xref: /illumos-gate/usr/src/uts/common/io/cxgbe/t4nex/t4_sge.c (revision 5cc82207c6bb1a6b9b4a68cc33698dd1e4a61e28)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source. A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * This file is part of the Chelsio T4 support code.
14  *
15  * Copyright (C) 2010-2013 Chelsio Communications.  All rights reserved.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the LICENSE file included in this
20  * release for licensing terms and conditions.
21  */
22 
23 /*
24  * Copyright 2025 Oxide Computer Company
25  */
26 
27 #include <sys/ddi.h>
28 #include <sys/sunddi.h>
29 #include <sys/sunndi.h>
30 #include <sys/atomic.h>
31 #include <sys/dlpi.h>
32 #include <sys/pattr.h>
33 #include <sys/strsubr.h>
34 #include <sys/stream.h>
35 #include <sys/strsun.h>
36 #include <inet/ip.h>
37 #include <inet/tcp.h>
38 
39 #include "common/common.h"
40 #include "common/t4_msg.h"
41 #include "common/t4_regs.h"
42 #include "common/t4_regs_values.h"
43 
44 /* TODO: Tune. */
45 int rx_buf_size = 8192;
46 int tx_copy_threshold = 256;
47 uint16_t rx_copy_threshold = 256;
48 
49 /* Used to track coalesced tx work request */
50 struct txpkts {
51 	mblk_t *tail;		/* head is in the software descriptor */
52 	uint64_t *flitp;	/* ptr to flit where next pkt should start */
53 	uint8_t npkt;		/* # of packets in this work request */
54 	uint8_t nflits;		/* # of flits used by this work request */
55 	uint16_t plen;		/* total payload (sum of all packets) */
56 };
57 
58 /* All information needed to tx a frame */
59 struct txinfo {
60 	uint32_t len;		/* Total length of frame */
61 	uint32_t flags;		/* Checksum and LSO flags */
62 	uint32_t mss;		/* MSS for LSO */
63 	uint8_t nsegs;		/* # of segments in the SGL, 0 means imm. tx */
64 	uint8_t nflits;		/* # of flits needed for the SGL */
65 	uint8_t hdls_used;	/* # of DMA handles used */
66 	uint32_t txb_used;	/* txb_space used */
67 	mac_ether_offload_info_t meoi;	/* pkt hdr info for offloads */
68 	struct ulptx_sgl sgl __attribute__((aligned(8)));
69 	struct ulptx_sge_pair reserved[TX_SGL_SEGS / 2];
70 };
71 
72 struct mblk_pair {
73 	mblk_t *head, *tail;
74 };
75 
76 struct rxbuf {
77 	kmem_cache_t *cache;		/* the kmem_cache this rxb came from */
78 	ddi_dma_handle_t dhdl;
79 	ddi_acc_handle_t ahdl;
80 	caddr_t va;			/* KVA of buffer */
81 	uint64_t ba;			/* bus address of buffer */
82 	frtn_t freefunc;
83 	uint_t buf_size;
84 	volatile uint_t ref_cnt;
85 };
86 
87 static int service_iq(struct sge_iq *iq, int budget);
88 static inline void init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx,
89     int8_t pktc_idx, int qsize, uint8_t esize);
90 static inline void init_fl(struct sge_fl *fl, uint16_t qsize);
91 static inline void init_eq(struct adapter *sc, struct sge_eq *eq,
92     uint16_t qsize, uint8_t tx_chan, uint16_t iqid);
93 static int alloc_iq_fl(struct port_info *pi, struct sge_iq *iq,
94     struct sge_fl *fl, int intr_idx, int cong);
95 static int free_iq_fl(struct port_info *pi, struct sge_iq *iq,
96     struct sge_fl *fl);
97 static int alloc_fwq(struct adapter *sc);
98 static int free_fwq(struct adapter *sc);
99 static int alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx,
100     int i);
101 static int free_rxq(struct port_info *pi, struct sge_rxq *rxq);
102 static int eth_eq_alloc(struct adapter *sc, struct port_info *pi,
103     struct sge_eq *eq);
104 static int alloc_eq(struct adapter *sc, struct port_info *pi,
105     struct sge_eq *eq);
106 static int free_eq(struct adapter *sc, struct sge_eq *eq);
107 static int alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx);
108 static int free_txq(struct port_info *pi, struct sge_txq *txq);
109 static int alloc_dma_memory(struct adapter *sc, size_t len, int flags,
110     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
111     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
112     caddr_t *pva);
113 static int free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
114 static int alloc_desc_ring(struct adapter *sc, size_t len, int rw,
115     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
116     caddr_t *pva);
117 static int free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl);
118 static int alloc_tx_copybuffer(struct adapter *sc, size_t len,
119     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl, uint64_t *pba,
120     caddr_t *pva);
121 static inline bool is_new_response(const struct sge_iq *iq,
122     struct rsp_ctrl **ctrl);
123 static inline void iq_next(struct sge_iq *iq);
124 static int refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs);
125 static void refill_sfl(void *arg);
126 static void add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl);
127 static void free_fl_bufs(struct sge_fl *fl);
128 static mblk_t *get_fl_payload(struct adapter *sc, struct sge_fl *fl,
129     uint32_t len_newbuf, int *fl_bufs_used);
130 static int get_frame_txinfo(struct sge_txq *txq, mblk_t **fp,
131     struct txinfo *txinfo, int sgl_only);
132 static inline int fits_in_txb(struct sge_txq *txq, int len, int *waste);
133 static inline int copy_into_txb(struct sge_txq *txq, mblk_t *m, int len,
134     struct txinfo *txinfo);
135 static inline void add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len);
136 static inline int add_mblk(struct sge_txq *txq, struct txinfo *txinfo,
137     mblk_t *m, int len);
138 static void free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo);
139 static int add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
140     struct txinfo *txinfo);
141 static void write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts);
142 static int write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
143     struct txinfo *txinfo);
144 static inline void write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
145     struct txpkts *txpkts, struct txinfo *txinfo);
146 static inline void copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to,
147     int len);
148 static inline void ring_tx_db(struct adapter *sc, struct sge_eq *eq);
149 static int reclaim_tx_descs(struct sge_txq *txq, int howmany);
150 static void write_txqflush_wr(struct sge_txq *txq);
151 static int t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss,
152     mblk_t *m);
153 static inline void ring_fl_db(struct adapter *sc, struct sge_fl *fl);
154 static kstat_t *setup_port_config_kstats(struct port_info *pi);
155 static kstat_t *setup_port_info_kstats(struct port_info *pi);
156 static kstat_t *setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq,
157     int idx);
158 static int update_rxq_kstats(kstat_t *ksp, int rw);
159 static int update_port_info_kstats(kstat_t *ksp, int rw);
160 static kstat_t *setup_txq_kstats(struct port_info *pi, struct sge_txq *txq,
161     int idx);
162 static int update_txq_kstats(kstat_t *ksp, int rw);
163 static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
164     mblk_t *);
165 static int t4_handle_cpl_msg(struct sge_iq *, const struct rss_header *,
166     mblk_t *);
167 static int t4_handle_fw_msg(struct sge_iq *, const struct rss_header *);
168 
169 static kmem_cache_t *rxbuf_cache_create(struct rxbuf_cache_params *);
170 static struct rxbuf *rxbuf_alloc(kmem_cache_t *, int, uint_t);
171 static void rxbuf_free(struct rxbuf *);
172 static int rxbuf_ctor(void *, void *, int);
173 static void rxbuf_dtor(void *, void *);
174 
175 static inline int
reclaimable(struct sge_eq * eq)176 reclaimable(struct sge_eq *eq)
177 {
178 	unsigned int cidx;
179 
180 	cidx = eq->spg->cidx;   /* stable snapshot */
181 	cidx = be16_to_cpu(cidx);
182 
183 	if (cidx >= eq->cidx)
184 		return (cidx - eq->cidx);
185 	else
186 		return (cidx + eq->cap - eq->cidx);
187 }
188 
189 void
t4_sge_init(struct adapter * sc)190 t4_sge_init(struct adapter *sc)
191 {
192 	struct driver_properties *p = &sc->props;
193 	ddi_dma_attr_t *dma_attr;
194 	ddi_device_acc_attr_t *acc_attr;
195 	uint32_t sge_control, sge_conm_ctrl;
196 	int egress_threshold;
197 
198 	/*
199 	 * Device access and DMA attributes for descriptor rings
200 	 */
201 	acc_attr = &sc->sge.acc_attr_desc;
202 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
203 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
204 	acc_attr->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
205 
206 	dma_attr = &sc->sge.dma_attr_desc;
207 	dma_attr->dma_attr_version = DMA_ATTR_V0;
208 	dma_attr->dma_attr_addr_lo = 0;
209 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
210 	dma_attr->dma_attr_count_max = UINT64_MAX;
211 	dma_attr->dma_attr_align = 512;
212 	dma_attr->dma_attr_burstsizes = 0xfff;
213 	dma_attr->dma_attr_minxfer = 1;
214 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
215 	dma_attr->dma_attr_seg = UINT64_MAX;
216 	dma_attr->dma_attr_sgllen = 1;
217 	dma_attr->dma_attr_granular = 1;
218 	dma_attr->dma_attr_flags = 0;
219 
220 	/*
221 	 * Device access and DMA attributes for tx buffers
222 	 */
223 	acc_attr = &sc->sge.acc_attr_tx;
224 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
225 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
226 
227 	dma_attr = &sc->sge.dma_attr_tx;
228 	dma_attr->dma_attr_version = DMA_ATTR_V0;
229 	dma_attr->dma_attr_addr_lo = 0;
230 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
231 	dma_attr->dma_attr_count_max = UINT64_MAX;
232 	dma_attr->dma_attr_align = 1;
233 	dma_attr->dma_attr_burstsizes = 0xfff;
234 	dma_attr->dma_attr_minxfer = 1;
235 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
236 	dma_attr->dma_attr_seg = UINT64_MAX;
237 	dma_attr->dma_attr_sgllen = TX_SGL_SEGS;
238 	dma_attr->dma_attr_granular = 1;
239 	dma_attr->dma_attr_flags = 0;
240 
241 	/*
242 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
243 	 * t4_fixup_host_params().
244 	 */
245 	sge_control = t4_read_reg(sc, A_SGE_CONTROL);
246 	sc->sge.pktshift = G_PKTSHIFT(sge_control);
247 	sc->sge.stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64;
248 
249 	/* t4_nex uses FLM packed mode */
250 	sc->sge.fl_align = t4_fl_pkt_align(sc, true);
251 
252 	/*
253 	 * Device access and DMA attributes for rx buffers
254 	 */
255 	sc->sge.rxb_params.dip = sc->dip;
256 	sc->sge.rxb_params.buf_size = rx_buf_size;
257 
258 	acc_attr = &sc->sge.rxb_params.acc_attr_rx;
259 	acc_attr->devacc_attr_version = DDI_DEVICE_ATTR_V0;
260 	acc_attr->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
261 
262 	dma_attr = &sc->sge.rxb_params.dma_attr_rx;
263 	dma_attr->dma_attr_version = DMA_ATTR_V0;
264 	dma_attr->dma_attr_addr_lo = 0;
265 	dma_attr->dma_attr_addr_hi = UINT64_MAX;
266 	dma_attr->dma_attr_count_max = UINT64_MAX;
267 	/*
268 	 * Low 4 bits of an rx buffer address have a special meaning to the SGE
269 	 * and an rx buf cannot have an address with any of these bits set.
270 	 * FL_ALIGN is >= 32 so we're sure things are ok.
271 	 */
272 	dma_attr->dma_attr_align = sc->sge.fl_align;
273 	dma_attr->dma_attr_burstsizes = 0xfff;
274 	dma_attr->dma_attr_minxfer = 1;
275 	dma_attr->dma_attr_maxxfer = UINT64_MAX;
276 	dma_attr->dma_attr_seg = UINT64_MAX;
277 	dma_attr->dma_attr_sgllen = 1;
278 	dma_attr->dma_attr_granular = 1;
279 	dma_attr->dma_attr_flags = 0;
280 
281 	sc->sge.rxbuf_cache = rxbuf_cache_create(&sc->sge.rxb_params);
282 
283 	/*
284 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
285 	 * timer will attempt to refill it.  This needs to be larger than the
286 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
287 	 * stuck waiting for new packets while the SGE is waiting for us to
288 	 * give it more Free List entries.  (Note that the SGE's Egress
289 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
290 	 * there was only a single field to control this.  For T5 there's the
291 	 * original field which now only applies to Unpacked Mode Free List
292 	 * buffers and a new field which only applies to Packed Mode Free List
293 	 * buffers.
294 	 */
295 
296 	sge_conm_ctrl = t4_read_reg(sc, A_SGE_CONM_CTRL);
297 	switch (CHELSIO_CHIP_VERSION(sc->params.chip)) {
298 	case CHELSIO_T4:
299 		egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl);
300 		break;
301 	case CHELSIO_T5:
302 		egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl);
303 		break;
304 	case CHELSIO_T6:
305 	default:
306 		egress_threshold = G_T6_EGRTHRESHOLDPACKING(sge_conm_ctrl);
307 	}
308 	sc->sge.fl_starve_threshold = 2*egress_threshold + 1;
309 
310 	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, rx_buf_size);
311 
312 	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
313 	    V_THRESHOLD_0(p->counter_val[0]) |
314 	    V_THRESHOLD_1(p->counter_val[1]) |
315 	    V_THRESHOLD_2(p->counter_val[2]) |
316 	    V_THRESHOLD_3(p->counter_val[3]));
317 
318 	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
319 	    V_TIMERVALUE0(us_to_core_ticks(sc, p->timer_val[0])) |
320 	    V_TIMERVALUE1(us_to_core_ticks(sc, p->timer_val[1])));
321 	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
322 	    V_TIMERVALUE2(us_to_core_ticks(sc, p->timer_val[2])) |
323 	    V_TIMERVALUE3(us_to_core_ticks(sc, p->timer_val[3])));
324 	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
325 	    V_TIMERVALUE4(us_to_core_ticks(sc, p->timer_val[4])) |
326 	    V_TIMERVALUE5(us_to_core_ticks(sc, p->timer_val[5])));
327 }
328 
329 /*
330  * Allocate and initialize the firmware event queue and the forwarded interrupt
331  * queues, if any.  The adapter owns all these queues as they are not associated
332  * with any particular port.
333  *
334  * Returns errno on failure.  Resources allocated up to that point may still be
335  * allocated.  Caller is responsible for cleanup in case this function fails.
336  */
337 int
t4_setup_adapter_queues(struct adapter * sc)338 t4_setup_adapter_queues(struct adapter *sc)
339 {
340 	int rc;
341 
342 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
343 
344 	/*
345 	 * Firmware event queue
346 	 */
347 	rc = alloc_fwq(sc);
348 	if (rc != 0)
349 		return (rc);
350 
351 	return (rc);
352 }
353 
354 /*
355  * Idempotent
356  */
357 int
t4_teardown_adapter_queues(struct adapter * sc)358 t4_teardown_adapter_queues(struct adapter *sc)
359 {
360 
361 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
362 
363 	(void) free_fwq(sc);
364 
365 	return (0);
366 }
367 
368 static inline int
first_vector(struct port_info * pi)369 first_vector(struct port_info *pi)
370 {
371 	struct adapter *sc = pi->adapter;
372 	int rc = T4_EXTRA_INTR, i;
373 
374 	if (sc->intr_count == 1)
375 		return (0);
376 
377 	for_each_port(sc, i) {
378 		struct port_info *p = sc->port[i];
379 
380 		if (i == pi->port_id)
381 			break;
382 
383 		/*
384 		 * Not compiled with offload support and intr_count > 1.  Only
385 		 * NIC queues exist and they'd better be taking direct
386 		 * interrupts.
387 		 */
388 		ASSERT(!(sc->flags & TAF_INTR_FWD));
389 		rc += p->nrxq;
390 	}
391 	return (rc);
392 }
393 
394 /*
395  * Given an arbitrary "index," come up with an iq that can be used by other
396  * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
397  * The iq returned is guaranteed to be something that takes direct interrupts.
398  */
399 static struct sge_iq *
port_intr_iq(struct port_info * pi,int idx)400 port_intr_iq(struct port_info *pi, int idx)
401 {
402 	struct adapter *sc = pi->adapter;
403 	struct sge *s = &sc->sge;
404 	struct sge_iq *iq = NULL;
405 
406 	if (sc->intr_count == 1)
407 		return (&sc->sge.fwq);
408 
409 	/*
410 	 * Not compiled with offload support and intr_count > 1.  Only NIC
411 	 * queues exist and they'd better be taking direct interrupts.
412 	 */
413 	ASSERT(!(sc->flags & TAF_INTR_FWD));
414 
415 	idx %= pi->nrxq;
416 	iq = &s->rxq[pi->first_rxq + idx].iq;
417 
418 	return (iq);
419 }
420 
421 int
t4_setup_port_queues(struct port_info * pi)422 t4_setup_port_queues(struct port_info *pi)
423 {
424 	int rc = 0, i, intr_idx, j;
425 	struct sge_rxq *rxq;
426 	struct sge_txq *txq;
427 	struct adapter *sc = pi->adapter;
428 	struct driver_properties *p = &sc->props;
429 
430 	pi->ksp_config = setup_port_config_kstats(pi);
431 	pi->ksp_info   = setup_port_info_kstats(pi);
432 
433 	/* Interrupt vector to start from (when using multiple vectors) */
434 	intr_idx = first_vector(pi);
435 
436 	/*
437 	 * First pass over all rx queues (NIC and TOE):
438 	 * a) initialize iq and fl
439 	 * b) allocate queue iff it will take direct interrupts.
440 	 */
441 
442 	for_each_rxq(pi, i, rxq) {
443 
444 		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, p->qsize_rxq,
445 		    RX_IQ_ESIZE);
446 
447 		init_fl(&rxq->fl, p->qsize_rxq / 8); /* 8 bufs in each entry */
448 
449 		if ((!(sc->flags & TAF_INTR_FWD)) ||
450 		    (sc->intr_count > 1 && pi->nrxq)) {
451 			rxq->iq.flags |= IQ_INTR;
452 			rc = alloc_rxq(pi, rxq, intr_idx, i);
453 			if (rc != 0)
454 				goto done;
455 			intr_idx++;
456 		}
457 
458 	}
459 
460 	/*
461 	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
462 	 * their interrupts are allocated now.
