xref: /linux/drivers/iio/magnetometer/ak8974.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Asahi Kasei EMD Corporation AK8974
4  * and Aichi Steel AMI305 magnetometer chips.
5  * Based on a patch from Samu Onkalo and the AK8975 IIO driver.
6  *
7  * Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
8  * Copyright (c) 2010 NVIDIA Corporation.
9  * Copyright (C) 2016 Linaro Ltd.
10  *
11  * Author: Samu Onkalo <samu.p.onkalo@nokia.com>
12  * Author: Linus Walleij <linus.walleij@linaro.org>
13  */
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/kernel.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/irq.h> /* For irq_get_irq_data() */
20 #include <linux/completion.h>
21 #include <linux/err.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/bitops.h>
25 #include <linux/random.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/pm_runtime.h>
29 
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/trigger.h>
34 #include <linux/iio/trigger_consumer.h>
35 #include <linux/iio/triggered_buffer.h>
36 
37 /*
38  * 16-bit registers are little-endian. LSB is at the address defined below
39  * and MSB is at the next higher address.
40  */
41 
42 /* These registers are common for AK8974 and AMI30x */
43 #define AK8974_SELFTEST		0x0C
44 #define AK8974_SELFTEST_IDLE	0x55
45 #define AK8974_SELFTEST_OK	0xAA
46 
47 #define AK8974_INFO		0x0D
48 
49 #define AK8974_WHOAMI		0x0F
50 #define AK8974_WHOAMI_VALUE_AMI306 0x46
51 #define AK8974_WHOAMI_VALUE_AMI305 0x47
52 #define AK8974_WHOAMI_VALUE_AK8974 0x48
53 #define AK8974_WHOAMI_VALUE_HSCDTD008A 0x49
54 
55 #define AK8974_DATA_X		0x10
56 #define AK8974_DATA_Y		0x12
57 #define AK8974_DATA_Z		0x14
58 #define AK8974_INT_SRC		0x16
59 #define AK8974_STATUS		0x18
60 #define AK8974_INT_CLEAR	0x1A
61 #define AK8974_CTRL1		0x1B
62 #define AK8974_CTRL2		0x1C
63 #define AK8974_CTRL3		0x1D
64 #define AK8974_INT_CTRL		0x1E
65 #define AK8974_INT_THRES	0x26  /* Absolute any axis value threshold */
66 #define AK8974_PRESET		0x30
67 
68 /* AK8974-specific offsets */
69 #define AK8974_OFFSET_X		0x20
70 #define AK8974_OFFSET_Y		0x22
71 #define AK8974_OFFSET_Z		0x24
72 /* AMI305-specific offsets */
73 #define AMI305_OFFSET_X		0x6C
74 #define AMI305_OFFSET_Y		0x72
75 #define AMI305_OFFSET_Z		0x78
76 
77 /* Different temperature registers */
78 #define AK8974_TEMP		0x31
79 #define AMI305_TEMP		0x60
80 
81 /* AMI306-specific control register */
82 #define AMI306_CTRL4		0x5C
83 
84 /* AMI306 factory calibration data */
85 
86 /* fine axis sensitivity */
87 #define AMI306_FINEOUTPUT_X	0x90
88 #define AMI306_FINEOUTPUT_Y	0x92
89 #define AMI306_FINEOUTPUT_Z	0x94
90 
91 /* axis sensitivity */
92 #define AMI306_SENS_X		0x96
93 #define AMI306_SENS_Y		0x98
94 #define AMI306_SENS_Z		0x9A
95 
96 /* axis cross-interference */
97 #define AMI306_GAIN_PARA_XZ	0x9C
98 #define AMI306_GAIN_PARA_XY	0x9D
99 #define AMI306_GAIN_PARA_YZ	0x9E
100 #define AMI306_GAIN_PARA_YX	0x9F
101 #define AMI306_GAIN_PARA_ZY	0xA0
102 #define AMI306_GAIN_PARA_ZX	0xA1
103 
104 /* offset at ZERO magnetic field */
105 #define AMI306_OFFZERO_X	0xF8
106 #define AMI306_OFFZERO_Y	0xFA
107 #define AMI306_OFFZERO_Z	0xFC
108 
109 
110 #define AK8974_INT_X_HIGH	BIT(7) /* Axis over +threshold  */
111 #define AK8974_INT_Y_HIGH	BIT(6)
112 #define AK8974_INT_Z_HIGH	BIT(5)
113 #define AK8974_INT_X_LOW	BIT(4) /* Axis below -threshold	*/
114 #define AK8974_INT_Y_LOW	BIT(3)
115 #define AK8974_INT_Z_LOW	BIT(2)
116 #define AK8974_INT_RANGE	BIT(1) /* Range overflow (any axis) */
117 
118 #define AK8974_STATUS_DRDY	BIT(6) /* Data ready */
119 #define AK8974_STATUS_OVERRUN	BIT(5) /* Data overrun */
120 #define AK8974_STATUS_INT	BIT(4) /* Interrupt occurred */
121 
122 #define AK8974_CTRL1_POWER	BIT(7) /* 0 = standby; 1 = active */
123 #define AK8974_CTRL1_RATE	BIT(4) /* 0 = 10 Hz; 1 = 20 Hz	 */
124 #define AK8974_CTRL1_FORCE_EN	BIT(1) /* 0 = normal; 1 = force	 */
