1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2012, 2015 Chelsio Communications, Inc.
5 * All rights reserved.
6 * Written by: Navdeep Parhar <np@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35
36 #ifdef TCP_OFFLOAD
37 #include <sys/param.h>
38 #include <sys/aio.h>
39 #include <sys/file.h>
40 #include <sys/kernel.h>
41 #include <sys/ktr.h>
42 #include <sys/module.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/domain.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sglist.h>
49 #include <sys/taskqueue.h>
50 #include <netinet/in.h>
51 #include <netinet/in_pcb.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip6.h>
54 #define TCPSTATES
55 #include <netinet/tcp_fsm.h>
56 #include <netinet/tcp_seq.h>
57 #include <netinet/tcp_var.h>
58 #include <netinet/toecore.h>
59
60 #include <security/mac/mac_framework.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 #include <vm/vm_page.h>
67
68 #include <dev/iscsi/iscsi_proto.h>
69 #include <dev/nvmf/nvmf_proto.h>
70
71 #include "common/common.h"
72 #include "common/t4_msg.h"
73 #include "common/t4_regs.h"
74 #include "common/t4_tcb.h"
75 #include "tom/t4_tom_l2t.h"
76 #include "tom/t4_tom.h"
77
78 static void t4_aiotx_cancel(struct kaiocb *job);
79 static void t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep);
80
81 void
send_flowc_wr(struct toepcb * toep,struct tcpcb * tp)82 send_flowc_wr(struct toepcb *toep, struct tcpcb *tp)
83 {
84 struct wrqe *wr;
85 struct fw_flowc_wr *flowc;
86 unsigned int nparams, flowclen, paramidx;
87 struct vi_info *vi = toep->vi;
88 struct port_info *pi = vi->pi;
89 struct adapter *sc = pi->adapter;
90 unsigned int pfvf = sc->pf << S_FW_VIID_PFN;
91 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
92
93 KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT),
94 ("%s: flowc for tid %u sent already", __func__, toep->tid));
95
96 if (tp != NULL)
97 nparams = 8;
98 else
99 nparams = 6;
100 if (toep->params.tc_idx != -1) {
101 MPASS(toep->params.tc_idx >= 0 &&
102 toep->params.tc_idx < sc->params.nsched_cls);
103 nparams++;
104 }
105
106 flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval);
107
108 wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq);
109 if (wr == NULL) {
110 /* XXX */
111 panic("%s: allocation failure.", __func__);
112 }
113 flowc = wrtod(wr);
114 memset(flowc, 0, wr->wr_len);
115
116 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
117 V_FW_FLOWC_WR_NPARAMS(nparams));
118 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) |
119 V_FW_WR_FLOWID(toep->tid));
120
121 #define FLOWC_PARAM(__m, __v) \
122 do { \
123 flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \
124 flowc->mnemval[paramidx].val = htobe32(__v); \
125 paramidx++; \
126 } while (0)
127
128 paramidx = 0;
129
130 FLOWC_PARAM(PFNVFN, pfvf);
131 /* Firmware expects hw port and will translate to channel itself. */
132 FLOWC_PARAM(CH, pi->hw_port);
133 FLOWC_PARAM(PORT, pi->hw_port);
134 FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id);
135 FLOWC_PARAM(SNDBUF, toep->params.sndbuf);
136 if (tp) {
137 FLOWC_PARAM(MSS, toep->params.emss);
138 FLOWC_PARAM(SNDNXT, tp->snd_nxt);
139 FLOWC_PARAM(RCVNXT, tp->rcv_nxt);
140 } else
141 FLOWC_PARAM(MSS, 512);
142 CTR6(KTR_CXGBE,
143 "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x",
144 __func__, toep->tid, toep->params.emss, toep->params.sndbuf,
145 tp ? tp->snd_nxt : 0, tp ? tp->rcv_nxt : 0);
146
147 if (toep->params.tc_idx != -1)
148 FLOWC_PARAM(SCHEDCLASS, toep->params.tc_idx);
149 #undef FLOWC_PARAM
150
151 KASSERT(paramidx == nparams, ("nparams mismatch"));
152
153 KASSERT(howmany(flowclen, 16) <= MAX_OFLD_TX_SDESC_CREDITS,
154 ("%s: tx_credits %u too large", __func__, howmany(flowclen, 16)));
155 txsd->tx_credits = howmany(flowclen, 16);
156 txsd->plen = 0;
157 KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0,
158 ("%s: not enough credits (%d)", __func__, toep->tx_credits));
159 toep->tx_credits -= txsd->tx_credits;
160 if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
161 toep->txsd_pidx = 0;
162 toep->txsd_avail--;
163
164 toep->flags |= TPF_FLOWC_WR_SENT;
165 t4_wrq_tx(sc, wr);
166 }
167
168 #ifdef RATELIMIT
169 /*
170 * Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second.
171 */
172 static int
update_tx_rate_limit(struct adapter * sc,struct toepcb * toep,u_int Bps)173 update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps)
174 {
175 int tc_idx, rc;
176 const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000;
177 const int port_id = toep->vi->pi->port_id;
178
179 CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps);
180
181 if (kbps == 0) {
182 /* unbind */
183 tc_idx = -1;
184 } else {
185 rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx);
186 if (rc != 0)
187 return (rc);
188 MPASS(tc_idx >= 0 && tc_idx < sc->params.nsched_cls);
189 }
190
191 if (toep->params.tc_idx != tc_idx) {
192 struct wrqe *wr;
193 struct fw_flowc_wr *flowc;
194 int nparams = 1, flowclen, flowclen16;
195 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
196
197 flowclen = sizeof(*flowc) + nparams * sizeof(struct
198 fw_flowc_mnemval);
199 flowclen16 = howmany(flowclen, 16);
200 if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 ||
201 (wr = alloc_wrqe(roundup2(flowclen, 16),
202 &toep->ofld_txq->wrq)) == NULL) {
203 if (tc_idx >= 0)
204 t4_release_cl_rl(sc, port_id, tc_idx);
205 return (ENOMEM);
206 }
207
208 flowc = wrtod(wr);
209 memset(flowc, 0, wr->wr_len);
210
211 flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
212 V_FW_FLOWC_WR_NPARAMS(nparams));
213 flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) |
214 V_FW_WR_FLOWID(toep->tid));
215
216 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
217 if (tc_idx == -1)
218 flowc->mnemval[0].val = htobe32(0xff);
219 else
220 flowc->mnemval[0].val = htobe32(tc_idx);
221
222 KASSERT(flowclen16 <= MAX_OFLD_TX_SDESC_CREDITS,
223 ("%s: tx_credits %u too large", __func__, flowclen16));
224 txsd->tx_credits = flowclen16;
225 txsd->plen = 0;
226 toep->tx_credits -= txsd->tx_credits;
227 if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
228 toep->txsd_pidx = 0;
229 toep->txsd_avail--;
230 t4_wrq_tx(sc, wr);
231 }
232
233 if (toep->params.tc_idx >= 0)
234 t4_release_cl_rl(sc, port_id, toep->params.tc_idx);
235 toep->params.tc_idx = tc_idx;
236
237 return (0);
238 }
239 #endif
240
241 void
send_reset(struct adapter * sc,struct toepcb * toep,uint32_t snd_nxt)242 send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt)
243 {
244 struct wrqe *wr;
245 struct cpl_abort_req *req;
246 int tid = toep->tid;
247 struct inpcb *inp = toep->inp;
248 struct tcpcb *tp = intotcpcb(inp); /* don't use if INP_DROPPED */
249
250 INP_WLOCK_ASSERT(inp);
251
252 CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s",
253 __func__, toep->tid,
254 inp->inp_flags & INP_DROPPED ? "inp dropped" :
255 tcpstates[tp->t_state],
256 toep->flags, inp->inp_flags,
257 toep->flags & TPF_ABORT_SHUTDOWN ?
258 " (abort already in progress)" : "");
259
260 if (toep->flags & TPF_ABORT_SHUTDOWN)
261 return; /* abort already in progress */
262
263 toep->flags |= TPF_ABORT_SHUTDOWN;
264
265 KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
266 ("%s: flowc_wr not sent for tid %d.", __func__, tid));
267
268 wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq);
269 if (wr == NULL) {
270 /* XXX */
271 panic("%s: allocation failure.", __func__);
272 }
273 req = wrtod(wr);
274
275 INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid);
276 if (inp->inp_flags & INP_DROPPED)
277 req->rsvd0 = htobe32(snd_nxt);
278 else
279 req->rsvd0 = htobe32(tp->snd_nxt);
280 req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT);
281 req->cmd = CPL_ABORT_SEND_RST;
282
283 /*
284 * XXX: What's the correct way to tell that the inp hasn't been detached
285 * from its socket? Should I even be flushing the snd buffer here?
286 */
287 if ((inp->inp_flags & INP_DROPPED) == 0) {
288 struct socket *so = inp->inp_socket;
289
290 if (so != NULL) /* because I'm not sure. See comment above */
291 sbflush(&so->so_snd);
292 }
293
294 t4_l2t_send(sc, wr, toep->l2te);
295 }
296
297 /*
298 * Called when a connection is established to translate the TCP options
299 * reported by HW to FreeBSD's native format.
300 */
301 static void
assign_rxopt(struct tcpcb * tp,uint16_t opt)302 assign_rxopt(struct tcpcb *tp, uint16_t opt)
303 {
304 struct toepcb *toep = tp->t_toe;
305 struct inpcb *inp = tptoinpcb(tp);
306 struct adapter *sc = td_adapter(toep->td);
307
308 INP_LOCK_ASSERT(inp);
309
310 toep->params.mtu_idx = G_TCPOPT_MSS(opt);
311 tp->t_maxseg = sc->params.mtus[toep->params.mtu_idx];
312 if (inp->inp_inc.inc_flags & INC_ISIPV6)
313 tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
314 else
315 tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr);
316
317 toep->params.emss = tp->t_maxseg;
318 if (G_TCPOPT_TSTAMP(opt)) {
319 toep->params.tstamp = 1;
320 toep->params.emss -= TCPOLEN_TSTAMP_APPA;
321 tp->t_flags |= TF_RCVD_TSTMP; /* timestamps ok */
322 tp->ts_recent = 0; /* hmmm */
323 tp->ts_recent_age = tcp_ts_getticks();
324 } else
325 toep->params.tstamp = 0;
326
327 if (G_TCPOPT_SACK(opt)) {
328 toep->params.sack = 1;
329 tp->t_flags |= TF_SACK_PERMIT; /* should already be set */
330 } else {
331 toep->params.sack = 0;
332 tp->t_flags &= ~TF_SACK_PERMIT; /* sack disallowed by peer */
333 }
334
335 if (G_TCPOPT_WSCALE_OK(opt))
336 tp->t_flags |= TF_RCVD_SCALE;
337
338 /* Doing window scaling? */
339 if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
340 (TF_RCVD_SCALE | TF_REQ_SCALE)) {
341 tp->rcv_scale = tp->request_r_scale;
342 tp->snd_scale = G_TCPOPT_SND_WSCALE(opt);
343 } else
344 toep->params.wscale = 0;
345
346 CTR6(KTR_CXGBE,
347 "assign_rxopt: tid %d, mtu_idx %u, emss %u, ts %u, sack %u, wscale %u",
348 toep->tid, toep->params.mtu_idx, toep->params.emss,
349 toep->params.tstamp, toep->params.sack, toep->params.wscale);
350 }
351
352 /*
353 * Completes some final bits of initialization for just established connections
354 * and changes their state to TCPS_ESTABLISHED.
355 *
356 * The ISNs are from the exchange of SYNs.
357 */
358 void
make_established(struct toepcb * toep,uint32_t iss,uint32_t irs,uint16_t opt)359 make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt)
360 {
361 struct inpcb *inp = toep->inp;
362 struct socket *so = inp->inp_socket;
363 struct tcpcb *tp = intotcpcb(inp);
364 uint16_t tcpopt = be16toh(opt);
365
366 INP_WLOCK_ASSERT(inp);
367 KASSERT(tp->t_state == TCPS_SYN_SENT ||
368 tp->t_state == TCPS_SYN_RECEIVED,
369 ("%s: TCP state %s", __func__, tcpstates[tp->t_state]));
370
371 CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p",
372 __func__, toep->tid, so, inp, tp, toep);
373
374 tcp_state_change(tp, TCPS_ESTABLISHED);
375 tp->t_starttime = ticks;
376 TCPSTAT_INC(tcps_connects);
377
378 tp->irs = irs;
379 tcp_rcvseqinit(tp);
380 tp->rcv_wnd = (u_int)toep->params.opt0_bufsize << 10;
381 tp->rcv_adv += tp->rcv_wnd;
382 tp->last_ack_sent = tp->rcv_nxt;
383
384 tp->iss = iss;
385 tcp_sendseqinit(tp);
386 tp->snd_una = iss + 1;
387 tp->snd_nxt = iss + 1;
388 tp->snd_max = iss + 1;
389
390 assign_rxopt(tp, tcpopt);
391 send_flowc_wr(toep, tp);
392
393 soisconnected(so);
394 }
395
396 int
send_rx_credits(struct adapter * sc,struct toepcb * toep,int credits)397 send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits)
398 {
399 struct wrqe *wr;
400 struct cpl_rx_data_ack *req;
401 uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1);
402
403 KASSERT(credits >= 0, ("%s: %d credits", __func__, credits));
404
405 wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
406 if (wr == NULL)
407 return (0);
408 req = wrtod(wr);
409
410 INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
411 req->credit_dack = htobe32(dack | V_RX_CREDITS(credits));
412
413 t4_wrq_tx(sc, wr);
414 return (credits);
415 }
416
417 void
t4_rcvd_locked(struct toedev * tod,struct tcpcb * tp)418 t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp)
419 {
420 struct adapter *sc = tod->tod_softc;
421 struct inpcb *inp = tptoinpcb(tp);
422 struct socket *so = inp->inp_socket;
423 struct sockbuf *sb = &so->so_rcv;
424 struct toepcb *toep = tp->t_toe;
425 int rx_credits;
426
427 INP_WLOCK_ASSERT(inp);
428 SOCKBUF_LOCK_ASSERT(sb);
429
430 rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
431 if (rx_credits > 0 &&
432 (tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 ||
433 (rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) ||
434 sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) {
435 rx_credits = send_rx_credits(sc, toep, rx_credits);
436 tp->rcv_wnd += rx_credits;
437 tp->rcv_adv += rx_credits;
438 }
439 }
440
441 void
t4_rcvd(struct toedev * tod,struct tcpcb * tp)442 t4_rcvd(struct toedev *tod, struct tcpcb *tp)
443 {
444 struct inpcb *inp = tptoinpcb(tp);
445 struct socket *so = inp->inp_socket;
446 struct sockbuf *sb = &so->so_rcv;
447
448 SOCKBUF_LOCK(sb);
449 t4_rcvd_locked(tod, tp);
450 SOCKBUF_UNLOCK(sb);
451 }
452
453 /*
454 * Close a connection by sending a CPL_CLOSE_CON_REQ message.
