xref: /linux/drivers/hwtracing/coresight/coresight-etm-perf.c (revision c26f4fbd58375bd6ef74f95eb73d61762ad97c59)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/coresight.h>
9 #include <linux/coresight-pmu.h>
10 #include <linux/cpumask.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/perf_event.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/stringhash.h>
19 #include <linux/types.h>
20 #include <linux/workqueue.h>
21 
22 #include "coresight-config.h"
23 #include "coresight-etm-perf.h"
24 #include "coresight-priv.h"
25 #include "coresight-syscfg.h"
26 #include "coresight-trace-id.h"
27 
28 static struct pmu etm_pmu;
29 static bool etm_perf_up;
30 
31 /*
32  * An ETM context for a running event includes the perf aux handle
33  * and aux_data. For ETM, the aux_data (etm_event_data), consists of
34  * the trace path and the sink configuration. The event data is accessible
35  * via perf_get_aux(handle). However, a sink could "end" a perf output
36  * handle via the IRQ handler. And if the "sink" encounters a failure
37  * to "begin" another session (e.g due to lack of space in the buffer),
38  * the handle will be cleared. Thus, the event_data may not be accessible
39  * from the handle when we get to the etm_event_stop(), which is required
40  * for stopping the trace path. The event_data is guaranteed to stay alive
41  * until "free_aux()", which cannot happen as long as the event is active on
42  * the ETM. Thus the event_data for the session must be part of the ETM context
43  * to make sure we can disable the trace path.
44  */
45 struct etm_ctxt {
46 	struct perf_output_handle handle;
47 	struct etm_event_data *event_data;
48 };
49 
50 static DEFINE_PER_CPU(struct etm_ctxt, etm_ctxt);
51 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
52 
53 /*
54  * The PMU formats were orignally for ETMv3.5/PTM's ETMCR 'config';
55  * now take them as general formats and apply on all ETMs.
56  */
57 PMU_FORMAT_ATTR(branch_broadcast, "config:"__stringify(ETM_OPT_BRANCH_BROADCAST));
58 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
59 /* contextid1 enables tracing CONTEXTIDR_EL1 for ETMv4 */
60 PMU_FORMAT_ATTR(contextid1,	"config:" __stringify(ETM_OPT_CTXTID));
61 /* contextid2 enables tracing CONTEXTIDR_EL2 for ETMv4 */
62 PMU_FORMAT_ATTR(contextid2,	"config:" __stringify(ETM_OPT_CTXTID2));
63 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
64 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
65 /* preset - if sink ID is used as a configuration selector */
66 PMU_FORMAT_ATTR(preset,		"config:0-3");
67 /* Sink ID - same for all ETMs */
68 PMU_FORMAT_ATTR(sinkid,		"config2:0-31");
69 /* config ID - set if a system configuration is selected */
70 PMU_FORMAT_ATTR(configid,	"config2:32-63");
71 PMU_FORMAT_ATTR(cc_threshold,	"config3:0-11");
72 
73 
74 /*
75  * contextid always traces the "PID".  The PID is in CONTEXTIDR_EL1
76  * when the kernel is running at EL1; when the kernel is at EL2,
77  * the PID is in CONTEXTIDR_EL2.
78  */
format_attr_contextid_show(struct device * dev,struct device_attribute * attr,char * page)79 static ssize_t format_attr_contextid_show(struct device *dev,
80 					  struct device_attribute *attr,
81 					  char *page)
82 {
83 	int pid_fmt = ETM_OPT_CTXTID;
84 
85 #if IS_ENABLED(CONFIG_CORESIGHT_SOURCE_ETM4X)
86 	pid_fmt = is_kernel_in_hyp_mode() ? ETM_OPT_CTXTID2 : ETM_OPT_CTXTID;
87 #endif
88 	return sprintf(page, "config:%d\n", pid_fmt);
89 }
90 
91 static struct device_attribute format_attr_contextid =
92 	__ATTR(contextid, 0444, format_attr_contextid_show, NULL);
93 
94 static struct attribute *etm_config_formats_attr[] = {
95 	&format_attr_cycacc.attr,
96 	&format_attr_contextid.attr,
97 	&format_attr_contextid1.attr,
98 	&format_attr_contextid2.attr,
99 	&format_attr_timestamp.attr,
100 	&format_attr_retstack.attr,
101 	&format_attr_sinkid.attr,
102 	&format_attr_preset.attr,
103 	&format_attr_configid.attr,
104 	&format_attr_branch_broadcast.attr,
105 	&format_attr_cc_threshold.attr,
106 	NULL,
107 };
108 
