1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 1997 John S. Dyson. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. John S. Dyson's name may not be used to endorse or promote products
12 * derived from this software without specific prior written permission.
13 *
14 * DISCLAIMER: This code isn't warranted to do anything useful. Anything
15 * bad that happens because of using this software isn't the responsibility
16 * of the author. This software is distributed AS-IS.
17 */
18
19 /*
20 * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21 */
22
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61
62 #include <machine/atomic.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73
74 /*
75 * Counter for aio_fsync.
76 */
77 static uint64_t jobseqno;
78
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC 32
81 #endif
82
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC 256
85 #endif
86
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE 1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO 16
93 #endif
94
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102 "Async IO management");
103
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106 "Permit asynchronous IO on all file types, not just known-safe types");
107
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110 &unsafe_warningcnt, 0,
111 "Warnings that will be triggered upon failed IO requests on unsafe files");
112
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115 "Maximum number of kernel processes to use for handling async IO ");
116
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119 "Number of presently active kernel processes for async IO");
120
121 /*
122 * The code will adjust the actual number of AIO processes towards this
123 * number when it gets a chance.
124 */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127 0,
128 "Preferred number of ready kernel processes for async IO");
129
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132 "Maximum number of aio requests to queue, globally");
133
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136 "Number of queued aio requests");
137
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140 "Number of aio requests presently handled by the buf subsystem");
141
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144 0,
145 "Number of aio requests presently handled by unmapped I/O buffers");
146
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153 "Maximum lifetime for idle aiod");
154
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157 0,
158 "Maximum active aio requests per process");
159
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162 &max_aio_queue_per_proc, 0,
163 "Maximum queued aio requests per process");
164
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167 "Maximum buf aio requests per process");
168
169 /*
170 * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171 * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172 * vfs.aio.aio_listio_max.
173 */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175 CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176 0, "Maximum aio requests for a single lio_listio call");
177
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 int aio_fildes; /* File descriptor */
181 off_t aio_offset; /* File offset for I/O */
182 volatile void *aio_buf; /* I/O buffer in process space */
183 size_t aio_nbytes; /* Number of bytes for I/O */
184 struct osigevent aio_sigevent; /* Signal to deliver */
185 int aio_lio_opcode; /* LIO opcode */
186 int aio_reqprio; /* Request priority -- ignored */
187 struct __aiocb_private _aiocb_private;
188 } oaiocb_t;
189 #endif
190
191 /*
192 * Below is a key of locks used to protect each member of struct kaiocb
193 * aioliojob and kaioinfo and any backends.
194 *
195 * * - need not protected
196 * a - locked by kaioinfo lock
197 * b - locked by backend lock, the backend lock can be null in some cases,
198 * for example, BIO belongs to this type, in this case, proc lock is
199 * reused.
200 * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201 */
202
203 /*
204 * If the routine that services an AIO request blocks while running in an
205 * AIO kernel process it can starve other I/O requests. BIO requests
206 * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207 * processes at all. Socket I/O requests use a separate pool of
208 * kprocs and also force non-blocking I/O. Other file I/O requests
209 * use the generic fo_read/fo_write operations which can block. The
210 * fsync and mlock operations can also block while executing. Ideally
211 * none of these requests would block while executing.
212 *
213 * Note that the service routines cannot toggle O_NONBLOCK in the file
214 * structure directly while handling a request due to races with
215 * userland threads.
216 */
217
218 /* jobflags */
219 #define KAIOCB_QUEUEING 0x01
220 #define KAIOCB_CANCELLED 0x02
221 #define KAIOCB_CANCELLING 0x04
222 #define KAIOCB_CHECKSYNC 0x08
223 #define KAIOCB_CLEARED 0x10
224 #define KAIOCB_FINISHED 0x20
225
226 /* ioflags */
227 #define KAIOCB_IO_FOFFSET 0x01
228
229 /*
230 * AIO process info
231 */
232 #define AIOP_FREE 0x1 /* proc on free queue */
233
234 struct aioproc {
235 int aioprocflags; /* (c) AIO proc flags */
236 TAILQ_ENTRY(aioproc) list; /* (c) list of processes */
237 struct proc *aioproc; /* (*) the AIO proc */
238 };
239
240 /*
241 * data-structure for lio signal management
242 */
243 struct aioliojob {
244 int lioj_flags; /* (a) listio flags */
245 int lioj_count; /* (a) count of jobs */
246 int lioj_finished_count; /* (a) count of finished jobs */
247 struct sigevent lioj_signal; /* (a) signal on all I/O done */
248 TAILQ_ENTRY(aioliojob) lioj_list; /* (a) lio list */
249 struct knlist klist; /* (a) list of knotes */
250 ksiginfo_t lioj_ksi; /* (a) Realtime signal info */
251 };
252
253 #define LIOJ_SIGNAL 0x1 /* signal on all done (lio) */
254 #define LIOJ_SIGNAL_POSTED 0x2 /* signal has been posted */
255 #define LIOJ_KEVENT_POSTED 0x4 /* kevent triggered */
256
257 /*
258 * per process aio data structure
259 */
260 struct kaioinfo {
261 struct mtx kaio_mtx; /* the lock to protect this struct */
262 int kaio_flags; /* (a) per process kaio flags */
263 int kaio_active_count; /* (c) number of currently used AIOs */
264 int kaio_count; /* (a) size of AIO queue */
265 int kaio_buffer_count; /* (a) number of bio buffers */
266 TAILQ_HEAD(,kaiocb) kaio_all; /* (a) all AIOs in a process */
267 TAILQ_HEAD(,kaiocb) kaio_done; /* (a) done queue for process */
268 TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
269 TAILQ_HEAD(,kaiocb) kaio_jobqueue; /* (a) job queue for process */
270 TAILQ_HEAD(,kaiocb) kaio_syncqueue; /* (a) queue for aio_fsync */
271 TAILQ_HEAD(,kaiocb) kaio_syncready; /* (a) second q for aio_fsync */
272 struct task kaio_task; /* (*) task to kick aio processes */
273 struct task kaio_sync_task; /* (*) task to schedule fsync jobs */
274 };
275
276 #define AIO_LOCK(ki) mtx_lock(&(ki)->kaio_mtx)
277 #define AIO_UNLOCK(ki) mtx_unlock(&(ki)->kaio_mtx)
278 #define AIO_LOCK_ASSERT(ki, f) mtx_assert(&(ki)->kaio_mtx, (f))
279 #define AIO_MTX(ki) (&(ki)->kaio_mtx)
280
281 #define KAIO_RUNDOWN 0x1 /* process is being run down */
282 #define KAIO_WAKEUP 0x2 /* wakeup process when AIO completes */
283
284 /*
285 * Operations used to interact with userland aio control blocks.
