cred);
425 mutex_exit(&pp->p_crlock);
426 t->t_start = gethrestime_sec();
427 t->t_startpc = proc;
428 t->t_procp = pp;
429 t->t_clfuncs = &sys_classfuncs.thread;
430 t->t_cid = syscid;
431 t->t_pri = pri;
432 t->t_stime = ddi_get_lbolt();
433 t->t_schedflag = TS_LOAD | TS_DONT_SWAP;
434 t->t_bind_cpu = PBIND_NONE;
435 t->t_bindflag = (uchar_t)default_binding_mode;
436 t->t_bind_pset = PS_NONE;
437 t->t_plockp = &pp->p_lock;
438 t->t_copyops = NULL;
439 t->t_taskq = NULL;
440 t->t_anttime = 0;
441 t->t_hatdepth = 0;
442
443 t->t_dtrace_vtime = 1; /* assure vtimestamp is always non-zero */
444
445 CPU_STATS_ADDQ(CPU, sys, nthreads, 1);
446 #ifndef NPROBE
447 /* Kernel probe */
448 tnf_thread_create(t);
449 #endif /* NPROBE */
450 LOCK_INIT_CLEAR(&t->t_lock);
451
452 /*
453 * Callers who give us a NULL proc must do their own
454 * stack initialization. e.g. lwp_create()
455 */
456 if (proc != NULL) {
457 t->t_stk = thread_stk_init(t->t_stk);
458 thread_load(t, proc, arg, len);
459 }
460
461 /*
462 * Put a hold on project0. If this thread is actually in a
463 * different project, then t_proj will be changed later in
464 * lwp_create(). All kernel-only threads must be in project 0.
465 */
466 t->t_proj = project_hold(proj0p);
467
468 lgrp_affinity_init(&t->t_lgrp_affinity);
469
470 mutex_enter(&pidlock);
471 nthread++;
472 t->t_did = next_t_id++;
473 t->t_prev = curthread->t_prev;
474 t->t_next = curthread;
475
476 /*
477 * Add the thread to the list of all threads, and initialize
478 * its t_cpu pointer. We need to block preemption since
479 * cpu_offline walks the thread list looking for threads
480 * with t_cpu pointing to the CPU being offlined. We want
481 * to make sure that the list is consistent and that if t_cpu
482 * is set, the thread is on the list.
483 */
484 kpreempt_disable();
485 curthread->t_prev->t_next = t;
486 curthread->t_prev = t;
487
488 /*
489 * Threads should never have a NULL t_cpu pointer so assign it
490 * here. If the thread is being created with state TS_RUN a
491 * better CPU may be chosen when it is placed on the run queue.
492 *
493 * We need to keep kernel preemption disabled when setting all
494 * three fields to keep them in sync. Also, always create in
495 * the default partition since that's where kernel threads go
496 * (if this isn't a kernel thread, t_cpupart will be changed
497 * in lwp_create before setting the thread runnable).
498 */
499 t->t_cpupart = &cp_default;
500
501 /*
502 * For now, affiliate this thread with the root lgroup.
503 * Since the kernel does not (presently) allocate its memory
504 * in a locality aware fashion, the root is an appropriate home.
505 * If this thread is later associated with an lwp, it will have
506 * it's lgroup re-assigned at that time.
507 */
508 lgrp_move_thread(t, &cp_default.cp_lgrploads[LGRP_ROOTID], 1);
509
510 /*
511 * Inherit the current cpu. If this cpu isn't part of the chosen
512 * lgroup, a new cpu will be chosen by cpu_choose when the thread
513 * is ready to run.
514 */
515 if (CPU->cpu_part == &cp_default)
516 t->t_cpu = CPU;
517 else
518 t->t_cpu = disp_lowpri_cpu(cp_default.cp_cpulist, t->t_lpl,
519 t->t_pri, NULL);
520
521 t->t_disp_queue = t->t_cpu->cpu_disp;
522 kpreempt_enable();
523
524 /*
525 * Initialize thread state and the dispatcher lock pointer.
526 * Need to hold onto pidlock to block allthreads walkers until
527 * the state is set.
528 */
529 switch (state) {
530 case TS_RUN:
531 curthread->t_oldspl = splhigh(); /* get dispatcher spl */
532 THREAD_SET_STATE(t, TS_STOPPED, &transition_lock);
533 CL_SETRUN(t);
534 thread_unlock(t);
535 break;
536
537 case TS_ONPROC:
538 THREAD_ONPROC(t, t->t_cpu);
539 break;
540
541 case TS_FREE:
542 /*
543 * Free state will be used for intr threads.
544 * The interrupt routine must set the thread dispatcher
545 * lock pointer (t_lockp) if starting on a CPU
546 * other than the current one.
547 */
548 THREAD_FREEINTR(t, CPU);
549 break;
550
551 case TS_STOPPED:
552 THREAD_SET_STATE(t, TS_STOPPED, &stop_lock);
553 break;
554
555 default: /* TS_SLEEP, TS_ZOMB or TS_TRANS */
556 cmn_err(CE_PANIC, "thread_create: invalid state %d", state);
557 }
558 mutex_exit(&pidlock);
559 return (t);
560 }
561
562 /*
563 * Move thread to project0 and take care of project reference counters.
564 */
565 void
thread_rele(kthread_t * t)566 thread_rele(kthread_t *t)
567 {
568 kproject_t *kpj;
569
570 thread_lock(t);
571
572 ASSERT(t == curthread || t->t_state == TS_FREE || t->t_procp == &p0);
573 kpj = ttoproj(t);
574 t->t_proj = proj0p;
575
576 thread_unlock(t);
577
578 if (kpj != proj0p) {
579 project_rele(kpj);
580 (void) project_hold(proj0p);
581 }
582 }
583
584 void
thread_exit(void)585 thread_exit(void)
586 {
587 kthread_t *t = curthread;
588
589 if ((t->t_proc_flag & TP_ZTHREAD) != 0)
590 cmn_err(CE_PANIC, "thread_exit: zthread_exit() not called");
591
592 tsd_exit(); /* Clean up this thread's TSD */
593
594 kcpc_passivate(); /* clean up performance counter state */
595
596 /*
597 * No kernel thread should have called poll() without arranging
598 * calling pollcleanup() here.
599 */
600 ASSERT(t->t_pollstate == NULL);
601 ASSERT(t->t_schedctl == NULL);
602 if (t->t_door)
603 door_slam(); /* in case thread did an upcall */
604
605 #ifndef NPROBE
606 /* Kernel probe */
607 if (t->t_tnf_tpdp)
608 tnf_thread_exit();
609 #endif /* NPROBE */
610
611 thread_rele(t);
612 t->t_preempt++;
613
614 /*
615 * remove thread from the all threads list so that
616 * death-row can use the same pointers.
617 */
618 mutex_enter(&pidlock);
619 t->t_next->t_prev = t->t_prev;
620 t->t_prev->t_next = t->t_next;
621 ASSERT(allthreads != t); /* t0 never exits */
622 cv_broadcast(&t->t_joincv); /* wake up anyone in thread_join */
623 mutex_exit(&pidlock);
624
625 if (t->t_ctx != NULL)
626 exitctx(t);
627 if (t->t_procp->p_pctx != NULL)
628 exitpctx(t->t_procp);
629
630 if (kmem_stackinfo != 0) {
631 stkinfo_end(t);
632 }
633
634 t->t_state = TS_ZOMB; /* set zombie thread */
635
636 swtch_from_zombie(); /* give up the CPU */
637 /* NOTREACHED */
638 }
639
640 /*
641 * Check to see if the specified thread is active (defined as being on
642 * the thread list). This is certainly a slow way to do this; if there's
643 * ever a reason to speed it up, we could maintain a hash table of active
644 * threads indexed by their t_did.