455 */
456 int
t4_close_conn(struct adapter * sc,struct toepcb * toep)457 t4_close_conn(struct adapter *sc, struct toepcb *toep)
458 {
459 struct wrqe *wr;
460 struct cpl_close_con_req *req;
461 unsigned int tid = toep->tid;
462
463 CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid,
464 toep->flags & TPF_FIN_SENT ? ", IGNORED" : "");
465
466 if (toep->flags & TPF_FIN_SENT)
467 return (0);
468
469 KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
470 ("%s: flowc_wr not sent for tid %u.", __func__, tid));
471
472 wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq);
473 if (wr == NULL) {
474 /* XXX */
475 panic("%s: allocation failure.", __func__);
476 }
477 req = wrtod(wr);
478
479 req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) |
480 V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr)));
481 req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) |
482 V_FW_WR_FLOWID(tid));
483 req->wr.wr_lo = cpu_to_be64(0);
484 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid));
485 req->rsvd = 0;
486
487 toep->flags |= TPF_FIN_SENT;
488 toep->flags &= ~TPF_SEND_FIN;
489 t4_l2t_send(sc, wr, toep->l2te);
490
491 return (0);
492 }
493
494 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16)
495 #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16))
496 #define MIN_ISO_TX_CREDITS (howmany(sizeof(struct cpl_tx_data_iso), 16))
497 #define MIN_TX_CREDITS(iso) \
498 (MIN_OFLD_TX_CREDITS + ((iso) ? MIN_ISO_TX_CREDITS : 0))
499 #define MIN_OFLD_TX_V2_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_v2_wr) + 1, 16))
500 #define MIN_TX_V2_CREDITS(iso) \
501 (MIN_OFLD_TX_V2_CREDITS + ((iso) ? MIN_ISO_TX_CREDITS : 0))
502
503 _Static_assert(MAX_OFLD_TX_CREDITS <= MAX_OFLD_TX_SDESC_CREDITS,
504 "MAX_OFLD_TX_SDESC_CREDITS too small");
505
506 /* Maximum amount of immediate data we could stuff in a WR */
507 static inline int
max_imm_payload(int tx_credits,int iso)508 max_imm_payload(int tx_credits, int iso)
509 {
510 const int iso_cpl_size = iso ? sizeof(struct cpl_tx_data_iso) : 0;
511 const int n = 1; /* Use no more than one desc for imm. data WR */
512
513 KASSERT(tx_credits >= 0 &&
514 tx_credits <= MAX_OFLD_TX_CREDITS,
515 ("%s: %d credits", __func__, tx_credits));
516
517 if (tx_credits < MIN_TX_CREDITS(iso))
518 return (0);
519
520 if (tx_credits >= (n * EQ_ESIZE) / 16)
521 return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr) -
522 iso_cpl_size);
523 else
524 return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr) -
525 iso_cpl_size);
526 }
527
528 /* Maximum number of SGL entries we could stuff in a WR */
529 static inline int
max_dsgl_nsegs(int tx_credits,int iso)530 max_dsgl_nsegs(int tx_credits, int iso)
531 {
532 int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */
533 int sge_pair_credits = tx_credits - MIN_TX_CREDITS(iso);
534
535 KASSERT(tx_credits >= 0 &&
536 tx_credits <= MAX_OFLD_TX_CREDITS,
537 ("%s: %d credits", __func__, tx_credits));
538
539 if (tx_credits < MIN_TX_CREDITS(iso))
540 return (0);
541
542 nseg += 2 * (sge_pair_credits * 16 / 24);
543 if ((sge_pair_credits * 16) % 24 == 16)
544 nseg++;
545
546 return (nseg);
547 }
548
549 /* Maximum amount of immediate data we could stuff in a WR */
550 static inline int
max_imm_payload_v2(int tx_credits,int iso)551 max_imm_payload_v2(int tx_credits, int iso)
552 {
553 const int iso_cpl_size = iso ? sizeof(struct cpl_tx_data_iso) : 0;
554
555 KASSERT(tx_credits >= 0 &&
556 tx_credits <= MAX_OFLD_TX_CREDITS,
557 ("%s: %d credits", __func__, tx_credits));
558
559 if (tx_credits < MIN_TX_V2_CREDITS(iso))
560 return (0);
561
562 return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_v2_wr) -
563 iso_cpl_size);
564 }
565
566 /* Maximum number of SGL entries we could stuff in a WR */
567 static inline int
max_dsgl_nsegs_v2(int tx_credits,int iso,int imm_payload)568 max_dsgl_nsegs_v2(int tx_credits, int iso, int imm_payload)
569 {
570 int nseg = 1; /* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */
571 int sge_pair_credits = tx_credits - MIN_TX_V2_CREDITS(iso);
572
573 KASSERT(tx_credits >= 0 &&
574 tx_credits <= MAX_OFLD_TX_CREDITS,
575 ("%s: %d credits", __func__, tx_credits));
576
577 if (tx_credits < MIN_TX_V2_CREDITS(iso) ||
578 sge_pair_credits <= howmany(imm_payload, 16))
579 return (0);
580 sge_pair_credits -= howmany(imm_payload, 16);
581
582 nseg += 2 * (sge_pair_credits * 16 / 24);
583 if ((sge_pair_credits * 16) % 24 == 16)
584 nseg++;
585
586 return (nseg);
587 }
588
589 static inline void
write_tx_wr(void * dst,struct toepcb * toep,int fw_wr_opcode,unsigned int immdlen,unsigned int plen,uint8_t credits,int shove,int ulp_submode)590 write_tx_wr(void *dst, struct toepcb *toep, int fw_wr_opcode,
591 unsigned int immdlen, unsigned int plen, uint8_t credits, int shove,
592 int ulp_submode)
593 {
594 struct fw_ofld_tx_data_wr *txwr = dst;
595
596 txwr->op_to_immdlen = htobe32(V_WR_OP(fw_wr_opcode) |
597 V_FW_WR_IMMDLEN(immdlen));
598 txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) |
599 V_FW_WR_LEN16(credits));
600 txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ulp_mode(toep)) |
601 V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove));
602 txwr->plen = htobe32(plen);
603
604 if (toep->params.tx_align > 0) {
605 if (plen < 2 * toep->params.emss)
606 txwr->lsodisable_to_flags |=
607 htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE);
608 else
609 txwr->lsodisable_to_flags |=
610 htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD |
611 (toep->params.nagle == 0 ? 0 :
612 F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE));
613 }
614 }
615
616 static inline void
write_tx_v2_wr(void * dst,struct toepcb * toep,int fw_wr_opcode,unsigned int immdlen,unsigned int plen,uint8_t credits,int shove,int ulp_submode)617 write_tx_v2_wr(void *dst, struct toepcb *toep, int fw_wr_opcode,
618 unsigned int immdlen, unsigned int plen, uint8_t credits, int shove,
619 int ulp_submode)
620 {
621 struct fw_ofld_tx_data_v2_wr *txwr = dst;
622 uint32_t flags;
623
624 memset(txwr, 0, sizeof(*txwr));
625 txwr->op_to_immdlen = htobe32(V_WR_OP(fw_wr_opcode) |
626 V_FW_WR_IMMDLEN(immdlen));
627 txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) |
628 V_FW_WR_LEN16(credits));
629 txwr->plen = htobe32(plen);
630 flags = V_TX_ULP_MODE(ULP_MODE_NVMET) | V_TX_ULP_SUBMODE(ulp_submode) |
631 V_TX_URG(0) | V_TX_SHOVE(shove);
632
633 if (toep->params.tx_align > 0) {
634 if (plen < 2 * toep->params.emss)
635 flags |= F_FW_OFLD_TX_DATA_WR_LSODISABLE;
636 else
637 flags |= F_FW_OFLD_TX_DATA_WR_ALIGNPLD |
638 (toep->params.nagle == 0 ? 0 :
639 F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE);
640 }
641
642 txwr->lsodisable_to_flags = htobe32(flags);
643 }
644
645 /*
646 * Generate a DSGL from a starting mbuf. The total number of segments and the
647 * maximum segments in any one mbuf are provided.
648 */
649 static void
write_tx_sgl(void * dst,struct mbuf * start,struct mbuf * stop,int nsegs,int n)650 write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n)
651 {
652 struct mbuf *m;
653 struct ulptx_sgl *usgl = dst;
654 int i, j, rc;
655 struct sglist sg;
656 struct sglist_seg segs[n];
657
658 KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
659
660 sglist_init(&sg, n, segs);
661 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
662 V_ULPTX_NSGE(nsegs));
663
664 i = -1;
665 for (m = start; m != stop; m = m->m_next) {
666 if (m->m_flags & M_EXTPG)
667 rc = sglist_append_mbuf_epg(&sg, m,
668 mtod(m, vm_offset_t), m->m_len);
669 else
670 rc = sglist_append(&sg, mtod(m, void *), m->m_len);
671 if (__predict_false(rc != 0))
672 panic("%s: sglist_append %d", __func__, rc);
673
674 for (j = 0; j < sg.sg_nseg; i++, j++) {
675 if (i < 0) {
676 usgl->len0 = htobe32(segs[j].ss_len);
677 usgl->addr0 = htobe64(segs[j].ss_paddr);
678 } else {
679 usgl->sge[i / 2].len[i & 1] =
680 htobe32(segs[j].ss_len);
681 usgl->sge[i / 2].addr[i & 1] =
682 htobe64(segs[j].ss_paddr);
683 }
684 #ifdef INVARIANTS
685 nsegs--;
686 #endif
687 }
688 sglist_reset(&sg);
689 }
690 if (i & 1)
691 usgl->sge[i / 2].len[1] = htobe32(0);
692 KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p",
693 __func__, nsegs, start, stop));
694 }
695
696 bool
t4_push_raw_wr(struct adapter * sc,struct toepcb * toep,struct mbuf * m)697 t4_push_raw_wr(struct adapter *sc, struct toepcb *toep, struct mbuf *m)
698 {
699 #ifdef INVARIANTS
700 struct inpcb *inp = toep->inp;
701 #endif
702 struct wrqe *wr;
703 struct ofld_tx_sdesc *txsd;
704 u_int credits, plen;
705
706 INP_WLOCK_ASSERT(inp);
707 MPASS(mbuf_raw_wr(m));
708 plen = m->m_pkthdr.len;
709 credits = howmany(plen, 16);
710 if (credits > toep->tx_credits)
711 return (false);
712
713 wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq);
714 if (wr == NULL)
715 return (false);
716
717 m_copydata(m, 0, plen, wrtod(wr));
718 m_freem(m);
719
720 toep->tx_credits -= credits;
721 if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
722 toep->flags |= TPF_TX_SUSPENDED;
723
724 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
725 KASSERT(credits <= MAX_OFLD_TX_SDESC_CREDITS,
726 ("%s: tx_credits %u too large", __func__, credits));
727 txsd = &toep->txsd[toep->txsd_pidx];
728 txsd->plen = 0;
729 txsd->tx_credits = credits;
730 if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
731 toep->txsd_pidx = 0;
732 toep->txsd_avail--;
733
734 t4_wrq_tx(sc, wr);
735 return (true);
736 }
737
738 /*
739 * Max number of SGL entries an offload tx work request can have. This is 41
740 * (1 + 40) for a full 512B work request.
741 * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40)
742 */
743 #define OFLD_SGL_LEN (41)
744
745 /*
746 * Send data and/or a FIN to the peer.
747 *
748 * The socket's so_snd buffer consists of a stream of data starting with sb_mb
749 * and linked together with m_next. sb_sndptr, if set, is the last mbuf that
750 * was transmitted.