463 	 */
464 	j = 0;
465 	for_each_rxq(pi, i, rxq) {
466 		if (rxq->iq.flags & IQ_INTR)
467 			continue;
468 
469 		intr_idx = port_intr_iq(pi, j)->abs_id;
470 
471 		rc = alloc_rxq(pi, rxq, intr_idx, i);
472 		if (rc != 0)
473 			goto done;
474 		j++;
475 	}
476 
477 	/*
478 	 * Now the tx queues.  Only one pass needed.
479 	 */
480 	j = 0;
481 	for_each_txq(pi, i, txq) {
482 		uint16_t iqid;
483 
484 		iqid = port_intr_iq(pi, j)->cntxt_id;
485 		init_eq(sc, &txq->eq, p->qsize_txq, pi->tx_chan, iqid);
486 		rc = alloc_txq(pi, txq, i);
487 		if (rc != 0)
488 			goto done;
489 	}
490 
491 done:
492 	if (rc != 0)
493 		(void) t4_teardown_port_queues(pi);
494 
495 	return (rc);
496 }
497 
498 /*
499  * Idempotent
500  */
501 int
t4_teardown_port_queues(struct port_info * pi)502 t4_teardown_port_queues(struct port_info *pi)
503 {
504 	int i;
505 	struct sge_rxq *rxq;
506 	struct sge_txq *txq;
507 
508 	if (pi->ksp_config != NULL) {
509 		kstat_delete(pi->ksp_config);
510 		pi->ksp_config = NULL;
511 	}
512 	if (pi->ksp_info != NULL) {
513 		kstat_delete(pi->ksp_info);
514 		pi->ksp_info = NULL;
515 	}
516 
517 	for_each_txq(pi, i, txq) {
518 		(void) free_txq(pi, txq);
519 	}
520 
521 	for_each_rxq(pi, i, rxq) {
522 		if ((rxq->iq.flags & IQ_INTR) == 0)
523 			(void) free_rxq(pi, rxq);
524 	}
525 
526 	/*
527 	 * Then take down the rx queues that take direct interrupts.
528 	 */
529 
530 	for_each_rxq(pi, i, rxq) {
531 		if (rxq->iq.flags & IQ_INTR)
532 			(void) free_rxq(pi, rxq);
533 	}
534 
535 	return (0);
536 }
537 
538 /* Deals with errors and forwarded interrupts */
539 uint_t
t4_intr_all(caddr_t arg1,caddr_t arg2)540 t4_intr_all(caddr_t arg1, caddr_t arg2)
541 {
542 
543 	(void) t4_intr_err(arg1, arg2);
544 	(void) t4_intr(arg1, arg2);
545 
546 	return (DDI_INTR_CLAIMED);
547 }
548 
549 static void
t4_intr_rx_work(struct sge_iq * iq)550 t4_intr_rx_work(struct sge_iq *iq)
551 {
552 	mblk_t *mp = NULL;
553 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
554 	RXQ_LOCK(rxq);
555 	if (!iq->polling) {
556 		mp = t4_ring_rx(rxq, iq->qsize/8);
557 		t4_write_reg(iq->adapter, MYPF_REG(A_SGE_PF_GTS),
558 		    V_INGRESSQID((u32)iq->cntxt_id) |
559 		    V_SEINTARM(iq->intr_next));
560 	}
561 	RXQ_UNLOCK(rxq);
562 	if (mp != NULL) {
563 		mac_rx_ring(rxq->port->mh, rxq->ring_handle, mp,
564 		    rxq->ring_gen_num);
565 	}
566 }
567 
568 /* Deals with interrupts on the given ingress queue */
569 /* ARGSUSED */
570 uint_t
t4_intr(caddr_t arg1,caddr_t arg2)571 t4_intr(caddr_t arg1, caddr_t arg2)
572 {
573 	struct sge_iq *iq = (struct sge_iq *)arg2;
574 	int state;
575 
576 	/*
577 	 * Right now receive polling is only enabled for MSI-X and
578 	 * when we have enough msi-x vectors i.e no interrupt forwarding.
579 	 */
580 	if (iq->adapter->props.multi_rings) {
581 		t4_intr_rx_work(iq);
582 	} else {
583 		state = atomic_cas_uint(&iq->state, IQS_IDLE, IQS_BUSY);
584 		if (state == IQS_IDLE) {
585 			(void) service_iq(iq, 0);
586 			(void) atomic_cas_uint(&iq->state, IQS_BUSY, IQS_IDLE);
587 		}
588 	}
589 	return (DDI_INTR_CLAIMED);
590 }
591 
592 /* Deals with error interrupts */
593 /* ARGSUSED */
594 uint_t
t4_intr_err(caddr_t arg1,caddr_t arg2)595 t4_intr_err(caddr_t arg1, caddr_t arg2)
596 {
597 	/* LINTED: E_BAD_PTR_CAST_ALIGN */
598 	struct adapter *sc = (struct adapter *)arg1;
599 
600 	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
601 	(void) t4_slow_intr_handler(sc);
602 
603 	return (DDI_INTR_CLAIMED);
604 }
605 
606 /*
607  * t4_ring_rx - Process responses from an SGE response queue.
608  *
609  * This function processes responses from an SGE response queue up to the
610  * supplied budget.  Responses include received packets as well as control
611  * messages from FW or HW.
612  *
613  * It returns a chain of mblks containing the received data, to be
614  * passed up to mac_rx_ring().
615  */
616 mblk_t *
t4_ring_rx(struct sge_rxq * rxq,int budget)617 t4_ring_rx(struct sge_rxq *rxq, int budget)
618 {
619 	struct sge_iq *iq = &rxq->iq;
620 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
621 	struct adapter *sc = iq->adapter;
622 	struct rsp_ctrl *ctrl;
623 	const struct rss_header *rss;
624 	int ndescs = 0, fl_bufs_used = 0;
625 	int rsp_type;
626 	uint32_t lq;
627 	mblk_t *mblk_head = NULL, **mblk_tail, *m;
628 	struct cpl_rx_pkt *cpl;
629 	uint32_t received_bytes = 0, pkt_len = 0;
630 	bool csum_ok;
631 	uint16_t err_vec;
632 
633 	mblk_tail = &mblk_head;
634 
635 	while (is_new_response(iq, &ctrl)) {
636 
637 		membar_consumer();
638 
639 		m = NULL;
640 		rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
641 		lq = be32_to_cpu(ctrl->pldbuflen_qid);
642 		rss = (const void *)iq->cdesc;
643 
644 		switch (rsp_type) {
645 		case X_RSPD_TYPE_FLBUF:
646 
647 			ASSERT(iq->flags & IQ_HAS_FL);
648 
649 			if (CPL_RX_PKT == rss->opcode) {
650 				cpl = (void *)(rss + 1);
651 				pkt_len = be16_to_cpu(cpl->len);
652 
653 				if (iq->polling &&
654 				    ((received_bytes + pkt_len) > budget))
655 					goto done;
656 
657 				m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
658 				if (m == NULL)
659 					goto done;
660 
661 				iq->intr_next = iq->intr_params;
662 				m->b_rptr += sc->sge.pktshift;
663 				if (sc->params.tp.rx_pkt_encap) {
664 					/* Enabled only in T6 config file */
665 					err_vec = G_T6_COMPR_RXERR_VEC(
666 					    ntohs(cpl->err_vec));
667 				} else {
668 					err_vec = ntohs(cpl->err_vec);
669 				}
670 
671 				csum_ok = cpl->csum_calc && !err_vec;
672 
673 				/* TODO: what about cpl->ip_frag? */
674 				if (csum_ok && !cpl->ip_frag) {
675 					mac_hcksum_set(m, 0, 0, 0, 0xffff,
676 					    HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
677 					    HCK_IPV4_HDRCKSUM_OK);
678 					rxq->rxcsum++;
679 				}
680 				rxq->rxpkts++;
681 				rxq->rxbytes += pkt_len;
682 				received_bytes += pkt_len;
683 
684 				*mblk_tail = m;
685 				mblk_tail = &m->b_next;
686 
687 				break;
688 			}
689 
690 			m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
691 			if (m == NULL)
692 				goto done;
693 			/* FALLTHROUGH */
694 
695 		case X_RSPD_TYPE_CPL:
696 			(void) t4_handle_cpl_msg(iq, rss, m);
697 			break;
698 
699 		default:
700 			break;
701 		}
702 		iq_next(iq);
703 		++ndescs;
704 		if (!iq->polling && (ndescs == budget))
705 			break;
706 	}
707 
708 done:
709 
710 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
711 	    V_CIDXINC(ndescs) | V_INGRESSQID(iq->cntxt_id) |
712 	    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
713 
714 	if ((fl_bufs_used > 0) || (iq->flags & IQ_HAS_FL)) {
715 		int starved;
716 		FL_LOCK(fl);
717 		fl->needed += fl_bufs_used;
718 		starved = refill_fl(sc, fl, fl->cap / 8);
719 		FL_UNLOCK(fl);
720 		if (starved)
721 			add_fl_to_sfl(sc, fl);
722 	}
723 	return (mblk_head);
724 }
725 
726 /*
727  * Deals with anything and everything on the given ingress queue.
728  */
729 static int
service_iq(struct sge_iq * iq,int budget)730 service_iq(struct sge_iq *iq, int budget)
731 {
732 	struct sge_iq *q;
733 	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
734 	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
735 	struct adapter *sc = iq->adapter;
736 	struct rsp_ctrl *ctrl;
737 	const struct rss_header *rss;
738 	int ndescs = 0, limit, fl_bufs_used = 0;
739 	int rsp_type;
740 	uint32_t lq;
741 	int starved;
742 	mblk_t *m;
743 	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
744 
745 	limit = budget ? budget : iq->qsize / 8;
746 
747 	/*
748 	 * We always come back and check the descriptor ring for new indirect
749 	 * interrupts and other responses after running a single handler.
750 	 */
751 	for (;;) {
752 		while (is_new_response(iq, &ctrl)) {
753 
754 			membar_consumer();
755 
756 			m = NULL;
757 			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
758 			lq = be32_to_cpu(ctrl->pldbuflen_qid);
759 			rss = (const void *)iq->cdesc;
760 
761 			switch (rsp_type) {
762 			case X_RSPD_TYPE_FLBUF:
763 
764 				ASSERT(iq->flags & IQ_HAS_FL);
765 
766 				m = get_fl_payload(sc, fl, lq, &fl_bufs_used);
767 				if (m == NULL) {
768 					/*
769 					 * Rearm the iq with a
770 					 * longer-than-default timer
771 					 */
772 					const uint32_t timer_idx =
773 					    V_QINTR_TIMER_IDX(SGE_NTIMERS-1);
774 					t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
775 					    V_CIDXINC(ndescs) |
776 					    V_INGRESSQID((u32)iq->cntxt_id) |
777 					    V_SEINTARM(timer_idx));
778 					if (fl_bufs_used > 0) {
779 						ASSERT(iq->flags & IQ_HAS_FL);
780 						FL_LOCK(fl);
781 						fl->needed += fl_bufs_used;
782 						starved = refill_fl(sc, fl,
783 						    fl->cap / 8);
784 						FL_UNLOCK(fl);
785 						if (starved)
786 							add_fl_to_sfl(sc, fl);
787 					}
788 					return (0);
789 				}
790 
791 			/* FALLTHRU */
792 			case X_RSPD_TYPE_CPL:
793 				(void) t4_handle_cpl_msg(iq, rss, m);
794 				break;
795 
796 			case X_RSPD_TYPE_INTR:
797 
798 				/*
799 				 * Interrupts should be forwarded only to queues
800 				 * that are not forwarding their interrupts.
801 				 * This means service_iq can recurse but only 1
802 				 * level deep.
803 				 */
804 				ASSERT(budget == 0);
805 
806 				q = sc->sge.iqmap[lq - sc->sge.iq_start];
807 				if (atomic_cas_uint(&q->state, IQS_IDLE,
808 				    IQS_BUSY) == IQS_IDLE) {
809 					if (service_iq(q, q->qsize / 8) == 0) {
810 						(void) atomic_cas_uint(
811 						    &q->state, IQS_BUSY,
812 						    IQS_IDLE);
813 					} else {
814 						STAILQ_INSERT_TAIL(&iql, q,
815 						    link);
816 					}
817 				}
818 				break;
819 
820 			default:
821 				break;
822 			}
823 
824 			iq_next(iq);
825 			if (++ndescs == limit) {
826 				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
827 				    V_CIDXINC(ndescs) |
828 				    V_INGRESSQID(iq->cntxt_id) |
829 				    V_SEINTARM(V_QINTR_TIMER_IDX(
830 				    X_TIMERREG_UPDATE_CIDX)));
831 				ndescs = 0;
832 
833 				if (fl_bufs_used > 0) {
834 					ASSERT(iq->flags & IQ_HAS_FL);
835 					FL_LOCK(fl);
836 					fl->needed += fl_bufs_used;
837 					(void) refill_fl(sc, fl, fl->cap / 8);
838 					FL_UNLOCK(fl);
839 					fl_bufs_used = 0;
840 				}
841 
842 				if (budget != 0)
843 					return (EINPROGRESS);
844 			}
845 		}
846 
847 		if (STAILQ_EMPTY(&iql) != 0)
848 			break;
849 
850 		/*
851 		 * Process the head only, and send it to the back of the list if
852 		 * it's still not done.
853 		 */
854 		q = STAILQ_FIRST(&iql);
855 		STAILQ_REMOVE_HEAD(&iql, link);
856 		if (service_iq(q, q->qsize / 8) == 0)
857 			(void) atomic_cas_uint(&q->state, IQS_BUSY, IQS_IDLE);
858 		else
859 			STAILQ_INSERT_TAIL(&iql, q, link);
860 	}
861 
862 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
863 	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
864 
865 	if (iq->flags & IQ_HAS_FL) {
866 
867 		FL_LOCK(fl);
868 		fl->needed += fl_bufs_used;
869 		starved = refill_fl(sc, fl, fl->cap / 4);
870 		FL_UNLOCK(fl);
871 		if (starved != 0)
872 			add_fl_to_sfl(sc, fl);
873 	}
874 
875 	return (0);
876 }
877 
878 /* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
879 #define	TXPKTS_PKT_HDR ((\
880 	sizeof (struct ulp_txpkt) + \
881 	sizeof (struct ulptx_idata) + \
882 	sizeof (struct cpl_tx_pkt_core)) / 8)
883 
884 /* Header of a coalesced tx WR, before SGL of first packet (in flits) */
885 #define	TXPKTS_WR_HDR (\
886 	sizeof (struct fw_eth_tx_pkts_wr) / 8 + \
887 	TXPKTS_PKT_HDR)
888 
889 /* Header of a tx WR, before SGL of first packet (in flits) */
890 #define	TXPKT_WR_HDR ((\
891 	sizeof (struct fw_eth_tx_pkt_wr) + \
892 	sizeof (struct cpl_tx_pkt_core)) / 8)
893 
894 /* Header of a tx LSO WR, before SGL of first packet (in flits) */
895 #define	TXPKT_LSO_WR_HDR ((\
896 	sizeof (struct fw_eth_tx_pkt_wr) + \
897 	sizeof (struct cpl_tx_pkt_lso_core) + \
898 	sizeof (struct cpl_tx_pkt_core)) / 8)
899 
900 mblk_t *
t4_eth_tx(void * arg,mblk_t * frame)901 t4_eth_tx(void *arg, mblk_t *frame)
902 {
903 	struct sge_txq *txq = (struct sge_txq *)arg;
904 	struct port_info *pi = txq->port;
905 	struct adapter *sc = pi->adapter;
906 	struct sge_eq *eq = &txq->eq;
907 	mblk_t *next_frame;
908 	int rc, coalescing;
909 	struct txpkts txpkts;
910 	struct txinfo txinfo;
911 
912 	txpkts.npkt = 0; /* indicates there's nothing in txpkts */
913 	coalescing = 0;
914 
915 	TXQ_LOCK(txq);
916 	if (eq->avail < 8)
917 		(void) reclaim_tx_descs(txq, 8);
918 	for (; frame; frame = next_frame) {
919 
920 		if (eq->avail < 8)
921 			break;
922 
923 		next_frame = frame->b_next;
924 		frame->b_next = NULL;
925 
926 		if (next_frame != NULL)
927 			coalescing = 1;
928 
929 		rc = get_frame_txinfo(txq, &frame, &txinfo, coalescing);
930 		if (rc != 0) {
931 			if (rc == ENOMEM) {
932 
933 				/* Short of resources, suspend tx */
934 
935 				frame->b_next = next_frame;
936 				break;
937 			}
938 
939 			/*
940 			 * Unrecoverable error for this frame, throw it
941 			 * away and move on to the next.
942 			 */
943 
944 			freemsg(frame);
945 			continue;
946 		}
947 
948 		if (coalescing != 0 &&
949 		    add_to_txpkts(txq, &txpkts, frame, &txinfo) == 0) {
950 
951 			/* Successfully absorbed into txpkts */
952 
953 			write_ulp_cpl_sgl(pi, txq, &txpkts, &txinfo);
954 			goto doorbell;
955 		}
956 
957 		/*
958 		 * We weren't coalescing to begin with, or current frame could
959 		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
960 		 * given to it can't be coalesced).  Either way there should be
961 		 * nothing in txpkts.
962 		 */
963 		ASSERT(txpkts.npkt == 0);
964 
965 		/* We're sending out individual frames now */
966 		coalescing = 0;
967 
968 		if (eq->avail < 8)
969 			(void) reclaim_tx_descs(txq, 8);
970 		rc = write_txpkt_wr(pi, txq, frame, &txinfo);
971 		if (rc != 0) {
972 
973 			/* Short of hardware descriptors, suspend tx */
974 
975 			/*
976 			 * This is an unlikely but expensive failure.  We've
977 			 * done all the hard work (DMA bindings etc.) and now we
978 			 * can't send out the frame.  What's worse, we have to
979 			 * spend even more time freeing up everything in txinfo.