645 */
646 static kthread_t *
did_to_thread(kt_did_t tid)647 did_to_thread(kt_did_t tid)
648 {
649 kthread_t *t;
650
651 ASSERT(MUTEX_HELD(&pidlock));
652 for (t = curthread->t_next; t != curthread; t = t->t_next) {
653 if (t->t_did == tid)
654 break;
655 }
656 if (t->t_did == tid)
657 return (t);
658 else
659 return (NULL);
660 }
661
662 /*
663 * Wait for specified thread to exit. Returns immediately if the thread
664 * could not be found, meaning that it has either already exited or never
665 * existed.
666 */
667 void
thread_join(kt_did_t tid)668 thread_join(kt_did_t tid)
669 {
670 kthread_t *t;
671
672 ASSERT(tid != curthread->t_did);
673 ASSERT(tid != t0.t_did);
674
675 mutex_enter(&pidlock);
676 /*
677 * Make sure we check that the thread is on the thread list
678 * before blocking on it; otherwise we could end up blocking on
679 * a cv that's already been freed. In other words, don't cache
680 * the thread pointer across calls to cv_wait.
681 *
682 * The choice of loop invariant means that whenever a thread
683 * is taken off the allthreads list, a cv_broadcast must be
684 * performed on that thread's t_joincv to wake up any waiters.
685 * The broadcast doesn't have to happen right away, but it
686 * shouldn't be postponed indefinitely (e.g., by doing it in
687 * thread_free which may only be executed when the deathrow
688 * queue is processed.
689 */
690 while (t = did_to_thread(tid))
691 cv_wait(&t->t_joincv, &pidlock);
692 mutex_exit(&pidlock);
693 }
694
695 void
thread_free_prevent(kthread_t * t)696 thread_free_prevent(kthread_t *t)
697 {
698 kmutex_t *lp;
699
700 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
701 mutex_enter(lp);
702 }
703
704 void
thread_free_allow(kthread_t * t)705 thread_free_allow(kthread_t *t)
706 {
707 kmutex_t *lp;
708
709 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
710 mutex_exit(lp);
711 }
712
713 static void
thread_free_barrier(kthread_t * t)714 thread_free_barrier(kthread_t *t)
715 {
716 kmutex_t *lp;
717
718 lp = &thread_free_lock[THREAD_FREE_HASH(t)].tf_lock;
719 mutex_enter(lp);
720 mutex_exit(lp);
721 }
722
723 void
thread_free(kthread_t * t)724 thread_free(kthread_t *t)
725 {
726 boolean_t allocstk = (t->t_flag & T_TALLOCSTK);
727 klwp_t *lwp = t->t_lwp;
728 caddr_t swap = t->t_swap;
729
730 ASSERT(t != &t0 && t->t_state == TS_FREE);
731 ASSERT(t->t_door == NULL);
732 ASSERT(t->t_schedctl == NULL);
733 ASSERT(t->t_pollstate == NULL);
734
735 t->t_pri = 0;
736 t->t_pc = 0;
737 t->t_sp = 0;
738 t->t_wchan0 = NULL;
739 t->t_wchan = NULL;
740 if (t->t_cred != NULL) {
741 crfree(t->t_cred);
742 t->t_cred = 0;
743 }
744 if (t->t_pdmsg) {
745 kmem_free(t->t_pdmsg, strlen(t->t_pdmsg) + 1);
746 t->t_pdmsg = NULL;
747 }
748 if (audit_active)
749 audit_thread_free(t);
750 #ifndef NPROBE
751 if (t->t_tnf_tpdp)
752 tnf_thread_free(t);
753 #endif /* NPROBE */
754 if (t->t_cldata) {
755 CL_EXITCLASS(t->t_cid, (caddr_t *)t->t_cldata);
756 }
757 if (t->t_rprof != NULL) {
758 kmem_free(t->t_rprof, sizeof (*t->t_rprof));
759 t->t_rprof = NULL;
760 }
761 t->t_lockp = NULL; /* nothing should try to lock this thread now */
762 if (lwp)
763 lwp_freeregs(lwp, 0);
764 if (t->t_ctx)
765 freectx(t, 0);
766 t->t_stk = NULL;
767 if (lwp)
768 lwp_stk_fini(lwp);
769 lock_clear(&t->t_lock);
770
771 if (t->t_ts->ts_waiters > 0)
772 panic("thread_free: turnstile still active");
773
774 kmem_cache_free(turnstile_cache, t->t_ts);
775
776 free_afd(&t->t_activefd);
777
778 /*
779 * Barrier for the tick accounting code. The tick accounting code
780 * holds this lock to keep the thread from going away while it's
781 * looking at it.
782 */
783 thread_free_barrier(t);
784
785 ASSERT(ttoproj(t) == proj0p);
786 project_rele(ttoproj(t));
787
788 lgrp_affinity_free(&t->t_lgrp_affinity);
789
790 mutex_enter(&pidlock);
791 nthread--;
792 mutex_exit(&pidlock);
793
794 /*
795 * Free thread, lwp and stack. This needs to be done carefully, since
796 * if T_TALLOCSTK is set, the thread is part of the stack.
797 */
798 t->t_lwp = NULL;
799 t->t_swap = NULL;
800
801 if (swap) {
802 segkp_release(segkp, swap);
803 }
804 if (lwp) {
805 kmem_cache_free(lwp_cache, lwp);
806 }
807 if (!allocstk) {
808 kmem_cache_free(thread_cache, t);
809 }
810 }
811
812 /*
813 * Removes threads associated with the given zone from a deathrow queue.
814 * tp is a pointer to the head of the deathrow queue, and countp is a
815 * pointer to the current deathrow count. Returns a linked list of
816 * threads removed from the list.
817 */
818 static kthread_t *
thread_zone_cleanup(kthread_t ** tp,int * countp,zoneid_t zoneid)819 thread_zone_cleanup(kthread_t **tp, int *countp, zoneid_t zoneid)
820 {
821 kthread_t *tmp, *list = NULL;
822 cred_t *cr;
823
824 ASSERT(MUTEX_HELD(&reaplock));
825 while (*tp != NULL) {
826 if ((cr = (*tp)->t_cred) != NULL && crgetzoneid(cr) == zoneid) {
827 tmp = *tp;
828 *tp = tmp->t_forw;
829 tmp->t_forw = list;
830 list = tmp;
831 (*countp)--;
832 } else {
833 tp = &(*tp)->t_forw;
834 }
835 }
836 return (list);
837 }
838
839 static void
thread_reap_list(kthread_t * t)840 thread_reap_list(kthread_t *t)
841 {
842 kthread_t *next;
843
844 while (t != NULL) {
845 next = t->t_forw;
846 thread_free(t);
847 t = next;
848 }
849 }
850
851 /* ARGSUSED */
852 static void
thread_zone_destroy(zoneid_t zoneid,void * unused)853 thread_zone_destroy(zoneid_t zoneid, void *unused)
854 {
855 kthread_t *t, *l;
856
857 mutex_enter(&reaplock);
858 /*
859 * Pull threads and lwps associated with zone off deathrow lists.