751 *
752 * drop indicates the number of bytes that should be dropped from the head of
753 * the send buffer. It is an optimization that lets do_fw4_ack avoid creating
754 * contention on the send buffer lock (before this change it used to do
755 * sowwakeup and then t4_push_frames right after that when recovering from tx
756 * stalls). When drop is set this function MUST drop the bytes and wake up any
757 * writers.
758 */
759 static void
t4_push_frames(struct adapter * sc,struct toepcb * toep,int drop)760 t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop)
761 {
762 struct mbuf *sndptr, *m, *sb_sndptr;
763 struct fw_ofld_tx_data_wr *txwr;
764 struct wrqe *wr;
765 u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
766 struct inpcb *inp = toep->inp;
767 struct tcpcb *tp = intotcpcb(inp);
768 struct socket *so = inp->inp_socket;
769 struct sockbuf *sb = &so->so_snd;
770 struct mbufq *pduq = &toep->ulp_pduq;
771 int tx_credits, shove, compl, sowwakeup;
772 struct ofld_tx_sdesc *txsd;
773 bool nomap_mbuf_seen;
774
775 INP_WLOCK_ASSERT(inp);
776 KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
777 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
778
779 KASSERT(ulp_mode(toep) == ULP_MODE_NONE ||
780 ulp_mode(toep) == ULP_MODE_TCPDDP ||
781 ulp_mode(toep) == ULP_MODE_TLS ||
782 ulp_mode(toep) == ULP_MODE_RDMA,
783 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
784
785 #ifdef VERBOSE_TRACES
786 CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
787 __func__, toep->tid, toep->flags, tp->t_flags, drop);
788 #endif
789 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
790 return;
791
792 #ifdef RATELIMIT
793 if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
794 (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
795 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
796 }
797 #endif
798
799 /*
800 * This function doesn't resume by itself. Someone else must clear the
801 * flag and call this function.
802 */
803 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
804 KASSERT(drop == 0,
805 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
806 return;
807 }
808
809 txsd = &toep->txsd[toep->txsd_pidx];
810 do {
811 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
812 max_imm = max_imm_payload(tx_credits, 0);
813 max_nsegs = max_dsgl_nsegs(tx_credits, 0);
814
815 if (__predict_false((sndptr = mbufq_first(pduq)) != NULL)) {
816 if (!t4_push_raw_wr(sc, toep, sndptr)) {
817 toep->flags |= TPF_TX_SUSPENDED;
818 return;
819 }
820
821 m = mbufq_dequeue(pduq);
822 MPASS(m == sndptr);
823
824 txsd = &toep->txsd[toep->txsd_pidx];
825 continue;
826 }
827
828 SOCKBUF_LOCK(sb);
829 sowwakeup = drop;
830 if (drop) {
831 sbdrop_locked(sb, drop);
832 drop = 0;
833 }
834 sb_sndptr = sb->sb_sndptr;
835 sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb;
836 plen = 0;
837 nsegs = 0;
838 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
839 nomap_mbuf_seen = false;
840 for (m = sndptr; m != NULL; m = m->m_next) {
841 int n;
842
843 if ((m->m_flags & M_NOTREADY) != 0)
844 break;
845 if (plen + m->m_len > MAX_OFLD_TX_SDESC_PLEN)
846 break;
847 if (m->m_flags & M_EXTPG) {
848 #ifdef KERN_TLS
849 if (m->m_epg_tls != NULL) {
850 toep->flags |= TPF_KTLS;
851 if (plen == 0) {
852 SOCKBUF_UNLOCK(sb);
853 t4_push_ktls(sc, toep, 0);
854 return;
855 }
856 break;
857 }
858 #endif
859 n = sglist_count_mbuf_epg(m,
860 mtod(m, vm_offset_t), m->m_len);
861 } else
862 n = sglist_count(mtod(m, void *), m->m_len);
863
864 nsegs += n;
865 plen += m->m_len;
866
867 /* This mbuf sent us _over_ the nsegs limit, back out */
868 if (plen > max_imm && nsegs > max_nsegs) {
869 nsegs -= n;
870 plen -= m->m_len;
871 if (plen == 0) {
872 /* Too few credits */
873 toep->flags |= TPF_TX_SUSPENDED;
874 if (sowwakeup) {
875 if (!TAILQ_EMPTY(
876 &toep->aiotx_jobq))
877 t4_aiotx_queue_toep(so,
878 toep);
879 sowwakeup_locked(so);
880 } else
881 SOCKBUF_UNLOCK(sb);
882 SOCKBUF_UNLOCK_ASSERT(sb);
883 return;
884 }
885 break;
886 }
887
888 if (m->m_flags & M_EXTPG)
889 nomap_mbuf_seen = true;
890 if (max_nsegs_1mbuf < n)
891 max_nsegs_1mbuf = n;
892 sb_sndptr = m; /* new sb->sb_sndptr if all goes well */
893
894 /* This mbuf put us right at the max_nsegs limit */
895 if (plen > max_imm && nsegs == max_nsegs) {
896 m = m->m_next;
897 break;
898 }
899 }
900
901 if (sbused(sb) > sb->sb_hiwat * 5 / 8 &&
902 toep->plen_nocompl + plen >= sb->sb_hiwat / 4)
903 compl = 1;
904 else
905 compl = 0;
906
907 if (sb->sb_flags & SB_AUTOSIZE &&
908 V_tcp_do_autosndbuf &&
909 sb->sb_hiwat < V_tcp_autosndbuf_max &&
910 sbused(sb) >= sb->sb_hiwat * 7 / 8) {
911 int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
912 V_tcp_autosndbuf_max);
913
914 if (!sbreserve_locked(so, SO_SND, newsize, NULL))
915 sb->sb_flags &= ~SB_AUTOSIZE;
916 else
917 sowwakeup = 1; /* room available */
918 }
919 if (sowwakeup) {
920 if (!TAILQ_EMPTY(&toep->aiotx_jobq))
921 t4_aiotx_queue_toep(so, toep);
922 sowwakeup_locked(so);
923 } else
924 SOCKBUF_UNLOCK(sb);
925 SOCKBUF_UNLOCK_ASSERT(sb);
926
927 /* nothing to send */
928 if (plen == 0) {
929 KASSERT(m == NULL || (m->m_flags & M_NOTREADY) != 0,
930 ("%s: nothing to send, but m != NULL is ready",
931 __func__));
932 break;
933 }
934
935 if (__predict_false(toep->flags & TPF_FIN_SENT))
936 panic("%s: excess tx.", __func__);
937
938 shove = m == NULL && !(tp->t_flags & TF_MORETOCOME);
939 if (plen <= max_imm && !nomap_mbuf_seen) {
940
941 /* Immediate data tx */
942
943 wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
944 &toep->ofld_txq->wrq);
945 if (wr == NULL) {
946 /* XXX: how will we recover from this? */
947 toep->flags |= TPF_TX_SUSPENDED;
948 return;
949 }
950 txwr = wrtod(wr);
951 credits = howmany(wr->wr_len, 16);
952 write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, plen, plen,
953 credits, shove, 0);
954 m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
955 nsegs = 0;
956 } else {
957 int wr_len;
958
959 /* DSGL tx */
960
961 wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
962 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
963 wr = alloc_wrqe(roundup2(wr_len, 16),
964 &toep->ofld_txq->wrq);
965 if (wr == NULL) {
966 /* XXX: how will we recover from this? */
967 toep->flags |= TPF_TX_SUSPENDED;
968 return;
969 }
970 txwr = wrtod(wr);
971 credits = howmany(wr_len, 16);
972 write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, 0, plen,
973 credits, shove, 0);
974 write_tx_sgl(txwr + 1, sndptr, m, nsegs,
975 max_nsegs_1mbuf);
976 if (wr_len & 0xf) {
977 uint64_t *pad = (uint64_t *)
978 ((uintptr_t)txwr + wr_len);
979 *pad = 0;
980 }
981 }
982
983 KASSERT(toep->tx_credits >= credits,
984 ("%s: not enough credits", __func__));
985
986 toep->tx_credits -= credits;
987 toep->tx_nocompl += credits;
988 toep->plen_nocompl += plen;
989 if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
990 toep->tx_nocompl >= toep->tx_total / 4)
991 compl = 1;
992
993 if (compl || ulp_mode(toep) == ULP_MODE_RDMA) {
994 txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
995 toep->tx_nocompl = 0;
996 toep->plen_nocompl = 0;
997 }
998
999 tp->snd_nxt += plen;
1000 tp->snd_max += plen;
1001
1002 SOCKBUF_LOCK(sb);
1003 KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__));
1004 sb->sb_sndptr = sb_sndptr;
1005 SOCKBUF_UNLOCK(sb);
1006
1007 toep->flags |= TPF_TX_DATA_SENT;
1008 if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
1009 toep->flags |= TPF_TX_SUSPENDED;
1010
1011 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
1012 KASSERT(plen <= MAX_OFLD_TX_SDESC_PLEN,
1013 ("%s: plen %u too large", __func__, plen));
1014 txsd->plen = plen;
1015 txsd->tx_credits = credits;
1016 txsd++;
1017 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
1018 toep->txsd_pidx = 0;
1019 txsd = &toep->txsd[0];
1020 }
1021 toep->txsd_avail--;
1022
1023 t4_l2t_send(sc, wr, toep->l2te);
1024 } while (m != NULL && (m->m_flags & M_NOTREADY) == 0);
1025
1026 /* Send a FIN if requested, but only if there's no more data to send */
1027 if (m == NULL && toep->flags & TPF_SEND_FIN)
1028 t4_close_conn(sc, toep);
1029 }
1030
1031 static inline void
rqdrop_locked(struct mbufq * q,int plen)1032 rqdrop_locked(struct mbufq *q, int plen)
1033 {
1034 struct mbuf *m;
1035
1036 while (plen > 0) {
1037 m = mbufq_dequeue(q);
1038
1039 /* Too many credits. */
1040 MPASS(m != NULL);
1041 M_ASSERTPKTHDR(m);
1042
1043 /* Partial credits. */
1044 MPASS(plen >= m->m_pkthdr.len);
1045
1046 plen -= m->m_pkthdr.len;
1047 m_freem(m);
1048 }
1049 }
1050
1051 /*
1052 * Not a bit in the TCB, but is a bit in the ulp_submode field of the
1053 * CPL_TX_DATA flags field in FW_ISCSI_TX_DATA_WR.
1054 */
1055 #define ULP_ISO G_TX_ULP_SUBMODE(F_FW_ISCSI_TX_DATA_WR_ULPSUBMODE_ISO)
1056
1057 static void
write_iscsi_tx_data_iso(void * dst,u_int ulp_submode,uint8_t flags,uint16_t mss,int len,int npdu)1058 write_iscsi_tx_data_iso(void *dst, u_int ulp_submode, uint8_t flags,
1059 uint16_t mss, int len, int npdu)
1060 {
1061 struct cpl_tx_data_iso *cpl;
1062 unsigned int burst_size;
1063 unsigned int last;
1064
1065 /*
1066 * The firmware will set the 'F' bit on the last PDU when
1067 * either condition is true:
1068 *
1069 * - this large PDU is marked as the "last" slice
1070 *
1071 * - the amount of data payload bytes equals the burst_size
1072 *
1073 * The strategy used here is to always set the burst_size
1074 * artificially high (len includes the size of the template
1075 * BHS) and only set the "last" flag if the original PDU had
1076 * 'F' set.
1077 */
1078 burst_size = len;
1079 last = !!(flags & CXGBE_ISO_F);
1080
1081 cpl = (struct cpl_tx_data_iso *)dst;
1082 cpl->op_to_scsi = htonl(V_CPL_TX_DATA_ISO_OP(CPL_TX_DATA_ISO) |
1083 V_CPL_TX_DATA_ISO_FIRST(1) | V_CPL_TX_DATA_ISO_LAST(last) |
1084 V_CPL_TX_DATA_ISO_CPLHDRLEN(0) |
1085 V_CPL_TX_DATA_ISO_HDRCRC(!!(ulp_submode & ULP_CRC_HEADER)) |
1086 V_CPL_TX_DATA_ISO_PLDCRC(!!(ulp_submode & ULP_CRC_DATA)) |
1087 V_CPL_TX_DATA_ISO_IMMEDIATE(0) |
1088 V_CPL_TX_DATA_ISO_SCSI(CXGBE_ISO_TYPE(flags)));
1089
1090 cpl->ahs_len = 0;
1091 cpl->mpdu = htons(DIV_ROUND_UP(mss, 4));
1092 cpl->burst_size = htonl(DIV_ROUND_UP(burst_size, 4));
1093 cpl->len = htonl(len);
1094 cpl->reserved2_seglen_offset = htonl(0);
1095 cpl->datasn_offset = htonl(0);
1096 cpl->buffer_offset = htonl(0);
1097 cpl->reserved3 = 0;
1098 }
1099
1100 static struct wrqe *
write_iscsi_mbuf_wr(struct toepcb * toep,struct mbuf * sndptr)1101 write_iscsi_mbuf_wr(struct toepcb *toep, struct mbuf *sndptr)
1102 {
1103 struct mbuf *m;
1104 struct fw_ofld_tx_data_wr *txwr;
1105 struct cpl_tx_data_iso *cpl_iso;
1106 void *p;
1107 struct wrqe *wr;
1108 u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
1109 u_int adjusted_plen, imm_data, ulp_submode;
1110 struct inpcb *inp = toep->inp;
1111 struct tcpcb *tp = intotcpcb(inp);
1112 int tx_credits, shove, npdu, wr_len;
1113 uint16_t iso_mss;
1114 static const u_int ulp_extra_len[] = {0, 4, 4, 8};
1115 bool iso, nomap_mbuf_seen;
1116
1117 M_ASSERTPKTHDR(sndptr);
1118
1119 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
1120 if (mbuf_raw_wr(sndptr)) {
1121 plen = sndptr->m_pkthdr.len;
1122 KASSERT(plen <= SGE_MAX_WR_LEN,
1123 ("raw WR len %u is greater than max WR len", plen));
1124 if (plen > tx_credits * 16)
1125 return (NULL);
1126
1127 wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq);
1128 if (__predict_false(wr == NULL))
1129 return (NULL);
1130
1131 m_copydata(sndptr, 0, plen, wrtod(wr));
1132 return (wr);
1133 }
1134
1135 iso = mbuf_iscsi_iso(sndptr);
1136 max_imm = max_imm_payload(tx_credits, iso);
1137 max_nsegs = max_dsgl_nsegs(tx_credits, iso);
1138 iso_mss = mbuf_iscsi_iso_mss(sndptr);
1139
1140 plen = 0;
1141 nsegs = 0;
1142 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
1143 nomap_mbuf_seen = false;
1144 for (m = sndptr; m != NULL; m = m->m_next) {
1145 int n;
1146
1147 if (m->m_flags & M_EXTPG)
1148 n = sglist_count_mbuf_epg(m, mtod(m, vm_offset_t),
1149 m->m_len);
1150 else
1151 n = sglist_count(mtod(m, void *), m->m_len);
1152
1153 nsegs += n;
1154 plen += m->m_len;
1155
1156 /*
1157 * This mbuf would send us _over_ the nsegs limit.
