xref: /freebsd/libexec/rtld-elf/rtld.c (revision 86f325711c07b723b85c031d581d0a5c1a0964f3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
5  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
6  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
7  * Copyright 2012 John Marino <draco@marino.st>.
8  * Copyright 2014-2017 The FreeBSD Foundation
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Konstantin Belousov
12  * under sponsorship from the FreeBSD Foundation.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Dynamic linker for ELF.
37  *
38  * John Polstra <jdp@polstra.com>.
39  */
40 
41 #include <sys/param.h>
42 #include <sys/ktrace.h>
43 #include <sys/mman.h>
44 #include <sys/mount.h>
45 #include <sys/stat.h>
46 #include <sys/sysctl.h>
47 #include <sys/uio.h>
48 #include <sys/utsname.h>
49 
50 #include <dlfcn.h>
51 #include <err.h>
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <stdarg.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>
59 
60 #include "debug.h"
61 #include "libmap.h"
62 #include "notes.h"
63 #include "rtld.h"
64 #include "rtld_libc.h"
65 #include "rtld_malloc.h"
66 #include "rtld_paths.h"
67 #include "rtld_printf.h"
68 #include "rtld_tls.h"
69 #include "rtld_utrace.h"
70 
71 /* Types. */
72 typedef void (*func_ptr_type)(void);
73 typedef void *(*path_enum_proc)(const char *path, size_t len, void *arg);
74 
75 /* Variables that cannot be static: */
76 extern struct r_debug r_debug; /* For GDB */
77 extern int _thread_autoinit_dummy_decl;
78 extern void (*__cleanup)(void);
79 
80 struct dlerror_save {
81 	int seen;
82 	char *msg;
83 };
84 
85 struct tcb_list_entry {
86 	TAILQ_ENTRY(tcb_list_entry)	next;
87 };
88 
89 /*
90  * Function declarations.
91  */
92 static bool allocate_tls_offset_common(size_t *offp, size_t tlssize,
93     size_t tlsalign, size_t tlspoffset);
94 static const char *basename(const char *);
95 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
96     const Elf_Dyn **, const Elf_Dyn **);
97 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
98     const Elf_Dyn *);
99 static bool digest_dynamic(Obj_Entry *, int);
100 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
101 static void distribute_static_tls(Objlist *);
102 static Obj_Entry *dlcheck(void *);
103 static int dlclose_locked(void *, RtldLockState *);
104 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
105     int lo_flags, int mode, RtldLockState *lockstate);
106 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
107 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
108 static bool donelist_check(DoneList *, const Obj_Entry *);
109 static void dump_auxv(Elf_Auxinfo **aux_info);
110 static void errmsg_restore(struct dlerror_save *);
111 static struct dlerror_save *errmsg_save(void);
112 static void *fill_search_info(const char *, size_t, void *);
113 static char *find_library(const char *, const Obj_Entry *, int *);
114 static const char *gethints(bool);
115 static void hold_object(Obj_Entry *);
116 static void unhold_object(Obj_Entry *);
117 static void init_dag(Obj_Entry *);
118 static void init_marker(Obj_Entry *);
119 static void init_pagesizes(Elf_Auxinfo **aux_info);
120 static void init_rtld(caddr_t, Elf_Auxinfo **);
121 static void initlist_add_neededs(Needed_Entry *, Objlist *, Objlist *);
122 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *,
123     Objlist *);
124 static void initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail,
125     Objlist *list);
126 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
127 static void linkmap_add(Obj_Entry *);
128 static void linkmap_delete(Obj_Entry *);
129 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
130 static void unload_filtees(Obj_Entry *, RtldLockState *);
131 static int load_needed_objects(Obj_Entry *, int);
132 static int load_preload_objects(const char *, bool);
133 static int load_kpreload(const void *addr);
134 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
135 static void map_stacks_exec(RtldLockState *);
136 static int obj_disable_relro(Obj_Entry *);
137 static int obj_enforce_relro(Obj_Entry *);
138 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
139 static void objlist_call_init(Objlist *, RtldLockState *);
140 static void objlist_clear(Objlist *);
141 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
142 static void objlist_init(Objlist *);
143 static void objlist_push_head(Objlist *, Obj_Entry *);
144 static void objlist_push_tail(Objlist *, Obj_Entry *);
145 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
146 static void objlist_remove(Objlist *, Obj_Entry *);
147 static int open_binary_fd(const char *argv0, bool search_in_path,
148     const char **binpath_res);
149 static int parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
150     const char **argv0, bool *dir_ignore);
151 static int parse_integer(const char *);
152 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
153 static void print_usage(const char *argv0);
154 static void release_object(Obj_Entry *);
155 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
156     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
157 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
158     int flags, RtldLockState *lockstate);
159 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
160     RtldLockState *);
161 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
162 static int rtld_dirname(const char *, char *);
163 static int rtld_dirname_abs(const char *, char *);
164 static void *rtld_dlopen(const char *name, int fd, int mode);
165 static void rtld_exit(void);
166 static void rtld_nop_exit(void);
167 static char *search_library_path(const char *, const char *, const char *,
168     int *);
169 static char *search_library_pathfds(const char *, const char *, int *);
170 static const void **get_program_var_addr(const char *, RtldLockState *);
171 static void set_program_var(const char *, const void *);
172 static int symlook_default(SymLook *, const Obj_Entry *refobj);
173 static int symlook_global(SymLook *, DoneList *);
174 static void symlook_init_from_req(SymLook *, const SymLook *);
175 static int symlook_list(SymLook *, const Objlist *, DoneList *);
176 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
177 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
178 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
179 static void *tls_get_addr_slow(struct tcb *, int, size_t, bool) __noinline;
180 static void trace_loaded_objects(Obj_Entry *, bool);
181 static void unlink_object(Obj_Entry *);
182 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
183 static void unref_dag(Obj_Entry *);
184 static void ref_dag(Obj_Entry *);
185 static char *origin_subst_one(Obj_Entry *, char *, const char *, const char *,
186     bool);
187 static char *origin_subst(Obj_Entry *, const char *);
188 static bool obj_resolve_origin(Obj_Entry *obj);
189 static void preinit_main(void);
190 static int rtld_verify_versions(const Objlist *);
191 static int rtld_verify_object_versions(Obj_Entry *);
192 static void object_add_name(Obj_Entry *, const char *);
193 static int object_match_name(const Obj_Entry *, const char *);
194 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
195 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
196     struct dl_phdr_info *phdr_info);
197 static uint32_t gnu_hash(const char *);
198 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
199     const unsigned long);
200 
201 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
202 void _r_debug_postinit(struct link_map *) __noinline __exported;
203 
204 int __sys_openat(int, const char *, int, ...);
205 
206 /*
207  * Data declarations.
208  */
209 struct r_debug r_debug __exported;  /* for GDB; */
210 static bool libmap_disable;	    /* Disable libmap */
211 static bool ld_loadfltr;	    /* Immediate filters processing */
212 static const char *libmap_override; /* Maps to use in addition to libmap.conf */
213 static bool trust;		    /* False for setuid and setgid programs */
214 static bool dangerous_ld_env;	    /* True if environment variables have been
215 				       used to affect the libraries loaded */
216 bool ld_bind_not;		    /* Disable PLT update */
217 static const char *ld_bind_now; /* Environment variable for immediate binding */
218 static const char *ld_debug;	/* Environment variable for debugging */
219 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
220 				       weak definition */
221 static const char *ld_library_path; /* Environment variable for search path */
222 static const char
223     *ld_library_dirs; /* Environment variable for library descriptors */
224 static const char *ld_preload;	   /* Environment variable for libraries to
225 				      load first */
226 static const char *ld_preload_fds; /* Environment variable for libraries
227 				    represented by descriptors */
228 static const char
229     *ld_elf_hints_path; /* Environment variable for alternative hints path */
230 static const char *ld_tracing;	    /* Called from ldd to print libs */
231 static const char *ld_utrace;	    /* Use utrace() to log events. */
232 static struct obj_entry_q obj_list; /* Queue of all loaded objects */
233 static Obj_Entry *obj_main;	    /* The main program shared object */
234 static Obj_Entry obj_rtld;	    /* The dynamic linker shared object */
235 static unsigned int obj_count;	    /* Number of objects in obj_list */
236 static unsigned int obj_loads;	    /* Number of loads of objects (gen count) */
237 size_t ld_static_tls_extra =	    /* Static TLS extra space (bytes) */
238     RTLD_STATIC_TLS_EXTRA;
239 
240 static Objlist list_global = /* Objects dlopened with RTLD_GLOBAL */
241     STAILQ_HEAD_INITIALIZER(list_global);
242 static Objlist list_main = /* Objects loaded at program startup */
243     STAILQ_HEAD_INITIALIZER(list_main);
244 static Objlist list_fini = /* Objects needing fini() calls */
245     STAILQ_HEAD_INITIALIZER(list_fini);
246 
247 Elf_Sym sym_zero; /* For resolving undefined weak refs. */
248 
249 #define GDB_STATE(s, m)      \
250 	r_debug.r_state = s; \
251 	r_debug_state(&r_debug, m);
252 
253 extern Elf_Dyn _DYNAMIC;
254 #pragma weak _DYNAMIC
255 
256 int dlclose(void *) __exported;
257 char *dlerror(void) __exported;
258 void *dlopen(const char *, int) __exported;
259 void *fdlopen(int, int) __exported;
260 void *dlsym(void *, const char *) __exported;
261 dlfunc_t dlfunc(void *, const char *) __exported;
262 void *dlvsym(void *, const char *, const char *) __exported;
263 int dladdr(const void *, Dl_info *) __exported;
264 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
265     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
266 int dlinfo(void *, int, void *) __exported;
267 int _dl_iterate_phdr_locked(__dl_iterate_hdr_callback, void *) __exported;
268 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
269 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
270 int _rtld_get_stack_prot(void) __exported;
271 int _rtld_is_dlopened(void *) __exported;
272 void _rtld_error(const char *, ...) __exported;
273 const char *rtld_get_var(const char *name) __exported;
274 int rtld_set_var(const char *name, const char *val) __exported;
275 
276 /* Only here to fix -Wmissing-prototypes warnings */
277 int __getosreldate(void);
278 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
279 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
280 
281 int npagesizes;
282 static int osreldate;
283 size_t *pagesizes;
284 size_t page_size;
285 
286 static int stack_prot = PROT_READ | PROT_WRITE | PROT_EXEC;
287 static int max_stack_flags;
288 
289 /*
290  * Global declarations normally provided by crt1.  The dynamic linker is
291  * not built with crt1, so we have to provide them ourselves.
292  */
293 char *__progname;
294 char **environ;
295 
296 /*
297  * Used to pass argc, argv to init functions.
298  */
299 int main_argc;
300 char **main_argv;
301 
302 /*
303  * Globals to control TLS allocation.
304  */
305 size_t tls_last_offset;	 /* Static TLS offset of last module */
306 size_t tls_last_size;	 /* Static TLS size of last module */
307 size_t tls_static_space; /* Static TLS space allocated */
308 static size_t tls_static_max_align;
309 Elf_Addr tls_dtv_generation = 1; /* Used to detect when dtv size changes */
310 int tls_max_index = 1;		 /* Largest module index allocated */
311 
312 static TAILQ_HEAD(, tcb_list_entry) tcb_list =
313     TAILQ_HEAD_INITIALIZER(tcb_list);
314 static size_t tcb_list_entry_offset;
315 
316 static bool ld_library_path_rpath = false;
317 bool ld_fast_sigblock = false;
318 
319 /*
320  * Globals for path names, and such
321  */
322 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
323 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
324 const char *ld_path_rtld = _PATH_RTLD;
325 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
326 const char *ld_env_prefix = LD_;
327 
328 static void (*rtld_exit_ptr)(void);
329 
330 /*
331  * Fill in a DoneList with an allocation large enough to hold all of
332  * the currently-loaded objects.  Keep this as a macro since it calls
333  * alloca and we want that to occur within the scope of the caller.
334  */
335 #define donelist_init(dlp)                                             \
336 	((dlp)->objs = alloca(obj_count * sizeof(dlp)->objs[0]),       \
337 	    assert((dlp)->objs != NULL), (dlp)->num_alloc = obj_count, \
338 	    (dlp)->num_used = 0)
339 
340 #define LD_UTRACE(e, h, mb, ms, r, n)                      \
341 	do {                                               \
342 		if (ld_utrace != NULL)                     \
343 			ld_utrace_log(e, h, mb, ms, r, n); \
344 	} while (0)
345 
346 static void
ld_utrace_log(int event,void * handle,void * mapbase,size_t mapsize,int refcnt,const char * name)347 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
348     int refcnt, const char *name)
349 {
350 	struct utrace_rtld ut;
351 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] __nonstring =
352 	    RTLD_UTRACE_SIG;
353 
354 	memset(&ut, 0, sizeof(ut));	/* clear holes */
355 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
356 	ut.event = event;
357 	ut.handle = handle;
358 	ut.mapbase = mapbase;
359 	ut.mapsize = mapsize;
360 	ut.refcnt = refcnt;
361 	if (name != NULL)
362 		strlcpy(ut.name, name, sizeof(ut.name));
363 	utrace(&ut, sizeof(ut));
364 }
365 
366 struct ld_env_var_desc {
367 	const char *const n;
368 	const char *val;
369 	const bool unsecure : 1;
370 	const bool can_update : 1;
371 	const bool debug : 1;
372 	bool owned : 1;
373 };
374 #define LD_ENV_DESC(var, unsec, ...) \
375 	[LD_##var] = { .n = #var, .unsecure = unsec, __VA_ARGS__ }
376 
377 static struct ld_env_var_desc ld_env_vars[] = {
378 	LD_ENV_DESC(BIND_NOW, false),
379 	LD_ENV_DESC(PRELOAD, true),
380 	LD_ENV_DESC(LIBMAP, true),
381 	LD_ENV_DESC(LIBRARY_PATH, true, .can_update = true),
382 	LD_ENV_DESC(LIBRARY_PATH_FDS, true, .can_update = true),
383 	LD_ENV_DESC(LIBMAP_DISABLE, true),
384 	LD_ENV_DESC(BIND_NOT, true),
385 	LD_ENV_DESC(DEBUG, true, .can_update = true, .debug = true),
386 	LD_ENV_DESC(ELF_HINTS_PATH, true),
387 	LD_ENV_DESC(LOADFLTR, true),
388 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true, .can_update = true),
389 	LD_ENV_DESC(PRELOAD_FDS, true),
390 	LD_ENV_DESC(DYNAMIC_WEAK, true, .can_update = true),
391 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
392 	LD_ENV_DESC(UTRACE, false, .can_update = true),
393 	LD_ENV_DESC(DUMP_REL_PRE, false, .can_update = true),
394 	LD_ENV_DESC(DUMP_REL_POST, false, .can_update = true),
395 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
396 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
397 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
398 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
399 	LD_ENV_DESC(SHOW_AUXV, true),
400 	LD_ENV_DESC(STATIC_TLS_EXTRA, false),
401 	LD_ENV_DESC(NO_DL_ITERATE_PHDR_AFTER_FORK, false),
402 };
403 
404 const char *
ld_get_env_var(int idx)405 ld_get_env_var(int idx)
406 {
407 	return (ld_env_vars[idx].val);
408 }
409 
410 static const char *
rtld_get_env_val(char ** env,const char * name,size_t name_len)411 rtld_get_env_val(char **env, const char *name, size_t name_len)
412 {
413 	char **m, *n, *v;
414 
415 	for (m = env; *m != NULL; m++) {
416 		n = *m;
417 		v = strchr(n, '=');
418 		if (v == NULL) {
419 			/* corrupt environment? */
420 			continue;
421 		}
422 		if (v - n == (ptrdiff_t)name_len &&
423 		    strncmp(name, n, name_len) == 0)
424 			return (v + 1);
425 	}
426 	return (NULL);
427 }
428 
429 static void
rtld_init_env_vars_for_prefix(char ** env,const char * env_prefix)430 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
431 {
432 	struct ld_env_var_desc *lvd;
433 	size_t prefix_len, nlen;
434 	char **m, *n, *v;
435 	int i;
436 
437 	prefix_len = strlen(env_prefix);
438 	for (m = env; *m != NULL; m++) {
439 		n = *m;
440 		if (strncmp(env_prefix, n, prefix_len) != 0) {
441 			/* Not a rtld environment variable. */
442 			continue;
443 		}
444 		n += prefix_len;
445 		v = strchr(n, '=');
446 		if (v == NULL) {
447 			/* corrupt environment? */
448 			continue;
449 		}
450 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
451 			lvd = &ld_env_vars[i];
452 			if (lvd->val != NULL) {
453 				/* Saw higher-priority variable name already. */
454 				continue;
455 			}
456 			nlen = strlen(lvd->n);
457 			if (v - n == (ptrdiff_t)nlen &&
458 			    strncmp(lvd->n, n, nlen) == 0) {
459 				lvd->val = v + 1;
460 				break;
461 			}
462 		}
463 	}
464 }
465 
466 static void
rtld_init_env_vars(char ** env)467 rtld_init_env_vars(char **env)
468 {
469 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
470 }
471 
472 static void
set_ld_elf_hints_path(void)473 set_ld_elf_hints_path(void)
474 {
475 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
476 		ld_elf_hints_path = ld_elf_hints_default;
477 }
478 
479 uintptr_t
rtld_round_page(uintptr_t x)480 rtld_round_page(uintptr_t x)
481 {
482 	return (roundup2(x, page_size));
483 }
484 
485 uintptr_t
rtld_trunc_page(uintptr_t x)486 rtld_trunc_page(uintptr_t x)
487 {
488 	return (rounddown2(x, page_size));
489 }
490 
491 /*
492  * Main entry point for dynamic linking.  The first argument is the
493  * stack pointer.  The stack is expected to be laid out as described
494  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
495  * Specifically, the stack pointer points to a word containing
496  * ARGC.  Following that in the stack is a null-terminated sequence
497  * of pointers to argument strings.  Then comes a null-terminated
498  * sequence of pointers to environment strings.  Finally, there is a
499  * sequence of "auxiliary vector" entries.
500  *
501  * The second argument points to a place to store the dynamic linker's
502  * exit procedure pointer and the third to a place to store the main
503  * program's object.
504  *
505  * The return value is the main program's entry point.
506  */
507 func_ptr_type
_rtld(Elf_Addr * sp,func_ptr_type * exit_proc,Obj_Entry ** objp)508 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
509 {
510 	Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT], auxtmp;
511 	Objlist_Entry *entry;
512 	Obj_Entry *last_interposer, *obj, *preload_tail;
513 	const Elf_Phdr *phdr;
514 	Objlist initlist;
515 	RtldLockState lockstate;
516 	struct stat st;
517 	Elf_Addr *argcp;
518 	char **argv, **env, **envp, *kexecpath;
519 	const char *argv0, *binpath, *library_path_rpath, *static_tls_extra;
520 	struct ld_env_var_desc *lvd;
521 	caddr_t imgentry;
522 	char buf[MAXPATHLEN];
523 	int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
524 	size_t sz;
525 	bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
526 
527 	/*
528 	 * On entry, the dynamic linker itself has not been relocated yet.
529 	 * Be very careful not to reference any global data until after
530 	 * init_rtld has returned.  It is OK to reference file-scope statics
531 	 * and string constants, and to call static and global functions.
532 	 */
533 
534 	/* Find the auxiliary vector on the stack. */
535 	argcp = sp;
536 	argc = *sp++;
537 	argv = (char **)sp;
538 	sp += argc + 1; /* Skip over arguments and NULL terminator */
539 	env = (char **)sp;
540 	while (*sp++ != 0) /* Skip over environment, and NULL terminator */
541 		;
542 	aux = (Elf_Auxinfo *)sp;
543 
544 	/* Digest the auxiliary vector. */
545 	for (i = 0; i < AT_COUNT; i++)
546 		aux_info[i] = NULL;
547 	for (auxp = aux; auxp->a_type != AT_NULL; auxp++) {
548 		if (auxp->a_type < AT_COUNT)
549 			aux_info[auxp->a_type] = auxp;
550 	}
551 	arch_fix_auxv(aux, aux_info);
552 
553 	/* Initialize and relocate ourselves. */
554 	assert(aux_info[AT_BASE] != NULL);
555 	init_rtld((caddr_t)aux_info[AT_BASE]->a_un.a_ptr, aux_info);
556 
557 	dlerror_dflt_init();
558 
559 	__progname = obj_rtld.path;
560 	argv0 = argv[0] != NULL ? argv[0] : "(null)";
561 	environ = env;
562 	main_argc = argc;
563 	main_argv = argv;
564 
565 	if (aux_info[AT_BSDFLAGS] != NULL &&
566 	    (aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
567 		ld_fast_sigblock = true;
568 
569 	trust = !issetugid();
570 	direct_exec = false;
571 
572 	md_abi_variant_hook(aux_info);
573 	rtld_init_env_vars(env);
574 
575 	fd = -1;
576 	if (aux_info[AT_EXECFD] != NULL) {
577 		fd = aux_info[AT_EXECFD]->a_un.a_val;
578 	} else {
579 		assert(aux_info[AT_PHDR] != NULL);
580 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
581 		if (phdr == obj_rtld.phdr) {
582 			if (!trust) {
583 				_rtld_error(
584 				    "Tainted process refusing to run binary %s",
585 				    argv0);
586 				rtld_die();
587 			}
588 			direct_exec = true;
589 
590 			dbg("opening main program in direct exec mode");
591 			if (argc >= 2) {
592 				rtld_argc = parse_args(argv, argc,
593 				    &search_in_path, &fd, &argv0, &dir_ignore);
594 				explicit_fd = (fd != -1);
595 				binpath = NULL;
596 				if (!explicit_fd)
597 					fd = open_binary_fd(argv0,
598 					    search_in_path, &binpath);
599 				if (fstat(fd, &st) == -1) {
600 					_rtld_error(
601 					    "Failed to fstat FD %d (%s): %s",
602 					    fd,
603 					    explicit_fd ?
604 						"user-provided descriptor" :
605 						argv0,
606 					    rtld_strerror(errno));
607 					rtld_die();
608 				}
609 
610 				/*
611 				 * Rough emulation of the permission checks done
612 				 * by execve(2), only Unix DACs are checked,
613 				 * ACLs are ignored.  Preserve the semantic of
614 				 * disabling owner to execute if owner x bit is
615 				 * cleared, even if others x bit is enabled.
616 				 * mmap(2) does not allow to mmap with PROT_EXEC
617 				 * if binary' file comes from noexec mount.  We
618 				 * cannot set a text reference on the binary.
619 				 */
620 				dir_enable = false;
621 				if (st.st_uid == geteuid()) {
622 					if ((st.st_mode & S_IXUSR) != 0)
623 						dir_enable = true;
624 				} else if (st.st_gid == getegid()) {
625 					if ((st.st_mode & S_IXGRP) != 0)
626 						dir_enable = true;
627 				} else if ((st.st_mode & S_IXOTH) != 0) {
628 					dir_enable = true;
629 				}
630 				if (!dir_enable && !dir_ignore) {
631 					_rtld_error(
632 				    "No execute permission for binary %s",
633 					    argv0);
634 					rtld_die();
635 				}
636 
637 				/*
638 				 * For direct exec mode, argv[0] is the
639 				 * interpreter name, we must remove it and shift
640 				 * arguments left before invoking binary main.
641 				 * Since stack layout places environment
642 				 * pointers and aux vectors right after the
643 				 * terminating NULL, we must shift environment
644 				 * and aux as well.
645 				 */
646 				main_argc = argc - rtld_argc;
647 				for (i = 0; i <= main_argc; i++)
648 					argv[i] = argv[i + rtld_argc];
649 				*argcp -= rtld_argc;
650 				environ = env = envp = argv + main_argc + 1;
651 				dbg("move env from %p to %p", envp + rtld_argc,
652 				    envp);
653 				do {
654 					*envp = *(envp + rtld_argc);
655 				} while (*envp++ != NULL);
656 				aux = auxp = (Elf_Auxinfo *)envp;
657 				auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
658 				dbg("move aux from %p to %p", auxpf, aux);
659 				/*
660 				 * XXXKIB insert place for AT_EXECPATH if not
661 				 * present
662 				 */
663 				for (;; auxp++, auxpf++) {
664 					/*
665 					 * NB: Use a temporary since *auxpf and
666 					 * *auxp overlap if rtld_argc is 1
667 					 */
668 					auxtmp = *auxpf;
669 					*auxp = auxtmp;
670 					if (auxp->a_type == AT_NULL)
671 						break;
672 				}
673 				/*
674 				 * Since the auxiliary vector has moved,
675 				 * redigest it.
676 				 */
677 				for (i = 0; i < AT_COUNT; i++)
678 					aux_info[i] = NULL;
679 				for (auxp = aux; auxp->a_type != AT_NULL;
680 				    auxp++) {
681 					if (auxp->a_type < AT_COUNT)
682 						aux_info[auxp->a_type] = auxp;
683 				}
684 
685 				/*
686 				 * Point AT_EXECPATH auxv and aux_info to the
687 				 * binary path.
688 				 */
689 				if (binpath == NULL) {
690 					aux_info[AT_EXECPATH] = NULL;
691 				} else {
692 					if (aux_info[AT_EXECPATH] == NULL) {
693 						aux_info[AT_EXECPATH] = xmalloc(
694 						    sizeof(Elf_Auxinfo));
695 						aux_info[AT_EXECPATH]->a_type =
696 						    AT_EXECPATH;
697 					}
698 					aux_info[AT_EXECPATH]->a_un.a_ptr =
699 					    __DECONST(void *, binpath);
700 				}
701 			} else {
702 				_rtld_error("No binary");
703 				rtld_die();
704 			}
705 		}
706 	}
707 
708 	ld_bind_now = ld_get_env_var(LD_BIND_NOW);
709 
710 	/*
711 	 * If the process is tainted, then we un-set the dangerous environment
712 	 * variables.  The process will be marked as tainted until setuid(2)
713 	 * is called.  If any child process calls setuid(2) we do not want any
714 	 * future processes to honor the potentially un-safe variables.
715 	 */
716 	if (!trust) {
717 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
718 			lvd = &ld_env_vars[i];
719 			if (lvd->unsecure)
720 				lvd->val = NULL;
721 		}
722 	}
723 
724 	ld_debug = ld_get_env_var(LD_DEBUG);
725 	if (ld_bind_now == NULL)
726 		ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
727 	ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
728 	libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
729 	libmap_override = ld_get_env_var(LD_LIBMAP);
730 	ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
731 	ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
732 	ld_preload = ld_get_env_var(LD_PRELOAD);
733 	ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
734 	ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
735 	ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
736 	library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
737 	if (library_path_rpath != NULL) {
738 		if (library_path_rpath[0] == 'y' ||
739 		    library_path_rpath[0] == 'Y' ||
740 		    library_path_rpath[0] == '1')
741 			ld_library_path_rpath = true;
742 		else
743 			ld_library_path_rpath = false;
744 	}
745 	static_tls_extra = ld_get_env_var(LD_STATIC_TLS_EXTRA);
746 	if (static_tls_extra != NULL && static_tls_extra[0] != '\0') {
747 		sz = parse_integer(static_tls_extra);
748 		if (sz >= RTLD_STATIC_TLS_EXTRA && sz <= SIZE_T_MAX)
749 			ld_static_tls_extra = sz;
750 	}
751 	dangerous_ld_env = libmap_disable || libmap_override != NULL ||
752 	    ld_library_path != NULL || ld_preload != NULL ||
753 	    ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak ||
754 	    static_tls_extra != NULL;
755 	ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
756 	ld_utrace = ld_get_env_var(LD_UTRACE);
757 
758 	set_ld_elf_hints_path();
759 	if (ld_debug != NULL && *ld_debug != '\0')
760 		debug = 1;
761 	dbg("%s is initialized, base address = %p", __progname,
762 	    (caddr_t)aux_info[AT_BASE]->a_un.a_ptr);
763 	dbg("RTLD dynamic = %p", obj_rtld.dynamic);
764 	dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
765 
766 	dbg("initializing thread locks");
767 	lockdflt_init();
768 
769 	/*
770 	 * Load the main program, or process its program header if it is
771 	 * already loaded.
772 	 */
773 	if (fd != -1) { /* Load the main program. */
774 		dbg("loading main program");
775 		obj_main = map_object(fd, argv0, NULL, true);
776 		close(fd);
777 		if (obj_main == NULL)
778 			rtld_die();
779 		max_stack_flags = obj_main->stack_flags;
780 	} else { /* Main program already loaded. */
781 		dbg("processing main program's program header");
782 		assert(aux_info[AT_PHDR] != NULL);
783 		phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
784 		assert(aux_info[AT_PHNUM] != NULL);
785 		phnum = aux_info[AT_PHNUM]->a_un.a_val;
786 		assert(aux_info[AT_PHENT] != NULL);
787 		assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
788 		assert(aux_info[AT_ENTRY] != NULL);
789 		imgentry = (caddr_t)aux_info[AT_ENTRY]->a_un.a_ptr;
790 		if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) ==
791 		    NULL)
792 			rtld_die();
793 	}
794 
795 	if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
796 		kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
797 		dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
798 		if (kexecpath[0] == '/')
799 			obj_main->path = kexecpath;
800 		else if (getcwd(buf, sizeof(buf)) == NULL ||
801 		    strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
802 		    strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
803 			obj_main->path = xstrdup(argv0);
804 		else
805 			obj_main->path = xstrdup(buf);
806 	} else {
807 		dbg("No AT_EXECPATH or direct exec");
808 		obj_main->path = xstrdup(argv0);
809 	}
810 	dbg("obj_main path %s", obj_main->path);
811 	obj_main->mainprog = true;
812 
813 	if (aux_info[AT_STACKPROT] != NULL &&
814 	    aux_info[AT_STACKPROT]->a_un.a_val != 0)
815 		stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
816 
817 #ifndef COMPAT_libcompat
818 	/*
819 	 * Get the actual dynamic linker pathname from the executable if
820 	 * possible.  (It should always be possible.)  That ensures that
821 	 * gdb will find the right dynamic linker even if a non-standard
822 	 * one is being used.