286 * Different ABIs provide their own operations.
287 */
288 struct aiocb_ops {
289 int (*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
290 long (*fetch_status)(struct aiocb *ujob);
291 long (*fetch_error)(struct aiocb *ujob);
292 int (*store_status)(struct aiocb *ujob, long status);
293 int (*store_error)(struct aiocb *ujob, long error);
294 int (*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
295 };
296
297 static TAILQ_HEAD(,aioproc) aio_freeproc; /* (c) Idle daemons */
298 static struct sema aio_newproc_sem;
299 static struct mtx aio_job_mtx;
300 static TAILQ_HEAD(,kaiocb) aio_jobs; /* (c) Async job list */
301 static struct unrhdr *aiod_unr;
302
303 static void aio_biocleanup(struct bio *bp);
304 static int aio_init_aioinfo(struct proc *p);
305 static int aio_onceonly(void);
306 static int aio_free_entry(struct kaiocb *job);
307 static void aio_process_rw(struct kaiocb *job);
308 static void aio_process_sync(struct kaiocb *job);
309 static void aio_process_mlock(struct kaiocb *job);
310 static void aio_schedule_fsync(void *context, int pending);
311 static int aio_newproc(int *);
312 static int aio_aqueue(struct thread *td, struct aiocb *ujob,
313 struct aioliojob *lio, int type, struct aiocb_ops *ops);
314 static int aio_queue_file(struct file *fp, struct kaiocb *job);
315 static void aio_biowakeup(struct bio *bp);
316 static void aio_proc_rundown(void *arg, struct proc *p);
317 static void aio_proc_rundown_exec(void *arg, struct proc *p,
318 struct image_params *imgp);
319 static int aio_qbio(struct proc *p, struct kaiocb *job);
320 static void aio_daemon(void *param);
321 static void aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
322 static bool aio_clear_cancel_function_locked(struct kaiocb *job);
323 static int aio_kick(struct proc *userp);
324 static void aio_kick_nowait(struct proc *userp);
325 static void aio_kick_helper(void *context, int pending);
326 static int filt_aioattach(struct knote *kn);
327 static void filt_aiodetach(struct knote *kn);
328 static int filt_aio(struct knote *kn, long hint);
329 static int filt_lioattach(struct knote *kn);
330 static void filt_liodetach(struct knote *kn);
331 static int filt_lio(struct knote *kn, long hint);
332
333 /*
334 * Zones for:
335 * kaio Per process async io info
336 * aiocb async io jobs
337 * aiolio list io jobs
338 */
339 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
340
341 /* kqueue filters for aio */
342 static const struct filterops aio_filtops = {
343 .f_isfd = 0,
344 .f_attach = filt_aioattach,
345 .f_detach = filt_aiodetach,
346 .f_event = filt_aio,
347 };
348 static const struct filterops lio_filtops = {
349 .f_isfd = 0,
350 .f_attach = filt_lioattach,
351 .f_detach = filt_liodetach,
352 .f_event = filt_lio
353 };
354
355 static eventhandler_tag exit_tag, exec_tag;
356
357 TASKQUEUE_DEFINE_THREAD(aiod_kick);
358
359 /*
360 * Main operations function for use as a kernel module.