1158 * Suspend tx because the PDU can't be sent out.
1159 */
1160 if ((nomap_mbuf_seen || plen > max_imm) && nsegs > max_nsegs)
1161 return (NULL);
1162
1163 if (m->m_flags & M_EXTPG)
1164 nomap_mbuf_seen = true;
1165 if (max_nsegs_1mbuf < n)
1166 max_nsegs_1mbuf = n;
1167 }
1168
1169 if (__predict_false(toep->flags & TPF_FIN_SENT))
1170 panic("%s: excess tx.", __func__);
1171
1172 /*
1173 * We have a PDU to send. All of it goes out in one WR so 'm'
1174 * is NULL. A PDU's length is always a multiple of 4.
1175 */
1176 MPASS(m == NULL);
1177 MPASS((plen & 3) == 0);
1178 MPASS(sndptr->m_pkthdr.len == plen);
1179
1180 shove = !(tp->t_flags & TF_MORETOCOME);
1181
1182 /*
1183 * plen doesn't include header and data digests, which are
1184 * generated and inserted in the right places by the TOE, but
1185 * they do occupy TCP sequence space and need to be accounted
1186 * for.
1187 */
1188 ulp_submode = mbuf_ulp_submode(sndptr);
1189 MPASS(ulp_submode < nitems(ulp_extra_len));
1190 npdu = iso ? howmany(plen - ISCSI_BHS_SIZE, iso_mss) : 1;
1191 adjusted_plen = plen + ulp_extra_len[ulp_submode] * npdu;
1192 if (iso)
1193 adjusted_plen += ISCSI_BHS_SIZE * (npdu - 1);
1194 wr_len = sizeof(*txwr);
1195 if (iso)
1196 wr_len += sizeof(struct cpl_tx_data_iso);
1197 if (plen <= max_imm && !nomap_mbuf_seen) {
1198 /* Immediate data tx */
1199 imm_data = plen;
1200 wr_len += plen;
1201 nsegs = 0;
1202 } else {
1203 /* DSGL tx */
1204 imm_data = 0;
1205 wr_len += sizeof(struct ulptx_sgl) +
1206 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
1207 }
1208
1209 wr = alloc_wrqe(roundup2(wr_len, 16), &toep->ofld_txq->wrq);
1210 if (wr == NULL) {
1211 /* XXX: how will we recover from this? */
1212 return (NULL);
1213 }
1214 txwr = wrtod(wr);
1215 credits = howmany(wr->wr_len, 16);
1216
1217 if (iso) {
1218 write_tx_wr(txwr, toep, FW_ISCSI_TX_DATA_WR,
1219 imm_data + sizeof(struct cpl_tx_data_iso),
1220 adjusted_plen, credits, shove, ulp_submode | ULP_ISO);
1221 cpl_iso = (struct cpl_tx_data_iso *)(txwr + 1);
1222 MPASS(plen == sndptr->m_pkthdr.len);
1223 write_iscsi_tx_data_iso(cpl_iso, ulp_submode,
1224 mbuf_iscsi_iso_flags(sndptr), iso_mss, plen, npdu);
1225 p = cpl_iso + 1;
1226 } else {
1227 write_tx_wr(txwr, toep, FW_OFLD_TX_DATA_WR, imm_data,
1228 adjusted_plen, credits, shove, ulp_submode);
1229 p = txwr + 1;
1230 }
1231
1232 if (imm_data != 0) {
1233 m_copydata(sndptr, 0, plen, p);
1234 } else {
1235 write_tx_sgl(p, sndptr, m, nsegs, max_nsegs_1mbuf);
1236 if (wr_len & 0xf) {
1237 uint64_t *pad = (uint64_t *)((uintptr_t)txwr + wr_len);
1238 *pad = 0;
1239 }
1240 }
1241
1242 KASSERT(toep->tx_credits >= credits,
1243 ("%s: not enough credits: credits %u "
1244 "toep->tx_credits %u tx_credits %u nsegs %u "
1245 "max_nsegs %u iso %d", __func__, credits,
1246 toep->tx_credits, tx_credits, nsegs, max_nsegs, iso));
1247
1248 tp->snd_nxt += adjusted_plen;
1249 tp->snd_max += adjusted_plen;
1250
1251 counter_u64_add(toep->ofld_txq->tx_iscsi_pdus, npdu);
1252 counter_u64_add(toep->ofld_txq->tx_iscsi_octets, plen);
1253 if (iso)
1254 counter_u64_add(toep->ofld_txq->tx_iscsi_iso_wrs, 1);
1255
1256 return (wr);
1257 }
1258
1259 static void
write_nvme_tx_data_iso(void * dst,u_int ulp_submode,u_int iso_type,uint16_t mss,int len,int npdu,int pdo)1260 write_nvme_tx_data_iso(void *dst, u_int ulp_submode, u_int iso_type,
1261 uint16_t mss, int len, int npdu, int pdo)
1262 {
1263 struct cpl_t7_tx_data_iso *cpl;
1264 unsigned int burst_size;
1265
1266 /*
1267 * TODO: Need to figure out how the LAST_PDU and SUCCESS flags
1268 * are handled.
1269 *
1270 * - Does len need padding bytes? (If so, does padding need
1271 * to be in DSGL input?)
1272 *
1273 * - burst always 0?
1274 */
1275 burst_size = 0;
1276
1277 cpl = (struct cpl_t7_tx_data_iso *)dst;
1278 cpl->op_to_scsi = htonl(V_CPL_T7_TX_DATA_ISO_OPCODE(CPL_TX_DATA_ISO) |
1279 V_CPL_T7_TX_DATA_ISO_FIRST(1) |
1280 V_CPL_T7_TX_DATA_ISO_LAST(1) |
1281 V_CPL_T7_TX_DATA_ISO_CPLHDRLEN(0) |
1282 V_CPL_T7_TX_DATA_ISO_HDRCRC(!!(ulp_submode & ULP_CRC_HEADER)) |
1283 V_CPL_T7_TX_DATA_ISO_PLDCRC(!!(ulp_submode & ULP_CRC_DATA)) |
1284 V_CPL_T7_TX_DATA_ISO_IMMEDIATE(0) |
1285 V_CPL_T7_TX_DATA_ISO_SCSI(iso_type));
1286
1287 cpl->nvme_tcp_pkd = F_CPL_T7_TX_DATA_ISO_NVME_TCP;
1288 cpl->ahs = 0;
1289 cpl->mpdu = htons(DIV_ROUND_UP(mss, 4));
1290 cpl->burst = htonl(DIV_ROUND_UP(burst_size, 4));
1291 cpl->size = htonl(len);
1292 cpl->num_pi_bytes_seglen_offset = htonl(0);
1293 cpl->datasn_offset = htonl(0);
1294 cpl->buffer_offset = htonl(0);
1295 cpl->pdo_pkd = pdo;
1296 }
1297
1298 static struct wrqe *
write_nvme_mbuf_wr(struct toepcb * toep,struct mbuf * sndptr)1299 write_nvme_mbuf_wr(struct toepcb *toep, struct mbuf *sndptr)
1300 {
1301 struct mbuf *m;
1302 const struct nvme_tcp_common_pdu_hdr *hdr;
1303 struct fw_v2_nvmet_tx_data_wr *txwr;
1304 struct cpl_tx_data_iso *cpl_iso;
1305 void *p;
1306 struct wrqe *wr;
1307 u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
1308 u_int adjusted_plen, imm_data, ulp_submode;
1309 struct inpcb *inp = toep->inp;
1310 struct tcpcb *tp = intotcpcb(inp);
1311 int tx_credits, shove, npdu, wr_len;
1312 uint16_t iso_mss;
1313 bool iso, nomap_mbuf_seen;
1314
1315 M_ASSERTPKTHDR(sndptr);
1316
1317 tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
1318 if (mbuf_raw_wr(sndptr)) {
1319 plen = sndptr->m_pkthdr.len;
1320 KASSERT(plen <= SGE_MAX_WR_LEN,
1321 ("raw WR len %u is greater than max WR len", plen));
1322 if (plen > tx_credits * 16)
1323 return (NULL);
1324
1325 wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq);
1326 if (__predict_false(wr == NULL))
1327 return (NULL);
1328
1329 m_copydata(sndptr, 0, plen, wrtod(wr));
1330 return (wr);
1331 }
1332
1333 /*
1334 * The first mbuf is the PDU header that is always sent as
1335 * immediate data.
1336 */
1337 imm_data = sndptr->m_len;
1338
1339 iso = mbuf_iscsi_iso(sndptr);
1340 max_imm = max_imm_payload_v2(tx_credits, iso);
1341
1342 /*
1343 * Not enough credits for the PDU header.
1344 */
1345 if (imm_data > max_imm)
1346 return (NULL);
1347
1348 max_nsegs = max_dsgl_nsegs_v2(tx_credits, iso, imm_data);
1349 iso_mss = mbuf_iscsi_iso_mss(sndptr);
1350
1351 plen = imm_data;
1352 nsegs = 0;
1353 max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
1354 nomap_mbuf_seen = false;
1355 for (m = sndptr->m_next; m != NULL; m = m->m_next) {
1356 int n;
1357
1358 if (m->m_flags & M_EXTPG)
1359 n = sglist_count_mbuf_epg(m, mtod(m, vm_offset_t),
1360 m->m_len);
1361 else
1362 n = sglist_count(mtod(m, void *), m->m_len);
1363
1364 nsegs += n;
1365 plen += m->m_len;
1366
1367 /*
1368 * This mbuf would send us _over_ the nsegs limit.
1369 * Suspend tx because the PDU can't be sent out.
1370 */
1371 if ((nomap_mbuf_seen || plen > max_imm) && nsegs > max_nsegs)
1372 return (NULL);
1373
1374 if (m->m_flags & M_EXTPG)
1375 nomap_mbuf_seen = true;
1376 if (max_nsegs_1mbuf < n)
1377 max_nsegs_1mbuf = n;
1378 }
1379
1380 if (__predict_false(toep->flags & TPF_FIN_SENT))
1381 panic("%s: excess tx.", __func__);
1382
1383 /*
1384 * We have a PDU to send. All of it goes out in one WR so 'm'
1385 * is NULL. A PDU's length is always a multiple of 4.
1386 */
1387 MPASS(m == NULL);
1388 MPASS((plen & 3) == 0);
1389 MPASS(sndptr->m_pkthdr.len == plen);
1390
1391 shove = !(tp->t_flags & TF_MORETOCOME);
1392
1393 /*
1394 * plen doesn't include header digests, padding, and data
1395 * digests which are generated and inserted in the right
1396 * places by the TOE, but they do occupy TCP sequence space
1397 * and need to be accounted for.
1398 *
1399 * To determine the overhead, check the PDU header in sndptr.
1400 * Note that only certain PDU types can use digests and
1401 * padding, and PDO accounts for all but the data digests for
1402 * those PDUs.
1403 */
1404 MPASS((sndptr->m_flags & M_EXTPG) == 0);
1405 ulp_submode = mbuf_ulp_submode(sndptr);
1406 hdr = mtod(sndptr, const void *);
1407 switch (hdr->pdu_type) {
1408 case NVME_TCP_PDU_TYPE_H2C_TERM_REQ:
1409 case NVME_TCP_PDU_TYPE_C2H_TERM_REQ:
1410 MPASS(ulp_submode == 0);
1411 MPASS(!iso);
1412 break;
1413 case NVME_TCP_PDU_TYPE_CAPSULE_RESP:
1414 case NVME_TCP_PDU_TYPE_R2T:
1415 MPASS((ulp_submode & ULP_CRC_DATA) == 0);
1416 /* FALLTHROUGH */
1417 case NVME_TCP_PDU_TYPE_CAPSULE_CMD:
1418 MPASS(!iso);
1419 break;
1420 case NVME_TCP_PDU_TYPE_H2C_DATA:
1421 case NVME_TCP_PDU_TYPE_C2H_DATA:
1422 if (le32toh(hdr->plen) + ((ulp_submode & ULP_CRC_DATA) != 0 ?