125 #define AK8974_CTRL1_MODE2	BIT(0) /* 0 */
126 
127 #define AK8974_CTRL2_INT_EN	BIT(4)  /* 1 = enable interrupts	      */
128 #define AK8974_CTRL2_DRDY_EN	BIT(3)  /* 1 = enable data ready signal */
129 #define AK8974_CTRL2_DRDY_POL	BIT(2)  /* 1 = data ready active high   */
130 #define AK8974_CTRL2_RESDEF	(AK8974_CTRL2_DRDY_POL)
131 
132 #define AK8974_CTRL3_RESET	BIT(7) /* Software reset		  */
133 #define AK8974_CTRL3_FORCE	BIT(6) /* Start forced measurement */
134 #define AK8974_CTRL3_SELFTEST	BIT(4) /* Set selftest register	  */
135 #define AK8974_CTRL3_RESDEF	0x00
136 
137 #define AK8974_INT_CTRL_XEN	BIT(7) /* Enable interrupt for this axis */
138 #define AK8974_INT_CTRL_YEN	BIT(6)
139 #define AK8974_INT_CTRL_ZEN	BIT(5)
140 #define AK8974_INT_CTRL_XYZEN	(BIT(7)|BIT(6)|BIT(5))
141 #define AK8974_INT_CTRL_POL	BIT(3) /* 0 = active low; 1 = active high */
142 #define AK8974_INT_CTRL_PULSE	BIT(1) /* 0 = latched; 1 = pulse (50 usec) */
143 #define AK8974_INT_CTRL_RESDEF	(AK8974_INT_CTRL_XYZEN | AK8974_INT_CTRL_POL)
144 
145 /* HSCDTD008A-specific control register */
146 #define HSCDTD008A_CTRL4	0x1E
147 #define HSCDTD008A_CTRL4_MMD	BIT(7)	/* must be set to 1 */
148 #define HSCDTD008A_CTRL4_RANGE	BIT(4)	/* 0 = 14-bit output; 1 = 15-bit output */
149 #define HSCDTD008A_CTRL4_RESDEF	(HSCDTD008A_CTRL4_MMD | HSCDTD008A_CTRL4_RANGE)
150 
151 /* The AMI305 has elaborate FW version and serial number registers */
152 #define AMI305_VER		0xE8
153 #define AMI305_SN		0xEA
154 
155 #define AK8974_MAX_RANGE	2048
156 
157 #define AK8974_POWERON_DELAY	50
158 #define AK8974_ACTIVATE_DELAY	1
159 #define AK8974_SELFTEST_DELAY	1
160 /*
161  * Set the autosuspend to two orders of magnitude larger than the poweron
162  * delay to make sane reasonable power tradeoff savings (5 seconds in
163  * this case).
164  */
165 #define AK8974_AUTOSUSPEND_DELAY 5000
166 
167 #define AK8974_MEASTIME		3
168 
169 #define AK8974_PWR_ON		1
170 #define AK8974_PWR_OFF		0
171 
172 /**
173  * struct ak8974 - state container for the AK8974 driver
174  * @i2c: parent I2C client
175  * @orientation: mounting matrix, flipped axis etc
176  * @map: regmap to access the AK8974 registers over I2C
177  * @regs: the avdd and dvdd power regulators
178  * @name: the name of the part
179  * @variant: the whoami ID value (for selecting code paths)
180  * @lock: locks the magnetometer for exclusive use during a measurement
181  * @drdy_irq: uses the DRDY IRQ line
182  * @drdy_complete: completion for DRDY
183  * @drdy_active_low: the DRDY IRQ is active low
184  * @scan: timestamps
185  */
186 struct ak8974 {
187 	struct i2c_client *i2c;
188 	struct iio_mount_matrix orientation;
189 	struct regmap *map;
190 	struct regulator_bulk_data regs[2];
191 	const char *name;
192 	u8 variant;
193 	struct mutex lock;
194 	bool drdy_irq;
195 	struct completion drdy_complete;
196 	bool drdy_active_low;
197 	/* Ensure timestamp is naturally aligned */
198 	struct {
199 		__le16 channels[3];
200 		s64 ts __aligned(8);
201 	} scan;
202 };
203 
204 static const char ak8974_reg_avdd[] = "avdd";
205 static const char ak8974_reg_dvdd[] = "dvdd";
206 
ak8974_get_u16_val(struct ak8974 * ak8974,u8 reg,u16 * val)207 static int ak8974_get_u16_val(struct ak8974 *ak8974, u8 reg, u16 *val)
208 {
209 	int ret;
210 	__le16 bulk;
211 
212 	ret = regmap_bulk_read(ak8974->map, reg, &bulk, 2);
213 	if (ret)
214 		return ret;
215 	*val = le16_to_cpu(bulk);
216 
217 	return 0;
218 }
219 
ak8974_set_u16_val(struct ak8974 * ak8974,u8 reg,u16 val)220 static int ak8974_set_u16_val(struct ak8974 *ak8974, u8 reg, u16 val)
221 {
222 	__le16 bulk = cpu_to_le16(val);
223 
224 	return regmap_bulk_write(ak8974->map, reg, &bulk, 2);
225 }
226 
ak8974_set_power(struct ak8974 * ak8974,bool mode)227 static int ak8974_set_power(struct ak8974 *ak8974, bool mode)
228 {
229 	int ret;
230 	u8 val;
231 
232 	val = mode ? AK8974_CTRL1_POWER : 0;
233 	val |= AK8974_CTRL1_FORCE_EN;