823 	 */
824 	if (obj_main->interp != NULL &&
825 	    strcmp(obj_main->interp, obj_rtld.path) != 0) {
826 		free(obj_rtld.path);
827 		obj_rtld.path = xstrdup(obj_main->interp);
828 		__progname = obj_rtld.path;
829 	}
830 #endif
831 
832 	if (!digest_dynamic(obj_main, 0))
833 		rtld_die();
834 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
835 	    obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
836 	    obj_main->dynsymcount);
837 
838 	linkmap_add(obj_main);
839 	linkmap_add(&obj_rtld);
840 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj_main, obj_main->mapbase,
841 	    obj_main->mapsize, 0, obj_main->path);
842 	LD_UTRACE(UTRACE_LOAD_OBJECT, &obj_rtld, obj_rtld.mapbase,
843 	    obj_rtld.mapsize, 0, obj_rtld.path);
844 
845 	/* Link the main program into the list of objects. */
846 	TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
847 	obj_count++;
848 	obj_loads++;
849 
850 	/* Initialize a fake symbol for resolving undefined weak references. */
851 	sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
852 	sym_zero.st_shndx = SHN_UNDEF;
853 	sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
854 
855 	if (!libmap_disable)
856 		libmap_disable = (bool)lm_init(libmap_override);
857 
858 	if (aux_info[AT_KPRELOAD] != NULL &&
859 	    aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
860 		dbg("loading kernel vdso");
861 		if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
862 			rtld_die();
863 	}
864 
865 	dbg("loading LD_PRELOAD_FDS libraries");
866 	if (load_preload_objects(ld_preload_fds, true) == -1)
867 		rtld_die();
868 
869 	dbg("loading LD_PRELOAD libraries");
870 	if (load_preload_objects(ld_preload, false) == -1)
871 		rtld_die();
872 	preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
873 
874 	dbg("loading needed objects");
875 	if (load_needed_objects(obj_main,
876 		ld_tracing != NULL ? RTLD_LO_TRACE : 0) == -1)
877 		rtld_die();
878 
879 	/* Make a list of all objects loaded at startup. */
880 	last_interposer = obj_main;
881 	TAILQ_FOREACH(obj, &obj_list, next) {
882 		if (obj->marker)
883 			continue;
884 		if (obj->z_interpose && obj != obj_main) {
885 			objlist_put_after(&list_main, last_interposer, obj);
886 			last_interposer = obj;
887 		} else {
888 			objlist_push_tail(&list_main, obj);
889 		}
890 		obj->refcount++;
891 	}
892 
893 	dbg("checking for required versions");
894 	if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
895 		rtld_die();
896 
897 	if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
898 		dump_auxv(aux_info);
899 
900 	if (ld_tracing) { /* We're done */
901 		trace_loaded_objects(obj_main, true);
902 		exit(0);
903 	}
904 
905 	if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
906 		dump_relocations(obj_main);
907 		exit(0);
908 	}
909 
910 	/*
911 	 * Processing tls relocations requires having the tls offsets
912 	 * initialized.  Prepare offsets before starting initial
913 	 * relocation processing.
914 	 */
915 	dbg("initializing initial thread local storage offsets");
916 	STAILQ_FOREACH(entry, &list_main, link) {
917 		/*
918 		 * Allocate all the initial objects out of the static TLS
919 		 * block even if they didn't ask for it.
920 		 */
921 		allocate_tls_offset(entry->obj);
922 	}
923 
924 	if (!allocate_tls_offset_common(&tcb_list_entry_offset,
925 	    sizeof(struct tcb_list_entry), _Alignof(struct tcb_list_entry),
926 	    0)) {
927 		/*
928 		 * This should be impossible as the static block size is not
929 		 * yet fixed, but catch and diagnose it failing if that ever
930 		 * changes or somehow turns out to be false.
931 		 */
932 		_rtld_error("Could not allocate offset for tcb_list_entry");
933 		rtld_die();
934 	}
935 	dbg("tcb_list_entry_offset %zu", tcb_list_entry_offset);
936 
937 	if (relocate_objects(obj_main,
938 		ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld,
939 		SYMLOOK_EARLY, NULL) == -1)
940 		rtld_die();
941 
942 	dbg("doing copy relocations");
943 	if (do_copy_relocations(obj_main) == -1)
944 		rtld_die();
945 
946 	if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
947 		dump_relocations(obj_main);
948 		exit(0);
949 	}
950 
951 	ifunc_init(aux_info);
952 
953 	/*
954 	 * Setup TLS for main thread.  This must be done after the
955 	 * relocations are processed, since tls initialization section
956 	 * might be the subject for relocations.
957 	 */
958 	dbg("initializing initial thread local storage");
959 	allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
960 
961 	dbg("initializing key program variables");
962 	set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
963 	set_program_var("environ", env);
964 	set_program_var("__elf_aux_vector", aux);
965 
966 	/* Make a list of init functions to call. */
967 	objlist_init(&initlist);
968 	initlist_for_loaded_obj(globallist_curr(TAILQ_FIRST(&obj_list)),
969 	    preload_tail, &initlist);
970 
971 	r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
972 
973 	map_stacks_exec(NULL);
974 
975 	if (!obj_main->crt_no_init) {
976 		/*
977 		 * Make sure we don't call the main program's init and fini
978 		 * functions for binaries linked with old crt1 which calls
979 		 * _init itself.
980 		 */
981 		obj_main->init = obj_main->fini = (Elf_Addr)NULL;
982 		obj_main->preinit_array = obj_main->init_array =
983 		    obj_main->fini_array = (Elf_Addr)NULL;
984 	}
985 
986 	if (direct_exec) {
987 		/* Set osrel for direct-execed binary */
988 		mib[0] = CTL_KERN;
989 		mib[1] = KERN_PROC;
990 		mib[2] = KERN_PROC_OSREL;
991 		mib[3] = getpid();
992 		osrel = obj_main->osrel;
993 		sz = sizeof(old_osrel);
994 		dbg("setting osrel to %d", osrel);
995 		(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
996 	}
997 
998 	wlock_acquire(rtld_bind_lock, &lockstate);
999 
1000 	dbg("resolving ifuncs");
1001 	if (initlist_objects_ifunc(&initlist,
1002 		ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
1003 		&lockstate) == -1)
1004 		rtld_die();
1005 
1006 	rtld_exit_ptr = rtld_exit;
1007 	if (obj_main->crt_no_init)
1008 		preinit_main();
1009 	objlist_call_init(&initlist, &lockstate);
1010 	_r_debug_postinit(&obj_main->linkmap);
1011 	objlist_clear(&initlist);
1012 	dbg("loading filtees");
1013 	TAILQ_FOREACH(obj, &obj_list, next) {
1014 		if (obj->marker)
1015 			continue;
1016 		if (ld_loadfltr || obj->z_loadfltr)
1017 			load_filtees(obj, 0, &lockstate);
1018 	}
1019 
1020 	dbg("enforcing main obj relro");
1021 	if (obj_enforce_relro(obj_main) == -1)
1022 		rtld_die();
1023 
1024 	lock_release(rtld_bind_lock, &lockstate);
1025 
1026 	dbg("transferring control to program entry point = %p",
1027 	    obj_main->entry);
1028 
1029 	/* Return the exit procedure and the program entry point. */
1030 	*exit_proc = rtld_exit_ptr;
1031 	*objp = obj_main;
1032 	return ((func_ptr_type)obj_main->entry);
1033 }
1034 
1035 void *
rtld_resolve_ifunc(const Obj_Entry * obj,const Elf_Sym * def)1036 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
1037 {
1038 	void *ptr;
1039 	Elf_Addr target;
1040 
1041 	ptr = (void *)make_function_pointer(def, obj);
1042 	target = call_ifunc_resolver(ptr);
1043 	return ((void *)target);
1044 }
1045 
1046 Elf_Addr
_rtld_bind(Obj_Entry * obj,Elf_Size reloff)1047 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
1048 {
1049 	const Elf_Rel *rel;
1050 	const Elf_Sym *def;
1051 	const Obj_Entry *defobj;
1052 	Elf_Addr *where;
1053 	Elf_Addr target;
1054 	RtldLockState lockstate;
1055 
1056 relock:
1057 	rlock_acquire(rtld_bind_lock, &lockstate);
1058 	if (sigsetjmp(lockstate.env, 0) != 0)
1059 		lock_upgrade(rtld_bind_lock, &lockstate);
1060 	if (obj->pltrel)
1061 		rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
1062 	else
1063 		rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
1064 
1065 	where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
1066 	def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
1067 	    NULL, &lockstate);
1068 	if (def == NULL)
1069 		rtld_die();
1070 	if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
1071 		if (lockstate_wlocked(&lockstate)) {
1072 			lock_release(rtld_bind_lock, &lockstate);
1073 			goto relock;
1074 		}
1075 		target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
1076 	} else {
1077 		target = (Elf_Addr)(defobj->relocbase + def->st_value);
1078 	}
1079 
1080 	dbg("\"%s\" in \"%s\" ==> %p in \"%s\"", defobj->strtab + def->st_name,
1081 	    obj->path == NULL ? NULL : basename(obj->path), (void *)target,
1082 	    defobj->path == NULL ? NULL : basename(defobj->path));
1083 
1084 	/*
1085 	 * Write the new contents for the jmpslot. Note that depending on
1086 	 * architecture, the value which we need to return back to the
1087 	 * lazy binding trampoline may or may not be the target
1088 	 * address. The value returned from reloc_jmpslot() is the value
1089 	 * that the trampoline needs.
1090 	 */
1091 	target = reloc_jmpslot(where, target, defobj, obj, rel);
1092 	lock_release(rtld_bind_lock, &lockstate);
1093 	return (target);
1094 }
1095 
1096 /*
1097  * Error reporting function.  Use it like printf.  If formats the message
1098  * into a buffer, and sets things up so that the next call to dlerror()
1099  * will return the message.
1100  */
1101 void
_rtld_error(const char * fmt,...)1102 _rtld_error(const char *fmt, ...)
1103 {
1104 	va_list ap;
1105 
1106 	va_start(ap, fmt);
1107 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz, fmt,
1108 	    ap);
1109 	va_end(ap);
1110 	*lockinfo.dlerror_seen() = 0;
1111 	dbg("rtld_error: %s", lockinfo.dlerror_loc());
1112 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
1113 }
1114 
1115 /*
1116  * Return a dynamically-allocated copy of the current error message, if any.
1117  */
1118 static struct dlerror_save *
errmsg_save(void)1119 errmsg_save(void)
1120 {
1121 	struct dlerror_save *res;
1122 
1123 	res = xmalloc(sizeof(*res));
1124 	res->seen = *lockinfo.dlerror_seen();
1125 	if (res->seen == 0)
1126 		res->msg = xstrdup(lockinfo.dlerror_loc());
1127 	return (res);
1128 }
1129 
1130 /*
1131  * Restore the current error message from a copy which was previously saved
1132  * by errmsg_save().  The copy is freed.
1133  */
1134 static void
errmsg_restore(struct dlerror_save * saved_msg)1135 errmsg_restore(struct dlerror_save *saved_msg)
1136 {
1137 	if (saved_msg == NULL || saved_msg->seen == 1) {
1138 		*lockinfo.dlerror_seen() = 1;
1139 	} else {
1140 		*lockinfo.dlerror_seen() = 0;
1141 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
1142 		    lockinfo.dlerror_loc_sz);
1143 		free(saved_msg->msg);
1144 	}
1145 	free(saved_msg);
1146 }
1147 
1148 static const char *
basename(const char * name)1149 basename(const char *name)
1150 {
1151 	const char *p;
1152 
1153 	p = strrchr(name, '/');
1154 	return (p != NULL ? p + 1 : name);
1155 }
1156 
1157 static struct utsname uts;
1158 
1159 static char *
origin_subst_one(Obj_Entry * obj,char * real,const char * kw,const char * subst,bool may_free)1160 origin_subst_one(Obj_Entry *obj, char *real, const char *kw, const char *subst,
1161     bool may_free)
1162 {
1163 	char *p, *p1, *res, *resp;
1164 	int subst_len, kw_len, subst_count, old_len, new_len;
1165 
1166 	kw_len = strlen(kw);
1167 
1168 	/*
1169 	 * First, count the number of the keyword occurrences, to
1170 	 * preallocate the final string.
1171 	 */
1172 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
1173 		p1 = strstr(p, kw);
1174 		if (p1 == NULL)
1175 			break;
1176 	}
1177 
1178 	/*
1179 	 * If the keyword is not found, just return.
1180 	 *
1181 	 * Return non-substituted string if resolution failed.  We
1182 	 * cannot do anything more reasonable, the failure mode of the
1183 	 * caller is unresolved library anyway.
1184 	 */
1185 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
1186 		return (may_free ? real : xstrdup(real));
1187 	if (obj != NULL)
1188 		subst = obj->origin_path;
1189 
1190 	/*
1191 	 * There is indeed something to substitute.  Calculate the
1192 	 * length of the resulting string, and allocate it.
1193 	 */
1194 	subst_len = strlen(subst);
1195 	old_len = strlen(real);
1196 	new_len = old_len + (subst_len - kw_len) * subst_count;
1197 	res = xmalloc(new_len + 1);
1198 
1199 	/*
1200 	 * Now, execute the substitution loop.
1201 	 */
1202 	for (p = real, resp = res, *resp = '\0';;) {
1203 		p1 = strstr(p, kw);
1204 		if (p1 != NULL) {
1205 			/* Copy the prefix before keyword. */
1206 			memcpy(resp, p, p1 - p);
1207 			resp += p1 - p;
1208 			/* Keyword replacement. */
1209 			memcpy(resp, subst, subst_len);
1210 			resp += subst_len;
1211 			*resp = '\0';
1212 			p = p1 + kw_len;
1213 		} else
1214 			break;
1215 	}
1216 
1217 	/* Copy to the end of string and finish. */
1218 	strcat(resp, p);
1219 	if (may_free)
1220 		free(real);
1221 	return (res);
1222 }
1223 
1224 static const struct {
1225 	const char *kw;
1226 	bool pass_obj;
1227 	const char *subst;
1228 } tokens[] = {
1229 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
1230 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
1231 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
1232 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
1233 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
1234 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
1235 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
1236 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
1237 	{ .kw = "$LIB", .pass_obj = false, .subst = TOKEN_LIB },
1238 	{ .kw = "${LIB}", .pass_obj = false, .subst = TOKEN_LIB },
1239 };
1240 
1241 static char *
origin_subst(Obj_Entry * obj,const char * real)1242 origin_subst(Obj_Entry *obj, const char *real)
1243 {
1244 	char *res;
1245 	int i;
1246 
1247 	if (obj == NULL || !trust)
1248 		return (xstrdup(real));
1249 	if (uts.sysname[0] == '\0') {
1250 		if (uname(&uts) != 0) {
1251 			_rtld_error("utsname failed: %d", errno);
1252 			return (NULL);
1253 		}
1254 	}
1255 
1256 	/* __DECONST is safe here since without may_free real is unchanged */
1257 	res = __DECONST(char *, real);
1258 	for (i = 0; i < (int)nitems(tokens); i++) {
1259 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL, res,
1260 		    tokens[i].kw, tokens[i].subst, i != 0);
1261 	}
1262 	return (res);
1263 }
1264 
1265 void
rtld_die(void)1266 rtld_die(void)
1267 {
1268 	const char *msg = dlerror();
1269 
1270 	if (msg == NULL)
1271 		msg = "Fatal error";
1272 	rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
1273 	rtld_fdputstr(STDERR_FILENO, msg);
1274 	rtld_fdputchar(STDERR_FILENO, '\n');
1275 	_exit(1);
1276 }
1277 
1278 /*
1279  * Process a shared object's DYNAMIC section, and save the important
1280  * information in its Obj_Entry structure.
1281  */
1282 static void
digest_dynamic1(Obj_Entry * obj,int early,const Elf_Dyn ** dyn_rpath,const Elf_Dyn ** dyn_soname,const Elf_Dyn ** dyn_runpath)1283 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
1284     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
1285 {
1286 	const Elf_Dyn *dynp;
1287 	Needed_Entry **needed_tail = &obj->needed;
1288 	Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
1289 	Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
1290 	const Elf_Hashelt *hashtab;
1291 	const Elf32_Word *hashval;
1292 	Elf32_Word bkt, nmaskwords;
1293 	int bloom_size32;
1294 	int plttype = DT_REL;
1295 
1296 	*dyn_rpath = NULL;
1297 	*dyn_soname = NULL;
1298 	*dyn_runpath = NULL;
1299 
1300 	obj->bind_now = false;
1301 	dynp = obj->dynamic;
1302 	if (dynp == NULL)
1303 		return;
1304 	for (; dynp->d_tag != DT_NULL; dynp++) {
1305 		switch (dynp->d_tag) {
1306 		case DT_REL:
1307 			obj->rel = (const Elf_Rel *)(obj->relocbase +
1308 			    dynp->d_un.d_ptr);
1309 			break;
1310 
1311 		case DT_RELSZ:
1312 			obj->relsize = dynp->d_un.d_val;
1313 			break;
1314 
1315 		case DT_RELENT:
1316 			assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1317 			break;
1318 
1319 		case DT_JMPREL:
1320 			obj->pltrel = (const Elf_Rel *)(obj->relocbase +
1321 			    dynp->d_un.d_ptr);
1322 			break;
1323 
1324 		case DT_PLTRELSZ:
1325 			obj->pltrelsize = dynp->d_un.d_val;
1326 			break;
1327 
1328 		case DT_RELA:
1329 			obj->rela = (const Elf_Rela *)(obj->relocbase +
1330 			    dynp->d_un.d_ptr);
1331 			break;
1332 
1333 		case DT_RELASZ:
1334 			obj->relasize = dynp->d_un.d_val;
1335 			break;
1336 
1337 		case DT_RELAENT:
1338 			assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1339 			break;
1340 
1341 		case DT_RELR:
1342 			obj->relr = (const Elf_Relr *)(obj->relocbase +
1343 			    dynp->d_un.d_ptr);
1344 			break;
1345 
1346 		case DT_RELRSZ:
1347 			obj->relrsize = dynp->d_un.d_val;
1348 			break;
1349 
1350 		case DT_RELRENT:
1351 			assert(dynp->d_un.d_val == sizeof(Elf_Relr));
1352 			break;
1353 
1354 		case DT_PLTREL:
1355 			plttype = dynp->d_un.d_val;
1356 			assert(
1357 			    dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1358 			break;
1359 
1360 		case DT_SYMTAB:
1361 			obj->symtab = (const Elf_Sym *)(obj->relocbase +
1362 			    dynp->d_un.d_ptr);
1363 			break;
1364 
1365 		case DT_SYMENT:
1366 			assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1367 			break;
1368 
1369 		case DT_STRTAB:
1370 			obj->strtab = (const char *)(obj->relocbase +
1371 			    dynp->d_un.d_ptr);
1372 			break;
1373 
1374 		case DT_STRSZ:
1375 			obj->strsize = dynp->d_un.d_val;
1376 			break;
1377 
1378 		case DT_VERNEED:
1379 			obj->verneed = (const Elf_Verneed *)(obj->relocbase +
1380 			    dynp->d_un.d_val);
1381 			break;
1382 
1383 		case DT_VERNEEDNUM:
1384 			obj->verneednum = dynp->d_un.d_val;
1385 			break;
1386 
1387 		case DT_VERDEF:
1388 			obj->verdef = (const Elf_Verdef *)(obj->relocbase +
1389 			    dynp->d_un.d_val);
1390 			break;
1391 
1392 		case DT_VERDEFNUM:
1393 			obj->verdefnum = dynp->d_un.d_val;
1394 			break;
1395 
1396 		case DT_VERSYM:
1397 			obj->versyms = (const Elf_Versym *)(obj->relocbase +
1398 			    dynp->d_un.d_val);
1399 			break;
1400 
1401 		case DT_HASH: {
1402 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1403 			    dynp->d_un.d_ptr);
1404 			obj->nbuckets = hashtab[0];
1405 			obj->nchains = hashtab[1];
1406 			obj->buckets = hashtab + 2;
1407 			obj->chains = obj->buckets + obj->nbuckets;
1408 			obj->valid_hash_sysv = obj->nbuckets > 0 &&
1409 			    obj->nchains > 0 && obj->buckets != NULL;
1410 		} break;
1411 
1412 		case DT_GNU_HASH: {
1413 			hashtab = (const Elf_Hashelt *)(obj->relocbase +
1414 			    dynp->d_un.d_ptr);
1415 			obj->nbuckets_gnu = hashtab[0];
1416 			obj->symndx_gnu = hashtab[1];
1417 			nmaskwords = hashtab[2];
1418 			bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1419 			obj->maskwords_bm_gnu = nmaskwords - 1;
1420 			obj->shift2_gnu = hashtab[3];
1421 			obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
1422 			obj->buckets_gnu = hashtab + 4 + bloom_size32;
1423 			obj->chain_zero_gnu = obj->buckets_gnu +
1424 			    obj->nbuckets_gnu - obj->symndx_gnu;
1425 			/* Number of bitmask words is required to be power of 2
1426 			 */
1427 			obj->valid_hash_gnu = powerof2(nmaskwords) &&
1428 			    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
1429 		} break;
1430 
1431 		case DT_NEEDED:
1432 			if (!obj->rtld) {
1433 				Needed_Entry *nep = NEW(Needed_Entry);
1434 				nep->name = dynp->d_un.d_val;
1435 				nep->obj = NULL;
1436 				nep->next = NULL;
1437 
1438 				*needed_tail = nep;
1439 				needed_tail = &nep->next;
1440 			}
1441 			break;
1442 
1443 		case DT_FILTER:
1444 			if (!obj->rtld) {
1445 				Needed_Entry *nep = NEW(Needed_Entry);
1446 				nep->name = dynp->d_un.d_val;
1447 				nep->obj = NULL;
1448 				nep->next = NULL;
1449 
1450 				*needed_filtees_tail = nep;
1451 				needed_filtees_tail = &nep->next;
1452 
1453 				if (obj->linkmap.l_refname == NULL)
1454 					obj->linkmap.l_refname =
1455 					    (char *)dynp->d_un.d_val;
1456 			}
1457 			break;
1458 
1459 		case DT_AUXILIARY:
1460 			if (!obj->rtld) {
1461 				Needed_Entry *nep = NEW(Needed_Entry);
1462 				nep->name = dynp->d_un.d_val;
1463 				nep->obj = NULL;
1464 				nep->next = NULL;
1465 
1466 				*needed_aux_filtees_tail = nep;
1467 				needed_aux_filtees_tail = &nep->next;
1468 			}
1469 			break;
1470 
1471 		case DT_PLTGOT:
1472 			obj->pltgot = (Elf_Addr *)(obj->relocbase +
1473 			    dynp->d_un.d_ptr);
1474 			break;
1475 
1476 		case DT_TEXTREL:
1477 			obj->textrel = true;
1478 			break;
1479 
1480 		case DT_SYMBOLIC:
1481 			obj->symbolic = true;
1482 			break;
1483 
1484 		case DT_RPATH:
1485 			/*
1486 			 * We have to wait until later to process this, because
1487 			 * we might not have gotten the address of the string
1488 			 * table yet.
1489 			 */
1490 			*dyn_rpath = dynp;
1491 			break;
1492 
1493 		case DT_SONAME:
1494 			*dyn_soname = dynp;
1495 			break;
1496 
1497 		case DT_RUNPATH:
1498 			*dyn_runpath = dynp;
1499 			break;
1500 
1501 		case DT_INIT:
1502 			obj->init = (Elf_Addr)(obj->relocbase +
1503 			    dynp->d_un.d_ptr);
1504 			break;
1505 
1506 		case DT_PREINIT_ARRAY:
1507 			obj->preinit_array = (Elf_Addr)(obj->relocbase +
1508 			    dynp->d_un.d_ptr);
1509 			break;
1510 
1511 		case DT_PREINIT_ARRAYSZ:
1512 			obj->preinit_array_num = dynp->d_un.d_val /
1513 			    sizeof(Elf_Addr);
1514 			break;
1515 
1516 		case DT_INIT_ARRAY:
1517 			obj->init_array = (Elf_Addr)(obj->relocbase +
1518 			    dynp->d_un.d_ptr);
1519 			break;
1520 
1521 		case DT_INIT_ARRAYSZ:
1522 			obj->init_array_num = dynp->d_un.d_val /
1523 			    sizeof(Elf_Addr);
1524 			break;
1525 
1526 		case DT_FINI:
1527 			obj->fini = (Elf_Addr)(obj->relocbase +
1528 			    dynp->d_un.d_ptr);
1529 			break;
1530 
1531 		case DT_FINI_ARRAY:
1532 			obj->fini_array = (Elf_Addr)(obj->relocbase +
1533 			    dynp->d_un.d_ptr);
1534 			break;
1535 
1536 		case DT_FINI_ARRAYSZ:
1537 			obj->fini_array_num = dynp->d_un.d_val /
1538 			    sizeof(Elf_Addr);
1539 			break;
1540 
1541 		case DT_DEBUG:
1542 			if (!early)
1543 				dbg("Filling in DT_DEBUG entry");
1544 			(__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr =
1545 			    (Elf_Addr)&r_debug;
1546 			break;
1547 
1548 		case DT_FLAGS:
1549 			if (dynp->d_un.d_val & DF_ORIGIN)
1550 				obj->z_origin = true;
1551 			if (dynp->d_un.d_val & DF_SYMBOLIC)
1552 				obj->symbolic = true;
1553 			if (dynp->d_un.d_val & DF_TEXTREL)
1554 				obj->textrel = true;
1555 			if (dynp->d_un.d_val & DF_BIND_NOW)
1556 				obj->bind_now = true;
1557 			if (dynp->d_un.d_val & DF_STATIC_TLS)
1558 				obj->static_tls = true;
1559 			break;
1560 
1561 		case DT_FLAGS_1:
1562 			if (dynp->d_un.d_val & DF_1_NOOPEN)
1563 				obj->z_noopen = true;
1564 			if (dynp->d_un.d_val & DF_1_ORIGIN)
1565 				obj->z_origin = true;
1566 			if (dynp->d_un.d_val & DF_1_GLOBAL)
1567 				obj->z_global = true;
1568 			if (dynp->d_un.d_val & DF_1_BIND_NOW)
1569 				obj->bind_now = true;
1570 			if (dynp->d_un.d_val & DF_1_NODELETE)
1571 				obj->z_nodelete = true;
1572 			if (dynp->d_un.d_val & DF_1_LOADFLTR)
1573 				obj->z_loadfltr = true;
1574 			if (dynp->d_un.d_val & DF_1_INTERPOSE)
1575 				obj->z_interpose = true;
1576 			if (dynp->d_un.d_val & DF_1_NODEFLIB)
1577 				obj->z_nodeflib = true;
1578 			if (dynp->d_un.d_val & DF_1_PIE)
1579 				obj->z_pie = true;
1580 			if (dynp->d_un.d_val & DF_1_INITFIRST)
1581 				obj->z_initfirst = true;
1582 			break;
1583 
1584 		default:
1585 			if (arch_digest_dynamic(obj, dynp))
1586 				break;
1587 
1588 			if (!early) {
1589 				dbg("Ignoring d_tag %ld = %#lx",
1590 				    (long)dynp->d_tag, (long)dynp->d_tag);
1591 			}
1592 			break;
1593 		}
1594 	}
1595 
1596 	obj->traced = false;
1597 
1598 	if (plttype == DT_RELA) {
1599 		obj->pltrela = (const Elf_Rela *)obj->pltrel;
1600 		obj->pltrel = NULL;
1601 		obj->pltrelasize = obj->pltrelsize;
1602 		obj->pltrelsize = 0;
1603 	}
1604 
1605 	/* Determine size of dynsym table (equal to nchains of sysv hash) */
1606 	if (obj->valid_hash_sysv)
1607 		obj->dynsymcount = obj->nchains;
1608 	else if (obj->valid_hash_gnu) {
1609 		obj->dynsymcount = 0;
1610 		for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1611 			if (obj->buckets_gnu[bkt] == 0)
1612 				continue;
1613 			hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1614 			do
1615 				obj->dynsymcount++;
1616 			while ((*hashval++ & 1u) == 0);
1617 		}
1618 		obj->dynsymcount += obj->symndx_gnu;
1619 	}
1620 
1621 	if (obj->linkmap.l_refname != NULL)
1622 		obj->linkmap.l_refname = obj->strtab +
1623 		    (unsigned long)obj->linkmap.l_refname;
1624 }
1625 
1626 static bool
obj_resolve_origin(Obj_Entry * obj)1627 obj_resolve_origin(Obj_Entry *obj)
1628 {
1629 	if (obj->origin_path != NULL)
1630 		return (true);
1631 	obj->origin_path = xmalloc(PATH_MAX);
1632 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
1633 }
1634 
1635 static bool
digest_dynamic2(Obj_Entry * obj,const Elf_Dyn * dyn_rpath,const Elf_Dyn * dyn_soname,const Elf_Dyn * dyn_runpath)1636 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1637     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1638 {
1639 	if (obj->z_origin && !obj_resolve_origin(obj))
1640 		return (false);
1641 
1642 	if (dyn_runpath != NULL) {
1643 		obj->runpath = (const char *)obj->strtab +
1644 		    dyn_runpath->d_un.d_val;
1645 		obj->runpath = origin_subst(obj, obj->runpath);
1646 	} else if (dyn_rpath != NULL) {
1647 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
1648 		obj->rpath = origin_subst(obj, obj->rpath);
1649 	}
1650 	if (dyn_soname != NULL)
1651 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1652 	return (true);
1653 }
1654 
1655 static bool
digest_dynamic(Obj_Entry * obj,int early)1656 digest_dynamic(Obj_Entry *obj, int early)
1657 {
1658 	const Elf_Dyn *dyn_rpath;
1659 	const Elf_Dyn *dyn_soname;
1660 	const Elf_Dyn *dyn_runpath;
1661 
1662 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1663 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
1664 }
1665 
1666 /*
1667  * Process a shared object's program header.  This is used only for the
1668  * main program, when the kernel has already loaded the main program
1669  * into memory before calling the dynamic linker.  It creates and
1670  * returns an Obj_Entry structure.