860 */
861 t = thread_zone_cleanup(&thread_deathrow, &thread_reapcnt, zoneid);
862 l = thread_zone_cleanup(&lwp_deathrow, &lwp_reapcnt, zoneid);
863 mutex_exit(&reaplock);
864
865 /*
866 * Guard against race condition in mutex_owner_running:
867 * thread=owner(mutex)
868 * <interrupt>
869 * thread exits mutex
870 * thread exits
871 * thread reaped
872 * thread struct freed
873 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
874 * A cross call to all cpus will cause the interrupt handler
875 * to reset the PC if it is in mutex_owner_running, refreshing
876 * stale thread pointers.
877 */
878 mutex_sync(); /* sync with mutex code */
879
880 /*
881 * Reap threads
882 */
883 thread_reap_list(t);
884
885 /*
886 * Reap lwps
887 */
888 thread_reap_list(l);
889 }
890
891 /*
892 * cleanup zombie threads that are on deathrow.
893 */
894 void
thread_reaper()895 thread_reaper()
896 {
897 kthread_t *t, *l;
898 callb_cpr_t cprinfo;
899
900 /*
901 * Register callback to clean up threads when zone is destroyed.
902 */
903 zone_key_create(&zone_thread_key, NULL, NULL, thread_zone_destroy);
904
905 CALLB_CPR_INIT(&cprinfo, &reaplock, callb_generic_cpr, "t_reaper");
906 for (;;) {
907 mutex_enter(&reaplock);
908 while (thread_deathrow == NULL && lwp_deathrow == NULL) {
909 CALLB_CPR_SAFE_BEGIN(&cprinfo);
910 cv_wait(&reaper_cv, &reaplock);
911 CALLB_CPR_SAFE_END(&cprinfo, &reaplock);
912 }
913 /*
914 * mutex_sync() needs to be called when reaping, but
915 * not too often. We limit reaping rate to once
916 * per second. Reaplimit is max rate at which threads can
917 * be freed. Does not impact thread destruction/creation.
918 */
919 t = thread_deathrow;
920 l = lwp_deathrow;
921 thread_deathrow = NULL;
922 lwp_deathrow = NULL;
923 thread_reapcnt = 0;
924 lwp_reapcnt = 0;
925 mutex_exit(&reaplock);
926
927 /*
928 * Guard against race condition in mutex_owner_running:
929 * thread=owner(mutex)
930 * <interrupt>
931 * thread exits mutex
932 * thread exits
933 * thread reaped
934 * thread struct freed
935 * cpu = thread->t_cpu <- BAD POINTER DEREFERENCE.
936 * A cross call to all cpus will cause the interrupt handler
937 * to reset the PC if it is in mutex_owner_running, refreshing
938 * stale thread pointers.
939 */
940 mutex_sync(); /* sync with mutex code */
941 /*
942 * Reap threads
943 */
944 thread_reap_list(t);
945
946 /*
947 * Reap lwps
948 */
949 thread_reap_list(l);
950 delay(hz);
951 }
952 }
953
954 /*
955 * This is called by lwpcreate, etc.() to put a lwp_deathrow thread onto
956 * thread_deathrow. The thread's state is changed already TS_FREE to indicate
957 * that is reapable. The thread already holds the reaplock, and was already
958 * freed.
959 */
960 void
reapq_move_lq_to_tq(kthread_t * t)961 reapq_move_lq_to_tq(kthread_t *t)
962 {
963 ASSERT(t->t_state == TS_FREE);
964 ASSERT(MUTEX_HELD(&reaplock));
965 t->t_forw = thread_deathrow;
966 thread_deathrow = t;
967 thread_reapcnt++;
968 if (lwp_reapcnt + thread_reapcnt > reaplimit)
969 cv_signal(&reaper_cv); /* wake the reaper */
970 }
971
972 /*
973 * This is called by resume() to put a zombie thread onto deathrow.
974 * The thread's state is changed to TS_FREE to indicate that is reapable.
975 * This is called from the idle thread so it must not block - just spin.
976 */
977 void
reapq_add(kthread_t * t)978 reapq_add(kthread_t *t)
979 {
980 mutex_enter(&reaplock);
981
982 /*
983 * lwp_deathrow contains threads with lwp linkage and
984 * swappable thread stacks which have the default stacksize.
985 * These threads' lwps and stacks may be reused by lwp_create().
986 *
987 * Anything else goes on thread_deathrow(), where it will eventually
988 * be thread_free()d.
989 */
990 if (t->t_flag & T_LWPREUSE) {
991 ASSERT(ttolwp(t) != NULL);
992 t->t_forw = lwp_deathrow;
993 lwp_deathrow = t;
994 lwp_reapcnt++;
995 } else {
996 t->t_forw = thread_deathrow;
997 thread_deathrow = t;
998 thread_reapcnt++;
999 }
1000 if (lwp_reapcnt + thread_reapcnt > reaplimit)
1001 cv_signal(&reaper_cv); /* wake the reaper */
1002 t->t_state = TS_FREE;
1003 lock_clear(&t->t_lock);
1004
1005 /*
1006 * Before we return, we need to grab and drop the thread lock for
1007 * the dead thread. At this point, the current thread is the idle
1008 * thread, and the dead thread's CPU lock points to the current
1009 * CPU -- and we must grab and drop the lock to synchronize with
1010 * a racing thread walking a blocking chain that the zombie thread
1011 * was recently in. By this point, that blocking chain is (by
1012 * definition) stale: the dead thread is not holding any locks, and
1013 * is therefore not in any blocking chains -- but if we do not regrab
1014 * our lock before freeing the dead thread's data structures, the
1015 * thread walking the (stale) blocking chain will die on memory
1016 * corruption when it attempts to drop the dead thread's lock. We
1017 * only need do this once because there is no way for the dead thread
1018 * to ever again be on a blocking chain: once we have grabbed and
1019 * dropped the thread lock, we are guaranteed that anyone that could
1020 * have seen this thread in a blocking chain can no longer see it.
1021 */
1022 thread_lock(t);
1023 thread_unlock(t);
1024
1025 mutex_exit(&reaplock);
1026 }
1027
1028 /*
1029 * Install thread context ops for the current thread.
1030 */
1031 void
installctx(kthread_t * t,void * arg,void (* save)(void *),void (* restore)(void *),void (* fork)(void *,void *),void (* lwp_create)(void *,void *),void (* exit)(void *),void (* free)(void *,int))1032 installctx(
1033 kthread_t *t,
1034 void *arg,
1035 void (*save)(void *),
1036 void (*restore)(void *),
1037 void (*fork)(void *, void *),
1038 void (*lwp_create)(void *, void *),
1039 void (*exit)(void *),
1040 void (*free)(void *, int))
1041 {
1042 struct ctxop *ctx;
1043
1044 ctx = kmem_alloc(sizeof (struct ctxop), KM_SLEEP);
1045 ctx->save_op = save;
1046 ctx->restore_op = restore;
1047 ctx->fork_op = fork;
1048 ctx->lwp_create_op = lwp_create;
1049 ctx->exit_op = exit;
1050 ctx->free_op = free;
1051 ctx->arg = arg;
1052 ctx->next = t->t_ctx;
1053 t->t_ctx = ctx;
1054 }
1055
1056 /*
1057 * Remove the thread context ops from a thread.