109 static const struct attribute_group etm_pmu_format_group = {
110 	.name   = "format",
111 	.attrs  = etm_config_formats_attr,
112 };
113 
114 static struct attribute *etm_config_sinks_attr[] = {
115 	NULL,
116 };
117 
118 static const struct attribute_group etm_pmu_sinks_group = {
119 	.name   = "sinks",
120 	.attrs  = etm_config_sinks_attr,
121 };
122 
123 static struct attribute *etm_config_events_attr[] = {
124 	NULL,
125 };
126 
127 static const struct attribute_group etm_pmu_events_group = {
128 	.name   = "events",
129 	.attrs  = etm_config_events_attr,
130 };
131 
132 static const struct attribute_group *etm_pmu_attr_groups[] = {
133 	&etm_pmu_format_group,
134 	&etm_pmu_sinks_group,
135 	&etm_pmu_events_group,
136 	NULL,
137 };
138 
139 static inline struct coresight_path **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)140 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
141 {
142 	return per_cpu_ptr(data->path, cpu);
143 }
144 
145 static inline struct coresight_path *
etm_event_cpu_path(struct etm_event_data * data,int cpu)146 etm_event_cpu_path(struct etm_event_data *data, int cpu)
147 {
148 	return *etm_event_cpu_path_ptr(data, cpu);
149 }
150 
etm_event_read(struct perf_event * event)151 static void etm_event_read(struct perf_event *event) {}
152 
etm_addr_filters_alloc(struct perf_event * event)153 static int etm_addr_filters_alloc(struct perf_event *event)
154 {
155 	struct etm_filters *filters;
156 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
157 
158 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
159 	if (!filters)
160 		return -ENOMEM;
161 
162 	if (event->parent)
163 		memcpy(filters, event->parent->hw.addr_filters,
164 		       sizeof(*filters));
165 
166 	event->hw.addr_filters = filters;
167 
168 	return 0;
169 }
170 
etm_event_destroy(struct perf_event * event)171 static void etm_event_destroy(struct perf_event *event)
172 {
173 	kfree(event->hw.addr_filters);
174 	event->hw.addr_filters = NULL;
175 }
176 
etm_event_init(struct perf_event * event)177 static int etm_event_init(struct perf_event *event)
178 {
179 	int ret = 0;
180 
181 	if (event->attr.type != etm_pmu.type) {
182 		ret = -ENOENT;
183 		goto out;
184 	}
185 
186 	ret = etm_addr_filters_alloc(event);
187 	if (ret)
188 		goto out;
189 
190 	event->destroy = etm_event_destroy;
191 out:
192 	return ret;
193 }
194 
free_sink_buffer(struct etm_event_data * event_data)195 static void free_sink_buffer(struct etm_event_data *event_data)
196 {
197 	int cpu;
198 	cpumask_t *mask = &event_data->mask;
199 	struct coresight_device *sink;
200 
201 	if (!event_data->snk_config)
202 		return;
203 
204 	if (WARN_ON(cpumask_empty(mask)))
205 		return;
206 
207 	cpu = cpumask_first(mask);
208 	sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
209 	sink_ops(sink)->free_buffer(event_data->snk_config);
210 }
211 
free_event_data(struct work_struct * work)212 static void free_event_data(struct work_struct *work)
213 {
214 	int cpu;
215 	cpumask_t *mask;
216 	struct etm_event_data *event_data;
217 
218 	event_data = container_of(work, struct etm_event_data, work);
219 	mask = &event_data->mask;
220 
221 	/* Free the sink buffers, if there are any */
222 	free_sink_buffer(event_data);
223 
224 	/* clear any configuration we were using */
225 	if (event_data->cfg_hash)
226 		cscfg_deactivate_config(event_data->cfg_hash);
227 
228 	for_each_cpu(cpu, mask) {
229 		struct coresight_path **ppath;
230 
231 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
232 		if (!(IS_ERR_OR_NULL(*ppath))) {
233 			struct coresight_device *sink = coresight_get_sink(*ppath);
234 
235 			/*
236 			 * Mark perf event as done for trace id allocator, but don't call
237 			 * coresight_trace_id_put_cpu_id_map() on individual IDs. Perf sessions
238 			 * never free trace IDs to ensure that the ID associated with a CPU
239 			 * cannot change during their and other's concurrent sessions. Instead,
240 			 * a refcount is used so that the last event to call
241 			 * coresight_trace_id_perf_stop() frees all IDs.