1671  */
1672 static Obj_Entry *
digest_phdr(const Elf_Phdr * phdr,int phnum,caddr_t entry,const char * path)1673 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1674 {
1675 	Obj_Entry *obj;
1676 	const Elf_Phdr *phlimit = phdr + phnum;
1677 	const Elf_Phdr *ph;
1678 	Elf_Addr note_start, note_end;
1679 	int nsegs = 0;
1680 
1681 	obj = obj_new();
1682 	for (ph = phdr; ph < phlimit; ph++) {
1683 		if (ph->p_type != PT_PHDR)
1684 			continue;
1685 
1686 		obj->phdr = phdr;
1687 		obj->phsize = ph->p_memsz;
1688 		obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
1689 		break;
1690 	}
1691 
1692 	obj->stack_flags = PF_X | PF_R | PF_W;
1693 
1694 	for (ph = phdr; ph < phlimit; ph++) {
1695 		switch (ph->p_type) {
1696 		case PT_INTERP:
1697 			obj->interp = (const char *)(ph->p_vaddr +
1698 			    obj->relocbase);
1699 			break;
1700 
1701 		case PT_LOAD:
1702 			if (nsegs == 0) { /* First load segment */
1703 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
1704 				obj->mapbase = obj->vaddrbase + obj->relocbase;
1705 			} else { /* Last load segment */
1706 				obj->mapsize = rtld_round_page(
1707 				    ph->p_vaddr + ph->p_memsz) -
1708 				    obj->vaddrbase;
1709 			}
1710 			nsegs++;
1711 			break;
1712 
1713 		case PT_DYNAMIC:
1714 			obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr +
1715 			    obj->relocbase);
1716 			break;
1717 
1718 		case PT_TLS:
1719 			obj->tlsindex = 1;
1720 			obj->tlssize = ph->p_memsz;
1721 			obj->tlsalign = ph->p_align;
1722 			obj->tlsinitsize = ph->p_filesz;
1723 			obj->tlsinit = (void *)(ph->p_vaddr + obj->relocbase);
1724 			obj->tlspoffset = ph->p_offset;
1725 			break;
1726 
1727 		case PT_GNU_STACK:
1728 			obj->stack_flags = ph->p_flags;
1729 			break;
1730 
1731 		case PT_NOTE:
1732 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1733 			note_end = note_start + ph->p_filesz;
1734 			digest_notes(obj, note_start, note_end);
1735 			break;
1736 		}
1737 	}
1738 	if (nsegs < 1) {
1739 		_rtld_error("%s: too few PT_LOAD segments", path);
1740 		return (NULL);
1741 	}
1742 
1743 	obj->entry = entry;
1744 	return (obj);
1745 }
1746 
1747 void
digest_notes(Obj_Entry * obj,Elf_Addr note_start,Elf_Addr note_end)1748 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1749 {
1750 	const Elf_Note *note;
1751 	const char *note_name;
1752 	uintptr_t p;
1753 
1754 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1755 	    note = (const Elf_Note *)((const char *)(note + 1) +
1756 		roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1757 		roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1758 		if (arch_digest_note(obj, note))
1759 			continue;
1760 
1761 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
1762 		    note->n_descsz != sizeof(int32_t))
1763 			continue;
1764 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
1765 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
1766 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
1767 			continue;
1768 		note_name = (const char *)(note + 1);
1769 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
1770 			sizeof(NOTE_FREEBSD_VENDOR)) != 0)
1771 			continue;
1772 		switch (note->n_type) {
1773 		case NT_FREEBSD_ABI_TAG:
1774 			/* FreeBSD osrel note */
1775 			p = (uintptr_t)(note + 1);
1776 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1777 			obj->osrel = *(const int32_t *)(p);
1778 			dbg("note osrel %d", obj->osrel);
1779 			break;
1780 		case NT_FREEBSD_FEATURE_CTL:
1781 			/* FreeBSD ABI feature control note */
1782 			p = (uintptr_t)(note + 1);
1783 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1784 			obj->fctl0 = *(const uint32_t *)(p);
1785 			dbg("note fctl0 %#x", obj->fctl0);
1786 			break;
1787 		case NT_FREEBSD_NOINIT_TAG:
1788 			/* FreeBSD 'crt does not call init' note */
1789 			obj->crt_no_init = true;
1790 			dbg("note crt_no_init");
1791 			break;
1792 		}
1793 	}
1794 }
1795 
1796 static Obj_Entry *
dlcheck(void * handle)1797 dlcheck(void *handle)
1798 {
1799 	Obj_Entry *obj;
1800 
1801 	TAILQ_FOREACH(obj, &obj_list, next) {
1802 		if (obj == (Obj_Entry *)handle)
1803 			break;
1804 	}
1805 
1806 	if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1807 		_rtld_error("Invalid shared object handle %p", handle);
1808 		return (NULL);
1809 	}
1810 	return (obj);
1811 }
1812 
1813 /*
1814  * If the given object is already in the donelist, return true.  Otherwise
1815  * add the object to the list and return false.
1816  */
1817 static bool
donelist_check(DoneList * dlp,const Obj_Entry * obj)1818 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1819 {
1820 	unsigned int i;
1821 
1822 	for (i = 0; i < dlp->num_used; i++)
1823 		if (dlp->objs[i] == obj)
1824 			return (true);
1825 	/*
1826 	 * Our donelist allocation should always be sufficient.  But if
1827 	 * our threads locking isn't working properly, more shared objects
1828 	 * could have been loaded since we allocated the list.  That should
1829 	 * never happen, but we'll handle it properly just in case it does.
1830 	 */
1831 	if (dlp->num_used < dlp->num_alloc)
1832 		dlp->objs[dlp->num_used++] = obj;
1833 	return (false);
1834 }
1835 
1836 /*
1837  * SysV hash function for symbol table lookup.  It is a slightly optimized
1838  * version of the hash specified by the System V ABI.
1839  */
1840 Elf32_Word
elf_hash(const char * name)1841 elf_hash(const char *name)
1842 {
1843 	const unsigned char *p = (const unsigned char *)name;
1844 	Elf32_Word h = 0;
1845 
1846 	while (*p != '\0') {
1847 		h = (h << 4) + *p++;
1848 		h ^= (h >> 24) & 0xf0;
1849 	}
1850 	return (h & 0x0fffffff);
1851 }
1852 
1853 /*
1854  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1855  * unsigned in case it's implemented with a wider type.
1856  */
1857 static uint32_t
gnu_hash(const char * s)1858 gnu_hash(const char *s)
1859 {
1860 	uint32_t h;
1861 	unsigned char c;
1862 
1863 	h = 5381;
1864 	for (c = *s; c != '\0'; c = *++s)
1865 		h = h * 33 + c;
1866 	return (h & 0xffffffff);
1867 }
1868 
1869 /*
1870  * Find the library with the given name, and return its full pathname.
1871  * The returned string is dynamically allocated.  Generates an error
1872  * message and returns NULL if the library cannot be found.
1873  *
1874  * If the second argument is non-NULL, then it refers to an already-
1875  * loaded shared object, whose library search path will be searched.
1876  *
1877  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1878  * descriptor (which is close-on-exec) will be passed out via the third
1879  * argument.
1880  *
1881  * The search order is:
1882  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1883  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1884  *   LD_LIBRARY_PATH
1885  *   DT_RUNPATH in the referencing file
1886  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1887  *	 from list)
1888  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1889  *
1890  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1891  */
1892 static char *
find_library(const char * xname,const Obj_Entry * refobj,int * fdp)1893 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1894 {
1895 	char *pathname, *refobj_path;
1896 	const char *name;
1897 	bool nodeflib, objgiven;
1898 
1899 	objgiven = refobj != NULL;
1900 
1901 	if (libmap_disable || !objgiven ||
1902 	    (name = lm_find(refobj->path, xname)) == NULL)
1903 		name = xname;
1904 
1905 	if (strchr(name, '/') != NULL) { /* Hard coded pathname */
1906 		if (name[0] != '/' && !trust) {
1907 			_rtld_error(
1908 		    "Absolute pathname required for shared object \"%s\"",
1909 			    name);
1910 			return (NULL);
1911 		}
1912 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
1913 		    __DECONST(char *, name)));
1914 	}
1915 
1916 	dbg(" Searching for \"%s\"", name);
1917 	refobj_path = objgiven ? refobj->path : NULL;
1918 
1919 	/*
1920 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
1921 	 * back to pre-conforming behaviour if user requested so with
1922 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
1923 	 * nodeflib.
1924 	 */
1925 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
1926 		pathname = search_library_path(name, ld_library_path,
1927 		    refobj_path, fdp);
1928 		if (pathname != NULL)
1929 			return (pathname);
1930 		if (refobj != NULL) {
1931 			pathname = search_library_path(name, refobj->rpath,
1932 			    refobj_path, fdp);
1933 			if (pathname != NULL)
1934 				return (pathname);
1935 		}
1936 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1937 		if (pathname != NULL)
1938 			return (pathname);
1939 		pathname = search_library_path(name, gethints(false),
1940 		    refobj_path, fdp);
1941 		if (pathname != NULL)
1942 			return (pathname);
1943 		pathname = search_library_path(name, ld_standard_library_path,
1944 		    refobj_path, fdp);
1945 		if (pathname != NULL)
1946 			return (pathname);
1947 	} else {
1948 		nodeflib = objgiven ? refobj->z_nodeflib : false;
1949 		if (objgiven) {
1950 			pathname = search_library_path(name, refobj->rpath,
1951 			    refobj->path, fdp);
1952 			if (pathname != NULL)
1953 				return (pathname);
1954 		}
1955 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
1956 			pathname = search_library_path(name, obj_main->rpath,
1957 			    refobj_path, fdp);
1958 			if (pathname != NULL)
1959 				return (pathname);
1960 		}
1961 		pathname = search_library_path(name, ld_library_path,
1962 		    refobj_path, fdp);
1963 		if (pathname != NULL)
1964 			return (pathname);
1965 		if (objgiven) {
1966 			pathname = search_library_path(name, refobj->runpath,
1967 			    refobj_path, fdp);
1968 			if (pathname != NULL)
1969 				return (pathname);
1970 		}
1971 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
1972 		if (pathname != NULL)
1973 			return (pathname);
1974 		pathname = search_library_path(name, gethints(nodeflib),
1975 		    refobj_path, fdp);
1976 		if (pathname != NULL)
1977 			return (pathname);
1978 		if (objgiven && !nodeflib) {
1979 			pathname = search_library_path(name,
1980 			    ld_standard_library_path, refobj_path, fdp);
1981 			if (pathname != NULL)
1982 				return (pathname);
1983 		}
1984 	}
1985 
1986 	if (objgiven && refobj->path != NULL) {
1987 		_rtld_error(
1988 	    "Shared object \"%s\" not found, required by \"%s\"",
1989 		    name, basename(refobj->path));
1990 	} else {
1991 		_rtld_error("Shared object \"%s\" not found", name);
1992 	}
1993 	return (NULL);
1994 }
1995 
1996 /*
1997  * Given a symbol number in a referencing object, find the corresponding
1998  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1999  * no definition was found.  Returns a pointer to the Obj_Entry of the
2000  * defining object via the reference parameter DEFOBJ_OUT.
2001  */
2002 const Elf_Sym *
find_symdef(unsigned long symnum,const Obj_Entry * refobj,const Obj_Entry ** defobj_out,int flags,SymCache * cache,RtldLockState * lockstate)2003 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
2004     const Obj_Entry **defobj_out, int flags, SymCache *cache,
2005     RtldLockState *lockstate)
2006 {
2007 	const Elf_Sym *ref;
2008 	const Elf_Sym *def;
2009 	const Obj_Entry *defobj;
2010 	const Ver_Entry *ve;
2011 	SymLook req;
2012 	const char *name;
2013 	int res;
2014 
2015 	/*
2016 	 * If we have already found this symbol, get the information from
2017 	 * the cache.
2018 	 */
2019 	if (symnum >= refobj->dynsymcount)
2020 		return (NULL); /* Bad object */
2021 	if (cache != NULL && cache[symnum].sym != NULL) {
2022 		*defobj_out = cache[symnum].obj;
2023 		return (cache[symnum].sym);
2024 	}
2025 
2026 	ref = refobj->symtab + symnum;
2027 	name = refobj->strtab + ref->st_name;
2028 	def = NULL;
2029 	defobj = NULL;
2030 	ve = NULL;
2031 
2032 	/*
2033 	 * We don't have to do a full scale lookup if the symbol is local.
2034 	 * We know it will bind to the instance in this load module; to
2035 	 * which we already have a pointer (ie ref). By not doing a lookup,
2036 	 * we not only improve performance, but it also avoids unresolvable
2037 	 * symbols when local symbols are not in the hash table. This has
2038 	 * been seen with the ia64 toolchain.
2039 	 */
2040 	if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
2041 		if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
2042 			_rtld_error("%s: Bogus symbol table entry %lu",
2043 			    refobj->path, symnum);
2044 		}
2045 		symlook_init(&req, name);
2046 		req.flags = flags;
2047 		ve = req.ventry = fetch_ventry(refobj, symnum);
2048 		req.lockstate = lockstate;
2049 		res = symlook_default(&req, refobj);
2050 		if (res == 0) {
2051 			def = req.sym_out;
2052 			defobj = req.defobj_out;
2053 		}
2054 	} else {
2055 		def = ref;
2056 		defobj = refobj;
2057 	}
2058 
2059 	/*
2060 	 * If we found no definition and the reference is weak, treat the
2061 	 * symbol as having the value zero.
2062 	 */
2063 	if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
2064 		def = &sym_zero;
2065 		defobj = obj_main;
2066 	}
2067 
2068 	if (def != NULL) {
2069 		*defobj_out = defobj;
2070 		/*
2071 		 * Record the information in the cache to avoid subsequent
2072 		 * lookups.
2073 		 */
2074 		if (cache != NULL) {
2075 			cache[symnum].sym = def;
2076 			cache[symnum].obj = defobj;
2077 		}
2078 	} else {
2079 		if (refobj != &obj_rtld)
2080 			_rtld_error("%s: Undefined symbol \"%s%s%s\"",
2081 			    refobj->path, name, ve != NULL ? "@" : "",
2082 			    ve != NULL ? ve->name : "");
2083 	}
2084 	return (def);
2085 }
2086 
2087 /* Convert between native byte order and forced little resp. big endian. */
2088 #define COND_SWAP(n) (is_le ? le32toh(n) : be32toh(n))
2089 
2090 /*
2091  * Return the search path from the ldconfig hints file, reading it if
2092  * necessary.  If nostdlib is true, then the default search paths are
2093  * not added to result.
2094  *
2095  * Returns NULL if there are problems with the hints file,
2096  * or if the search path there is empty.
2097  */
2098 static const char *
gethints(bool nostdlib)2099 gethints(bool nostdlib)
2100 {
2101 	static char *filtered_path;
2102 	static const char *hints;
2103 	static struct elfhints_hdr hdr;
2104 	struct fill_search_info_args sargs, hargs;
2105 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
2106 	struct dl_serpath *SLPpath, *hintpath;
2107 	char *p;
2108 	struct stat hint_stat;
2109 	unsigned int SLPndx, hintndx, fndx, fcount;
2110 	int fd;
2111 	size_t flen;
2112 	uint32_t dl;
2113 	uint32_t magic;	     /* Magic number */
2114 	uint32_t version;    /* File version (1) */
2115 	uint32_t strtab;     /* Offset of string table in file */
2116 	uint32_t dirlist;    /* Offset of directory list in string table */
2117 	uint32_t dirlistlen; /* strlen(dirlist) */
2118 	bool is_le;	     /* Does the hints file use little endian */
2119 	bool skip;
2120 
2121 	/* First call, read the hints file */
2122 	if (hints == NULL) {
2123 		/* Keep from trying again in case the hints file is bad. */
2124 		hints = "";
2125 
2126 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) ==
2127 		    -1) {
2128 			dbg("failed to open hints file \"%s\"",
2129 			    ld_elf_hints_path);
2130 			return (NULL);
2131 		}
2132 
2133 		/*
2134 		 * Check of hdr.dirlistlen value against type limit
2135 		 * intends to pacify static analyzers.  Further
2136 		 * paranoia leads to checks that dirlist is fully
2137 		 * contained in the file range.
2138 		 */
2139 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr) {
2140 			dbg("failed to read %lu bytes from hints file \"%s\"",
2141 			    (u_long)sizeof hdr, ld_elf_hints_path);
2142 cleanup1:
2143 			close(fd);
2144 			hdr.dirlistlen = 0;
2145 			return (NULL);
2146 		}
2147 		dbg("host byte-order: %s-endian",
2148 		    le32toh(1) == 1 ? "little" : "big");
2149 		dbg("hints file byte-order: %s-endian",
2150 		    hdr.magic == htole32(ELFHINTS_MAGIC) ? "little" : "big");
2151 		is_le = /*htole32(1) == 1 || */ hdr.magic ==
2152 		    htole32(ELFHINTS_MAGIC);
2153 		magic = COND_SWAP(hdr.magic);
2154 		version = COND_SWAP(hdr.version);
2155 		strtab = COND_SWAP(hdr.strtab);
2156 		dirlist = COND_SWAP(hdr.dirlist);
2157 		dirlistlen = COND_SWAP(hdr.dirlistlen);
2158 		if (magic != ELFHINTS_MAGIC) {
2159 			dbg("invalid magic number %#08x (expected: %#08x)",
2160 			    magic, ELFHINTS_MAGIC);
2161 			goto cleanup1;
2162 		}
2163 		if (version != 1) {
2164 			dbg("hints file version %d (expected: 1)", version);
2165 			goto cleanup1;
2166 		}
2167 		if (dirlistlen > UINT_MAX / 2) {
2168 			dbg("directory list is to long: %d > %d", dirlistlen,
2169 			    UINT_MAX / 2);
2170 			goto cleanup1;
2171 		}
2172 		if (fstat(fd, &hint_stat) == -1) {
2173 			dbg("failed to find length of hints file \"%s\"",
2174 			    ld_elf_hints_path);
2175 			goto cleanup1;
2176 		}
2177 		dl = strtab;
2178 		if (dl + dirlist < dl) {
2179 			dbg("invalid string table position %d", dl);
2180 			goto cleanup1;
2181 		}
2182 		dl += dirlist;
2183 		if (dl + dirlistlen < dl) {
2184 			dbg("invalid directory list offset %d", dirlist);
2185 			goto cleanup1;
2186 		}
2187 		dl += dirlistlen;
2188 		if (dl > hint_stat.st_size) {
2189 			dbg("hints file \"%s\" is truncated (%d vs. %jd bytes)",
2190 			    ld_elf_hints_path, dl,
2191 			    (uintmax_t)hint_stat.st_size);
2192 			goto cleanup1;
2193 		}
2194 		p = xmalloc(dirlistlen + 1);
2195 		if (pread(fd, p, dirlistlen + 1, strtab + dirlist) !=
2196 		    (ssize_t)dirlistlen + 1 || p[dirlistlen] != '\0') {
2197 			free(p);
2198 			dbg(
2199 	    "failed to read %d bytes starting at %d from hints file \"%s\"",
2200 			    dirlistlen + 1, strtab + dirlist,
2201 			    ld_elf_hints_path);
2202 			goto cleanup1;
2203 		}
2204 		hints = p;
2205 		close(fd);
2206 	}
2207 
2208 	/*
2209 	 * If caller agreed to receive list which includes the default
2210 	 * paths, we are done. Otherwise, if we still did not
2211 	 * calculated filtered result, do it now.
2212 	 */
2213 	if (!nostdlib)
2214 		return (hints[0] != '\0' ? hints : NULL);
2215 	if (filtered_path != NULL)
2216 		goto filt_ret;
2217 
2218 	/*
2219 	 * Obtain the list of all configured search paths, and the
2220 	 * list of the default paths.
2221 	 *
2222 	 * First estimate the size of the results.
2223 	 */
2224 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2225 	smeta.dls_cnt = 0;
2226 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2227 	hmeta.dls_cnt = 0;
2228 
2229 	sargs.request = RTLD_DI_SERINFOSIZE;
2230 	sargs.serinfo = &smeta;
2231 	hargs.request = RTLD_DI_SERINFOSIZE;
2232 	hargs.serinfo = &hmeta;
2233 
2234 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2235 	    &sargs);
2236 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2237 
2238 	SLPinfo = xmalloc(smeta.dls_size);
2239 	hintinfo = xmalloc(hmeta.dls_size);
2240 
2241 	/*
2242 	 * Next fetch both sets of paths.
2243 	 */
2244 	sargs.request = RTLD_DI_SERINFO;
2245 	sargs.serinfo = SLPinfo;
2246 	sargs.serpath = &SLPinfo->dls_serpath[0];
2247 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
2248 
2249 	hargs.request = RTLD_DI_SERINFO;
2250 	hargs.serinfo = hintinfo;
2251 	hargs.serpath = &hintinfo->dls_serpath[0];
2252 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
2253 
2254 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
2255 	    &sargs);
2256 	path_enumerate(hints, fill_search_info, NULL, &hargs);
2257 
2258 	/*
2259 	 * Now calculate the difference between two sets, by excluding
2260 	 * standard paths from the full set.
2261 	 */
2262 	fndx = 0;
2263 	fcount = 0;
2264 	filtered_path = xmalloc(dirlistlen + 1);
2265 	hintpath = &hintinfo->dls_serpath[0];
2266 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
2267 		skip = false;
2268 		SLPpath = &SLPinfo->dls_serpath[0];
2269 		/*
2270 		 * Check each standard path against current.
2271 		 */
2272 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
2273 			/* matched, skip the path */
2274 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
2275 				skip = true;
2276 				break;
2277 			}
2278 		}
2279 		if (skip)
2280 			continue;
2281 		/*
2282 		 * Not matched against any standard path, add the path
2283 		 * to result. Separate consequtive paths with ':'.
2284 		 */
2285 		if (fcount > 0) {
2286 			filtered_path[fndx] = ':';
2287 			fndx++;
2288 		}
2289 		fcount++;
2290 		flen = strlen(hintpath->dls_name);
2291 		strncpy((filtered_path + fndx), hintpath->dls_name, flen);
2292 		fndx += flen;
2293 	}
2294 	filtered_path[fndx] = '\0';
2295 
2296 	free(SLPinfo);
2297 	free(hintinfo);
2298 
2299 filt_ret:
2300 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
2301 }
2302 
2303 static void
init_dag(Obj_Entry * root)2304 init_dag(Obj_Entry *root)
2305 {
2306 	const Needed_Entry *needed;
2307 	const Objlist_Entry *elm;
2308 	DoneList donelist;
2309 
2310 	if (root->dag_inited)
2311 		return;
2312 	donelist_init(&donelist);
2313 
2314 	/* Root object belongs to own DAG. */
2315 	objlist_push_tail(&root->dldags, root);
2316 	objlist_push_tail(&root->dagmembers, root);
2317 	donelist_check(&donelist, root);
2318 
2319 	/*
2320 	 * Add dependencies of root object to DAG in breadth order
2321 	 * by exploiting the fact that each new object get added
2322 	 * to the tail of the dagmembers list.
2323 	 */
2324 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2325 		for (needed = elm->obj->needed; needed != NULL;
2326 		    needed = needed->next) {
2327 			if (needed->obj == NULL ||
2328 			    donelist_check(&donelist, needed->obj))
2329 				continue;
2330 			objlist_push_tail(&needed->obj->dldags, root);
2331 			objlist_push_tail(&root->dagmembers, needed->obj);
2332 		}
2333 	}
2334 	root->dag_inited = true;
2335 }
2336 
2337 static void
init_marker(Obj_Entry * marker)2338 init_marker(Obj_Entry *marker)
2339 {
2340 	bzero(marker, sizeof(*marker));
2341 	marker->marker = true;
2342 }
2343 
2344 Obj_Entry *
globallist_curr(const Obj_Entry * obj)2345 globallist_curr(const Obj_Entry *obj)
2346 {
2347 	for (;;) {
2348 		if (obj == NULL)
2349 			return (NULL);
2350 		if (!obj->marker)
2351 			return (__DECONST(Obj_Entry *, obj));
2352 		obj = TAILQ_PREV(obj, obj_entry_q, next);
2353 	}
2354 }
2355 
2356 Obj_Entry *
globallist_next(const Obj_Entry * obj)2357 globallist_next(const Obj_Entry *obj)
2358 {
2359 	for (;;) {
2360 		obj = TAILQ_NEXT(obj, next);
2361 		if (obj == NULL)
2362 			return (NULL);
2363 		if (!obj->marker)
2364 			return (__DECONST(Obj_Entry *, obj));
2365 	}
2366 }
2367 
2368 /* Prevent the object from being unmapped while the bind lock is dropped. */
2369 static void
hold_object(Obj_Entry * obj)2370 hold_object(Obj_Entry *obj)
2371 {
2372 	obj->holdcount++;
2373 }
2374 
2375 static void
unhold_object(Obj_Entry * obj)2376 unhold_object(Obj_Entry *obj)
2377 {
2378 	assert(obj->holdcount > 0);
2379 	if (--obj->holdcount == 0 && obj->unholdfree)
2380 		release_object(obj);
2381 }
2382 
2383 static void
process_z(Obj_Entry * root)2384 process_z(Obj_Entry *root)
2385 {
2386 	const Objlist_Entry *elm;
2387 	Obj_Entry *obj;
2388 
2389 	/*
2390 	 * Walk over object DAG and process every dependent object
2391 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
2392 	 * to grow their own DAG.
2393 	 *
2394 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
2395 	 * symlook_global() to work.
2396 	 *
2397 	 * For DF_1_NODELETE, the DAG should have its reference upped.
2398 	 */
2399 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2400 		obj = elm->obj;
2401 		if (obj == NULL)
2402 			continue;
2403 		if (obj->z_nodelete && !obj->ref_nodel) {
2404 			dbg("obj %s -z nodelete", obj->path);
2405 			init_dag(obj);
2406 			ref_dag(obj);
2407 			obj->ref_nodel = true;
2408 		}
2409 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
2410 			dbg("obj %s -z global", obj->path);
2411 			objlist_push_tail(&list_global, obj);
2412 			init_dag(obj);
2413 		}
2414 	}
2415 }
2416 
2417 static void
parse_rtld_phdr(Obj_Entry * obj)2418 parse_rtld_phdr(Obj_Entry *obj)
2419 {
2420 	const Elf_Phdr *ph;
2421 	Elf_Addr note_start, note_end;
2422 	bool first_seg;
2423 
2424 	first_seg = true;
2425 	obj->stack_flags = PF_X | PF_R | PF_W;
2426 	for (ph = obj->phdr;
2427 	    (const char *)ph < (const char *)obj->phdr + obj->phsize; ph++) {
2428 		switch (ph->p_type) {
2429 		case PT_LOAD:
2430 			if (first_seg) {
2431 				obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
2432 				first_seg = false;
2433 			}
2434 			obj->mapsize = rtld_round_page(ph->p_vaddr +
2435 			    ph->p_memsz) - obj->vaddrbase;
2436 			break;
2437 		case PT_GNU_STACK:
2438 			obj->stack_flags = ph->p_flags;
2439 			break;
2440 		case PT_NOTE:
2441 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
2442 			note_end = note_start + ph->p_filesz;
2443 			digest_notes(obj, note_start, note_end);
2444 			break;
2445 		}
2446 	}
2447 }
2448 
2449 /*
2450  * Initialize the dynamic linker.  The argument is the address at which
2451  * the dynamic linker has been mapped into memory.  The primary task of
2452  * this function is to relocate the dynamic linker.
2453  */
2454 static void
init_rtld(caddr_t mapbase,Elf_Auxinfo ** aux_info)2455 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
2456 {
2457 	Obj_Entry objtmp; /* Temporary rtld object */
2458 	const Elf_Ehdr *ehdr;
2459 	const Elf_Dyn *dyn_rpath;
2460 	const Elf_Dyn *dyn_soname;
2461 	const Elf_Dyn *dyn_runpath;
2462 
2463 	/*
2464 	 * Conjure up an Obj_Entry structure for the dynamic linker.
2465 	 *
2466 	 * The "path" member can't be initialized yet because string constants
2467 	 * cannot yet be accessed. Below we will set it correctly.
2468 	 */
2469 	memset(&objtmp, 0, sizeof(objtmp));
2470 	objtmp.path = NULL;
2471 	objtmp.rtld = true;
2472 	objtmp.mapbase = mapbase;
2473 #ifdef PIC
2474 	objtmp.relocbase = mapbase;
2475 #endif
2476 
2477 	objtmp.dynamic = rtld_dynamic(&objtmp);
2478 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
2479 	assert(objtmp.needed == NULL);
2480 	assert(!objtmp.textrel);
2481 	/*
2482 	 * Temporarily put the dynamic linker entry into the object list, so
2483 	 * that symbols can be found.
2484 	 */
2485 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
2486 
2487 	ehdr = (Elf_Ehdr *)mapbase;
2488 	objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
2489 	objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
2490 
2491 	/* Initialize the object list. */
2492 	TAILQ_INIT(&obj_list);
2493 
2494 	/* Now that non-local variables can be accesses, copy out obj_rtld. */
2495 	memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
2496 
2497 	/* The page size is required by the dynamic memory allocator. */
2498 	init_pagesizes(aux_info);
2499 
2500 	if (aux_info[AT_OSRELDATE] != NULL)
2501 		osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
2502 
2503 	digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
2504 
2505 	/* Replace the path with a dynamically allocated copy. */
2506 	obj_rtld.path = xstrdup(ld_path_rtld);
2507 
2508 	parse_rtld_phdr(&obj_rtld);
2509 	if (obj_enforce_relro(&obj_rtld) == -1)
2510 		rtld_die();
2511 
2512 	r_debug.r_version = R_DEBUG_VERSION;
2513 	r_debug.r_brk = r_debug_state;
2514 	r_debug.r_state = RT_CONSISTENT;
2515 	r_debug.r_ldbase = obj_rtld.relocbase;
2516 }
2517 
2518 /*
2519  * Retrieve the array of supported page sizes.  The kernel provides the page
2520  * sizes in increasing order.