980 			 */
981 			txq->qfull++;
982 			free_txinfo_resources(txq, &txinfo);
983 
984 			frame->b_next = next_frame;
985 			break;
986 		}
987 
988 doorbell:
989 		/* Fewer and fewer doorbells as the queue fills up */
990 		if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2))) {
991 			txq->txbytes += txinfo.len;
992 			txq->txpkts++;
993 			ring_tx_db(sc, eq);
994 		}
995 		(void) reclaim_tx_descs(txq, 32);
996 	}
997 
998 	if (txpkts.npkt > 0)
999 		write_txpkts_wr(txq, &txpkts);
1000 
1001 	/*
1002 	 * frame not NULL means there was an error but we haven't thrown it
1003 	 * away.  This can happen when we're short of tx descriptors (qfull) or
1004 	 * maybe even DMA handles (dma_hdl_failed).  Either way, a credit flush
1005 	 * and reclaim will get things going again.
1006 	 *
1007 	 * If eq->avail is already 0 we know a credit flush was requested in the
1008 	 * WR that reduced it to 0 so we don't need another flush (we don't have
1009 	 * any descriptor for a flush WR anyway, duh).
1010 	 */
1011 	if (frame && eq->avail > 0)
1012 		write_txqflush_wr(txq);
1013 
1014 	if (eq->pending != 0)
1015 		ring_tx_db(sc, eq);
1016 
1017 	(void) reclaim_tx_descs(txq, eq->qsize);
1018 	TXQ_UNLOCK(txq);
1019 
1020 	return (frame);
1021 }
1022 
1023 static inline void
init_iq(struct sge_iq * iq,struct adapter * sc,int tmr_idx,int8_t pktc_idx,int qsize,uint8_t esize)1024 init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int8_t pktc_idx,
1025     int qsize, uint8_t esize)
1026 {
1027 	ASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS);
1028 	ASSERT(pktc_idx < SGE_NCOUNTERS);	/* -ve is ok, means don't use */
1029 
1030 	iq->flags = 0;
1031 	iq->adapter = sc;
1032 	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1033 	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1034 	if (pktc_idx >= 0) {
1035 		iq->intr_params |= F_QINTR_CNT_EN;
1036 		iq->intr_pktc_idx = pktc_idx;
1037 	}
1038 	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
1039 	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1040 }
1041 
1042 static inline void
init_fl(struct sge_fl * fl,uint16_t qsize)1043 init_fl(struct sge_fl *fl, uint16_t qsize)
1044 {
1045 
1046 	fl->qsize = qsize;
1047 	fl->allocb_fail = 0;
1048 }
1049 
1050 static inline void
init_eq(struct adapter * sc,struct sge_eq * eq,uint16_t qsize,uint8_t tx_chan,uint16_t iqid)1051 init_eq(struct adapter *sc, struct sge_eq *eq, uint16_t qsize, uint8_t tx_chan,
1052     uint16_t iqid)
1053 {
1054 	struct sge *s = &sc->sge;
1055 	uint32_t r;
1056 
1057 	ASSERT(tx_chan < NCHAN);
1058 
1059 	if (is_t5(sc->params.chip)) {
1060 		r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
1061 		r >>= S_QUEUESPERPAGEPF0 +
1062 		    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
1063 		s->s_qpp = r & M_QUEUESPERPAGEPF0;
1064 	}
1065 
1066 	eq->flags = 0;
1067 	eq->tx_chan = tx_chan;
1068 	eq->iqid = iqid;
1069 	eq->qsize = qsize;
1070 }
1071 
1072 /*
1073  * Allocates the ring for an ingress queue and an optional freelist.  If the
1074  * freelist is specified it will be allocated and then associated with the
1075  * ingress queue.
1076  *
1077  * Returns errno on failure.  Resources allocated up to that point may still be
1078  * allocated.  Caller is responsible for cleanup in case this function fails.
1079  *
1080  * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1081  * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1082  * the index of the queue to which its interrupts will be forwarded.
1083  */
1084 static int
alloc_iq_fl(struct port_info * pi,struct sge_iq * iq,struct sge_fl * fl,int intr_idx,int cong)1085 alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1086     int intr_idx, int cong)
1087 {
1088 	int rc, i, cntxt_id;
1089 	size_t len;
1090 	struct fw_iq_cmd c;
1091 	struct adapter *sc = iq->adapter;
1092 	uint32_t v = 0;
1093 
1094 	len = iq->qsize * iq->esize;
1095 	rc = alloc_desc_ring(sc, len, DDI_DMA_READ, &iq->dhdl, &iq->ahdl,
1096 	    &iq->ba, (caddr_t *)&iq->desc);
1097 	if (rc != 0)
1098 		return (rc);
1099 
1100 	bzero(&c, sizeof (c));
1101 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1102 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1103 	    V_FW_IQ_CMD_VFN(0));
1104 
1105 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1106 	    FW_LEN16(c));
1107 
1108 	/* Special handling for firmware event queue */
1109 	if (iq == &sc->sge.fwq)
1110 		v |= F_FW_IQ_CMD_IQASYNCH;
1111 
1112 	if (iq->flags & IQ_INTR)
1113 		ASSERT(intr_idx < sc->intr_count);
1114 	else
1115 		v |= F_FW_IQ_CMD_IQANDST;
1116 	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1117 
1118 	c.type_to_iqandstindex = cpu_to_be32(v |
1119 	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1120 	    V_FW_IQ_CMD_VIID(pi->viid) |
1121 	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1122 	c.iqdroprss_to_iqesize = cpu_to_be16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1123 	    F_FW_IQ_CMD_IQGTSMODE |
1124 	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1125 	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1126 	c.iqsize = cpu_to_be16(iq->qsize);
1127 	c.iqaddr = cpu_to_be64(iq->ba);
1128 	if (cong >= 0) {
1129 		const uint32_t iq_type =
1130 		    cong ? FW_IQ_IQTYPE_NIC : FW_IQ_IQTYPE_OFLD;
1131 		c.iqns_to_fl0congen = BE_32(F_FW_IQ_CMD_IQFLINTCONGEN |
1132 		    V_FW_IQ_CMD_IQTYPE(iq_type));
1133 	}
1134 
1135 	if (fl != NULL) {
1136 		unsigned int chip_ver = CHELSIO_CHIP_VERSION(sc->params.chip);
1137 
1138 		mutex_init(&fl->lock, NULL, MUTEX_DRIVER,
1139 		    DDI_INTR_PRI(sc->intr_pri));
1140 		fl->flags |= FL_MTX;
1141 
1142 		len = fl->qsize * RX_FL_ESIZE;
1143 		rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &fl->dhdl,
1144 		    &fl->ahdl, &fl->ba, (caddr_t *)&fl->desc);
1145 		if (rc != 0)
1146 			return (rc);
1147 
1148 		/* Allocate space for one software descriptor per buffer. */
1149 		fl->cap = (fl->qsize - sc->sge.stat_len / RX_FL_ESIZE) * 8;
1150 		fl->sdesc = kmem_zalloc(sizeof (struct fl_sdesc) * fl->cap,
1151 		    KM_SLEEP);
1152 		fl->needed = fl->cap;
1153 		fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1154 
1155 		c.iqns_to_fl0congen |=
1156 		    cpu_to_be32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1157 		    F_FW_IQ_CMD_FL0PACKEN | F_FW_IQ_CMD_FL0PADEN);
1158 		if (cong >= 0) {
1159 			c.iqns_to_fl0congen |=
1160 			    BE_32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1161 			    F_FW_IQ_CMD_FL0CONGCIF |
1162 			    F_FW_IQ_CMD_FL0CONGEN);
1163 		}
1164 
1165 		/*
1166 		 * In T6, for egress queue type FL there is internal overhead
1167 		 * of 16B for header going into FLM module.  Hence the maximum
1168 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
1169 		 * doesn't coalesce fetch requests if more than 64 bytes of
1170 		 * Free List pointers are provided, so we use a 128-byte Fetch
1171 		 * Burst Minimum there (T6 implements coalescing so we can use
1172 		 * the smaller 64-byte value there).
1173 		 */
1174 
1175 		c.fl0dcaen_to_fl0cidxfthresh = cpu_to_be16(
1176 		    V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ?
1177 		    X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B) |
1178 		    V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ?
1179 		    X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
1180 		c.fl0size = cpu_to_be16(fl->qsize);
1181 		c.fl0addr = cpu_to_be64(fl->ba);
1182 	}
1183 
1184 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1185 	if (rc != 0) {
1186 		cxgb_printf(sc->dip, CE_WARN,
1187 		    "failed to create ingress queue: %d", rc);
1188 		return (rc);
1189 	}
1190 
1191 	iq->cdesc = iq->desc;
1192 	iq->cidx = 0;
1193 	iq->gen = 1;
1194 	iq->intr_next = iq->intr_params;
1195 	iq->adapter = sc;
1196 	iq->cntxt_id = be16_to_cpu(c.iqid);
1197 	iq->abs_id = be16_to_cpu(c.physiqid);
1198 	iq->flags |= IQ_ALLOCATED;
1199 	mutex_init(&iq->lock, NULL, MUTEX_DRIVER,
1200 	    DDI_INTR_PRI(DDI_INTR_PRI(sc->intr_pri)));
1201 	iq->polling = 0;
1202 
1203 	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1204 	if (cntxt_id >= sc->sge.iqmap_sz) {
1205 		panic("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1206 		    cntxt_id, sc->sge.iqmap_sz - 1);
1207 	}
1208 	sc->sge.iqmap[cntxt_id] = iq;
1209 
1210 	if (fl != NULL) {
1211 		fl->cntxt_id = be16_to_cpu(c.fl0id);
1212 		fl->pidx = fl->cidx = 0;
1213 		fl->copy_threshold = rx_copy_threshold;
1214 
1215 		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1216 		if (cntxt_id >= sc->sge.eqmap_sz) {
1217 			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1218 			    __func__, cntxt_id, sc->sge.eqmap_sz - 1);
1219 		}
1220 		sc->sge.eqmap[cntxt_id] = (void *)fl;
1221 
1222 		FL_LOCK(fl);
1223 		(void) refill_fl(sc, fl, fl->lowat);
1224 		FL_UNLOCK(fl);
1225 
1226 		iq->flags |= IQ_HAS_FL;
1227 	}
1228 
1229 	if (is_t5(sc->params.chip) && cong >= 0) {
1230 		uint32_t param, val;
1231 
1232 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1233 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
1234 		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
1235 		if (cong == 0)
1236 			val = 1 << 19;
1237 		else {
1238 			val = 2 << 19;
1239 			for (i = 0; i < 4; i++) {
1240 				if (cong & (1 << i))
1241 					val |= 1 << (i << 2);
1242 			}
1243 		}
1244 
1245 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
1246 		if (rc != 0) {
1247 			/* report error but carry on */
1248 			cxgb_printf(sc->dip, CE_WARN,
1249 			    "failed to set congestion manager context for "
1250 			    "ingress queue %d: %d", iq->cntxt_id, rc);
1251 		}
1252 	}
1253 
1254 	/* Enable IQ interrupts */
1255 	iq->state = IQS_IDLE;
1256 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1257 	    V_INGRESSQID(iq->cntxt_id));
1258 
1259 	return (0);
1260 }
1261 
1262 static int
free_iq_fl(struct port_info * pi,struct sge_iq * iq,struct sge_fl * fl)1263 free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1264 {
1265 	int rc;
1266 
1267 	if (iq != NULL) {
1268 		struct adapter *sc = iq->adapter;
1269 		dev_info_t *dip;
1270 
1271 		dip = pi ? pi->dip : sc->dip;
1272 		if (iq->flags & IQ_ALLOCATED) {
1273 			rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1274 			    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1275 			    fl ? fl->cntxt_id : 0xffff, 0xffff);
1276 			if (rc != 0) {
1277 				cxgb_printf(dip, CE_WARN,
1278 				    "failed to free queue %p: %d", iq, rc);
1279 				return (rc);
1280 			}
1281 			mutex_destroy(&iq->lock);
1282 			iq->flags &= ~IQ_ALLOCATED;
1283 		}
1284 
1285 		if (iq->desc != NULL) {
1286 			(void) free_desc_ring(&iq->dhdl, &iq->ahdl);
1287 			iq->desc = NULL;
1288 		}
1289 
1290 		bzero(iq, sizeof (*iq));
1291 	}
1292 
1293 	if (fl != NULL) {
1294 		if (fl->sdesc != NULL) {
1295 			FL_LOCK(fl);
1296 			free_fl_bufs(fl);
1297 			FL_UNLOCK(fl);
1298 
1299 			kmem_free(fl->sdesc, sizeof (struct fl_sdesc) *
1300 			    fl->cap);
1301 			fl->sdesc = NULL;
1302 		}
1303 
1304 		if (fl->desc != NULL) {
1305 			(void) free_desc_ring(&fl->dhdl, &fl->ahdl);
1306 			fl->desc = NULL;
1307 		}
1308 
1309 		if (fl->flags & FL_MTX) {
1310 			mutex_destroy(&fl->lock);
1311 			fl->flags &= ~FL_MTX;
1312 		}
1313 
1314 		bzero(fl, sizeof (struct sge_fl));
1315 	}
1316 
1317 	return (0);
1318 }
1319 
1320 static int
alloc_fwq(struct adapter * sc)1321 alloc_fwq(struct adapter *sc)
1322 {
1323 	int rc, intr_idx;
1324 	struct sge_iq *fwq = &sc->sge.fwq;
1325 
1326 	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1327 	fwq->flags |= IQ_INTR;	/* always */
1328 	intr_idx = sc->intr_count > 1 ? 1 : 0;
1329 	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1330 	if (rc != 0) {
1331 		cxgb_printf(sc->dip, CE_WARN,
1332 		    "failed to create firmware event queue: %d.", rc);
1333 		return (rc);
1334 	}
1335 
1336 	return (0);
1337 }
1338 
1339 static int
free_fwq(struct adapter * sc)1340 free_fwq(struct adapter *sc)
1341 {
1342 
1343 	return (free_iq_fl(NULL, &sc->sge.fwq, NULL));
1344 }
1345 
1346 static int
alloc_rxq(struct port_info * pi,struct sge_rxq * rxq,int intr_idx,int i)1347 alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int i)
1348 {
1349 	int rc;
1350 
1351 	rxq->port = pi;
1352 	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx,
1353 	    t4_get_tp_ch_map(pi->adapter, pi->tx_chan));
1354 	if (rc != 0)
1355 		return (rc);
1356 
1357 	rxq->ksp = setup_rxq_kstats(pi, rxq, i);
1358 
1359 	return (rc);
1360 }
1361 
1362 static int
free_rxq(struct port_info * pi,struct sge_rxq * rxq)1363 free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1364 {
1365 	int rc;
1366 
1367 	if (rxq->ksp != NULL) {
1368 		kstat_delete(rxq->ksp);
1369 		rxq->ksp = NULL;
1370 	}
1371 
1372 	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1373 	if (rc == 0)
1374 		bzero(&rxq->fl, sizeof (*rxq) - offsetof(struct sge_rxq, fl));
1375 
1376 	return (rc);
1377 }
1378 
1379 static int
eth_eq_alloc(struct adapter * sc,struct port_info * pi,struct sge_eq * eq)1380 eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1381 {
1382 	int rc, cntxt_id;
1383 	struct fw_eq_eth_cmd c;
1384 
1385 	bzero(&c, sizeof (c));
1386 
1387 	c.op_to_vfn = BE_32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1388 	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1389 	    V_FW_EQ_ETH_CMD_VFN(0));
1390 	c.alloc_to_len16 = BE_32(F_FW_EQ_ETH_CMD_ALLOC |
1391 	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1392 	c.autoequiqe_to_viid = BE_32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
1393 	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
1394 	c.fetchszm_to_iqid =
1395 	    BE_32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1396 	    V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
1397 	    V_FW_EQ_ETH_CMD_IQID(eq->iqid));
1398 	c.dcaen_to_eqsize = BE_32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1399 	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1400 	    V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1401 	    V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1402 	c.eqaddr = BE_64(eq->ba);
1403 
1404 	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof (c), &c);
1405 	if (rc != 0) {
1406 		cxgb_printf(pi->dip, CE_WARN,
1407 		    "failed to create Ethernet egress queue: %d", rc);
1408 		return (rc);
1409 	}
1410 	eq->flags |= EQ_ALLOCATED;
1411 
1412 	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(BE_32(c.eqid_pkd));
1413 	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1414 	if (cntxt_id >= sc->sge.eqmap_sz)
1415 		panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1416 		    cntxt_id, sc->sge.eqmap_sz - 1);
1417 	sc->sge.eqmap[cntxt_id] = eq;
1418 
1419 	return (rc);
1420 }
1421 
1422 static int
alloc_eq(struct adapter * sc,struct port_info * pi,struct sge_eq * eq)1423 alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1424 {
1425 	int rc;
1426 	size_t len;
1427 
1428 	mutex_init(&eq->lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(sc->intr_pri));
1429 	eq->flags |= EQ_MTX;
1430 
1431 	len = eq->qsize * EQ_ESIZE;
1432 	rc = alloc_desc_ring(sc, len, DDI_DMA_WRITE, &eq->desc_dhdl,
1433 	    &eq->desc_ahdl, &eq->ba, (caddr_t *)&eq->desc);
1434 	if (rc != 0)
1435 		return (rc);
1436 
1437 	eq->cap = eq->qsize - sc->sge.stat_len / EQ_ESIZE;
1438 	eq->spg = (void *)&eq->desc[eq->cap];
1439 	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
1440 	eq->pidx = eq->cidx = 0;
1441 	eq->doorbells = sc->doorbells;
1442 
1443 	rc = eth_eq_alloc(sc, pi, eq);
1444 
1445 	if (eq->doorbells & (DOORBELL_UDB | DOORBELL_UDBWC | DOORBELL_WCWR)) {
1446 		uint32_t s_qpp = sc->sge.s_qpp;
1447 		uint32_t mask = (1 << s_qpp) - 1;
1448 		volatile uint8_t *udb;
1449 
1450 		udb = (volatile uint8_t *)sc->reg1p + UDBS_DB_OFFSET;
1451 		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
1452 		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
1453 		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
1454 			eq->doorbells &= ~DOORBELL_WCWR;
1455 		else {
1456 			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
1457 			eq->udb_qid = 0;
1458 		}
1459 		eq->udb = (volatile void *)udb;
1460 	}
1461 
1462 	if (rc != 0) {
1463 		cxgb_printf(sc->dip, CE_WARN,
1464 		    "failed to allocate egress queue: %d", rc);
1465 	}
1466 
1467 	return (rc);
1468 }
1469 
1470 static int
free_eq(struct adapter * sc,struct sge_eq * eq)1471 free_eq(struct adapter *sc, struct sge_eq *eq)
1472 {
1473 	int rc;
1474 
1475 	if (eq->flags & EQ_ALLOCATED) {
1476 		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
1477 		if (rc != 0) {
1478 			cxgb_printf(sc->dip, CE_WARN,
1479 			    "failed to free egress queue: %d", rc);
1480 			return (rc);
1481 		}
1482 		eq->flags &= ~EQ_ALLOCATED;
1483 	}
1484 
1485 	if (eq->desc != NULL) {
1486 		(void) free_desc_ring(&eq->desc_dhdl, &eq->desc_ahdl);
1487 		eq->desc = NULL;
1488 	}
1489 
1490 	if (eq->flags & EQ_MTX)
1491 		mutex_destroy(&eq->lock);
1492 
1493 	bzero(eq, sizeof (*eq));
1494 	return (0);
1495 }
1496 
1497 static int
alloc_txq(struct port_info * pi,struct sge_txq * txq,int idx)1498 alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1499 {
1500 	int rc, i;
1501 	struct adapter *sc = pi->adapter;
1502 	struct sge_eq *eq = &txq->eq;
1503 
1504 	rc = alloc_eq(sc, pi, eq);
1505 	if (rc != 0)
1506 		return (rc);
1507 
1508 	txq->port = pi;
1509 	txq->sdesc = kmem_zalloc(sizeof (struct tx_sdesc) * eq->cap, KM_SLEEP);
1510 	txq->txb_size = eq->qsize * tx_copy_threshold;
1511 	rc = alloc_tx_copybuffer(sc, txq->txb_size, &txq->txb_dhdl,
1512 	    &txq->txb_ahdl, &txq->txb_ba, &txq->txb_va);
1513 	if (rc == 0)
1514 		txq->txb_avail = txq->txb_size;
1515 	else
1516 		txq->txb_avail = txq->txb_size = 0;
1517 
1518 	/*
1519 	 * TODO: is this too low?  Worst case would need around 4 times qsize
1520 	 * (all tx descriptors filled to the brim with SGLs, with each entry in
1521 	 * the SGL coming from a distinct DMA handle).  Increase tx_dhdl_total
1522 	 * if you see too many dma_hdl_failed.