234 	ret = regmap_write(ak8974->map, AK8974_CTRL1, val);
235 	if (ret < 0)
236 		return ret;
237 
238 	if (mode)
239 		msleep(AK8974_ACTIVATE_DELAY);
240 
241 	return 0;
242 }
243 
ak8974_reset(struct ak8974 * ak8974)244 static int ak8974_reset(struct ak8974 *ak8974)
245 {
246 	int ret;
247 
248 	/* Power on to get register access. Sets CTRL1 reg to reset state */
249 	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
250 	if (ret)
251 		return ret;
252 	ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_RESDEF);
253 	if (ret)
254 		return ret;
255 	ret = regmap_write(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_RESDEF);
256 	if (ret)
257 		return ret;
258 	if (ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A) {
259 		ret = regmap_write(ak8974->map, AK8974_INT_CTRL,
260 				   AK8974_INT_CTRL_RESDEF);
261 		if (ret)
262 			return ret;
263 	} else {
264 		ret = regmap_write(ak8974->map, HSCDTD008A_CTRL4,
265 				   HSCDTD008A_CTRL4_RESDEF);
266 		if (ret)
267 			return ret;
268 	}
269 
270 	/* After reset, power off is default state */
271 	return ak8974_set_power(ak8974, AK8974_PWR_OFF);
272 }
273 
ak8974_configure(struct ak8974 * ak8974)274 static int ak8974_configure(struct ak8974 *ak8974)
275 {
276 	int ret;
277 
278 	ret = regmap_write(ak8974->map, AK8974_CTRL2, AK8974_CTRL2_DRDY_EN |
279 			   AK8974_CTRL2_INT_EN);
280 	if (ret)
281 		return ret;
282 	ret = regmap_write(ak8974->map, AK8974_CTRL3, 0);
283 	if (ret)
284 		return ret;
285 	if (ak8974->variant == AK8974_WHOAMI_VALUE_AMI306) {
286 		/* magic from datasheet: set high-speed measurement mode */
287 		ret = ak8974_set_u16_val(ak8974, AMI306_CTRL4, 0xA07E);
288 		if (ret)
289 			return ret;
290 	}
291 	if (ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A)
292 		return 0;
293 	ret = regmap_write(ak8974->map, AK8974_INT_CTRL, AK8974_INT_CTRL_POL);
294 	if (ret)
295 		return ret;
296 
297 	return regmap_write(ak8974->map, AK8974_PRESET, 0);
298 }
299 
ak8974_trigmeas(struct ak8974 * ak8974)300 static int ak8974_trigmeas(struct ak8974 *ak8974)
301 {
302 	unsigned int clear;
303 	u8 mask;
304 	u8 val;
305 	int ret;
306 
307 	/* Clear any previous measurement overflow status */
308 	ret = regmap_read(ak8974->map, AK8974_INT_CLEAR, &clear);
309 	if (ret)
310 		return ret;
311 
312 	/* If we have a DRDY IRQ line, use it */
313 	if (ak8974->drdy_irq) {
314 		mask = AK8974_CTRL2_INT_EN |
315 			AK8974_CTRL2_DRDY_EN |
316 			AK8974_CTRL2_DRDY_POL;
317 		val = AK8974_CTRL2_DRDY_EN;
318 
319 		if (!ak8974->drdy_active_low)
320 			val |= AK8974_CTRL2_DRDY_POL;
321 
322 		init_completion(&ak8974->drdy_complete);
323 		ret = regmap_update_bits(ak8974->map, AK8974_CTRL2,
324 					 mask, val);
325 		if (ret)
326 			return ret;
327 	}
328 
329 	/* Force a measurement */
330 	return regmap_set_bits(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_FORCE);
331 }
332 
ak8974_await_drdy(struct ak8974 * ak8974)333 static int ak8974_await_drdy(struct ak8974 *ak8974)
334 {
335 	int timeout = 2;
336 	unsigned int val;
337 	int ret;
338 
339 	if (ak8974->drdy_irq) {
340 		ret = wait_for_completion_timeout(&ak8974->drdy_complete,
341 					1 + msecs_to_jiffies(1000));
342 		if (!ret) {
343 			dev_err(&ak8974->i2c->dev,
344 				"timeout waiting for DRDY IRQ\n");
345 			return -ETIMEDOUT;
346 		}
347 		return 0;
348 	}
349 
350 	/* Default delay-based poll loop */
351 	do {
352 		msleep(AK8974_MEASTIME);
353 		ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
354 		if (ret < 0)
355 			return ret;
356 		if (val & AK8974_STATUS_DRDY)
357 			return 0;
358 	} while (--timeout);
359 
360 	dev_err(&ak8974->i2c->dev, "timeout waiting for DRDY\n");
361 	return -ETIMEDOUT;
362 }
363 
ak8974_getresult(struct ak8974 * ak8974,__le16 * result)364 static int ak8974_getresult(struct ak8974 *ak8974, __le16 *result)
365 {
366 	unsigned int src;
367 	int ret;
368 
369 	ret = ak8974_await_drdy(ak8974);
