xref: /linux/drivers/md/dm-mpath.c (revision 6a1636e06625ec0dd7f2b908ab39a8beea24bfd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2003 Sistina Software Limited.
4  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/device-mapper.h>
10 
11 #include "dm-rq.h"
12 #include "dm-bio-record.h"
13 #include "dm-path-selector.h"
14 #include "dm-uevent.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/ctype.h>
18 #include <linux/init.h>
19 #include <linux/mempool.h>
20 #include <linux/module.h>
21 #include <linux/pagemap.h>
22 #include <linux/slab.h>
23 #include <linux/time.h>
24 #include <linux/timer.h>
25 #include <linux/workqueue.h>
26 #include <linux/delay.h>
27 #include <scsi/scsi_dh.h>
28 #include <linux/atomic.h>
29 #include <linux/blk-mq.h>
30 
31 static struct workqueue_struct *dm_mpath_wq;
32 
33 #define DM_MSG_PREFIX "multipath"
34 #define DM_PG_INIT_DELAY_MSECS 2000
35 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned int) -1)
36 #define QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT 0
37 
38 static unsigned long queue_if_no_path_timeout_secs = QUEUE_IF_NO_PATH_TIMEOUT_DEFAULT;
39 
40 /* Path properties */
41 struct pgpath {
42 	struct list_head list;
43 
44 	struct priority_group *pg;	/* Owning PG */
45 	unsigned int fail_count;		/* Cumulative failure count */
46 
47 	struct dm_path path;
48 	struct delayed_work activate_path;
49 
50 	bool is_active:1;		/* Path status */
51 };
52 
53 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
54 
55 /*
56  * Paths are grouped into Priority Groups and numbered from 1 upwards.
57  * Each has a path selector which controls which path gets used.
58  */
59 struct priority_group {
60 	struct list_head list;
61 
62 	struct multipath *m;		/* Owning multipath instance */
63 	struct path_selector ps;
64 
65 	unsigned int pg_num;		/* Reference number */
66 	unsigned int nr_pgpaths;		/* Number of paths in PG */
67 	struct list_head pgpaths;
68 
69 	bool bypassed:1;		/* Temporarily bypass this PG? */
70 };
71 
72 /* Multipath context */
73 struct multipath {
74 	unsigned long flags;		/* Multipath state flags */
75 
76 	spinlock_t lock;
77 	enum dm_queue_mode queue_mode;
78 
79 	struct pgpath *current_pgpath;
80 	struct priority_group *current_pg;
81 	struct priority_group *next_pg;	/* Switch to this PG if set */
82 	struct priority_group *last_probed_pg;
83 
84 	atomic_t nr_valid_paths;	/* Total number of usable paths */
85 	unsigned int nr_priority_groups;
86 	struct list_head priority_groups;
87 
88 	const char *hw_handler_name;
89 	char *hw_handler_params;
90 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
91 	wait_queue_head_t probe_wait;   /* Wait for probing paths */
92 	unsigned int pg_init_retries;	/* Number of times to retry pg_init */
93 	unsigned int pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
94 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
95 	atomic_t pg_init_count;		/* Number of times pg_init called */
96 
97 	struct mutex work_mutex;
98 	struct work_struct trigger_event;
99 	struct dm_target *ti;
100 
101 	struct work_struct process_queued_bios;
102 	struct bio_list queued_bios;
103 
104 	struct timer_list nopath_timer;	/* Timeout for queue_if_no_path */
105 	bool is_suspending;
106 };
107 
108 /*
109  * Context information attached to each io we process.
110  */
111 struct dm_mpath_io {
112 	struct pgpath *pgpath;
113 	size_t nr_bytes;
114 	u64 start_time_ns;
115 };
116 
117 typedef int (*action_fn) (struct pgpath *pgpath);
118 
119 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
120 static void trigger_event(struct work_struct *work);
121 static void activate_or_offline_path(struct pgpath *pgpath);
122 static void activate_path_work(struct work_struct *work);
123 static void process_queued_bios(struct work_struct *work);
124 static void queue_if_no_path_timeout_work(struct timer_list *t);
125 
126 /*
127  *-----------------------------------------------
128  * Multipath state flags.
129  *-----------------------------------------------
130  */
131 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
132 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
133 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
134 /* MPATHF_RETAIN_ATTACHED_HW_HANDLER no longer has any effect */
135 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
136 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
137 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
138 #define MPATHF_DELAY_PG_SWITCH 7		/* Delay switching pg if it still has paths */
139 #define MPATHF_NEED_PG_SWITCH 8			/* Need to switch pgs after the delay has ended */
140 
141 static bool mpath_double_check_test_bit(int MPATHF_bit, struct multipath *m)
142 {
143 	bool r = test_bit(MPATHF_bit, &m->flags);
144 
145 	if (r) {
146 		unsigned long flags;
147 
148 		spin_lock_irqsave(&m->lock, flags);
149 		r = test_bit(MPATHF_bit, &m->flags);
150 		spin_unlock_irqrestore(&m->lock, flags);
151 	}
152 
153 	return r;
154 }
155 
156 /*
157  *-----------------------------------------------
158  * Allocation routines
159  *-----------------------------------------------
160  */
161 static struct pgpath *alloc_pgpath(void)
162 {
163 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
164 
165 	if (!pgpath)
166 		return NULL;
167 
168 	pgpath->is_active = true;
169 
170 	return pgpath;
171 }
172 
173 static void free_pgpath(struct pgpath *pgpath)
174 {
175 	kfree(pgpath);
176 }
177 
178 static struct priority_group *alloc_priority_group(void)
179 {
180 	struct priority_group *pg;
181 
182 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
183 
184 	if (pg)
185 		INIT_LIST_HEAD(&pg->pgpaths);
186 
187 	return pg;
188 }
189 
190 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
191 {
192 	struct pgpath *pgpath, *tmp;
193 
194 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
195 		list_del(&pgpath->list);
196 		dm_put_device(ti, pgpath->path.dev);
197 		free_pgpath(pgpath);
198 	}
199 }
200 
201 static void free_priority_group(struct priority_group *pg,
202 				struct dm_target *ti)
203 {
204 	struct path_selector *ps = &pg->ps;
205 
206 	if (ps->type) {
207 		ps->type->destroy(ps);
208 		dm_put_path_selector(ps->type);
209 	}
210 
211 	free_pgpaths(&pg->pgpaths, ti);
212 	kfree(pg);
213 }
214 
215 static struct multipath *alloc_multipath(struct dm_target *ti)
216 {
217 	struct multipath *m;
218 
219 	m = kzalloc(sizeof(*m), GFP_KERNEL);
220 	if (m) {
221 		INIT_LIST_HEAD(&m->priority_groups);
222 		spin_lock_init(&m->lock);
223 		atomic_set(&m->nr_valid_paths, 0);
224 		INIT_WORK(&m->trigger_event, trigger_event);
225 		mutex_init(&m->work_mutex);
226 
227 		m->queue_mode = DM_TYPE_NONE;
228 
229 		m->ti = ti;
230 		ti->private = m;
231 
232 		timer_setup(&m->nopath_timer, queue_if_no_path_timeout_work, 0);
233 	}
234 
235 	return m;
236 }
237 
238 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
239 {
240 	if (m->queue_mode == DM_TYPE_NONE)
241 		m->queue_mode = DM_TYPE_REQUEST_BASED;
242 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
243 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
244 
245 	dm_table_set_type(ti->table, m->queue_mode);
246 
247 	/*
248 	 * Init fields that are only used when a scsi_dh is attached
249 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
250 	 */
251 	set_bit(MPATHF_QUEUE_IO, &m->flags);
252 	atomic_set(&m->pg_init_in_progress, 0);
253 	atomic_set(&m->pg_init_count, 0);
254 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
255 	init_waitqueue_head(&m->pg_init_wait);
256 	init_waitqueue_head(&m->probe_wait);
257 
258 	return 0;
259 }
260 
261 static void free_multipath(struct multipath *m)
262 {
263 	struct priority_group *pg, *tmp;
264 
265 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
266 		list_del(&pg->list);
267 		free_priority_group(pg, m->ti);
268 	}
269 
270 	kfree(m->hw_handler_name);
271 	kfree(m->hw_handler_params);
272 	mutex_destroy(&m->work_mutex);
273 	kfree(m);
274 }
275 
276 static struct dm_mpath_io *get_mpio(union map_info *info)
277 {
278 	return info->ptr;
279 }
280 
281 static size_t multipath_per_bio_data_size(void)
282 {
283 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
284 }
285 