361 */
362 static int
aio_modload(struct module * module,int cmd,void * arg)363 aio_modload(struct module *module, int cmd, void *arg)
364 {
365 int error = 0;
366
367 switch (cmd) {
368 case MOD_LOAD:
369 aio_onceonly();
370 break;
371 case MOD_SHUTDOWN:
372 break;
373 default:
374 error = EOPNOTSUPP;
375 break;
376 }
377 return (error);
378 }
379
380 static moduledata_t aio_mod = {
381 "aio",
382 &aio_modload,
383 NULL
384 };
385
386 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
387 MODULE_VERSION(aio, 1);
388
389 /*
390 * Startup initialization
391 */
392 static int
aio_onceonly(void)393 aio_onceonly(void)
394 {
395
396 exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
397 EVENTHANDLER_PRI_ANY);
398 exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
399 NULL, EVENTHANDLER_PRI_ANY);
400 kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
401 kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
402 TAILQ_INIT(&aio_freeproc);
403 sema_init(&aio_newproc_sem, 0, "aio_new_proc");
404 mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
405 TAILQ_INIT(&aio_jobs);
406 aiod_unr = new_unrhdr(1, INT_MAX, NULL);
407 kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
408 NULL, NULL, UMA_ALIGN_PTR, 0);
409 aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
410 NULL, NULL, UMA_ALIGN_PTR, 0);
411 aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
412 NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
413 aiod_lifetime = AIOD_LIFETIME_DEFAULT;
414 p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
416 p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
417
418 return (0);
419 }
420
421 /*
422 * Init the per-process aioinfo structure. The aioinfo limits are set
423 * per-process for user limit (resource) management.
424 */
425 static int
aio_init_aioinfo(struct proc * p)426 aio_init_aioinfo(struct proc *p)
427 {
428 struct kaioinfo *ki;
429 int error;
430
431 ki = uma_zalloc(kaio_zone, M_WAITOK);
432 mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
433 ki->kaio_flags = 0;
434 ki->kaio_active_count = 0;
435 ki->kaio_count = 0;
436 ki->kaio_buffer_count = 0;
437 TAILQ_INIT(&ki->kaio_all);
438 TAILQ_INIT(&ki->kaio_done);
439 TAILQ_INIT(&ki->kaio_jobqueue);
440 TAILQ_INIT(&ki->kaio_liojoblist);
441 TAILQ_INIT(&ki->kaio_syncqueue);
442 TAILQ_INIT(&ki->kaio_syncready);
443 TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
444 TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
445 PROC_LOCK(p);
446 if (p->p_aioinfo == NULL) {
447 p->p_aioinfo = ki;
448 PROC_UNLOCK(p);
449 } else {
450 PROC_UNLOCK(p);
451 mtx_destroy(&ki->kaio_mtx);
452 uma_zfree(kaio_zone, ki);
453 }
454
455 error = 0;
456 while (num_aio_procs < MIN(target_aio_procs, max_aio_procs)) {
457 error = aio_newproc(NULL);
458 if (error != 0) {
459 /*
460 * At least one worker is enough to have AIO
461 * functional. Clear error in that case.
462 */
463 if (num_aio_procs > 0)
464 error = 0;
465 break;
466 }
467 }
468 return (error);
469 }
470
471 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)472 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
473 {
474 struct thread *td;
475 int error;
476
477 error = sigev_findtd(p, sigev, &td);
478 if (error)
479 return (error);
480 if (!KSI_ONQ(ksi)) {
481 ksiginfo_set_sigev(ksi, sigev);
482 ksi->ksi_code = SI_ASYNCIO;
483 ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
484 tdsendsignal(p, td, ksi->ksi_signo, ksi);
485 }
486 PROC_UNLOCK(p);
487 return (error);
488 }
489
490 /*
491 * Free a job entry. Wait for completion if it is currently active, but don't
492 * delay forever. If we delay, we return a flag that says that we have to
493 * restart the queue scan.
494 */
495 static int
aio_free_entry(struct kaiocb * job)496 aio_free_entry(struct kaiocb *job)
497 {
498 struct kaioinfo *ki;
499 struct aioliojob *lj;
500 struct proc *p;
501
502 p = job->userproc;
503 MPASS(curproc == p);
504 ki = p->p_aioinfo;
505 MPASS(ki != NULL);
506
507 AIO_LOCK_ASSERT(ki, MA_OWNED);
508 MPASS(job->jobflags & KAIOCB_FINISHED);
509
510 atomic_subtract_int(&num_queue_count, 1);
511
512 ki->kaio_count--;
513 MPASS(ki->kaio_count >= 0);
514
515 TAILQ_REMOVE(&ki->kaio_done, job, plist);
516 TAILQ_REMOVE(&ki->kaio_all, job, allist);
517
518 lj = job->lio;
519 if (lj) {
520 lj->lioj_count--;
521 lj->lioj_finished_count--;
522
523 if (lj->lioj_count == 0) {
524 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
525 /* lio is going away, we need to destroy any knotes */
526 knlist_delete(&lj->klist, curthread, 1);
527 PROC_LOCK(p);
528 sigqueue_take(&lj->lioj_ksi);
529 PROC_UNLOCK(p);
530 uma_zfree(aiolio_zone, lj);
531 }
532 }
533
534 /* job is going away, we need to destroy any knotes */
535 knlist_delete(&job->klist, curthread, 1);
536 PROC_LOCK(p);
537 sigqueue_take(&job->ksi);
538 PROC_UNLOCK(p);
539
540 AIO_UNLOCK(ki);
541
542 /*
543 * The thread argument here is used to find the owning process
544 * and is also passed to fo_close() which may pass it to various
545 * places such as devsw close() routines. Because of that, we
546 * need a thread pointer from the process owning the job that is
547 * persistent and won't disappear out from under us or move to
548 * another process.