1058 */
1059 int
removectx(kthread_t * t,void * arg,void (* save)(void *),void (* restore)(void *),void (* fork)(void *,void *),void (* lwp_create)(void *,void *),void (* exit)(void *),void (* free)(void *,int))1060 removectx(
1061 kthread_t *t,
1062 void *arg,
1063 void (*save)(void *),
1064 void (*restore)(void *),
1065 void (*fork)(void *, void *),
1066 void (*lwp_create)(void *, void *),
1067 void (*exit)(void *),
1068 void (*free)(void *, int))
1069 {
1070 struct ctxop *ctx, *prev_ctx;
1071
1072 /*
1073 * The incoming kthread_t (which is the thread for which the
1074 * context ops will be removed) should be one of the following:
1075 *
1076 * a) the current thread,
1077 *
1078 * b) a thread of a process that's being forked (SIDL),
1079 *
1080 * c) a thread that belongs to the same process as the current
1081 * thread and for which the current thread is the agent thread,
1082 *
1083 * d) a thread that is TS_STOPPED which is indicative of it
1084 * being (if curthread is not an agent) a thread being created
1085 * as part of an lwp creation.
1086 */
1087 ASSERT(t == curthread || ttoproc(t)->p_stat == SIDL ||
1088 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1089
1090 /*
1091 * Serialize modifications to t->t_ctx to prevent the agent thread
1092 * and the target thread from racing with each other during lwp exit.
1093 */
1094 mutex_enter(&t->t_ctx_lock);
1095 prev_ctx = NULL;
1096 kpreempt_disable();
1097 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next) {
1098 if (ctx->save_op == save && ctx->restore_op == restore &&
1099 ctx->fork_op == fork && ctx->lwp_create_op == lwp_create &&
1100 ctx->exit_op == exit && ctx->free_op == free &&
1101 ctx->arg == arg) {
1102 if (prev_ctx)
1103 prev_ctx->next = ctx->next;
1104 else
1105 t->t_ctx = ctx->next;
1106 mutex_exit(&t->t_ctx_lock);
1107 if (ctx->free_op != NULL)
1108 (ctx->free_op)(ctx->arg, 0);
1109 kmem_free(ctx, sizeof (struct ctxop));
1110 kpreempt_enable();
1111 return (1);
1112 }
1113 prev_ctx = ctx;
1114 }
1115 mutex_exit(&t->t_ctx_lock);
1116 kpreempt_enable();
1117
1118 return (0);
1119 }
1120
1121 void
savectx(kthread_t * t)1122 savectx(kthread_t *t)
1123 {
1124 struct ctxop *ctx;
1125
1126 ASSERT(t == curthread);
1127 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1128 if (ctx->save_op != NULL)
1129 (ctx->save_op)(ctx->arg);
1130 }
1131
1132 void
restorectx(kthread_t * t)1133 restorectx(kthread_t *t)
1134 {
1135 struct ctxop *ctx;
1136
1137 ASSERT(t == curthread);
1138 for (ctx = t->t_ctx; ctx != 0; ctx = ctx->next)
1139 if (ctx->restore_op != NULL)
1140 (ctx->restore_op)(ctx->arg);
1141 }
1142
1143 void
forkctx(kthread_t * t,kthread_t * ct)1144 forkctx(kthread_t *t, kthread_t *ct)
1145 {
1146 struct ctxop *ctx;
1147
1148 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1149 if (ctx->fork_op != NULL)
1150 (ctx->fork_op)(t, ct);
1151 }
1152
1153 /*
1154 * Note that this operator is only invoked via the _lwp_create
1155 * system call. The system may have other reasons to create lwps
1156 * e.g. the agent lwp or the doors unreferenced lwp.
1157 */
1158 void
lwp_createctx(kthread_t * t,kthread_t * ct)1159 lwp_createctx(kthread_t *t, kthread_t *ct)
1160 {
1161 struct ctxop *ctx;
1162
1163 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1164 if (ctx->lwp_create_op != NULL)
1165 (ctx->lwp_create_op)(t, ct);
1166 }
1167
1168 /*
1169 * exitctx is called from thread_exit() and lwp_exit() to perform any actions
1170 * needed when the thread/LWP leaves the processor for the last time. This
1171 * routine is not intended to deal with freeing memory; freectx() is used for
1172 * that purpose during thread_free(). This routine is provided to allow for
1173 * clean-up that can't wait until thread_free().
1174 */
1175 void
exitctx(kthread_t * t)1176 exitctx(kthread_t *t)
1177 {
1178 struct ctxop *ctx;
1179
1180 for (ctx = t->t_ctx; ctx != NULL; ctx = ctx->next)
1181 if (ctx->exit_op != NULL)
1182 (ctx->exit_op)(t);
1183 }
1184
1185 /*
1186 * freectx is called from thread_free() and exec() to get
1187 * rid of old thread context ops.
1188 */
1189 void
freectx(kthread_t * t,int isexec)1190 freectx(kthread_t *t, int isexec)
1191 {
1192 struct ctxop *ctx;
1193
1194 kpreempt_disable();
1195 while ((ctx = t->t_ctx) != NULL) {
1196 t->t_ctx = ctx->next;
1197 if (ctx->free_op != NULL)
1198 (ctx->free_op)(ctx->arg, isexec);
1199 kmem_free(ctx, sizeof (struct ctxop));
1200 }
1201 kpreempt_enable();
1202 }
1203
1204 /*
1205 * freectx_ctx is called from lwp_create() when lwp is reused from
1206 * lwp_deathrow and its thread structure is added to thread_deathrow.
1207 * The thread structure to which this ctx was attached may be already
1208 * freed by the thread reaper so free_op implementations shouldn't rely
1209 * on thread structure to which this ctx was attached still being around.
1210 */
1211 void
freectx_ctx(struct ctxop * ctx)1212 freectx_ctx(struct ctxop *ctx)
1213 {
1214 struct ctxop *nctx;
1215
1216 ASSERT(ctx != NULL);
1217
1218 kpreempt_disable();
1219 do {
1220 nctx = ctx->next;
1221 if (ctx->free_op != NULL)
1222 (ctx->free_op)(ctx->arg, 0);
1223 kmem_free(ctx, sizeof (struct ctxop));
1224 } while ((ctx = nctx) != NULL);
1225 kpreempt_enable();
1226 }
1227
1228 /*
1229 * Set the thread running; arrange for it to be swapped in if necessary.
1230 */
1231 void
setrun_locked(kthread_t * t)1232 setrun_locked(kthread_t *t)
1233 {
1234 ASSERT(THREAD_LOCK_HELD(t));
1235 if (t->t_state == TS_SLEEP) {
1236 /*
1237 * Take off sleep queue.
1238 */
1239 SOBJ_UNSLEEP(t->t_sobj_ops, t);
1240 } else if (t->t_state & (TS_RUN | TS_ONPROC)) {
1241 /*
1242 * Already on dispatcher queue.
1243 */
1244 return;
1245 } else if (t->t_state == TS_WAIT) {
1246 waitq_setrun(t);
1247 } else if (t->t_state == TS_STOPPED) {
1248 /*
1249 * All of the sending of SIGCONT (TC_XSTART) and /proc
1250 * (TC_PSTART) and lwp_continue() (TC_CSTART) must have
1251 * requested that the thread be run.
1252 * Just calling setrun() is not sufficient to set a stopped
1253 * thread running. TP_TXSTART is always set if the thread
1254 * is not stopped by a jobcontrol stop signal.
1255 * TP_TPSTART is always set if /proc is not controlling it.
1256 * TP_TCSTART is always set if lwp_suspend() didn't stop it.
1257 * The thread won't be stopped unless one of these
1258 * three mechanisms did it.
1259 *
1260 * These flags must be set before calling setrun_locked(t).
1261 * They can't be passed as arguments because the streams
1262 * code calls setrun() indirectly and the mechanism for
1263 * doing so admits only one argument. Note that the
1264 * thread must be locked in order to change t_schedflags.
1265 */
1266 if ((t->t_schedflag & TS_ALLSTART) != TS_ALLSTART)
1267 return;
1268 /*
1269 * Process is no longer stopped (a thread is running).