286 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
287 {
288 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
289 }
290 
291 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
292 {
293 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
294 	void *bio_details = mpio + 1;
295 	return bio_details;
296 }
297 
298 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
299 {
300 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
301 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
302 
303 	mpio->nr_bytes = bio->bi_iter.bi_size;
304 	mpio->pgpath = NULL;
305 	mpio->start_time_ns = 0;
306 	*mpio_p = mpio;
307 
308 	dm_bio_record(bio_details, bio);
309 }
310 
311 /*
312  *-----------------------------------------------
313  * Path selection
314  *-----------------------------------------------
315  */
316 static int __pg_init_all_paths(struct multipath *m)
317 {
318 	struct pgpath *pgpath;
319 	unsigned long pg_init_delay = 0;
320 
321 	lockdep_assert_held(&m->lock);
322 
323 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
324 		return 0;
325 
326 	atomic_inc(&m->pg_init_count);
327 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
328 
329 	/* Check here to reset pg_init_required */
330 	if (!m->current_pg)
331 		return 0;
332 
333 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
334 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
335 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
336 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
337 		/* Skip failed paths */
338 		if (!pgpath->is_active)
339 			continue;
340 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
341 				       pg_init_delay))
342 			atomic_inc(&m->pg_init_in_progress);
343 	}
344 	return atomic_read(&m->pg_init_in_progress);
345 }
346 
347 static int pg_init_all_paths(struct multipath *m)
348 {
349 	int ret;
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&m->lock, flags);
353 	ret = __pg_init_all_paths(m);
354 	spin_unlock_irqrestore(&m->lock, flags);
355 
356 	return ret;
357 }
358 
359 static void __switch_pg(struct multipath *m, struct priority_group *pg)
360 {
361 	lockdep_assert_held(&m->lock);
362 
363 	m->current_pg = pg;
364 
365 	/* Must we initialise the PG first, and queue I/O till it's ready? */
366 	if (m->hw_handler_name) {
367 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
368 		set_bit(MPATHF_QUEUE_IO, &m->flags);
369 	} else {
370 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
371 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
372 	}
373 
374 	atomic_set(&m->pg_init_count, 0);
375 }
376 
377 static struct pgpath *choose_path_in_pg(struct multipath *m,
378 					struct priority_group *pg,
379 					size_t nr_bytes)
380 {
381 	unsigned long flags;
382 	struct dm_path *path;
383 	struct pgpath *pgpath;
384 
385 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
386 	if (!path)
387 		return ERR_PTR(-ENXIO);
388 
389 	pgpath = path_to_pgpath(path);
390 
391 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
392 		/* Only update current_pgpath if pg changed */
393 		spin_lock_irqsave(&m->lock, flags);
394 		m->current_pgpath = pgpath;
395 		__switch_pg(m, pg);
396 		spin_unlock_irqrestore(&m->lock, flags);
397 	}
398 
399 	return pgpath;
400 }
401 
402 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
403 {
404 	unsigned long flags;
405 	struct priority_group *pg;
406 	struct pgpath *pgpath;
407 	unsigned int bypassed = 1;
408 
409 	if (!atomic_read(&m->nr_valid_paths)) {
410 		spin_lock_irqsave(&m->lock, flags);
411 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
412 		spin_unlock_irqrestore(&m->lock, flags);
413 		goto failed;
414 	}
415 
416 	/* Don't change PG until it has no remaining paths */
417 	pg = READ_ONCE(m->current_pg);
418 	if (pg) {
419 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
420 		if (!IS_ERR_OR_NULL(pgpath))
421 			return pgpath;
422 	}
423 
424 	/* Were we instructed to switch PG? */
425 	if (READ_ONCE(m->next_pg)) {
426 		spin_lock_irqsave(&m->lock, flags);
427 		pg = m->next_pg;
428 		if (!pg) {
429 			spin_unlock_irqrestore(&m->lock, flags);
430 			goto check_all_pgs;
431 		}
432 		m->next_pg = NULL;
433 		spin_unlock_irqrestore(&m->lock, flags);
434 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
435 		if (!IS_ERR_OR_NULL(pgpath))
436 			return pgpath;
437 	}
438 check_all_pgs:
439 	/*
440 	 * Loop through priority groups until we find a valid path.
441 	 * First time we skip PGs marked 'bypassed'.
442 	 * Second time we only try the ones we skipped, but set
443 	 * pg_init_delay_retry so we do not hammer controllers.
444 	 */
445 	do {
446 		list_for_each_entry(pg, &m->priority_groups, list) {
447 			if (pg->bypassed == !!bypassed)
448 				continue;
449 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
450 			if (!IS_ERR_OR_NULL(pgpath)) {
451 				if (!bypassed) {
452 					spin_lock_irqsave(&m->lock, flags);
453 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
454 					spin_unlock_irqrestore(&m->lock, flags);
455 				}
456 				return pgpath;
457 			}
458 		}
459 	} while (bypassed--);
460 
461 failed:
462 	spin_lock_irqsave(&m->lock, flags);
463 	m->current_pgpath = NULL;
464 	m->current_pg = NULL;
465 	spin_unlock_irqrestore(&m->lock, flags);
466 
467 	return NULL;
468 }
469 
470 /*
471  * dm_report_EIO() is a macro instead of a function to make pr_debug_ratelimited()
472  * report the function name and line number of the function from which
473  * it has been invoked.
474  */
475 #define dm_report_EIO(m)						\
476 	DMDEBUG_LIMIT("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d", \
477 		      dm_table_device_name((m)->ti->table),		\
478 		      test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
479 		      test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags), \
480 		      dm_noflush_suspending((m)->ti))
481 
482 /*
483  * Check whether bios must be queued in the device-mapper core rather
484  * than here in the target.
485  */
486 static bool __must_push_back(struct multipath *m)
487 {
488 	return dm_noflush_suspending(m->ti);
489 }
490 
491 static bool must_push_back_rq(struct multipath *m)
492 {
493 	unsigned long flags;
494 	bool ret;
495 
496 	spin_lock_irqsave(&m->lock, flags);
497 	ret = (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) || __must_push_back(m));
498 	spin_unlock_irqrestore(&m->lock, flags);
499 
500 	return ret;
501 }
502 
503 /*
504  * Map cloned requests (request-based multipath)
505  */
506 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
507 				   union map_info *map_context,
508 				   struct request **__clone)
509 {
510 	struct multipath *m = ti->private;
511 	size_t nr_bytes = blk_rq_bytes(rq);
512 	struct pgpath *pgpath;
513 	struct block_device *bdev;
514 	struct dm_mpath_io *mpio = get_mpio(map_context);
515 	struct request_queue *q;
516 	struct request *clone;
517 
518 	/* Do we need to select a new pgpath? */
519 	pgpath = READ_ONCE(m->current_pgpath);
520 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
521 		pgpath = choose_pgpath(m, nr_bytes);
522 
523 	if (!pgpath) {
524 		if (must_push_back_rq(m))
525 			return DM_MAPIO_DELAY_REQUEUE;
526 		dm_report_EIO(m);	/* Failed */
527 		return DM_MAPIO_KILL;
528 	} else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
529 		   mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
530 		pg_init_all_paths(m);
531 		return DM_MAPIO_DELAY_REQUEUE;
532 	}
533 
534 	mpio->pgpath = pgpath;
535 	mpio->nr_bytes = nr_bytes;
536 
537 	bdev = pgpath->path.dev->bdev;
538 	q = bdev_get_queue(bdev);
539 	clone = blk_mq_alloc_request(q, rq->cmd_flags | REQ_NOMERGE,
540 			BLK_MQ_REQ_NOWAIT);
541 	if (IS_ERR(clone)) {
542 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
543 		if (blk_queue_dying(q)) {
544 			atomic_inc(&m->pg_init_in_progress);
545 			activate_or_offline_path(pgpath);
546 			return DM_MAPIO_DELAY_REQUEUE;
547 		}
548 
549 		/*
550 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
551 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
552 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
553 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
554 		 * otherwise I/O merging can suffer.