1423 sizeof(uint32_t) : 0) == plen)
1424 MPASS(!iso);
1425 break;
1426 default:
1427 __assert_unreachable();
1428 }
1429
1430 if (iso) {
1431 npdu = howmany(plen - hdr->hlen, iso_mss);
1432 adjusted_plen = hdr->pdo * npdu + (plen - hdr->hlen);
1433 if ((ulp_submode & ULP_CRC_DATA) != 0)
1434 adjusted_plen += npdu * sizeof(uint32_t);
1435 } else {
1436 npdu = 1;
1437 adjusted_plen = le32toh(hdr->plen);
1438 }
1439 wr_len = sizeof(*txwr);
1440 if (iso)
1441 wr_len += sizeof(struct cpl_tx_data_iso);
1442 if (plen <= max_imm && !nomap_mbuf_seen) {
1443 /* Immediate data tx for full PDU */
1444 imm_data = plen;
1445 wr_len += plen;
1446 nsegs = 0;
1447 } else {
1448 /* DSGL tx for PDU data */
1449 wr_len += roundup2(imm_data, 16);
1450 wr_len += sizeof(struct ulptx_sgl) +
1451 ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
1452 }
1453
1454 wr = alloc_wrqe(roundup2(wr_len, 16), &toep->ofld_txq->wrq);
1455 if (wr == NULL) {
1456 /* XXX: how will we recover from this? */
1457 return (NULL);
1458 }
1459 txwr = wrtod(wr);
1460 credits = howmany(wr->wr_len, 16);
1461
1462 if (iso) {
1463 write_tx_v2_wr(txwr, toep, FW_V2_NVMET_TX_DATA_WR,
1464 imm_data + sizeof(struct cpl_tx_data_iso),
1465 adjusted_plen, credits, shove, ulp_submode | ULP_ISO);
1466 cpl_iso = (struct cpl_tx_data_iso *)(txwr + 1);
1467 MPASS(plen == sndptr->m_pkthdr.len);
1468 write_nvme_tx_data_iso(cpl_iso, ulp_submode,
1469 (hdr->pdu_type & 0x1) == 0 ? 1 : 2, iso_mss, plen, npdu,
1470 hdr->pdo);
1471 p = cpl_iso + 1;
1472 } else {
1473 write_tx_v2_wr(txwr, toep, FW_V2_NVMET_TX_DATA_WR, imm_data,
1474 adjusted_plen, credits, shove, ulp_submode);
1475 p = txwr + 1;
1476 }
1477
1478 /* PDU header (and immediate data payload). */
1479 m_copydata(sndptr, 0, imm_data, p);
1480 if (nsegs != 0) {
1481 p = roundup2((char *)p + imm_data, 16);
1482 write_tx_sgl(p, sndptr->m_next, NULL, nsegs, max_nsegs_1mbuf);
1483 if (wr_len & 0xf) {
1484 uint64_t *pad = (uint64_t *)((uintptr_t)txwr + wr_len);
1485 *pad = 0;
1486 }
1487 }
1488
1489 KASSERT(toep->tx_credits >= credits,
1490 ("%s: not enough credits: credits %u "
1491 "toep->tx_credits %u tx_credits %u nsegs %u "
1492 "max_nsegs %u iso %d", __func__, credits,
1493 toep->tx_credits, tx_credits, nsegs, max_nsegs, iso));
1494
1495 tp->snd_nxt += adjusted_plen;
1496 tp->snd_max += adjusted_plen;
1497
1498 counter_u64_add(toep->ofld_txq->tx_nvme_pdus, npdu);
1499 counter_u64_add(toep->ofld_txq->tx_nvme_octets, plen);
1500 if (iso)
1501 counter_u64_add(toep->ofld_txq->tx_nvme_iso_wrs, 1);
1502
1503 return (wr);
1504 }
1505
1506 void
t4_push_pdus(struct adapter * sc,struct toepcb * toep,int drop)1507 t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop)
1508 {
1509 struct mbuf *sndptr, *m;
1510 struct fw_wr_hdr *wrhdr;
1511 struct wrqe *wr;
1512 u_int plen, credits, mode;
1513 struct inpcb *inp = toep->inp;
1514 struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
1515 struct mbufq *pduq = &toep->ulp_pduq;
1516
1517 INP_WLOCK_ASSERT(inp);
1518 mode = ulp_mode(toep);
1519 KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
1520 ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
1521 KASSERT(mode == ULP_MODE_ISCSI || mode == ULP_MODE_NVMET,
1522 ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
1523
1524 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
1525 return;
1526
1527 /*
1528 * This function doesn't resume by itself. Someone else must clear the
1529 * flag and call this function.
1530 */
1531 if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
1532 KASSERT(drop == 0,
1533 ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
1534 return;
1535 }
1536
1537 if (drop) {
1538 struct socket *so = inp->inp_socket;
1539 struct sockbuf *sb = &so->so_snd;
1540 int sbu;
1541
1542 /*
1543 * An unlocked read is ok here as the data should only
1544 * transition from a non-zero value to either another
1545 * non-zero value or zero. Once it is zero it should
1546 * stay zero.
1547 */
1548 if (__predict_false(sbused(sb)) > 0) {
1549 SOCKBUF_LOCK(sb);
1550 sbu = sbused(sb);
1551 if (sbu > 0) {
1552 /*
1553 * The data transmitted before the
1554 * tid's ULP mode changed to ISCSI/NVMET is
1555 * still in so_snd. Incoming credits
1556 * should account for so_snd first.
1557 */
1558 sbdrop_locked(sb, min(sbu, drop));
1559 drop -= min(sbu, drop);
1560 }
1561 sowwakeup_locked(so); /* unlocks so_snd */
1562 }
1563 rqdrop_locked(&toep->ulp_pdu_reclaimq, drop);
1564 }
1565
1566 while ((sndptr = mbufq_first(pduq)) != NULL) {
1567 if (mode == ULP_MODE_ISCSI)
1568 wr = write_iscsi_mbuf_wr(toep, sndptr);
1569 else
1570 wr = write_nvme_mbuf_wr(toep, sndptr);
1571 if (wr == NULL) {
1572 toep->flags |= TPF_TX_SUSPENDED;
1573 return;
1574 }
1575
1576 plen = sndptr->m_pkthdr.len;
1577 credits = howmany(wr->wr_len, 16);
1578 KASSERT(toep->tx_credits >= credits,
1579 ("%s: not enough credits", __func__));
1580
1581 m = mbufq_dequeue(pduq);
1582 MPASS(m == sndptr);
1583 mbufq_enqueue(&toep->ulp_pdu_reclaimq, m);
1584
1585 toep->tx_credits -= credits;
1586 toep->tx_nocompl += credits;
1587 toep->plen_nocompl += plen;
1588
1589 /*
1590 * Ensure there are enough credits for a full-sized WR
1591 * as page pod WRs can be full-sized.
1592 */
1593 if (toep->tx_credits <= SGE_MAX_WR_LEN * 5 / 4 &&
1594 toep->tx_nocompl >= toep->tx_total / 4) {
1595 wrhdr = wrtod(wr);
1596 wrhdr->hi |= htobe32(F_FW_WR_COMPL);
1597 toep->tx_nocompl = 0;
1598 toep->plen_nocompl = 0;
1599 }
1600
1601 toep->flags |= TPF_TX_DATA_SENT;
1602 if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
1603 toep->flags |= TPF_TX_SUSPENDED;
1604
1605 KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
1606 KASSERT(plen <= MAX_OFLD_TX_SDESC_PLEN,
1607 ("%s: plen %u too large", __func__, plen));
1608 txsd->plen = plen;
1609 txsd->tx_credits = credits;
1610 txsd++;
1611 if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
1612 toep->txsd_pidx = 0;
1613 txsd = &toep->txsd[0];
1614 }
1615 toep->txsd_avail--;
1616
1617 t4_l2t_send(sc, wr, toep->l2te);
1618 }
1619
1620 /* Send a FIN if requested, but only if there are no more PDUs to send */
1621 if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN)
1622 t4_close_conn(sc, toep);
1623 }
1624
1625 static inline void
t4_push_data(struct adapter * sc,struct toepcb * toep,int drop)1626 t4_push_data(struct adapter *sc, struct toepcb *toep, int drop)
1627 {
1628
1629 if (ulp_mode(toep) == ULP_MODE_ISCSI ||
1630 ulp_mode(toep) == ULP_MODE_NVMET)
1631 t4_push_pdus(sc, toep, drop);
1632 else if (toep->flags & TPF_KTLS)
1633 t4_push_ktls(sc, toep, drop);
1634 else
1635 t4_push_frames(sc, toep, drop);
1636 }
1637
1638 void
t4_raw_wr_tx(struct adapter * sc,struct toepcb * toep,struct mbuf * m)1639 t4_raw_wr_tx(struct adapter *sc, struct toepcb *toep, struct mbuf *m)
1640 {
1641 #ifdef INVARIANTS
1642 struct inpcb *inp = toep->inp;
1643 #endif
1644
1645 INP_WLOCK_ASSERT(inp);
1646
1647 /*
1648 * If there are other raw WRs enqueued, enqueue to preserve
1649 * FIFO ordering.
1650 */
1651 if (!mbufq_empty(&toep->ulp_pduq)) {
1652 mbufq_enqueue(&toep->ulp_pduq, m);
1653 return;
1654 }
1655
1656 /*
1657 * Cannot call t4_push_data here as that will lock so_snd and
1658 * some callers of this run in rx handlers with so_rcv locked.
1659 * Instead, just try to transmit this WR.
1660 */
1661 if (!t4_push_raw_wr(sc, toep, m)) {
1662 mbufq_enqueue(&toep->ulp_pduq, m);
1663 toep->flags |= TPF_TX_SUSPENDED;
1664 }
1665 }
1666
1667 int
t4_tod_output(struct toedev * tod,struct tcpcb * tp)1668 t4_tod_output(struct toedev *tod, struct tcpcb *tp)
1669 {
1670 struct adapter *sc = tod->tod_softc;
1671 #ifdef INVARIANTS
1672 struct inpcb *inp = tptoinpcb(tp);
1673 #endif
1674 struct toepcb *toep = tp->t_toe;
1675
1676 INP_WLOCK_ASSERT(inp);
1677 KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1678 ("%s: inp %p dropped.", __func__, inp));
1679 KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
1680
1681 t4_push_data(sc, toep, 0);
1682
1683 return (0);
1684 }
1685
1686 int
t4_send_fin(struct toedev * tod,struct tcpcb * tp)1687 t4_send_fin(struct toedev *tod, struct tcpcb *tp)
1688 {
1689 struct adapter *sc = tod->tod_softc;
1690 #ifdef INVARIANTS
1691 struct inpcb *inp = tptoinpcb(tp);
1692 #endif
1693 struct toepcb *toep = tp->t_toe;
1694
1695 INP_WLOCK_ASSERT(inp);
1696 KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1697 ("%s: inp %p dropped.", __func__, inp));
1698 KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
1699
1700 toep->flags |= TPF_SEND_FIN;
1701 if (tp->t_state >= TCPS_ESTABLISHED)
1702 t4_push_data(sc, toep, 0);
1703
1704 return (0);
1705 }
1706
1707 int
t4_send_rst(struct toedev * tod,struct tcpcb * tp)1708 t4_send_rst(struct toedev *tod, struct tcpcb *tp)
1709 {
1710 struct adapter *sc = tod->tod_softc;
1711 #if defined(INVARIANTS)
1712 struct inpcb *inp = tptoinpcb(tp);
1713 #endif
1714 struct toepcb *toep = tp->t_toe;
1715
1716 INP_WLOCK_ASSERT(inp);
1717 KASSERT((inp->inp_flags & INP_DROPPED) == 0,
1718 ("%s: inp %p dropped.", __func__, inp));
1719 KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
1720
1721 /* hmmmm */
1722 KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
1723 ("%s: flowc for tid %u [%s] not sent already",
1724 __func__, toep->tid, tcpstates[tp->t_state]));
1725
1726 send_reset(sc, toep, 0);
1727 return (0);
1728 }
1729
1730 /*
1731 * Peer has sent us a FIN.
1732 */
1733 static int
do_peer_close(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)1734 do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1735 {
1736 struct adapter *sc = iq->adapter;
1737 const struct cpl_peer_close *cpl = (const void *)(rss + 1);
1738 unsigned int tid = GET_TID(cpl);
1739 struct toepcb *toep = lookup_tid(sc, tid);
1740 struct inpcb *inp = toep->inp;
1741 struct tcpcb *tp = NULL;
1742 struct socket *so;
1743 struct epoch_tracker et;
1744 #ifdef INVARIANTS
1745 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1746 #endif
1747
1748 KASSERT(opcode == CPL_PEER_CLOSE,
1749 ("%s: unexpected opcode 0x%x", __func__, opcode));
1750 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1751
1752 if (__predict_false(toep->flags & TPF_SYNQE)) {
1753 /*
1754 * do_pass_establish must have run before do_peer_close and if
1755 * this is still a synqe instead of a toepcb then the connection
1756 * must be getting aborted.