242 			 */
243 			coresight_trace_id_perf_stop(&sink->perf_sink_id_map);
244 
245 			coresight_release_path(*ppath);
246 		}
247 		*ppath = NULL;
248 	}
249 
250 	free_percpu(event_data->path);
251 	kfree(event_data);
252 }
253 
alloc_event_data(int cpu)254 static void *alloc_event_data(int cpu)
255 {
256 	cpumask_t *mask;
257 	struct etm_event_data *event_data;
258 
259 	/* First get memory for the session's data */
260 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
261 	if (!event_data)
262 		return NULL;
263 
264 
265 	mask = &event_data->mask;
266 	if (cpu != -1)
267 		cpumask_set_cpu(cpu, mask);
268 	else
269 		cpumask_copy(mask, cpu_present_mask);
270 
271 	/*
272 	 * Each CPU has a single path between source and destination.  As such
273 	 * allocate an array using CPU numbers as indexes.  That way a path
274 	 * for any CPU can easily be accessed at any given time.  We proceed
275 	 * the same way for sessions involving a single CPU.  The cost of
276 	 * unused memory when dealing with single CPU trace scenarios is small
277 	 * compared to the cost of searching through an optimized array.
278 	 */
279 	event_data->path = alloc_percpu(struct coresight_path *);
280 
281 	if (!event_data->path) {
282 		kfree(event_data);
283 		return NULL;
284 	}
285 
286 	return event_data;
287 }
288 
etm_free_aux(void * data)289 static void etm_free_aux(void *data)
290 {
291 	struct etm_event_data *event_data = data;
292 
293 	schedule_work(&event_data->work);
294 }
295 
296 /*
297  * Check if two given sinks are compatible with each other,
298  * so that they can use the same sink buffers, when an event
299  * moves around.
300  */
sinks_compatible(struct coresight_device * a,struct coresight_device * b)301 static bool sinks_compatible(struct coresight_device *a,
302 			     struct coresight_device *b)
303 {
304 	if (!a || !b)
305 		return false;
306 	/*
307 	 * If the sinks are of the same subtype and driven
308 	 * by the same driver, we can use the same buffer
309 	 * on these sinks.
310 	 */
311 	return (a->subtype.sink_subtype == b->subtype.sink_subtype) &&
312 	       (sink_ops(a) == sink_ops(b));
313 }
314 
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)315 static void *etm_setup_aux(struct perf_event *event, void **pages,
316 			   int nr_pages, bool overwrite)
317 {
318 	u32 id, cfg_hash;
319 	int cpu = event->cpu;
320 	cpumask_t *mask;
321 	struct coresight_device *sink = NULL;
322 	struct coresight_device *user_sink = NULL, *last_sink = NULL;
323 	struct etm_event_data *event_data = NULL;
324 
325 	event_data = alloc_event_data(cpu);
326 	if (!event_data)
327 		return NULL;
328 	INIT_WORK(&event_data->work, free_event_data);
329 
330 	/* First get the selected sink from user space. */
331 	if (event->attr.config2 & GENMASK_ULL(31, 0)) {
332 		id = (u32)event->attr.config2;
333 		sink = user_sink = coresight_get_sink_by_id(id);
334 	}
335 
336 	/* check if user wants a coresight configuration selected */
337 	cfg_hash = (u32)((event->attr.config2 & GENMASK_ULL(63, 32)) >> 32);
338 	if (cfg_hash) {
339 		if (cscfg_activate_config(cfg_hash))
340 			goto err;
341 		event_data->cfg_hash = cfg_hash;
342 	}
343 
344 	mask = &event_data->mask;
345 
346 	/*
347 	 * Setup the path for each CPU in a trace session. We try to build
348 	 * trace path for each CPU in the mask. If we don't find an ETM
349 	 * for the CPU or fail to build a path, we clear the CPU from the
350 	 * mask and continue with the rest. If ever we try to trace on those
351 	 * CPUs, we can handle it and fail the session.
352 	 */
353 	for_each_cpu(cpu, mask) {
354 		struct coresight_path *path;
355 		struct coresight_device *csdev;
356 
357 		csdev = per_cpu(csdev_src, cpu);
358 		/*
359 		 * If there is no ETM associated with this CPU clear it from
360 		 * the mask and continue with the rest. If ever we try to trace
361 		 * on this CPU, we handle it accordingly.
362 		 */
363 		if (!csdev) {
364 			cpumask_clear_cpu(cpu, mask);
365 			continue;
366 		}
367 
368 		/*
369 		 * If AUX pause feature is enabled but the ETM driver does not
370 		 * support the operations, clear this CPU from the mask and
371 		 * continue to next one.
372 		 */
373 		if (event->attr.aux_start_paused &&
374 		    (!source_ops(csdev)->pause_perf || !source_ops(csdev)->resume_perf)) {
375 			dev_err_once(&csdev->dev, "AUX pause is not supported.\n");
376 			cpumask_clear_cpu(cpu, mask);
377 			continue;
378 		}
379 
380 		/*
381 		 * No sink provided - look for a default sink for all the ETMs,
382 		 * where this event can be scheduled.