555 		 */
556 		return DM_MAPIO_REQUEUE;
557 	}
558 	clone->bio = clone->biotail = NULL;
559 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
560 	*__clone = clone;
561 
562 	if (pgpath->pg->ps.type->start_io)
563 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
564 					      &pgpath->path,
565 					      nr_bytes);
566 	return DM_MAPIO_REMAPPED;
567 }
568 
569 static void multipath_release_clone(struct request *clone,
570 				    union map_info *map_context)
571 {
572 	if (unlikely(map_context)) {
573 		/*
574 		 * non-NULL map_context means caller is still map
575 		 * method; must undo multipath_clone_and_map()
576 		 */
577 		struct dm_mpath_io *mpio = get_mpio(map_context);
578 		struct pgpath *pgpath = mpio->pgpath;
579 
580 		if (pgpath && pgpath->pg->ps.type->end_io)
581 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
582 						    &pgpath->path,
583 						    mpio->nr_bytes,
584 						    clone->io_start_time_ns);
585 	}
586 
587 	blk_mq_free_request(clone);
588 }
589 
590 /*
591  * Map cloned bios (bio-based multipath)
592  */
593 
594 static void __multipath_queue_bio(struct multipath *m, struct bio *bio)
595 {
596 	/* Queue for the daemon to resubmit */
597 	bio_list_add(&m->queued_bios, bio);
598 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
599 		queue_work(kmultipathd, &m->process_queued_bios);
600 }
601 
602 static void multipath_queue_bio(struct multipath *m, struct bio *bio)
603 {
604 	unsigned long flags;
605 
606 	spin_lock_irqsave(&m->lock, flags);
607 	__multipath_queue_bio(m, bio);
608 	spin_unlock_irqrestore(&m->lock, flags);
609 }
610 
611 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
612 {
613 	struct pgpath *pgpath;
614 
615 	/* Do we need to select a new pgpath? */
616 	pgpath = READ_ONCE(m->current_pgpath);
617 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
618 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
619 
620 	if (!pgpath) {
621 		spin_lock_irq(&m->lock);
622 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
623 			__multipath_queue_bio(m, bio);
624 			pgpath = ERR_PTR(-EAGAIN);
625 		}
626 		spin_unlock_irq(&m->lock);
627 
628 	} else if (mpath_double_check_test_bit(MPATHF_QUEUE_IO, m) ||
629 		   mpath_double_check_test_bit(MPATHF_PG_INIT_REQUIRED, m)) {
630 		multipath_queue_bio(m, bio);
631 		pg_init_all_paths(m);
632 		return ERR_PTR(-EAGAIN);
633 	}
634 
635 	return pgpath;
636 }
637 
638 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
639 			       struct dm_mpath_io *mpio)
640 {
641 	struct pgpath *pgpath = __map_bio(m, bio);
642 
643 	if (IS_ERR(pgpath))
644 		return DM_MAPIO_SUBMITTED;
645 
646 	if (!pgpath) {
647 		if (__must_push_back(m))
648 			return DM_MAPIO_REQUEUE;
649 		dm_report_EIO(m);
650 		return DM_MAPIO_KILL;
651 	}
652 
653 	mpio->pgpath = pgpath;
654 
655 	if (dm_ps_use_hr_timer(pgpath->pg->ps.type))
656 		mpio->start_time_ns = ktime_get_ns();
657 
658 	bio->bi_status = 0;
659 	bio_set_dev(bio, pgpath->path.dev->bdev);
660 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
661 
662 	if (pgpath->pg->ps.type->start_io)
663 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
664 					      &pgpath->path,
665 					      mpio->nr_bytes);
666 	return DM_MAPIO_REMAPPED;
667 }
668 
669 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
670 {
671 	struct multipath *m = ti->private;
672 	struct dm_mpath_io *mpio = NULL;
673 
674 	multipath_init_per_bio_data(bio, &mpio);
675 	return __multipath_map_bio(m, bio, mpio);
676 }
677 
678 static void process_queued_io_list(struct multipath *m)
679 {
680 	if (m->queue_mode == DM_TYPE_REQUEST_BASED)
681 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
682 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
683 		queue_work(kmultipathd, &m->process_queued_bios);
684 }
685 
686 static void process_queued_bios(struct work_struct *work)
687 {
688 	int r;
689 	struct bio *bio;
690 	struct bio_list bios;
691 	struct blk_plug plug;
692 	struct multipath *m =
693 		container_of(work, struct multipath, process_queued_bios);
694 
695 	bio_list_init(&bios);
696 
697 	spin_lock_irq(&m->lock);
698 
699 	if (bio_list_empty(&m->queued_bios)) {
700 		spin_unlock_irq(&m->lock);
701 		return;
702 	}
703 
704 	bio_list_merge_init(&bios, &m->queued_bios);
705 
706 	spin_unlock_irq(&m->lock);
707 
708 	blk_start_plug(&plug);
709 	while ((bio = bio_list_pop(&bios))) {
710 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
711 
712 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
713 		r = __multipath_map_bio(m, bio, mpio);
714 		switch (r) {
715 		case DM_MAPIO_KILL:
716 			bio->bi_status = BLK_STS_IOERR;
717 			bio_endio(bio);
718 			break;
719 		case DM_MAPIO_REQUEUE:
720 			bio->bi_status = BLK_STS_DM_REQUEUE;
721 			bio_endio(bio);
722 			break;
723 		case DM_MAPIO_REMAPPED:
724 			submit_bio_noacct(bio);
725 			break;
726 		case DM_MAPIO_SUBMITTED:
727 			break;
728 		default:
729 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
730 		}
731 	}
732 	blk_finish_plug(&plug);
733 }
734 
735 /*
736  * If we run out of usable paths, should we queue I/O or error it?
737  */
738 static int queue_if_no_path(struct multipath *m, bool f_queue_if_no_path,
739 			    bool save_old_value, const char *caller)
740 {
741 	unsigned long flags;
742 	bool queue_if_no_path_bit, saved_queue_if_no_path_bit;
743 	const char *dm_dev_name = dm_table_device_name(m->ti->table);
744 
745 	DMDEBUG("%s: %s caller=%s f_queue_if_no_path=%d save_old_value=%d",
746 		dm_dev_name, __func__, caller, f_queue_if_no_path, save_old_value);
747 
748 	spin_lock_irqsave(&m->lock, flags);
749 
750 	queue_if_no_path_bit = test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
751 	saved_queue_if_no_path_bit = test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
752 
753 	if (save_old_value) {
754 		if (unlikely(!queue_if_no_path_bit && saved_queue_if_no_path_bit)) {
755 			DMERR("%s: QIFNP disabled but saved as enabled, saving again loses state, not saving!",
756 			      dm_dev_name);
757 		} else
758 			assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path_bit);
759 	} else if (!f_queue_if_no_path && saved_queue_if_no_path_bit) {
760 		/* due to "fail_if_no_path" message, need to honor it. */
761 		clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
762 	}
763 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, f_queue_if_no_path);
764 
765 	DMDEBUG("%s: after %s changes; QIFNP = %d; SQIFNP = %d; DNFS = %d",
766 		dm_dev_name, __func__,
767 		test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
768 		test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags),
769 		dm_noflush_suspending(m->ti));
770 
771 	spin_unlock_irqrestore(&m->lock, flags);
772 
773 	if (!f_queue_if_no_path) {
774 		dm_table_run_md_queue_async(m->ti->table);
775 		process_queued_io_list(m);
776 	}
777 
778 	return 0;
779 }
780 
781 /*
782  * If the queue_if_no_path timeout fires, turn off queue_if_no_path and
783  * process any queued I/O.
784  */
785 static void queue_if_no_path_timeout_work(struct timer_list *t)
786 {
787 	struct multipath *m = timer_container_of(m, t, nopath_timer);
788 
789 	DMWARN("queue_if_no_path timeout on %s, failing queued IO",
790 	       dm_table_device_name(m->ti->table));
791 	queue_if_no_path(m, false, false, __func__);
792 }
793 
794 /*
795  * Enable the queue_if_no_path timeout if necessary.
796  * Called with m->lock held.
797  */
798 static void enable_nopath_timeout(struct multipath *m)
799 {
800 	unsigned long queue_if_no_path_timeout =
801 		READ_ONCE(queue_if_no_path_timeout_secs) * HZ;
802 
803 	lockdep_assert_held(&m->lock);
804 
805 	if (queue_if_no_path_timeout > 0 &&
806 	    atomic_read(&m->nr_valid_paths) == 0 &&
807 	    test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
808 		mod_timer(&m->nopath_timer,
809 			  jiffies + queue_if_no_path_timeout);
810 	}
811 }
812 
813 static void disable_nopath_timeout(struct multipath *m)
814 {
815 	timer_delete_sync(&m->nopath_timer);
816 }
817 
818 /*
819  * An event is triggered whenever a path is taken out of use.
820  * Includes path failure and PG bypass.
821  */
822 static void trigger_event(struct work_struct *work)
823 {
824 	struct multipath *m =
825 		container_of(work, struct multipath, trigger_event);
826 
827 	dm_table_event(m->ti->table);
828 }
829 
830 /*
831  *---------------------------------------------------------------
832  * Constructor/argument parsing:
833  * <#multipath feature args> [<arg>]*
834  * <#hw_handler args> [hw_handler [<arg>]*]
835  * <#priority groups>
836  * <initial priority group>
837  *     [<selector> <#selector args> [<arg>]*
838  *      <#paths> <#per-path selector args>
839  *         [<path> [<arg>]* ]+ ]+
840  *---------------------------------------------------------------
841  */
842 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
843 			       struct dm_target *ti)
844 {
845 	int r;
846 	struct path_selector_type *pst;
847 	unsigned int ps_argc;
848 
849 	static const struct dm_arg _args[] = {
850 		{0, 1024, "invalid number of path selector args"},
851 	};
852 
853 	pst = dm_get_path_selector(dm_shift_arg(as));
854 	if (!pst) {
855 		ti->error = "unknown path selector type";
856 		return -EINVAL;
857 	}
858 
859 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
860 	if (r) {
861 		dm_put_path_selector(pst);
862 		return -EINVAL;
863 	}
864 
865 	r = pst->create(&pg->ps, ps_argc, as->argv);
866 	if (r) {
867 		dm_put_path_selector(pst);
868 		ti->error = "path selector constructor failed";
869 		return r;
870 	}
871 
872 	pg->ps.type = pst;
873 	dm_consume_args(as, ps_argc);
874 
875 	return 0;
876 }
877 
878 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
879 			 const char **attached_handler_name, char **error)
880 {
881 	struct request_queue *q = bdev_get_queue(bdev);
882 	int r;
883 
884 	if (*attached_handler_name) {
885 		/*
886 		 * Clear any hw_handler_params associated with a
887 		 * handler that isn't already attached.
888 		 */
889 		if (m->hw_handler_name && strcmp(*attached_handler_name,
890 						 m->hw_handler_name)) {
891 			kfree(m->hw_handler_params);
892 			m->hw_handler_params = NULL;
893 		}
894 
895 		/*
896 		 * Reset hw_handler_name to match the attached handler
897 		 *
898 		 * NB. This modifies the table line to show the actual
899 		 * handler instead of the original table passed in.