1757 */
1758 MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
1759 CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
1760 toep, toep->flags);
1761 return (0);
1762 }
1763
1764 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1765
1766 CURVNET_SET(toep->vnet);
1767 NET_EPOCH_ENTER(et);
1768 INP_WLOCK(inp);
1769 tp = intotcpcb(inp);
1770
1771 CTR6(KTR_CXGBE,
1772 "%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p",
1773 __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
1774 toep->ddp.flags, inp);
1775
1776 if (toep->flags & TPF_ABORT_SHUTDOWN)
1777 goto done;
1778
1779 if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
1780 DDP_LOCK(toep);
1781 if (__predict_false(toep->ddp.flags &
1782 (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)))
1783 handle_ddp_close(toep, tp, cpl->rcv_nxt);
1784 DDP_UNLOCK(toep);
1785 }
1786 so = inp->inp_socket;
1787 socantrcvmore(so);
1788
1789 if (ulp_mode(toep) == ULP_MODE_RDMA ||
1790 (ulp_mode(toep) == ULP_MODE_ISCSI && chip_id(sc) >= CHELSIO_T6) ||
1791 ulp_mode(toep) == ULP_MODE_NVMET) {
1792 /*
1793 * There might be data received via DDP before the FIN
1794 * not reported to the driver. Just assume the
1795 * sequence number in the CPL is correct as the
1796 * sequence number of the FIN.
1797 */
1798 } else {
1799 KASSERT(tp->rcv_nxt + 1 == be32toh(cpl->rcv_nxt),
1800 ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt,
1801 be32toh(cpl->rcv_nxt)));
1802 }
1803
1804 tp->rcv_nxt = be32toh(cpl->rcv_nxt);
1805
1806 switch (tp->t_state) {
1807 case TCPS_SYN_RECEIVED:
1808 tp->t_starttime = ticks;
1809 /* FALLTHROUGH */
1810
1811 case TCPS_ESTABLISHED:
1812 tcp_state_change(tp, TCPS_CLOSE_WAIT);
1813 break;
1814
1815 case TCPS_FIN_WAIT_1:
1816 tcp_state_change(tp, TCPS_CLOSING);
1817 break;
1818
1819 case TCPS_FIN_WAIT_2:
1820 restore_so_proto(so, inp->inp_vflag & INP_IPV6);
1821 t4_pcb_detach(NULL, tp);
1822 tcp_twstart(tp);
1823 INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */
1824 NET_EPOCH_EXIT(et);
1825 CURVNET_RESTORE();
1826
1827 INP_WLOCK(inp);
1828 final_cpl_received(toep);
1829 return (0);
1830
1831 default:
1832 log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n",
1833 __func__, tid, tp->t_state);
1834 }
1835 done:
1836 INP_WUNLOCK(inp);
1837 NET_EPOCH_EXIT(et);
1838 CURVNET_RESTORE();
1839 return (0);
1840 }
1841
1842 /*
1843 * Peer has ACK'd our FIN.
1844 */
1845 static int
do_close_con_rpl(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)1846 do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss,
1847 struct mbuf *m)
1848 {
1849 struct adapter *sc = iq->adapter;
1850 const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1);
1851 unsigned int tid = GET_TID(cpl);
1852 struct toepcb *toep = lookup_tid(sc, tid);
1853 struct inpcb *inp = toep->inp;
1854 struct tcpcb *tp = NULL;
1855 struct socket *so = NULL;
1856 struct epoch_tracker et;
1857 #ifdef INVARIANTS
1858 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1859 #endif
1860
1861 KASSERT(opcode == CPL_CLOSE_CON_RPL,
1862 ("%s: unexpected opcode 0x%x", __func__, opcode));
1863 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1864 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1865
1866 CURVNET_SET(toep->vnet);
1867 NET_EPOCH_ENTER(et);
1868 INP_WLOCK(inp);
1869 tp = intotcpcb(inp);
1870
1871 CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x",
1872 __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags);
1873
1874 if (toep->flags & TPF_ABORT_SHUTDOWN)
1875 goto done;
1876
1877 so = inp->inp_socket;
1878 tp->snd_una = be32toh(cpl->snd_nxt) - 1; /* exclude FIN */
1879
1880 switch (tp->t_state) {
1881 case TCPS_CLOSING: /* see TCPS_FIN_WAIT_2 in do_peer_close too */
1882 restore_so_proto(so, inp->inp_vflag & INP_IPV6);
1883 t4_pcb_detach(NULL, tp);
1884 tcp_twstart(tp);
1885 release:
1886 INP_UNLOCK_ASSERT(inp); /* safe, we have a ref on the inp */
1887 NET_EPOCH_EXIT(et);
1888 CURVNET_RESTORE();
1889
1890 INP_WLOCK(inp);
1891 final_cpl_received(toep); /* no more CPLs expected */
1892
1893 return (0);
1894 case TCPS_LAST_ACK:
1895 if (tcp_close(tp))
1896 INP_WUNLOCK(inp);
1897 goto release;
1898
1899 case TCPS_FIN_WAIT_1:
1900 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
1901 soisdisconnected(so);
1902 tcp_state_change(tp, TCPS_FIN_WAIT_2);
1903 break;
1904
1905 default:
1906 log(LOG_ERR,
1907 "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n",
1908 __func__, tid, tcpstates[tp->t_state]);
1909 }
1910 done:
1911 INP_WUNLOCK(inp);
1912 NET_EPOCH_EXIT(et);
1913 CURVNET_RESTORE();
1914 return (0);
1915 }
1916
1917 void
send_abort_rpl(struct adapter * sc,struct sge_ofld_txq * ofld_txq,int tid,int rst_status)1918 send_abort_rpl(struct adapter *sc, struct sge_ofld_txq *ofld_txq, int tid,
1919 int rst_status)
1920 {
1921 struct wrqe *wr;
1922 struct cpl_abort_rpl *cpl;
1923
1924 wr = alloc_wrqe(sizeof(*cpl), &ofld_txq->wrq);
1925 if (wr == NULL) {
1926 /* XXX */
1927 panic("%s: allocation failure.", __func__);
1928 }
1929 cpl = wrtod(wr);
1930
1931 INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid);
1932 cpl->cmd = rst_status;
1933
1934 t4_wrq_tx(sc, wr);
1935 }
1936
1937 static int
abort_status_to_errno(struct tcpcb * tp,unsigned int abort_reason)1938 abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason)
1939 {
1940 switch (abort_reason) {
1941 case CPL_ERR_BAD_SYN:
1942 case CPL_ERR_CONN_RESET:
1943 return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET);
1944 case CPL_ERR_XMIT_TIMEDOUT:
1945 case CPL_ERR_PERSIST_TIMEDOUT:
1946 case CPL_ERR_FINWAIT2_TIMEDOUT:
1947 case CPL_ERR_KEEPALIVE_TIMEDOUT:
1948 return (ETIMEDOUT);
1949 default:
1950 return (EIO);
1951 }
1952 }
1953
1954 /*
1955 * TCP RST from the peer, timeout, or some other such critical error.
1956 */
1957 static int
do_abort_req(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)1958 do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
1959 {
1960 struct adapter *sc = iq->adapter;
1961 const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1);
1962 unsigned int tid = GET_TID(cpl);
1963 struct toepcb *toep = lookup_tid(sc, tid);
1964 struct sge_ofld_txq *ofld_txq = toep->ofld_txq;
1965 struct inpcb *inp;
1966 struct tcpcb *tp;
1967 struct epoch_tracker et;
1968 #ifdef INVARIANTS
1969 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
1970 #endif
1971
1972 KASSERT(opcode == CPL_ABORT_REQ_RSS,
1973 ("%s: unexpected opcode 0x%x", __func__, opcode));
1974 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
1975
1976 if (toep->flags & TPF_SYNQE)
1977 return (do_abort_req_synqe(iq, rss, m));
1978
1979 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
1980
1981 if (negative_advice(cpl->status)) {
1982 CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)",
1983 __func__, cpl->status, tid, toep->flags);
1984 return (0); /* Ignore negative advice */
1985 }
1986
1987 inp = toep->inp;
1988 CURVNET_SET(toep->vnet);
1989 NET_EPOCH_ENTER(et); /* for tcp_close */
1990 INP_WLOCK(inp);
1991
1992 tp = intotcpcb(inp);
1993
1994 CTR6(KTR_CXGBE,
1995 "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d",
1996 __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
1997 inp->inp_flags, cpl->status);
1998
1999 /*
2000 * If we'd initiated an abort earlier the reply to it is responsible for
2001 * cleaning up resources. Otherwise we tear everything down right here
2002 * right now. We owe the T4 a CPL_ABORT_RPL no matter what.
2003 */
2004 if (toep->flags & TPF_ABORT_SHUTDOWN) {
2005 INP_WUNLOCK(inp);
2006 goto done;
2007 }
2008 toep->flags |= TPF_ABORT_SHUTDOWN;
2009
2010 if ((inp->inp_flags & INP_DROPPED) == 0) {
2011 struct socket *so = inp->inp_socket;
2012
2013 if (so != NULL)
2014 so_error_set(so, abort_status_to_errno(tp,
2015 cpl->status));
2016 tp = tcp_close(tp);
2017 if (tp == NULL)
2018 INP_WLOCK(inp); /* re-acquire */
2019 }
2020
2021 final_cpl_received(toep);
2022 done:
2023 NET_EPOCH_EXIT(et);
2024 CURVNET_RESTORE();
2025 send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST);
2026 return (0);
2027 }
2028
2029 /*
2030 * Reply to the CPL_ABORT_REQ (send_reset)
2031 */
2032 static int
do_abort_rpl(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)2033 do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
2034 {
2035 struct adapter *sc = iq->adapter;
2036 const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1);
2037 unsigned int tid = GET_TID(cpl);
2038 struct toepcb *toep = lookup_tid(sc, tid);
2039 struct inpcb *inp = toep->inp;
2040 #ifdef INVARIANTS
2041 unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
2042 #endif
2043
2044 KASSERT(opcode == CPL_ABORT_RPL_RSS,
2045 ("%s: unexpected opcode 0x%x", __func__, opcode));
2046 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
2047
2048 if (toep->flags & TPF_SYNQE)
2049 return (do_abort_rpl_synqe(iq, rss, m));
2050
2051 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
2052
2053 CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d",
2054 __func__, tid, toep, inp, cpl->status);
2055
2056 KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
2057 ("%s: wasn't expecting abort reply", __func__));
2058
2059 INP_WLOCK(inp);
2060 final_cpl_received(toep);
2061
2062 return (0);
2063 }
2064
2065 static int
do_rx_data(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)2066 do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
2067 {
2068 struct adapter *sc = iq->adapter;
2069 const struct cpl_rx_data *cpl = mtod(m, const void *);
2070 unsigned int tid = GET_TID(cpl);
2071 struct toepcb *toep = lookup_tid(sc, tid);
2072 struct inpcb *inp = toep->inp;
2073 struct tcpcb *tp;
2074 struct socket *so;
2075 struct sockbuf *sb;
2076 struct epoch_tracker et;
2077 int len;
2078 uint32_t ddp_placed = 0;
2079
2080 if (__predict_false(toep->flags & TPF_SYNQE)) {
2081 /*
2082 * do_pass_establish must have run before do_rx_data and if this
2083 * is still a synqe instead of a toepcb then the connection must
2084 * be getting aborted.