1270 */
1271 t->t_whystop = 0;
1272 t->t_whatstop = 0;
1273 /*
1274 * Strictly speaking, we do not have to clear these
1275 * flags here; they are cleared on entry to stop().
1276 * However, they are confusing when doing kernel
1277 * debugging or when they are revealed by ps(1).
1278 */
1279 t->t_schedflag &= ~TS_ALLSTART;
1280 THREAD_TRANSITION(t); /* drop stopped-thread lock */
1281 ASSERT(t->t_lockp == &transition_lock);
1282 ASSERT(t->t_wchan0 == NULL && t->t_wchan == NULL);
1283 /*
1284 * Let the class put the process on the dispatcher queue.
1285 */
1286 CL_SETRUN(t);
1287 }
1288 }
1289
1290 void
setrun(kthread_t * t)1291 setrun(kthread_t *t)
1292 {
1293 thread_lock(t);
1294 setrun_locked(t);
1295 thread_unlock(t);
1296 }
1297
1298 /*
1299 * Unpin an interrupted thread.
1300 * When an interrupt occurs, the interrupt is handled on the stack
1301 * of an interrupt thread, taken from a pool linked to the CPU structure.
1302 *
1303 * When swtch() is switching away from an interrupt thread because it
1304 * blocked or was preempted, this routine is called to complete the
1305 * saving of the interrupted thread state, and returns the interrupted
1306 * thread pointer so it may be resumed.
1307 *
1308 * Called by swtch() only at high spl.
1309 */
1310 kthread_t *
thread_unpin()1311 thread_unpin()
1312 {
1313 kthread_t *t = curthread; /* current thread */
1314 kthread_t *itp; /* interrupted thread */
1315 int i; /* interrupt level */
1316 extern int intr_passivate();
1317
1318 ASSERT(t->t_intr != NULL);
1319
1320 itp = t->t_intr; /* interrupted thread */
1321 t->t_intr = NULL; /* clear interrupt ptr */
1322
1323 /*
1324 * Get state from interrupt thread for the one
1325 * it interrupted.
1326 */
1327
1328 i = intr_passivate(t, itp);
1329
1330 TRACE_5(TR_FAC_INTR, TR_INTR_PASSIVATE,
1331 "intr_passivate:level %d curthread %p (%T) ithread %p (%T)",
1332 i, t, t, itp, itp);
1333
1334 /*
1335 * Dissociate the current thread from the interrupted thread's LWP.
1336 */
1337 t->t_lwp = NULL;
1338
1339 /*
1340 * Interrupt handlers above the level that spinlocks block must
1341 * not block.
1342 */
1343 #if DEBUG
1344 if (i < 0 || i > LOCK_LEVEL)
1345 cmn_err(CE_PANIC, "thread_unpin: ipl out of range %x", i);
1346 #endif
1347
1348 /*
1349 * Compute the CPU's base interrupt level based on the active
1350 * interrupts.
1351 */
1352 ASSERT(CPU->cpu_intr_actv & (1 << i));
1353 set_base_spl();
1354
1355 return (itp);
1356 }
1357
1358 /*
1359 * Create and initialize an interrupt thread.
1360 * Returns non-zero on error.
1361 * Called at spl7() or better.
1362 */
1363 void
thread_create_intr(struct cpu * cp)1364 thread_create_intr(struct cpu *cp)
1365 {
1366 kthread_t *tp;
1367
1368 tp = thread_create(NULL, 0,
1369 (void (*)())thread_create_intr, NULL, 0, &p0, TS_ONPROC, 0);
1370
1371 /*
1372 * Set the thread in the TS_FREE state. The state will change
1373 * to TS_ONPROC only while the interrupt is active. Think of these
1374 * as being on a private free list for the CPU. Being TS_FREE keeps
1375 * inactive interrupt threads out of debugger thread lists.
1376 *
1377 * We cannot call thread_create with TS_FREE because of the current
1378 * checks there for ONPROC. Fix this when thread_create takes flags.
1379 */
1380 THREAD_FREEINTR(tp, cp);
1381
1382 /*
1383 * Nobody should ever reference the credentials of an interrupt
1384 * thread so make it NULL to catch any such references.
1385 */
1386 tp->t_cred = NULL;
1387 tp->t_flag |= T_INTR_THREAD;
1388 tp->t_cpu = cp;
1389 tp->t_bound_cpu = cp;
1390 tp->t_disp_queue = cp->cpu_disp;
1391 tp->t_affinitycnt = 1;
1392 tp->t_preempt = 1;
1393
1394 /*
1395 * Don't make a user-requested binding on this thread so that
1396 * the processor can be offlined.
1397 */
1398 tp->t_bind_cpu = PBIND_NONE; /* no USER-requested binding */
1399 tp->t_bind_pset = PS_NONE;
1400
1401 #if defined(__i386) || defined(__amd64)
1402 tp->t_stk -= STACK_ALIGN;
1403 *(tp->t_stk) = 0; /* terminate intr thread stack */
1404 #endif
1405
1406 /*
1407 * Link onto CPU's interrupt pool.
1408 */
1409 tp->t_link = cp->cpu_intr_thread;
1410 cp->cpu_intr_thread = tp;
1411 }
1412
1413 /*
1414 * TSD -- THREAD SPECIFIC DATA
1415 */
1416 static kmutex_t tsd_mutex; /* linked list spin lock */
1417 static uint_t tsd_nkeys; /* size of destructor array */
1418 /* per-key destructor funcs */
1419 static void (**tsd_destructor)(void *);
1420 /* list of tsd_thread's */
1421 static struct tsd_thread *tsd_list;
1422
1423 /*
1424 * Default destructor
1425 * Needed because NULL destructor means that the key is unused
1426 */
1427 /* ARGSUSED */
1428 void
tsd_defaultdestructor(void * value)1429 tsd_defaultdestructor(void *value)
1430 {}
1431
1432 /*
1433 * Create a key (index into per thread array)
1434 * Locks out tsd_create, tsd_destroy, and tsd_exit
1435 * May allocate memory with lock held
1436 */
1437 void
tsd_create(uint_t * keyp,void (* destructor)(void *))1438 tsd_create(uint_t *keyp, void (*destructor)(void *))
1439 {
1440 int i;
1441 uint_t nkeys;
1442
1443 /*
1444 * if key is allocated, do nothing
1445 */
1446 mutex_enter(&tsd_mutex);
1447 if (*keyp) {
1448 mutex_exit(&tsd_mutex);
1449 return;
1450 }
1451 /*
1452 * find an unused key
1453 */
1454 if (destructor == NULL)
1455 destructor = tsd_defaultdestructor;
1456
1457 for (i = 0; i < tsd_nkeys; ++i)
1458 if (tsd_destructor[i] == NULL)
1459 break;
1460
1461 /*
1462 * if no unused keys, increase the size of the destructor array
1463 */
1464 if (i == tsd_nkeys) {
1465 if ((nkeys = (tsd_nkeys << 1)) == 0)
1466 nkeys = 1;
1467 tsd_destructor =
1468 (void (**)(void *))tsd_realloc((void *)tsd_destructor,
1469 (size_t)(tsd_nkeys * sizeof (void (*)(void *))),
1470 (size_t)(nkeys * sizeof (void (*)(void *))));
1471 tsd_nkeys = nkeys;
1472 }
1473
1474 /*
1475 * allocate the next available unused key
1476 */
1477 tsd_destructor[i] = destructor;
1478 *keyp = i + 1;
1479 mutex_exit(&tsd_mutex);
1480 }
1481
1482 /*
1483 * Destroy a key -- this is for unloadable modules
1484 *
1485 * Assumes that the caller is preventing tsd_set and tsd_get
1486 * Locks out tsd_create, tsd_destroy, and tsd_exit