549 *
550 * Currently, all the callers of this function call it to remove
551 * a kaiocb from the current process' job list either via a
552 * syscall or due to the current process calling exit() or
553 * execve(). Thus, we know that p == curproc. We also know that
554 * curthread can't exit since we are curthread.
555 *
556 * Therefore, we use curthread as the thread to pass to
557 * knlist_delete(). This does mean that it is possible for the
558 * thread pointer at close time to differ from the thread pointer
559 * at open time, but this is already true of file descriptors in
560 * a multithreaded process.
561 */
562 if (job->fd_file)
563 fdrop(job->fd_file, curthread);
564 crfree(job->cred);
565 if (job->uiop != &job->uio)
566 freeuio(job->uiop);
567 uma_zfree(aiocb_zone, job);
568 AIO_LOCK(ki);
569
570 return (0);
571 }
572
573 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)574 aio_proc_rundown_exec(void *arg, struct proc *p,
575 struct image_params *imgp __unused)
576 {
577 aio_proc_rundown(arg, p);
578 }
579
580 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)581 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
582 {
583 aio_cancel_fn_t *func;
584 int cancelled;
585
586 AIO_LOCK_ASSERT(ki, MA_OWNED);
587 if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
588 return (0);
589 MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
590 job->jobflags |= KAIOCB_CANCELLED;
591
592 func = job->cancel_fn;
593
594 /*
595 * If there is no cancel routine, just leave the job marked as
596 * cancelled. The job should be in active use by a caller who
597 * should complete it normally or when it fails to install a
598 * cancel routine.
599 */
600 if (func == NULL)
601 return (0);
602
603 /*
604 * Set the CANCELLING flag so that aio_complete() will defer
605 * completions of this job. This prevents the job from being
606 * freed out from under the cancel callback. After the
607 * callback any deferred completion (whether from the callback
608 * or any other source) will be completed.
609 */
610 job->jobflags |= KAIOCB_CANCELLING;
611 AIO_UNLOCK(ki);
612 func(job);
613 AIO_LOCK(ki);
614 job->jobflags &= ~KAIOCB_CANCELLING;
615 if (job->jobflags & KAIOCB_FINISHED) {
616 cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
617 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
618 aio_bio_done_notify(p, job);
619 } else {
620 /*
621 * The cancel callback might have scheduled an
622 * operation to cancel this request, but it is
623 * only counted as cancelled if the request is
624 * cancelled when the callback returns.
625 */
626 cancelled = 0;
627 }
628 return (cancelled);
629 }
630
631 /*
632 * Rundown the jobs for a given process.
633 */
634 static void
aio_proc_rundown(void * arg,struct proc * p)635 aio_proc_rundown(void *arg, struct proc *p)
636 {
637 struct kaioinfo *ki;
638 struct aioliojob *lj;
639 struct kaiocb *job, *jobn;
640
641 KASSERT(curthread->td_proc == p,
642 ("%s: called on non-curproc", __func__));
643 ki = p->p_aioinfo;
644 if (ki == NULL)
645 return;
646
647 AIO_LOCK(ki);
648 ki->kaio_flags |= KAIO_RUNDOWN;
649
650 restart:
651
652 /*
653 * Try to cancel all pending requests. This code simulates
654 * aio_cancel on all pending I/O requests.
655 */
656 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
657 aio_cancel_job(p, ki, job);
658 }
659
660 /* Wait for all running I/O to be finished */
661 if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
662 ki->kaio_flags |= KAIO_WAKEUP;
663 msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
664 goto restart;
665 }
666
667 /* Free all completed I/O requests. */
668 while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
669 aio_free_entry(job);
670
671 while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
672 if (lj->lioj_count == 0) {
673 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
674 knlist_delete(&lj->klist, curthread, 1);
675 PROC_LOCK(p);
676 sigqueue_take(&lj->lioj_ksi);
677 PROC_UNLOCK(p);
678 uma_zfree(aiolio_zone, lj);
679 } else {
680 panic("LIO job not cleaned up: C:%d, FC:%d\n",
681 lj->lioj_count, lj->lioj_finished_count);
682 }
683 }
684 AIO_UNLOCK(ki);
685 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
686 taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
687 mtx_destroy(&ki->kaio_mtx);
688 uma_zfree(kaio_zone, ki);
689 p->p_aioinfo = NULL;
690 }
691
692 /*
693 * Select a job to run (called by an AIO daemon).
694 */
695 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)696 aio_selectjob(struct aioproc *aiop)
697 {
698 struct kaiocb *job;
699 struct kaioinfo *ki;
700 struct proc *userp;
701
702 mtx_assert(&aio_job_mtx, MA_OWNED);
703 restart:
704 TAILQ_FOREACH(job, &aio_jobs, list) {
705 userp = job->userproc;
706 ki = userp->p_aioinfo;
707
708 if (ki->kaio_active_count < max_aio_per_proc) {
709 TAILQ_REMOVE(&aio_jobs, job, list);
710 if (!aio_clear_cancel_function(job))
711 goto restart;
712
713 /* Account for currently active jobs. */
714 ki->kaio_active_count++;
715 break;
716 }
717 }
718 return (job);
719 }
720
721 /*
722 * Move all data to a permanent storage device. This code
723 * simulates the fsync and fdatasync syscalls.