383 		 * We allocate the sink specific buffers only once for this
384 		 * event. If the ETMs have different default sink devices, we
385 		 * can only use a single "type" of sink as the event can carry
386 		 * only one sink specific buffer. Thus we have to make sure
387 		 * that the sinks are of the same type and driven by the same
388 		 * driver, as the one we allocate the buffer for. As such
389 		 * we choose the first sink and check if the remaining ETMs
390 		 * have a compatible default sink. We don't trace on a CPU
391 		 * if the sink is not compatible.
392 		 */
393 		if (!user_sink) {
394 			/* Find the default sink for this ETM */
395 			sink = coresight_find_default_sink(csdev);
396 			if (!sink) {
397 				cpumask_clear_cpu(cpu, mask);
398 				continue;
399 			}
400 
401 			/* Check if this sink compatible with the last sink */
402 			if (last_sink && !sinks_compatible(last_sink, sink)) {
403 				cpumask_clear_cpu(cpu, mask);
404 				continue;
405 			}
406 			last_sink = sink;
407 		}
408 
409 		/*
410 		 * Building a path doesn't enable it, it simply builds a
411 		 * list of devices from source to sink that can be
412 		 * referenced later when the path is actually needed.
413 		 */
414 		path = coresight_build_path(csdev, sink);
415 		if (IS_ERR(path)) {
416 			cpumask_clear_cpu(cpu, mask);
417 			continue;
418 		}
419 
420 		/* ensure we can allocate a trace ID for this CPU */
421 		coresight_path_assign_trace_id(path, CS_MODE_PERF);
422 		if (!IS_VALID_CS_TRACE_ID(path->trace_id)) {
423 			cpumask_clear_cpu(cpu, mask);
424 			coresight_release_path(path);
425 			continue;
426 		}
427 
428 		coresight_trace_id_perf_start(&sink->perf_sink_id_map);
429 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
430 	}
431 
432 	/* no sink found for any CPU - cannot trace */
433 	if (!sink)
434 		goto err;
435 
436 	/* If we don't have any CPUs ready for tracing, abort */
437 	cpu = cpumask_first(mask);
438 	if (cpu >= nr_cpu_ids)
439 		goto err;
440 
441 	if (!sink_ops(sink)->alloc_buffer || !sink_ops(sink)->free_buffer)
442 		goto err;
443 
444 	/*
445 	 * Allocate the sink buffer for this session. All the sinks
446 	 * where this event can be scheduled are ensured to be of the
447 	 * same type. Thus the same sink configuration is used by the
448 	 * sinks.
449 	 */
450 	event_data->snk_config =
451 			sink_ops(sink)->alloc_buffer(sink, event, pages,
452 						     nr_pages, overwrite);
453 	if (!event_data->snk_config)
454 		goto err;
455 
456 out:
457 	return event_data;
458 
459 err:
460 	etm_free_aux(event_data);
461 	event_data = NULL;
462 	goto out;
463 }
464 
etm_event_resume(struct coresight_device * csdev,struct etm_ctxt * ctxt)465 static int etm_event_resume(struct coresight_device *csdev,
466 			     struct etm_ctxt *ctxt)
467 {
468 	if (!ctxt->event_data)
469 		return 0;
470 
471 	return coresight_resume_source(csdev);
472 }
473 
etm_event_start(struct perf_event * event,int flags)474 static void etm_event_start(struct perf_event *event, int flags)
475 {
476 	int cpu = smp_processor_id();
477 	struct etm_event_data *event_data;
478 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
479 	struct perf_output_handle *handle = &ctxt->handle;
480 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
481 	struct coresight_path *path;
482 	u64 hw_id;
483 
484 	if (!csdev)
485 		goto fail;
486 
487 	if (flags & PERF_EF_RESUME) {
488 		if (etm_event_resume(csdev, ctxt) < 0) {
489 			dev_err(&csdev->dev, "Failed to resume ETM event.\n");
490 			goto fail;
491 		}
492 		return;
493 	}
494 
495 	/* Have we messed up our tracking ? */
496 	if (WARN_ON(ctxt->event_data))
497 		goto fail;
498 
499 	/*
500 	 * Deal with the ring buffer API and get a handle on the
501 	 * session's information.
502 	 */
503 	event_data = perf_aux_output_begin(handle, event);
504 	if (!event_data)
505 		goto fail;
506 
507 	/*
508 	 * Check if this ETM is allowed to trace, as decided
509 	 * at etm_setup_aux(). This could be due to an unreachable
510 	 * sink from this ETM. We can't do much in this case if
511 	 * the sink was specified or hinted to the driver. For
512 	 * now, simply don't record anything on this ETM.