2521  */
2522 static void
init_pagesizes(Elf_Auxinfo ** aux_info)2523 init_pagesizes(Elf_Auxinfo **aux_info)
2524 {
2525 	static size_t psa[MAXPAGESIZES];
2526 	int mib[2];
2527 	size_t len, size;
2528 
2529 	if (aux_info[AT_PAGESIZES] != NULL &&
2530 	    aux_info[AT_PAGESIZESLEN] != NULL) {
2531 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
2532 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
2533 	} else {
2534 		len = 2;
2535 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
2536 			size = sizeof(psa);
2537 		else {
2538 			/* As a fallback, retrieve the base page size. */
2539 			size = sizeof(psa[0]);
2540 			if (aux_info[AT_PAGESZ] != NULL) {
2541 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
2542 				goto psa_filled;
2543 			} else {
2544 				mib[0] = CTL_HW;
2545 				mib[1] = HW_PAGESIZE;
2546 				len = 2;
2547 			}
2548 		}
2549 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
2550 			_rtld_error("sysctl for hw.pagesize(s) failed");
2551 			rtld_die();
2552 		}
2553 	psa_filled:
2554 		pagesizes = psa;
2555 	}
2556 	npagesizes = size / sizeof(pagesizes[0]);
2557 	/* Discard any invalid entries at the end of the array. */
2558 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
2559 		npagesizes--;
2560 
2561 	page_size = pagesizes[0];
2562 }
2563 
2564 /*
2565  * Add the init functions from a needed object list (and its recursive
2566  * needed objects) to "list".  This is not used directly; it is a helper
2567  * function for initlist_add_objects().  The write lock must be held
2568  * when this function is called.
2569  */
2570 static void
initlist_add_neededs(Needed_Entry * needed,Objlist * list,Objlist * iflist)2571 initlist_add_neededs(Needed_Entry *needed, Objlist *list, Objlist *iflist)
2572 {
2573 	/* Recursively process the successor needed objects. */
2574 	if (needed->next != NULL)
2575 		initlist_add_neededs(needed->next, list, iflist);
2576 
2577 	/* Process the current needed object. */
2578 	if (needed->obj != NULL)
2579 		initlist_add_objects(needed->obj, needed->obj, list, iflist);
2580 }
2581 
2582 /*
2583  * Scan all of the DAGs rooted in the range of objects from "obj" to
2584  * "tail" and add their init functions to "list".  This recurses over
2585  * the DAGs and ensure the proper init ordering such that each object's
2586  * needed libraries are initialized before the object itself.  At the
2587  * same time, this function adds the objects to the global finalization
2588  * list "list_fini" in the opposite order.  The write lock must be
2589  * held when this function is called.
2590  */
2591 static void
initlist_for_loaded_obj(Obj_Entry * obj,Obj_Entry * tail,Objlist * list)2592 initlist_for_loaded_obj(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
2593 {
2594 	Objlist iflist;		/* initfirst objs and their needed */
2595 	Objlist_Entry *tmp;
2596 
2597 	objlist_init(&iflist);
2598 	initlist_add_objects(obj, tail, list, &iflist);
2599 
2600 	STAILQ_FOREACH(tmp, &iflist, link) {
2601 		Obj_Entry *tobj = tmp->obj;
2602 
2603 		if ((tobj->fini != (Elf_Addr)NULL ||
2604 		    tobj->fini_array != (Elf_Addr)NULL) &&
2605 		    !tobj->on_fini_list) {
2606 			objlist_push_tail(&list_fini, tobj);
2607 			tobj->on_fini_list = true;
2608 		}
2609 	}
2610 
2611 	/*
2612 	 * This might result in the same object appearing more
2613 	 * than once on the init list.  objlist_call_init()
2614 	 * uses obj->init_scanned to avoid dup calls.
2615 	 */
2616 	STAILQ_REVERSE(&iflist, Struct_Objlist_Entry, link);
2617 	STAILQ_FOREACH(tmp, &iflist, link)
2618 		objlist_push_head(list, tmp->obj);
2619 
2620 	objlist_clear(&iflist);
2621 }
2622 
2623 static void
initlist_add_objects(Obj_Entry * obj,Obj_Entry * tail,Objlist * list,Objlist * iflist)2624 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list,
2625     Objlist *iflist)
2626 {
2627 	Obj_Entry *nobj;
2628 
2629 	if (obj->init_done)
2630 		return;
2631 
2632 	if (obj->z_initfirst || list == NULL) {
2633 		/*
2634 		 * Ignore obj->init_scanned.  The object might indeed
2635 		 * already be on the init list, but due to being
2636 		 * needed by an initfirst object, we must put it at
2637 		 * the head of the init list.  obj->init_done protects
2638 		 * against double-initialization.
2639 		 */
2640 		if (obj->needed != NULL)
2641 			initlist_add_neededs(obj->needed, NULL, iflist);
2642 		if (obj->needed_filtees != NULL)
2643 			initlist_add_neededs(obj->needed_filtees, NULL,
2644 			    iflist);
2645 		if (obj->needed_aux_filtees != NULL)
2646 			initlist_add_neededs(obj->needed_aux_filtees,
2647 			    NULL, iflist);
2648 		objlist_push_tail(iflist, obj);
2649 	} else {
2650 		if (obj->init_scanned)
2651 			return;
2652 		obj->init_scanned = true;
2653 
2654 		/* Recursively process the successor objects. */
2655 		nobj = globallist_next(obj);
2656 		if (nobj != NULL && obj != tail)
2657 			initlist_add_objects(nobj, tail, list, iflist);
2658 
2659 		/* Recursively process the needed objects. */
2660 		if (obj->needed != NULL)
2661 			initlist_add_neededs(obj->needed, list, iflist);
2662 		if (obj->needed_filtees != NULL)
2663 			initlist_add_neededs(obj->needed_filtees, list,
2664 			    iflist);
2665 		if (obj->needed_aux_filtees != NULL)
2666 			initlist_add_neededs(obj->needed_aux_filtees, list,
2667 			    iflist);
2668 
2669 		/* Add the object to the init list. */
2670 		objlist_push_tail(list, obj);
2671 
2672 		/*
2673 		 * Add the object to the global fini list in the
2674 		 * reverse order.
2675 		 */
2676 		if ((obj->fini != (Elf_Addr)NULL ||
2677 		    obj->fini_array != (Elf_Addr)NULL) &&
2678 		    !obj->on_fini_list) {
2679 			objlist_push_head(&list_fini, obj);
2680 			obj->on_fini_list = true;
2681 		}
2682 	}
2683 }
2684 
2685 static void
free_needed_filtees(Needed_Entry * n,RtldLockState * lockstate)2686 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
2687 {
2688 	Needed_Entry *needed, *needed1;
2689 
2690 	for (needed = n; needed != NULL; needed = needed->next) {
2691 		if (needed->obj != NULL) {
2692 			dlclose_locked(needed->obj, lockstate);
2693 			needed->obj = NULL;
2694 		}
2695 	}
2696 	for (needed = n; needed != NULL; needed = needed1) {
2697 		needed1 = needed->next;
2698 		free(needed);
2699 	}
2700 }
2701 
2702 static void
unload_filtees(Obj_Entry * obj,RtldLockState * lockstate)2703 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
2704 {
2705 	free_needed_filtees(obj->needed_filtees, lockstate);
2706 	obj->needed_filtees = NULL;
2707 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
2708 	obj->needed_aux_filtees = NULL;
2709 	obj->filtees_loaded = false;
2710 }
2711 
2712 static void
load_filtee1(Obj_Entry * obj,Needed_Entry * needed,int flags,RtldLockState * lockstate)2713 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2714     RtldLockState *lockstate)
2715 {
2716 	for (; needed != NULL; needed = needed->next) {
2717 		needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2718 		    flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW :
2719 		    RTLD_LAZY) | RTLD_LOCAL, lockstate);
2720 	}
2721 }
2722 
2723 static void
load_filtees(Obj_Entry * obj,int flags,RtldLockState * lockstate)2724 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2725 {
2726 	if (obj->filtees_loaded || obj->filtees_loading)
2727 		return;
2728 	lock_restart_for_upgrade(lockstate);
2729 	obj->filtees_loading = true;
2730 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2731 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2732 	obj->filtees_loaded = true;
2733 	obj->filtees_loading = false;
2734 }
2735 
2736 static int
process_needed(Obj_Entry * obj,Needed_Entry * needed,int flags)2737 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2738 {
2739 	Obj_Entry *obj1;
2740 
2741 	for (; needed != NULL; needed = needed->next) {
2742 		obj1 = needed->obj = load_object(obj->strtab + needed->name, -1,
2743 		    obj, flags & ~RTLD_LO_NOLOAD);
2744 		if (obj1 == NULL && !ld_tracing &&
2745 		    (flags & RTLD_LO_FILTEES) == 0)
2746 			return (-1);
2747 	}
2748 	return (0);
2749 }
2750 
2751 /*
2752  * Given a shared object, traverse its list of needed objects, and load
2753  * each of them.  Returns 0 on success.  Generates an error message and
2754  * returns -1 on failure.
2755  */
2756 static int
load_needed_objects(Obj_Entry * first,int flags)2757 load_needed_objects(Obj_Entry *first, int flags)
2758 {
2759 	Obj_Entry *obj;
2760 
2761 	for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
2762 		if (obj->marker)
2763 			continue;
2764 		if (process_needed(obj, obj->needed, flags) == -1)
2765 			return (-1);
2766 	}
2767 	return (0);
2768 }
2769 
2770 static int
load_preload_objects(const char * penv,bool isfd)2771 load_preload_objects(const char *penv, bool isfd)
2772 {
2773 	Obj_Entry *obj;
2774 	const char *name;
2775 	size_t len;
2776 	char savech, *p, *psave;
2777 	int fd;
2778 	static const char delim[] = " \t:;";
2779 
2780 	if (penv == NULL)
2781 		return (0);
2782 
2783 	p = psave = xstrdup(penv);
2784 	p += strspn(p, delim);
2785 	while (*p != '\0') {
2786 		len = strcspn(p, delim);
2787 
2788 		savech = p[len];
2789 		p[len] = '\0';
2790 		if (isfd) {
2791 			name = NULL;
2792 			fd = parse_integer(p);
2793 			if (fd == -1) {
2794 				free(psave);
2795 				return (-1);
2796 			}
2797 		} else {
2798 			name = p;
2799 			fd = -1;
2800 		}
2801 
2802 		obj = load_object(name, fd, NULL, 0);
2803 		if (obj == NULL) {
2804 			free(psave);
2805 			return (-1); /* XXX - cleanup */
2806 		}
2807 		obj->z_interpose = true;
2808 		p[len] = savech;
2809 		p += len;
2810 		p += strspn(p, delim);
2811 	}
2812 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2813 
2814 	free(psave);
2815 	return (0);
2816 }
2817 
2818 static const char *
printable_path(const char * path)2819 printable_path(const char *path)
2820 {
2821 	return (path == NULL ? "<unknown>" : path);
2822 }
2823 
2824 /*
2825  * Load a shared object into memory, if it is not already loaded.  The
2826  * object may be specified by name or by user-supplied file descriptor
2827  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2828  * duplicate is.
2829  *
2830  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2831  * on failure.
2832  */
2833 static Obj_Entry *
load_object(const char * name,int fd_u,const Obj_Entry * refobj,int flags)2834 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2835 {
2836 	Obj_Entry *obj;
2837 	int fd;
2838 	struct stat sb;
2839 	char *path;
2840 
2841 	fd = -1;
2842 	if (name != NULL) {
2843 		TAILQ_FOREACH(obj, &obj_list, next) {
2844 			if (obj->marker || obj->doomed)
2845 				continue;
2846 			if (object_match_name(obj, name))
2847 				return (obj);
2848 		}
2849 
2850 		path = find_library(name, refobj, &fd);
2851 		if (path == NULL)
2852 			return (NULL);
2853 	} else
2854 		path = NULL;
2855 
2856 	if (fd >= 0) {
2857 		/*
2858 		 * search_library_pathfds() opens a fresh file descriptor for
2859 		 * the library, so there is no need to dup().
2860 		 */
2861 	} else if (fd_u == -1) {
2862 		/*
2863 		 * If we didn't find a match by pathname, or the name is not
2864 		 * supplied, open the file and check again by device and inode.
2865 		 * This avoids false mismatches caused by multiple links or ".."
2866 		 * in pathnames.
2867 		 *
2868 		 * To avoid a race, we open the file and use fstat() rather than
2869 		 * using stat().
2870 		 */
2871 		if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
2872 			_rtld_error("Cannot open \"%s\"", path);
2873 			free(path);
2874 			return (NULL);
2875 		}
2876 	} else {
2877 		fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2878 		if (fd == -1) {
2879 			_rtld_error("Cannot dup fd");
2880 			free(path);
2881 			return (NULL);
2882 		}
2883 	}
2884 	if (fstat(fd, &sb) == -1) {
2885 		_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2886 		close(fd);
2887 		free(path);
2888 		return (NULL);
2889 	}
2890 	TAILQ_FOREACH(obj, &obj_list, next) {
2891 		if (obj->marker || obj->doomed)
2892 			continue;
2893 		if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2894 			break;
2895 	}
2896 	if (obj != NULL) {
2897 		if (name != NULL)
2898 			object_add_name(obj, name);
2899 		free(path);
2900 		close(fd);
2901 		return (obj);
2902 	}
2903 	if (flags & RTLD_LO_NOLOAD) {
2904 		free(path);
2905 		close(fd);
2906 		return (NULL);
2907 	}
2908 
2909 	/* First use of this object, so we must map it in */
2910 	obj = do_load_object(fd, name, path, &sb, flags);
2911 	if (obj == NULL)
2912 		free(path);
2913 	close(fd);
2914 
2915 	return (obj);
2916 }
2917 
2918 static Obj_Entry *
do_load_object(int fd,const char * name,char * path,struct stat * sbp,int flags)2919 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2920     int flags)
2921 {
2922 	Obj_Entry *obj;
2923 	struct statfs fs;
2924 
2925 	/*
2926 	 * First, make sure that environment variables haven't been
2927 	 * used to circumvent the noexec flag on a filesystem.
2928 	 * We ignore fstatfs(2) failures, since fd might reference
2929 	 * not a file, e.g. shmfd.
2930 	 */
2931 	if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
2932 	    (fs.f_flags & MNT_NOEXEC) != 0) {
2933 		_rtld_error("Cannot execute objects on %s", fs.f_mntonname);
2934 		return (NULL);
2935 	}
2936 
2937 	dbg("loading \"%s\"", printable_path(path));
2938 	obj = map_object(fd, printable_path(path), sbp, false);
2939 	if (obj == NULL)
2940 		return (NULL);
2941 
2942 	/*
2943 	 * If DT_SONAME is present in the object, digest_dynamic2 already
2944 	 * added it to the object names.
2945 	 */
2946 	if (name != NULL)
2947 		object_add_name(obj, name);
2948 	obj->path = path;
2949 	if (!digest_dynamic(obj, 0))
2950 		goto errp;
2951 	dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2952 	    obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2953 	if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
2954 		dbg("refusing to load PIE executable \"%s\"", obj->path);
2955 		_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
2956 		goto errp;
2957 	}
2958 	if (obj->z_noopen &&
2959 	    (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) == RTLD_LO_DLOPEN) {
2960 		dbg("refusing to load non-loadable \"%s\"", obj->path);
2961 		_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2962 		goto errp;
2963 	}
2964 
2965 	obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
2966 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
2967 	obj_count++;
2968 	obj_loads++;
2969 	linkmap_add(obj); /* for GDB & dlinfo() */
2970 	max_stack_flags |= obj->stack_flags;
2971 
2972 	dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
2973 	    obj->path);
2974 	if (obj->textrel)
2975 		dbg("  WARNING: %s has impure text", obj->path);
2976 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2977 	    obj->path);
2978 
2979 	return (obj);
2980 
2981 errp:
2982 	munmap(obj->mapbase, obj->mapsize);
2983 	obj_free(obj);
2984 	return (NULL);
2985 }
2986 
2987 static int
load_kpreload(const void * addr)2988 load_kpreload(const void *addr)
2989 {
2990 	Obj_Entry *obj;
2991 	const Elf_Ehdr *ehdr;
2992 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
2993 	static const char kname[] = "[vdso]";
2994 
2995 	ehdr = addr;
2996 	if (!check_elf_headers(ehdr, "kpreload"))
2997 		return (-1);
2998 	obj = obj_new();
2999 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
3000 	obj->phdr = phdr;
3001 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
3002 	phlimit = phdr + ehdr->e_phnum;
3003 	seg0 = segn = NULL;
3004 
3005 	for (; phdr < phlimit; phdr++) {
3006 		switch (phdr->p_type) {
3007 		case PT_DYNAMIC:
3008 			phdyn = phdr;
3009 			break;
3010 		case PT_GNU_STACK:
3011 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
3012 			obj->stack_flags = phdr->p_flags;
3013 			break;
3014 		case PT_LOAD:
3015 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
3016 				seg0 = phdr;
3017 			if (segn == NULL ||
3018 			    segn->p_vaddr + segn->p_memsz <
3019 				phdr->p_vaddr + phdr->p_memsz)
3020 				segn = phdr;
3021 			break;
3022 		}
3023 	}
3024 
3025 	obj->mapbase = __DECONST(caddr_t, addr);
3026 	obj->mapsize = segn->p_vaddr + segn->p_memsz;
3027 	obj->vaddrbase = 0;
3028 	obj->relocbase = obj->mapbase;
3029 
3030 	object_add_name(obj, kname);
3031 	obj->path = xstrdup(kname);
3032 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
3033 
3034 	if (!digest_dynamic(obj, 0)) {
3035 		obj_free(obj);
3036 		return (-1);
3037 	}
3038 
3039 	/*
3040 	 * We assume that kernel-preloaded object does not need
3041 	 * relocation.  It is currently written into read-only page,
3042 	 * handling relocations would mean we need to allocate at
3043 	 * least one additional page per AS.
3044 	 */
3045 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
3046 	    obj->path, obj->mapbase, obj->phdr, seg0,
3047 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
3048 
3049 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
3050 	obj_count++;
3051 	obj_loads++;
3052 	linkmap_add(obj); /* for GDB & dlinfo() */
3053 	max_stack_flags |= obj->stack_flags;
3054 
3055 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3056 	    obj->path);
3057 	return (0);
3058 }
3059 
3060 Obj_Entry *
obj_from_addr(const void * addr)3061 obj_from_addr(const void *addr)
3062 {
3063 	Obj_Entry *obj;
3064 
3065 	TAILQ_FOREACH(obj, &obj_list, next) {
3066 		if (obj->marker)
3067 			continue;
3068 		if (addr < (void *)obj->mapbase)
3069 			continue;
3070 		if (addr < (void *)(obj->mapbase + obj->mapsize))
3071 			return obj;
3072 	}
3073 	return (NULL);
3074 }
3075 
3076 static void
preinit_main(void)3077 preinit_main(void)
3078 {
3079 	Elf_Addr *preinit_addr;
3080 	int index;
3081 
3082 	preinit_addr = (Elf_Addr *)obj_main->preinit_array;
3083 	if (preinit_addr == NULL)
3084 		return;
3085 
3086 	for (index = 0; index < obj_main->preinit_array_num; index++) {
3087 		if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
3088 			dbg("calling preinit function for %s at %p",
3089 			    obj_main->path, (void *)preinit_addr[index]);
3090 			LD_UTRACE(UTRACE_INIT_CALL, obj_main,
3091 			    (void *)preinit_addr[index], 0, 0, obj_main->path);
3092 			call_init_pointer(obj_main, preinit_addr[index]);
3093 		}
3094 	}
3095 }
3096 
3097 /*
3098  * Call the finalization functions for each of the objects in "list"
3099  * belonging to the DAG of "root" and referenced once. If NULL "root"
3100  * is specified, every finalization function will be called regardless
3101  * of the reference count and the list elements won't be freed. All of
3102  * the objects are expected to have non-NULL fini functions.
3103  */
3104 static void
objlist_call_fini(Objlist * list,Obj_Entry * root,RtldLockState * lockstate)3105 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
3106 {
3107 	Objlist_Entry *elm;
3108 	struct dlerror_save *saved_msg;
3109 	Elf_Addr *fini_addr;
3110 	int index;
3111 
3112 	assert(root == NULL || root->refcount == 1);
3113 
3114 	if (root != NULL)
3115 		root->doomed = true;
3116 
3117 	/*
3118 	 * Preserve the current error message since a fini function might
3119 	 * call into the dynamic linker and overwrite it.
3120 	 */
3121 	saved_msg = errmsg_save();
3122 	do {
3123 		STAILQ_FOREACH(elm, list, link) {
3124 			if (root != NULL &&
3125 			    (elm->obj->refcount != 1 ||
3126 				objlist_find(&root->dagmembers, elm->obj) ==
3127 				    NULL))
3128 				continue;
3129 			/* Remove object from fini list to prevent recursive
3130 			 * invocation. */
3131 			STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3132 			/* Ensure that new references cannot be acquired. */
3133 			elm->obj->doomed = true;
3134 
3135 			hold_object(elm->obj);
3136 			lock_release(rtld_bind_lock, lockstate);
3137 			/*
3138 			 * It is legal to have both DT_FINI and DT_FINI_ARRAY
3139 			 * defined. When this happens, DT_FINI_ARRAY is
3140 			 * processed first.
3141 			 */
3142 			fini_addr = (Elf_Addr *)elm->obj->fini_array;
3143 			if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
3144 				for (index = elm->obj->fini_array_num - 1;
3145 				    index >= 0; index--) {
3146 					if (fini_addr[index] != 0 &&
3147 					    fini_addr[index] != 1) {
3148 				dbg("calling fini function for %s at %p",
3149 						    elm->obj->path,
3150 						    (void *)fini_addr[index]);
3151 						LD_UTRACE(UTRACE_FINI_CALL,
3152 						    elm->obj,
3153 						    (void *)fini_addr[index], 0,
3154 						    0, elm->obj->path);
3155 						call_initfini_pointer(elm->obj,
3156 						    fini_addr[index]);
3157 					}
3158 				}
3159 			}
3160 			if (elm->obj->fini != (Elf_Addr)NULL) {
3161 				dbg("calling fini function for %s at %p",
3162 				    elm->obj->path, (void *)elm->obj->fini);
3163 				LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
3164 				    (void *)elm->obj->fini, 0, 0,
3165 				    elm->obj->path);
3166 				call_initfini_pointer(elm->obj, elm->obj->fini);
3167 			}
3168 			wlock_acquire(rtld_bind_lock, lockstate);
3169 			unhold_object(elm->obj);
3170 			/* No need to free anything if process is going down. */
3171 			if (root != NULL)
3172 				free(elm);
3173 			/*
3174 			 * We must restart the list traversal after every fini
3175 			 * call because a dlclose() call from the fini function
3176 			 * or from another thread might have modified the
3177 			 * reference counts.
3178 			 */
3179 			break;
3180 		}
3181 	} while (elm != NULL);
3182 	errmsg_restore(saved_msg);
3183 }
3184 
3185 /*
3186  * Call the initialization functions for each of the objects in
3187  * "list".  All of the objects are expected to have non-NULL init
3188  * functions.
3189  */
3190 static void
objlist_call_init(Objlist * list,RtldLockState * lockstate)3191 objlist_call_init(Objlist *list, RtldLockState *lockstate)
3192 {
3193 	Objlist_Entry *elm;
3194 	Obj_Entry *obj;
3195 	struct dlerror_save *saved_msg;
3196 	Elf_Addr *init_addr;
3197 	void (*reg)(void (*)(void));
3198 	int index;
3199 
3200 	/*
3201 	 * Clean init_scanned flag so that objects can be rechecked and
3202 	 * possibly initialized earlier if any of vectors called below
3203 	 * cause the change by using dlopen.
3204 	 */
3205 	TAILQ_FOREACH(obj, &obj_list, next) {
3206 		if (obj->marker)
3207 			continue;
3208 		obj->init_scanned = false;
3209 	}
3210 
3211 	/*
3212 	 * Preserve the current error message since an init function might
3213 	 * call into the dynamic linker and overwrite it.
3214 	 */
3215 	saved_msg = errmsg_save();
3216 	STAILQ_FOREACH(elm, list, link) {
3217 		if (elm->obj->init_done) /* Initialized early. */
3218 			continue;
3219 		/*
3220 		 * Race: other thread might try to use this object before
3221 		 * current one completes the initialization. Not much can be
3222 		 * done here without better locking.
3223 		 */
3224 		elm->obj->init_done = true;
3225 		hold_object(elm->obj);
3226 		reg = NULL;
3227 		if (elm->obj == obj_main && obj_main->crt_no_init) {
3228 			reg = (void (*)(void (*)(void)))
3229 			    get_program_var_addr("__libc_atexit", lockstate);
3230 		}
3231 		lock_release(rtld_bind_lock, lockstate);
3232 		if (reg != NULL) {
3233 			reg(rtld_exit);
3234 			rtld_exit_ptr = rtld_nop_exit;
3235 		}
3236 
3237 		/*
3238 		 * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
3239 		 * When this happens, DT_INIT is processed first.
3240 		 */
3241 		if (elm->obj->init != (Elf_Addr)NULL) {
3242 			dbg("calling init function for %s at %p",
3243 			    elm->obj->path, (void *)elm->obj->init);
3244 			LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3245 			    (void *)elm->obj->init, 0, 0, elm->obj->path);
3246 			call_init_pointer(elm->obj, elm->obj->init);
3247 		}
3248 		init_addr = (Elf_Addr *)elm->obj->init_array;
3249 		if (init_addr != NULL) {
3250 			for (index = 0; index < elm->obj->init_array_num;
3251 			    index++) {
3252 				if (init_addr[index] != 0 &&
3253 				    init_addr[index] != 1) {
3254 				dbg("calling init function for %s at %p",
3255 					    elm->obj->path,
3256 					    (void *)init_addr[index]);
3257 					LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
3258 					    (void *)init_addr[index], 0, 0,
3259 					    elm->obj->path);
3260 					call_init_pointer(elm->obj,
3261 					    init_addr[index]);
3262 				}
3263 			}
3264 		}
3265 		wlock_acquire(rtld_bind_lock, lockstate);
3266 		unhold_object(elm->obj);
3267 	}
3268 	errmsg_restore(saved_msg);
3269 }
3270 
3271 static void
objlist_clear(Objlist * list)3272 objlist_clear(Objlist *list)
3273 {
3274 	Objlist_Entry *elm;
3275 
3276 	while (!STAILQ_EMPTY(list)) {
3277 		elm = STAILQ_FIRST(list);
3278 		STAILQ_REMOVE_HEAD(list, link);
3279 		free(elm);
3280 	}
3281 }
3282 
3283 static Objlist_Entry *
objlist_find(Objlist * list,const Obj_Entry * obj)3284 objlist_find(Objlist *list, const Obj_Entry *obj)
3285 {
3286 	Objlist_Entry *elm;
3287 
3288 	STAILQ_FOREACH(elm, list, link)
3289 		if (elm->obj == obj)
3290 			return elm;
3291 	return (NULL);
3292 }
3293 
3294 static void
objlist_init(Objlist * list)3295 objlist_init(Objlist *list)
3296 {
3297 	STAILQ_INIT(list);
3298 }
3299 
3300 static void
objlist_push_head(Objlist * list,Obj_Entry * obj)3301 objlist_push_head(Objlist *list, Obj_Entry *obj)
3302 {
3303 	Objlist_Entry *elm;
3304 
3305 	elm = NEW(Objlist_Entry);
3306 	elm->obj = obj;
3307 	STAILQ_INSERT_HEAD(list, elm, link);
3308 }
3309 
3310 static void
objlist_push_tail(Objlist * list,Obj_Entry * obj)3311 objlist_push_tail(Objlist *list, Obj_Entry *obj)
3312 {
3313 	Objlist_Entry *elm;
3314 
3315 	elm = NEW(Objlist_Entry);
3316 	elm->obj = obj;
3317 	STAILQ_INSERT_TAIL(list, elm, link);
3318 }
3319 
3320 static void
objlist_put_after(Objlist * list,Obj_Entry * listobj,Obj_Entry * obj)3321 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
3322 {
3323 	Objlist_Entry *elm, *listelm;
3324 
3325 	STAILQ_FOREACH(listelm, list, link) {
3326 		if (listelm->obj == listobj)
3327 			break;
3328 	}
3329 	elm = NEW(Objlist_Entry);
3330 	elm->obj = obj;
3331 	if (listelm != NULL)
3332 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
3333 	else
3334 		STAILQ_INSERT_TAIL(list, elm, link);
3335 }
3336 
3337 static void
objlist_remove(Objlist * list,Obj_Entry * obj)3338 objlist_remove(Objlist *list, Obj_Entry *obj)
3339 {
3340 	Objlist_Entry *elm;
3341 
3342 	if ((elm = objlist_find(list, obj)) != NULL) {
3343 		STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
3344 		free(elm);
3345 	}
3346 }
3347 
3348 /*
3349  * Relocate dag rooted in the specified object.
3350  * Returns 0 on success, or -1 on failure.
3351  */
3352 
3353 static int
relocate_object_dag(Obj_Entry * root,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3354 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
3355     int flags, RtldLockState *lockstate)
3356 {
3357 	Objlist_Entry *elm;
3358 	int error;
3359 
3360 	error = 0;
3361 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3362 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
3363 		    lockstate);
3364 		if (error == -1)
3365 			break;
3366 	}
3367 	return (error);
3368 }
3369 
3370 /*
3371  * Prepare for, or clean after, relocating an object marked with
3372  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
3373  * segments are remapped read-write.  After relocations are done, the
3374  * segment's permissions are returned back to the modes specified in
3375  * the phdrs.  If any relocation happened, or always for wired
3376  * program, COW is triggered.