724 */
725 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)726 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
727 {
728 struct mount *mp;
729 int error;
730
731 for (;;) {
732 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
733 if (error != 0)
734 break;
735 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
736 vnode_pager_clean_async(vp);
737 if (op == LIO_DSYNC)
738 error = VOP_FDATASYNC(vp, td);
739 else
740 error = VOP_FSYNC(vp, MNT_WAIT, td);
741
742 VOP_UNLOCK(vp);
743 vn_finished_write(mp);
744 if (error != ERELOOKUP)
745 break;
746 }
747 return (error);
748 }
749
750 /*
751 * The AIO processing activity for LIO_READ/LIO_WRITE. This is the code that
752 * does the I/O request for the non-bio version of the operations. The normal
753 * vn operations are used, and this code should work in all instances for every
754 * type of file, including pipes, sockets, fifos, and regular files.
755 *
756 * XXX I don't think it works well for socket, pipe, and fifo.
757 */
758 static void
aio_process_rw(struct kaiocb * job)759 aio_process_rw(struct kaiocb *job)
760 {
761 struct ucred *td_savedcred;
762 struct thread *td;
763 struct file *fp;
764 ssize_t cnt;
765 long msgsnd_st, msgsnd_end;
766 long msgrcv_st, msgrcv_end;
767 long oublock_st, oublock_end;
768 long inblock_st, inblock_end;
769 int error, opcode;
770
771 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
772 KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
773 opcode == LIO_WRITE || opcode == LIO_WRITEV,
774 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
775
776 aio_switch_vmspace(job);
777 td = curthread;
778 td_savedcred = td->td_ucred;
779 td->td_ucred = job->cred;
780 job->uiop->uio_td = td;
781 fp = job->fd_file;
782
783 cnt = job->uiop->uio_resid;
784
785 msgrcv_st = td->td_ru.ru_msgrcv;
786 msgsnd_st = td->td_ru.ru_msgsnd;
787 inblock_st = td->td_ru.ru_inblock;
788 oublock_st = td->td_ru.ru_oublock;
789
790 /*
791 * aio_aqueue() acquires a reference to the file that is
792 * released in aio_free_entry().
793 */
794 if (opcode == LIO_READ || opcode == LIO_READV) {
795 if (job->uiop->uio_resid == 0)
796 error = 0;
797 else
798 error = fo_read(fp, job->uiop, fp->f_cred,
799 (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
800 FOF_OFFSET, td);
801 } else {
802 if (fp->f_type == DTYPE_VNODE)
803 bwillwrite();
804 error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
805 KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
806 }
807 msgrcv_end = td->td_ru.ru_msgrcv;
808 msgsnd_end = td->td_ru.ru_msgsnd;
809 inblock_end = td->td_ru.ru_inblock;
810 oublock_end = td->td_ru.ru_oublock;
811
812 job->msgrcv = msgrcv_end - msgrcv_st;
813 job->msgsnd = msgsnd_end - msgsnd_st;
814 job->inblock = inblock_end - inblock_st;
815 job->outblock = oublock_end - oublock_st;
816
817 if (error != 0 && job->uiop->uio_resid != cnt) {
818 if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
819 error = 0;
820 if (error == EPIPE && (opcode & LIO_WRITE)) {
821 PROC_LOCK(job->userproc);
822 kern_psignal(job->userproc, SIGPIPE);
823 PROC_UNLOCK(job->userproc);
824 }
825 }
826
827 cnt -= job->uiop->uio_resid;
828 td->td_ucred = td_savedcred;
829 if (error)
830 aio_complete(job, -1, error);
831 else
832 aio_complete(job, cnt, 0);
833 }
834
835 static void
aio_process_sync(struct kaiocb * job)836 aio_process_sync(struct kaiocb *job)
837 {
838 struct thread *td = curthread;
839 struct ucred *td_savedcred = td->td_ucred;
840 struct file *fp = job->fd_file;
841 int error = 0;
842
843 KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
844 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
845
846 td->td_ucred = job->cred;
847 if (fp->f_vnode != NULL) {
848 error = aio_fsync_vnode(td, fp->f_vnode,
849 job->uaiocb.aio_lio_opcode);
850 }
851 td->td_ucred = td_savedcred;
852 if (error)
853 aio_complete(job, -1, error);
854 else
855 aio_complete(job, 0, 0);
856 }
857
858 static void
aio_process_mlock(struct kaiocb * job)859 aio_process_mlock(struct kaiocb *job)
860 {
861 struct aiocb *cb = &job->uaiocb;
862 int error;
863
864 KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
865 ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
866
867 aio_switch_vmspace(job);
868 error = kern_mlock(job->userproc, job->cred,
869 __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
870 aio_complete(job, error != 0 ? -1 : 0, error);
871 }
872
873 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)874 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
875 {
876 struct aioliojob *lj;
877 struct kaioinfo *ki;
878 struct kaiocb *sjob, *sjobn;
879 int lj_done;
880 bool schedule_fsync;
881
882 ki = userp->p_aioinfo;
883 AIO_LOCK_ASSERT(ki, MA_OWNED);
884 lj = job->lio;
885 lj_done = 0;
886 if (lj) {
887 lj->lioj_finished_count++;
888 if (lj->lioj_count == lj->lioj_finished_count)
889 lj_done = 1;
890 }
891 TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