2085 */
2086 MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
2087 CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
2088 toep, toep->flags);
2089 m_freem(m);
2090 return (0);
2091 }
2092
2093 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
2094
2095 /* strip off CPL header */
2096 m_adj(m, sizeof(*cpl));
2097 len = m->m_pkthdr.len;
2098
2099 INP_WLOCK(inp);
2100 if (inp->inp_flags & INP_DROPPED) {
2101 CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
2102 __func__, tid, len, inp->inp_flags);
2103 INP_WUNLOCK(inp);
2104 m_freem(m);
2105 return (0);
2106 }
2107
2108 tp = intotcpcb(inp);
2109
2110 if (__predict_false(ulp_mode(toep) == ULP_MODE_TLS &&
2111 toep->flags & TPF_TLS_RECEIVE)) {
2112 /* Received "raw" data on a TLS socket. */
2113 CTR3(KTR_CXGBE, "%s: tid %u, raw TLS data (%d bytes)",
2114 __func__, tid, len);
2115 do_rx_data_tls(cpl, toep, m);
2116 return (0);
2117 }
2118
2119 if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq)))
2120 ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt;
2121
2122 tp->rcv_nxt += len;
2123 if (tp->rcv_wnd < len) {
2124 KASSERT(ulp_mode(toep) == ULP_MODE_RDMA,
2125 ("%s: negative window size", __func__));
2126 }
2127
2128 tp->rcv_wnd -= len;
2129 tp->t_rcvtime = ticks;
2130
2131 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
2132 DDP_LOCK(toep);
2133 so = inp_inpcbtosocket(inp);
2134 sb = &so->so_rcv;
2135 SOCKBUF_LOCK(sb);
2136
2137 if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
2138 CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)",
2139 __func__, tid, len);
2140 m_freem(m);
2141 SOCKBUF_UNLOCK(sb);
2142 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
2143 DDP_UNLOCK(toep);
2144 INP_WUNLOCK(inp);
2145
2146 CURVNET_SET(toep->vnet);
2147 NET_EPOCH_ENTER(et);
2148 INP_WLOCK(inp);
2149 tp = tcp_drop(tp, ECONNRESET);
2150 if (tp)
2151 INP_WUNLOCK(inp);
2152 NET_EPOCH_EXIT(et);
2153 CURVNET_RESTORE();
2154
2155 return (0);
2156 }
2157
2158 /* receive buffer autosize */
2159 MPASS(toep->vnet == so->so_vnet);
2160 CURVNET_SET(toep->vnet);
2161 if (sb->sb_flags & SB_AUTOSIZE &&
2162 V_tcp_do_autorcvbuf &&
2163 sb->sb_hiwat < V_tcp_autorcvbuf_max &&
2164 len > (sbspace(sb) / 8 * 7)) {
2165 unsigned int hiwat = sb->sb_hiwat;
2166 unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
2167 V_tcp_autorcvbuf_max);
2168
2169 if (!sbreserve_locked(so, SO_RCV, newsize, NULL))
2170 sb->sb_flags &= ~SB_AUTOSIZE;
2171 }
2172
2173 if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
2174 int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off;
2175
2176 if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0)
2177 CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)",
2178 __func__, tid, len);
2179
2180 if (changed) {
2181 if (toep->ddp.flags & DDP_SC_REQ)
2182 toep->ddp.flags ^= DDP_ON | DDP_SC_REQ;
2183 else if (cpl->ddp_off == 1) {
2184 /* Fell out of DDP mode */
2185 toep->ddp.flags &= ~DDP_ON;
2186 CTR1(KTR_CXGBE, "%s: fell out of DDP mode",
2187 __func__);
2188
2189 insert_ddp_data(toep, ddp_placed);
2190 } else {
2191 /*
2192 * Data was received while still
2193 * ULP_MODE_NONE, just fall through.
2194 */
2195 }
2196 }
2197
2198 if (toep->ddp.flags & DDP_ON) {
2199 /*
2200 * CPL_RX_DATA with DDP on can only be an indicate.
2201 * Start posting queued AIO requests via DDP. The
2202 * payload that arrived in this indicate is appended
2203 * to the socket buffer as usual.
2204 */
2205 handle_ddp_indicate(toep);
2206 }
2207 }
2208
2209 sbappendstream_locked(sb, m, 0);
2210 t4_rcvd_locked(&toep->td->tod, tp);
2211
2212 if (ulp_mode(toep) == ULP_MODE_TCPDDP &&
2213 (toep->ddp.flags & DDP_AIO) != 0 && toep->ddp.waiting_count > 0 &&
2214 sbavail(sb) != 0) {
2215 CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__,
2216 tid);
2217 ddp_queue_toep(toep);
2218 }
2219 if (toep->flags & TPF_TLS_STARTING)
2220 tls_received_starting_data(sc, toep, sb, len);
2221 sorwakeup_locked(so);
2222 SOCKBUF_UNLOCK_ASSERT(sb);
2223 if (ulp_mode(toep) == ULP_MODE_TCPDDP)
2224 DDP_UNLOCK(toep);
2225
2226 INP_WUNLOCK(inp);
2227 CURVNET_RESTORE();
2228 return (0);
2229 }
2230
2231 static int
do_fw4_ack(struct sge_iq * iq,const struct rss_header * rss,struct mbuf * m)2232 do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
2233 {
2234 struct adapter *sc = iq->adapter;
2235 const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
2236 unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
2237 struct toepcb *toep = lookup_tid(sc, tid);
2238 struct inpcb *inp;
2239 struct tcpcb *tp;
2240 struct socket *so;
2241 uint8_t credits = cpl->credits;
2242 struct ofld_tx_sdesc *txsd;
2243 int plen;
2244 #ifdef INVARIANTS
2245 unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl)));
2246 #endif
2247
2248 /*
2249 * Very unusual case: we'd sent a flowc + abort_req for a synq entry and
2250 * now this comes back carrying the credits for the flowc.
2251 */
2252 if (__predict_false(toep->flags & TPF_SYNQE)) {
2253 KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
2254 ("%s: credits for a synq entry %p", __func__, toep));
2255 return (0);
2256 }
2257
2258 inp = toep->inp;
2259
2260 KASSERT(opcode == CPL_FW4_ACK,
2261 ("%s: unexpected opcode 0x%x", __func__, opcode));
2262 KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
2263 KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
2264
2265 INP_WLOCK(inp);
2266
2267 if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) {
2268 INP_WUNLOCK(inp);
2269 return (0);
2270 }
2271
2272 KASSERT((inp->inp_flags & INP_DROPPED) == 0,
2273 ("%s: inp_flags 0x%x", __func__, inp->inp_flags));
2274
2275 tp = intotcpcb(inp);
2276
2277 if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) {
2278 tcp_seq snd_una = be32toh(cpl->snd_una);
2279
2280 #ifdef INVARIANTS
2281 if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) {
2282 log(LOG_ERR,
2283 "%s: unexpected seq# %x for TID %u, snd_una %x\n",
2284 __func__, snd_una, toep->tid, tp->snd_una);
2285 }
2286 #endif
2287
2288 if (tp->snd_una != snd_una) {
2289 tp->snd_una = snd_una;
2290 tp->ts_recent_age = tcp_ts_getticks();
2291 }
2292 }
2293
2294 #ifdef VERBOSE_TRACES
2295 CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits);
2296 #endif
2297 so = inp->inp_socket;
2298 txsd = &toep->txsd[toep->txsd_cidx];
2299 plen = 0;
2300 while (credits) {
2301 KASSERT(credits >= txsd->tx_credits,
2302 ("%s: too many (or partial) credits", __func__));
2303 credits -= txsd->tx_credits;
2304 toep->tx_credits += txsd->tx_credits;
2305 plen += txsd->plen;
2306 txsd++;
2307 toep->txsd_avail++;
2308 KASSERT(toep->txsd_avail <= toep->txsd_total,
2309 ("%s: txsd avail > total", __func__));
2310 if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) {
2311 txsd = &toep->txsd[0];
2312 toep->txsd_cidx = 0;
2313 }
2314 }
2315
2316 if (toep->tx_credits == toep->tx_total) {
2317 toep->tx_nocompl = 0;
2318 toep->plen_nocompl = 0;
2319 }
2320
2321 if (toep->flags & TPF_TX_SUSPENDED &&
2322 toep->tx_credits >= toep->tx_total / 4) {
2323 #ifdef VERBOSE_TRACES
2324 CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__,
2325 tid);
2326 #endif
2327 toep->flags &= ~TPF_TX_SUSPENDED;
2328 CURVNET_SET(toep->vnet);
2329 t4_push_data(sc, toep, plen);
2330 CURVNET_RESTORE();
2331 } else if (plen > 0) {
2332 struct sockbuf *sb = &so->so_snd;
2333 int sbu;
2334
2335 SOCKBUF_LOCK(sb);
2336 sbu = sbused(sb);
2337 if (ulp_mode(toep) == ULP_MODE_ISCSI ||
2338 ulp_mode(toep) == ULP_MODE_NVMET) {
2339 if (__predict_false(sbu > 0)) {
2340 /*
2341 * The data transmitted before the
2342 * tid's ULP mode changed to ISCSI is
2343 * still in so_snd. Incoming credits
2344 * should account for so_snd first.
2345 */
2346 sbdrop_locked(sb, min(sbu, plen));
2347 plen -= min(sbu, plen);
2348 }
2349 sowwakeup_locked(so); /* unlocks so_snd */
2350 rqdrop_locked(&toep->ulp_pdu_reclaimq, plen);
2351 } else {
2352 #ifdef VERBOSE_TRACES
2353 CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__,
2354 tid, plen);
2355 #endif
2356 sbdrop_locked(sb, plen);
2357 if (!TAILQ_EMPTY(&toep->aiotx_jobq))
2358 t4_aiotx_queue_toep(so, toep);
2359 sowwakeup_locked(so); /* unlocks so_snd */
2360 }
2361 SOCKBUF_UNLOCK_ASSERT(sb);
2362 }
2363
2364 INP_WUNLOCK(inp);
2365
2366 return (0);
2367 }
2368
2369 void
write_set_tcb_field(struct adapter * sc,void * dst,struct toepcb * toep,uint16_t word,uint64_t mask,uint64_t val,int reply,int cookie)2370 write_set_tcb_field(struct adapter *sc, void *dst, struct toepcb *toep,
2371 uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie)
2372 {
2373 struct cpl_set_tcb_field *req = dst;
2374
2375 MPASS((cookie & ~M_COOKIE) == 0);
2376 if (reply) {
2377 MPASS(cookie != CPL_COOKIE_RESERVED);
2378 }
2379
2380 INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid);
2381 if (reply == 0) {
2382 req->reply_ctrl = htobe16(F_NO_REPLY);
2383 } else {
2384 const int qid = toep->ofld_rxq->iq.abs_id;
2385 if (chip_id(sc) >= CHELSIO_T7) {
2386 req->reply_ctrl = htobe16(V_T7_QUEUENO(qid) |
2387 V_T7_REPLY_CHAN(0) | V_NO_REPLY(0));
2388 } else {
2389 req->reply_ctrl = htobe16(V_QUEUENO(qid) |
2390 V_REPLY_CHAN(0) | V_NO_REPLY(0));
2391 }
2392 }
2393 req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie));
2394 req->mask = htobe64(mask);
2395 req->val = htobe64(val);
2396 }
2397
2398 void
t4_set_tcb_field(struct adapter * sc,struct sge_wrq * wrq,struct toepcb * toep,uint16_t word,uint64_t mask,uint64_t val,int reply,int cookie)2399 t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep,
2400 uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie)
2401 {
2402 struct wrqe *wr;
2403 struct ofld_tx_sdesc *txsd;
2404 const u_int len = sizeof(struct cpl_set_tcb_field);
2405
2406 wr = alloc_wrqe(len, wrq);
2407 if (wr == NULL) {
2408 /* XXX */
2409 panic("%s: allocation failure.", __func__);
2410 }
2411 write_set_tcb_field(sc, wrtod(wr), toep, word, mask, val, reply,
2412 cookie);
2413
2414 if (wrq->eq.type == EQ_OFLD) {
2415 txsd = &toep->txsd[toep->txsd_pidx];
2416 _Static_assert(howmany(len, 16) <= MAX_OFLD_TX_SDESC_CREDITS,
2417 "MAX_OFLD_TX_SDESC_CREDITS too small");
2418 txsd->tx_credits = howmany(len, 16);
2419 txsd->plen = 0;
2420 KASSERT(toep->tx_credits >= txsd->tx_credits &&
2421 toep->txsd_avail > 0,
2422 ("%s: not enough credits (%d)", __func__,
2423 toep->tx_credits));
2424 toep->tx_credits -= txsd->tx_credits;
2425 if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
2426 toep->txsd_pidx = 0;
2427 toep->txsd_avail--;
2428 }
2429
2430 t4_wrq_tx(sc, wr);
2431 }
2432
2433 void
t4_init_cpl_io_handlers(void)2434 t4_init_cpl_io_handlers(void)
2435 {
2436
2437 t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close);
2438 t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl);
2439 t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req);
2440 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl,
2441 CPL_COOKIE_TOM);
2442 t4_register_cpl_handler(CPL_RX_DATA, do_rx_data);
2443 t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM);
2444 }
2445
2446 void
t4_uninit_cpl_io_handlers(void)2447 t4_uninit_cpl_io_handlers(void)
2448 {
2449
2450 t4_register_cpl_handler(CPL_PEER_CLOSE, NULL);
2451 t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL);
2452 t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL);
2453 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM);
2454 t4_register_cpl_handler(CPL_RX_DATA, NULL);
2455 t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM);
2456 }
2457
2458 /*
2459 * Use the 'backend1' field in AIO jobs to hold an error that should
2460 * be reported when the job is completed, the 'backend3' field to
2461 * store the amount of data sent by the AIO job so far, and the
2462 * 'backend4' field to hold a reference count on the job.
2463 *
2464 * Each unmapped mbuf holds a reference on the job as does the queue
2465 * so long as the job is queued.
2466 */
2467 #define aio_error backend1
2468 #define aio_sent backend3
2469 #define aio_refs backend4
2470
2471 #ifdef VERBOSE_TRACES
2472 static int
jobtotid(struct kaiocb * job)2473 jobtotid(struct kaiocb *job)
2474 {
2475 struct socket *so;
2476 struct tcpcb *tp;
2477 struct toepcb *toep;
2478
2479 so = job->fd_file->f_data;
2480 tp = sototcpcb(so);
2481 toep = tp->t_toe;
2482 return (toep->tid);
2483 }
2484 #endif
2485
2486 static void
aiotx_free_job(struct kaiocb * job)2487 aiotx_free_job(struct kaiocb *job)
2488 {
2489 long status;
2490 int error;
2491
2492 if (refcount_release(&job->aio_refs) == 0)
2493 return;
2494
2495 error = (intptr_t)job->aio_error;
2496 status = job->aio_sent;
2497 #ifdef VERBOSE_TRACES
2498 CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__,
2499 jobtotid(job), job, status, error);
2500 #endif
2501 if (error != 0 && status != 0)
2502 error = 0;
2503 if (error == ECANCELED)
2504 aio_cancel(job);
2505 else if (error)
2506 aio_complete(job, -1, error);
2507 else {
2508 job->msgsnd = 1;
2509 aio_complete(job, status, 0);
2510 }
2511 }
2512
2513 static void
aiotx_free_pgs(struct mbuf * m)2514 aiotx_free_pgs(struct mbuf *m)
2515 {
2516 struct kaiocb *job;
2517 vm_page_t pg;
2518
2519 M_ASSERTEXTPG(m);
2520 job = m->m_ext.ext_arg1;
2521 #ifdef VERBOSE_TRACES
2522 CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__,
2523 m->m_len, jobtotid(job));
2524 #endif
2525
2526 for (int i = 0; i < m->m_epg_npgs; i++) {
2527 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
2528 vm_page_unwire(pg, PQ_ACTIVE);
2529 }
2530
2531 aiotx_free_job(job);
2532 }
2533
2534 /*
2535 * Allocate a chain of unmapped mbufs describing the next 'len' bytes
2536 * of an AIO job.