1487 * May free memory with lock held
1488 */
1489 void
tsd_destroy(uint_t * keyp)1490 tsd_destroy(uint_t *keyp)
1491 {
1492 uint_t key;
1493 struct tsd_thread *tsd;
1494
1495 /*
1496 * protect the key namespace and our destructor lists
1497 */
1498 mutex_enter(&tsd_mutex);
1499 key = *keyp;
1500 *keyp = 0;
1501
1502 ASSERT(key <= tsd_nkeys);
1503
1504 /*
1505 * if the key is valid
1506 */
1507 if (key != 0) {
1508 uint_t k = key - 1;
1509 /*
1510 * for every thread with TSD, call key's destructor
1511 */
1512 for (tsd = tsd_list; tsd; tsd = tsd->ts_next) {
1513 /*
1514 * no TSD for key in this thread
1515 */
1516 if (key > tsd->ts_nkeys)
1517 continue;
1518 /*
1519 * call destructor for key
1520 */
1521 if (tsd->ts_value[k] && tsd_destructor[k])
1522 (*tsd_destructor[k])(tsd->ts_value[k]);
1523 /*
1524 * reset value for key
1525 */
1526 tsd->ts_value[k] = NULL;
1527 }
1528 /*
1529 * actually free the key (NULL destructor == unused)
1530 */
1531 tsd_destructor[k] = NULL;
1532 }
1533
1534 mutex_exit(&tsd_mutex);
1535 }
1536
1537 /*
1538 * Quickly return the per thread value that was stored with the specified key
1539 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1540 */
1541 void *
tsd_get(uint_t key)1542 tsd_get(uint_t key)
1543 {
1544 return (tsd_agent_get(curthread, key));
1545 }
1546
1547 /*
1548 * Set a per thread value indexed with the specified key
1549 */
1550 int
tsd_set(uint_t key,void * value)1551 tsd_set(uint_t key, void *value)
1552 {
1553 return (tsd_agent_set(curthread, key, value));
1554 }
1555
1556 /*
1557 * Like tsd_get(), except that the agent lwp can get the tsd of
1558 * another thread in the same process (the agent thread only runs when the
1559 * process is completely stopped by /proc), or syslwp is creating a new lwp.
1560 */
1561 void *
tsd_agent_get(kthread_t * t,uint_t key)1562 tsd_agent_get(kthread_t *t, uint_t key)
1563 {
1564 struct tsd_thread *tsd = t->t_tsd;
1565
1566 ASSERT(t == curthread ||
1567 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1568
1569 if (key && tsd != NULL && key <= tsd->ts_nkeys)
1570 return (tsd->ts_value[key - 1]);
1571 return (NULL);
1572 }
1573
1574 /*
1575 * Like tsd_set(), except that the agent lwp can set the tsd of
1576 * another thread in the same process, or syslwp can set the tsd
1577 * of a thread it's in the middle of creating.
1578 *
1579 * Assumes the caller is protecting key from tsd_create and tsd_destroy
1580 * May lock out tsd_destroy (and tsd_create), may allocate memory with
1581 * lock held
1582 */
1583 int
tsd_agent_set(kthread_t * t,uint_t key,void * value)1584 tsd_agent_set(kthread_t *t, uint_t key, void *value)
1585 {
1586 struct tsd_thread *tsd = t->t_tsd;
1587
1588 ASSERT(t == curthread ||
1589 ttoproc(t)->p_agenttp == curthread || t->t_state == TS_STOPPED);
1590
1591 if (key == 0)
1592 return (EINVAL);
1593 if (tsd == NULL)
1594 tsd = t->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1595 if (key <= tsd->ts_nkeys) {
1596 tsd->ts_value[key - 1] = value;
1597 return (0);
1598 }
1599
1600 ASSERT(key <= tsd_nkeys);
1601
1602 /*
1603 * lock out tsd_destroy()
1604 */
1605 mutex_enter(&tsd_mutex);
1606 if (tsd->ts_nkeys == 0) {
1607 /*
1608 * Link onto list of threads with TSD
1609 */
1610 if ((tsd->ts_next = tsd_list) != NULL)
1611 tsd_list->ts_prev = tsd;
1612 tsd_list = tsd;
1613 }
1614
1615 /*
1616 * Allocate thread local storage and set the value for key
1617 */
1618 tsd->ts_value = tsd_realloc(tsd->ts_value,
1619 tsd->ts_nkeys * sizeof (void *),
1620 key * sizeof (void *));
1621 tsd->ts_nkeys = key;
1622 tsd->ts_value[key - 1] = value;
1623 mutex_exit(&tsd_mutex);
1624
1625 return (0);
1626 }
1627
1628
1629 /*
1630 * Return the per thread value that was stored with the specified key
1631 * If necessary, create the key and the value
1632 * Assumes the caller is protecting *keyp from tsd_destroy
1633 */
1634 void *
tsd_getcreate(uint_t * keyp,void (* destroy)(void *),void * (* allocate)(void))1635 tsd_getcreate(uint_t *keyp, void (*destroy)(void *), void *(*allocate)(void))
1636 {
1637 void *value;
1638 uint_t key = *keyp;
1639 struct tsd_thread *tsd = curthread->t_tsd;
1640
1641 if (tsd == NULL)
1642 tsd = curthread->t_tsd = kmem_zalloc(sizeof (*tsd), KM_SLEEP);
1643 if (key && key <= tsd->ts_nkeys && (value = tsd->ts_value[key - 1]))
1644 return (value);
1645 if (key == 0)
1646 tsd_create(keyp, destroy);
1647 (void) tsd_set(*keyp, value = (*allocate)());
1648
1649 return (value);
1650 }
1651
1652 /*
1653 * Called from thread_exit() to run the destructor function for each tsd
1654 * Locks out tsd_create and tsd_destroy
1655 * Assumes that the destructor *DOES NOT* use tsd
1656 */
1657 void
tsd_exit(void)1658 tsd_exit(void)
1659 {
1660 int i;
1661 struct tsd_thread *tsd = curthread->t_tsd;
1662
1663 if (tsd == NULL)
1664 return;
1665
1666 if (tsd->ts_nkeys == 0) {
1667 kmem_free(tsd, sizeof (*tsd));
1668 curthread->t_tsd = NULL;
1669 return;
1670 }
1671
1672 /*
1673 * lock out tsd_create and tsd_destroy, call
1674 * the destructor, and mark the value as destroyed.
1675 */
1676 mutex_enter(&tsd_mutex);
1677
1678 for (i = 0; i < tsd->ts_nkeys; i++) {
1679 if (tsd->ts_value[i] && tsd_destructor[i])
1680 (*tsd_destructor[i])(tsd->ts_value[i]);
1681 tsd->ts_value[i] = NULL;
1682 }
1683
1684 /*
1685 * remove from linked list of threads with TSD
1686 */
1687 if (tsd->ts_next)
1688 tsd->ts_next->ts_prev = tsd->ts_prev;
1689 if (tsd->ts_prev)
1690 tsd->ts_prev->ts_next = tsd->ts_next;
1691 if (tsd_list == tsd)
1692 tsd_list = tsd->ts_next;
1693
1694 mutex_exit(&tsd_mutex);
1695
1696 /*
1697 * free up the TSD
1698 */
1699 kmem_free(tsd->ts_value, tsd->ts_nkeys * sizeof (void *));
1700 kmem_free(tsd, sizeof (struct tsd_thread));
1701 curthread->t_tsd = NULL;
1702 }
1703
1704 /*
1705 * realloc
1706 */
1707 static void *
tsd_realloc(void * old,size_t osize,size_t nsize)1708 tsd_realloc(void *old, size_t osize, size_t nsize)
1709 {
1710 void *new;
1711
1712 new = kmem_zalloc(nsize, KM_SLEEP);
1713 if (old) {
1714 bcopy(old, new, osize);
1715 kmem_free(old, osize);
1716 }
1717 return (new);
1718 }
1719
1720 /*
1721 * Return non-zero if an interrupt is being serviced.