892 MPASS(job->jobflags & KAIOCB_FINISHED);
893
894 if (ki->kaio_flags & KAIO_RUNDOWN)
895 goto notification_done;
896
897 if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
898 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
899 aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
900
901 KNOTE_LOCKED(&job->klist, 1);
902
903 if (lj_done) {
904 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
905 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
906 KNOTE_LOCKED(&lj->klist, 1);
907 }
908 if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
909 == LIOJ_SIGNAL &&
910 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
911 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
912 aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
913 true);
914 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
915 }
916 }
917
918 notification_done:
919 if (job->jobflags & KAIOCB_CHECKSYNC) {
920 schedule_fsync = false;
921 TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
922 if (job->fd_file != sjob->fd_file ||
923 job->seqno >= sjob->seqno)
924 continue;
925 if (--sjob->pending > 0)
926 continue;
927 TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
928 if (!aio_clear_cancel_function_locked(sjob))
929 continue;
930 TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
931 schedule_fsync = true;
932 }
933 if (schedule_fsync)
934 taskqueue_enqueue(taskqueue_aiod_kick,
935 &ki->kaio_sync_task);
936 }
937 if (ki->kaio_flags & KAIO_WAKEUP) {
938 ki->kaio_flags &= ~KAIO_WAKEUP;
939 wakeup(&userp->p_aioinfo);
940 }
941 }
942
943 static void
aio_schedule_fsync(void * context,int pending)944 aio_schedule_fsync(void *context, int pending)
945 {
946 struct kaioinfo *ki;
947 struct kaiocb *job;
948
949 ki = context;
950 AIO_LOCK(ki);
951 while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
952 job = TAILQ_FIRST(&ki->kaio_syncready);
953 TAILQ_REMOVE(&ki->kaio_syncready, job, list);
954 AIO_UNLOCK(ki);
955 aio_schedule(job, aio_process_sync);
956 AIO_LOCK(ki);
957 }
958 AIO_UNLOCK(ki);
959 }
960
961 bool
aio_cancel_cleared(struct kaiocb * job)962 aio_cancel_cleared(struct kaiocb *job)
963 {
964
965 /*
966 * The caller should hold the same queue lock held when
967 * aio_clear_cancel_function() was called and set this flag
968 * ensuring this check sees an up-to-date value. However,
969 * there is no way to assert that.
970 */
971 return ((job->jobflags & KAIOCB_CLEARED) != 0);
972 }
973
974 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)975 aio_clear_cancel_function_locked(struct kaiocb *job)
976 {
977
978 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
979 MPASS(job->cancel_fn != NULL);
980 if (job->jobflags & KAIOCB_CANCELLING) {
981 job->jobflags |= KAIOCB_CLEARED;
982 return (false);
983 }
984 job->cancel_fn = NULL;
985 return (true);
986 }
987
988 bool
aio_clear_cancel_function(struct kaiocb * job)989 aio_clear_cancel_function(struct kaiocb *job)
990 {
991 struct kaioinfo *ki;
992 bool ret;
993
994 ki = job->userproc->p_aioinfo;
995 AIO_LOCK(ki);
996 ret = aio_clear_cancel_function_locked(job);
997 AIO_UNLOCK(ki);
998 return (ret);
999 }
1000
1001 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)1002 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
1003 {
1004
1005 AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
1006 if (job->jobflags & KAIOCB_CANCELLED)
1007 return (false);
1008 job->cancel_fn = func;
1009 return (true);
1010 }
1011
1012 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1013 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1014 {
1015 struct kaioinfo *ki;
1016 bool ret;
1017
1018 ki = job->userproc->p_aioinfo;
1019 AIO_LOCK(ki);
1020 ret = aio_set_cancel_function_locked(job, func);
1021 AIO_UNLOCK(ki);
1022 return (ret);
1023 }
1024
1025 void
aio_complete(struct kaiocb * job,long status,int error)1026 aio_complete(struct kaiocb *job, long status, int error)
1027 {
1028 struct kaioinfo *ki;
1029 struct proc *userp;
1030
1031 job->uaiocb._aiocb_private.error = error;
1032 job->uaiocb._aiocb_private.status = status;
1033
1034 userp = job->userproc;
1035 ki = userp->p_aioinfo;
1036
1037 AIO_LOCK(ki);
1038 KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1039 ("duplicate aio_complete"));
1040 job->jobflags |= KAIOCB_FINISHED;
1041 if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1042 TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1043 aio_bio_done_notify(userp, job);
1044 }
1045 AIO_UNLOCK(ki);
1046 }
1047
1048 void
aio_cancel(struct kaiocb * job)1049 aio_cancel(struct kaiocb *job)
1050 {
1051
1052 aio_complete(job, -1, ECANCELED);
1053 }
1054
1055 void
aio_switch_vmspace(struct kaiocb * job)1056 aio_switch_vmspace(struct kaiocb *job)
1057 {
1058
1059 vmspace_switch_aio(job->userproc->p_vmspace);
1060 }
1061
1062 /*
1063 * The AIO daemon, most of the actual work is done in aio_process_*,
1064 * but the setup (and address space mgmt) is done in this routine.