513 	 *
514 	 * As such we pretend that everything is fine, and let
515 	 * it continue without actually tracing. The event could
516 	 * continue tracing when it moves to a CPU where it is
517 	 * reachable to a sink.
518 	 */
519 	if (!cpumask_test_cpu(cpu, &event_data->mask))
520 		goto out;
521 
522 	path = etm_event_cpu_path(event_data, cpu);
523 	/* We need a sink, no need to continue without one */
524 	sink = coresight_get_sink(path);
525 	if (WARN_ON_ONCE(!sink))
526 		goto fail_end_stop;
527 
528 	/* Nothing will happen without a path */
529 	if (coresight_enable_path(path, CS_MODE_PERF, handle))
530 		goto fail_end_stop;
531 
532 	/* Finally enable the tracer */
533 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF, path))
534 		goto fail_disable_path;
535 
536 	/*
537 	 * output cpu / trace ID in perf record, once for the lifetime
538 	 * of the event.
539 	 */
540 	if (!cpumask_test_cpu(cpu, &event_data->aux_hwid_done)) {
541 		cpumask_set_cpu(cpu, &event_data->aux_hwid_done);
542 
543 		hw_id = FIELD_PREP(CS_AUX_HW_ID_MAJOR_VERSION_MASK,
544 				CS_AUX_HW_ID_MAJOR_VERSION);
545 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_MINOR_VERSION_MASK,
546 				CS_AUX_HW_ID_MINOR_VERSION);
547 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_TRACE_ID_MASK, path->trace_id);
548 		hw_id |= FIELD_PREP(CS_AUX_HW_ID_SINK_ID_MASK, coresight_get_sink_id(sink));
549 
550 		perf_report_aux_output_id(event, hw_id);
551 	}
552 
553 out:
554 	/* Tell the perf core the event is alive */
555 	event->hw.state = 0;
556 	/* Save the event_data for this ETM */
557 	ctxt->event_data = event_data;
558 	return;
559 
560 fail_disable_path:
561 	coresight_disable_path(path);
562 fail_end_stop:
563 	/*
564 	 * Check if the handle is still associated with the event,
565 	 * to handle cases where if the sink failed to start the
566 	 * trace and TRUNCATED the handle already.
567 	 */
568 	if (READ_ONCE(handle->event)) {
569 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
570 		perf_aux_output_end(handle, 0);
571 	}
572 fail:
573 	event->hw.state = PERF_HES_STOPPED;
574 	return;
575 }
576 
etm_event_pause(struct perf_event * event,struct coresight_device * csdev,struct etm_ctxt * ctxt)577 static void etm_event_pause(struct perf_event *event,
578 			    struct coresight_device *csdev,
579 			    struct etm_ctxt *ctxt)
580 {
581 	int cpu = smp_processor_id();
582 	struct coresight_device *sink;
583 	struct perf_output_handle *handle = &ctxt->handle;
584 	struct coresight_path *path;
585 	unsigned long size;
586 
587 	if (!ctxt->event_data)
588 		return;
589 
590 	/* Stop tracer */
591 	coresight_pause_source(csdev);
592 
593 	path = etm_event_cpu_path(ctxt->event_data, cpu);
594 	sink = coresight_get_sink(path);
595 	if (WARN_ON_ONCE(!sink))
596 		return;
597 
598 	/*
599 	 * The per CPU sink has own interrupt handling, it might have
600 	 * race condition with updating buffer on AUX trace pause if
601 	 * it is invoked from NMI.  To avoid the race condition,
602 	 * disallows updating buffer for the per CPU sink case.
603 	 */
604 	if (coresight_is_percpu_sink(sink))
605 		return;
606 
607 	if (WARN_ON_ONCE(handle->event != event))
608 		return;
609 
610 	if (!sink_ops(sink)->update_buffer)
611 		return;
612 
613 	size = sink_ops(sink)->update_buffer(sink, handle,
614 					     ctxt->event_data->snk_config);
615 	if (READ_ONCE(handle->event)) {
616 		if (!size)
617 			return;
618 
619 		perf_aux_output_end(handle, size);
620 		perf_aux_output_begin(handle, event);
621 	} else {
622 		WARN_ON_ONCE(size);
623 	}
624 }
625 
etm_event_stop(struct perf_event * event,int mode)626 static void etm_event_stop(struct perf_event *event, int mode)
627 {
628 	int cpu = smp_processor_id();
629 	unsigned long size;
630 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
631 	struct etm_ctxt *ctxt = this_cpu_ptr(&etm_ctxt);
632 	struct perf_output_handle *handle = &ctxt->handle;
633 	struct etm_event_data *event_data;
634 	struct coresight_path *path;
635 
636 	if (mode & PERF_EF_PAUSE)
637 		return etm_event_pause(event, csdev, ctxt);
638 
639 	/*
640 	 * If we still have access to the event_data via handle,
641 	 * confirm that we haven't messed up the tracking.