1523 	 */
1524 	txq->tx_dhdl_total = eq->qsize * 2;
1525 	txq->tx_dhdl = kmem_zalloc(sizeof (ddi_dma_handle_t) *
1526 	    txq->tx_dhdl_total, KM_SLEEP);
1527 	for (i = 0; i < txq->tx_dhdl_total; i++) {
1528 		rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
1529 		    DDI_DMA_SLEEP, 0, &txq->tx_dhdl[i]);
1530 		if (rc != DDI_SUCCESS) {
1531 			cxgb_printf(sc->dip, CE_WARN,
1532 			    "%s: failed to allocate DMA handle (%d)",
1533 			    __func__, rc);
1534 			return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1535 		}
1536 		txq->tx_dhdl_avail++;
1537 	}
1538 
1539 	txq->ksp = setup_txq_kstats(pi, txq, idx);
1540 
1541 	return (rc);
1542 }
1543 
1544 static int
free_txq(struct port_info * pi,struct sge_txq * txq)1545 free_txq(struct port_info *pi, struct sge_txq *txq)
1546 {
1547 	int i;
1548 	struct adapter *sc = pi->adapter;
1549 	struct sge_eq *eq = &txq->eq;
1550 
1551 	if (txq->ksp != NULL) {
1552 		kstat_delete(txq->ksp);
1553 		txq->ksp = NULL;
1554 	}
1555 
1556 	if (txq->txb_va != NULL) {
1557 		(void) free_desc_ring(&txq->txb_dhdl, &txq->txb_ahdl);
1558 		txq->txb_va = NULL;
1559 	}
1560 
1561 	if (txq->sdesc != NULL) {
1562 		struct tx_sdesc *sd;
1563 		ddi_dma_handle_t hdl;
1564 
1565 		TXQ_LOCK(txq);
1566 		while (eq->cidx != eq->pidx) {
1567 			sd = &txq->sdesc[eq->cidx];
1568 
1569 			for (i = sd->hdls_used; i; i--) {
1570 				hdl = txq->tx_dhdl[txq->tx_dhdl_cidx];
1571 				(void) ddi_dma_unbind_handle(hdl);
1572 				if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
1573 					txq->tx_dhdl_cidx = 0;
1574 			}
1575 
1576 			ASSERT(sd->m);
1577 			freemsgchain(sd->m);
1578 
1579 			eq->cidx += sd->desc_used;
1580 			if (eq->cidx >= eq->cap)
1581 				eq->cidx -= eq->cap;
1582 
1583 			txq->txb_avail += txq->txb_used;
1584 		}
1585 		ASSERT(txq->tx_dhdl_cidx == txq->tx_dhdl_pidx);
1586 		ASSERT(txq->txb_avail == txq->txb_size);
1587 		TXQ_UNLOCK(txq);
1588 
1589 		kmem_free(txq->sdesc, sizeof (struct tx_sdesc) * eq->cap);
1590 		txq->sdesc = NULL;
1591 	}
1592 
1593 	if (txq->tx_dhdl != NULL) {
1594 		for (i = 0; i < txq->tx_dhdl_total; i++) {
1595 			if (txq->tx_dhdl[i] != NULL)
1596 				ddi_dma_free_handle(&txq->tx_dhdl[i]);
1597 		}
1598 		kmem_free(txq->tx_dhdl,
1599 		    sizeof (ddi_dma_handle_t) * txq->tx_dhdl_total);
1600 		txq->tx_dhdl = NULL;
1601 	}
1602 
1603 	(void) free_eq(sc, &txq->eq);
1604 
1605 	bzero(txq, sizeof (*txq));
1606 	return (0);
1607 }
1608 
1609 /*
1610  * Allocates a block of contiguous memory for DMA.  Can be used to allocate
1611  * memory for descriptor rings or for tx/rx copy buffers.
1612  *
1613  * Caller does not have to clean up anything if this function fails, it cleans
1614  * up after itself.
1615  *
1616  * Caller provides the following:
1617  * len		length of the block of memory to allocate.
1618  * flags	DDI_DMA_* flags to use (CONSISTENT/STREAMING, READ/WRITE/RDWR)
1619  * acc_attr	device access attributes for the allocation.
1620  * dma_attr	DMA attributes for the allocation
1621  *
1622  * If the function is successful it fills up this information:
1623  * dma_hdl	DMA handle for the allocated memory
1624  * acc_hdl	access handle for the allocated memory
1625  * ba		bus address of the allocated memory
1626  * va		KVA of the allocated memory.
1627  */
1628 static int
alloc_dma_memory(struct adapter * sc,size_t len,int flags,ddi_device_acc_attr_t * acc_attr,ddi_dma_attr_t * dma_attr,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1629 alloc_dma_memory(struct adapter *sc, size_t len, int flags,
1630     ddi_device_acc_attr_t *acc_attr, ddi_dma_attr_t *dma_attr,
1631     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1632     uint64_t *pba, caddr_t *pva)
1633 {
1634 	int rc;
1635 	ddi_dma_handle_t dhdl;
1636 	ddi_acc_handle_t ahdl;
1637 	ddi_dma_cookie_t cookie;
1638 	uint_t ccount;
1639 	caddr_t va;
1640 	size_t real_len;
1641 
1642 	*pva = NULL;
1643 
1644 	/*
1645 	 * DMA handle.
1646 	 */
1647 	rc = ddi_dma_alloc_handle(sc->dip, dma_attr, DDI_DMA_SLEEP, 0, &dhdl);
1648 	if (rc != DDI_SUCCESS) {
1649 		return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
1650 	}
1651 
1652 	/*
1653 	 * Memory suitable for DMA.
1654 	 */
1655 	rc = ddi_dma_mem_alloc(dhdl, len, acc_attr,
1656 	    flags & DDI_DMA_CONSISTENT ? DDI_DMA_CONSISTENT : DDI_DMA_STREAMING,
1657 	    DDI_DMA_SLEEP, 0, &va, &real_len, &ahdl);
1658 	if (rc != DDI_SUCCESS) {
1659 		ddi_dma_free_handle(&dhdl);
1660 		return (ENOMEM);
1661 	}
1662 
1663 	/*
1664 	 * DMA bindings.
1665 	 */
1666 	rc = ddi_dma_addr_bind_handle(dhdl, NULL, va, real_len, flags, NULL,
1667 	    NULL, &cookie, &ccount);
1668 	if (rc != DDI_DMA_MAPPED) {
1669 		ddi_dma_mem_free(&ahdl);
1670 		ddi_dma_free_handle(&dhdl);
1671 		return (ENOMEM);
1672 	}
1673 	if (ccount != 1) {
1674 		/* unusable DMA mapping */
1675 		(void) free_desc_ring(&dhdl, &ahdl);
1676 		return (ENOMEM);
1677 	}
1678 
1679 	bzero(va, real_len);
1680 	*dma_hdl = dhdl;
1681 	*acc_hdl = ahdl;
1682 	*pba = cookie.dmac_laddress;
1683 	*pva = va;
1684 
1685 	return (0);
1686 }
1687 
1688 static int
free_dma_memory(ddi_dma_handle_t * dhdl,ddi_acc_handle_t * ahdl)1689 free_dma_memory(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1690 {
1691 	(void) ddi_dma_unbind_handle(*dhdl);
1692 	ddi_dma_mem_free(ahdl);
1693 	ddi_dma_free_handle(dhdl);
1694 
1695 	return (0);
1696 }
1697 
1698 static int
alloc_desc_ring(struct adapter * sc,size_t len,int rw,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1699 alloc_desc_ring(struct adapter *sc, size_t len, int rw,
1700     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1701     uint64_t *pba, caddr_t *pva)
1702 {
1703 	ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_desc;
1704 	ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc;
1705 
1706 	return (alloc_dma_memory(sc, len, DDI_DMA_CONSISTENT | rw, acc_attr,
1707 	    dma_attr, dma_hdl, acc_hdl, pba, pva));
1708 }
1709 
1710 static int
free_desc_ring(ddi_dma_handle_t * dhdl,ddi_acc_handle_t * ahdl)1711 free_desc_ring(ddi_dma_handle_t *dhdl, ddi_acc_handle_t *ahdl)
1712 {
1713 	return (free_dma_memory(dhdl, ahdl));
1714 }
1715 
1716 static int
alloc_tx_copybuffer(struct adapter * sc,size_t len,ddi_dma_handle_t * dma_hdl,ddi_acc_handle_t * acc_hdl,uint64_t * pba,caddr_t * pva)1717 alloc_tx_copybuffer(struct adapter *sc, size_t len,
1718     ddi_dma_handle_t *dma_hdl, ddi_acc_handle_t *acc_hdl,
1719     uint64_t *pba, caddr_t *pva)
1720 {
1721 	ddi_device_acc_attr_t *acc_attr = &sc->sge.acc_attr_tx;
1722 	ddi_dma_attr_t *dma_attr = &sc->sge.dma_attr_desc; /* NOT dma_attr_tx */
1723 
1724 	return (alloc_dma_memory(sc, len, DDI_DMA_STREAMING | DDI_DMA_WRITE,
1725 	    acc_attr, dma_attr, dma_hdl, acc_hdl, pba, pva));
1726 }
1727 
1728 static inline bool
is_new_response(const struct sge_iq * iq,struct rsp_ctrl ** ctrl)1729 is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1730 {
1731 	(void) ddi_dma_sync(iq->dhdl, (uintptr_t)iq->cdesc -
1732 	    (uintptr_t)iq->desc, iq->esize, DDI_DMA_SYNC_FORKERNEL);
1733 
1734 	*ctrl = (void *)((uintptr_t)iq->cdesc +
1735 	    (iq->esize - sizeof (struct rsp_ctrl)));
1736 
1737 	return ((((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen));
1738 }
1739 
1740 static inline void
iq_next(struct sge_iq * iq)1741 iq_next(struct sge_iq *iq)
1742 {
1743 	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1744 	if (++iq->cidx == iq->qsize - 1) {
1745 		iq->cidx = 0;
1746 		iq->gen ^= 1;
1747 		iq->cdesc = iq->desc;
1748 	}
1749 }
1750 
1751 /*
1752  * Fill up the freelist by upto nbufs and maybe ring its doorbell.
1753  *
1754  * Returns non-zero to indicate that it should be added to the list of starving
1755  * freelists.
1756  */
1757 static int
refill_fl(struct adapter * sc,struct sge_fl * fl,int nbufs)1758 refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
1759 {
1760 	uint64_t *d = &fl->desc[fl->pidx];
1761 	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1762 
1763 	FL_LOCK_ASSERT_OWNED(fl);
1764 	ASSERT(nbufs >= 0);
1765 
1766 	if (nbufs > fl->needed)
1767 		nbufs = fl->needed;
1768 
1769 	while (nbufs--) {
1770 		if (sd->rxb != NULL) {
1771 			if (sd->rxb->ref_cnt == 1) {
1772 				/*
1773 				 * Buffer is available for recycling.  Two ways
1774 				 * this can happen:
1775 				 *
1776 				 * a) All the packets DMA'd into it last time
1777 				 *    around were within the rx_copy_threshold
1778 				 *    and no part of the buffer was ever passed
1779 				 *    up (ref_cnt never went over 1).
1780 				 *
1781 				 * b) Packets DMA'd into the buffer were passed
1782 				 *    up but have all been freed by the upper
1783 				 *    layers by now (ref_cnt went over 1 but is
1784 				 *    now back to 1).
1785 				 *
1786 				 * Either way the bus address in the descriptor
1787 				 * ring is already valid.
1788 				 */
1789 				ASSERT(*d == cpu_to_be64(sd->rxb->ba));
1790 				d++;
1791 				goto recycled;
1792 			} else {
1793 				/*
1794 				 * Buffer still in use and we need a
1795 				 * replacement. But first release our reference
1796 				 * on the existing buffer.
1797 				 */
1798 				rxbuf_free(sd->rxb);
1799 			}
1800 		}
1801 
1802 		sd->rxb = rxbuf_alloc(sc->sge.rxbuf_cache, KM_NOSLEEP, 1);
1803 		if (sd->rxb == NULL)
1804 			break;
1805 		*d++ = cpu_to_be64(sd->rxb->ba);
1806 
1807 recycled:	fl->pending++;
1808 		sd++;
1809 		fl->needed--;
1810 		if (++fl->pidx == fl->cap) {
1811 			fl->pidx = 0;
1812 			sd = fl->sdesc;
1813 			d = fl->desc;
1814 		}
1815 	}
1816 
1817 	if (fl->pending >= 8)
1818 		ring_fl_db(sc, fl);
1819 
1820 	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
1821 }
1822 
1823 #ifndef TAILQ_FOREACH_SAFE
1824 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
1825 	for ((var) = TAILQ_FIRST((head));				\
1826 	    (var) && ((tvar) = TAILQ_NEXT((var), field), 1);		\
1827 	    (var) = (tvar))
1828 #endif
1829 
1830 /*
1831  * Attempt to refill all starving freelists.
1832  */
1833 static void
refill_sfl(void * arg)1834 refill_sfl(void *arg)
1835 {
1836 	struct adapter *sc = arg;
1837 	struct sge_fl *fl, *fl_temp;
1838 
1839 	mutex_enter(&sc->sfl_lock);
1840 	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
1841 		FL_LOCK(fl);
1842 		(void) refill_fl(sc, fl, 64);
1843 		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
1844 			TAILQ_REMOVE(&sc->sfl, fl, link);
1845 			fl->flags &= ~FL_STARVING;
1846 		}
1847 		FL_UNLOCK(fl);
1848 	}
1849 
1850 	if (!TAILQ_EMPTY(&sc->sfl) != 0)
1851 		sc->sfl_timer =  timeout(refill_sfl, sc, drv_usectohz(100000));
1852 	mutex_exit(&sc->sfl_lock);
1853 }
1854 
1855 static void
add_fl_to_sfl(struct adapter * sc,struct sge_fl * fl)1856 add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
1857 {
1858 	mutex_enter(&sc->sfl_lock);
1859 	FL_LOCK(fl);
1860 	if ((fl->flags & FL_DOOMED) == 0) {
1861 		if (TAILQ_EMPTY(&sc->sfl) != 0) {
1862 			sc->sfl_timer = timeout(refill_sfl, sc,
1863 			    drv_usectohz(100000));
1864 		}
1865 		fl->flags |= FL_STARVING;
1866 		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
1867 	}
1868 	FL_UNLOCK(fl);
1869 	mutex_exit(&sc->sfl_lock);
1870 }
1871 
1872 static void
free_fl_bufs(struct sge_fl * fl)1873 free_fl_bufs(struct sge_fl *fl)
1874 {
1875 	struct fl_sdesc *sd;
1876 	unsigned int i;
1877 
1878 	FL_LOCK_ASSERT_OWNED(fl);
1879 
1880 	for (i = 0; i < fl->cap; i++) {
1881 		sd = &fl->sdesc[i];
1882 
1883 		if (sd->rxb != NULL) {
1884 			rxbuf_free(sd->rxb);
1885 			sd->rxb = NULL;
1886 		}
1887 	}
1888 }
1889 
1890 /*
1891  * Note that fl->cidx and fl->offset are left unchanged in case of failure.
1892  */
1893 static mblk_t *
get_fl_payload(struct adapter * sc,struct sge_fl * fl,uint32_t len_newbuf,int * fl_bufs_used)1894 get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1895     int *fl_bufs_used)
1896 {
1897 	struct mblk_pair frame = {0};
1898 	struct rxbuf *rxb;
1899 	mblk_t *m = NULL;
1900 	uint_t nbuf = 0, len, copy, n;
1901 	uint32_t cidx, offset, rcidx, roffset;
1902 
1903 	/*
1904 	 * The SGE won't pack a new frame into the current buffer if the entire
1905 	 * payload doesn't fit in the remaining space.  Move on to the next buf
1906 	 * in that case.