3377  */
3378 static int
reloc_textrel_prot(Obj_Entry * obj,bool before)3379 reloc_textrel_prot(Obj_Entry *obj, bool before)
3380 {
3381 	const Elf_Phdr *ph;
3382 	void *base;
3383 	size_t l, sz;
3384 	int prot;
3385 
3386 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0; l--, ph++) {
3387 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
3388 			continue;
3389 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
3390 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
3391 		    rtld_trunc_page(ph->p_vaddr);
3392 		prot = before ? (PROT_READ | PROT_WRITE) :
3393 		    convert_prot(ph->p_flags);
3394 		if (mprotect(base, sz, prot) == -1) {
3395 			_rtld_error("%s: Cannot write-%sable text segment: %s",
3396 			    obj->path, before ? "en" : "dis",
3397 			    rtld_strerror(errno));
3398 			return (-1);
3399 		}
3400 	}
3401 	return (0);
3402 }
3403 
3404 /* Process RELR relative relocations. */
3405 static void
reloc_relr(Obj_Entry * obj)3406 reloc_relr(Obj_Entry *obj)
3407 {
3408 	const Elf_Relr *relr, *relrlim;
3409 	Elf_Addr *where;
3410 
3411 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
3412 	for (relr = obj->relr; relr < relrlim; relr++) {
3413 		Elf_Relr entry = *relr;
3414 
3415 		if ((entry & 1) == 0) {
3416 			where = (Elf_Addr *)(obj->relocbase + entry);
3417 			*where++ += (Elf_Addr)obj->relocbase;
3418 		} else {
3419 			for (long i = 0; (entry >>= 1) != 0; i++)
3420 				if ((entry & 1) != 0)
3421 					where[i] += (Elf_Addr)obj->relocbase;
3422 			where += CHAR_BIT * sizeof(Elf_Relr) - 1;
3423 		}
3424 	}
3425 }
3426 
3427 /*
3428  * Relocate single object.
3429  * Returns 0 on success, or -1 on failure.
3430  */
3431 static int
relocate_object(Obj_Entry * obj,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3432 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj, int flags,
3433     RtldLockState *lockstate)
3434 {
3435 	if (obj->relocated)
3436 		return (0);
3437 	obj->relocated = true;
3438 	if (obj != rtldobj)
3439 		dbg("relocating \"%s\"", obj->path);
3440 
3441 	if (obj->symtab == NULL || obj->strtab == NULL ||
3442 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
3443 		dbg("object %s has no run-time symbol table", obj->path);
3444 
3445 	/* There are relocations to the write-protected text segment. */
3446 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
3447 		return (-1);
3448 
3449 	/* Process the non-PLT non-IFUNC relocations. */
3450 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
3451 		return (-1);
3452 	reloc_relr(obj);
3453 
3454 	/* Re-protected the text segment. */
3455 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
3456 		return (-1);
3457 
3458 	/* Set the special PLT or GOT entries. */
3459 	init_pltgot(obj);
3460 
3461 	/* Process the PLT relocations. */
3462 	if (reloc_plt(obj, flags, lockstate) == -1)
3463 		return (-1);
3464 	/* Relocate the jump slots if we are doing immediate binding. */
3465 	if ((obj->bind_now || bind_now) &&
3466 	    reloc_jmpslots(obj, flags, lockstate) == -1)
3467 		return (-1);
3468 
3469 	if (obj != rtldobj && !obj->mainprog && obj_enforce_relro(obj) == -1)
3470 		return (-1);
3471 
3472 	/*
3473 	 * Set up the magic number and version in the Obj_Entry.  These
3474 	 * were checked in the crt1.o from the original ElfKit, so we
3475 	 * set them for backward compatibility.
3476 	 */
3477 	obj->magic = RTLD_MAGIC;
3478 	obj->version = RTLD_VERSION;
3479 
3480 	return (0);
3481 }
3482 
3483 /*
3484  * Relocate newly-loaded shared objects.  The argument is a pointer to
3485  * the Obj_Entry for the first such object.  All objects from the first
3486  * to the end of the list of objects are relocated.  Returns 0 on success,
3487  * or -1 on failure.
3488  */
3489 static int
relocate_objects(Obj_Entry * first,bool bind_now,Obj_Entry * rtldobj,int flags,RtldLockState * lockstate)3490 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj, int flags,
3491     RtldLockState *lockstate)
3492 {
3493 	Obj_Entry *obj;
3494 	int error;
3495 
3496 	for (error = 0, obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
3497 		if (obj->marker)
3498 			continue;
3499 		error = relocate_object(obj, bind_now, rtldobj, flags,
3500 		    lockstate);
3501 		if (error == -1)
3502 			break;
3503 	}
3504 	return (error);
3505 }
3506 
3507 /*
3508  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
3509  * referencing STT_GNU_IFUNC symbols is postponed till the other
3510  * relocations are done.  The indirect functions specified as
3511  * ifunc are allowed to call other symbols, so we need to have
3512  * objects relocated before asking for resolution from indirects.
3513  *
3514  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
3515  * instead of the usual lazy handling of PLT slots.  It is
3516  * consistent with how GNU does it.
3517  */
3518 static int
resolve_object_ifunc(Obj_Entry * obj,bool bind_now,int flags,RtldLockState * lockstate)3519 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
3520     RtldLockState *lockstate)
3521 {
3522 	if (obj->ifuncs_resolved)
3523 		return (0);
3524 	obj->ifuncs_resolved = true;
3525 	if (!obj->irelative && !obj->irelative_nonplt &&
3526 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
3527 	    !obj->non_plt_gnu_ifunc)
3528 		return (0);
3529 	if (obj_disable_relro(obj) == -1 ||
3530 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
3531 	    (obj->irelative_nonplt &&
3532 	    reloc_iresolve_nonplt(obj, lockstate) == -1) ||
3533 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
3534 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
3535 	    (obj->non_plt_gnu_ifunc &&
3536 	    reloc_non_plt(obj, &obj_rtld, flags | SYMLOOK_IFUNC,
3537 	    lockstate) == -1) ||
3538 	    obj_enforce_relro(obj) == -1)
3539 		return (-1);
3540 	return (0);
3541 }
3542 
3543 static int
initlist_objects_ifunc(Objlist * list,bool bind_now,int flags,RtldLockState * lockstate)3544 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
3545     RtldLockState *lockstate)
3546 {
3547 	Objlist_Entry *elm;
3548 	Obj_Entry *obj;
3549 
3550 	STAILQ_FOREACH(elm, list, link) {
3551 		obj = elm->obj;
3552 		if (obj->marker)
3553 			continue;
3554 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
3555 			return (-1);
3556 	}
3557 	return (0);
3558 }
3559 
3560 /*
3561  * Cleanup procedure.  It will be called (by the atexit mechanism) just
3562  * before the process exits.
3563  */
3564 static void
rtld_exit(void)3565 rtld_exit(void)
3566 {
3567 	RtldLockState lockstate;
3568 
3569 	wlock_acquire(rtld_bind_lock, &lockstate);
3570 	dbg("rtld_exit()");
3571 	objlist_call_fini(&list_fini, NULL, &lockstate);
3572 	/* No need to remove the items from the list, since we are exiting. */
3573 	if (!libmap_disable)
3574 		lm_fini();
3575 	lock_release(rtld_bind_lock, &lockstate);
3576 }
3577 
3578 static void
rtld_nop_exit(void)3579 rtld_nop_exit(void)
3580 {
3581 }
3582 
3583 /*
3584  * Iterate over a search path, translate each element, and invoke the
3585  * callback on the result.
3586  */
3587 static void *
path_enumerate(const char * path,path_enum_proc callback,const char * refobj_path,void * arg)3588 path_enumerate(const char *path, path_enum_proc callback,
3589     const char *refobj_path, void *arg)
3590 {
3591 	const char *trans;
3592 	if (path == NULL)
3593 		return (NULL);
3594 
3595 	path += strspn(path, ":;");
3596 	while (*path != '\0') {
3597 		size_t len;
3598 		char *res;
3599 
3600 		len = strcspn(path, ":;");
3601 		trans = lm_findn(refobj_path, path, len);
3602 		if (trans)
3603 			res = callback(trans, strlen(trans), arg);
3604 		else
3605 			res = callback(path, len, arg);
3606 
3607 		if (res != NULL)
3608 			return (res);
3609 
3610 		path += len;
3611 		path += strspn(path, ":;");
3612 	}
3613 
3614 	return (NULL);
3615 }
3616 
3617 struct try_library_args {
3618 	const char *name;
3619 	size_t namelen;
3620 	char *buffer;
3621 	size_t buflen;
3622 	int fd;
3623 };
3624 
3625 static void *
try_library_path(const char * dir,size_t dirlen,void * param)3626 try_library_path(const char *dir, size_t dirlen, void *param)
3627 {
3628 	struct try_library_args *arg;
3629 	int fd;
3630 
3631 	arg = param;
3632 	if (*dir == '/' || trust) {
3633 		char *pathname;
3634 
3635 		if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
3636 			return (NULL);
3637 
3638 		pathname = arg->buffer;
3639 		strncpy(pathname, dir, dirlen);
3640 		pathname[dirlen] = '/';
3641 		strcpy(pathname + dirlen + 1, arg->name);
3642 
3643 		dbg("  Trying \"%s\"", pathname);
3644 		fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
3645 		if (fd >= 0) {
3646 			dbg("  Opened \"%s\", fd %d", pathname, fd);
3647 			pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
3648 			strcpy(pathname, arg->buffer);
3649 			arg->fd = fd;
3650 			return (pathname);
3651 		} else {
3652 			dbg("  Failed to open \"%s\": %s", pathname,
3653 			    rtld_strerror(errno));
3654 		}
3655 	}
3656 	return (NULL);
3657 }
3658 
3659 static char *
search_library_path(const char * name,const char * path,const char * refobj_path,int * fdp)3660 search_library_path(const char *name, const char *path, const char *refobj_path,
3661     int *fdp)
3662 {
3663 	char *p;
3664 	struct try_library_args arg;
3665 
3666 	if (path == NULL)
3667 		return (NULL);
3668 
3669 	arg.name = name;
3670 	arg.namelen = strlen(name);
3671 	arg.buffer = xmalloc(PATH_MAX);
3672 	arg.buflen = PATH_MAX;
3673 	arg.fd = -1;
3674 
3675 	p = path_enumerate(path, try_library_path, refobj_path, &arg);
3676 	*fdp = arg.fd;
3677 
3678 	free(arg.buffer);
3679 
3680 	return (p);
3681 }
3682 
3683 /*
3684  * Finds the library with the given name using the directory descriptors
3685  * listed in the LD_LIBRARY_PATH_FDS environment variable.
3686  *
3687  * Returns a freshly-opened close-on-exec file descriptor for the library,
3688  * or -1 if the library cannot be found.
3689  */
3690 static char *
search_library_pathfds(const char * name,const char * path,int * fdp)3691 search_library_pathfds(const char *name, const char *path, int *fdp)
3692 {
3693 	char *envcopy, *fdstr, *found, *last_token;
3694 	size_t len;
3695 	int dirfd, fd;
3696 
3697 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
3698 
3699 	/* Don't load from user-specified libdirs into setuid binaries. */
3700 	if (!trust)
3701 		return (NULL);
3702 
3703 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
3704 	if (path == NULL)
3705 		return (NULL);
3706 
3707 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
3708 	if (name[0] == '/') {
3709 		dbg("Absolute path (%s) passed to %s", name, __func__);
3710 		return (NULL);
3711 	}
3712 
3713 	/*
3714 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
3715 	 * copy of the path, as strtok_r rewrites separator tokens
3716 	 * with '\0'.
3717 	 */
3718 	found = NULL;
3719 	envcopy = xstrdup(path);
3720 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
3721 	    fdstr = strtok_r(NULL, ":", &last_token)) {
3722 		dirfd = parse_integer(fdstr);
3723 		if (dirfd < 0) {
3724 			_rtld_error("failed to parse directory FD: '%s'",
3725 			    fdstr);
3726 			break;
3727 		}
3728 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
3729 		if (fd >= 0) {
3730 			*fdp = fd;
3731 			len = strlen(fdstr) + strlen(name) + 3;
3732 			found = xmalloc(len);
3733 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) <
3734 			    0) {
3735 				_rtld_error("error generating '%d/%s'", dirfd,
3736 				    name);
3737 				rtld_die();
3738 			}
3739 			dbg("open('%s') => %d", found, fd);
3740 			break;
3741 		}
3742 	}
3743 	free(envcopy);
3744 
3745 	return (found);
3746 }
3747 
3748 int
dlclose(void * handle)3749 dlclose(void *handle)
3750 {
3751 	RtldLockState lockstate;
3752 	int error;
3753 
3754 	wlock_acquire(rtld_bind_lock, &lockstate);
3755 	error = dlclose_locked(handle, &lockstate);
3756 	lock_release(rtld_bind_lock, &lockstate);
3757 	return (error);
3758 }
3759 
3760 static int
dlclose_locked(void * handle,RtldLockState * lockstate)3761 dlclose_locked(void *handle, RtldLockState *lockstate)
3762 {
3763 	Obj_Entry *root;
3764 
3765 	root = dlcheck(handle);
3766 	if (root == NULL)
3767 		return (-1);
3768 	LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
3769 	    root->path);
3770 
3771 	/* Unreference the object and its dependencies. */
3772 	root->dl_refcount--;
3773 
3774 	if (root->refcount == 1) {
3775 		/*
3776 		 * The object will be no longer referenced, so we must unload
3777 		 * it. First, call the fini functions.
3778 		 */
3779 		objlist_call_fini(&list_fini, root, lockstate);
3780 
3781 		unref_dag(root);
3782 
3783 		/* Finish cleaning up the newly-unreferenced objects. */
3784 		GDB_STATE(RT_DELETE, &root->linkmap);
3785 		unload_object(root, lockstate);
3786 		GDB_STATE(RT_CONSISTENT, NULL);
3787 	} else
3788 		unref_dag(root);
3789 
3790 	LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
3791 	return (0);
3792 }
3793 
3794 char *
dlerror(void)3795 dlerror(void)
3796 {
3797 	if (*(lockinfo.dlerror_seen()) != 0)
3798 		return (NULL);
3799 	*lockinfo.dlerror_seen() = 1;
3800 	return (lockinfo.dlerror_loc());
3801 }
3802 
3803 /*
3804  * This function is deprecated and has no effect.
3805  */
3806 void
dllockinit(void * context,void * (* _lock_create)(void * context)__unused,void (* _rlock_acquire)(void * lock)__unused,void (* _wlock_acquire)(void * lock)__unused,void (* _lock_release)(void * lock)__unused,void (* _lock_destroy)(void * lock)__unused,void (* context_destroy)(void * context))3807 dllockinit(void *context, void *(*_lock_create)(void *context)__unused,
3808     void (*_rlock_acquire)(void *lock) __unused,
3809     void (*_wlock_acquire)(void *lock) __unused,
3810     void (*_lock_release)(void *lock) __unused,
3811     void (*_lock_destroy)(void *lock) __unused,
3812     void (*context_destroy)(void *context))
3813 {
3814 	static void *cur_context;
3815 	static void (*cur_context_destroy)(void *);
3816 
3817 	/* Just destroy the context from the previous call, if necessary. */
3818 	if (cur_context_destroy != NULL)
3819 		cur_context_destroy(cur_context);
3820 	cur_context = context;
3821 	cur_context_destroy = context_destroy;
3822 }
3823 
3824 void *
dlopen(const char * name,int mode)3825 dlopen(const char *name, int mode)
3826 {
3827 	return (rtld_dlopen(name, -1, mode));
3828 }
3829 
3830 void *
fdlopen(int fd,int mode)3831 fdlopen(int fd, int mode)
3832 {
3833 	return (rtld_dlopen(NULL, fd, mode));
3834 }
3835 
3836 static void *
rtld_dlopen(const char * name,int fd,int mode)3837 rtld_dlopen(const char *name, int fd, int mode)
3838 {
3839 	RtldLockState lockstate;
3840 	int lo_flags;
3841 
3842 	LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3843 	ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3844 	if (ld_tracing != NULL) {
3845 		rlock_acquire(rtld_bind_lock, &lockstate);
3846 		if (sigsetjmp(lockstate.env, 0) != 0)
3847 			lock_upgrade(rtld_bind_lock, &lockstate);
3848 		environ = __DECONST(char **,
3849 		    *get_program_var_addr("environ", &lockstate));
3850 		lock_release(rtld_bind_lock, &lockstate);
3851 	}
3852 	lo_flags = RTLD_LO_DLOPEN;
3853 	if (mode & RTLD_NODELETE)
3854 		lo_flags |= RTLD_LO_NODELETE;
3855 	if (mode & RTLD_NOLOAD)
3856 		lo_flags |= RTLD_LO_NOLOAD;
3857 	if (mode & RTLD_DEEPBIND)
3858 		lo_flags |= RTLD_LO_DEEPBIND;
3859 	if (ld_tracing != NULL)
3860 		lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
3861 
3862 	return (dlopen_object(name, fd, obj_main, lo_flags,
3863 	    mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3864 }
3865 
3866 static void
dlopen_cleanup(Obj_Entry * obj,RtldLockState * lockstate)3867 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
3868 {
3869 	obj->dl_refcount--;
3870 	unref_dag(obj);
3871 	if (obj->refcount == 0)
3872 		unload_object(obj, lockstate);
3873 }
3874 
3875 static Obj_Entry *
dlopen_object(const char * name,int fd,Obj_Entry * refobj,int lo_flags,int mode,RtldLockState * lockstate)3876 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3877     int mode, RtldLockState *lockstate)
3878 {
3879 	Obj_Entry *obj;
3880 	Objlist initlist;
3881 	RtldLockState mlockstate;
3882 	int result;
3883 
3884 	dbg(
3885     "dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
3886 	    name != NULL ? name : "<null>", fd,
3887 	    refobj == NULL ? "<null>" : refobj->path, lo_flags, mode);
3888 	objlist_init(&initlist);
3889 
3890 	if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3891 		wlock_acquire(rtld_bind_lock, &mlockstate);
3892 		lockstate = &mlockstate;
3893 	}
3894 	GDB_STATE(RT_ADD, NULL);
3895 
3896 	obj = NULL;
3897 	if (name == NULL && fd == -1) {
3898 		obj = obj_main;
3899 		obj->refcount++;
3900 	} else {
3901 		obj = load_object(name, fd, refobj, lo_flags);
3902 	}
3903 
3904 	if (obj != NULL) {
3905 		obj->dl_refcount++;
3906 		if ((mode & RTLD_GLOBAL) != 0 &&
3907 		    objlist_find(&list_global, obj) == NULL)
3908 			objlist_push_tail(&list_global, obj);
3909 
3910 		if (!obj->init_done) {
3911 			/* We loaded something new and have to init something.
3912 			 */
3913 			if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
3914 				obj->deepbind = true;
3915 			result = 0;
3916 			if ((lo_flags & (RTLD_LO_EARLY |
3917 			    RTLD_LO_IGNSTLS)) == 0 &&
3918 			    obj->static_tls && !allocate_tls_offset(obj)) {
3919 				_rtld_error(
3920 		    "%s: No space available for static Thread Local Storage",
3921 				    obj->path);
3922 				result = -1;
3923 			}
3924 			if (result != -1)
3925 				result = load_needed_objects(obj,
3926 				    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY |
3927 				    RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
3928 			init_dag(obj);
3929 			ref_dag(obj);
3930 			if (result != -1)
3931 				result = rtld_verify_versions(&obj->dagmembers);
3932 			if (result != -1 && ld_tracing)
3933 				goto trace;
3934 			if (result == -1 || relocate_object_dag(obj,
3935 			    (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3936 			    (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3937 			    lockstate) == -1) {
3938 				dlopen_cleanup(obj, lockstate);
3939 				obj = NULL;
3940 			} else if ((lo_flags & RTLD_LO_EARLY) != 0) {
3941 				/*
3942 				 * Do not call the init functions for early
3943 				 * loaded filtees.  The image is still not
3944 				 * initialized enough for them to work.
3945 				 *
3946 				 * Our object is found by the global object list
3947 				 * and will be ordered among all init calls done
3948 				 * right before transferring control to main.
3949 				 */
3950 			} else {
3951 				/* Make list of init functions to call. */
3952 				initlist_for_loaded_obj(obj, obj, &initlist);
3953 			}
3954 			/*
3955 			 * Process all no_delete or global objects here, given
3956 			 * them own DAGs to prevent their dependencies from
3957 			 * being unloaded.  This has to be done after we have
3958 			 * loaded all of the dependencies, so that we do not
3959 			 * miss any.
3960 			 */
3961 			if (obj != NULL)
3962 				process_z(obj);
3963 		} else {
3964 			/*
3965 			 * Bump the reference counts for objects on this DAG. If
3966 			 * this is the first dlopen() call for the object that
3967 			 * was already loaded as a dependency, initialize the
3968 			 * dag starting at it.
3969 			 */
3970 			init_dag(obj);
3971 			ref_dag(obj);
3972 
3973 			if ((lo_flags & RTLD_LO_TRACE) != 0)
3974 				goto trace;
3975 		}
3976 		if (obj != NULL &&
3977 		    ((lo_flags & RTLD_LO_NODELETE) != 0 || obj->z_nodelete) &&
3978 		    !obj->ref_nodel) {
3979 			dbg("obj %s nodelete", obj->path);
3980 			ref_dag(obj);
3981 			obj->z_nodelete = obj->ref_nodel = true;
3982 		}
3983 	}
3984 
3985 	LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3986 	    name);
3987 	GDB_STATE(RT_CONSISTENT, obj ? &obj->linkmap : NULL);
3988 
3989 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
3990 		map_stacks_exec(lockstate);
3991 		if (obj != NULL)
3992 			distribute_static_tls(&initlist);
3993 	}
3994 
3995 	if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) ==
3996 	    RTLD_NOW, (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3997 	    lockstate) == -1) {
3998 		objlist_clear(&initlist);
3999 		dlopen_cleanup(obj, lockstate);
4000 		if (lockstate == &mlockstate)
4001 			lock_release(rtld_bind_lock, lockstate);
4002 		return (NULL);
4003 	}
4004 
4005 	if ((lo_flags & RTLD_LO_EARLY) == 0) {
4006 		/* Call the init functions. */
4007 		objlist_call_init(&initlist, lockstate);
4008 	}
4009 	objlist_clear(&initlist);
4010 	if (lockstate == &mlockstate)
4011 		lock_release(rtld_bind_lock, lockstate);
4012 	return (obj);
4013 trace:
4014 	trace_loaded_objects(obj, false);
4015 	if (lockstate == &mlockstate)
4016 		lock_release(rtld_bind_lock, lockstate);
4017 	exit(0);
4018 }
4019 
4020 static void *
do_dlsym(void * handle,const char * name,void * retaddr,const Ver_Entry * ve,int flags)4021 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
4022     int flags)
4023 {
4024 	DoneList donelist;
4025 	const Obj_Entry *obj, *defobj;
4026 	const Elf_Sym *def;
4027 	SymLook req;
4028 	RtldLockState lockstate;
4029 	tls_index ti;
4030 	void *sym;
4031 	int res;
4032 
4033 	def = NULL;
4034 	defobj = NULL;
4035 	symlook_init(&req, name);
4036 	req.ventry = ve;
4037 	req.flags = flags | SYMLOOK_IN_PLT;
4038 	req.lockstate = &lockstate;
4039 
4040 	LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
4041 	rlock_acquire(rtld_bind_lock, &lockstate);
4042 	if (sigsetjmp(lockstate.env, 0) != 0)
4043 		lock_upgrade(rtld_bind_lock, &lockstate);
4044 	if (handle == NULL || handle == RTLD_NEXT || handle == RTLD_DEFAULT ||
4045 	    handle == RTLD_SELF) {
4046 		if ((obj = obj_from_addr(retaddr)) == NULL) {
4047 			_rtld_error("Cannot determine caller's shared object");
4048 			lock_release(rtld_bind_lock, &lockstate);
4049 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4050 			return (NULL);
4051 		}
4052 		if (handle == NULL) { /* Just the caller's shared object. */
4053 			res = symlook_obj(&req, obj);
4054 			if (res == 0) {
4055 				def = req.sym_out;
4056 				defobj = req.defobj_out;
4057 			}
4058 		} else if (handle == RTLD_NEXT || /* Objects after caller's */
4059 		    handle == RTLD_SELF) {	  /* ... caller included */
4060 			if (handle == RTLD_NEXT)
4061 				obj = globallist_next(obj);
4062 			for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
4063 				if (obj->marker)
4064 					continue;
4065 				res = symlook_obj(&req, obj);
4066 				if (res == 0) {
4067 					if (def == NULL ||
4068 					    (ld_dynamic_weak &&
4069 						ELF_ST_BIND(
4070 						    req.sym_out->st_info) !=
4071 						    STB_WEAK)) {
4072 						def = req.sym_out;
4073 						defobj = req.defobj_out;
4074 						if (!ld_dynamic_weak ||
4075 						    ELF_ST_BIND(def->st_info) !=
4076 							STB_WEAK)
4077 							break;
4078 					}
4079 				}
4080 			}
4081 			/*
4082 			 * Search the dynamic linker itself, and possibly
4083 			 * resolve the symbol from there.  This is how the
4084 			 * application links to dynamic linker services such as
4085 			 * dlopen. Note that we ignore ld_dynamic_weak == false
4086 			 * case, always overriding weak symbols by rtld
4087 			 * definitions.
4088 			 */
4089 			if (def == NULL ||
4090 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4091 				res = symlook_obj(&req, &obj_rtld);
4092 				if (res == 0) {
4093 					def = req.sym_out;
4094 					defobj = req.defobj_out;
4095 				}
4096 			}
4097 		} else {
4098 			assert(handle == RTLD_DEFAULT);
4099 			res = symlook_default(&req, obj);
4100 			if (res == 0) {
4101 				defobj = req.defobj_out;
4102 				def = req.sym_out;
4103 			}
4104 		}
4105 	} else {
4106 		if ((obj = dlcheck(handle)) == NULL) {
4107 			lock_release(rtld_bind_lock, &lockstate);
4108 			LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4109 			return (NULL);
4110 		}
4111 
4112 		donelist_init(&donelist);
4113 		if (obj->mainprog) {
4114 			/* Handle obtained by dlopen(NULL, ...) implies global
4115 			 * scope. */
4116 			res = symlook_global(&req, &donelist);
4117 			if (res == 0) {
4118 				def = req.sym_out;
4119 				defobj = req.defobj_out;
4120 			}
4121 			/*
4122 			 * Search the dynamic linker itself, and possibly
4123 			 * resolve the symbol from there.  This is how the
4124 			 * application links to dynamic linker services such as
4125 			 * dlopen.
4126 			 */
4127 			if (def == NULL ||
4128 			    ELF_ST_BIND(def->st_info) == STB_WEAK) {
4129 				res = symlook_obj(&req, &obj_rtld);
4130 				if (res == 0) {
4131 					def = req.sym_out;
4132 					defobj = req.defobj_out;
4133 				}
4134 			}
4135 		} else {
4136 			/* Search the whole DAG rooted at the given object. */
4137 			res = symlook_list(&req, &obj->dagmembers, &donelist);
4138 			if (res == 0) {
4139 				def = req.sym_out;
4140 				defobj = req.defobj_out;
4141 			}
4142 		}
4143 	}
4144 
4145 	if (def != NULL) {
4146 		lock_release(rtld_bind_lock, &lockstate);
4147 
4148 		/*
4149 		 * The value required by the caller is derived from the value
4150 		 * of the symbol. this is simply the relocated value of the
4151 		 * symbol.
4152 		 */
4153 		if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
4154 			sym = make_function_pointer(def, defobj);
4155 		else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
4156 			sym = rtld_resolve_ifunc(defobj, def);
4157 		else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
4158 			ti.ti_module = defobj->tlsindex;
4159 			ti.ti_offset = def->st_value - TLS_DTV_OFFSET;
4160 			sym = __tls_get_addr(&ti);
4161 		} else
4162 			sym = defobj->relocbase + def->st_value;
4163 		LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
4164 		return (sym);
4165 	}
4166 
4167 	_rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
4168 	    ve != NULL ? ve->name : "");
4169 	lock_release(rtld_bind_lock, &lockstate);
4170 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
4171 	return (NULL);
4172 }
4173 
4174 void *
dlsym(void * handle,const char * name)4175 dlsym(void *handle, const char *name)
4176 {
4177 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
4178 	    SYMLOOK_DLSYM));
4179 }
4180 
4181 dlfunc_t
dlfunc(void * handle,const char * name)4182 dlfunc(void *handle, const char *name)
4183 {
4184 	union {
4185 		void *d;
4186 		dlfunc_t f;
4187 	} rv;
4188 
4189 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
4190 	    SYMLOOK_DLSYM);
4191 	return (rv.f);
4192 }
4193 
4194 void *
dlvsym(void * handle,const char * name,const char * version)4195 dlvsym(void *handle, const char *name, const char *version)
4196 {
4197 	Ver_Entry ventry;
4198 
4199 	ventry.name = version;
4200 	ventry.file = NULL;
4201 	ventry.hash = elf_hash(version);
4202 	ventry.flags = 0;
4203 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
4204 	    SYMLOOK_DLSYM));
4205 }
4206 
4207 int
_rtld_addr_phdr(const void * addr,struct dl_phdr_info * phdr_info)4208 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
4209 {
4210 	const Obj_Entry *obj;
4211 	RtldLockState lockstate;
4212 
4213 	rlock_acquire(rtld_bind_lock, &lockstate);
4214 	obj = obj_from_addr(addr);
4215 	if (obj == NULL) {
4216 		_rtld_error("No shared object contains address");
4217 		lock_release(rtld_bind_lock, &lockstate);
4218 		return (0);
4219 	}
4220 	rtld_fill_dl_phdr_info(obj, phdr_info);
4221 	lock_release(rtld_bind_lock, &lockstate);
4222 	return (1);
4223 }
4224 
4225 int
dladdr(const void * addr,Dl_info * info)4226 dladdr(const void *addr, Dl_info *info)
4227 {
4228 	const Obj_Entry *obj;
4229 	const Elf_Sym *def;
4230 	void *symbol_addr;
4231 	unsigned long symoffset;
4232 	RtldLockState lockstate;
4233 
4234 	rlock_acquire(rtld_bind_lock, &lockstate);
4235 	obj = obj_from_addr(addr);
4236 	if (obj == NULL) {
4237 		_rtld_error("No shared object contains address");
4238 		lock_release(rtld_bind_lock, &lockstate);
4239 		return (0);
4240 	}
4241 	info->dli_fname = obj->path;
4242 	info->dli_fbase = obj->mapbase;
4243 	info->dli_saddr = (void *)0;
4244 	info->dli_sname = NULL;
4245 
4246 	/*
4247 	 * Walk the symbol list looking for the symbol whose address is
4248 	 * closest to the address sent in.