642 	 */
643 	if (handle->event &&
644 	    WARN_ON(perf_get_aux(handle) != ctxt->event_data))
645 		return;
646 
647 	event_data = ctxt->event_data;
648 	/* Clear the event_data as this ETM is stopping the trace. */
649 	ctxt->event_data = NULL;
650 
651 	if (event->hw.state == PERF_HES_STOPPED)
652 		return;
653 
654 	/* We must have a valid event_data for a running event */
655 	if (WARN_ON(!event_data))
656 		return;
657 
658 	/*
659 	 * Check if this ETM was allowed to trace, as decided at
660 	 * etm_setup_aux(). If it wasn't allowed to trace, then
661 	 * nothing needs to be torn down other than outputting a
662 	 * zero sized record.
663 	 */
664 	if (handle->event && (mode & PERF_EF_UPDATE) &&
665 	    !cpumask_test_cpu(cpu, &event_data->mask)) {
666 		event->hw.state = PERF_HES_STOPPED;
667 		perf_aux_output_end(handle, 0);
668 		return;
669 	}
670 
671 	if (!csdev)
672 		return;
673 
674 	path = etm_event_cpu_path(event_data, cpu);
675 	if (!path)
676 		return;
677 
678 	sink = coresight_get_sink(path);
679 	if (!sink)
680 		return;
681 
682 	/* stop tracer */
683 	coresight_disable_source(csdev, event);
684 
685 	/* tell the core */
686 	event->hw.state = PERF_HES_STOPPED;
687 
688 	/*
689 	 * If the handle is not bound to an event anymore
690 	 * (e.g, the sink driver was unable to restart the
691 	 * handle due to lack of buffer space), we don't
692 	 * have to do anything here.
693 	 */
694 	if (handle->event && (mode & PERF_EF_UPDATE)) {
695 		if (WARN_ON_ONCE(handle->event != event))
696 			return;
697 
698 		/* update trace information */
699 		if (!sink_ops(sink)->update_buffer)
700 			return;
701 
702 		size = sink_ops(sink)->update_buffer(sink, handle,
703 					      event_data->snk_config);
704 		/*
705 		 * Make sure the handle is still valid as the
706 		 * sink could have closed it from an IRQ.
707 		 * The sink driver must handle the race with
708 		 * update_buffer() and IRQ. Thus either we
709 		 * should get a valid handle and valid size
710 		 * (which may be 0).
711 		 *
712 		 * But we should never get a non-zero size with
713 		 * an invalid handle.
714 		 */
715 		if (READ_ONCE(handle->event))
716 			perf_aux_output_end(handle, size);
717 		else
718 			WARN_ON(size);
719 	}
720 
721 	/* Disabling the path make its elements available to other sessions */
722 	coresight_disable_path(path);
723 }
724 
etm_event_add(struct perf_event * event,int mode)725 static int etm_event_add(struct perf_event *event, int mode)
726 {
727 	int ret = 0;
728 	struct hw_perf_event *hwc = &event->hw;
729 
730 	if (mode & PERF_EF_START) {
731 		etm_event_start(event, 0);
732 		if (hwc->state & PERF_HES_STOPPED)
733 			ret = -EINVAL;
734 	} else {
735 		hwc->state = PERF_HES_STOPPED;
736 	}
737 
738 	return ret;
739 }
740 
etm_event_del(struct perf_event * event,int mode)741 static void etm_event_del(struct perf_event *event, int mode)
742 {
743 	etm_event_stop(event, PERF_EF_UPDATE);
744 }
745 
etm_addr_filters_validate(struct list_head * filters)746 static int etm_addr_filters_validate(struct list_head *filters)
747 {
748 	bool range = false, address = false;
749 	int index = 0;
750 	struct perf_addr_filter *filter;
751 
752 	list_for_each_entry(filter, filters, entry) {
753 		/*
754 		 * No need to go further if there's no more
755 		 * room for filters.
756 		 */
757 		if (++index > ETM_ADDR_CMP_MAX)
758 			return -EOPNOTSUPP;
759 
760 		/* filter::size==0 means single address trigger */
761 		if (filter->size) {
762 			/*
763 			 * The existing code relies on START/STOP filters
764 			 * being address filters.