900 		 */
901 		kfree(m->hw_handler_name);
902 		m->hw_handler_name = *attached_handler_name;
903 		*attached_handler_name = NULL;
904 	}
905 
906 	if (m->hw_handler_name) {
907 		r = scsi_dh_attach(q, m->hw_handler_name);
908 		if (r < 0) {
909 			*error = "error attaching hardware handler";
910 			return r;
911 		}
912 
913 		if (m->hw_handler_params) {
914 			r = scsi_dh_set_params(q, m->hw_handler_params);
915 			if (r < 0) {
916 				*error = "unable to set hardware handler parameters";
917 				return r;
918 			}
919 		}
920 	}
921 
922 	return 0;
923 }
924 
925 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
926 				 struct dm_target *ti)
927 {
928 	int r;
929 	struct pgpath *p;
930 	struct multipath *m = ti->private;
931 	struct request_queue *q;
932 	const char *attached_handler_name = NULL;
933 
934 	/* we need at least a path arg */
935 	if (as->argc < 1) {
936 		ti->error = "no device given";
937 		return ERR_PTR(-EINVAL);
938 	}
939 
940 	p = alloc_pgpath();
941 	if (!p)
942 		return ERR_PTR(-ENOMEM);
943 
944 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
945 			  &p->path.dev);
946 	if (r) {
947 		ti->error = "error getting device";
948 		goto bad;
949 	}
950 
951 	q = bdev_get_queue(p->path.dev->bdev);
952 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
953 	if (IS_ERR(attached_handler_name)) {
954 		if (PTR_ERR(attached_handler_name) == -ENODEV) {
955 			if (m->hw_handler_name) {
956 				DMERR("hardware handlers are only allowed for SCSI devices");
957 				kfree(m->hw_handler_name);
958 				m->hw_handler_name = NULL;
959 			}
960 			attached_handler_name = NULL;
961 		} else {
962 			r = PTR_ERR(attached_handler_name);
963 			goto bad;
964 		}
965 	}
966 	if (attached_handler_name || m->hw_handler_name) {
967 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
968 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
969 		kfree(attached_handler_name);
970 		if (r) {
971 			dm_put_device(ti, p->path.dev);
972 			goto bad;
973 		}
974 	}
975 
976 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
977 	if (r) {
978 		dm_put_device(ti, p->path.dev);
979 		goto bad;
980 	}
981 
982 	return p;
983  bad:
984 	free_pgpath(p);
985 	return ERR_PTR(r);
986 }
987 
988 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
989 						   struct multipath *m)
990 {
991 	static const struct dm_arg _args[] = {
992 		{1, 1024, "invalid number of paths"},
993 		{0, 1024, "invalid number of selector args"}
994 	};
995 
996 	int r;
997 	unsigned int i, nr_selector_args, nr_args;
998 	struct priority_group *pg;
999 	struct dm_target *ti = m->ti;
1000 
1001 	if (as->argc < 2) {
1002 		as->argc = 0;
1003 		ti->error = "not enough priority group arguments";
1004 		return ERR_PTR(-EINVAL);
1005 	}
1006 
1007 	pg = alloc_priority_group();
1008 	if (!pg) {
1009 		ti->error = "couldn't allocate priority group";
1010 		return ERR_PTR(-ENOMEM);
1011 	}
1012 	pg->m = m;
1013 
1014 	r = parse_path_selector(as, pg, ti);
1015 	if (r)
1016 		goto bad;
1017 
1018 	/*
1019 	 * read the paths
1020 	 */
1021 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
1022 	if (r)
1023 		goto bad;
1024 
1025 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
1026 	if (r)
1027 		goto bad;
1028 
1029 	nr_args = 1 + nr_selector_args;
1030 	for (i = 0; i < pg->nr_pgpaths; i++) {
1031 		struct pgpath *pgpath;
1032 		struct dm_arg_set path_args;
1033 
1034 		if (as->argc < nr_args) {
1035 			ti->error = "not enough path parameters";
1036 			r = -EINVAL;
1037 			goto bad;
1038 		}
1039 
1040 		path_args.argc = nr_args;
1041 		path_args.argv = as->argv;
1042 
1043 		pgpath = parse_path(&path_args, &pg->ps, ti);
1044 		if (IS_ERR(pgpath)) {
1045 			r = PTR_ERR(pgpath);
1046 			goto bad;
1047 		}
1048 
1049 		pgpath->pg = pg;
1050 		list_add_tail(&pgpath->list, &pg->pgpaths);
1051 		dm_consume_args(as, nr_args);
1052 	}
1053 
1054 	return pg;
1055 
1056  bad:
1057 	free_priority_group(pg, ti);
1058 	return ERR_PTR(r);
1059 }
1060 
1061 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
1062 {
1063 	unsigned int hw_argc;
1064 	int ret;
1065 	struct dm_target *ti = m->ti;
1066 
1067 	static const struct dm_arg _args[] = {
1068 		{0, 1024, "invalid number of hardware handler args"},
1069 	};
1070 
1071 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
1072 		return -EINVAL;
1073 
1074 	if (!hw_argc)
1075 		return 0;
1076 
1077 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
1078 		dm_consume_args(as, hw_argc);
1079 		DMERR("bio-based multipath doesn't allow hardware handler args");
1080 		return 0;
1081 	}
1082 
1083 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
1084 	if (!m->hw_handler_name)
1085 		return -EINVAL;
1086 
1087 	if (hw_argc > 1) {
1088 		char *p;
1089 		int i, j, len = 4;
1090 
1091 		for (i = 0; i <= hw_argc - 2; i++)
1092 			len += strlen(as->argv[i]) + 1;
1093 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1094 		if (!p) {
1095 			ti->error = "memory allocation failed";
1096 			ret = -ENOMEM;
1097 			goto fail;
1098 		}
1099 		j = sprintf(p, "%d", hw_argc - 1);
1100 		for (i = 0, p += j + 1; i <= hw_argc - 2; i++, p += j + 1)
1101 			j = sprintf(p, "%s", as->argv[i]);
1102 	}
1103 	dm_consume_args(as, hw_argc - 1);
1104 
1105 	return 0;
1106 fail:
1107 	kfree(m->hw_handler_name);
1108 	m->hw_handler_name = NULL;
1109 	return ret;
1110 }
1111 
1112 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1113 {
1114 	int r;
1115 	unsigned int argc;
1116 	struct dm_target *ti = m->ti;
1117 	const char *arg_name;
1118 
1119 	static const struct dm_arg _args[] = {
1120 		{0, 8, "invalid number of feature args"},
1121 		{1, 50, "pg_init_retries must be between 1 and 50"},
1122 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1123 	};
1124 
1125 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1126 	if (r)
1127 		return -EINVAL;
1128 
1129 	if (!argc)
1130 		return 0;
1131 
1132 	do {
1133 		arg_name = dm_shift_arg(as);
1134 		argc--;
1135 
1136 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1137 			r = queue_if_no_path(m, true, false, __func__);
1138 			continue;
1139 		}
1140 
1141 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1142 			/* no longer has any effect */
1143 			continue;
1144 		}
1145 
1146 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1147 		    (argc >= 1)) {
1148 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1149 			argc--;
1150 			continue;
1151 		}
1152 
1153 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1154 		    (argc >= 1)) {
1155 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1156 			argc--;
1157 			continue;
1158 		}
1159 
1160 		if (!strcasecmp(arg_name, "queue_mode") &&
1161 		    (argc >= 1)) {
1162 			const char *queue_mode_name = dm_shift_arg(as);
1163 
1164 			if (!strcasecmp(queue_mode_name, "bio"))
1165 				m->queue_mode = DM_TYPE_BIO_BASED;
1166 			else if (!strcasecmp(queue_mode_name, "rq") ||
1167 				 !strcasecmp(queue_mode_name, "mq"))
1168 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1169 			else {
1170 				ti->error = "Unknown 'queue_mode' requested";
1171 				r = -EINVAL;
1172 			}
1173 			argc--;
1174 			continue;
1175 		}
1176 
1177 		ti->error = "Unrecognised multipath feature request";
1178 		r = -EINVAL;
1179 	} while (argc && !r);
1180 
1181 	return r;
1182 }
1183 
1184 static int multipath_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1185 {
1186 	/* target arguments */
1187 	static const struct dm_arg _args[] = {
1188 		{0, 1024, "invalid number of priority groups"},
1189 		{0, 1024, "invalid initial priority group number"},
1190 	};
1191 
1192 	int r;
1193 	struct multipath *m;
1194 	struct dm_arg_set as;
1195 	unsigned int pg_count = 0;
1196 	unsigned int next_pg_num;
1197 
1198 	as.argc = argc;
1199 	as.argv = argv;
1200 
1201 	m = alloc_multipath(ti);
1202 	if (!m) {
1203 		ti->error = "can't allocate multipath";
1204 		return -EINVAL;
1205 	}
1206 
1207 	r = parse_features(&as, m);
1208 	if (r)
1209 		goto bad;
1210 
1211 	r = alloc_multipath_stage2(ti, m);
1212 	if (r)
1213 		goto bad;
1214 
1215 	r = parse_hw_handler(&as, m);
1216 	if (r)
1217 		goto bad;
1218 
1219 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1220 	if (r)
1221 		goto bad;
1222 
1223 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1224 	if (r)
1225 		goto bad;
1226 
1227 	if ((!m->nr_priority_groups && next_pg_num) ||
1228 	    (m->nr_priority_groups && !next_pg_num)) {
1229 		ti->error = "invalid initial priority group";
1230 		r = -EINVAL;
1231 		goto bad;
1232 	}
1233 
1234 	/* parse the priority groups */
1235 	while (as.argc) {
1236 		struct priority_group *pg;
1237 		unsigned int nr_valid_paths = atomic_read(&m->nr_valid_paths);
1238 
1239 		pg = parse_priority_group(&as, m);
1240 		if (IS_ERR(pg)) {
1241 			r = PTR_ERR(pg);
1242 			goto bad;
1243 		}
1244 
1245 		nr_valid_paths += pg->nr_pgpaths;
1246 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1247 
1248 		list_add_tail(&pg->list, &m->priority_groups);
1249 		pg_count++;
1250 		pg->pg_num = pg_count;
1251 		if (!--next_pg_num)
1252 			m->next_pg = pg;
1253 	}
1254 
1255 	if (pg_count != m->nr_priority_groups) {
1256 		ti->error = "priority group count mismatch";
1257 		r = -EINVAL;
1258 		goto bad;
1259 	}
1260 
1261 	spin_lock_irq(&m->lock);
1262 	enable_nopath_timeout(m);
1263 	spin_unlock_irq(&m->lock);
1264 
1265 	ti->num_flush_bios = 1;
1266 	ti->num_discard_bios = 1;
1267 	ti->num_write_zeroes_bios = 1;
1268 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1269 		ti->per_io_data_size = multipath_per_bio_data_size();
1270 	else
1271 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1272 
1273 	return 0;
1274 
1275  bad:
1276 	free_multipath(m);
1277 	return r;
1278 }
1279 
1280 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1281 {
1282 	DEFINE_WAIT(wait);
1283 
1284 	while (1) {
1285 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1286 
1287 		if (!atomic_read(&m->pg_init_in_progress))
1288 			break;
1289 
1290 		io_schedule();
1291 	}
1292 	finish_wait(&m->pg_init_wait, &wait);
1293 }
1294 
1295 static void flush_multipath_work(struct multipath *m)
1296 {
1297 	if (m->hw_handler_name) {
1298 		if (!atomic_read(&m->pg_init_in_progress))
1299 			goto skip;
1300 
1301 		spin_lock_irq(&m->lock);
1302 		if (atomic_read(&m->pg_init_in_progress) &&
1303 		    !test_and_set_bit(MPATHF_PG_INIT_DISABLED, &m->flags)) {
1304 			spin_unlock_irq(&m->lock);
1305 
1306 			flush_workqueue(kmpath_handlerd);
1307 			multipath_wait_for_pg_init_completion(m);
1308 
1309 			spin_lock_irq(&m->lock);
1310 			clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1311 		}
1312 		spin_unlock_irq(&m->lock);
1313 	}
1314 skip:
1315 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1316 		flush_work(&m->process_queued_bios);
1317 	flush_work(&m->trigger_event);
1318 }
1319 
1320 static void multipath_dtr(struct dm_target *ti)
1321 {
1322 	struct multipath *m = ti->private;
1323 
1324 	disable_nopath_timeout(m);
1325 	flush_multipath_work(m);
1326 	free_multipath(m);
1327 }
1328 
1329 /*
1330  * Take a path out of use.