370 	if (ret)
371 		return ret;
372 	ret = regmap_read(ak8974->map, AK8974_INT_SRC, &src);
373 	if (ret < 0)
374 		return ret;
375 
376 	/* Out of range overflow! Strong magnet close? */
377 	if (src & AK8974_INT_RANGE) {
378 		dev_err(&ak8974->i2c->dev,
379 			"range overflow in sensor\n");
380 		return -ERANGE;
381 	}
382 
383 	ret = regmap_bulk_read(ak8974->map, AK8974_DATA_X, result, 6);
384 	if (ret)
385 		return ret;
386 
387 	return ret;
388 }
389 
ak8974_drdy_irq(int irq,void * d)390 static irqreturn_t ak8974_drdy_irq(int irq, void *d)
391 {
392 	struct ak8974 *ak8974 = d;
393 
394 	if (!ak8974->drdy_irq)
395 		return IRQ_NONE;
396 
397 	/* TODO: timestamp here to get good measurement stamps */
398 	return IRQ_WAKE_THREAD;
399 }
400 
ak8974_drdy_irq_thread(int irq,void * d)401 static irqreturn_t ak8974_drdy_irq_thread(int irq, void *d)
402 {
403 	struct ak8974 *ak8974 = d;
404 	unsigned int val;
405 	int ret;
406 
407 	/* Check if this was a DRDY from us */
408 	ret = regmap_read(ak8974->map, AK8974_STATUS, &val);
409 	if (ret < 0) {
410 		dev_err(&ak8974->i2c->dev, "error reading DRDY status\n");
411 		return IRQ_HANDLED;
412 	}
413 	if (val & AK8974_STATUS_DRDY) {
414 		/* Yes this was our IRQ */
415 		complete(&ak8974->drdy_complete);
416 		return IRQ_HANDLED;
417 	}
418 
419 	/* We may be on a shared IRQ, let the next client check */
420 	return IRQ_NONE;
421 }
422 
ak8974_selftest(struct ak8974 * ak8974)423 static int ak8974_selftest(struct ak8974 *ak8974)
424 {
425 	struct device *dev = &ak8974->i2c->dev;
426 	unsigned int val;
427 	int ret;
428 
429 	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
430 	if (ret)
431 		return ret;
432 	if (val != AK8974_SELFTEST_IDLE) {
433 		dev_err(dev, "selftest not idle before test\n");
434 		return -EIO;
435 	}
436 
437 	/* Trigger self-test */
438 	ret = regmap_set_bits(ak8974->map, AK8974_CTRL3, AK8974_CTRL3_SELFTEST);
439 	if (ret) {
440 		dev_err(dev, "could not write CTRL3\n");
441 		return ret;
442 	}
443 
444 	msleep(AK8974_SELFTEST_DELAY);
445 
446 	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
447 	if (ret)
448 		return ret;
449 	if (val != AK8974_SELFTEST_OK) {
450 		dev_err(dev, "selftest result NOT OK (%02x)\n", val);
451 		return -EIO;
452 	}
453 
454 	ret = regmap_read(ak8974->map, AK8974_SELFTEST, &val);
455 	if (ret)
456 		return ret;
457 	if (val != AK8974_SELFTEST_IDLE) {
458 		dev_err(dev, "selftest not idle after test (%02x)\n", val);
459 		return -EIO;
460 	}
461 	dev_dbg(dev, "passed self-test\n");
462 
463 	return 0;
464 }
465 
ak8974_read_calib_data(struct ak8974 * ak8974,unsigned int reg,__le16 * tab,size_t tab_size)466 static void ak8974_read_calib_data(struct ak8974 *ak8974, unsigned int reg,
467 				   __le16 *tab, size_t tab_size)
468 {
469 	int ret = regmap_bulk_read(ak8974->map, reg, tab, tab_size);
470 	if (ret) {
471 		memset(tab, 0xFF, tab_size);
472 		dev_warn(&ak8974->i2c->dev,
473 			 "can't read calibration data (regs %u..%zu): %d\n",
474 			 reg, reg + tab_size - 1, ret);
475 	} else {
476 		add_device_randomness(tab, tab_size);
477 	}
478 }
479 
ak8974_detect(struct ak8974 * ak8974)480 static int ak8974_detect(struct ak8974 *ak8974)
481 {
482 	unsigned int whoami;
483 	const char *name;
484 	int ret;
485 	unsigned int fw;
486 	u16 sn;
487 
488 	ret = regmap_read(ak8974->map, AK8974_WHOAMI, &whoami);
489 	if (ret)
490 		return ret;
491 
492 	name = "ami305";
493 
494 	switch (whoami) {
495 	case AK8974_WHOAMI_VALUE_AMI306:
496 		name = "ami306";
497 		fallthrough;
498 	case AK8974_WHOAMI_VALUE_AMI305:
499 		ret = regmap_read(ak8974->map, AMI305_VER, &fw);
500 		if (ret)
501 			return ret;
502 		fw &= 0x7f; /* only bits 0 thru 6 valid */
503 		ret = ak8974_get_u16_val(ak8974, AMI305_SN, &sn);
504 		if (ret)
505 			return ret;
506 		add_device_randomness(&sn, sizeof(sn));
507 		dev_info(&ak8974->i2c->dev,
508 			 "detected %s, FW ver %02x, S/N: %04x\n",