1907 	 */
1908 	rcidx = fl->cidx;
1909 	roffset = fl->offset;
1910 	if (fl->offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1911 		fl->offset = 0;
1912 		if (++fl->cidx == fl->cap)
1913 			fl->cidx = 0;
1914 		nbuf++;
1915 	}
1916 	cidx = fl->cidx;
1917 	offset = fl->offset;
1918 
1919 	len = G_RSPD_LEN(len_newbuf);	/* pktshift + payload length */
1920 	copy = (len <= fl->copy_threshold);
1921 	if (copy != 0) {
1922 		frame.head = m = allocb(len, BPRI_HI);
1923 		if (m == NULL) {
1924 			fl->allocb_fail++;
1925 			DTRACE_PROBE1(t4__fl_alloc_fail, struct sge_fl *, fl);
1926 			fl->cidx = rcidx;
1927 			fl->offset = roffset;
1928 			return (NULL);
1929 		}
1930 	}
1931 
1932 	while (len) {
1933 		rxb = fl->sdesc[cidx].rxb;
1934 		n = min(len, rxb->buf_size - offset);
1935 
1936 		(void) ddi_dma_sync(rxb->dhdl, offset, n,
1937 		    DDI_DMA_SYNC_FORKERNEL);
1938 
1939 		if (copy != 0)
1940 			bcopy(rxb->va + offset, m->b_wptr, n);
1941 		else {
1942 			m = desballoc((unsigned char *)rxb->va + offset, n,
1943 			    BPRI_HI, &rxb->freefunc);
1944 			if (m == NULL) {
1945 				fl->allocb_fail++;
1946 				DTRACE_PROBE1(t4__fl_alloc_fail,
1947 				    struct sge_fl *, fl);
1948 				if (frame.head)
1949 					freemsgchain(frame.head);
1950 				fl->cidx = rcidx;
1951 				fl->offset = roffset;
1952 				return (NULL);
1953 			}
1954 			atomic_inc_uint(&rxb->ref_cnt);
1955 			if (frame.head != NULL)
1956 				frame.tail->b_cont = m;
1957 			else
1958 				frame.head = m;
1959 			frame.tail = m;
1960 		}
1961 		m->b_wptr += n;
1962 		len -= n;
1963 		offset += roundup(n, sc->sge.fl_align);
1964 		ASSERT(offset <= rxb->buf_size);
1965 		if (offset == rxb->buf_size) {
1966 			offset = 0;
1967 			if (++cidx == fl->cap)
1968 				cidx = 0;
1969 			nbuf++;
1970 		}
1971 	}
1972 
1973 	fl->cidx = cidx;
1974 	fl->offset = offset;
1975 	(*fl_bufs_used) += nbuf;
1976 
1977 	ASSERT(frame.head != NULL);
1978 	return (frame.head);
1979 }
1980 
1981 /*
1982  * We'll do immediate data tx for non-LSO, but only when not coalescing.  We're
1983  * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
1984  * of immediate data.
1985  */
1986 #define	IMM_LEN ( \
1987 	2 * EQ_ESIZE \
1988 	- sizeof (struct fw_eth_tx_pkt_wr) \
1989 	- sizeof (struct cpl_tx_pkt_core))
1990 
1991 /*
1992  * Returns non-zero on failure, no need to cleanup anything in that case.
1993  *
1994  * Note 1: We always try to pull up the mblk if required and return E2BIG only
1995  * if this fails.
1996  *
1997  * Note 2: We'll also pullup incoming mblk if HW_LSO is set and the first mblk
1998  * does not have the TCP header in it.
1999  */
2000 static int
get_frame_txinfo(struct sge_txq * txq,mblk_t ** fp,struct txinfo * txinfo,int sgl_only)2001 get_frame_txinfo(struct sge_txq *txq, mblk_t **fp, struct txinfo *txinfo,
2002     int sgl_only)
2003 {
2004 	uint32_t flags = 0, len, n;
2005 	mblk_t *m = *fp;
2006 	int rc;
2007 
2008 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate txb and dma_hdls */
2009 
2010 	mac_hcksum_get(m, NULL, NULL, NULL, NULL, &flags);
2011 	txinfo->flags = (flags & HCK_TX_FLAGS);
2012 
2013 	mac_lso_get(m, &txinfo->mss, &flags);
2014 	txinfo->flags |= (flags & HW_LSO_FLAGS);
2015 
2016 	if (flags & HW_LSO)
2017 		sgl_only = 1;	/* Do not allow immediate data with LSO */
2018 
2019 	/*
2020 	 * If checksum or segmentation offloads are requested, gather
2021 	 * information about the sizes and types of headers in the packet.
2022 	 */
2023 	if (txinfo->flags != 0) {
2024 		mac_ether_offload_info(m, &txinfo->meoi);
2025 	} else {
2026 		bzero(&txinfo->meoi, sizeof (txinfo->meoi));
2027 	}
2028 
2029 start:	txinfo->nsegs = 0;
2030 	txinfo->hdls_used = 0;
2031 	txinfo->txb_used = 0;
2032 	txinfo->len = 0;
2033 
2034 	/* total length and a rough estimate of # of segments */
2035 	n = 0;
2036 	for (; m; m = m->b_cont) {
2037 		len = MBLKL(m);
2038 		n += (len / PAGE_SIZE) + 1;
2039 		txinfo->len += len;
2040 	}
2041 	m = *fp;
2042 
2043 	if (n >= TX_SGL_SEGS || (flags & HW_LSO && MBLKL(m) < 50)) {
2044 		txq->pullup_early++;
2045 		m = msgpullup(*fp, -1);
2046 		if (m == NULL) {
2047 			txq->pullup_failed++;
2048 			return (E2BIG);	/* (*fp) left as it was */
2049 		}
2050 		freemsg(*fp);
2051 		*fp = m;
2052 		mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2053 	}
2054 
2055 	if (txinfo->len <= IMM_LEN && !sgl_only)
2056 		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2057 
2058 	if (txinfo->len <= txq->copy_threshold &&
2059 	    copy_into_txb(txq, m, txinfo->len, txinfo) == 0)
2060 		goto done;
2061 
2062 	for (; m; m = m->b_cont) {
2063 
2064 		len = MBLKL(m);
2065 
2066 		/* Use tx copy buffer if this mblk is small enough */
2067 		if (len <= txq->copy_threshold &&
2068 		    copy_into_txb(txq, m, len, txinfo) == 0)
2069 			continue;
2070 
2071 		/* Add DMA bindings for this mblk to the SGL */
2072 		rc = add_mblk(txq, txinfo, m, len);
2073 
2074 		if (rc == E2BIG ||
2075 		    (txinfo->nsegs == TX_SGL_SEGS && m->b_cont)) {
2076 
2077 			txq->pullup_late++;
2078 			m = msgpullup(*fp, -1);
2079 			if (m != NULL) {
2080 				free_txinfo_resources(txq, txinfo);
2081 				freemsg(*fp);
2082 				*fp = m;
2083 				mac_hcksum_set(m, 0, 0, 0, 0, txinfo->flags);
2084 				goto start;
2085 			}
2086 
2087 			txq->pullup_failed++;
2088 			rc = E2BIG;
2089 		}
2090 
2091 		if (rc != 0) {
2092 			free_txinfo_resources(txq, txinfo);
2093 			return (rc);
2094 		}
2095 	}
2096 
2097 	ASSERT(txinfo->nsegs > 0 && txinfo->nsegs <= TX_SGL_SEGS);
2098 
2099 done:
2100 
2101 	/*
2102 	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2103 	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2104 	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2105 	 * then len1 must be set to 0.
2106 	 */
2107 	n = txinfo->nsegs - 1;
2108 	txinfo->nflits = (3 * n) / 2 + (n & 1) + 2;
2109 	if (n & 1)
2110 		txinfo->sgl.sge[n / 2].len[1] = cpu_to_be32(0);
2111 
2112 	txinfo->sgl.cmd_nsge = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_DSGL) |
2113 	    V_ULPTX_NSGE(txinfo->nsegs));
2114 
2115 	return (0);
2116 }
2117 
2118 static inline int
fits_in_txb(struct sge_txq * txq,int len,int * waste)2119 fits_in_txb(struct sge_txq *txq, int len, int *waste)
2120 {
2121 	if (txq->txb_avail < len)
2122 		return (0);
2123 
2124 	if (txq->txb_next + len <= txq->txb_size) {
2125 		*waste = 0;
2126 		return (1);
2127 	}
2128 
2129 	*waste = txq->txb_size - txq->txb_next;
2130 
2131 	return (txq->txb_avail - *waste < len ? 0 : 1);
2132 }
2133 
2134 #define	TXB_CHUNK	64
2135 
2136 /*
2137  * Copies the specified # of bytes into txq's tx copy buffer and updates txinfo
2138  * and txq to indicate resources used.  Caller has to make sure that those many
2139  * bytes are available in the mblk chain (b_cont linked).
2140  */
2141 static inline int
copy_into_txb(struct sge_txq * txq,mblk_t * m,int len,struct txinfo * txinfo)2142 copy_into_txb(struct sge_txq *txq, mblk_t *m, int len, struct txinfo *txinfo)
2143 {
2144 	int waste, n;
2145 
2146 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate txb */
2147 
2148 	if (!fits_in_txb(txq, len, &waste)) {
2149 		txq->txb_full++;
2150 		return (ENOMEM);
2151 	}
2152 
2153 	if (waste != 0) {
2154 		ASSERT((waste & (TXB_CHUNK - 1)) == 0);
2155 		txinfo->txb_used += waste;
2156 		txq->txb_avail -= waste;
2157 		txq->txb_next = 0;
2158 	}
2159 
2160 	for (n = 0; n < len; m = m->b_cont) {
2161 		bcopy(m->b_rptr, txq->txb_va + txq->txb_next + n, MBLKL(m));
2162 		n += MBLKL(m);
2163 	}
2164 
2165 	add_seg(txinfo, txq->txb_ba + txq->txb_next, len);
2166 
2167 	n = roundup(len, TXB_CHUNK);
2168 	txinfo->txb_used += n;
2169 	txq->txb_avail -= n;
2170 	txq->txb_next += n;
2171 	ASSERT(txq->txb_next <= txq->txb_size);
2172 	if (txq->txb_next == txq->txb_size)
2173 		txq->txb_next = 0;
2174 
2175 	return (0);
2176 }
2177 
2178 static inline void
add_seg(struct txinfo * txinfo,uint64_t ba,uint32_t len)2179 add_seg(struct txinfo *txinfo, uint64_t ba, uint32_t len)
2180 {
2181 	ASSERT(txinfo->nsegs < TX_SGL_SEGS);	/* must have room */
2182 
2183 	if (txinfo->nsegs != 0) {
2184 		int idx = txinfo->nsegs - 1;
2185 		txinfo->sgl.sge[idx / 2].len[idx & 1] = cpu_to_be32(len);
2186 		txinfo->sgl.sge[idx / 2].addr[idx & 1] = cpu_to_be64(ba);
2187 	} else {
2188 		txinfo->sgl.len0 = cpu_to_be32(len);
2189 		txinfo->sgl.addr0 = cpu_to_be64(ba);
2190 	}
2191 	txinfo->nsegs++;
2192 }
2193 
2194 /*
2195  * This function cleans up any partially allocated resources when it fails so
2196  * there's nothing for the caller to clean up in that case.
2197  *
2198  * EIO indicates permanent failure.  Caller should drop the frame containing
2199  * this mblk and continue.
2200  *
2201  * E2BIG indicates that the SGL length for this mblk exceeds the hardware
2202  * limit.  Caller should pull up the frame before trying to send it out.
2203  * (This error means our pullup_early heuristic did not work for this frame)
2204  *
2205  * ENOMEM indicates a temporary shortage of resources (DMA handles, other DMA
2206  * resources, etc.).  Caller should suspend the tx queue and wait for reclaim to
2207  * free up resources.
2208  */
2209 static inline int
add_mblk(struct sge_txq * txq,struct txinfo * txinfo,mblk_t * m,int len)2210 add_mblk(struct sge_txq *txq, struct txinfo *txinfo, mblk_t *m, int len)
2211 {
2212 	ddi_dma_handle_t dhdl;
2213 	ddi_dma_cookie_t cookie;
2214 	uint_t ccount = 0;
2215 	int rc;
2216 
2217 	TXQ_LOCK_ASSERT_OWNED(txq);	/* will manipulate dhdls */
2218 
2219 	if (txq->tx_dhdl_avail == 0) {
2220 		txq->dma_hdl_failed++;
2221 		return (ENOMEM);
2222 	}
2223 
2224 	dhdl = txq->tx_dhdl[txq->tx_dhdl_pidx];
2225 	rc = ddi_dma_addr_bind_handle(dhdl, NULL, (caddr_t)m->b_rptr, len,
2226 	    DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &cookie,
2227 	    &ccount);
2228 	if (rc != DDI_DMA_MAPPED) {
2229 		txq->dma_map_failed++;
2230 
2231 		ASSERT(rc != DDI_DMA_INUSE && rc != DDI_DMA_PARTIAL_MAP);
2232 
2233 		return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EIO);
2234 	}
2235 
2236 	if (ccount + txinfo->nsegs > TX_SGL_SEGS) {
2237 		(void) ddi_dma_unbind_handle(dhdl);
2238 		return (E2BIG);
2239 	}
2240 
2241 	add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2242 	while (--ccount) {
2243 		ddi_dma_nextcookie(dhdl, &cookie);
2244 		add_seg(txinfo, cookie.dmac_laddress, cookie.dmac_size);
2245 	}
2246 
2247 	if (++txq->tx_dhdl_pidx == txq->tx_dhdl_total)
2248 		txq->tx_dhdl_pidx = 0;
2249 	txq->tx_dhdl_avail--;
2250 	txinfo->hdls_used++;
2251 
2252 	return (0);
2253 }
2254 
2255 /*
2256  * Releases all the txq resources used up in the specified txinfo.
2257  */
2258 static void
free_txinfo_resources(struct sge_txq * txq,struct txinfo * txinfo)2259 free_txinfo_resources(struct sge_txq *txq, struct txinfo *txinfo)
2260 {
2261 	int n;
2262 
2263 	TXQ_LOCK_ASSERT_OWNED(txq);	/* dhdls, txb */
2264 
2265 	n = txinfo->txb_used;
2266 	if (n > 0) {
2267 		txq->txb_avail += n;
2268 		if (n <= txq->txb_next)
2269 			txq->txb_next -= n;
2270 		else {
2271 			n -= txq->txb_next;
2272 			txq->txb_next = txq->txb_size - n;
2273 		}
2274 	}
2275 
2276 	for (n = txinfo->hdls_used; n > 0; n--) {
2277 		if (txq->tx_dhdl_pidx > 0)
2278 			txq->tx_dhdl_pidx--;
2279 		else
2280 			txq->tx_dhdl_pidx = txq->tx_dhdl_total - 1;
2281 		txq->tx_dhdl_avail++;
2282 		(void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_pidx]);
2283 	}
2284 }
2285 
2286 /*
2287  * Returns 0 to indicate that m has been accepted into a coalesced tx work
2288  * request.  It has either been folded into txpkts or txpkts was flushed and m
2289  * has started a new coalesced work request (as the first frame in a fresh
2290  * txpkts).
2291  *
2292  * Returns non-zero to indicate a failure - caller is responsible for
2293  * transmitting m, if there was anything in txpkts it has been flushed.
2294  */
2295 static int
add_to_txpkts(struct sge_txq * txq,struct txpkts * txpkts,mblk_t * m,struct txinfo * txinfo)2296 add_to_txpkts(struct sge_txq *txq, struct txpkts *txpkts, mblk_t *m,
2297     struct txinfo *txinfo)
2298 {
2299 	struct sge_eq *eq = &txq->eq;
2300 	int can_coalesce;
2301 	struct tx_sdesc *txsd;
2302 	uint8_t flits;
2303 
2304 	TXQ_LOCK_ASSERT_OWNED(txq);
2305 
2306 	if (txpkts->npkt > 0) {
2307 		flits = TXPKTS_PKT_HDR + txinfo->nflits;
2308 		can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2309 		    txpkts->nflits + flits <= TX_WR_FLITS &&
2310 		    txpkts->nflits + flits <= eq->avail * 8 &&
2311 		    txpkts->plen + txinfo->len < 65536;
2312 
2313 		if (can_coalesce != 0) {
2314 			txpkts->tail->b_next = m;
2315 			txpkts->tail = m;
2316 			txpkts->npkt++;
2317 			txpkts->nflits += flits;
2318 			txpkts->plen += txinfo->len;
2319 
2320 			txsd = &txq->sdesc[eq->pidx];
2321 			txsd->txb_used += txinfo->txb_used;
2322 			txsd->hdls_used += txinfo->hdls_used;
2323 
2324 			return (0);
2325 		}
2326 
2327 		/*
2328 		 * Couldn't coalesce m into txpkts.  The first order of business
2329 		 * is to send txpkts on its way.  Then we'll revisit m.
2330 		 */
2331 		write_txpkts_wr(txq, txpkts);
2332 	}
2333 
2334 	/*
2335 	 * Check if we can start a new coalesced tx work request with m as
2336 	 * the first packet in it.
2337 	 */
2338 
2339 	ASSERT(txpkts->npkt == 0);
2340 	ASSERT(txinfo->len < 65536);
2341 
2342 	flits = TXPKTS_WR_HDR + txinfo->nflits;
2343 	can_coalesce = (txinfo->flags & HW_LSO) == 0 &&
2344 	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2345 
2346 	if (can_coalesce == 0)
2347 		return (EINVAL);
2348 
2349 	/*
2350 	 * Start a fresh coalesced tx WR with m as the first frame in it.