1331  */
1332 static int fail_path(struct pgpath *pgpath)
1333 {
1334 	unsigned long flags;
1335 	struct multipath *m = pgpath->pg->m;
1336 
1337 	spin_lock_irqsave(&m->lock, flags);
1338 
1339 	if (!pgpath->is_active)
1340 		goto out;
1341 
1342 	DMWARN("%s: Failing path %s.",
1343 	       dm_table_device_name(m->ti->table),
1344 	       pgpath->path.dev->name);
1345 
1346 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1347 	pgpath->is_active = false;
1348 	pgpath->fail_count++;
1349 
1350 	atomic_dec(&m->nr_valid_paths);
1351 
1352 	if (pgpath == m->current_pgpath)
1353 		m->current_pgpath = NULL;
1354 
1355 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1356 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1357 
1358 	queue_work(dm_mpath_wq, &m->trigger_event);
1359 
1360 	enable_nopath_timeout(m);
1361 
1362 out:
1363 	spin_unlock_irqrestore(&m->lock, flags);
1364 
1365 	return 0;
1366 }
1367 
1368 /*
1369  * Reinstate a previously-failed path
1370  */
1371 static int reinstate_path(struct pgpath *pgpath)
1372 {
1373 	int r = 0, run_queue = 0;
1374 	struct multipath *m = pgpath->pg->m;
1375 	unsigned int nr_valid_paths;
1376 
1377 	spin_lock_irq(&m->lock);
1378 
1379 	if (pgpath->is_active)
1380 		goto out;
1381 
1382 	DMWARN("%s: Reinstating path %s.",
1383 	       dm_table_device_name(m->ti->table),
1384 	       pgpath->path.dev->name);
1385 
1386 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1387 	if (r)
1388 		goto out;
1389 
1390 	pgpath->is_active = true;
1391 
1392 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1393 	if (nr_valid_paths == 1) {
1394 		m->current_pgpath = NULL;
1395 		run_queue = 1;
1396 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1397 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1398 			atomic_inc(&m->pg_init_in_progress);
1399 	}
1400 
1401 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1402 		       pgpath->path.dev->name, nr_valid_paths);
1403 
1404 	schedule_work(&m->trigger_event);
1405 
1406 out:
1407 	spin_unlock_irq(&m->lock);
1408 	if (run_queue) {
1409 		dm_table_run_md_queue_async(m->ti->table);
1410 		process_queued_io_list(m);
1411 	}
1412 
1413 	if (pgpath->is_active)
1414 		disable_nopath_timeout(m);
1415 
1416 	return r;
1417 }
1418 
1419 /*
1420  * Fail or reinstate all paths that match the provided struct dm_dev.
1421  */
1422 static int action_dev(struct multipath *m, dev_t dev, action_fn action)
1423 {
1424 	int r = -EINVAL;
1425 	struct pgpath *pgpath;
1426 	struct priority_group *pg;
1427 
1428 	list_for_each_entry(pg, &m->priority_groups, list) {
1429 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1430 			if (pgpath->path.dev->bdev->bd_dev == dev)
1431 				r = action(pgpath);
1432 		}
1433 	}
1434 
1435 	return r;
1436 }
1437 
1438 /*
1439  * Temporarily try to avoid having to use the specified PG
1440  */
1441 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1442 		      bool bypassed, bool can_be_delayed)
1443 {
1444 	unsigned long flags;
1445 
1446 	spin_lock_irqsave(&m->lock, flags);
1447 
1448 	pg->bypassed = bypassed;
1449 	if (can_be_delayed && test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags))
1450 		set_bit(MPATHF_NEED_PG_SWITCH, &m->flags);
1451 	else {
1452 		m->current_pgpath = NULL;
1453 		m->current_pg = NULL;
1454 	}
1455 
1456 	spin_unlock_irqrestore(&m->lock, flags);
1457 
1458 	schedule_work(&m->trigger_event);
1459 }
1460 
1461 /*
1462  * Switch to using the specified PG from the next I/O that gets mapped
1463  */
1464 static int switch_pg_num(struct multipath *m, const char *pgstr)
1465 {
1466 	struct priority_group *pg;
1467 	unsigned int pgnum;
1468 	char dummy;
1469 
1470 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1471 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1472 		DMWARN("invalid PG number supplied to %s", __func__);
1473 		return -EINVAL;
1474 	}
1475 
1476 	spin_lock_irq(&m->lock);
1477 	list_for_each_entry(pg, &m->priority_groups, list) {
1478 		pg->bypassed = false;
1479 		if (--pgnum)
1480 			continue;
1481 
1482 		if (test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags))
1483 			set_bit(MPATHF_NEED_PG_SWITCH, &m->flags);
1484 		else {
1485 			m->current_pgpath = NULL;
1486 			m->current_pg = NULL;
1487 		}
1488 		m->next_pg = pg;
1489 	}
1490 	spin_unlock_irq(&m->lock);
1491 
1492 	schedule_work(&m->trigger_event);
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Set/clear bypassed status of a PG.
1498  * PGs are numbered upwards from 1 in the order they were declared.
1499  */
1500 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1501 {
1502 	struct priority_group *pg;
1503 	unsigned int pgnum;
1504 	char dummy;
1505 
1506 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1507 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1508 		DMWARN("invalid PG number supplied to bypass_pg");
1509 		return -EINVAL;
1510 	}
1511 
1512 	list_for_each_entry(pg, &m->priority_groups, list) {
1513 		if (!--pgnum)
1514 			break;
1515 	}
1516 
1517 	bypass_pg(m, pg, bypassed, true);
1518 	return 0;
1519 }
1520 
1521 /*
1522  * Should we retry pg_init immediately?
1523  */
1524 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1525 {
1526 	unsigned long flags;
1527 	bool limit_reached = false;
1528 
1529 	spin_lock_irqsave(&m->lock, flags);
1530 
1531 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1532 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1533 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1534 	else
1535 		limit_reached = true;
1536 
1537 	spin_unlock_irqrestore(&m->lock, flags);
1538 
1539 	return limit_reached;
1540 }
1541 
1542 static void pg_init_done(void *data, int errors)
1543 {
1544 	struct pgpath *pgpath = data;
1545 	struct priority_group *pg = pgpath->pg;
1546 	struct multipath *m = pg->m;
1547 	unsigned long flags;
1548 	bool delay_retry = false;
1549 
1550 	/* device or driver problems */
1551 	switch (errors) {
1552 	case SCSI_DH_OK:
1553 		break;
1554 	case SCSI_DH_NOSYS:
1555 		if (!m->hw_handler_name) {
1556 			errors = 0;
1557 			break;
1558 		}
1559 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1560 		      "Error %d.", m->hw_handler_name, errors);
1561 		/*
1562 		 * Fail path for now, so we do not ping pong
1563 		 */
1564 		fail_path(pgpath);
1565 		break;
1566 	case SCSI_DH_DEV_TEMP_BUSY:
1567 		/*
1568 		 * Probably doing something like FW upgrade on the
1569 		 * controller so try the other pg.
1570 		 */
1571 		bypass_pg(m, pg, true, false);
1572 		break;
1573 	case SCSI_DH_RETRY:
1574 		/* Wait before retrying. */
1575 		delay_retry = true;
1576 		fallthrough;
1577 	case SCSI_DH_IMM_RETRY:
1578 	case SCSI_DH_RES_TEMP_UNAVAIL:
1579 		if (pg_init_limit_reached(m, pgpath))
1580 			fail_path(pgpath);
1581 		errors = 0;
1582 		break;
1583 	case SCSI_DH_DEV_OFFLINED:
1584 	default:
1585 		/*
1586 		 * We probably do not want to fail the path for a device
1587 		 * error, but this is what the old dm did. In future
1588 		 * patches we can do more advanced handling.