765 			 */
766 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
767 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
768 				return -EOPNOTSUPP;
769 
770 			range = true;
771 		} else
772 			address = true;
773 
774 		/*
775 		 * At this time we don't allow range and start/stop filtering
776 		 * to cohabitate, they have to be mutually exclusive.
777 		 */
778 		if (range && address)
779 			return -EOPNOTSUPP;
780 	}
781 
782 	return 0;
783 }
784 
etm_addr_filters_sync(struct perf_event * event)785 static void etm_addr_filters_sync(struct perf_event *event)
786 {
787 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
788 	unsigned long start, stop;
789 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
790 	struct etm_filters *filters = event->hw.addr_filters;
791 	struct etm_filter *etm_filter;
792 	struct perf_addr_filter *filter;
793 	int i = 0;
794 
795 	list_for_each_entry(filter, &head->list, entry) {
796 		start = fr[i].start;
797 		stop = start + fr[i].size;
798 		etm_filter = &filters->etm_filter[i];
799 
800 		switch (filter->action) {
801 		case PERF_ADDR_FILTER_ACTION_FILTER:
802 			etm_filter->start_addr = start;
803 			etm_filter->stop_addr = stop;
804 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
805 			break;
806 		case PERF_ADDR_FILTER_ACTION_START:
807 			etm_filter->start_addr = start;
808 			etm_filter->type = ETM_ADDR_TYPE_START;
809 			break;
810 		case PERF_ADDR_FILTER_ACTION_STOP:
811 			etm_filter->stop_addr = stop;
812 			etm_filter->type = ETM_ADDR_TYPE_STOP;
813 			break;
814 		}
815 		i++;
816 	}
817 
818 	filters->nr_filters = i;
819 }
820 
etm_perf_symlink(struct coresight_device * csdev,bool link)821 int etm_perf_symlink(struct coresight_device *csdev, bool link)
822 {
823 	char entry[sizeof("cpu9999999")];
824 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
825 	struct device *pmu_dev = etm_pmu.dev;
826 	struct device *cs_dev = &csdev->dev;
827 
828 	sprintf(entry, "cpu%d", cpu);
829 
830 	if (!etm_perf_up)
831 		return -EPROBE_DEFER;
832 
833 	if (link) {
834 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
835 		if (ret)
836 			return ret;
837 		per_cpu(csdev_src, cpu) = csdev;
838 	} else {
839 		sysfs_remove_link(&pmu_dev->kobj, entry);
840 		per_cpu(csdev_src, cpu) = NULL;
841 	}
842 
843 	return 0;
844 }
845 EXPORT_SYMBOL_GPL(etm_perf_symlink);
846 
etm_perf_sink_name_show(struct device * dev,struct device_attribute * dattr,char * buf)847 static ssize_t etm_perf_sink_name_show(struct device *dev,
848 				       struct device_attribute *dattr,
849 				       char *buf)
850 {
851 	struct dev_ext_attribute *ea;
852 
853 	ea = container_of(dattr, struct dev_ext_attribute, attr);
854 	return scnprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)(ea->var));
855 }
856 
857 static struct dev_ext_attribute *
etm_perf_add_symlink_group(struct device * dev,const char * name,const char * group_name)858 etm_perf_add_symlink_group(struct device *dev, const char *name, const char *group_name)
859 {
860 	struct dev_ext_attribute *ea;
861 	unsigned long hash;
862 	int ret;
863 	struct device *pmu_dev = etm_pmu.dev;
864 
865 	if (!etm_perf_up)
866 		return ERR_PTR(-EPROBE_DEFER);
867 
868 	ea = devm_kzalloc(dev, sizeof(*ea), GFP_KERNEL);
869 	if (!ea)
870 		return ERR_PTR(-ENOMEM);
871 
872 	/*
873 	 * If this function is called adding a sink then the hash is used for
874 	 * sink selection - see function coresight_get_sink_by_id().