1722 */
1723 int
servicing_interrupt()1724 servicing_interrupt()
1725 {
1726 int onintr = 0;
1727
1728 /* Are we an interrupt thread */
1729 if (curthread->t_flag & T_INTR_THREAD)
1730 return (1);
1731 /* Are we servicing a high level interrupt? */
1732 if (CPU_ON_INTR(CPU)) {
1733 kpreempt_disable();
1734 onintr = CPU_ON_INTR(CPU);
1735 kpreempt_enable();
1736 }
1737 return (onintr);
1738 }
1739
1740
1741 /*
1742 * Change the dispatch priority of a thread in the system.
1743 * Used when raising or lowering a thread's priority.
1744 * (E.g., priority inheritance)
1745 *
1746 * Since threads are queued according to their priority, we
1747 * we must check the thread's state to determine whether it
1748 * is on a queue somewhere. If it is, we've got to:
1749 *
1750 * o Dequeue the thread.
1751 * o Change its effective priority.
1752 * o Enqueue the thread.
1753 *
1754 * Assumptions: The thread whose priority we wish to change
1755 * must be locked before we call thread_change_(e)pri().
1756 * The thread_change(e)pri() function doesn't drop the thread
1757 * lock--that must be done by its caller.
1758 */
1759 void
thread_change_epri(kthread_t * t,pri_t disp_pri)1760 thread_change_epri(kthread_t *t, pri_t disp_pri)
1761 {
1762 uint_t state;
1763
1764 ASSERT(THREAD_LOCK_HELD(t));
1765
1766 /*
1767 * If the inherited priority hasn't actually changed,
1768 * just return.
1769 */
1770 if (t->t_epri == disp_pri)
1771 return;
1772
1773 state = t->t_state;
1774
1775 /*
1776 * If it's not on a queue, change the priority with impunity.
1777 */
1778 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1779 t->t_epri = disp_pri;
1780 if (state == TS_ONPROC) {
1781 cpu_t *cp = t->t_disp_queue->disp_cpu;
1782
1783 if (t == cp->cpu_dispthread)
1784 cp->cpu_dispatch_pri = DISP_PRIO(t);
1785 }
1786 } else if (state == TS_SLEEP) {
1787 /*
1788 * Take the thread out of its sleep queue.
1789 * Change the inherited priority.
1790 * Re-enqueue the thread.
1791 * Each synchronization object exports a function
1792 * to do this in an appropriate manner.
1793 */
1794 SOBJ_CHANGE_EPRI(t->t_sobj_ops, t, disp_pri);
1795 } else if (state == TS_WAIT) {
1796 /*
1797 * Re-enqueue a thread on the wait queue if its
1798 * effective priority needs to change.
1799 */
1800 if (disp_pri != t->t_epri)
1801 waitq_change_pri(t, disp_pri);
1802 } else {
1803 /*
1804 * The thread is on a run queue.
1805 * Note: setbackdq() may not put the thread
1806 * back on the same run queue where it originally
1807 * resided.
1808 */
1809 (void) dispdeq(t);
1810 t->t_epri = disp_pri;
1811 setbackdq(t);
1812 }
1813 schedctl_set_cidpri(t);
1814 }
1815
1816 /*
1817 * Function: Change the t_pri field of a thread.
1818 * Side Effects: Adjust the thread ordering on a run queue
1819 * or sleep queue, if necessary.
1820 * Returns: 1 if the thread was on a run queue, else 0.
1821 */
1822 int
thread_change_pri(kthread_t * t,pri_t disp_pri,int front)1823 thread_change_pri(kthread_t *t, pri_t disp_pri, int front)
1824 {
1825 uint_t state;
1826 int on_rq = 0;
1827
1828 ASSERT(THREAD_LOCK_HELD(t));
1829
1830 state = t->t_state;
1831 THREAD_WILLCHANGE_PRI(t, disp_pri);
1832
1833 /*
1834 * If it's not on a queue, change the priority with impunity.
1835 */
1836 if ((state & (TS_SLEEP | TS_RUN | TS_WAIT)) == 0) {
1837 t->t_pri = disp_pri;
1838
1839 if (state == TS_ONPROC) {
1840 cpu_t *cp = t->t_disp_queue->disp_cpu;
1841
1842 if (t == cp->cpu_dispthread)
1843 cp->cpu_dispatch_pri = DISP_PRIO(t);
1844 }
1845 } else if (state == TS_SLEEP) {
1846 /*
1847 * If the priority has changed, take the thread out of
1848 * its sleep queue and change the priority.
1849 * Re-enqueue the thread.
1850 * Each synchronization object exports a function
1851 * to do this in an appropriate manner.
1852 */
1853 if (disp_pri != t->t_pri)
1854 SOBJ_CHANGE_PRI(t->t_sobj_ops, t, disp_pri);
1855 } else if (state == TS_WAIT) {
1856 /*
1857 * Re-enqueue a thread on the wait queue if its
1858 * priority needs to change.
1859 */
1860 if (disp_pri != t->t_pri)
1861 waitq_change_pri(t, disp_pri);
1862 } else {
1863 /*
1864 * The thread is on a run queue.
1865 * Note: setbackdq() may not put the thread
1866 * back on the same run queue where it originally
1867 * resided.
1868 *
1869 * We still requeue the thread even if the priority
1870 * is unchanged to preserve round-robin (and other)
1871 * effects between threads of the same priority.
1872 */
1873 on_rq = dispdeq(t);
1874 ASSERT(on_rq);
1875 t->t_pri = disp_pri;
1876 if (front) {
1877 setfrontdq(t);
1878 } else {
1879 setbackdq(t);
1880 }
1881 }
1882 schedctl_set_cidpri(t);
1883 return (on_rq);
1884 }
1885
1886 /*
1887 * Tunable kmem_stackinfo is set, fill the kernel thread stack with a
1888 * specific pattern.
1889 */
1890 static void
stkinfo_begin(kthread_t * t)1891 stkinfo_begin(kthread_t *t)
1892 {
1893 caddr_t start; /* stack start */
1894 caddr_t end; /* stack end */
1895 uint64_t *ptr; /* pattern pointer */
1896
1897 /*
1898 * Stack grows up or down, see thread_create(),
1899 * compute stack memory area start and end (start < end).
1900 */
1901 if (t->t_stk > t->t_stkbase) {
1902 /* stack grows down */
1903 start = t->t_stkbase;
1904 end = t->t_stk;
1905 } else {
1906 /* stack grows up */
1907 start = t->t_stk;
1908 end = t->t_stkbase;
1909 }
1910
1911 /*
1912 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1913 * alignement for start and end in stack area boundaries
1914 * (protection against corrupt t_stkbase/t_stk data).