1589 		 */
1590 		fail_path(pgpath);
1591 	}
1592 
1593 	spin_lock_irqsave(&m->lock, flags);
1594 	if (errors) {
1595 		if (pgpath == m->current_pgpath) {
1596 			DMERR("Could not failover device. Error %d.", errors);
1597 			m->current_pgpath = NULL;
1598 			m->current_pg = NULL;
1599 		}
1600 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1601 		pg->bypassed = false;
1602 
1603 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1604 		/* Activations of other paths are still on going */
1605 		goto out;
1606 
1607 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1608 		if (delay_retry)
1609 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1610 		else
1611 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1612 
1613 		if (__pg_init_all_paths(m))
1614 			goto out;
1615 	}
1616 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1617 
1618 	process_queued_io_list(m);
1619 
1620 	/*
1621 	 * Wake up any thread waiting to suspend.
1622 	 */
1623 	wake_up(&m->pg_init_wait);
1624 
1625 out:
1626 	spin_unlock_irqrestore(&m->lock, flags);
1627 }
1628 
1629 static void activate_or_offline_path(struct pgpath *pgpath)
1630 {
1631 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1632 
1633 	if (pgpath->is_active && !blk_queue_dying(q))
1634 		scsi_dh_activate(q, pg_init_done, pgpath);
1635 	else
1636 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1637 }
1638 
1639 static void activate_path_work(struct work_struct *work)
1640 {
1641 	struct pgpath *pgpath =
1642 		container_of(work, struct pgpath, activate_path.work);
1643 
1644 	activate_or_offline_path(pgpath);
1645 }
1646 
1647 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1648 			    blk_status_t error, union map_info *map_context)
1649 {
1650 	struct dm_mpath_io *mpio = get_mpio(map_context);
1651 	struct pgpath *pgpath = mpio->pgpath;
1652 	int r = DM_ENDIO_DONE;
1653 
1654 	/*
1655 	 * We don't queue any clone request inside the multipath target
1656 	 * during end I/O handling, since those clone requests don't have
1657 	 * bio clones.  If we queue them inside the multipath target,
1658 	 * we need to make bio clones, that requires memory allocation.
1659 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1660 	 *  don't have bio clones.)
1661 	 * Instead of queueing the clone request here, we queue the original
1662 	 * request into dm core, which will remake a clone request and
1663 	 * clone bios for it and resubmit it later.
1664 	 */
1665 	if (error && blk_path_error(error)) {
1666 		struct multipath *m = ti->private;
1667 
1668 		if (error == BLK_STS_RESOURCE)
1669 			r = DM_ENDIO_DELAY_REQUEUE;
1670 		else
1671 			r = DM_ENDIO_REQUEUE;
1672 
1673 		if (pgpath)
1674 			fail_path(pgpath);
1675 
1676 		if (!atomic_read(&m->nr_valid_paths) &&
1677 		    !must_push_back_rq(m)) {
1678 			if (error == BLK_STS_IOERR)
1679 				dm_report_EIO(m);
1680 			/* complete with the original error */
1681 			r = DM_ENDIO_DONE;
1682 		}
1683 	}
1684 
1685 	if (pgpath) {
1686 		struct path_selector *ps = &pgpath->pg->ps;
1687 
1688 		if (ps->type->end_io)
1689 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1690 					 clone->io_start_time_ns);
1691 	}
1692 
1693 	return r;
1694 }
1695 
1696 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1697 				blk_status_t *error)
1698 {
1699 	struct multipath *m = ti->private;
1700 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1701 	struct pgpath *pgpath = mpio->pgpath;
1702 	unsigned long flags;
1703 	int r = DM_ENDIO_DONE;
1704 
1705 	if (!*error || !blk_path_error(*error))
1706 		goto done;
1707 
1708 	if (pgpath)
1709 		fail_path(pgpath);
1710 
1711 	if (!atomic_read(&m->nr_valid_paths)) {
1712 		spin_lock_irqsave(&m->lock, flags);
1713 		if (!test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1714 			if (__must_push_back(m)) {
1715 				r = DM_ENDIO_REQUEUE;
1716 			} else {
1717 				dm_report_EIO(m);
1718 				*error = BLK_STS_IOERR;
1719 			}
1720 			spin_unlock_irqrestore(&m->lock, flags);
1721 			goto done;
1722 		}
1723 		spin_unlock_irqrestore(&m->lock, flags);
1724 	}
1725 
1726 	multipath_queue_bio(m, clone);
1727 	r = DM_ENDIO_INCOMPLETE;
1728 done:
1729 	if (pgpath) {
1730 		struct path_selector *ps = &pgpath->pg->ps;
1731 
1732 		if (ps->type->end_io)
1733 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes,
1734 					 (mpio->start_time_ns ?:
1735 					  dm_start_time_ns_from_clone(clone)));
1736 	}
1737 
1738 	return r;
1739 }
1740 
1741 /*
1742  * Suspend with flush can't complete until all the I/O is processed
1743  * so if the last path fails we must error any remaining I/O.
1744  * - Note that if the freeze_bdev fails while suspending, the
1745  *   queue_if_no_path state is lost - userspace should reset it.
1746  * Otherwise, during noflush suspend, queue_if_no_path will not change.
1747  */
1748 static void multipath_presuspend(struct dm_target *ti)
1749 {
1750 	struct multipath *m = ti->private;
1751 
1752 	spin_lock_irq(&m->lock);
1753 	m->is_suspending = true;
1754 	spin_unlock_irq(&m->lock);
1755 	/* FIXME: bio-based shouldn't need to always disable queue_if_no_path */
1756 	if (m->queue_mode == DM_TYPE_BIO_BASED || !dm_noflush_suspending(m->ti))
1757 		queue_if_no_path(m, false, true, __func__);
1758 }
1759 
1760 static void multipath_postsuspend(struct dm_target *ti)
1761 {
1762 	struct multipath *m = ti->private;
1763 
1764 	mutex_lock(&m->work_mutex);
1765 	flush_multipath_work(m);
1766 	mutex_unlock(&m->work_mutex);
1767 }
1768 
1769 /*
1770  * Restore the queue_if_no_path setting.
1771  */
1772 static void multipath_resume(struct dm_target *ti)
1773 {
1774 	struct multipath *m = ti->private;
1775 
1776 	spin_lock_irq(&m->lock);
1777 	m->is_suspending = false;
1778 	if (test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags)) {
1779 		set_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags);
1780 		clear_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags);
1781 	}
1782 
1783 	DMDEBUG("%s: %s finished; QIFNP = %d; SQIFNP = %d",
1784 		dm_table_device_name(m->ti->table), __func__,
1785 		test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags),
1786 		test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1787 
1788 	spin_unlock_irq(&m->lock);
1789 }
1790 
1791 /*
1792  * Info output has the following format:
1793  * num_multipath_feature_args [multipath_feature_args]*
1794  * num_handler_status_args [handler_status_args]*
1795  * num_groups init_group_number
1796  *            [A|D|E num_ps_status_args [ps_status_args]*
1797  *             num_paths num_selector_args
1798  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1799  *
1800  * Table output has the following format (identical to the constructor string):
1801  * num_feature_args [features_args]*
1802  * num_handler_args hw_handler [hw_handler_args]*
1803  * num_groups init_group_number
1804  *     [priority selector-name num_ps_args [ps_args]*
1805  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1806  */
1807 static void multipath_status(struct dm_target *ti, status_type_t type,
1808 			     unsigned int status_flags, char *result, unsigned int maxlen)
1809 {
1810 	int sz = 0, pg_counter, pgpath_counter;
1811 	struct multipath *m = ti->private;
1812 	struct priority_group *pg;
1813 	struct pgpath *p;
1814 	unsigned int pg_num;
1815 	char state;
1816 
1817 	spin_lock_irq(&m->lock);
1818 
1819 	/* Features */
1820 	if (type == STATUSTYPE_INFO)
1821 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1822 		       atomic_read(&m->pg_init_count));
1823 	else {
1824 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1825 			      (m->pg_init_retries > 0) * 2 +
1826 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1827 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1828 