4249 	 */
4250 	for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
4251 		def = obj->symtab + symoffset;
4252 
4253 		/*
4254 		 * For skip the symbol if st_shndx is either SHN_UNDEF or
4255 		 * SHN_COMMON.
4256 		 */
4257 		if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
4258 			continue;
4259 
4260 		/*
4261 		 * If the symbol is greater than the specified address, or if it
4262 		 * is further away from addr than the current nearest symbol,
4263 		 * then reject it.
4264 		 */
4265 		symbol_addr = obj->relocbase + def->st_value;
4266 		if (symbol_addr > addr || symbol_addr < info->dli_saddr)
4267 			continue;
4268 
4269 		/* Update our idea of the nearest symbol. */
4270 		info->dli_sname = obj->strtab + def->st_name;
4271 		info->dli_saddr = symbol_addr;
4272 
4273 		/* Exact match? */
4274 		if (info->dli_saddr == addr)
4275 			break;
4276 	}
4277 	lock_release(rtld_bind_lock, &lockstate);
4278 	return (1);
4279 }
4280 
4281 int
dlinfo(void * handle,int request,void * p)4282 dlinfo(void *handle, int request, void *p)
4283 {
4284 	const Obj_Entry *obj;
4285 	RtldLockState lockstate;
4286 	int error;
4287 
4288 	rlock_acquire(rtld_bind_lock, &lockstate);
4289 
4290 	if (handle == NULL || handle == RTLD_SELF) {
4291 		void *retaddr;
4292 
4293 		retaddr = __builtin_return_address(0); /* __GNUC__ only */
4294 		if ((obj = obj_from_addr(retaddr)) == NULL)
4295 			_rtld_error("Cannot determine caller's shared object");
4296 	} else
4297 		obj = dlcheck(handle);
4298 
4299 	if (obj == NULL) {
4300 		lock_release(rtld_bind_lock, &lockstate);
4301 		return (-1);
4302 	}
4303 
4304 	error = 0;
4305 	switch (request) {
4306 	case RTLD_DI_LINKMAP:
4307 		*((struct link_map const **)p) = &obj->linkmap;
4308 		break;
4309 	case RTLD_DI_ORIGIN:
4310 		error = rtld_dirname(obj->path, p);
4311 		break;
4312 
4313 	case RTLD_DI_SERINFOSIZE:
4314 	case RTLD_DI_SERINFO:
4315 		error = do_search_info(obj, request, (struct dl_serinfo *)p);
4316 		break;
4317 
4318 	default:
4319 		_rtld_error("Invalid request %d passed to dlinfo()", request);
4320 		error = -1;
4321 	}
4322 
4323 	lock_release(rtld_bind_lock, &lockstate);
4324 
4325 	return (error);
4326 }
4327 
4328 static void
rtld_fill_dl_phdr_info(const Obj_Entry * obj,struct dl_phdr_info * phdr_info)4329 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
4330 {
4331 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
4332 	phdr_info->dlpi_name = obj->path;
4333 	phdr_info->dlpi_phdr = obj->phdr;
4334 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
4335 	phdr_info->dlpi_tls_modid = obj->tlsindex;
4336 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(_tcb_get(),
4337 	    obj->tlsindex, 0, true);
4338 	phdr_info->dlpi_adds = obj_loads;
4339 	phdr_info->dlpi_subs = obj_loads - obj_count;
4340 }
4341 
4342 /*
4343  * It's completely UB to actually use this, so extreme caution is advised.  It's
4344  * probably not what you want.
4345  */
4346 int
_dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback,void * param)4347 _dl_iterate_phdr_locked(__dl_iterate_hdr_callback callback, void *param)
4348 {
4349 	struct dl_phdr_info phdr_info;
4350 	Obj_Entry *obj;
4351 	int error;
4352 
4353 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;
4354 	    obj = globallist_next(obj)) {
4355 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4356 		error = callback(&phdr_info, sizeof(phdr_info), param);
4357 		if (error != 0)
4358 			return (error);
4359 	}
4360 
4361 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4362 	return (callback(&phdr_info, sizeof(phdr_info), param));
4363 }
4364 
4365 int
dl_iterate_phdr(__dl_iterate_hdr_callback callback,void * param)4366 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
4367 {
4368 	struct dl_phdr_info phdr_info;
4369 	Obj_Entry *obj, marker;
4370 	RtldLockState bind_lockstate, phdr_lockstate;
4371 	int error;
4372 
4373 	init_marker(&marker);
4374 	error = 0;
4375 
4376 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
4377 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
4378 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
4379 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
4380 		rtld_fill_dl_phdr_info(obj, &phdr_info);
4381 		hold_object(obj);
4382 		lock_release(rtld_bind_lock, &bind_lockstate);
4383 
4384 		error = callback(&phdr_info, sizeof phdr_info, param);
4385 
4386 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
4387 		unhold_object(obj);
4388 		obj = globallist_next(&marker);
4389 		TAILQ_REMOVE(&obj_list, &marker, next);
4390 		if (error != 0) {
4391 			lock_release(rtld_bind_lock, &bind_lockstate);
4392 			lock_release(rtld_phdr_lock, &phdr_lockstate);
4393 			return (error);
4394 		}
4395 	}
4396 
4397 	if (error == 0) {
4398 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
4399 		lock_release(rtld_bind_lock, &bind_lockstate);
4400 		error = callback(&phdr_info, sizeof(phdr_info), param);
4401 	}
4402 	lock_release(rtld_phdr_lock, &phdr_lockstate);
4403 	return (error);
4404 }
4405 
4406 static void *
fill_search_info(const char * dir,size_t dirlen,void * param)4407 fill_search_info(const char *dir, size_t dirlen, void *param)
4408 {
4409 	struct fill_search_info_args *arg;
4410 
4411 	arg = param;
4412 
4413 	if (arg->request == RTLD_DI_SERINFOSIZE) {
4414 		arg->serinfo->dls_cnt++;
4415 		arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen +
4416 		    1;
4417 	} else {
4418 		struct dl_serpath *s_entry;
4419 
4420 		s_entry = arg->serpath;
4421 		s_entry->dls_name = arg->strspace;
4422 		s_entry->dls_flags = arg->flags;
4423 
4424 		strncpy(arg->strspace, dir, dirlen);
4425 		arg->strspace[dirlen] = '\0';
4426 
4427 		arg->strspace += dirlen + 1;
4428 		arg->serpath++;
4429 	}
4430 
4431 	return (NULL);
4432 }
4433 
4434 static int
do_search_info(const Obj_Entry * obj,int request,struct dl_serinfo * info)4435 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
4436 {
4437 	struct dl_serinfo _info;
4438 	struct fill_search_info_args args;
4439 
4440 	args.request = RTLD_DI_SERINFOSIZE;
4441 	args.serinfo = &_info;
4442 
4443 	_info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
4444 	_info.dls_cnt = 0;
4445 
4446 	path_enumerate(obj->rpath, fill_search_info, NULL, &args);
4447 	path_enumerate(ld_library_path, fill_search_info, NULL, &args);
4448 	path_enumerate(obj->runpath, fill_search_info, NULL, &args);
4449 	path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4450 	    &args);
4451 	if (!obj->z_nodeflib)
4452 		path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4453 		    &args);
4454 
4455 	if (request == RTLD_DI_SERINFOSIZE) {
4456 		info->dls_size = _info.dls_size;
4457 		info->dls_cnt = _info.dls_cnt;
4458 		return (0);
4459 	}
4460 
4461 	if (info->dls_cnt != _info.dls_cnt ||
4462 	    info->dls_size != _info.dls_size) {
4463 		_rtld_error(
4464 		    "Uninitialized Dl_serinfo struct passed to dlinfo()");
4465 		return (-1);
4466 	}
4467 
4468 	args.request = RTLD_DI_SERINFO;
4469 	args.serinfo = info;
4470 	args.serpath = &info->dls_serpath[0];
4471 	args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
4472 
4473 	args.flags = LA_SER_RUNPATH;
4474 	if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
4475 		return (-1);
4476 
4477 	args.flags = LA_SER_LIBPATH;
4478 	if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) !=
4479 	    NULL)
4480 		return (-1);
4481 
4482 	args.flags = LA_SER_RUNPATH;
4483 	if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
4484 		return (-1);
4485 
4486 	args.flags = LA_SER_CONFIG;
4487 	if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL,
4488 		&args) != NULL)
4489 		return (-1);
4490 
4491 	args.flags = LA_SER_DEFAULT;
4492 	if (!obj->z_nodeflib &&
4493 	    path_enumerate(ld_standard_library_path, fill_search_info, NULL,
4494 		&args) != NULL)
4495 		return (-1);
4496 	return (0);
4497 }
4498 
4499 static int
rtld_dirname(const char * path,char * bname)4500 rtld_dirname(const char *path, char *bname)
4501 {
4502 	const char *endp;
4503 
4504 	/* Empty or NULL string gets treated as "." */
4505 	if (path == NULL || *path == '\0') {
4506 		bname[0] = '.';
4507 		bname[1] = '\0';
4508 		return (0);
4509 	}
4510 
4511 	/* Strip trailing slashes */
4512 	endp = path + strlen(path) - 1;
4513 	while (endp > path && *endp == '/')
4514 		endp--;
4515 
4516 	/* Find the start of the dir */
4517 	while (endp > path && *endp != '/')
4518 		endp--;
4519 
4520 	/* Either the dir is "/" or there are no slashes */
4521 	if (endp == path) {
4522 		bname[0] = *endp == '/' ? '/' : '.';
4523 		bname[1] = '\0';
4524 		return (0);
4525 	} else {
4526 		do {
4527 			endp--;
4528 		} while (endp > path && *endp == '/');
4529 	}
4530 
4531 	if (endp - path + 2 > PATH_MAX) {
4532 		_rtld_error("Filename is too long: %s", path);
4533 		return (-1);
4534 	}
4535 
4536 	strncpy(bname, path, endp - path + 1);
4537 	bname[endp - path + 1] = '\0';
4538 	return (0);
4539 }
4540 
4541 static int
rtld_dirname_abs(const char * path,char * base)4542 rtld_dirname_abs(const char *path, char *base)
4543 {
4544 	char *last;
4545 
4546 	if (realpath(path, base) == NULL) {
4547 		_rtld_error("realpath \"%s\" failed (%s)", path,
4548 		    rtld_strerror(errno));
4549 		return (-1);
4550 	}
4551 	dbg("%s -> %s", path, base);
4552 	last = strrchr(base, '/');
4553 	if (last == NULL) {
4554 		_rtld_error("non-abs result from realpath \"%s\"", path);
4555 		return (-1);
4556 	}
4557 	if (last != base)
4558 		*last = '\0';
4559 	return (0);
4560 }
4561 
4562 static void
linkmap_add(Obj_Entry * obj)4563 linkmap_add(Obj_Entry *obj)
4564 {
4565 	struct link_map *l, *prev;
4566 
4567 	l = &obj->linkmap;
4568 	l->l_name = obj->path;
4569 	l->l_base = obj->mapbase;
4570 	l->l_ld = obj->dynamic;
4571 	l->l_addr = obj->relocbase;
4572 
4573 	if (r_debug.r_map == NULL) {
4574 		r_debug.r_map = l;
4575 		return;
4576 	}
4577 
4578 	/*
4579 	 * Scan to the end of the list, but not past the entry for the
4580 	 * dynamic linker, which we want to keep at the very end.
4581 	 */
4582 	for (prev = r_debug.r_map;
4583 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
4584 	    prev = prev->l_next)
4585 		;
4586 
4587 	/* Link in the new entry. */
4588 	l->l_prev = prev;
4589 	l->l_next = prev->l_next;
4590 	if (l->l_next != NULL)
4591 		l->l_next->l_prev = l;
4592 	prev->l_next = l;
4593 }
4594 
4595 static void
linkmap_delete(Obj_Entry * obj)4596 linkmap_delete(Obj_Entry *obj)
4597 {
4598 	struct link_map *l;
4599 
4600 	l = &obj->linkmap;
4601 	if (l->l_prev == NULL) {
4602 		if ((r_debug.r_map = l->l_next) != NULL)
4603 			l->l_next->l_prev = NULL;
4604 		return;
4605 	}
4606 
4607 	if ((l->l_prev->l_next = l->l_next) != NULL)
4608 		l->l_next->l_prev = l->l_prev;
4609 }
4610 
4611 /*
4612  * Function for the debugger to set a breakpoint on to gain control.
4613  *
4614  * The two parameters allow the debugger to easily find and determine
4615  * what the runtime loader is doing and to whom it is doing it.
4616  *
4617  * When the loadhook trap is hit (r_debug_state, set at program
4618  * initialization), the arguments can be found on the stack:
4619  *
4620  *  +8   struct link_map *m
4621  *  +4   struct r_debug  *rd
4622  *  +0   RetAddr
4623  */
4624 void
r_debug_state(struct r_debug * rd __unused,struct link_map * m __unused)4625 r_debug_state(struct r_debug *rd __unused, struct link_map *m __unused)
4626 {
4627 	/*
4628 	 * The following is a hack to force the compiler to emit calls to
4629 	 * this function, even when optimizing.  If the function is empty,
4630 	 * the compiler is not obliged to emit any code for calls to it,
4631 	 * even when marked __noinline.  However, gdb depends on those
4632 	 * calls being made.
4633 	 */
4634 	__compiler_membar();
4635 }
4636 
4637 /*
4638  * A function called after init routines have completed. This can be used to
4639  * break before a program's entry routine is called, and can be used when
4640  * main is not available in the symbol table.
4641  */
4642 void
_r_debug_postinit(struct link_map * m __unused)4643 _r_debug_postinit(struct link_map *m __unused)
4644 {
4645 	/* See r_debug_state(). */
4646 	__compiler_membar();
4647 }
4648 
4649 static void
release_object(Obj_Entry * obj)4650 release_object(Obj_Entry *obj)
4651 {
4652 	if (obj->holdcount > 0) {
4653 		obj->unholdfree = true;
4654 		return;
4655 	}
4656 	munmap(obj->mapbase, obj->mapsize);
4657 	linkmap_delete(obj);
4658 	obj_free(obj);
4659 }
4660 
4661 /*
4662  * Get address of the pointer variable in the main program.
4663  * Prefer non-weak symbol over the weak one.
4664  */
4665 static const void **
get_program_var_addr(const char * name,RtldLockState * lockstate)4666 get_program_var_addr(const char *name, RtldLockState *lockstate)
4667 {
4668 	SymLook req;
4669 	DoneList donelist;
4670 
4671 	symlook_init(&req, name);
4672 	req.lockstate = lockstate;
4673 	donelist_init(&donelist);
4674 	if (symlook_global(&req, &donelist) != 0)
4675 		return (NULL);
4676 	if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
4677 		return ((const void **)make_function_pointer(req.sym_out,
4678 		    req.defobj_out));
4679 	else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
4680 		return ((const void **)rtld_resolve_ifunc(req.defobj_out,
4681 		    req.sym_out));
4682 	else
4683 		return ((const void **)(req.defobj_out->relocbase +
4684 		    req.sym_out->st_value));
4685 }
4686 
4687 /*
4688  * Set a pointer variable in the main program to the given value.  This
4689  * is used to set key variables such as "environ" before any of the
4690  * init functions are called.
4691  */
4692 static void
set_program_var(const char * name,const void * value)4693 set_program_var(const char *name, const void *value)
4694 {
4695 	const void **addr;
4696 
4697 	if ((addr = get_program_var_addr(name, NULL)) != NULL) {
4698 		dbg("\"%s\": *%p <-- %p", name, addr, value);
4699 		*addr = value;
4700 	}
4701 }
4702 
4703 /*
4704  * Search the global objects, including dependencies and main object,
4705  * for the given symbol.
4706  */
4707 static int
symlook_global(SymLook * req,DoneList * donelist)4708 symlook_global(SymLook *req, DoneList *donelist)
4709 {
4710 	SymLook req1;
4711 	const Objlist_Entry *elm;
4712 	int res;
4713 
4714 	symlook_init_from_req(&req1, req);
4715 
4716 	/* Search all objects loaded at program start up. */
4717 	if (req->defobj_out == NULL || (ld_dynamic_weak &&
4718 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
4719 		res = symlook_list(&req1, &list_main, donelist);
4720 		if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
4721 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4722 			req->sym_out = req1.sym_out;
4723 			req->defobj_out = req1.defobj_out;
4724 			assert(req->defobj_out != NULL);
4725 		}
4726 	}
4727 
4728 	/* Search all DAGs whose roots are RTLD_GLOBAL objects. */
4729 	STAILQ_FOREACH(elm, &list_global, link) {
4730 		if (req->defobj_out != NULL && (!ld_dynamic_weak ||
4731 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4732 			break;
4733 		res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
4734 		if (res == 0 && (req->defobj_out == NULL ||
4735 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4736 			req->sym_out = req1.sym_out;
4737 			req->defobj_out = req1.defobj_out;
4738 			assert(req->defobj_out != NULL);
4739 		}
4740 	}
4741 
4742 	return (req->sym_out != NULL ? 0 : ESRCH);
4743 }
4744 
4745 /*
4746  * Given a symbol name in a referencing object, find the corresponding
4747  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
4748  * no definition was found.  Returns a pointer to the Obj_Entry of the
4749  * defining object via the reference parameter DEFOBJ_OUT.
4750  */
4751 static int
symlook_default(SymLook * req,const Obj_Entry * refobj)4752 symlook_default(SymLook *req, const Obj_Entry *refobj)
4753 {
4754 	DoneList donelist;
4755 	const Objlist_Entry *elm;
4756 	SymLook req1;
4757 	int res;
4758 
4759 	donelist_init(&donelist);
4760 	symlook_init_from_req(&req1, req);
4761 
4762 	/*
4763 	 * Look first in the referencing object if linked symbolically,
4764 	 * and similarly handle protected symbols.
4765 	 */
4766 	res = symlook_obj(&req1, refobj);
4767 	if (res == 0 && (refobj->symbolic ||
4768 	    ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED ||
4769 	    refobj->deepbind)) {
4770 		req->sym_out = req1.sym_out;
4771 		req->defobj_out = req1.defobj_out;
4772 		assert(req->defobj_out != NULL);
4773 	}
4774 	if (refobj->symbolic || req->defobj_out != NULL || refobj->deepbind)
4775 		donelist_check(&donelist, refobj);
4776 
4777 	if (!refobj->deepbind)
4778 		symlook_global(req, &donelist);
4779 
4780 	/* Search all dlopened DAGs containing the referencing object. */
4781 	STAILQ_FOREACH(elm, &refobj->dldags, link) {
4782 		if (req->sym_out != NULL && (!ld_dynamic_weak ||
4783 		    ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
4784 			break;
4785 		res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
4786 		if (res == 0 && (req->sym_out == NULL ||
4787 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4788 			req->sym_out = req1.sym_out;
4789 			req->defobj_out = req1.defobj_out;
4790 			assert(req->defobj_out != NULL);
4791 		}
4792 	}
4793 
4794 	if (refobj->deepbind)
4795 		symlook_global(req, &donelist);
4796 
4797 	/*
4798 	 * Search the dynamic linker itself, and possibly resolve the
4799 	 * symbol from there.  This is how the application links to
4800 	 * dynamic linker services such as dlopen.
4801 	 */
4802 	if (req->sym_out == NULL ||
4803 	    ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
4804 		res = symlook_obj(&req1, &obj_rtld);
4805 		if (res == 0) {
4806 			req->sym_out = req1.sym_out;
4807 			req->defobj_out = req1.defobj_out;
4808 			assert(req->defobj_out != NULL);
4809 		}
4810 	}
4811 
4812 	return (req->sym_out != NULL ? 0 : ESRCH);
4813 }
4814 
4815 static int
symlook_list(SymLook * req,const Objlist * objlist,DoneList * dlp)4816 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
4817 {
4818 	const Elf_Sym *def;
4819 	const Obj_Entry *defobj;
4820 	const Objlist_Entry *elm;
4821 	SymLook req1;
4822 	int res;
4823 
4824 	def = NULL;
4825 	defobj = NULL;
4826 	STAILQ_FOREACH(elm, objlist, link) {
4827 		if (donelist_check(dlp, elm->obj))
4828 			continue;
4829 		symlook_init_from_req(&req1, req);
4830 		if ((res = symlook_obj(&req1, elm->obj)) == 0) {
4831 			if (def == NULL || (ld_dynamic_weak &&
4832 			    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4833 				def = req1.sym_out;
4834 				defobj = req1.defobj_out;
4835 				if (!ld_dynamic_weak ||
4836 				    ELF_ST_BIND(def->st_info) != STB_WEAK)
4837 					break;
4838 			}
4839 		}
4840 	}
4841 	if (def != NULL) {
4842 		req->sym_out = def;
4843 		req->defobj_out = defobj;
4844 		return (0);
4845 	}
4846 	return (ESRCH);
4847 }
4848 
4849 /*
4850  * Search the chain of DAGS cointed to by the given Needed_Entry
4851  * for a symbol of the given name.  Each DAG is scanned completely
4852  * before advancing to the next one.  Returns a pointer to the symbol,
4853  * or NULL if no definition was found.
4854  */
4855 static int
symlook_needed(SymLook * req,const Needed_Entry * needed,DoneList * dlp)4856 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
4857 {
4858 	const Elf_Sym *def;
4859 	const Needed_Entry *n;
4860 	const Obj_Entry *defobj;
4861 	SymLook req1;
4862 	int res;
4863 
4864 	def = NULL;
4865 	defobj = NULL;
4866 	symlook_init_from_req(&req1, req);
4867 	for (n = needed; n != NULL; n = n->next) {
4868 		if (n->obj == NULL || (res = symlook_list(&req1,
4869 		    &n->obj->dagmembers, dlp)) != 0)
4870 			continue;
4871 		if (def == NULL || (ld_dynamic_weak &&
4872 		    ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
4873 			def = req1.sym_out;
4874 			defobj = req1.defobj_out;
4875 			if (!ld_dynamic_weak ||
4876 			    ELF_ST_BIND(def->st_info) != STB_WEAK)
4877 				break;
4878 		}
4879 	}
4880 	if (def != NULL) {
4881 		req->sym_out = def;
4882 		req->defobj_out = defobj;
4883 		return (0);
4884 	}
4885 	return (ESRCH);
4886 }
4887 
4888 static int
symlook_obj_load_filtees(SymLook * req,SymLook * req1,const Obj_Entry * obj,Needed_Entry * needed)4889 symlook_obj_load_filtees(SymLook *req, SymLook *req1, const Obj_Entry *obj,
4890     Needed_Entry *needed)
4891 {
4892 	DoneList donelist;
4893 	int flags;
4894 
4895 	flags = (req->flags & SYMLOOK_EARLY) != 0 ? RTLD_LO_EARLY : 0;
4896 	load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4897 	donelist_init(&donelist);
4898 	symlook_init_from_req(req1, req);
4899 	return (symlook_needed(req1, needed, &donelist));
4900 }
4901 
4902 /*
4903  * Search the symbol table of a single shared object for a symbol of
4904  * the given name and version, if requested.  Returns a pointer to the
4905  * symbol, or NULL if no definition was found.  If the object is
4906  * filter, return filtered symbol from filtee.
4907  *
4908  * The symbol's hash value is passed in for efficiency reasons; that
4909  * eliminates many recomputations of the hash value.
4910  */
4911 int
symlook_obj(SymLook * req,const Obj_Entry * obj)4912 symlook_obj(SymLook *req, const Obj_Entry *obj)
4913 {
4914 	SymLook req1;
4915 	int res, mres;
4916 
4917 	/*
4918 	 * If there is at least one valid hash at this point, we prefer to
4919 	 * use the faster GNU version if available.
4920 	 */
4921 	if (obj->valid_hash_gnu)
4922 		mres = symlook_obj1_gnu(req, obj);
4923 	else if (obj->valid_hash_sysv)
4924 		mres = symlook_obj1_sysv(req, obj);
4925 	else
4926 		return (EINVAL);
4927 
4928 	if (mres == 0) {
4929 		if (obj->needed_filtees != NULL) {
4930 			res = symlook_obj_load_filtees(req, &req1, obj,
4931 			    obj->needed_filtees);
4932 			if (res == 0) {
4933 				req->sym_out = req1.sym_out;
4934 				req->defobj_out = req1.defobj_out;
4935 			}
4936 			return (res);
4937 		}
4938 		if (obj->needed_aux_filtees != NULL) {
4939 			res = symlook_obj_load_filtees(req, &req1, obj,
4940 			    obj->needed_aux_filtees);
4941 			if (res == 0) {
4942 				req->sym_out = req1.sym_out;
4943 				req->defobj_out = req1.defobj_out;
4944 				return (res);
4945 			}
4946 		}
4947 	}
4948 	return (mres);
4949 }
4950 
4951 /* Symbol match routine common to both hash functions */
4952 static bool
matched_symbol(SymLook * req,const Obj_Entry * obj,Sym_Match_Result * result,const unsigned long symnum)4953 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4954     const unsigned long symnum)
4955 {
4956 	Elf_Versym verndx;
4957 	const Elf_Sym *symp;
4958 	const char *strp;
4959 
4960 	symp = obj->symtab + symnum;
4961 	strp = obj->strtab + symp->st_name;
4962 
4963 	switch (ELF_ST_TYPE(symp->st_info)) {
4964 	case STT_FUNC:
4965 	case STT_NOTYPE:
4966 	case STT_OBJECT:
4967 	case STT_COMMON:
4968 	case STT_GNU_IFUNC:
4969 		if (symp->st_value == 0)
4970 			return (false);
4971 		/* fallthrough */
4972 	case STT_TLS:
4973 		if (symp->st_shndx != SHN_UNDEF)
4974 			break;
4975 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4976 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4977 			break;
4978 		/* fallthrough */
4979 	default:
4980 		return (false);
4981 	}
4982 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
4983 		return (false);
4984 
4985 	if (req->ventry == NULL) {
4986 		if (obj->versyms != NULL) {
4987 			verndx = VER_NDX(obj->versyms[symnum]);
4988 			if (verndx > obj->vernum) {
4989 				_rtld_error(
4990 				    "%s: symbol %s references wrong version %d",
4991 				    obj->path, obj->strtab + symnum, verndx);
4992 				return (false);
4993 			}
4994 			/*
4995 			 * If we are not called from dlsym (i.e. this
4996 			 * is a normal relocation from unversioned
4997 			 * binary), accept the symbol immediately if
4998 			 * it happens to have first version after this
4999 			 * shared object became versioned.  Otherwise,
5000 			 * if symbol is versioned and not hidden,
5001 			 * remember it. If it is the only symbol with
5002 			 * this name exported by the shared object, it
5003 			 * will be returned as a match by the calling
5004 			 * function. If symbol is global (verndx < 2)
5005 			 * accept it unconditionally.
5006 			 */
5007 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
5008 			    verndx == VER_NDX_GIVEN) {
5009 				result->sym_out = symp;
5010 				return (true);
5011 			} else if (verndx >= VER_NDX_GIVEN) {
5012 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN) ==
5013 				    0) {
5014 					if (result->vsymp == NULL)
5015 						result->vsymp = symp;
5016 					result->vcount++;
5017 				}
5018 				return (false);
5019 			}
5020 		}
5021 		result->sym_out = symp;
5022 		return (true);
5023 	}
5024 	if (obj->versyms == NULL) {
5025 		if (object_match_name(obj, req->ventry->name)) {
5026 			_rtld_error(
5027 		    "%s: object %s should provide version %s for symbol %s",
5028 			    obj_rtld.path, obj->path, req->ventry->name,
5029 			    obj->strtab + symnum);
5030 			return (false);
5031 		}
5032 	} else {
5033 		verndx = VER_NDX(obj->versyms[symnum]);
5034 		if (verndx > obj->vernum) {
5035 			_rtld_error("%s: symbol %s references wrong version %d",
5036 			    obj->path, obj->strtab + symnum, verndx);
5037 			return (false);
5038 		}
5039 		if (obj->vertab[verndx].hash != req->ventry->hash ||
5040 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
5041 			/*
5042 			 * Version does not match. Look if this is a
5043 			 * global symbol and if it is not hidden. If
5044 			 * global symbol (verndx < 2) is available,
5045 			 * use it. Do not return symbol if we are
5046 			 * called by dlvsym, because dlvsym looks for
5047 			 * a specific version and default one is not
5048 			 * what dlvsym wants.
5049 			 */
5050 			if ((req->flags & SYMLOOK_DLSYM) ||
5051 			    (verndx >= VER_NDX_GIVEN) ||
5052 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
5053 				return (false);
5054 		}
5055 	}
5056 	result->sym_out = symp;
5057 	return (true);
5058 }
5059 
5060 /*
5061  * Search for symbol using SysV hash function.
5062  * obj->buckets is known not to be NULL at this point; the test for this was
5063  * performed with the obj->valid_hash_sysv assignment.