509 			 name, fw, sn);
510 		break;
511 	case AK8974_WHOAMI_VALUE_AK8974:
512 		name = "ak8974";
513 		dev_info(&ak8974->i2c->dev, "detected AK8974\n");
514 		break;
515 	case AK8974_WHOAMI_VALUE_HSCDTD008A:
516 		name = "hscdtd008a";
517 		dev_info(&ak8974->i2c->dev, "detected hscdtd008a\n");
518 		break;
519 	default:
520 		dev_err(&ak8974->i2c->dev, "unsupported device (%02x) ",
521 			whoami);
522 		return -ENODEV;
523 	}
524 
525 	ak8974->name = name;
526 	ak8974->variant = whoami;
527 
528 	if (whoami == AK8974_WHOAMI_VALUE_AMI306) {
529 		__le16 fab_data1[9], fab_data2[3];
530 		int i;
531 
532 		ak8974_read_calib_data(ak8974, AMI306_FINEOUTPUT_X,
533 				       fab_data1, sizeof(fab_data1));
534 		ak8974_read_calib_data(ak8974, AMI306_OFFZERO_X,
535 				       fab_data2, sizeof(fab_data2));
536 
537 		for (i = 0; i < 3; ++i) {
538 			static const char axis[3] = "XYZ";
539 			static const char pgaxis[6] = "ZYZXYX";
540 			unsigned offz = le16_to_cpu(fab_data2[i]) & 0x7F;
541 			unsigned fine = le16_to_cpu(fab_data1[i]);
542 			unsigned sens = le16_to_cpu(fab_data1[i + 3]);
543 			unsigned pgain1 = le16_to_cpu(fab_data1[i + 6]);
544 			unsigned pgain2 = pgain1 >> 8;
545 
546 			pgain1 &= 0xFF;
547 
548 			dev_info(&ak8974->i2c->dev,
549 				 "factory calibration for axis %c: offz=%u sens=%u fine=%u pga%c=%u pga%c=%u\n",
550 				 axis[i], offz, sens, fine, pgaxis[i * 2],
551 				 pgain1, pgaxis[i * 2 + 1], pgain2);
552 		}
553 	}
554 
555 	return 0;
556 }
557 
ak8974_measure_channel(struct ak8974 * ak8974,unsigned long address,int * val)558 static int ak8974_measure_channel(struct ak8974 *ak8974, unsigned long address,
559 				  int *val)
560 {
561 	__le16 hw_values[3];
562 	int ret;
563 
564 	pm_runtime_get_sync(&ak8974->i2c->dev);
565 	mutex_lock(&ak8974->lock);
566 
567 	/*
568 	 * We read all axes and discard all but one, for optimized
569 	 * reading, use the triggered buffer.
570 	 */
571 	ret = ak8974_trigmeas(ak8974);
572 	if (ret)
573 		goto out_unlock;
574 	ret = ak8974_getresult(ak8974, hw_values);
575 	if (ret)
576 		goto out_unlock;
577 	/*
578 	 * This explicit cast to (s16) is necessary as the measurement
579 	 * is done in 2's complement with positive and negative values.
580 	 * The follwing assignment to *val will then convert the signed
581 	 * s16 value to a signed int value.
582 	 */
583 	*val = (s16)le16_to_cpu(hw_values[address]);
584 out_unlock:
585 	mutex_unlock(&ak8974->lock);
586 	pm_runtime_mark_last_busy(&ak8974->i2c->dev);
587 	pm_runtime_put_autosuspend(&ak8974->i2c->dev);
588 
589 	return ret;
590 }
591 
ak8974_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)592 static int ak8974_read_raw(struct iio_dev *indio_dev,
593 			   struct iio_chan_spec const *chan,
594 			   int *val, int *val2,
595 			   long mask)
596 {
597 	struct ak8974 *ak8974 = iio_priv(indio_dev);
598 	int ret;
599 
600 	switch (mask) {
601 	case IIO_CHAN_INFO_RAW:
602 		if (chan->address > 2) {
603 			dev_err(&ak8974->i2c->dev, "faulty channel address\n");
604 			return -EIO;
605 		}
606 		ret = ak8974_measure_channel(ak8974, chan->address, val);
607 		if (ret)
608 			return ret;
609 		return IIO_VAL_INT;
610 	case IIO_CHAN_INFO_SCALE:
611 		switch (ak8974->variant) {
612 		case AK8974_WHOAMI_VALUE_AMI306:
613 		case AK8974_WHOAMI_VALUE_AMI305:
614 			/*
615 			 * The datasheet for AMI305 and AMI306, page 6
616 			 * specifies the range of the sensor to be
617 			 * +/- 12 Gauss.
618 			 */
619 			*val = 12;
620 			/*
621 			 * 12 bits are used, +/- 2^11
622 			 * [ -2048 .. 2047 ] (manual page 20)
623 			 * [ 0xf800 .. 0x07ff ]
624 			 */
625 			*val2 = 11;
626 			return IIO_VAL_FRACTIONAL_LOG2;
627 		case AK8974_WHOAMI_VALUE_HSCDTD008A:
628 			/*
629 			 * The datasheet for HSCDTF008A, page 3 specifies the
630 			 * range of the sensor as +/- 2.4 mT per axis, which
631 			 * corresponds to +/- 2400 uT = +/- 24 Gauss.