2351 	 */
2352 	txpkts->tail = m;
2353 	txpkts->npkt = 1;
2354 	txpkts->nflits = flits;
2355 	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2356 	txpkts->plen = txinfo->len;
2357 
2358 	txsd = &txq->sdesc[eq->pidx];
2359 	txsd->m = m;
2360 	txsd->txb_used = txinfo->txb_used;
2361 	txsd->hdls_used = txinfo->hdls_used;
2362 
2363 	return (0);
2364 }
2365 
2366 /*
2367  * Note that write_txpkts_wr can never run out of hardware descriptors (but
2368  * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
2369  * coalescing only if sufficient hardware descriptors are available.
2370  */
2371 static void
write_txpkts_wr(struct sge_txq * txq,struct txpkts * txpkts)2372 write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2373 {
2374 	struct sge_eq *eq = &txq->eq;
2375 	struct fw_eth_tx_pkts_wr *wr;
2376 	struct tx_sdesc *txsd;
2377 	uint32_t ctrl;
2378 	uint16_t ndesc;
2379 
2380 	TXQ_LOCK_ASSERT_OWNED(txq);	/* pidx, avail */
2381 
2382 	ndesc = howmany(txpkts->nflits, 8);
2383 
2384 	wr = (void *)&eq->desc[eq->pidx];
2385 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2386 	    V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2387 	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2388 	if (eq->avail == ndesc)
2389 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2390 	wr->equiq_to_len16 = cpu_to_be32(ctrl);
2391 	wr->plen = cpu_to_be16(txpkts->plen);
2392 	wr->npkt = txpkts->npkt;
2393 	wr->r3 = wr->type = 0;
2394 
2395 	/* Everything else already written */
2396 
2397 	txsd = &txq->sdesc[eq->pidx];
2398 	txsd->desc_used = ndesc;
2399 
2400 	txq->txb_used += txsd->txb_used / TXB_CHUNK;
2401 	txq->hdl_used += txsd->hdls_used;
2402 
2403 	ASSERT(eq->avail >= ndesc);
2404 
2405 	eq->pending += ndesc;
2406 	eq->avail -= ndesc;
2407 	eq->pidx += ndesc;
2408 	if (eq->pidx >= eq->cap)
2409 		eq->pidx -= eq->cap;
2410 
2411 	txq->txpkts_pkts += txpkts->npkt;
2412 	txq->txpkts_wrs++;
2413 	txpkts->npkt = 0;	/* emptied */
2414 }
2415 
2416 typedef enum {
2417 	COS_SUCCESS,	/* ctrl flit contains proper bits for csum offload */
2418 	COS_IGNORE,	/* no csum offload requested */
2419 	COS_FAIL,	/* csum offload requested, but pkt data missing */
2420 } csum_offload_status_t;
2421 /*
2422  * Build a ctrl1 flit for checksum offload in CPL_TX_PKT_XT command
2423  */
2424 static csum_offload_status_t
csum_to_ctrl(const struct txinfo * txinfo,uint32_t chip_version,uint64_t * ctrlp)2425 csum_to_ctrl(const struct txinfo *txinfo, uint32_t chip_version,
2426     uint64_t *ctrlp)
2427 {
2428 	const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2429 	const uint32_t tx_flags = txinfo->flags;
2430 	const boolean_t needs_l3_csum = (tx_flags & HW_LSO) != 0 ||
2431 	    (tx_flags & HCK_IPV4_HDRCKSUM) != 0;
2432 	const boolean_t needs_l4_csum = (tx_flags & HW_LSO) != 0 ||
2433 	    (tx_flags & (HCK_FULLCKSUM | HCK_PARTIALCKSUM)) != 0;
2434 
2435 	/*
2436 	 * Default to disabling any checksumming both for cases where it is not
2437 	 * requested, but also if we cannot appropriately interrogate the
2438 	 * required information from the packet.
2439 	 */
2440 	uint64_t ctrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS;
2441 	if (!needs_l3_csum && !needs_l4_csum) {
2442 		*ctrlp = ctrl;
2443 		return (COS_IGNORE);
2444 	}
2445 
2446 	if (needs_l3_csum) {
2447 		/* Only IPv4 checksums are supported (for L3) */
2448 		if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0 ||
2449 		    meoi->meoi_l3proto != ETHERTYPE_IP) {
2450 			*ctrlp = ctrl;
2451 			return (COS_FAIL);
2452 		}
2453 		ctrl &= ~F_TXPKT_IPCSUM_DIS;
2454 	}
2455 
2456 	if (needs_l4_csum) {
2457 		/*
2458 		 * We need at least all of the L3 header to make decisions about
2459 		 * the contained L4 protocol.  If not all of the L4 information
2460 		 * is present, we will leave it to the NIC to checksum all it is
2461 		 * able to.
2462 		 */
2463 		if ((meoi->meoi_flags & MEOI_L3INFO_SET) == 0) {
2464 			*ctrlp = ctrl;
2465 			return (COS_FAIL);
2466 		}
2467 
2468 		/*
2469 		 * Since we are parsing the packet anyways, make the checksum
2470 		 * decision based on the L4 protocol, rather than using the
2471 		 * Generic TCP/UDP checksum using start & end offsets in the
2472 		 * packet (like requested with PARTIALCKSUM).
2473 		 */
2474 		int csum_type = -1;
2475 		if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2476 		    meoi->meoi_l4proto == IPPROTO_TCP) {
2477 			csum_type = TX_CSUM_TCPIP;
2478 		} else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2479 		    meoi->meoi_l4proto == IPPROTO_TCP) {
2480 			csum_type = TX_CSUM_TCPIP6;
2481 		} else if (meoi->meoi_l3proto == ETHERTYPE_IP &&
2482 		    meoi->meoi_l4proto == IPPROTO_UDP) {
2483 			csum_type = TX_CSUM_UDPIP;
2484 		} else if (meoi->meoi_l3proto == ETHERTYPE_IPV6 &&
2485 		    meoi->meoi_l4proto == IPPROTO_UDP) {
2486 			csum_type = TX_CSUM_UDPIP6;
2487 		} else {
2488 			*ctrlp = ctrl;
2489 			return (COS_FAIL);
2490 		}
2491 
2492 		ASSERT(csum_type != -1);
2493 		ctrl &= ~F_TXPKT_L4CSUM_DIS;
2494 		ctrl |= V_TXPKT_CSUM_TYPE(csum_type);
2495 	}
2496 
2497 	if ((ctrl & F_TXPKT_IPCSUM_DIS) == 0 &&
2498 	    (ctrl & F_TXPKT_L4CSUM_DIS) != 0) {
2499 		/*
2500 		 * If only the IPv4 checksum is requested, we need to set an
2501 		 * appropriate type in the command for it.
2502 		 */
2503 		ctrl |= V_TXPKT_CSUM_TYPE(TX_CSUM_IP);
2504 	}
2505 
2506 	ASSERT(ctrl != (F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS));
2507 
2508 	/*
2509 	 * Fill in the requisite L2/L3 header length data.
2510 	 *
2511 	 * The Ethernet header length is recorded as 'size - 14 bytes'
2512 	 */
2513 	const uint8_t eth_len = meoi->meoi_l2hlen - 14;
2514 	if (chip_version >= CHELSIO_T6) {
2515 		ctrl |= V_T6_TXPKT_ETHHDR_LEN(eth_len);
2516 	} else {
2517 		ctrl |= V_TXPKT_ETHHDR_LEN(eth_len);
2518 	}
2519 	ctrl |= V_TXPKT_IPHDR_LEN(meoi->meoi_l3hlen);
2520 
2521 	*ctrlp = ctrl;
2522 	return (COS_SUCCESS);
2523 }
2524 
2525 static int
write_txpkt_wr(struct port_info * pi,struct sge_txq * txq,mblk_t * m,struct txinfo * txinfo)2526 write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, mblk_t *m,
2527     struct txinfo *txinfo)
2528 {
2529 	struct sge_eq *eq = &txq->eq;
2530 	struct fw_eth_tx_pkt_wr *wr;
2531 	struct cpl_tx_pkt_core *cpl;
2532 	uint32_t ctrl;	/* used in many unrelated places */
2533 	uint64_t ctrl1;
2534 	int nflits, ndesc;
2535 	struct tx_sdesc *txsd;
2536 	caddr_t dst;
2537 	const mac_ether_offload_info_t *meoi = &txinfo->meoi;
2538 
2539 	TXQ_LOCK_ASSERT_OWNED(txq);	/* pidx, avail */
2540 
2541 	/*
2542 	 * Do we have enough flits to send this frame out?
2543 	 */
2544 	ctrl = sizeof (struct cpl_tx_pkt_core);
2545 	if (txinfo->flags & HW_LSO) {
2546 		nflits = TXPKT_LSO_WR_HDR;
2547 		ctrl += sizeof (struct cpl_tx_pkt_lso_core);
2548 	} else {
2549 		nflits = TXPKT_WR_HDR;
2550 	}
2551 	if (txinfo->nsegs > 0)
2552 		nflits += txinfo->nflits;
2553 	else {
2554 		nflits += howmany(txinfo->len, 8);
2555 		ctrl += txinfo->len;
2556 	}
2557 	ndesc = howmany(nflits, 8);
2558 	if (ndesc > eq->avail)
2559 		return (ENOMEM);
2560 
2561 	/* Firmware work request header */
2562 	wr = (void *)&eq->desc[eq->pidx];
2563 	wr->op_immdlen = cpu_to_be32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2564 	    V_FW_WR_IMMDLEN(ctrl));
2565 	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2566 	if (eq->avail == ndesc)
2567 		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2568 	wr->equiq_to_len16 = cpu_to_be32(ctrl);
2569 	wr->r3 = 0;
2570 
2571 	if (txinfo->flags & HW_LSO &&
2572 	    (meoi->meoi_flags & MEOI_L4INFO_SET) != 0 &&
2573 	    meoi->meoi_l4proto == IPPROTO_TCP) {
2574 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2575 
2576 		ctrl = V_LSO_OPCODE((u32)CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2577 		    F_LSO_LAST_SLICE;
2578 
2579 		if (meoi->meoi_l2hlen > sizeof (struct ether_header)) {
2580 			/*
2581 			 * This presently assumes a standard VLAN header,
2582 			 * without support for Q-in-Q.
2583 			 */
2584 			ctrl |= V_LSO_ETHHDR_LEN(1);
2585 		}
2586 
2587 		switch (meoi->meoi_l3proto) {
2588 		case ETHERTYPE_IPV6:
2589 			ctrl |= F_LSO_IPV6;
2590 			/* FALLTHROUGH */
2591 		case ETHERTYPE_IP:
2592 			ctrl |= V_LSO_IPHDR_LEN(meoi->meoi_l3hlen / 4);
2593 			break;
2594 		default:
2595 			break;
2596 		}
2597 
2598 		ctrl |= V_LSO_TCPHDR_LEN(meoi->meoi_l4hlen / 4);
2599 
2600 		lso->lso_ctrl = cpu_to_be32(ctrl);
2601 		lso->ipid_ofst = cpu_to_be16(0);
2602 		lso->mss = cpu_to_be16(txinfo->mss);
2603 		lso->seqno_offset = cpu_to_be32(0);
2604 		if (is_t4(pi->adapter->params.chip))
2605 			lso->len = cpu_to_be32(txinfo->len);
2606 		else
2607 			lso->len = cpu_to_be32(V_LSO_T5_XFER_SIZE(txinfo->len));
2608 
2609 		cpl = (void *)(lso + 1);
2610 
2611 		txq->tso_wrs++;
2612 	} else {
2613 		cpl = (void *)(wr + 1);
2614 	}
2615 
2616 	/* Checksum offload */
2617 	switch (csum_to_ctrl(txinfo,
2618 	    CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl1)) {
2619 	case COS_SUCCESS:
2620 		txq->txcsum++;
2621 		break;
2622 	case COS_FAIL:
2623 		/*
2624 		 * Packet will be going out with checksums which are probably
2625 		 * wrong but there is little we can do now.
2626 		 */
2627 		txq->csum_failed++;
2628 		break;
2629 	default:
2630 		break;
2631 	}
2632 
2633 	/* CPL header */
2634 	cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2635 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2636 	cpl->pack = 0;
2637 	cpl->len = cpu_to_be16(txinfo->len);
2638 	cpl->ctrl1 = cpu_to_be64(ctrl1);
2639 
2640 	/* Software descriptor */
2641 	txsd = &txq->sdesc[eq->pidx];
2642 	txsd->m = m;
2643 	txsd->txb_used = txinfo->txb_used;
2644 	txsd->hdls_used = txinfo->hdls_used;
2645 	/* LINTED: E_ASSIGN_NARROW_CONV */
2646 	txsd->desc_used = ndesc;
2647 
2648 	txq->txb_used += txinfo->txb_used / TXB_CHUNK;
2649 	txq->hdl_used += txinfo->hdls_used;
2650 
2651 	eq->pending += ndesc;
2652 	eq->avail -= ndesc;
2653 	eq->pidx += ndesc;
2654 	if (eq->pidx >= eq->cap)
2655 		eq->pidx -= eq->cap;
2656 
2657 	/* SGL */
2658 	dst = (void *)(cpl + 1);
2659 	if (txinfo->nsegs > 0) {
2660 		txq->sgl_wrs++;
2661 		copy_to_txd(eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2662 
2663 		/* Need to zero-pad to a 16 byte boundary if not on one */
2664 		if ((uintptr_t)dst & 0xf)
2665 			/* LINTED: E_BAD_PTR_CAST_ALIGN */
2666 			*(uint64_t *)dst = 0;
2667 
2668 	} else {
2669 		txq->imm_wrs++;
2670 #ifdef DEBUG
2671 		ctrl = txinfo->len;
2672 #endif
2673 		for (; m; m = m->b_cont) {
2674 			copy_to_txd(eq, (void *)m->b_rptr, &dst, MBLKL(m));
2675 #ifdef DEBUG
2676 			ctrl -= MBLKL(m);
2677 #endif
2678 		}
2679 		ASSERT(ctrl == 0);
2680 	}
2681 
2682 	txq->txpkt_wrs++;
2683 	return (0);
2684 }
2685 
2686 static inline void
write_ulp_cpl_sgl(struct port_info * pi,struct sge_txq * txq,struct txpkts * txpkts,struct txinfo * txinfo)2687 write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2688     struct txpkts *txpkts, struct txinfo *txinfo)
2689 {
2690 	struct ulp_txpkt *ulpmc;
2691 	struct ulptx_idata *ulpsc;
2692 	struct cpl_tx_pkt_core *cpl;
2693 	uintptr_t flitp, start, end;
2694 	uint64_t ctrl;
2695 	caddr_t dst;
2696 
2697 	ASSERT(txpkts->npkt > 0);
2698 
2699 	start = (uintptr_t)txq->eq.desc;
2700 	end = (uintptr_t)txq->eq.spg;
2701 
2702 	/* Checksum offload */
2703 	switch (csum_to_ctrl(txinfo,
2704 	    CHELSIO_CHIP_VERSION(pi->adapter->params.chip), &ctrl)) {
2705 	case COS_SUCCESS:
2706 		txq->txcsum++;
2707 		break;
2708 	case COS_FAIL:
2709 		/*
2710 		 * Packet will be going out with checksums which are probably
2711 		 * wrong but there is little we can do now.
2712 		 */
2713 		txq->csum_failed++;
2714 		break;
2715 	default:
2716 		break;
2717 	}
2718 
2719 	/*
2720 	 * The previous packet's SGL must have ended at a 16 byte boundary (this
2721 	 * is required by the firmware/hardware).  It follows that flitp cannot
2722 	 * wrap around between the ULPTX master command and ULPTX subcommand (8
2723 	 * bytes each), and that it can not wrap around in the middle of the
2724 	 * cpl_tx_pkt_core either.
2725 	 */
2726 	flitp = (uintptr_t)txpkts->flitp;
2727 	ASSERT((flitp & 0xf) == 0);
2728 
2729 	/* ULP master command */
2730 	ulpmc = (void *)flitp;
2731 	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
2732 	ulpmc->len = htonl(howmany(sizeof (*ulpmc) + sizeof (*ulpsc) +
2733 	    sizeof (*cpl) + 8 * txinfo->nflits, 16));
2734 
2735 	/* ULP subcommand */
2736 	ulpsc = (void *)(ulpmc + 1);
2737 	ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2738 	    F_ULP_TX_SC_MORE);
2739 	ulpsc->len = cpu_to_be32(sizeof (struct cpl_tx_pkt_core));
2740 
2741 	flitp += sizeof (*ulpmc) + sizeof (*ulpsc);
2742 	if (flitp == end)
2743 		flitp = start;
2744 
2745 	/* CPL_TX_PKT_XT */
2746 	cpl = (void *)flitp;
2747 	cpl->ctrl0 = cpu_to_be32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
2748 	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2749 	cpl->pack = 0;
2750 	cpl->len = cpu_to_be16(txinfo->len);
2751 	cpl->ctrl1 = cpu_to_be64(ctrl);
2752 
2753 	flitp += sizeof (*cpl);
2754 	if (flitp == end)
2755 		flitp = start;
2756 
2757 	/* SGL for this frame */
2758 	dst = (caddr_t)flitp;
2759 	copy_to_txd(&txq->eq, (void *)&txinfo->sgl, &dst, txinfo->nflits * 8);
2760 	flitp = (uintptr_t)dst;
2761 
2762 	/* Zero pad and advance to a 16 byte boundary if not already at one. */
2763 	if (flitp & 0xf) {
2764 
2765 		/* no matter what, flitp should be on an 8 byte boundary */
2766 		ASSERT((flitp & 0x7) == 0);
2767 
2768 		*(uint64_t *)flitp = 0;
2769 		flitp += sizeof (uint64_t);
2770 		txpkts->nflits++;
2771 	}
2772 
2773 	if (flitp == end)
2774 		flitp = start;
2775 
2776 	txpkts->flitp = (void *)flitp;
2777 }
2778 
2779 static inline void
copy_to_txd(struct sge_eq * eq,caddr_t from,caddr_t * to,int len)2780 copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2781 {
2782 	if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2783 		bcopy(from, *to, len);
2784 		(*to) += len;
2785 	} else {
2786 		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2787 
2788 		bcopy(from, *to, portion);
2789 		from += portion;
2790 		portion = len - portion;	/* remaining */
2791 		bcopy(from, (void *)eq->desc, portion);
2792 		(*to) = (caddr_t)eq->desc + portion;
2793 	}
2794 }
2795 
2796 static inline void
ring_tx_db(struct adapter * sc,struct sge_eq * eq)2797 ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2798 {
2799 	int val, db_mode;
2800 	t4_doorbells_t db = eq->doorbells;
2801 
2802 	if (eq->pending > 1)
2803 		db &= ~DOORBELL_WCWR;
2804 
2805 	if (eq->pending > eq->pidx) {
2806 		int offset = eq->cap - (eq->pending - eq->pidx);
2807 
2808 		/* pidx has wrapped around since last doorbell */
2809 
2810 		(void) ddi_dma_sync(eq->desc_dhdl,
2811 		    offset * sizeof (struct tx_desc), 0,
2812 		    DDI_DMA_SYNC_FORDEV);
2813 		(void) ddi_dma_sync(eq->desc_dhdl,
2814 		    0, eq->pidx * sizeof (struct tx_desc),
2815 		    DDI_DMA_SYNC_FORDEV);
2816 	} else if (eq->pending > 0) {
2817 		(void) ddi_dma_sync(eq->desc_dhdl,
2818 		    (eq->pidx - eq->pending) * sizeof (struct tx_desc),
2819 		    eq->pending * sizeof (struct tx_desc),
2820 		    DDI_DMA_SYNC_FORDEV);
2821 	}
2822 
2823 	membar_producer();
2824 
2825 	if (is_t4(sc->params.chip))
2826 		val = V_PIDX(eq->pending);
2827 	else
2828 		val = V_PIDX_T5(eq->pending);
2829 
2830 	db_mode = (1 << (ffs(db) - 1));
2831 	switch (db_mode) {
2832 		case DOORBELL_UDB:
2833 			*eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2834 			break;
2835 
2836 		case DOORBELL_WCWR:
2837 			{
2838 				volatile uint64_t *dst, *src;
2839 				int i;
2840 				/*
2841 				 * Queues whose 128B doorbell segment fits in
2842 				 * the page do not use relative qid
2843 				 * (udb_qid is always 0).  Only queues with
2844 				 * doorbell segments can do WCWR.