5064  */
5065 static int
symlook_obj1_sysv(SymLook * req,const Obj_Entry * obj)5066 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
5067 {
5068 	unsigned long symnum;
5069 	Sym_Match_Result matchres;
5070 
5071 	matchres.sym_out = NULL;
5072 	matchres.vsymp = NULL;
5073 	matchres.vcount = 0;
5074 
5075 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
5076 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
5077 		if (symnum >= obj->nchains)
5078 			return (ESRCH); /* Bad object */
5079 
5080 		if (matched_symbol(req, obj, &matchres, symnum)) {
5081 			req->sym_out = matchres.sym_out;
5082 			req->defobj_out = obj;
5083 			return (0);
5084 		}
5085 	}
5086 	if (matchres.vcount == 1) {
5087 		req->sym_out = matchres.vsymp;
5088 		req->defobj_out = obj;
5089 		return (0);
5090 	}
5091 	return (ESRCH);
5092 }
5093 
5094 /* Search for symbol using GNU hash function */
5095 static int
symlook_obj1_gnu(SymLook * req,const Obj_Entry * obj)5096 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
5097 {
5098 	Elf_Addr bloom_word;
5099 	const Elf32_Word *hashval;
5100 	Elf32_Word bucket;
5101 	Sym_Match_Result matchres;
5102 	unsigned int h1, h2;
5103 	unsigned long symnum;
5104 
5105 	matchres.sym_out = NULL;
5106 	matchres.vsymp = NULL;
5107 	matchres.vcount = 0;
5108 
5109 	/* Pick right bitmask word from Bloom filter array */
5110 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
5111 	    obj->maskwords_bm_gnu];
5112 
5113 	/* Calculate modulus word size of gnu hash and its derivative */
5114 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
5115 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
5116 
5117 	/* Filter out the "definitely not in set" queries */
5118 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
5119 		return (ESRCH);
5120 
5121 	/* Locate hash chain and corresponding value element*/
5122 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
5123 	if (bucket == 0)
5124 		return (ESRCH);
5125 	hashval = &obj->chain_zero_gnu[bucket];
5126 	do {
5127 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
5128 			symnum = hashval - obj->chain_zero_gnu;
5129 			if (matched_symbol(req, obj, &matchres, symnum)) {
5130 				req->sym_out = matchres.sym_out;
5131 				req->defobj_out = obj;
5132 				return (0);
5133 			}
5134 		}
5135 	} while ((*hashval++ & 1) == 0);
5136 	if (matchres.vcount == 1) {
5137 		req->sym_out = matchres.vsymp;
5138 		req->defobj_out = obj;
5139 		return (0);
5140 	}
5141 	return (ESRCH);
5142 }
5143 
5144 static void
trace_calc_fmts(const char ** main_local,const char ** fmt1,const char ** fmt2)5145 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
5146 {
5147 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
5148 	if (*main_local == NULL)
5149 		*main_local = "";
5150 
5151 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
5152 	if (*fmt1 == NULL)
5153 		*fmt1 = "\t%o => %p (%x)\n";
5154 
5155 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
5156 	if (*fmt2 == NULL)
5157 		*fmt2 = "\t%o (%x)\n";
5158 }
5159 
5160 static void
trace_print_obj(Obj_Entry * obj,const char * name,const char * path,const char * main_local,const char * fmt1,const char * fmt2)5161 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
5162     const char *main_local, const char *fmt1, const char *fmt2)
5163 {
5164 	const char *fmt;
5165 	int c;
5166 
5167 	if (fmt1 == NULL)
5168 		fmt = fmt2;
5169 	else
5170 		/* XXX bogus */
5171 		fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;
5172 
5173 	while ((c = *fmt++) != '\0') {
5174 		switch (c) {
5175 		default:
5176 			rtld_putchar(c);
5177 			continue;
5178 		case '\\':
5179 			switch (c = *fmt) {
5180 			case '\0':
5181 				continue;
5182 			case 'n':
5183 				rtld_putchar('\n');
5184 				break;
5185 			case 't':
5186 				rtld_putchar('\t');
5187 				break;
5188 			}
5189 			break;
5190 		case '%':
5191 			switch (c = *fmt) {
5192 			case '\0':
5193 				continue;
5194 			case '%':
5195 			default:
5196 				rtld_putchar(c);
5197 				break;
5198 			case 'A':
5199 				rtld_putstr(main_local);
5200 				break;
5201 			case 'a':
5202 				rtld_putstr(obj_main->path);
5203 				break;
5204 			case 'o':
5205 				rtld_putstr(name);
5206 				break;
5207 			case 'p':
5208 				rtld_putstr(path);
5209 				break;
5210 			case 'x':
5211 				rtld_printf("%p",
5212 				    obj != NULL ? obj->mapbase : NULL);
5213 				break;
5214 			}
5215 			break;
5216 		}
5217 		++fmt;
5218 	}
5219 }
5220 
5221 static void
trace_loaded_objects(Obj_Entry * obj,bool show_preload)5222 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
5223 {
5224 	const char *fmt1, *fmt2, *main_local;
5225 	const char *name, *path;
5226 	bool first_spurious, list_containers;
5227 
5228 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
5229 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
5230 
5231 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5232 		Needed_Entry *needed;
5233 
5234 		if (obj->marker)
5235 			continue;
5236 		if (list_containers && obj->needed != NULL)
5237 			rtld_printf("%s:\n", obj->path);
5238 		for (needed = obj->needed; needed; needed = needed->next) {
5239 			if (needed->obj != NULL) {
5240 				if (needed->obj->traced && !list_containers)
5241 					continue;
5242 				needed->obj->traced = true;
5243 				path = needed->obj->path;
5244 			} else
5245 				path = "not found";
5246 
5247 			name = obj->strtab + needed->name;
5248 			trace_print_obj(needed->obj, name, path, main_local,
5249 			    fmt1, fmt2);
5250 		}
5251 	}
5252 
5253 	if (show_preload) {
5254 		if (ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2) == NULL)
5255 			fmt2 = "\t%p (%x)\n";
5256 		first_spurious = true;
5257 
5258 		TAILQ_FOREACH(obj, &obj_list, next) {
5259 			if (obj->marker || obj == obj_main || obj->traced)
5260 				continue;
5261 
5262 			if (list_containers && first_spurious) {
5263 				rtld_printf("[preloaded]\n");
5264 				first_spurious = false;
5265 			}
5266 
5267 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
5268 			name = fname == NULL ? "<unknown>" : fname->name;
5269 			trace_print_obj(obj, name, obj->path, main_local, NULL,
5270 			    fmt2);
5271 		}
5272 	}
5273 }
5274 
5275 /*
5276  * Unload a dlopened object and its dependencies from memory and from
5277  * our data structures.  It is assumed that the DAG rooted in the
5278  * object has already been unreferenced, and that the object has a
5279  * reference count of 0.
5280  */
5281 static void
unload_object(Obj_Entry * root,RtldLockState * lockstate)5282 unload_object(Obj_Entry *root, RtldLockState *lockstate)
5283 {
5284 	Obj_Entry marker, *obj, *next;
5285 
5286 	assert(root->refcount == 0);
5287 
5288 	/*
5289 	 * Pass over the DAG removing unreferenced objects from
5290 	 * appropriate lists.
5291 	 */
5292 	unlink_object(root);
5293 
5294 	/* Unmap all objects that are no longer referenced. */
5295 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
5296 		next = TAILQ_NEXT(obj, next);
5297 		if (obj->marker || obj->refcount != 0)
5298 			continue;
5299 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize,
5300 		    0, obj->path);
5301 		dbg("unloading \"%s\"", obj->path);
5302 		/*
5303 		 * Unlink the object now to prevent new references from
5304 		 * being acquired while the bind lock is dropped in
5305 		 * recursive dlclose() invocations.
5306 		 */
5307 		TAILQ_REMOVE(&obj_list, obj, next);
5308 		obj_count--;
5309 
5310 		if (obj->filtees_loaded) {
5311 			if (next != NULL) {
5312 				init_marker(&marker);
5313 				TAILQ_INSERT_BEFORE(next, &marker, next);
5314 				unload_filtees(obj, lockstate);
5315 				next = TAILQ_NEXT(&marker, next);
5316 				TAILQ_REMOVE(&obj_list, &marker, next);
5317 			} else
5318 				unload_filtees(obj, lockstate);
5319 		}
5320 		release_object(obj);
5321 	}
5322 }
5323 
5324 static void
unlink_object(Obj_Entry * root)5325 unlink_object(Obj_Entry *root)
5326 {
5327 	Objlist_Entry *elm;
5328 
5329 	if (root->refcount == 0) {
5330 		/* Remove the object from the RTLD_GLOBAL list. */
5331 		objlist_remove(&list_global, root);
5332 
5333 		/* Remove the object from all objects' DAG lists. */
5334 		STAILQ_FOREACH(elm, &root->dagmembers, link) {
5335 			objlist_remove(&elm->obj->dldags, root);
5336 			if (elm->obj != root)
5337 				unlink_object(elm->obj);
5338 		}
5339 	}
5340 }
5341 
5342 static void
ref_dag(Obj_Entry * root)5343 ref_dag(Obj_Entry *root)
5344 {
5345 	Objlist_Entry *elm;
5346 
5347 	assert(root->dag_inited);
5348 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5349 		elm->obj->refcount++;
5350 }
5351 
5352 static void
unref_dag(Obj_Entry * root)5353 unref_dag(Obj_Entry *root)
5354 {
5355 	Objlist_Entry *elm;
5356 
5357 	assert(root->dag_inited);
5358 	STAILQ_FOREACH(elm, &root->dagmembers, link)
5359 		elm->obj->refcount--;
5360 }
5361 
5362 /*
5363  * Common code for MD __tls_get_addr().
5364  */
5365 static void *
tls_get_addr_slow(struct tcb * tcb,int index,size_t offset,bool locked)5366 tls_get_addr_slow(struct tcb *tcb, int index, size_t offset, bool locked)
5367 {
5368 	struct dtv *newdtv, *dtv;
5369 	RtldLockState lockstate;
5370 	int to_copy;
5371 
5372 	dtv = tcb->tcb_dtv;
5373 	/* Check dtv generation in case new modules have arrived */
5374 	if (dtv->dtv_gen != tls_dtv_generation) {
5375 		if (!locked)
5376 			wlock_acquire(rtld_bind_lock, &lockstate);
5377 		newdtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5378 		    sizeof(struct dtv_slot));
5379 		to_copy = dtv->dtv_size;
5380 		if (to_copy > tls_max_index)
5381 			to_copy = tls_max_index;
5382 		memcpy(newdtv->dtv_slots, dtv->dtv_slots, to_copy *
5383 		    sizeof(struct dtv_slot));
5384 		newdtv->dtv_gen = tls_dtv_generation;
5385 		newdtv->dtv_size = tls_max_index;
5386 		free(dtv);
5387 		if (!locked)
5388 			lock_release(rtld_bind_lock, &lockstate);
5389 		dtv = tcb->tcb_dtv = newdtv;
5390 	}
5391 
5392 	/* Dynamically allocate module TLS if necessary */
5393 	if (dtv->dtv_slots[index - 1].dtvs_tls == 0) {
5394 		/* Signal safe, wlock will block out signals. */
5395 		if (!locked)
5396 			wlock_acquire(rtld_bind_lock, &lockstate);
5397 		if (!dtv->dtv_slots[index - 1].dtvs_tls)
5398 			dtv->dtv_slots[index - 1].dtvs_tls =
5399 			    allocate_module_tls(tcb, index);
5400 		if (!locked)
5401 			lock_release(rtld_bind_lock, &lockstate);
5402 	}
5403 	return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5404 }
5405 
5406 void *
tls_get_addr_common(struct tcb * tcb,int index,size_t offset)5407 tls_get_addr_common(struct tcb *tcb, int index, size_t offset)
5408 {
5409 	struct dtv *dtv;
5410 
5411 	dtv = tcb->tcb_dtv;
5412 	/* Check dtv generation in case new modules have arrived */
5413 	if (__predict_true(dtv->dtv_gen == tls_dtv_generation &&
5414 	    dtv->dtv_slots[index - 1].dtvs_tls != 0))
5415 		return (dtv->dtv_slots[index - 1].dtvs_tls + offset);
5416 	return (tls_get_addr_slow(tcb, index, offset, false));
5417 }
5418 
5419 static struct tcb *
tcb_from_tcb_list_entry(struct tcb_list_entry * tcbelm)5420 tcb_from_tcb_list_entry(struct tcb_list_entry *tcbelm)
5421 {
5422 #ifdef TLS_VARIANT_I
5423 	return ((struct tcb *)((char *)tcbelm - tcb_list_entry_offset));
5424 #else
5425 	return ((struct tcb *)((char *)tcbelm + tcb_list_entry_offset));
5426 #endif
5427 }
5428 
5429 static struct tcb_list_entry *
tcb_list_entry_from_tcb(struct tcb * tcb)5430 tcb_list_entry_from_tcb(struct tcb *tcb)
5431 {
5432 #ifdef TLS_VARIANT_I
5433 	return ((struct tcb_list_entry *)((char *)tcb + tcb_list_entry_offset));
5434 #else
5435 	return ((struct tcb_list_entry *)((char *)tcb - tcb_list_entry_offset));
5436 #endif
5437 }
5438 
5439 static void
tcb_list_insert(struct tcb * tcb)5440 tcb_list_insert(struct tcb *tcb)
5441 {
5442 	struct tcb_list_entry *tcbelm;
5443 
5444 	tcbelm = tcb_list_entry_from_tcb(tcb);
5445 	TAILQ_INSERT_TAIL(&tcb_list, tcbelm, next);
5446 }
5447 
5448 static void
tcb_list_remove(struct tcb * tcb)5449 tcb_list_remove(struct tcb *tcb)
5450 {
5451 	struct tcb_list_entry *tcbelm;
5452 
5453 	tcbelm = tcb_list_entry_from_tcb(tcb);
5454 	TAILQ_REMOVE(&tcb_list, tcbelm, next);
5455 }
5456 
5457 #ifdef TLS_VARIANT_I
5458 
5459 /*
5460  * Return pointer to allocated TLS block
5461  */
5462 static void *
get_tls_block_ptr(void * tcb,size_t tcbsize)5463 get_tls_block_ptr(void *tcb, size_t tcbsize)
5464 {
5465 	size_t extra_size, post_size, pre_size, tls_block_size;
5466 	size_t tls_init_align;
5467 
5468 	tls_init_align = MAX(obj_main->tlsalign, 1);
5469 
5470 	/* Compute fragments sizes. */
5471 	extra_size = tcbsize - TLS_TCB_SIZE;
5472 	post_size = calculate_tls_post_size(tls_init_align);
5473 	tls_block_size = tcbsize + post_size;
5474 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5475 
5476 	return ((char *)tcb - pre_size - extra_size);
5477 }
5478 
5479 /*
5480  * Allocate Static TLS using the Variant I method.
5481  *
5482  * For details on the layout, see lib/libc/gen/tls.c.
5483  *
5484  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
5485  *     it is based on tls_last_offset, and TLS offsets here are really TCB
5486  *     offsets, whereas libc's tls_static_space is just the executable's static
5487  *     TLS segment.
5488  *
5489  * NB: This differs from NetBSD's ld.elf_so, where TLS offsets are relative to
5490  *     the end of the TCB.
5491  */
5492 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5493 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5494 {
5495 	Obj_Entry *obj;
5496 	char *tls_block;
5497 	struct dtv *dtv;
5498 	struct tcb *tcb;
5499 	char *addr;
5500 	size_t i;
5501 	size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
5502 	size_t tls_init_align, tls_init_offset;
5503 
5504 	if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
5505 		return (oldtcb);
5506 
5507 	assert(tcbsize >= TLS_TCB_SIZE);
5508 	maxalign = MAX(tcbalign, tls_static_max_align);
5509 	tls_init_align = MAX(obj_main->tlsalign, 1);
5510 
5511 	/* Compute fragments sizes. */
5512 	extra_size = tcbsize - TLS_TCB_SIZE;
5513 	post_size = calculate_tls_post_size(tls_init_align);
5514 	tls_block_size = tcbsize + post_size;
5515 	pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
5516 	tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE -
5517 	    post_size;
5518 
5519 	/* Allocate whole TLS block */
5520 	tls_block = xmalloc_aligned(tls_block_size, maxalign, 0);
5521 	tcb = (struct tcb *)(tls_block + pre_size + extra_size);
5522 
5523 	if (oldtcb != NULL) {
5524 		memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
5525 		    tls_static_space);
5526 		free(get_tls_block_ptr(oldtcb, tcbsize));
5527 
5528 		/* Adjust the DTV. */
5529 		dtv = tcb->tcb_dtv;
5530 		for (i = 0; i < dtv->dtv_size; i++) {
5531 			if ((uintptr_t)dtv->dtv_slots[i].dtvs_tls >=
5532 			    (uintptr_t)oldtcb &&
5533 			    (uintptr_t)dtv->dtv_slots[i].dtvs_tls <
5534 			    (uintptr_t)oldtcb + tls_static_space) {
5535 				dtv->dtv_slots[i].dtvs_tls = (char *)tcb +
5536 				    (dtv->dtv_slots[i].dtvs_tls -
5537 				    (char *)oldtcb);
5538 			}
5539 		}
5540 	} else {
5541 		dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5542 		    sizeof(struct dtv_slot));
5543 		tcb->tcb_dtv = dtv;
5544 		dtv->dtv_gen = tls_dtv_generation;
5545 		dtv->dtv_size = tls_max_index;
5546 
5547 		for (obj = globallist_curr(objs); obj != NULL;
5548 		    obj = globallist_next(obj)) {
5549 			if (obj->tlsoffset == 0)
5550 				continue;
5551 			tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
5552 			addr = (char *)tcb + obj->tlsoffset;
5553 			if (tls_init_offset > 0)
5554 				memset(addr, 0, tls_init_offset);
5555 			if (obj->tlsinitsize > 0) {
5556 				memcpy(addr + tls_init_offset, obj->tlsinit,
5557 				    obj->tlsinitsize);
5558 			}
5559 			if (obj->tlssize > obj->tlsinitsize) {
5560 				memset(addr + tls_init_offset +
5561 				    obj->tlsinitsize,
5562 				    0,
5563 				    obj->tlssize - obj->tlsinitsize -
5564 					tls_init_offset);
5565 			}
5566 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5567 		}
5568 	}
5569 
5570 	tcb_list_insert(tcb);
5571 	return (tcb);
5572 }
5573 
5574 void
free_tls(void * tcb,size_t tcbsize,size_t tcbalign __unused)5575 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
5576 {
5577 	struct dtv *dtv;
5578 	uintptr_t tlsstart, tlsend;
5579 	size_t post_size;
5580 	size_t i, tls_init_align __unused;
5581 
5582 	tcb_list_remove(tcb);
5583 
5584 	assert(tcbsize >= TLS_TCB_SIZE);
5585 	tls_init_align = MAX(obj_main->tlsalign, 1);
5586 
5587 	/* Compute fragments sizes. */
5588 	post_size = calculate_tls_post_size(tls_init_align);
5589 
5590 	tlsstart = (uintptr_t)tcb + TLS_TCB_SIZE + post_size;
5591 	tlsend = (uintptr_t)tcb + tls_static_space;
5592 
5593 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5594 	for (i = 0; i < dtv->dtv_size; i++) {
5595 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5596 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5597 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls >= tlsend)) {
5598 			free(dtv->dtv_slots[i].dtvs_tls);
5599 		}
5600 	}
5601 	free(dtv);
5602 	free(get_tls_block_ptr(tcb, tcbsize));
5603 }
5604 
5605 #endif /* TLS_VARIANT_I */
5606 
5607 #ifdef TLS_VARIANT_II
5608 
5609 /*
5610  * Allocate Static TLS using the Variant II method.
5611  */
5612 void *
allocate_tls(Obj_Entry * objs,void * oldtcb,size_t tcbsize,size_t tcbalign)5613 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
5614 {
5615 	Obj_Entry *obj;
5616 	size_t size, ralign;
5617 	char *tls_block;
5618 	struct dtv *dtv, *olddtv;
5619 	struct tcb *tcb;
5620 	char *addr;
5621 	size_t i;
5622 
5623 	ralign = tcbalign;
5624 	if (tls_static_max_align > ralign)
5625 		ralign = tls_static_max_align;
5626 	size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
5627 
5628 	assert(tcbsize >= 2 * sizeof(uintptr_t));
5629 	tls_block = xmalloc_aligned(size, ralign, 0 /* XXX */);
5630 	dtv = xcalloc(1, sizeof(struct dtv) + tls_max_index *
5631 	    sizeof(struct dtv_slot));
5632 
5633 	tcb = (struct tcb *)(tls_block + roundup(tls_static_space, ralign));
5634 	tcb->tcb_self = tcb;
5635 	tcb->tcb_dtv = dtv;
5636 
5637 	dtv->dtv_gen = tls_dtv_generation;
5638 	dtv->dtv_size = tls_max_index;
5639 
5640 	if (oldtcb != NULL) {
5641 		/*
5642 		 * Copy the static TLS block over whole.
5643 		 */
5644 		memcpy((char *)tcb - tls_static_space,
5645 		    (const char *)oldtcb - tls_static_space,
5646 		    tls_static_space);
5647 
5648 		/*
5649 		 * If any dynamic TLS blocks have been created tls_get_addr(),
5650 		 * move them over.
5651 		 */
5652 		olddtv = ((struct tcb *)oldtcb)->tcb_dtv;
5653 		for (i = 0; i < olddtv->dtv_size; i++) {
5654 			if ((uintptr_t)olddtv->dtv_slots[i].dtvs_tls <
5655 			    (uintptr_t)oldtcb - size ||
5656 			    (uintptr_t)olddtv->dtv_slots[i].dtvs_tls >
5657 			    (uintptr_t)oldtcb) {
5658 				dtv->dtv_slots[i].dtvs_tls =
5659 				    olddtv->dtv_slots[i].dtvs_tls;
5660 				olddtv->dtv_slots[i].dtvs_tls = NULL;
5661 			}
5662 		}
5663 
5664 		/*
5665 		 * We assume that this block was the one we created with
5666 		 * allocate_initial_tls().
5667 		 */
5668 		free_tls(oldtcb, 2 * sizeof(uintptr_t), sizeof(uintptr_t));
5669 	} else {
5670 		for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
5671 			if (obj->marker || obj->tlsoffset == 0)
5672 				continue;
5673 			addr = (char *)tcb - obj->tlsoffset;
5674 			memset(addr + obj->tlsinitsize, 0, obj->tlssize -
5675 			    obj->tlsinitsize);
5676 			if (obj->tlsinit) {
5677 				memcpy(addr, obj->tlsinit, obj->tlsinitsize);
5678 				obj->static_tls_copied = true;
5679 			}
5680 			dtv->dtv_slots[obj->tlsindex - 1].dtvs_tls = addr;
5681 		}
5682 	}
5683 
5684 	tcb_list_insert(tcb);
5685 	return (tcb);
5686 }
5687 
5688 void
free_tls(void * tcb,size_t tcbsize __unused,size_t tcbalign)5689 free_tls(void *tcb, size_t tcbsize __unused, size_t tcbalign)
5690 {
5691 	struct dtv *dtv;
5692 	size_t size, ralign;
5693 	size_t i;
5694 	uintptr_t tlsstart, tlsend;
5695 
5696 	tcb_list_remove(tcb);
5697 
5698 	/*
5699 	 * Figure out the size of the initial TLS block so that we can
5700 	 * find stuff which ___tls_get_addr() allocated dynamically.
5701 	 */
5702 	ralign = tcbalign;
5703 	if (tls_static_max_align > ralign)
5704 		ralign = tls_static_max_align;
5705 	size = roundup(tls_static_space, ralign);
5706 
5707 	dtv = ((struct tcb *)tcb)->tcb_dtv;
5708 	tlsend = (uintptr_t)tcb;
5709 	tlsstart = tlsend - size;
5710 	for (i = 0; i < dtv->dtv_size; i++) {
5711 		if (dtv->dtv_slots[i].dtvs_tls != NULL &&
5712 		    ((uintptr_t)dtv->dtv_slots[i].dtvs_tls < tlsstart ||
5713 		    (uintptr_t)dtv->dtv_slots[i].dtvs_tls > tlsend)) {
5714 			free(dtv->dtv_slots[i].dtvs_tls);
5715 		}
5716 	}
5717 
5718 	free((void *)tlsstart);
5719 	free(dtv);
5720 }
5721 
5722 #endif /* TLS_VARIANT_II */
5723 
5724 /*
5725  * Allocate TLS block for module with given index.
5726  */
5727 void *
allocate_module_tls(struct tcb * tcb,int index)5728 allocate_module_tls(struct tcb *tcb, int index)
5729 {
5730 	Obj_Entry *obj;
5731 	char *p;
5732 
5733 	TAILQ_FOREACH(obj, &obj_list, next) {
5734 		if (obj->marker)
5735 			continue;
5736 		if (obj->tlsindex == index)
5737 			break;
5738 	}
5739 	if (obj == NULL) {
5740 		_rtld_error("Can't find module with TLS index %d", index);
5741 		rtld_die();
5742 	}
5743 
5744 	if (obj->tls_static) {
5745 #ifdef TLS_VARIANT_I
5746 		p = (char *)tcb + obj->tlsoffset;
5747 #else
5748 		p = (char *)tcb - obj->tlsoffset;
5749 #endif
5750 		return (p);
5751 	}
5752 
5753 	obj->tls_dynamic = true;
5754 
5755 	p = xmalloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
5756 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
5757 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
5758 	return (p);
5759 }
5760 
5761 static bool
allocate_tls_offset_common(size_t * offp,size_t tlssize,size_t tlsalign,size_t tlspoffset __unused)5762 allocate_tls_offset_common(size_t *offp, size_t tlssize, size_t tlsalign,
5763     size_t tlspoffset __unused)
5764 {
5765 	size_t off;
5766 
5767 	if (tls_last_offset == 0)
5768 		off = calculate_first_tls_offset(tlssize, tlsalign,
5769 		    tlspoffset);
5770 	else
5771 		off = calculate_tls_offset(tls_last_offset, tls_last_size,
5772 		    tlssize, tlsalign, tlspoffset);
5773 
5774 	*offp = off;
5775 #ifdef TLS_VARIANT_I
5776 	off += tlssize;
5777 #endif
5778 
5779 	/*
5780 	 * If we have already fixed the size of the static TLS block, we
5781 	 * must stay within that size. When allocating the static TLS, we
5782 	 * leave a small amount of space spare to be used for dynamically
5783 	 * loading modules which use static TLS.
5784 	 */
5785 	if (tls_static_space != 0) {
5786 		if (off > tls_static_space)
5787 			return (false);
5788 	} else if (tlsalign > tls_static_max_align) {
5789 		tls_static_max_align = tlsalign;
5790 	}
5791 
5792 	tls_last_offset = off;
5793 	tls_last_size = tlssize;
5794 
5795 	return (true);
5796 }
5797 
5798 bool
allocate_tls_offset(Obj_Entry * obj)5799 allocate_tls_offset(Obj_Entry *obj)
5800 {
5801 	if (obj->tls_dynamic)
5802 		return (false);
5803 
5804 	if (obj->tls_static)
5805 		return (true);
5806 
5807 	if (obj->tlssize == 0) {
5808 		obj->tls_static = true;
5809 		return (true);
5810 	}
5811 
5812 	if (!allocate_tls_offset_common(&obj->tlsoffset, obj->tlssize,
5813 	    obj->tlsalign, obj->tlspoffset))
5814 		return (false);
5815 
5816 	obj->tls_static = true;
5817 
5818 	return (true);
5819 }
5820 
5821 void
free_tls_offset(Obj_Entry * obj)5822 free_tls_offset(Obj_Entry *obj)
5823 {
5824 	/*
5825 	 * If we were the last thing to allocate out of the static TLS
5826 	 * block, we give our space back to the 'allocator'. This is a
5827 	 * simplistic workaround to allow libGL.so.1 to be loaded and
5828 	 * unloaded multiple times.
5829 	 */
5830 	size_t off = obj->tlsoffset;
5831 
5832 #ifdef TLS_VARIANT_I
5833 	off += obj->tlssize;
5834 #endif
5835 	if (off == tls_last_offset) {
5836 		tls_last_offset -= obj->tlssize;
5837 		tls_last_size = 0;
5838 	}
5839 }
5840 
5841 void *
_rtld_allocate_tls(void * oldtcb,size_t tcbsize,size_t tcbalign)5842 _rtld_allocate_tls(void *oldtcb, size_t tcbsize, size_t tcbalign)
5843 {
5844 	void *ret;
5845 	RtldLockState lockstate;
5846 
5847 	wlock_acquire(rtld_bind_lock, &lockstate);
5848 	ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtcb,
5849 	    tcbsize, tcbalign);
5850 	lock_release(rtld_bind_lock, &lockstate);
5851 	return (ret);
5852 }
5853 
5854 void
_rtld_free_tls(void * tcb,size_t tcbsize,size_t tcbalign)5855 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
5856 {
5857 	RtldLockState lockstate;
5858 
5859 	wlock_acquire(rtld_bind_lock, &lockstate);
5860 	free_tls(tcb, tcbsize, tcbalign);
5861 	lock_release(rtld_bind_lock, &lockstate);
5862 }
5863 
5864 static void
object_add_name(Obj_Entry * obj,const char * name)5865 object_add_name(Obj_Entry *obj, const char *name)
5866 {
5867 	Name_Entry *entry;
5868 	size_t len;
5869 
5870 	len = strlen(name);
5871 	entry = malloc(sizeof(Name_Entry) + len);
5872 
5873 	if (entry != NULL) {
5874 		strcpy(entry->name, name);
5875 		STAILQ_INSERT_TAIL(&obj->names, entry, link);
5876 	}
5877 }
5878 
5879 static int
object_match_name(const Obj_Entry * obj,const char * name)5880 object_match_name(const Obj_Entry *obj, const char *name)
5881 {
5882 	Name_Entry *entry;
5883 
5884 	STAILQ_FOREACH(entry, &obj->names, link) {
5885 		if (strcmp(name, entry->name) == 0)
5886 			return (1);
5887 	}
5888 	return (0);
5889 }
5890 
5891 static Obj_Entry *
locate_dependency(const Obj_Entry * obj,const char * name)5892 locate_dependency(const Obj_Entry *obj, const char *name)
5893 {
5894 	const Objlist_Entry *entry;
5895 	const Needed_Entry *needed;
5896 
5897 	STAILQ_FOREACH(entry, &list_main, link) {
5898 		if (object_match_name(entry->obj, name))
5899 			return (entry->obj);
5900 	}
5901 
5902 	for (needed = obj->needed; needed != NULL; needed = needed->next) {
5903 		if (strcmp(obj->strtab + needed->name, name) == 0 ||
5904 		    (needed->obj != NULL && object_match_name(needed->obj,
5905 		    name))) {
5906 			/*
5907 			 * If there is DT_NEEDED for the name we are looking
5908 			 * for, we are all set.  Note that object might not be
5909 			 * found if dependency was not loaded yet, so the
5910 			 * function can return NULL here.  This is expected and
5911 			 * handled properly by the caller.