632 			 */
633 			*val = 24;
634 			/*
635 			 * 15 bits are used (set up in CTRL4), +/- 2^14
636 			 * [ -16384 .. 16383 ] (manual page 24)
637 			 * [ 0xc000 .. 0x3fff ]
638 			 */
639 			*val2 = 14;
640 			return IIO_VAL_FRACTIONAL_LOG2;
641 		default:
642 			/* GUESSING +/- 12 Gauss */
643 			*val = 12;
644 			/* GUESSING 12 bits ADC +/- 2^11 */
645 			*val2 = 11;
646 			return IIO_VAL_FRACTIONAL_LOG2;
647 		}
648 		break;
649 	default:
650 		/* Unknown request */
651 		break;
652 	}
653 
654 	return -EINVAL;
655 }
656 
ak8974_fill_buffer(struct iio_dev * indio_dev)657 static void ak8974_fill_buffer(struct iio_dev *indio_dev)
658 {
659 	struct ak8974 *ak8974 = iio_priv(indio_dev);
660 	int ret;
661 
662 	pm_runtime_get_sync(&ak8974->i2c->dev);
663 	mutex_lock(&ak8974->lock);
664 
665 	ret = ak8974_trigmeas(ak8974);
666 	if (ret) {
667 		dev_err(&ak8974->i2c->dev, "error triggering measure\n");
668 		goto out_unlock;
669 	}
670 	ret = ak8974_getresult(ak8974, ak8974->scan.channels);
671 	if (ret) {
672 		dev_err(&ak8974->i2c->dev, "error getting measures\n");
673 		goto out_unlock;
674 	}
675 
676 	iio_push_to_buffers_with_timestamp(indio_dev, &ak8974->scan,
677 					   iio_get_time_ns(indio_dev));
678 
679  out_unlock:
680 	mutex_unlock(&ak8974->lock);
681 	pm_runtime_mark_last_busy(&ak8974->i2c->dev);
682 	pm_runtime_put_autosuspend(&ak8974->i2c->dev);
683 }
684 
ak8974_handle_trigger(int irq,void * p)685 static irqreturn_t ak8974_handle_trigger(int irq, void *p)
686 {
687 	const struct iio_poll_func *pf = p;
688 	struct iio_dev *indio_dev = pf->indio_dev;
689 
690 	ak8974_fill_buffer(indio_dev);
691 	iio_trigger_notify_done(indio_dev->trig);
692 
693 	return IRQ_HANDLED;
694 }
695 
696 static const struct iio_mount_matrix *
ak8974_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)697 ak8974_get_mount_matrix(const struct iio_dev *indio_dev,
698 			const struct iio_chan_spec *chan)
699 {
700 	struct ak8974 *ak8974 = iio_priv(indio_dev);
701 
702 	return &ak8974->orientation;
703 }
704 
705 static const struct iio_chan_spec_ext_info ak8974_ext_info[] = {
706 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8974_get_mount_matrix),
707 	{ },
708 };
709 
710 #define AK8974_AXIS_CHANNEL(axis, index, bits)				\
711 	{								\
712 		.type = IIO_MAGN,					\
713 		.modified = 1,						\
714 		.channel2 = IIO_MOD_##axis,				\
715 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
716 			BIT(IIO_CHAN_INFO_SCALE),			\
717 		.ext_info = ak8974_ext_info,				\
718 		.address = index,					\
719 		.scan_index = index,					\
720 		.scan_type = {						\
721 			.sign = 's',					\
722 			.realbits = bits,				\
723 			.storagebits = 16,				\
724 			.endianness = IIO_LE				\
725 		},							\
726 	}
727 
728 /*
729  * We have no datasheet for the AK8974 but we guess that its
730  * ADC is 12 bits. The AMI305 and AMI306 certainly has 12bit
731  * ADC.
732  */
733 static const struct iio_chan_spec ak8974_12_bits_channels[] = {
734 	AK8974_AXIS_CHANNEL(X, 0, 12),
735 	AK8974_AXIS_CHANNEL(Y, 1, 12),
736 	AK8974_AXIS_CHANNEL(Z, 2, 12),
737 	IIO_CHAN_SOFT_TIMESTAMP(3),
738 };
739 
740 /*
741  * The HSCDTD008A has 15 bits resolution the way we set it up
742  * in CTRL4.
743  */
744 static const struct iio_chan_spec ak8974_15_bits_channels[] = {
745 	AK8974_AXIS_CHANNEL(X, 0, 15),
746 	AK8974_AXIS_CHANNEL(Y, 1, 15),
747 	AK8974_AXIS_CHANNEL(Z, 2, 15),
748 	IIO_CHAN_SOFT_TIMESTAMP(3),
749 };
750 
751 static const unsigned long ak8974_scan_masks[] = { 0x7, 0 };
752 
753 static const struct iio_info ak8974_info = {
754 	.read_raw = &ak8974_read_raw,
755 };
756 
ak8974_writeable_reg(struct device * dev,unsigned int reg)757 static bool ak8974_writeable_reg(struct device *dev, unsigned int reg)
758 {
759 	struct i2c_client *i2c = to_i2c_client(dev);
760 	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
761 	struct ak8974 *ak8974 = iio_priv(indio_dev);
762 
763 	switch (reg) {
764 	case AK8974_CTRL1:
765 	case AK8974_CTRL2:
766 	case AK8974_CTRL3:
767 	case AK8974_INT_CTRL:
768 	case AK8974_INT_THRES:
769 	case AK8974_INT_THRES + 1:
770 		return true;
771 	case AK8974_PRESET:
772 	case AK8974_PRESET + 1:
773 		return ak8974->variant != AK8974_WHOAMI_VALUE_HSCDTD008A;
774 	case AK8974_OFFSET_X:
775 	case AK8974_OFFSET_X + 1:
776 	case AK8974_OFFSET_Y:
777 	case AK8974_OFFSET_Y + 1:
778 	case AK8974_OFFSET_Z:
779 	case AK8974_OFFSET_Z + 1:
780 		return ak8974->variant == AK8974_WHOAMI_VALUE_AK8974 ||
781 		       ak8974->variant == AK8974_WHOAMI_VALUE_HSCDTD008A;
782 	case AMI305_OFFSET_X:
783 	case AMI305_OFFSET_X + 1:
784 	case AMI305_OFFSET_Y:
785 	case AMI305_OFFSET_Y + 1:
786 	case AMI305_OFFSET_Z:
787 	case AMI305_OFFSET_Z + 1:
788 		return ak8974->variant == AK8974_WHOAMI_VALUE_AMI305 ||
789 		       ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
790 	case AMI306_CTRL4:
791 	case AMI306_CTRL4 + 1:
792 		return ak8974->variant == AK8974_WHOAMI_VALUE_AMI306;
793 	default:
794 		return false;
795 	}
796 }
797 
ak8974_precious_reg(struct device * dev,unsigned int reg)798 static bool ak8974_precious_reg(struct device *dev, unsigned int reg)
799 {
800 	return reg == AK8974_INT_CLEAR;
801 }
802 
803 static const struct regmap_config ak8974_regmap_config = {
804 	.reg_bits = 8,
805 	.val_bits = 8,
806 	.max_register = 0xff,
807 	.writeable_reg = ak8974_writeable_reg,
808 	.precious_reg = ak8974_precious_reg,
809 };
810 
ak8974_probe(struct i2c_client * i2c)811 static int ak8974_probe(struct i2c_client *i2c)
812 {
813 	struct iio_dev *indio_dev;
814 	struct ak8974 *ak8974;
815 	unsigned long irq_trig;
816 	int irq = i2c->irq;
817 	int ret;
818 
819 	/* Register with IIO */
820 	indio_dev = devm_iio_device_alloc(&i2c->dev, sizeof(*ak8974));
821 	if (indio_dev == NULL)
822 		return -ENOMEM;
823 
824 	ak8974 = iio_priv(indio_dev);
825 	i2c_set_clientdata(i2c, indio_dev);
826 	ak8974->i2c = i2c;
827 	mutex_init(&ak8974->lock);
828 
829 	ret = iio_read_mount_matrix(&i2c->dev, &ak8974->orientation);
830 	if (ret)
831 		return ret;
832 
833 	ak8974->regs[0].supply = ak8974_reg_avdd;
834 	ak8974->regs[1].supply = ak8974_reg_dvdd;
835 
836 	ret = devm_regulator_bulk_get(&i2c->dev,
837 				      ARRAY_SIZE(ak8974->regs),
838 				      ak8974->regs);
839 	if (ret < 0)
840 		return dev_err_probe(&i2c->dev, ret, "cannot get regulators\n");
841 
842 	ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
843 	if (ret < 0) {
844 		dev_err(&i2c->dev, "cannot enable regulators\n");
845 		return ret;
846 	}
847 
848 	/* Take runtime PM online */
849 	pm_runtime_get_noresume(&i2c->dev);
850 	pm_runtime_set_active(&i2c->dev);
851 	pm_runtime_enable(&i2c->dev);
852 
853 	ak8974->map = devm_regmap_init_i2c(i2c, &ak8974_regmap_config);
854 	if (IS_ERR(ak8974->map)) {
855 		dev_err(&i2c->dev, "failed to allocate register map\n");
856 		pm_runtime_put_noidle(&i2c->dev);
857 		pm_runtime_disable(&i2c->dev);
858 		return PTR_ERR(ak8974->map);
859 	}
860 
861 	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
862 	if (ret) {
863 		dev_err(&i2c->dev, "could not power on\n");
864 		goto disable_pm;
865 	}
866 
867 	ret = ak8974_detect(ak8974);
868 	if (ret) {
869 		dev_err(&i2c->dev, "neither AK8974 nor AMI30x found\n");
870 		goto disable_pm;
871 	}
872 
873 	ret = ak8974_selftest(ak8974);
874 	if (ret)
875 		dev_err(&i2c->dev, "selftest failed (continuing anyway)\n");
876 
877 	ret = ak8974_reset(ak8974);
878 	if (ret) {
879 		dev_err(&i2c->dev, "AK8974 reset failed\n");
880 		goto disable_pm;
881 	}
882 
883 	switch (ak8974->variant) {
884 	case AK8974_WHOAMI_VALUE_AMI306:
885 	case AK8974_WHOAMI_VALUE_AMI305:
886 		indio_dev->channels = ak8974_12_bits_channels;
887 		indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
888 		break;
889 	case AK8974_WHOAMI_VALUE_HSCDTD008A:
890 		indio_dev->channels = ak8974_15_bits_channels;
891 		indio_dev->num_channels = ARRAY_SIZE(ak8974_15_bits_channels);
892 		break;
893 	default:
894 		indio_dev->channels = ak8974_12_bits_channels;
895 		indio_dev->num_channels = ARRAY_SIZE(ak8974_12_bits_channels);
896 		break;
897 	}
898 	indio_dev->info = &ak8974_info;
899 	indio_dev->available_scan_masks = ak8974_scan_masks;
900 	indio_dev->modes = INDIO_DIRECT_MODE;
901 	indio_dev->name = ak8974->name;
902 
903 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
904 					 ak8974_handle_trigger,
905 					 NULL);
906 	if (ret) {
907 		dev_err(&i2c->dev, "triggered buffer setup failed\n");
908 		goto disable_pm;
909 	}
910 