2845 				 */
2846 				ASSERT(eq->udb_qid == 0 && eq->pending == 1);
2847 
2848 				dst = (volatile void *)((uintptr_t)eq->udb +
2849 				    UDBS_WR_OFFSET - UDBS_DB_OFFSET);
2850 				i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
2851 				src = (void *)&eq->desc[i];
2852 				while (src != (void *)&eq->desc[i + 1]) {
2853 					*dst++ = *src++;
2854 				}
2855 				membar_producer();
2856 				break;
2857 			}
2858 
2859 		case DOORBELL_UDBWC:
2860 			*eq->udb = LE_32(V_QID(eq->udb_qid) | val);
2861 			membar_producer();
2862 			break;
2863 
2864 		case DOORBELL_KDB:
2865 			t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2866 			    V_QID(eq->cntxt_id) | val);
2867 			break;
2868 	}
2869 
2870 	eq->pending = 0;
2871 }
2872 
2873 static int
reclaim_tx_descs(struct sge_txq * txq,int howmany)2874 reclaim_tx_descs(struct sge_txq *txq, int howmany)
2875 {
2876 	struct tx_sdesc *txsd;
2877 	uint_t cidx, can_reclaim, reclaimed, txb_freed, hdls_freed;
2878 	struct sge_eq *eq = &txq->eq;
2879 
2880 	EQ_LOCK_ASSERT_OWNED(eq);
2881 
2882 	cidx = eq->spg->cidx;	/* stable snapshot */
2883 	cidx = be16_to_cpu(cidx);
2884 
2885 	if (cidx >= eq->cidx)
2886 		can_reclaim = cidx - eq->cidx;
2887 	else
2888 		can_reclaim = cidx + eq->cap - eq->cidx;
2889 
2890 	if (can_reclaim == 0)
2891 		return (0);
2892 
2893 	txb_freed = hdls_freed = reclaimed = 0;
2894 	do {
2895 		int ndesc;
2896 
2897 		txsd = &txq->sdesc[eq->cidx];
2898 		ndesc = txsd->desc_used;
2899 
2900 		/* Firmware doesn't return "partial" credits. */
2901 		ASSERT(can_reclaim >= ndesc);
2902 
2903 		/*
2904 		 * We always keep mblk around, even for immediate data.  If mblk
2905 		 * is NULL, this has to be the software descriptor for a credit
2906 		 * flush work request.
2907 		 */
2908 		if (txsd->m != NULL)
2909 			freemsgchain(txsd->m);
2910 #ifdef DEBUG
2911 		else {
2912 			ASSERT(txsd->txb_used == 0);
2913 			ASSERT(txsd->hdls_used == 0);
2914 			ASSERT(ndesc == 1);
2915 		}
2916 #endif
2917 
2918 		txb_freed += txsd->txb_used;
2919 		hdls_freed += txsd->hdls_used;
2920 		reclaimed += ndesc;
2921 
2922 		eq->cidx += ndesc;
2923 		if (eq->cidx >= eq->cap)
2924 			eq->cidx -= eq->cap;
2925 
2926 		can_reclaim -= ndesc;
2927 
2928 	} while (can_reclaim && reclaimed < howmany);
2929 
2930 	eq->avail += reclaimed;
2931 	ASSERT(eq->avail < eq->cap);	/* avail tops out at (cap - 1) */
2932 
2933 	txq->txb_avail += txb_freed;
2934 
2935 	txq->tx_dhdl_avail += hdls_freed;
2936 	ASSERT(txq->tx_dhdl_avail <= txq->tx_dhdl_total);
2937 	for (; hdls_freed; hdls_freed--) {
2938 		(void) ddi_dma_unbind_handle(txq->tx_dhdl[txq->tx_dhdl_cidx]);
2939 		if (++txq->tx_dhdl_cidx == txq->tx_dhdl_total)
2940 			txq->tx_dhdl_cidx = 0;
2941 	}
2942 
2943 	return (reclaimed);
2944 }
2945 
2946 static void
write_txqflush_wr(struct sge_txq * txq)2947 write_txqflush_wr(struct sge_txq *txq)
2948 {
2949 	struct sge_eq *eq = &txq->eq;
2950 	struct fw_eq_flush_wr *wr;
2951 	struct tx_sdesc *txsd;
2952 
2953 	EQ_LOCK_ASSERT_OWNED(eq);
2954 	ASSERT(eq->avail > 0);
2955 
2956 	wr = (void *)&eq->desc[eq->pidx];
2957 	bzero(wr, sizeof (*wr));
2958 	wr->opcode = FW_EQ_FLUSH_WR;
2959 	wr->equiq_to_len16 = cpu_to_be32(V_FW_WR_LEN16(sizeof (*wr) / 16) |
2960 	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
2961 
2962 	txsd = &txq->sdesc[eq->pidx];
2963 	txsd->m = NULL;
2964 	txsd->txb_used = 0;
2965 	txsd->hdls_used = 0;
2966 	txsd->desc_used = 1;
2967 
2968 	eq->pending++;
2969 	eq->avail--;
2970 	if (++eq->pidx == eq->cap)
2971 		eq->pidx = 0;
2972 }
2973 
2974 static int
t4_handle_cpl_msg(struct sge_iq * iq,const struct rss_header * rss,mblk_t * mp)2975 t4_handle_cpl_msg(struct sge_iq *iq, const struct rss_header *rss, mblk_t *mp)
2976 {
2977 	const uint8_t opcode = rss->opcode;
2978 
2979 	DTRACE_PROBE4(t4__cpl_msg, struct sge_iq *, iq, uint8_t, opcode,
2980 	    const struct rss_header *, rss, mblk_t *, mp);
2981 
2982 	switch (opcode) {
2983 	case CPL_FW4_MSG:
2984 	case CPL_FW6_MSG:
2985 		ASSERT3P(mp, ==, NULL);
2986 		return (t4_handle_fw_msg(iq, rss));
2987 	case CPL_SGE_EGR_UPDATE:
2988 		return (handle_sge_egr_update(iq, rss, mp));
2989 	case CPL_RX_PKT:
2990 		return (t4_eth_rx(iq, rss, mp));
2991 	default:
2992 		cxgb_printf(iq->adapter->dip, CE_WARN,
2993 		    "unhandled CPL opcode 0x%02x", opcode);
2994 		if (mp != NULL) {
2995 			freemsg(mp);
2996 		}
2997 		return (0);
2998 	}
2999 }
3000 
3001 static int
t4_handle_fw_msg(struct sge_iq * iq,const struct rss_header * rss)3002 t4_handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss)
3003 {
3004 	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3005 	const uint8_t msg_type = cpl->type;
3006 	const struct rss_header *rss2;
3007 	struct adapter *sc = iq->adapter;
3008 
3009 	DTRACE_PROBE3(t4__fw_msg, struct sge_iq *, iq, uint8_t, msg_type,
3010 	    const struct rss_header *, rss);
3011 
3012 	switch (msg_type) {
3013 	case FW_TYPE_RSSCPL:	/* also synonym for FW6_TYPE_RSSCPL */
3014 		rss2 = (const struct rss_header *)&cpl->data[0];
3015 		return (t4_handle_cpl_msg(iq, rss2, NULL));
3016 	case FW6_TYPE_CMD_RPL:
3017 		return (t4_handle_fw_rpl(sc, &cpl->data[0]));
3018 	default:
3019 		cxgb_printf(sc->dip, CE_WARN,
3020 		    "unhandled fw_msg type 0x%02x", msg_type);
3021 		return (0);
3022 	}
3023 }
3024 
3025 static int
t4_eth_rx(struct sge_iq * iq,const struct rss_header * rss,mblk_t * m)3026 t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, mblk_t *m)
3027 {
3028 	bool csum_ok;
3029 	uint16_t err_vec;
3030 	struct sge_rxq *rxq = (void *)iq;
3031 	struct mblk_pair chain = {0};
3032 	struct adapter *sc = iq->adapter;
3033 	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
3034 
3035 	iq->intr_next = iq->intr_params;
3036 
3037 	m->b_rptr += sc->sge.pktshift;
3038 
3039 	/* Compressed error vector is enabled for T6 only */
3040 	if (sc->params.tp.rx_pkt_encap)
3041 		/* It is enabled only in T6 config file */
3042 		err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec));
3043 	else
3044 		err_vec = ntohs(cpl->err_vec);
3045 
3046 	csum_ok = cpl->csum_calc && !err_vec;
3047 	/* TODO: what about cpl->ip_frag? */
3048 	if (csum_ok && !cpl->ip_frag) {
3049 		mac_hcksum_set(m, 0, 0, 0, 0xffff,
3050 		    HCK_FULLCKSUM_OK | HCK_FULLCKSUM |
3051 		    HCK_IPV4_HDRCKSUM_OK);
3052 		rxq->rxcsum++;
3053 	}
3054 
3055 	/* Add to the chain that we'll send up */
3056 	if (chain.head != NULL)
3057 		chain.tail->b_next = m;
3058 	else
3059 		chain.head = m;
3060 	chain.tail = m;
3061 
3062 	t4_mac_rx(rxq->port, rxq, chain.head);
3063 
3064 	rxq->rxpkts++;
3065 	rxq->rxbytes  += be16_to_cpu(cpl->len);
3066 	return (0);
3067 }
3068 
3069 #define	FL_HW_IDX(idx)	((idx) >> 3)
3070 
3071 static inline void
ring_fl_db(struct adapter * sc,struct sge_fl * fl)3072 ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3073 {
3074 	int desc_start, desc_last, ndesc;
3075 	uint32_t v = sc->params.arch.sge_fl_db;
3076 
3077 	ndesc = FL_HW_IDX(fl->pending);
3078 
3079 	/* Hold back one credit if pidx = cidx */
3080 	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3081 		ndesc--;
3082 
3083 	/*
3084 	 * There are chances of ndesc modified above (to avoid pidx = cidx).
3085 	 * If there is nothing to post, return.
3086 	 */
3087 	if (ndesc <= 0)
3088 		return;
3089 
3090 	desc_last = FL_HW_IDX(fl->pidx);
3091 
3092 	if (fl->pidx < fl->pending) {
3093 		/* There was a wrap */
3094 		desc_start = FL_HW_IDX(fl->pidx + fl->cap - fl->pending);
3095 
3096 		/* From desc_start to the end of list */
3097 		(void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE, 0,
3098 		    DDI_DMA_SYNC_FORDEV);
3099 
3100 		/* From start of list to the desc_last */
3101 		if (desc_last != 0)
3102 			(void) ddi_dma_sync(fl->dhdl, 0, desc_last *
3103 			    RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3104 	} else {
3105 		/* There was no wrap, sync from start_desc to last_desc */
3106 		desc_start = FL_HW_IDX(fl->pidx - fl->pending);
3107 		(void) ddi_dma_sync(fl->dhdl, desc_start * RX_FL_ESIZE,
3108 		    ndesc * RX_FL_ESIZE, DDI_DMA_SYNC_FORDEV);
3109 	}
3110 
3111 	if (is_t4(sc->params.chip))
3112 		v |= V_PIDX(ndesc);
3113 	else
3114 		v |= V_PIDX_T5(ndesc);
3115 	v |= V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3116 
3117 	membar_producer();
3118 
3119 	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3120 
3121 	/*
3122 	 * Update pending count:
3123 	 * Deduct the number of descriptors posted
3124 	 */
3125 	fl->pending -= ndesc * 8;
3126 }
3127 
3128 static void
tx_reclaim_task(void * arg)3129 tx_reclaim_task(void *arg)
3130 {
3131 	struct sge_txq *txq = arg;
3132 
3133 	TXQ_LOCK(txq);
3134 	reclaim_tx_descs(txq, txq->eq.qsize);
3135 	TXQ_UNLOCK(txq);
3136 }
3137 
3138 /* ARGSUSED */
3139 static int
handle_sge_egr_update(struct sge_iq * iq,const struct rss_header * rss,mblk_t * m)3140 handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3141     mblk_t *m)
3142 {
3143 	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3144 	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3145 	struct adapter *sc = iq->adapter;
3146 	struct sge *s = &sc->sge;
3147 	struct sge_eq *eq;
3148 	struct sge_txq *txq;
3149 
3150 	txq = (void *)s->eqmap[qid - s->eq_start];
3151 	eq = &txq->eq;
3152 	txq->qflush++;
3153 	t4_mac_tx_update(txq->port, txq);
3154 
3155 	ddi_taskq_dispatch(sc->tq[eq->tx_chan], tx_reclaim_task,
3156 	    (void *)txq, DDI_NOSLEEP);
3157 
3158 	return (0);
3159 }
3160 
3161 int
t4_alloc_tx_maps(struct adapter * sc,struct tx_maps * txmaps,int count,int flags)3162 t4_alloc_tx_maps(struct adapter *sc, struct tx_maps *txmaps, int count,
3163     int flags)
3164 {
3165 	int i, rc;
3166 
3167 	txmaps->map_total =  count;
3168 	txmaps->map_avail = txmaps->map_cidx = txmaps->map_pidx = 0;
3169 
3170 	txmaps->map =  kmem_zalloc(sizeof (ddi_dma_handle_t) *
3171 	    txmaps->map_total, flags);
3172 
3173 	for (i = 0; i < count; i++) {
3174 		rc = ddi_dma_alloc_handle(sc->dip, &sc->sge.dma_attr_tx,
3175 		    DDI_DMA_SLEEP, 0, &txmaps->map[i]);
3176 		if (rc != DDI_SUCCESS) {
3177 			cxgb_printf(sc->dip, CE_WARN,
3178 			    "%s: failed to allocate DMA handle (%d)",
3179 			    __func__, rc);
3180 			return (rc == DDI_DMA_NORESOURCES ? ENOMEM : EINVAL);
3181 		}
3182 		txmaps->map_avail++;
3183 	}
3184 
3185 	return (0);
3186 }
3187 
3188 #define	KS_UINIT(x)	kstat_named_init(&kstatp->x, #x, KSTAT_DATA_ULONG)
3189 #define	KS_CINIT(x)	kstat_named_init(&kstatp->x, #x, KSTAT_DATA_CHAR)
3190 #define	KS_U_SET(x, y)	kstatp->x.value.ul = (y)
3191 #define	KS_U_FROM(x, y)	kstatp->x.value.ul = (y)->x
3192 #define	KS_C_SET(x, ...)	\
3193 			(void) snprintf(kstatp->x.value.c, 16,  __VA_ARGS__)
3194 
3195 /*
3196  * cxgbe:X:config
3197  */
3198 struct cxgbe_port_config_kstats {
3199 	kstat_named_t idx;
3200 	kstat_named_t nrxq;
3201 	kstat_named_t ntxq;
3202 	kstat_named_t first_rxq;
3203 	kstat_named_t first_txq;
3204 	kstat_named_t controller;
3205 	kstat_named_t factory_mac_address;
3206 };
3207 
3208 /*
3209  * cxgbe:X:info
3210  */
3211 struct cxgbe_port_info_kstats {
3212 	kstat_named_t transceiver;
3213 	kstat_named_t rx_ovflow0;
3214 	kstat_named_t rx_ovflow1;
3215 	kstat_named_t rx_ovflow2;
3216 	kstat_named_t rx_ovflow3;
3217 	kstat_named_t rx_trunc0;
3218 	kstat_named_t rx_trunc1;
3219 	kstat_named_t rx_trunc2;
3220 	kstat_named_t rx_trunc3;
3221 	kstat_named_t tx_pause;
3222 	kstat_named_t rx_pause;
3223 };
3224 
3225 static kstat_t *
setup_port_config_kstats(struct port_info * pi)3226 setup_port_config_kstats(struct port_info *pi)
3227 {
3228 	kstat_t *ksp;
3229 	struct cxgbe_port_config_kstats *kstatp;
3230 	int ndata;
3231 	dev_info_t *pdip = ddi_get_parent(pi->dip);
3232 	uint8_t *ma = &pi->hw_addr[0];
3233 
3234 	ndata = sizeof (struct cxgbe_port_config_kstats) /
3235 	    sizeof (kstat_named_t);
3236 
3237 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "config",
3238 	    "net", KSTAT_TYPE_NAMED, ndata, 0);
3239 	if (ksp == NULL) {
3240 		cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3241 		return (NULL);
3242 	}
3243 
3244 	kstatp = (struct cxgbe_port_config_kstats *)ksp->ks_data;
3245 
3246 	KS_UINIT(idx);
3247 	KS_UINIT(nrxq);
3248 	KS_UINIT(ntxq);
3249 	KS_UINIT(first_rxq);
3250 	KS_UINIT(first_txq);
3251 	KS_CINIT(controller);
3252 	KS_CINIT(factory_mac_address);
3253 
3254 	KS_U_SET(idx, pi->port_id);
3255 	KS_U_SET(nrxq, pi->nrxq);
3256 	KS_U_SET(ntxq, pi->ntxq);
3257 	KS_U_SET(first_rxq, pi->first_rxq);
3258 	KS_U_SET(first_txq, pi->first_txq);
3259 	KS_C_SET(controller, "%s%d", ddi_driver_name(pdip),
3260 	    ddi_get_instance(pdip));
3261 	KS_C_SET(factory_mac_address, "%02X%02X%02X%02X%02X%02X",
3262 	    ma[0], ma[1], ma[2], ma[3], ma[4], ma[5]);
3263 
3264 	/* Do NOT set ksp->ks_update.  These kstats do not change. */
3265 
3266 	/* Install the kstat */
3267 	ksp->ks_private = (void *)pi;
3268 	kstat_install(ksp);
3269 
3270 	return (ksp);
3271 }
3272 
3273 static kstat_t *
setup_port_info_kstats(struct port_info * pi)3274 setup_port_info_kstats(struct port_info *pi)
3275 {
3276 	kstat_t *ksp;
3277 	struct cxgbe_port_info_kstats *kstatp;
3278 	int ndata;
3279 
3280 	ndata = sizeof (struct cxgbe_port_info_kstats) / sizeof (kstat_named_t);
3281 
3282 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), "info",
3283 	    "net", KSTAT_TYPE_NAMED, ndata, 0);
3284 	if (ksp == NULL) {
3285 		cxgb_printf(pi->dip, CE_WARN, "failed to initialize kstats.");
3286 		return (NULL);
3287 	}
3288 
3289 	kstatp = (struct cxgbe_port_info_kstats *)ksp->ks_data;
3290 
3291 	KS_CINIT(transceiver);
3292 	KS_UINIT(rx_ovflow0);
3293 	KS_UINIT(rx_ovflow1);
3294 	KS_UINIT(rx_ovflow2);
3295 	KS_UINIT(rx_ovflow3);
3296 	KS_UINIT(rx_trunc0);
3297 	KS_UINIT(rx_trunc1);
3298 	KS_UINIT(rx_trunc2);
3299 	KS_UINIT(rx_trunc3);
3300 	KS_UINIT(tx_pause);
3301 	KS_UINIT(rx_pause);
3302 
3303 	/* Install the kstat */
3304 	ksp->ks_update = update_port_info_kstats;
3305 	ksp->ks_private = (void *)pi;
3306 	kstat_install(ksp);
3307 
3308 	return (ksp);
3309 }
3310 
3311 static int
update_port_info_kstats(kstat_t * ksp,int rw)3312 update_port_info_kstats(kstat_t *ksp, int rw)
3313 {
3314 	struct cxgbe_port_info_kstats *kstatp =
3315 	    (struct cxgbe_port_info_kstats *)ksp->ks_data;
3316 	struct port_info *pi = ksp->ks_private;
3317 	static const char *mod_str[] = { NULL, "LR", "SR", "ER", "TWINAX",
3318 	    "active TWINAX", "LRM" };
3319 	uint32_t bgmap;
3320 
3321 	if (rw == KSTAT_WRITE)
3322 		return (0);
3323 
3324 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
3325 		KS_C_SET(transceiver, "unplugged");
3326 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
3327 		KS_C_SET(transceiver, "unknown");
3328 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
3329 		KS_C_SET(transceiver, "unsupported");
3330 	else if (pi->mod_type > 0 && pi->mod_type < ARRAY_SIZE(mod_str))
3331 		KS_C_SET(transceiver, "%s", mod_str[pi->mod_type]);
3332 	else
3333 		KS_C_SET(transceiver, "type %d", pi->mod_type);
3334 
3335 #define	GET_STAT(name) t4_read_reg64(pi->adapter, \
3336 	    PORT_REG(pi->port_id, A_MPS_PORT_STAT_##name##_L))
3337 #define	GET_STAT_COM(name) t4_read_reg64(pi->adapter, \
3338 	    A_MPS_STAT_##name##_L)
3339 
3340 	bgmap = G_NUMPORTS(t4_read_reg(pi->adapter, A_MPS_CMN_CTL));
3341 	if (bgmap == 0)
3342 		bgmap = (pi->port_id == 0) ? 0xf : 0;
3343 	else if (bgmap == 1)
3344 		bgmap = (pi->port_id < 2) ? (3 << (2 * pi->port_id)) : 0;
3345 	else
3346 		bgmap = 1;