875 	 * If adding a configuration then the hash is used for selection in
876 	 * cscfg_activate_config()
877 	 */
878 	hash = hashlen_hash(hashlen_string(NULL, name));
879 
880 	sysfs_attr_init(&ea->attr.attr);
881 	ea->attr.attr.name = devm_kstrdup(dev, name, GFP_KERNEL);
882 	if (!ea->attr.attr.name)
883 		return ERR_PTR(-ENOMEM);
884 
885 	ea->attr.attr.mode = 0444;
886 	ea->var = (unsigned long *)hash;
887 
888 	ret = sysfs_add_file_to_group(&pmu_dev->kobj,
889 				      &ea->attr.attr, group_name);
890 
891 	return ret ? ERR_PTR(ret) : ea;
892 }
893 
etm_perf_add_symlink_sink(struct coresight_device * csdev)894 int etm_perf_add_symlink_sink(struct coresight_device *csdev)
895 {
896 	const char *name;
897 	struct device *dev = &csdev->dev;
898 	int err = 0;
899 
900 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
901 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
902 		return -EINVAL;
903 
904 	if (csdev->ea != NULL)
905 		return -EINVAL;
906 
907 	name = dev_name(dev);
908 	csdev->ea = etm_perf_add_symlink_group(dev, name, "sinks");
909 	if (IS_ERR(csdev->ea)) {
910 		err = PTR_ERR(csdev->ea);
911 		csdev->ea = NULL;
912 	} else
913 		csdev->ea->attr.show = etm_perf_sink_name_show;
914 
915 	return err;
916 }
917 
etm_perf_del_symlink_group(struct dev_ext_attribute * ea,const char * group_name)918 static void etm_perf_del_symlink_group(struct dev_ext_attribute *ea, const char *group_name)
919 {
920 	struct device *pmu_dev = etm_pmu.dev;
921 
922 	sysfs_remove_file_from_group(&pmu_dev->kobj,
923 				     &ea->attr.attr, group_name);
924 }
925 
etm_perf_del_symlink_sink(struct coresight_device * csdev)926 void etm_perf_del_symlink_sink(struct coresight_device *csdev)
927 {
928 	if (csdev->type != CORESIGHT_DEV_TYPE_SINK &&
929 	    csdev->type != CORESIGHT_DEV_TYPE_LINKSINK)
930 		return;
931 
932 	if (!csdev->ea)
933 		return;
934 
935 	etm_perf_del_symlink_group(csdev->ea, "sinks");
936 	csdev->ea = NULL;
937 }
938 
etm_perf_cscfg_event_show(struct device * dev,struct device_attribute * dattr,char * buf)939 static ssize_t etm_perf_cscfg_event_show(struct device *dev,
940 					 struct device_attribute *dattr,
941 					 char *buf)
942 {
943 	struct dev_ext_attribute *ea;
944 
945 	ea = container_of(dattr, struct dev_ext_attribute, attr);
946 	return scnprintf(buf, PAGE_SIZE, "configid=0x%lx\n", (unsigned long)(ea->var));
947 }
948 
etm_perf_add_symlink_cscfg(struct device * dev,struct cscfg_config_desc * config_desc)949 int etm_perf_add_symlink_cscfg(struct device *dev, struct cscfg_config_desc *config_desc)
950 {
951 	int err = 0;
952 
953 	if (config_desc->event_ea != NULL)
954 		return 0;
955 
956 	config_desc->event_ea = etm_perf_add_symlink_group(dev, config_desc->name, "events");
957 
958 	/* set the show function to the custom cscfg event */
959 	if (!IS_ERR(config_desc->event_ea))
960 		config_desc->event_ea->attr.show = etm_perf_cscfg_event_show;
961 	else {
962 		err = PTR_ERR(config_desc->event_ea);
963 		config_desc->event_ea = NULL;
964 	}
965 
966 	return err;
967 }
968 
etm_perf_del_symlink_cscfg(struct cscfg_config_desc * config_desc)969 void etm_perf_del_symlink_cscfg(struct cscfg_config_desc *config_desc)
970 {
971 	if (!config_desc->event_ea)
972 		return;
973 
974 	etm_perf_del_symlink_group(config_desc->event_ea, "events");
975 	config_desc->event_ea = NULL;
976 }
977 
etm_perf_init(void)978 int __init etm_perf_init(void)
979 {
980 	int ret;
981 
982 	etm_pmu.capabilities		= (PERF_PMU_CAP_EXCLUSIVE |
983 					   PERF_PMU_CAP_ITRACE |
984 					   PERF_PMU_CAP_AUX_PAUSE);
985 
986 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
987 	etm_pmu.task_ctx_nr		= perf_sw_context;
988 	etm_pmu.read			= etm_event_read;
989 	etm_pmu.event_init		= etm_event_init;
990 	etm_pmu.setup_aux		= etm_setup_aux;
991 	etm_pmu.free_aux		= etm_free_aux;
992 	etm_pmu.start			= etm_event_start;
993 	etm_pmu.stop			= etm_event_stop;
994 	etm_pmu.add			= etm_event_add;
995 	etm_pmu.del			= etm_event_del;
996 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
997 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
998 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
999 	etm_pmu.module			= THIS_MODULE;
1000 
1001 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
1002 	if (ret == 0)
1003 		etm_perf_up = true;
1004 
1005 	return ret;
1006 }
1007 
etm_perf_exit(void)1008 void etm_perf_exit(void)
1009 {
1010 	perf_pmu_unregister(&etm_pmu);
1011 }
1012