911 	/* If we have a valid DRDY IRQ, make use of it */
912 	if (irq > 0) {
913 		irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
914 		if (irq_trig == IRQF_TRIGGER_RISING) {
915 			dev_info(&i2c->dev, "enable rising edge DRDY IRQ\n");
916 		} else if (irq_trig == IRQF_TRIGGER_FALLING) {
917 			ak8974->drdy_active_low = true;
918 			dev_info(&i2c->dev, "enable falling edge DRDY IRQ\n");
919 		} else {
920 			irq_trig = IRQF_TRIGGER_RISING;
921 		}
922 		irq_trig |= IRQF_ONESHOT;
923 		irq_trig |= IRQF_SHARED;
924 
925 		ret = devm_request_threaded_irq(&i2c->dev,
926 						irq,
927 						ak8974_drdy_irq,
928 						ak8974_drdy_irq_thread,
929 						irq_trig,
930 						ak8974->name,
931 						ak8974);
932 		if (ret) {
933 			dev_err(&i2c->dev, "unable to request DRDY IRQ "
934 				"- proceeding without IRQ\n");
935 			goto no_irq;
936 		}
937 		ak8974->drdy_irq = true;
938 	}
939 
940 no_irq:
941 	ret = iio_device_register(indio_dev);
942 	if (ret) {
943 		dev_err(&i2c->dev, "device register failed\n");
944 		goto cleanup_buffer;
945 	}
946 
947 	pm_runtime_set_autosuspend_delay(&i2c->dev,
948 					 AK8974_AUTOSUSPEND_DELAY);
949 	pm_runtime_use_autosuspend(&i2c->dev);
950 	pm_runtime_put(&i2c->dev);
951 
952 	return 0;
953 
954 cleanup_buffer:
955 	iio_triggered_buffer_cleanup(indio_dev);
956 disable_pm:
957 	pm_runtime_put_noidle(&i2c->dev);
958 	pm_runtime_disable(&i2c->dev);
959 	ak8974_set_power(ak8974, AK8974_PWR_OFF);
960 	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
961 
962 	return ret;
963 }
964 
ak8974_remove(struct i2c_client * i2c)965 static void ak8974_remove(struct i2c_client *i2c)
966 {
967 	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
968 	struct ak8974 *ak8974 = iio_priv(indio_dev);
969 
970 	iio_device_unregister(indio_dev);
971 	iio_triggered_buffer_cleanup(indio_dev);
972 	pm_runtime_get_sync(&i2c->dev);
973 	pm_runtime_put_noidle(&i2c->dev);
974 	pm_runtime_disable(&i2c->dev);
975 	ak8974_set_power(ak8974, AK8974_PWR_OFF);
976 	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
977 }
978 
ak8974_runtime_suspend(struct device * dev)979 static int ak8974_runtime_suspend(struct device *dev)
980 {
981 	struct ak8974 *ak8974 =
982 		iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
983 
984 	ak8974_set_power(ak8974, AK8974_PWR_OFF);
985 	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
986 
987 	return 0;
988 }
989 
ak8974_runtime_resume(struct device * dev)990 static int ak8974_runtime_resume(struct device *dev)
991 {
992 	struct ak8974 *ak8974 =
993 		iio_priv(i2c_get_clientdata(to_i2c_client(dev)));
994 	int ret;
995 
996 	ret = regulator_bulk_enable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
997 	if (ret)
998 		return ret;
999 	msleep(AK8974_POWERON_DELAY);
1000 	ret = ak8974_set_power(ak8974, AK8974_PWR_ON);
1001 	if (ret)
1002 		goto out_regulator_disable;
1003 
1004 	ret = ak8974_configure(ak8974);
1005 	if (ret)
1006 		goto out_disable_power;
1007 
1008 	return 0;
1009 
1010 out_disable_power:
1011 	ak8974_set_power(ak8974, AK8974_PWR_OFF);
1012 out_regulator_disable:
1013 	regulator_bulk_disable(ARRAY_SIZE(ak8974->regs), ak8974->regs);
1014 
1015 	return ret;
1016 }
1017 
1018 static DEFINE_RUNTIME_DEV_PM_OPS(ak8974_dev_pm_ops, ak8974_runtime_suspend,
1019 				 ak8974_runtime_resume, NULL);
1020 
1021 static const struct i2c_device_id ak8974_id[] = {
1022 	{ "ami305" },
1023 	{ "ami306" },
1024 	{ "ak8974" },
1025 	{ "hscdtd008a" },
1026 	{}
1027 };
1028 MODULE_DEVICE_TABLE(i2c, ak8974_id);
1029 
1030 static const struct of_device_id ak8974_of_match[] = {
1031 	{ .compatible = "asahi-kasei,ak8974", },
1032 	{ .compatible = "alps,hscdtd008a", },
1033 	{}
1034 };
1035 MODULE_DEVICE_TABLE(of, ak8974_of_match);
1036 
1037 static struct i2c_driver ak8974_driver = {
1038 	.driver	 = {
1039 		.name	= "ak8974",
1040 		.pm = pm_ptr(&ak8974_dev_pm_ops),
1041 		.of_match_table = ak8974_of_match,
1042 	},
1043 	.probe = ak8974_probe,
1044 	.remove	  = ak8974_remove,
1045 	.id_table = ak8974_id,
1046 };
1047 module_i2c_driver(ak8974_driver);
1048 
1049 MODULE_DESCRIPTION("AK8974 and AMI30x 3-axis magnetometer driver");
1050 MODULE_AUTHOR("Samu Onkalo");
1051 MODULE_AUTHOR("Linus Walleij");
1052 MODULE_LICENSE("GPL v2");
1053