3347 
3348 	KS_U_SET(rx_ovflow0, (bgmap & 1) ?
3349 	    GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0);
3350 	KS_U_SET(rx_ovflow1, (bgmap & 2) ?
3351 	    GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0);
3352 	KS_U_SET(rx_ovflow2, (bgmap & 4) ?
3353 	    GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0);
3354 	KS_U_SET(rx_ovflow3, (bgmap & 8) ?
3355 	    GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0);
3356 	KS_U_SET(rx_trunc0,  (bgmap & 1) ?
3357 	    GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0);
3358 	KS_U_SET(rx_trunc1,  (bgmap & 2) ?
3359 	    GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0);
3360 	KS_U_SET(rx_trunc2,  (bgmap & 4) ?
3361 	    GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0);
3362 	KS_U_SET(rx_trunc3,  (bgmap & 8) ?
3363 	    GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0);
3364 
3365 	KS_U_SET(tx_pause, GET_STAT(TX_PORT_PAUSE));
3366 	KS_U_SET(rx_pause, GET_STAT(RX_PORT_PAUSE));
3367 
3368 	return (0);
3369 
3370 }
3371 
3372 /*
3373  * cxgbe:X:rxqY
3374  */
3375 struct rxq_kstats {
3376 	kstat_named_t rxcsum;
3377 	kstat_named_t rxpkts;
3378 	kstat_named_t rxbytes;
3379 	kstat_named_t nomem;
3380 };
3381 
3382 static kstat_t *
setup_rxq_kstats(struct port_info * pi,struct sge_rxq * rxq,int idx)3383 setup_rxq_kstats(struct port_info *pi, struct sge_rxq *rxq, int idx)
3384 {
3385 	struct kstat *ksp;
3386 	struct rxq_kstats *kstatp;
3387 	int ndata;
3388 	char str[16];
3389 
3390 	ndata = sizeof (struct rxq_kstats) / sizeof (kstat_named_t);
3391 	(void) snprintf(str, sizeof (str), "rxq%u", idx);
3392 
3393 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "rxq",
3394 	    KSTAT_TYPE_NAMED, ndata, 0);
3395 	if (ksp == NULL) {
3396 		cxgb_printf(pi->dip, CE_WARN,
3397 		    "%s: failed to initialize rxq kstats for queue %d.",
3398 		    __func__, idx);
3399 		return (NULL);
3400 	}
3401 
3402 	kstatp = (struct rxq_kstats *)ksp->ks_data;
3403 
3404 	KS_UINIT(rxcsum);
3405 	KS_UINIT(rxpkts);
3406 	KS_UINIT(rxbytes);
3407 	KS_UINIT(nomem);
3408 
3409 	ksp->ks_update = update_rxq_kstats;
3410 	ksp->ks_private = (void *)rxq;
3411 	kstat_install(ksp);
3412 
3413 	return (ksp);
3414 }
3415 
3416 static int
update_rxq_kstats(kstat_t * ksp,int rw)3417 update_rxq_kstats(kstat_t *ksp, int rw)
3418 {
3419 	struct rxq_kstats *kstatp = (struct rxq_kstats *)ksp->ks_data;
3420 	struct sge_rxq *rxq = ksp->ks_private;
3421 
3422 	if (rw == KSTAT_WRITE)
3423 		return (0);
3424 
3425 	KS_U_FROM(rxcsum, rxq);
3426 	KS_U_FROM(rxpkts, rxq);
3427 	KS_U_FROM(rxbytes, rxq);
3428 	KS_U_FROM(nomem, rxq);
3429 
3430 	return (0);
3431 }
3432 
3433 /*
3434  * cxgbe:X:txqY
3435  */
3436 struct txq_kstats {
3437 	kstat_named_t txcsum;
3438 	kstat_named_t tso_wrs;
3439 	kstat_named_t imm_wrs;
3440 	kstat_named_t sgl_wrs;
3441 	kstat_named_t txpkt_wrs;
3442 	kstat_named_t txpkts_wrs;
3443 	kstat_named_t txpkts_pkts;
3444 	kstat_named_t txb_used;
3445 	kstat_named_t hdl_used;
3446 	kstat_named_t txb_full;
3447 	kstat_named_t dma_hdl_failed;
3448 	kstat_named_t dma_map_failed;
3449 	kstat_named_t qfull;
3450 	kstat_named_t qflush;
3451 	kstat_named_t pullup_early;
3452 	kstat_named_t pullup_late;
3453 	kstat_named_t pullup_failed;
3454 	kstat_named_t csum_failed;
3455 };
3456 
3457 static kstat_t *
setup_txq_kstats(struct port_info * pi,struct sge_txq * txq,int idx)3458 setup_txq_kstats(struct port_info *pi, struct sge_txq *txq, int idx)
3459 {
3460 	struct kstat *ksp;
3461 	struct txq_kstats *kstatp;
3462 	int ndata;
3463 	char str[16];
3464 
3465 	ndata = sizeof (struct txq_kstats) / sizeof (kstat_named_t);
3466 	(void) snprintf(str, sizeof (str), "txq%u", idx);
3467 
3468 	ksp = kstat_create(T4_PORT_NAME, ddi_get_instance(pi->dip), str, "txq",
3469 	    KSTAT_TYPE_NAMED, ndata, 0);
3470 	if (ksp == NULL) {
3471 		cxgb_printf(pi->dip, CE_WARN,
3472 		    "%s: failed to initialize txq kstats for queue %d.",
3473 		    __func__, idx);
3474 		return (NULL);
3475 	}
3476 
3477 	kstatp = (struct txq_kstats *)ksp->ks_data;
3478 
3479 	KS_UINIT(txcsum);
3480 	KS_UINIT(tso_wrs);
3481 	KS_UINIT(imm_wrs);
3482 	KS_UINIT(sgl_wrs);
3483 	KS_UINIT(txpkt_wrs);
3484 	KS_UINIT(txpkts_wrs);
3485 	KS_UINIT(txpkts_pkts);
3486 	KS_UINIT(txb_used);
3487 	KS_UINIT(hdl_used);
3488 	KS_UINIT(txb_full);
3489 	KS_UINIT(dma_hdl_failed);
3490 	KS_UINIT(dma_map_failed);
3491 	KS_UINIT(qfull);
3492 	KS_UINIT(qflush);
3493 	KS_UINIT(pullup_early);
3494 	KS_UINIT(pullup_late);
3495 	KS_UINIT(pullup_failed);
3496 	KS_UINIT(csum_failed);
3497 
3498 	ksp->ks_update = update_txq_kstats;
3499 	ksp->ks_private = (void *)txq;
3500 	kstat_install(ksp);
3501 
3502 	return (ksp);
3503 }
3504 
3505 static int
update_txq_kstats(kstat_t * ksp,int rw)3506 update_txq_kstats(kstat_t *ksp, int rw)
3507 {
3508 	struct txq_kstats *kstatp = (struct txq_kstats *)ksp->ks_data;
3509 	struct sge_txq *txq = ksp->ks_private;
3510 
3511 	if (rw == KSTAT_WRITE)
3512 		return (0);
3513 
3514 	KS_U_FROM(txcsum, txq);
3515 	KS_U_FROM(tso_wrs, txq);
3516 	KS_U_FROM(imm_wrs, txq);
3517 	KS_U_FROM(sgl_wrs, txq);
3518 	KS_U_FROM(txpkt_wrs, txq);
3519 	KS_U_FROM(txpkts_wrs, txq);
3520 	KS_U_FROM(txpkts_pkts, txq);
3521 	KS_U_FROM(txb_used, txq);
3522 	KS_U_FROM(hdl_used, txq);
3523 	KS_U_FROM(txb_full, txq);
3524 	KS_U_FROM(dma_hdl_failed, txq);
3525 	KS_U_FROM(dma_map_failed, txq);
3526 	KS_U_FROM(qfull, txq);
3527 	KS_U_FROM(qflush, txq);
3528 	KS_U_FROM(pullup_early, txq);
3529 	KS_U_FROM(pullup_late, txq);
3530 	KS_U_FROM(pullup_failed, txq);
3531 	KS_U_FROM(csum_failed, txq);
3532 
3533 	return (0);
3534 }
3535 
3536 static int rxbuf_ctor(void *, void *, int);
3537 static void rxbuf_dtor(void *, void *);
3538 
3539 static kmem_cache_t *
rxbuf_cache_create(struct rxbuf_cache_params * p)3540 rxbuf_cache_create(struct rxbuf_cache_params *p)
3541 {
3542 	char name[32];
3543 
3544 	(void) snprintf(name, sizeof (name), "%s%d_rxbuf_cache",
3545 	    ddi_driver_name(p->dip), ddi_get_instance(p->dip));
3546 
3547 	return kmem_cache_create(name, sizeof (struct rxbuf), _CACHE_LINE_SIZE,
3548 	    rxbuf_ctor, rxbuf_dtor, NULL, p, NULL, 0);
3549 }
3550 
3551 /*
3552  * If ref_cnt is more than 1 then those many calls to rxbuf_free will
3553  * have to be made before the rxb is released back to the kmem_cache.
3554  */
3555 static struct rxbuf *
rxbuf_alloc(kmem_cache_t * cache,int kmflags,uint_t ref_cnt)3556 rxbuf_alloc(kmem_cache_t *cache, int kmflags, uint_t ref_cnt)
3557 {
3558 	struct rxbuf *rxb;
3559 
3560 	ASSERT(ref_cnt > 0);
3561 
3562 	rxb = kmem_cache_alloc(cache, kmflags);
3563 	if (rxb != NULL) {
3564 		rxb->ref_cnt = ref_cnt;
3565 		rxb->cache = cache;
3566 	}
3567 
3568 	return (rxb);
3569 }
3570 
3571 /*
3572  * This is normally called via the rxb's freefunc, when an mblk referencing the
3573  * rxb is freed.
3574  */
3575 static void
rxbuf_free(struct rxbuf * rxb)3576 rxbuf_free(struct rxbuf *rxb)
3577 {
3578 	if (atomic_dec_uint_nv(&rxb->ref_cnt) == 0)
3579 		kmem_cache_free(rxb->cache, rxb);
3580 }
3581 
3582 static int
rxbuf_ctor(void * arg1,void * arg2,int kmflag)3583 rxbuf_ctor(void *arg1, void *arg2, int kmflag)
3584 {
3585 	struct rxbuf *rxb = arg1;
3586 	struct rxbuf_cache_params *p = arg2;
3587 	size_t real_len;
3588 	ddi_dma_cookie_t cookie;
3589 	uint_t ccount = 0;
3590 	int (*callback)(caddr_t);
3591 	int rc = ENOMEM;
3592 
3593 	if ((kmflag & KM_NOSLEEP) != 0)
3594 		callback = DDI_DMA_DONTWAIT;
3595 	else
3596 		callback = DDI_DMA_SLEEP;
3597 
3598 	rc = ddi_dma_alloc_handle(p->dip, &p->dma_attr_rx, callback, 0,
3599 	    &rxb->dhdl);
3600 	if (rc != DDI_SUCCESS)
3601 		return (rc == DDI_DMA_BADATTR ? EINVAL : ENOMEM);
3602 
3603 	rc = ddi_dma_mem_alloc(rxb->dhdl, p->buf_size, &p->acc_attr_rx,
3604 	    DDI_DMA_STREAMING, callback, 0, &rxb->va, &real_len, &rxb->ahdl);
3605 	if (rc != DDI_SUCCESS) {
3606 		rc = ENOMEM;
3607 		goto fail1;
3608 	}
3609 
3610 	rc = ddi_dma_addr_bind_handle(rxb->dhdl, NULL, rxb->va, p->buf_size,
3611 	    DDI_DMA_READ | DDI_DMA_STREAMING, NULL, NULL, &cookie, &ccount);
3612 	if (rc != DDI_DMA_MAPPED) {
3613 		if (rc == DDI_DMA_INUSE)
3614 			rc = EBUSY;
3615 		else if (rc == DDI_DMA_TOOBIG)
3616 			rc = E2BIG;
3617 		else
3618 			rc = ENOMEM;
3619 		goto fail2;
3620 	}
3621 
3622 	if (ccount != 1) {
3623 		rc = E2BIG;
3624 		goto fail3;
3625 	}
3626 
3627 	rxb->ref_cnt = 0;
3628 	rxb->buf_size = p->buf_size;
3629 	rxb->freefunc.free_arg = (caddr_t)rxb;
3630 	rxb->freefunc.free_func = rxbuf_free;
3631 	rxb->ba = cookie.dmac_laddress;
3632 
3633 	return (0);
3634 
3635 fail3:	(void) ddi_dma_unbind_handle(rxb->dhdl);
3636 fail2:	ddi_dma_mem_free(&rxb->ahdl);
3637 fail1:	ddi_dma_free_handle(&rxb->dhdl);
3638 	return (rc);
3639 }
3640 
3641 static void
rxbuf_dtor(void * arg1,void * arg2)3642 rxbuf_dtor(void *arg1, void *arg2)
3643 {
3644 	struct rxbuf *rxb = arg1;
3645 
3646 	(void) ddi_dma_unbind_handle(rxb->dhdl);
3647 	ddi_dma_mem_free(&rxb->ahdl);
3648 	ddi_dma_free_handle(&rxb->dhdl);
3649 }
3650