1829 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1830 			DMEMIT("queue_if_no_path ");
1831 		if (m->pg_init_retries)
1832 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1833 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1834 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1835 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1836 			switch (m->queue_mode) {
1837 			case DM_TYPE_BIO_BASED:
1838 				DMEMIT("queue_mode bio ");
1839 				break;
1840 			default:
1841 				WARN_ON_ONCE(true);
1842 				break;
1843 			}
1844 		}
1845 	}
1846 
1847 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1848 		DMEMIT("0 ");
1849 	else
1850 		DMEMIT("1 %s ", m->hw_handler_name);
1851 
1852 	DMEMIT("%u ", m->nr_priority_groups);
1853 
1854 	if (m->current_pg)
1855 		pg_num = m->current_pg->pg_num;
1856 	else if (m->next_pg)
1857 		pg_num = m->next_pg->pg_num;
1858 	else
1859 		pg_num = (m->nr_priority_groups ? 1 : 0);
1860 
1861 	DMEMIT("%u ", pg_num);
1862 
1863 	switch (type) {
1864 	case STATUSTYPE_INFO:
1865 		list_for_each_entry(pg, &m->priority_groups, list) {
1866 			if (pg->bypassed)
1867 				state = 'D';	/* Disabled */
1868 			else if (pg == m->current_pg)
1869 				state = 'A';	/* Currently Active */
1870 			else
1871 				state = 'E';	/* Enabled */
1872 
1873 			DMEMIT("%c ", state);
1874 
1875 			if (pg->ps.type->status)
1876 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1877 							  result + sz,
1878 							  maxlen - sz);
1879 			else
1880 				DMEMIT("0 ");
1881 
1882 			DMEMIT("%u %u ", pg->nr_pgpaths,
1883 			       pg->ps.type->info_args);
1884 
1885 			list_for_each_entry(p, &pg->pgpaths, list) {
1886 				DMEMIT("%s %s %u ", p->path.dev->name,
1887 				       p->is_active ? "A" : "F",
1888 				       p->fail_count);
1889 				if (pg->ps.type->status)
1890 					sz += pg->ps.type->status(&pg->ps,
1891 					      &p->path, type, result + sz,
1892 					      maxlen - sz);
1893 			}
1894 		}
1895 		break;
1896 
1897 	case STATUSTYPE_TABLE:
1898 		list_for_each_entry(pg, &m->priority_groups, list) {
1899 			DMEMIT("%s ", pg->ps.type->name);
1900 
1901 			if (pg->ps.type->status)
1902 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1903 							  result + sz,
1904 							  maxlen - sz);
1905 			else
1906 				DMEMIT("0 ");
1907 
1908 			DMEMIT("%u %u ", pg->nr_pgpaths,
1909 			       pg->ps.type->table_args);
1910 
1911 			list_for_each_entry(p, &pg->pgpaths, list) {
1912 				DMEMIT("%s ", p->path.dev->name);
1913 				if (pg->ps.type->status)
1914 					sz += pg->ps.type->status(&pg->ps,
1915 					      &p->path, type, result + sz,
1916 					      maxlen - sz);
1917 			}
1918 		}
1919 		break;
1920 
1921 	case STATUSTYPE_IMA:
1922 		sz = 0; /*reset the result pointer*/
1923 
1924 		DMEMIT_TARGET_NAME_VERSION(ti->type);
1925 		DMEMIT(",nr_priority_groups=%u", m->nr_priority_groups);
1926 
1927 		pg_counter = 0;
1928 		list_for_each_entry(pg, &m->priority_groups, list) {
1929 			if (pg->bypassed)
1930 				state = 'D';	/* Disabled */
1931 			else if (pg == m->current_pg)
1932 				state = 'A';	/* Currently Active */
1933 			else
1934 				state = 'E';	/* Enabled */
1935 			DMEMIT(",pg_state_%d=%c", pg_counter, state);
1936 			DMEMIT(",nr_pgpaths_%d=%u", pg_counter, pg->nr_pgpaths);
1937 			DMEMIT(",path_selector_name_%d=%s", pg_counter, pg->ps.type->name);
1938 
1939 			pgpath_counter = 0;
1940 			list_for_each_entry(p, &pg->pgpaths, list) {
1941 				DMEMIT(",path_name_%d_%d=%s,is_active_%d_%d=%c,fail_count_%d_%d=%u",
1942 				       pg_counter, pgpath_counter, p->path.dev->name,
1943 				       pg_counter, pgpath_counter, p->is_active ? 'A' : 'F',
1944 				       pg_counter, pgpath_counter, p->fail_count);
1945 				if (pg->ps.type->status) {
1946 					DMEMIT(",path_selector_status_%d_%d=",
1947 					       pg_counter, pgpath_counter);
1948 					sz += pg->ps.type->status(&pg->ps, &p->path,
1949 								  type, result + sz,
1950 								  maxlen - sz);
1951 				}
1952 				pgpath_counter++;
1953 			}
1954 			pg_counter++;
1955 		}
1956 		DMEMIT(";");
1957 		break;
1958 	}
1959 
1960 	spin_unlock_irq(&m->lock);
1961 }
1962 
1963 static int multipath_message(struct dm_target *ti, unsigned int argc, char **argv,
1964 			     char *result, unsigned int maxlen)
1965 {
1966 	int r = -EINVAL;
1967 	dev_t dev;
1968 	struct multipath *m = ti->private;
1969 	action_fn action;
1970 
1971 	mutex_lock(&m->work_mutex);
1972 
1973 	if (dm_suspended(ti)) {
1974 		r = -EBUSY;
1975 		goto out;
1976 	}
1977 
1978 	if (argc == 1) {
1979 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1980 			r = queue_if_no_path(m, true, false, __func__);
1981 			spin_lock_irq(&m->lock);
1982 			enable_nopath_timeout(m);
1983 			spin_unlock_irq(&m->lock);
1984 			goto out;
1985 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1986 			r = queue_if_no_path(m, false, false, __func__);
1987 			disable_nopath_timeout(m);
1988 			goto out;
1989 		}
1990 	}
1991 
1992 	if (argc != 2) {
1993 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1994 		goto out;
1995 	}
1996 
1997 	if (!strcasecmp(argv[0], "disable_group")) {
1998 		r = bypass_pg_num(m, argv[1], true);
1999 		goto out;
2000 	} else if (!strcasecmp(argv[0], "enable_group")) {
2001 		r = bypass_pg_num(m, argv[1], false);
2002 		goto out;
2003 	} else if (!strcasecmp(argv[0], "switch_group")) {
2004 		r = switch_pg_num(m, argv[1]);
2005 		goto out;
2006 	} else if (!strcasecmp(argv[0], "reinstate_path"))
2007 		action = reinstate_path;
2008 	else if (!strcasecmp(argv[0], "fail_path"))
2009 		action = fail_path;
2010 	else {
2011 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
2012 		goto out;
2013 	}
2014 
2015 	r = dm_devt_from_path(argv[1], &dev);
2016 	if (r) {
2017 		DMWARN("message: error getting device %s",
2018 		       argv[1]);
2019 		goto out;
2020 	}
2021 
2022 	r = action_dev(m, dev, action);
2023 
2024 out:
2025 	mutex_unlock(&m->work_mutex);
2026 	return r;
2027 }
2028 
2029 /*
2030  * Perform a minimal read from the given path to find out whether the
2031  * path still works.  If a path error occurs, fail it.
2032  */
2033 static int probe_path(struct pgpath *pgpath)
2034 {
2035 	struct block_device *bdev = pgpath->path.dev->bdev;
2036 	unsigned int read_size = bdev_logical_block_size(bdev);
2037 	struct page *page;
2038 	struct bio *bio;
2039 	blk_status_t status;
2040 	int r = 0;
2041 
2042 	if (WARN_ON_ONCE(read_size > PAGE_SIZE))
2043 		return -EINVAL;
2044 
2045 	page = alloc_page(GFP_KERNEL);
2046 	if (!page)
2047 		return -ENOMEM;
2048 
2049 	/* Perform a minimal read: Sector 0, length read_size */
2050 	bio = bio_alloc(bdev, 1, REQ_OP_READ, GFP_KERNEL);
2051 	if (!bio) {
2052 		r = -ENOMEM;
2053 		goto out;
2054 	}
2055 
2056 	bio->bi_iter.bi_sector = 0;
2057 	__bio_add_page(bio, page, read_size, 0);
2058 	submit_bio_wait(bio);
2059 	status = bio->bi_status;
2060 	bio_put(bio);
2061 
2062 	if (status && blk_path_error(status))
2063 		fail_path(pgpath);
2064 
2065 out:
2066 	__free_page(page);
2067 	return r;
2068 }
2069 
2070 /*
2071  * Probe all active paths in current_pg to find out whether they still work.
2072  * Fail all paths that do not work.
2073  *
2074  * Return -ENOTCONN if no valid path is left (even outside of current_pg). We
2075  * cannot probe paths in other pgs without switching current_pg, so if valid
2076  * paths are only in different pgs, they may or may not work. Additionally
2077  * we should not probe paths in a pathgroup that is in the process of
2078  * Initializing. Userspace can submit a request and we'll switch and wait
2079  * for the pathgroup to be initialized. If the request fails, it may need to
2080  * probe again.