5912 			 */
5913 			return (needed->obj);
5914 		}
5915 	}
5916 	_rtld_error("%s: Unexpected inconsistency: dependency %s not found",
5917 	    obj->path, name);
5918 	rtld_die();
5919 }
5920 
5921 static int
check_object_provided_version(Obj_Entry * refobj,const Obj_Entry * depobj,const Elf_Vernaux * vna)5922 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
5923     const Elf_Vernaux *vna)
5924 {
5925 	const Elf_Verdef *vd;
5926 	const char *vername;
5927 
5928 	vername = refobj->strtab + vna->vna_name;
5929 	vd = depobj->verdef;
5930 	if (vd == NULL) {
5931 		_rtld_error("%s: version %s required by %s not defined",
5932 		    depobj->path, vername, refobj->path);
5933 		return (-1);
5934 	}
5935 	for (;;) {
5936 		if (vd->vd_version != VER_DEF_CURRENT) {
5937 			_rtld_error(
5938 			    "%s: Unsupported version %d of Elf_Verdef entry",
5939 			    depobj->path, vd->vd_version);
5940 			return (-1);
5941 		}
5942 		if (vna->vna_hash == vd->vd_hash) {
5943 			const Elf_Verdaux *aux =
5944 			    (const Elf_Verdaux *)((const char *)vd +
5945 				vd->vd_aux);
5946 			if (strcmp(vername, depobj->strtab + aux->vda_name) ==
5947 			    0)
5948 				return (0);
5949 		}
5950 		if (vd->vd_next == 0)
5951 			break;
5952 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
5953 	}
5954 	if (vna->vna_flags & VER_FLG_WEAK)
5955 		return (0);
5956 	_rtld_error("%s: version %s required by %s not found", depobj->path,
5957 	    vername, refobj->path);
5958 	return (-1);
5959 }
5960 
5961 static int
rtld_verify_object_versions(Obj_Entry * obj)5962 rtld_verify_object_versions(Obj_Entry *obj)
5963 {
5964 	const Elf_Verneed *vn;
5965 	const Elf_Verdef *vd;
5966 	const Elf_Verdaux *vda;
5967 	const Elf_Vernaux *vna;
5968 	const Obj_Entry *depobj;
5969 	int maxvernum, vernum;
5970 
5971 	if (obj->ver_checked)
5972 		return (0);
5973 	obj->ver_checked = true;
5974 
5975 	maxvernum = 0;
5976 	/*
5977 	 * Walk over defined and required version records and figure out
5978 	 * max index used by any of them. Do very basic sanity checking
5979 	 * while there.
5980 	 */
5981 	vn = obj->verneed;
5982 	while (vn != NULL) {
5983 		if (vn->vn_version != VER_NEED_CURRENT) {
5984 			_rtld_error(
5985 			    "%s: Unsupported version %d of Elf_Verneed entry",
5986 			    obj->path, vn->vn_version);
5987 			return (-1);
5988 		}
5989 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
5990 		for (;;) {
5991 			vernum = VER_NEED_IDX(vna->vna_other);
5992 			if (vernum > maxvernum)
5993 				maxvernum = vernum;
5994 			if (vna->vna_next == 0)
5995 				break;
5996 			vna = (const Elf_Vernaux *)((const char *)vna +
5997 			    vna->vna_next);
5998 		}
5999 		if (vn->vn_next == 0)
6000 			break;
6001 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6002 	}
6003 
6004 	vd = obj->verdef;
6005 	while (vd != NULL) {
6006 		if (vd->vd_version != VER_DEF_CURRENT) {
6007 			_rtld_error(
6008 			    "%s: Unsupported version %d of Elf_Verdef entry",
6009 			    obj->path, vd->vd_version);
6010 			return (-1);
6011 		}
6012 		vernum = VER_DEF_IDX(vd->vd_ndx);
6013 		if (vernum > maxvernum)
6014 			maxvernum = vernum;
6015 		if (vd->vd_next == 0)
6016 			break;
6017 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6018 	}
6019 
6020 	if (maxvernum == 0)
6021 		return (0);
6022 
6023 	/*
6024 	 * Store version information in array indexable by version index.
6025 	 * Verify that object version requirements are satisfied along the
6026 	 * way.
6027 	 */
6028 	obj->vernum = maxvernum + 1;
6029 	obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
6030 
6031 	vd = obj->verdef;
6032 	while (vd != NULL) {
6033 		if ((vd->vd_flags & VER_FLG_BASE) == 0) {
6034 			vernum = VER_DEF_IDX(vd->vd_ndx);
6035 			assert(vernum <= maxvernum);
6036 			vda = (const Elf_Verdaux *)((const char *)vd +
6037 			    vd->vd_aux);
6038 			obj->vertab[vernum].hash = vd->vd_hash;
6039 			obj->vertab[vernum].name = obj->strtab + vda->vda_name;
6040 			obj->vertab[vernum].file = NULL;
6041 			obj->vertab[vernum].flags = 0;
6042 		}
6043 		if (vd->vd_next == 0)
6044 			break;
6045 		vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
6046 	}
6047 
6048 	vn = obj->verneed;
6049 	while (vn != NULL) {
6050 		depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
6051 		if (depobj == NULL)
6052 			return (-1);
6053 		vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
6054 		for (;;) {
6055 			if (check_object_provided_version(obj, depobj, vna))
6056 				return (-1);
6057 			vernum = VER_NEED_IDX(vna->vna_other);
6058 			assert(vernum <= maxvernum);
6059 			obj->vertab[vernum].hash = vna->vna_hash;
6060 			obj->vertab[vernum].name = obj->strtab + vna->vna_name;
6061 			obj->vertab[vernum].file = obj->strtab + vn->vn_file;
6062 			obj->vertab[vernum].flags = (vna->vna_other &
6063 			    VER_NEED_HIDDEN) != 0 ? VER_INFO_HIDDEN : 0;
6064 			if (vna->vna_next == 0)
6065 				break;
6066 			vna = (const Elf_Vernaux *)((const char *)vna +
6067 			    vna->vna_next);
6068 		}
6069 		if (vn->vn_next == 0)
6070 			break;
6071 		vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
6072 	}
6073 	return (0);
6074 }
6075 
6076 static int
rtld_verify_versions(const Objlist * objlist)6077 rtld_verify_versions(const Objlist *objlist)
6078 {
6079 	Objlist_Entry *entry;
6080 	int rc;
6081 
6082 	rc = 0;
6083 	STAILQ_FOREACH(entry, objlist, link) {
6084 		/*
6085 		 * Skip dummy objects or objects that have their version
6086 		 * requirements already checked.
6087 		 */
6088 		if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
6089 			continue;
6090 		if (rtld_verify_object_versions(entry->obj) == -1) {
6091 			rc = -1;
6092 			if (ld_tracing == NULL)
6093 				break;
6094 		}
6095 	}
6096 	if (rc == 0 || ld_tracing != NULL)
6097 		rc = rtld_verify_object_versions(&obj_rtld);
6098 	return (rc);
6099 }
6100 
6101 const Ver_Entry *
fetch_ventry(const Obj_Entry * obj,unsigned long symnum)6102 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
6103 {
6104 	Elf_Versym vernum;
6105 
6106 	if (obj->vertab) {
6107 		vernum = VER_NDX(obj->versyms[symnum]);
6108 		if (vernum >= obj->vernum) {
6109 			_rtld_error("%s: symbol %s has wrong verneed value %d",
6110 			    obj->path, obj->strtab + symnum, vernum);
6111 		} else if (obj->vertab[vernum].hash != 0) {
6112 			return (&obj->vertab[vernum]);
6113 		}
6114 	}
6115 	return (NULL);
6116 }
6117 
6118 int
_rtld_get_stack_prot(void)6119 _rtld_get_stack_prot(void)
6120 {
6121 	return (stack_prot);
6122 }
6123 
6124 int
_rtld_is_dlopened(void * arg)6125 _rtld_is_dlopened(void *arg)
6126 {
6127 	Obj_Entry *obj;
6128 	RtldLockState lockstate;
6129 	int res;
6130 
6131 	rlock_acquire(rtld_bind_lock, &lockstate);
6132 	obj = dlcheck(arg);
6133 	if (obj == NULL)
6134 		obj = obj_from_addr(arg);
6135 	if (obj == NULL) {
6136 		_rtld_error("No shared object contains address");
6137 		lock_release(rtld_bind_lock, &lockstate);
6138 		return (-1);
6139 	}
6140 	res = obj->dlopened ? 1 : 0;
6141 	lock_release(rtld_bind_lock, &lockstate);
6142 	return (res);
6143 }
6144 
6145 static int
obj_remap_relro(Obj_Entry * obj,int prot)6146 obj_remap_relro(Obj_Entry *obj, int prot)
6147 {
6148 	const Elf_Phdr *ph;
6149 	caddr_t relro_page;
6150 	size_t relro_size;
6151 
6152 	for (ph = obj->phdr; (const char *)ph < (const char *)obj->phdr +
6153 	    obj->phsize; ph++) {
6154 		if (ph->p_type != PT_GNU_RELRO)
6155 			continue;
6156 		relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
6157 		relro_size = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
6158 		    rtld_trunc_page(ph->p_vaddr);
6159 		if (mprotect(relro_page, relro_size, prot) == -1) {
6160 			_rtld_error(
6161 			    "%s: Cannot set relro protection to %#x: %s",
6162 			    obj->path, prot, rtld_strerror(errno));
6163 			return (-1);
6164 		}
6165 		break;
6166 	}
6167 	return (0);
6168 }
6169 
6170 static int
obj_disable_relro(Obj_Entry * obj)6171 obj_disable_relro(Obj_Entry *obj)
6172 {
6173 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
6174 }
6175 
6176 static int
obj_enforce_relro(Obj_Entry * obj)6177 obj_enforce_relro(Obj_Entry *obj)
6178 {
6179 	return (obj_remap_relro(obj, PROT_READ));
6180 }
6181 
6182 static void
map_stacks_exec(RtldLockState * lockstate)6183 map_stacks_exec(RtldLockState *lockstate)
6184 {
6185 	void (*thr_map_stacks_exec)(void);
6186 
6187 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
6188 		return;
6189 	thr_map_stacks_exec = (void (*)(void))(
6190 	    uintptr_t)get_program_var_addr("__pthread_map_stacks_exec",
6191 	    lockstate);
6192 	if (thr_map_stacks_exec != NULL) {
6193 		stack_prot |= PROT_EXEC;
6194 		thr_map_stacks_exec();
6195 	}
6196 }
6197 
6198 static void
distribute_static_tls(Objlist * list)6199 distribute_static_tls(Objlist *list)
6200 {
6201 	struct tcb_list_entry *tcbelm;
6202 	Objlist_Entry *objelm;
6203 	struct tcb *tcb;
6204 	Obj_Entry *obj;
6205 	char *tlsbase;
6206 
6207 	STAILQ_FOREACH(objelm, list, link) {
6208 		obj = objelm->obj;
6209 		if (obj->marker || !obj->tls_static || obj->static_tls_copied)
6210 			continue;
6211 		TAILQ_FOREACH(tcbelm, &tcb_list, next) {
6212 			tcb = tcb_from_tcb_list_entry(tcbelm);
6213 #ifdef TLS_VARIANT_I
6214 			tlsbase = (char *)tcb + obj->tlsoffset;
6215 #else
6216 			tlsbase = (char *)tcb - obj->tlsoffset;
6217 #endif
6218 			memcpy(tlsbase, obj->tlsinit, obj->tlsinitsize);
6219 			memset(tlsbase + obj->tlsinitsize, 0,
6220 			    obj->tlssize - obj->tlsinitsize);
6221 		}
6222 		obj->static_tls_copied = true;
6223 	}
6224 }
6225 
6226 void
symlook_init(SymLook * dst,const char * name)6227 symlook_init(SymLook *dst, const char *name)
6228 {
6229 	bzero(dst, sizeof(*dst));
6230 	dst->name = name;
6231 	dst->hash = elf_hash(name);
6232 	dst->hash_gnu = gnu_hash(name);
6233 }
6234 
6235 static void
symlook_init_from_req(SymLook * dst,const SymLook * src)6236 symlook_init_from_req(SymLook *dst, const SymLook *src)
6237 {
6238 	dst->name = src->name;
6239 	dst->hash = src->hash;
6240 	dst->hash_gnu = src->hash_gnu;
6241 	dst->ventry = src->ventry;
6242 	dst->flags = src->flags;
6243 	dst->defobj_out = NULL;
6244 	dst->sym_out = NULL;
6245 	dst->lockstate = src->lockstate;
6246 }
6247 
6248 static int
open_binary_fd(const char * argv0,bool search_in_path,const char ** binpath_res)6249 open_binary_fd(const char *argv0, bool search_in_path, const char **binpath_res)
6250 {
6251 	char *binpath, *pathenv, *pe, *res1;
6252 	const char *res;
6253 	int fd;
6254 
6255 	binpath = NULL;
6256 	res = NULL;
6257 	if (search_in_path && strchr(argv0, '/') == NULL) {
6258 		binpath = xmalloc(PATH_MAX);
6259 		pathenv = getenv("PATH");
6260 		if (pathenv == NULL) {
6261 			_rtld_error("-p and no PATH environment variable");
6262 			rtld_die();
6263 		}
6264 		pathenv = strdup(pathenv);
6265 		if (pathenv == NULL) {
6266 			_rtld_error("Cannot allocate memory");
6267 			rtld_die();
6268 		}
6269 		fd = -1;
6270 		errno = ENOENT;
6271 		while ((pe = strsep(&pathenv, ":")) != NULL) {
6272 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
6273 				continue;
6274 			if (binpath[0] != '\0' &&
6275 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
6276 				continue;
6277 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
6278 				continue;
6279 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
6280 			if (fd != -1 || errno != ENOENT) {
6281 				res = binpath;
6282 				break;
6283 			}
6284 		}
6285 		free(pathenv);
6286 	} else {
6287 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
6288 		res = argv0;
6289 	}
6290 
6291 	if (fd == -1) {
6292 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
6293 		rtld_die();
6294 	}
6295 	if (res != NULL && res[0] != '/') {
6296 		res1 = xmalloc(PATH_MAX);
6297 		if (realpath(res, res1) != NULL) {
6298 			if (res != argv0)
6299 				free(__DECONST(char *, res));
6300 			res = res1;
6301 		} else {
6302 			free(res1);
6303 		}
6304 	}
6305 	*binpath_res = res;
6306 	return (fd);
6307 }
6308 
6309 /*
6310  * Parse a set of command-line arguments.
6311  */
6312 static int
parse_args(char * argv[],int argc,bool * use_pathp,int * fdp,const char ** argv0,bool * dir_ignore)6313 parse_args(char *argv[], int argc, bool *use_pathp, int *fdp,
6314     const char **argv0, bool *dir_ignore)
6315 {
6316 	const char *arg;
6317 	char machine[64];
6318 	size_t sz;
6319 	int arglen, fd, i, j, mib[2];
6320 	char opt;
6321 	bool seen_b, seen_f;
6322 
6323 	dbg("Parsing command-line arguments");
6324 	*use_pathp = false;
6325 	*fdp = -1;
6326 	*dir_ignore = false;
6327 	seen_b = seen_f = false;
6328 
6329 	for (i = 1; i < argc; i++) {
6330 		arg = argv[i];
6331 		dbg("argv[%d]: '%s'", i, arg);
6332 
6333 		/*
6334 		 * rtld arguments end with an explicit "--" or with the first
6335 		 * non-prefixed argument.
6336 		 */
6337 		if (strcmp(arg, "--") == 0) {
6338 			i++;
6339 			break;
6340 		}
6341 		if (arg[0] != '-')
6342 			break;
6343 
6344 		/*
6345 		 * All other arguments are single-character options that can
6346 		 * be combined, so we need to search through `arg` for them.
6347 		 */
6348 		arglen = strlen(arg);
6349 		for (j = 1; j < arglen; j++) {
6350 			opt = arg[j];
6351 			if (opt == 'h') {
6352 				print_usage(argv[0]);
6353 				_exit(0);
6354 			} else if (opt == 'b') {
6355 				if (seen_f) {
6356 					_rtld_error("Both -b and -f specified");
6357 					rtld_die();
6358 				}
6359 				if (j != arglen - 1) {
6360 					_rtld_error("Invalid options: %s", arg);
6361 					rtld_die();
6362 				}
6363 				i++;
6364 				*argv0 = argv[i];
6365 				seen_b = true;
6366 				break;
6367 			} else if (opt == 'd') {
6368 				*dir_ignore = true;
6369 			} else if (opt == 'f') {
6370 				if (seen_b) {
6371 					_rtld_error("Both -b and -f specified");
6372 					rtld_die();
6373 				}
6374 
6375 				/*
6376 				 * -f XX can be used to specify a
6377 				 * descriptor for the binary named at
6378 				 * the command line (i.e., the later
6379 				 * argument will specify the process
6380 				 * name but the descriptor is what
6381 				 * will actually be executed).
6382 				 *
6383 				 * -f must be the last option in the
6384 				 * group, e.g., -abcf <fd>.
6385 				 */
6386 				if (j != arglen - 1) {
6387 					_rtld_error("Invalid options: %s", arg);
6388 					rtld_die();
6389 				}
6390 				i++;
6391 				fd = parse_integer(argv[i]);
6392 				if (fd == -1) {
6393 					_rtld_error(
6394 					    "Invalid file descriptor: '%s'",
6395 					    argv[i]);
6396 					rtld_die();
6397 				}
6398 				*fdp = fd;
6399 				seen_f = true;
6400 				break;
6401 			} else if (opt == 'o') {
6402 				struct ld_env_var_desc *l;
6403 				char *n, *v;
6404 				u_int ll;
6405 
6406 				if (j != arglen - 1) {
6407 					_rtld_error("Invalid options: %s", arg);
6408 					rtld_die();
6409 				}
6410 				i++;
6411 				n = argv[i];
6412 				v = strchr(n, '=');
6413 				if (v == NULL) {
6414 					_rtld_error("No '=' in -o parameter");
6415 					rtld_die();
6416 				}
6417 				for (ll = 0; ll < nitems(ld_env_vars); ll++) {
6418 					l = &ld_env_vars[ll];
6419 					if (v - n == (ptrdiff_t)strlen(l->n) &&
6420 					    strncmp(n, l->n, v - n) == 0) {
6421 						l->val = v + 1;
6422 						break;
6423 					}
6424 				}
6425 				if (ll == nitems(ld_env_vars)) {
6426 					_rtld_error("Unknown LD_ option %s", n);
6427 					rtld_die();
6428 				}
6429 			} else if (opt == 'p') {
6430 				*use_pathp = true;
6431 			} else if (opt == 'u') {
6432 				u_int ll;
6433 
6434 				for (ll = 0; ll < nitems(ld_env_vars); ll++)
6435 					ld_env_vars[ll].val = NULL;
6436 			} else if (opt == 'v') {
6437 				machine[0] = '\0';
6438 				mib[0] = CTL_HW;
6439 				mib[1] = HW_MACHINE;
6440 				sz = sizeof(machine);
6441 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
6442 				ld_elf_hints_path = ld_get_env_var(
6443 				    LD_ELF_HINTS_PATH);
6444 				set_ld_elf_hints_path();
6445 				rtld_printf(
6446 				    "FreeBSD ld-elf.so.1 %s\n"
6447 				    "FreeBSD_version %d\n"
6448 				    "Default lib path %s\n"
6449 				    "Hints lib path %s\n"
6450 				    "Env prefix %s\n"
6451 				    "Default hint file %s\n"
6452 				    "Hint file %s\n"
6453 				    "libmap file %s\n"
6454 				    "Optional static TLS size %zd bytes\n",
6455 				    machine, __FreeBSD_version,
6456 				    ld_standard_library_path, gethints(false),
6457 				    ld_env_prefix, ld_elf_hints_default,
6458 				    ld_elf_hints_path, ld_path_libmap_conf,
6459 				    ld_static_tls_extra);
6460 				_exit(0);
6461 			} else {
6462 				_rtld_error("Invalid argument: '%s'", arg);
6463 				print_usage(argv[0]);
6464 				rtld_die();
6465 			}
6466 		}
6467 	}
6468 
6469 	if (!seen_b)
6470 		*argv0 = argv[i];
6471 	return (i);
6472 }
6473 
6474 /*
6475  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
6476  */
6477 static int
parse_integer(const char * str)6478 parse_integer(const char *str)
6479 {
6480 	static const int RADIX = 10; /* XXXJA: possibly support hex? */
6481 	const char *orig;
6482 	int n;
6483 	char c;
6484 
6485 	orig = str;
6486 	n = 0;
6487 	for (c = *str; c != '\0'; c = *++str) {
6488 		if (c < '0' || c > '9')
6489 			return (-1);
6490 
6491 		n *= RADIX;
6492 		n += c - '0';
6493 	}
6494 
6495 	/* Make sure we actually parsed something. */
6496 	if (str == orig)
6497 		return (-1);
6498 	return (n);
6499 }
6500 
6501 static void
print_usage(const char * argv0)6502 print_usage(const char *argv0)
6503 {
6504 	rtld_printf(
6505 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
6506 	    "\n"
6507 	    "Options:\n"
6508 	    "  -h        Display this help message\n"
6509 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
6510 	    "  -d        Ignore lack of exec permissions for the binary\n"
6511 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
6512 	    "  -o <OPT>=<VAL> Set LD_<OPT> to <VAL>, without polluting env\n"
6513 	    "  -p        Search in PATH for named binary\n"
6514 	    "  -u        Ignore LD_ environment variables\n"
6515 	    "  -v        Display identification information\n"
6516 	    "  --        End of RTLD options\n"
6517 	    "  <binary>  Name of process to execute\n"
6518 	    "  <args>    Arguments to the executed process\n",
6519 	    argv0);
6520 }
6521 
6522 #define AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
6523 static const struct auxfmt {
6524 	const char *name;
6525 	const char *fmt;
6526 } auxfmts[] = {
6527 	AUXFMT(AT_NULL, NULL),
6528 	AUXFMT(AT_IGNORE, NULL),
6529 	AUXFMT(AT_EXECFD, "%ld"),
6530 	AUXFMT(AT_PHDR, "%p"),
6531 	AUXFMT(AT_PHENT, "%lu"),
6532 	AUXFMT(AT_PHNUM, "%lu"),
6533 	AUXFMT(AT_PAGESZ, "%lu"),
6534 	AUXFMT(AT_BASE, "%#lx"),
6535 	AUXFMT(AT_FLAGS, "%#lx"),
6536 	AUXFMT(AT_ENTRY, "%p"),
6537 	AUXFMT(AT_NOTELF, NULL),
6538 	AUXFMT(AT_UID, "%ld"),
6539 	AUXFMT(AT_EUID, "%ld"),
6540 	AUXFMT(AT_GID, "%ld"),
6541 	AUXFMT(AT_EGID, "%ld"),
6542 	AUXFMT(AT_EXECPATH, "%s"),
6543 	AUXFMT(AT_CANARY, "%p"),
6544 	AUXFMT(AT_CANARYLEN, "%lu"),
6545 	AUXFMT(AT_OSRELDATE, "%lu"),
6546 	AUXFMT(AT_NCPUS, "%lu"),
6547 	AUXFMT(AT_PAGESIZES, "%p"),
6548 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
6549 	AUXFMT(AT_TIMEKEEP, "%p"),
6550 	AUXFMT(AT_STACKPROT, "%#lx"),
6551 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
6552 	AUXFMT(AT_HWCAP, "%#lx"),
6553 	AUXFMT(AT_HWCAP2, "%#lx"),
6554 	AUXFMT(AT_BSDFLAGS, "%#lx"),
6555 	AUXFMT(AT_ARGC, "%lu"),
6556 	AUXFMT(AT_ARGV, "%p"),
6557 	AUXFMT(AT_ENVC, "%p"),
6558 	AUXFMT(AT_ENVV, "%p"),
6559 	AUXFMT(AT_PS_STRINGS, "%p"),
6560 	AUXFMT(AT_FXRNG, "%p"),
6561 	AUXFMT(AT_KPRELOAD, "%p"),
6562 	AUXFMT(AT_USRSTACKBASE, "%#lx"),
6563 	AUXFMT(AT_USRSTACKLIM, "%#lx"),
6564 	/* AT_CHERI_STATS */
6565 	AUXFMT(AT_HWCAP3, "%#lx"),
6566 	AUXFMT(AT_HWCAP4, "%#lx"),
6567 
6568 };
6569 
6570 static bool
is_ptr_fmt(const char * fmt)6571 is_ptr_fmt(const char *fmt)
6572 {
6573 	char last;
6574 
6575 	last = fmt[strlen(fmt) - 1];
6576 	return (last == 'p' || last == 's');
6577 }
6578 
6579 static void
dump_auxv(Elf_Auxinfo ** aux_info)6580 dump_auxv(Elf_Auxinfo **aux_info)
6581 {
6582 	Elf_Auxinfo *auxp;
6583 	const struct auxfmt *fmt;
6584 	int i;
6585 
6586 	for (i = 0; i < AT_COUNT; i++) {
6587 		auxp = aux_info[i];
6588 		if (auxp == NULL)
6589 			continue;
6590 		fmt = &auxfmts[i];
6591 		if (fmt->fmt == NULL)
6592 			continue;
6593 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
6594 		if (is_ptr_fmt(fmt->fmt)) {
6595 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6596 			    auxp->a_un.a_ptr);
6597 		} else {
6598 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
6599 			    auxp->a_un.a_val);
6600 		}
6601 		rtld_fdprintf(STDOUT_FILENO, "\n");
6602 	}
6603 }
6604 
6605 const char *
rtld_get_var(const char * name)6606 rtld_get_var(const char *name)
6607 {
6608 	const struct ld_env_var_desc *lvd;
6609 	u_int i;
6610 
6611 	for (i = 0; i < nitems(ld_env_vars); i++) {
6612 		lvd = &ld_env_vars[i];
6613 		if (strcmp(lvd->n, name) == 0)
6614 			return (lvd->val);
6615 	}
6616 	return (NULL);
6617 }
6618 
6619 int
rtld_set_var(const char * name,const char * val)6620 rtld_set_var(const char *name, const char *val)
6621 {
6622 	struct ld_env_var_desc *lvd;
6623 	u_int i;
6624 
6625 	for (i = 0; i < nitems(ld_env_vars); i++) {
6626 		lvd = &ld_env_vars[i];
6627 		if (strcmp(lvd->n, name) != 0)
6628 			continue;
6629 		if (!lvd->can_update || (lvd->unsecure && !trust))
6630 			return (EPERM);
6631 		if (lvd->owned)
6632 			free(__DECONST(char *, lvd->val));
6633 		if (val != NULL)
6634 			lvd->val = xstrdup(val);
6635 		else
6636 			lvd->val = NULL;
6637 		lvd->owned = true;
6638 		if (lvd->debug)
6639 			debug = lvd->val != NULL && *lvd->val != '\0';
6640 		return (0);
6641 	}
6642 	return (ENOENT);
6643 }
6644 
6645 /*
6646  * Overrides for libc_pic-provided functions.
6647  */
6648 
6649 int
__getosreldate(void)6650 __getosreldate(void)
6651 {
6652 	size_t len;
6653 	int oid[2];
6654 	int error, osrel;
6655 
6656 	if (osreldate != 0)
6657 		return (osreldate);
6658 
6659 	oid[0] = CTL_KERN;
6660 	oid[1] = KERN_OSRELDATE;
6661 	osrel = 0;
6662 	len = sizeof(osrel);
6663 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
6664 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
6665 		osreldate = osrel;
6666 	return (osreldate);
6667 }
6668 const char *
rtld_strerror(int errnum)6669 rtld_strerror(int errnum)
6670 {
6671 	if (errnum < 0 || errnum >= sys_nerr)
6672 		return ("Unknown error");
6673 	return (sys_errlist[errnum]);
6674 }
6675 
6676 char *
getenv(const char * name)6677 getenv(const char *name)
6678 {
6679 	return (__DECONST(char *, rtld_get_env_val(environ, name,
6680 	    strlen(name))));
6681 }
6682 
6683 /* malloc */
6684 void *
malloc(size_t nbytes)6685 malloc(size_t nbytes)
6686 {
6687 	return (__crt_malloc(nbytes));
6688 }
6689 
6690 void *
calloc(size_t num,size_t size)6691 calloc(size_t num, size_t size)
6692 {
6693 	return (__crt_calloc(num, size));
6694 }
6695 
6696 void
free(void * cp)6697 free(void *cp)
6698 {
6699 	__crt_free(cp);
6700 }
6701 
6702 void *
realloc(void * cp,size_t nbytes)6703 realloc(void *cp, size_t nbytes)
6704 {
6705 	return (__crt_realloc(cp, nbytes));
6706 }
6707 
6708 extern int _rtld_version__FreeBSD_version __exported;
6709 int _rtld_version__FreeBSD_version = __FreeBSD_version;
6710 
6711 extern char _rtld_version_laddr_offset __exported;
6712 char _rtld_version_laddr_offset;
6713 
6714 extern char _rtld_version_dlpi_tls_data __exported;
6715 char _rtld_version_dlpi_tls_data;
6716