2537 */
2538 static struct mbuf *
alloc_aiotx_mbuf(struct kaiocb * job,int len)2539 alloc_aiotx_mbuf(struct kaiocb *job, int len)
2540 {
2541 struct vmspace *vm;
2542 vm_page_t pgs[MBUF_PEXT_MAX_PGS];
2543 struct mbuf *m, *top, *last;
2544 vm_map_t map;
2545 vm_offset_t start;
2546 int i, mlen, npages, pgoff;
2547
2548 KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes,
2549 ("%s(%p, %d): request to send beyond end of buffer", __func__,
2550 job, len));
2551
2552 /*
2553 * The AIO subsystem will cancel and drain all requests before
2554 * permitting a process to exit or exec, so p_vmspace should
2555 * be stable here.
2556 */
2557 vm = job->userproc->p_vmspace;
2558 map = &vm->vm_map;
2559 start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent;
2560 pgoff = start & PAGE_MASK;
2561
2562 top = NULL;
2563 last = NULL;
2564 while (len > 0) {
2565 mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff);
2566 KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0,
2567 ("%s: next start (%#jx + %#x) is not page aligned",
2568 __func__, (uintmax_t)start, mlen));
2569
2570 npages = vm_fault_quick_hold_pages(map, start, mlen,
2571 VM_PROT_WRITE, pgs, nitems(pgs));
2572 if (npages < 0)
2573 break;
2574
2575 m = mb_alloc_ext_pgs(M_WAITOK, aiotx_free_pgs, M_RDONLY);
2576 m->m_epg_1st_off = pgoff;
2577 m->m_epg_npgs = npages;
2578 if (npages == 1) {
2579 KASSERT(mlen + pgoff <= PAGE_SIZE,
2580 ("%s: single page is too large (off %d len %d)",
2581 __func__, pgoff, mlen));
2582 m->m_epg_last_len = mlen;
2583 } else {
2584 m->m_epg_last_len = mlen - (PAGE_SIZE - pgoff) -
2585 (npages - 2) * PAGE_SIZE;
2586 }
2587 for (i = 0; i < npages; i++)
2588 m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pgs[i]);
2589
2590 m->m_len = mlen;
2591 m->m_ext.ext_size = npages * PAGE_SIZE;
2592 m->m_ext.ext_arg1 = job;
2593 refcount_acquire(&job->aio_refs);
2594
2595 #ifdef VERBOSE_TRACES
2596 CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d",
2597 __func__, jobtotid(job), m, job, npages);
2598 #endif
2599
2600 if (top == NULL)
2601 top = m;
2602 else
2603 last->m_next = m;
2604 last = m;
2605
2606 len -= mlen;
2607 start += mlen;
2608 pgoff = 0;
2609 }
2610
2611 return (top);
2612 }
2613
2614 static void
t4_aiotx_process_job(struct toepcb * toep,struct socket * so,struct kaiocb * job)2615 t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job)
2616 {
2617 struct sockbuf *sb;
2618 struct inpcb *inp;
2619 struct tcpcb *tp;
2620 struct mbuf *m;
2621 u_int sent;
2622 int error, len;
2623 bool moretocome, sendmore;
2624
2625 sb = &so->so_snd;
2626 SOCKBUF_UNLOCK(sb);
2627 m = NULL;
2628
2629 #ifdef MAC
2630 error = mac_socket_check_send(job->fd_file->f_cred, so);
2631 if (error != 0)
2632 goto out;
2633 #endif
2634
2635 /* Inline sosend_generic(). */
2636
2637 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
2638 MPASS(error == 0);
2639
2640 sendanother:
2641 SOCKBUF_LOCK(sb);
2642 if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
2643 SOCKBUF_UNLOCK(sb);
2644 SOCK_IO_SEND_UNLOCK(so);
2645 if ((so->so_options & SO_NOSIGPIPE) == 0) {
2646 PROC_LOCK(job->userproc);
2647 kern_psignal(job->userproc, SIGPIPE);
2648 PROC_UNLOCK(job->userproc);
2649 }
2650 error = EPIPE;
2651 goto out;
2652 }
2653 if (so->so_error) {
2654 error = so->so_error;
2655 so->so_error = 0;
2656 SOCKBUF_UNLOCK(sb);
2657 SOCK_IO_SEND_UNLOCK(so);
2658 goto out;
2659 }
2660 if ((so->so_state & SS_ISCONNECTED) == 0) {
2661 SOCKBUF_UNLOCK(sb);
2662 SOCK_IO_SEND_UNLOCK(so);
2663 error = ENOTCONN;
2664 goto out;
2665 }
2666 if (sbspace(sb) < sb->sb_lowat) {
2667 MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO));
2668
2669 /*
2670 * Don't block if there is too little room in the socket
2671 * buffer. Instead, requeue the request.
2672 */
2673 if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
2674 SOCKBUF_UNLOCK(sb);
2675 SOCK_IO_SEND_UNLOCK(so);
2676 error = ECANCELED;
2677 goto out;
2678 }
2679 TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
2680 SOCKBUF_UNLOCK(sb);
2681 SOCK_IO_SEND_UNLOCK(so);
2682 goto out;
2683 }
2684
2685 /*
2686 * Write as much data as the socket permits, but no more than a
2687 * a single sndbuf at a time.
2688 */
2689 len = sbspace(sb);
2690 if (len > job->uaiocb.aio_nbytes - job->aio_sent) {
2691 len = job->uaiocb.aio_nbytes - job->aio_sent;
2692 moretocome = false;
2693 } else
2694 moretocome = true;
2695 if (len > toep->params.sndbuf) {
2696 len = toep->params.sndbuf;
2697 sendmore = true;
2698 } else
2699 sendmore = false;
2700
2701 if (!TAILQ_EMPTY(&toep->aiotx_jobq))
2702 moretocome = true;
2703 SOCKBUF_UNLOCK(sb);
2704 MPASS(len != 0);
2705
2706 m = alloc_aiotx_mbuf(job, len);
2707 if (m == NULL) {
2708 SOCK_IO_SEND_UNLOCK(so);
2709 error = EFAULT;
2710 goto out;
2711 }
2712
2713 /* Inlined tcp_usr_send(). */
2714
2715 inp = toep->inp;
2716 INP_WLOCK(inp);
2717 if (inp->inp_flags & INP_DROPPED) {
2718 INP_WUNLOCK(inp);
2719 SOCK_IO_SEND_UNLOCK(so);
2720 error = ECONNRESET;
2721 goto out;
2722 }
2723
2724 sent = m_length(m, NULL);
2725 job->aio_sent += sent;
2726 counter_u64_add(toep->ofld_txq->tx_aio_octets, sent);
2727
2728 sbappendstream(sb, m, 0);
2729 m = NULL;
2730
2731 if (!(inp->inp_flags & INP_DROPPED)) {
2732 tp = intotcpcb(inp);
2733 if (moretocome)
2734 tp->t_flags |= TF_MORETOCOME;
2735 error = tcp_output(tp);
2736 if (error < 0) {
2737 INP_UNLOCK_ASSERT(inp);
2738 SOCK_IO_SEND_UNLOCK(so);
2739 error = -error;
2740 goto out;
2741 }
2742 if (moretocome)
2743 tp->t_flags &= ~TF_MORETOCOME;
2744 }
2745
2746 INP_WUNLOCK(inp);
2747 if (sendmore)
2748 goto sendanother;
2749 SOCK_IO_SEND_UNLOCK(so);
2750
2751 if (error)
2752 goto out;
2753
2754 /*
2755 * If this is a blocking socket and the request has not been
2756 * fully completed, requeue it until the socket is ready
2757 * again.
2758 */
2759 if (job->aio_sent < job->uaiocb.aio_nbytes &&
2760 !(so->so_state & SS_NBIO)) {
2761 SOCKBUF_LOCK(sb);
2762 if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
2763 SOCKBUF_UNLOCK(sb);
2764 error = ECANCELED;
2765 goto out;
2766 }
2767 TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
2768 return;
2769 }
2770
2771 /*
2772 * If the request will not be requeued, drop the queue's
2773 * reference to the job. Any mbufs in flight should still
2774 * hold a reference, but this drops the reference that the
2775 * queue owns while it is waiting to queue mbufs to the
2776 * socket.
2777 */
2778 aiotx_free_job(job);
2779 counter_u64_add(toep->ofld_txq->tx_aio_jobs, 1);
2780
2781 out:
2782 if (error) {
2783 job->aio_error = (void *)(intptr_t)error;
2784 aiotx_free_job(job);
2785 }
2786 m_freem(m);
2787 SOCKBUF_LOCK(sb);
2788 }
2789
2790 static void
t4_aiotx_task(void * context,int pending)2791 t4_aiotx_task(void *context, int pending)
2792 {
2793 struct toepcb *toep = context;
2794 struct socket *so;
2795 struct kaiocb *job;
2796 struct epoch_tracker et;
2797
2798 so = toep->aiotx_so;
2799 CURVNET_SET(toep->vnet);
2800 NET_EPOCH_ENTER(et);
2801 SOCKBUF_LOCK(&so->so_snd);
2802 while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) {
2803 job = TAILQ_FIRST(&toep->aiotx_jobq);
2804 TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
2805 if (!aio_clear_cancel_function(job))
2806 continue;
2807
2808 t4_aiotx_process_job(toep, so, job);
2809 }
2810 toep->aiotx_so = NULL;
2811 SOCKBUF_UNLOCK(&so->so_snd);
2812 NET_EPOCH_EXIT(et);
2813
2814 free_toepcb(toep);
2815 sorele(so);
2816 CURVNET_RESTORE();
2817 }
2818
2819 static void
t4_aiotx_queue_toep(struct socket * so,struct toepcb * toep)2820 t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep)
2821 {
2822
2823 SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd);
2824 #ifdef VERBOSE_TRACES
2825 CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s",
2826 __func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false");
2827 #endif
2828 if (toep->aiotx_so != NULL)
2829 return;
2830 soref(so);
2831 toep->aiotx_so = so;
2832 hold_toepcb(toep);
2833 soaio_enqueue(&toep->aiotx_task);
2834 }
2835
2836 static void
t4_aiotx_cancel(struct kaiocb * job)2837 t4_aiotx_cancel(struct kaiocb *job)
2838 {
2839 struct socket *so;
2840 struct sockbuf *sb;
2841 struct tcpcb *tp;
2842 struct toepcb *toep;
2843
2844 so = job->fd_file->f_data;
2845 tp = sototcpcb(so);
2846 toep = tp->t_toe;
2847 MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE);
2848 sb = &so->so_snd;
2849
2850 SOCKBUF_LOCK(sb);
2851 if (!aio_cancel_cleared(job))
2852 TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
2853 SOCKBUF_UNLOCK(sb);
2854
2855 job->aio_error = (void *)(intptr_t)ECANCELED;
2856 aiotx_free_job(job);
2857 }
2858
2859 int
t4_aio_queue_aiotx(struct socket * so,struct kaiocb * job)2860 t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job)
2861 {
2862 struct tcpcb *tp = sototcpcb(so);
2863 struct toepcb *toep = tp->t_toe;
2864 struct adapter *sc = td_adapter(toep->td);
2865
2866 /* This only handles writes. */
2867 if (job->uaiocb.aio_lio_opcode != LIO_WRITE)
2868 return (EOPNOTSUPP);
2869
2870 if (!sc->tt.tx_zcopy)
2871 return (EOPNOTSUPP);
2872
2873 if (tls_tx_key(toep))
2874 return (EOPNOTSUPP);
2875
2876 SOCKBUF_LOCK(&so->so_snd);
2877 #ifdef VERBOSE_TRACES
2878 CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
2879 #endif
2880 if (!aio_set_cancel_function(job, t4_aiotx_cancel))
2881 panic("new job was cancelled");
2882 refcount_init(&job->aio_refs, 1);
2883 TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list);
2884 if (sowriteable(so))
2885 t4_aiotx_queue_toep(so, toep);
2886 SOCKBUF_UNLOCK(&so->so_snd);
2887 return (0);
2888 }
2889
2890 void
aiotx_init_toep(struct toepcb * toep)2891 aiotx_init_toep(struct toepcb *toep)
2892 {
2893
2894 TAILQ_INIT(&toep->aiotx_jobq);
2895 TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep);
2896 }
2897 #endif
2898