2081  */
2082 static int probe_active_paths(struct multipath *m)
2083 {
2084 	struct pgpath *pgpath;
2085 	struct priority_group *pg = NULL;
2086 	int r = 0;
2087 
2088 	spin_lock_irq(&m->lock);
2089 	if (test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags)) {
2090 		wait_event_lock_irq(m->probe_wait,
2091 				    !test_bit(MPATHF_DELAY_PG_SWITCH, &m->flags),
2092 				    m->lock);
2093 		/*
2094 		 * if we waited because a probe was already in progress,
2095 		 * and it probed the current active pathgroup, don't
2096 		 * reprobe. Just return the number of valid paths
2097 		 */
2098 		if (m->current_pg == m->last_probed_pg)
2099 			goto skip_probe;
2100 	}
2101 	if (!m->current_pg || m->is_suspending ||
2102 	    test_bit(MPATHF_QUEUE_IO, &m->flags))
2103 		goto skip_probe;
2104 	set_bit(MPATHF_DELAY_PG_SWITCH, &m->flags);
2105 	pg = m->last_probed_pg = m->current_pg;
2106 	spin_unlock_irq(&m->lock);
2107 
2108 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2109 		if (pg != READ_ONCE(m->current_pg) ||
2110 		    READ_ONCE(m->is_suspending))
2111 			goto out;
2112 		if (!pgpath->is_active)
2113 			continue;
2114 
2115 		r = probe_path(pgpath);
2116 		if (r < 0)
2117 			goto out;
2118 	}
2119 
2120 out:
2121 	spin_lock_irq(&m->lock);
2122 	clear_bit(MPATHF_DELAY_PG_SWITCH, &m->flags);
2123 	if (test_and_clear_bit(MPATHF_NEED_PG_SWITCH, &m->flags)) {
2124 		m->current_pgpath = NULL;
2125 		m->current_pg = NULL;
2126 	}
2127 skip_probe:
2128 	if (r == 0 && !atomic_read(&m->nr_valid_paths))
2129 		r = -ENOTCONN;
2130 	spin_unlock_irq(&m->lock);
2131 	if (pg)
2132 		wake_up(&m->probe_wait);
2133 	return r;
2134 }
2135 
2136 static int multipath_prepare_ioctl(struct dm_target *ti,
2137 				   struct block_device **bdev,
2138 				   unsigned int cmd, unsigned long arg,
2139 				   bool *forward)
2140 {
2141 	struct multipath *m = ti->private;
2142 	struct pgpath *pgpath;
2143 	int r;
2144 
2145 	if (_IOC_TYPE(cmd) == DM_IOCTL) {
2146 		*forward = false;
2147 		switch (cmd) {
2148 		case DM_MPATH_PROBE_PATHS:
2149 			return probe_active_paths(m);
2150 		default:
2151 			return -ENOTTY;
2152 		}
2153 	}
2154 
2155 	pgpath = READ_ONCE(m->current_pgpath);
2156 	if (!pgpath || !mpath_double_check_test_bit(MPATHF_QUEUE_IO, m))
2157 		pgpath = choose_pgpath(m, 0);
2158 
2159 	if (pgpath) {
2160 		if (!mpath_double_check_test_bit(MPATHF_QUEUE_IO, m)) {
2161 			*bdev = pgpath->path.dev->bdev;
2162 			r = 0;
2163 		} else {
2164 			/* pg_init has not started or completed */
2165 			r = -ENOTCONN;
2166 		}
2167 	} else {
2168 		/* No path is available */
2169 		r = -EIO;
2170 		spin_lock_irq(&m->lock);
2171 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
2172 			r = -ENOTCONN;
2173 		spin_unlock_irq(&m->lock);
2174 	}
2175 
2176 	if (r == -ENOTCONN) {
2177 		if (!READ_ONCE(m->current_pg)) {
2178 			/* Path status changed, redo selection */
2179 			(void) choose_pgpath(m, 0);
2180 		}
2181 		spin_lock_irq(&m->lock);
2182 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
2183 			(void) __pg_init_all_paths(m);
2184 		spin_unlock_irq(&m->lock);
2185 		dm_table_run_md_queue_async(m->ti->table);
2186 		process_queued_io_list(m);
2187 	}
2188 
2189 	/*
2190 	 * Only pass ioctls through if the device sizes match exactly.
2191 	 */
2192 	if (!r && ti->len != bdev_nr_sectors((*bdev)))
2193 		return 1;
2194 	return r;
2195 }
2196 
2197 static int multipath_iterate_devices(struct dm_target *ti,
2198 				     iterate_devices_callout_fn fn, void *data)
2199 {
2200 	struct multipath *m = ti->private;
2201 	struct priority_group *pg;
2202 	struct pgpath *p;
2203 	int ret = 0;
2204 
2205 	list_for_each_entry(pg, &m->priority_groups, list) {
2206 		list_for_each_entry(p, &pg->pgpaths, list) {
2207 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
2208 			if (ret)
2209 				goto out;
2210 		}
2211 	}
2212 
2213 out:
2214 	return ret;
2215 }
2216 
2217 static int pgpath_busy(struct pgpath *pgpath)
2218 {
2219 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
2220 
2221 	return blk_lld_busy(q);
2222 }
2223 
2224 /*
2225  * We return "busy", only when we can map I/Os but underlying devices
2226  * are busy (so even if we map I/Os now, the I/Os will wait on
2227  * the underlying queue).
2228  * In other words, if we want to kill I/Os or queue them inside us
2229  * due to map unavailability, we don't return "busy".  Otherwise,
2230  * dm core won't give us the I/Os and we can't do what we want.
2231  */
2232 static int multipath_busy(struct dm_target *ti)
2233 {
2234 	bool busy = false, has_active = false;
2235 	struct multipath *m = ti->private;
2236 	struct priority_group *pg, *next_pg;
2237 	struct pgpath *pgpath;
2238 
2239 	/* pg_init in progress */
2240 	if (atomic_read(&m->pg_init_in_progress))
2241 		return true;
2242 
2243 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
2244 	if (!atomic_read(&m->nr_valid_paths)) {
2245 		unsigned long flags;
2246 
2247 		spin_lock_irqsave(&m->lock, flags);
2248 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
2249 			spin_unlock_irqrestore(&m->lock, flags);
2250 			return (m->queue_mode != DM_TYPE_REQUEST_BASED);
2251 		}
2252 		spin_unlock_irqrestore(&m->lock, flags);
2253 	}
2254 
2255 	/* Guess which priority_group will be used at next mapping time */
2256 	pg = READ_ONCE(m->current_pg);
2257 	next_pg = READ_ONCE(m->next_pg);
2258 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
2259 		pg = next_pg;
2260 
2261 	if (!pg) {
2262 		/*
2263 		 * We don't know which pg will be used at next mapping time.
2264 		 * We don't call choose_pgpath() here to avoid to trigger
2265 		 * pg_init just by busy checking.
2266 		 * So we don't know whether underlying devices we will be using
2267 		 * at next mapping time are busy or not. Just try mapping.
2268 		 */
2269 		return busy;
2270 	}
2271 
2272 	/*
2273 	 * If there is one non-busy active path at least, the path selector
2274 	 * will be able to select it. So we consider such a pg as not busy.
2275 	 */
2276 	busy = true;
2277 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
2278 		if (pgpath->is_active) {
2279 			has_active = true;
2280 			if (!pgpath_busy(pgpath)) {
2281 				busy = false;
2282 				break;
2283 			}
2284 		}
2285 	}
2286 
2287 	if (!has_active) {
2288 		/*
2289 		 * No active path in this pg, so this pg won't be used and
2290 		 * the current_pg will be changed at next mapping time.
2291 		 * We need to try mapping to determine it.
2292 		 */
2293 		busy = false;
2294 	}
2295 
2296 	return busy;
2297 }
2298 
2299 /*
2300  *---------------------------------------------------------------
2301  * Module setup
2302  *---------------------------------------------------------------
2303  */
2304 static struct target_type multipath_target = {
2305 	.name = "multipath",
2306 	.version = {1, 15, 0},
2307 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2308 		    DM_TARGET_PASSES_INTEGRITY | DM_TARGET_ATOMIC_WRITES,
2309 	.module = THIS_MODULE,
2310 	.ctr = multipath_ctr,
2311 	.dtr = multipath_dtr,
2312 	.clone_and_map_rq = multipath_clone_and_map,
2313 	.release_clone_rq = multipath_release_clone,
2314 	.rq_end_io = multipath_end_io,
2315 	.map = multipath_map_bio,
2316 	.end_io = multipath_end_io_bio,
2317 	.presuspend = multipath_presuspend,
2318 	.postsuspend = multipath_postsuspend,
2319 	.resume = multipath_resume,
2320 	.status = multipath_status,
2321 	.message = multipath_message,
2322 	.prepare_ioctl = multipath_prepare_ioctl,
2323 	.iterate_devices = multipath_iterate_devices,
2324 	.busy = multipath_busy,
2325 };
2326 
2327 static int __init dm_multipath_init(void)
2328 {
2329 	int r = -ENOMEM;
2330 
2331 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2332 	if (!kmultipathd) {
2333 		DMERR("failed to create workqueue kmpathd");
2334 		goto bad_alloc_kmultipathd;
2335 	}
2336 
2337 	/*
2338 	 * A separate workqueue is used to handle the device handlers
2339 	 * to avoid overloading existing workqueue. Overloading the
2340 	 * old workqueue would also create a bottleneck in the
2341 	 * path of the storage hardware device activation.
2342 	 */
2343 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2344 						  WQ_MEM_RECLAIM);
2345 	if (!kmpath_handlerd) {
2346 		DMERR("failed to create workqueue kmpath_handlerd");
2347 		goto bad_alloc_kmpath_handlerd;
2348 	}
2349 
2350 	dm_mpath_wq = alloc_workqueue("dm_mpath_wq", 0, 0);
2351 	if (!dm_mpath_wq) {
2352 		DMERR("failed to create workqueue dm_mpath_wq");
2353 		goto bad_alloc_dm_mpath_wq;
2354 	}
2355 
2356 	r = dm_register_target(&multipath_target);
2357 	if (r < 0)
2358 		goto bad_register_target;
2359 
2360 	return 0;
2361 
2362 bad_register_target:
2363 	destroy_workqueue(dm_mpath_wq);
2364 bad_alloc_dm_mpath_wq:
2365 	destroy_workqueue(kmpath_handlerd);
2366 bad_alloc_kmpath_handlerd:
2367 	destroy_workqueue(kmultipathd);
2368 bad_alloc_kmultipathd:
2369 	return r;
2370 }
2371 
2372 static void __exit dm_multipath_exit(void)
2373 {
2374 	destroy_workqueue(dm_mpath_wq);
2375 	destroy_workqueue(kmpath_handlerd);
2376 	destroy_workqueue(kmultipathd);
2377 
2378 	dm_unregister_target(&multipath_target);
2379 }
2380 
2381 module_init(dm_multipath_init);
2382 module_exit(dm_multipath_exit);
2383 
2384 module_param_named(queue_if_no_path_timeout_secs, queue_if_no_path_timeout_secs, ulong, 0644);
2385 MODULE_PARM_DESC(queue_if_no_path_timeout_secs, "No available paths queue IO timeout in seconds");
2386 
2387 MODULE_DESCRIPTION(DM_NAME " multipath target");
2388 MODULE_AUTHOR("Sistina Software <dm-devel@lists.linux.dev>");
2389 MODULE_LICENSE("GPL");
2390