1915 */
1916 if ((((uintptr_t)start) & 0x7) != 0) {
1917 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1918 }
1919 end = (caddr_t)(((uintptr_t)end) & (~0x7));
1920
1921 if ((end <= start) || (end - start) > (1024 * 1024)) {
1922 /* negative or stack size > 1 meg, assume bogus */
1923 return;
1924 }
1925
1926 /* fill stack area with a pattern (instead of zeros) */
1927 ptr = (uint64_t *)((void *)start);
1928 while (ptr < (uint64_t *)((void *)end)) {
1929 *ptr++ = KMEM_STKINFO_PATTERN;
1930 }
1931 }
1932
1933
1934 /*
1935 * Tunable kmem_stackinfo is set, create stackinfo log if doesn't already exist,
1936 * compute the percentage of kernel stack really used, and set in the log
1937 * if it's the latest highest percentage.
1938 */
1939 static void
stkinfo_end(kthread_t * t)1940 stkinfo_end(kthread_t *t)
1941 {
1942 caddr_t start; /* stack start */
1943 caddr_t end; /* stack end */
1944 uint64_t *ptr; /* pattern pointer */
1945 size_t stksz; /* stack size */
1946 size_t smallest = 0;
1947 size_t percent = 0;
1948 uint_t index = 0;
1949 uint_t i;
1950 static size_t smallest_percent = (size_t)-1;
1951 static uint_t full = 0;
1952
1953 /* create the stackinfo log, if doesn't already exist */
1954 mutex_enter(&kmem_stkinfo_lock);
1955 if (kmem_stkinfo_log == NULL) {
1956 kmem_stkinfo_log = (kmem_stkinfo_t *)
1957 kmem_zalloc(KMEM_STKINFO_LOG_SIZE *
1958 (sizeof (kmem_stkinfo_t)), KM_NOSLEEP);
1959 if (kmem_stkinfo_log == NULL) {
1960 mutex_exit(&kmem_stkinfo_lock);
1961 return;
1962 }
1963 }
1964 mutex_exit(&kmem_stkinfo_lock);
1965
1966 /*
1967 * Stack grows up or down, see thread_create(),
1968 * compute stack memory area start and end (start < end).
1969 */
1970 if (t->t_stk > t->t_stkbase) {
1971 /* stack grows down */
1972 start = t->t_stkbase;
1973 end = t->t_stk;
1974 } else {
1975 /* stack grows up */
1976 start = t->t_stk;
1977 end = t->t_stkbase;
1978 }
1979
1980 /* stack size as found in kthread_t */
1981 stksz = end - start;
1982
1983 /*
1984 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
1985 * alignement for start and end in stack area boundaries
1986 * (protection against corrupt t_stkbase/t_stk data).
1987 */
1988 if ((((uintptr_t)start) & 0x7) != 0) {
1989 start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
1990 }
1991 end = (caddr_t)(((uintptr_t)end) & (~0x7));
1992
1993 if ((end <= start) || (end - start) > (1024 * 1024)) {
1994 /* negative or stack size > 1 meg, assume bogus */
1995 return;
1996 }
1997
1998 /* search until no pattern in the stack */
1999 if (t->t_stk > t->t_stkbase) {
2000 /* stack grows down */
2001 #if defined(__i386) || defined(__amd64)
2002 /*
2003 * 6 longs are pushed on stack, see thread_load(). Skip
2004 * them, so if kthread has never run, percent is zero.
2005 * 8 bytes alignement is preserved for a 32 bit kernel,
2006 * 6 x 4 = 24, 24 is a multiple of 8.
2007 *
2008 */
2009 end -= (6 * sizeof (long));
2010 #endif
2011 ptr = (uint64_t *)((void *)start);
2012 while (ptr < (uint64_t *)((void *)end)) {
2013 if (*ptr != KMEM_STKINFO_PATTERN) {
2014 percent = stkinfo_percent(end,
2015 start, (caddr_t)ptr);
2016 break;
2017 }
2018 ptr++;
2019 }
2020 } else {
2021 /* stack grows up */
2022 ptr = (uint64_t *)((void *)end);
2023 ptr--;
2024 while (ptr >= (uint64_t *)((void *)start)) {
2025 if (*ptr != KMEM_STKINFO_PATTERN) {
2026 percent = stkinfo_percent(start,
2027 end, (caddr_t)ptr);
2028 break;
2029 }
2030 ptr--;
2031 }
2032 }
2033
2034 DTRACE_PROBE3(stack__usage, kthread_t *, t,
2035 size_t, stksz, size_t, percent);
2036
2037 if (percent == 0) {
2038 return;
2039 }
2040
2041 mutex_enter(&kmem_stkinfo_lock);
2042 if (full == KMEM_STKINFO_LOG_SIZE && percent < smallest_percent) {
2043 /*
2044 * The log is full and already contains the highest values
2045 */
2046 mutex_exit(&kmem_stkinfo_lock);
2047 return;
2048 }
2049
2050 /* keep a log of the highest used stack */
2051 for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
2052 if (kmem_stkinfo_log[i].percent == 0) {
2053 index = i;
2054 full++;
2055 break;
2056 }
2057 if (smallest == 0) {
2058 smallest = kmem_stkinfo_log[i].percent;
2059 index = i;
2060 continue;
2061 }
2062 if (kmem_stkinfo_log[i].percent < smallest) {
2063 smallest = kmem_stkinfo_log[i].percent;
2064 index = i;
2065 }
2066 }
2067
2068 if (percent >= kmem_stkinfo_log[index].percent) {
2069 kmem_stkinfo_log[index].kthread = (caddr_t)t;
2070 kmem_stkinfo_log[index].t_startpc = (caddr_t)t->t_startpc;
2071 kmem_stkinfo_log[index].start = start;
2072 kmem_stkinfo_log[index].stksz = stksz;
2073 kmem_stkinfo_log[index].percent = percent;
2074 kmem_stkinfo_log[index].t_tid = t->t_tid;
2075 kmem_stkinfo_log[index].cmd[0] = '\0';
2076 if (t->t_tid != 0) {
2077 stksz = strlen((t->t_procp)->p_user.u_comm);
2078 if (stksz >= KMEM_STKINFO_STR_SIZE) {
2079 stksz = KMEM_STKINFO_STR_SIZE - 1;
2080 kmem_stkinfo_log[index].cmd[stksz] = '\0';
2081 } else {
2082 stksz += 1;
2083 }
2084 (void) memcpy(kmem_stkinfo_log[index].cmd,
2085 (t->t_procp)->p_user.u_comm, stksz);
2086 }
2087 if (percent < smallest_percent) {
2088 smallest_percent = percent;
2089 }
2090 }
2091 mutex_exit(&kmem_stkinfo_lock);
2092 }
2093
2094 /*
2095 * Tunable kmem_stackinfo is set, compute stack utilization percentage.
2096 */
2097 static size_t
stkinfo_percent(caddr_t t_stk,caddr_t t_stkbase,caddr_t sp)2098 stkinfo_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
2099 {
2100 size_t percent;
2101 size_t s;
2102
2103 if (t_stk > t_stkbase) {
2104 /* stack grows down */
2105 if (sp > t_stk) {
2106 return (0);
2107 }
2108 if (sp < t_stkbase) {
2109 return (100);
2110 }
2111 percent = t_stk - sp + 1;
2112 s = t_stk - t_stkbase + 1;
2113 } else {
2114 /* stack grows up */
2115 if (sp < t_stk) {
2116 return (0);
2117 }
2118 if (sp > t_stkbase) {
2119 return (100);
2120 }
2121 percent = sp - t_stk + 1;
2122 s = t_stkbase - t_stk + 1;
2123 }
2124 percent = ((100 * percent) / s) + 1;
2125 if (percent > 100) {
2126 percent = 100;
2127 }
2128 return (percent);
2129 }
2130