1065 */
1066 static void
aio_daemon(void * _id)1067 aio_daemon(void *_id)
1068 {
1069 struct kaiocb *job;
1070 struct aioproc *aiop;
1071 struct kaioinfo *ki;
1072 struct proc *p;
1073 struct vmspace *myvm;
1074 struct thread *td = curthread;
1075 int id = (intptr_t)_id;
1076
1077 /*
1078 * Grab an extra reference on the daemon's vmspace so that it
1079 * doesn't get freed by jobs that switch to a different
1080 * vmspace.
1081 */
1082 p = td->td_proc;
1083 myvm = vmspace_acquire_ref(p);
1084
1085 KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1086
1087 /*
1088 * Allocate and ready the aio control info. There is one aiop structure
1089 * per daemon.
1090 */
1091 aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1092 aiop->aioproc = p;
1093 aiop->aioprocflags = 0;
1094
1095 /*
1096 * Wakeup parent process. (Parent sleeps to keep from blasting away
1097 * and creating too many daemons.)
1098 */
1099 sema_post(&aio_newproc_sem);
1100
1101 mtx_lock(&aio_job_mtx);
1102 for (;;) {
1103 /*
1104 * Take daemon off of free queue
1105 */
1106 if (aiop->aioprocflags & AIOP_FREE) {
1107 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1108 aiop->aioprocflags &= ~AIOP_FREE;
1109 }
1110
1111 /*
1112 * Check for jobs.
1113 */
1114 while ((job = aio_selectjob(aiop)) != NULL) {
1115 mtx_unlock(&aio_job_mtx);
1116
1117 ki = job->userproc->p_aioinfo;
1118 job->handle_fn(job);
1119
1120 mtx_lock(&aio_job_mtx);
1121 /* Decrement the active job count. */
1122 ki->kaio_active_count--;
1123 }
1124
1125 /*
1126 * Disconnect from user address space.
1127 */
1128 if (p->p_vmspace != myvm) {
1129 mtx_unlock(&aio_job_mtx);
1130 vmspace_switch_aio(myvm);
1131 mtx_lock(&aio_job_mtx);
1132 /*
1133 * We have to restart to avoid race, we only sleep if
1134 * no job can be selected.
1135 */
1136 continue;
1137 }
1138
1139 mtx_assert(&aio_job_mtx, MA_OWNED);
1140
1141 TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1142 aiop->aioprocflags |= AIOP_FREE;
1143
1144 /*
1145 * If daemon is inactive for a long time, allow it to exit,
1146 * thereby freeing resources.
1147 */
1148 if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1149 aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1150 (aiop->aioprocflags & AIOP_FREE) &&
1151 num_aio_procs > target_aio_procs)
1152 break;
1153 }
1154 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1155 num_aio_procs--;
1156 mtx_unlock(&aio_job_mtx);
1157 free(aiop, M_AIO);
1158 free_unr(aiod_unr, id);
1159 vmspace_free(myvm);
1160
1161 KASSERT(p->p_vmspace == myvm,
1162 ("AIOD: bad vmspace for exiting daemon"));
1163 KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1164 ("AIOD: bad vm refcnt for exiting daemon: %d",
1165 refcount_load(&myvm->vm_refcnt)));
1166 kproc_exit(0);
1167 }
1168
1169 /*
1170 * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1171 * AIO daemon modifies its environment itself.
1172 */
1173 static int
aio_newproc(int * start)1174 aio_newproc(int *start)
1175 {
1176 int error;
1177 struct proc *p;
1178 int id;
1179
1180 id = alloc_unr(aiod_unr);
1181 error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1182 RFNOWAIT, 0, "aiod%d", id);
1183 if (error == 0) {
1184 /*
1185 * Wait until daemon is started.
1186 */
1187 sema_wait(&aio_newproc_sem);
1188 mtx_lock(&aio_job_mtx);
1189 num_aio_procs++;
1190 if (start != NULL)
1191 (*start)--;
1192 mtx_unlock(&aio_job_mtx);
1193 } else {
1194 free_unr(aiod_unr, id);
1195 }
1196 return (error);
1197 }
1198
1199 /*
1200 * Try the high-performance, low-overhead bio method for eligible
1201 * VCHR devices. This method doesn't use an aio helper thread, and
1202 * thus has very low overhead.
1203 *
1204 * Assumes that the caller, aio_aqueue(), has incremented the file
1205 * structure's reference count, preventing its deallocation for the
1206 * duration of this call.
1207 */
1208 static int
aio_qbio(struct proc * p,struct kaiocb * job)1209 aio_qbio(struct proc *p, struct kaiocb *job)
1210 {
1211 struct aiocb *cb;
1212 struct file *fp;
1213 struct buf *pbuf;
1214 struct vnode *vp;
1215 struct cdevsw *csw;
1216 struct cdev *dev;
1217 struct kaioinfo *ki;
1218 struct bio **bios = NULL;
1219 off_t offset;
1220 int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1221 vm_prot_t prot;
1222 bool use_unmapped;
1223
1224 cb = &job->uaiocb;
1225 fp = job->fd_file;
1226 opcode = cb->aio_lio_opcode;
1227
1228 if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1229 opcode == LIO_READ || opcode == LIO_READV))
1230 return (-1);
1231 if (fp == NULL || fp->f_type != DTYPE_VNODE)
1232 return (-1);
1233
1234 vp = fp->f_vnode;
1235 if (vp->v_type != VCHR)
1236 return (-1);
1237 if (vp->v_bufobj.bo_bsize == 0)
1238 return (-1);
1239
1240 bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1241 iovcnt = job->uiop->uio_iovcnt;
1242 if (iovcnt > max_buf_aio)
1243 return (-1);
1244 for (i = 0; i < iovcnt; i++) {
1245 if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1246 return (-1);
1247 if (job->uiop->uio_iov[i].iov_len > maxphys) {
1248 error = -1;
1249 return (-1);
1250 }
1251 }
1252 offset = cb->aio_offset;
1253
1254 ref = 0;
1255 csw = devvn_refthread(vp, &dev, &ref);
1256 if (csw == NULL)
1257 return (ENXIO);
1258
1259 if ((csw->d_flags & D_DISK) == 0) {
1260 error = -1;
1261 goto unref;
1262 }
1263 if (job->uiop->uio_resid > dev->si_iosize_max) {
1264 error = -1;
1265 goto unref;
1266 }
1267
1268 ki = p->p_aioinfo;
1269 job->error = 0;
1270
1271 use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1272 if (!use_unmapped) {
1273 AIO_LOCK(ki);
1274 if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1275 AIO_UNLOCK(ki);
1276 error = EAGAIN;
1277 goto unref;
1278 }
1279 ki->kaio_buffer_count += iovcnt;
1280 AIO_UNLOCK(ki);
1281 }
1282
1283 bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1284 refcount_init(&job->nbio, iovcnt);
1285 for (i = 0; i < iovcnt; i++) {
1286 struct vm_page** pages;
1287 struct bio *bp;
1288 void *buf;
1289 size_t nbytes;
1290 int npages;
1291
1292 buf = job->uiop->uio_iov[i].iov_base;
1293 nbytes = job->uiop->uio_iov[i].iov_len;
1294
1295 bios[i] = g_alloc_bio();
1296 bp = bios[i];
1297
1298 poff = (vm_offset_t)buf & PAGE_MASK;
1299 if (use_unmapped) {
1300 pbuf = NULL;
1301 pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1302 nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1303 } else {
1304 pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1305 BUF_KERNPROC(pbuf);
1306 pages = pbuf->b_pages;
1307 }
1308
1309 bp->bio_length = nbytes;
1310 bp->bio_bcount = nbytes;
1311 bp->bio_done = aio_biowakeup;
1312 bp->bio_offset = offset;
1313 bp->bio_cmd = bio_cmd;
1314 bp->bio_dev = dev;
1315 bp->bio_caller1 = job;
1316 bp->bio_caller2 = pbuf;
1317
1318 prot = VM_PROT_READ;
1319 if (opcode == LIO_READ || opcode == LIO_READV)
1320 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
1321 npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1322 (vm_offset_t)buf, bp->bio_length, prot, pages,
1323 atop(maxphys) + 1);
1324 if (npages < 0) {
1325 if (pbuf != NULL)
1326 uma_zfree(pbuf_zone, pbuf);
1327 else
1328 free(pages, M_TEMP);
1329 error = EFAULT;
1330 g_destroy_bio(bp);
1331 i--;
1332 goto destroy_bios;
1333 }
1334 if (pbuf != NULL) {
1335 pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1336 bp->bio_data = pbuf->b_data + poff;
1337 pbuf->b_npages = npages;
1338 atomic_add_int(&num_buf_aio, 1);
1339 } else {
1340 bp->bio_ma = pages;
1341 bp->bio_ma_n = npages;
1342 bp->bio_ma_offset = poff;
1343 bp->bio_data = unmapped_buf;
1344 bp->bio_flags |= BIO_UNMAPPED;
1345 atomic_add_int(&num_unmapped_aio, 1);
1346 }
1347
1348 offset += nbytes;
1349 }
1350
1351 /* Perform transfer. */
1352 for (i = 0; i < iovcnt; i++)
1353 csw->d_strategy(bios[i]);
1354 free(bios, M_TEMP);
1355
1356 dev_relthread(dev, ref);
1357 return (0);
1358
1359 destroy_bios:
1360 for (; i >= 0; i--)
1361 aio_biocleanup(bios[i]);
1362 free(bios, M_TEMP);
1363 unref:
1364 dev_relthread(dev, ref);
1365 return (error);
1366 }
1367
1368 #ifdef COMPAT_FREEBSD6
1369 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1370 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1371 {
1372
1373 /*
1374 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1375 * supported by AIO with the old sigevent structure.
1376 */
1377 nsig->sigev_notify = osig->sigev_notify;
1378 switch (nsig->sigev_notify) {
1379 case SIGEV_NONE:
1380 break;
1381 case SIGEV_SIGNAL:
1382 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1383 break;
1384 case SIGEV_KEVENT:
1385 nsig->sigev_notify_kqueue =
1386 osig->__sigev_u.__sigev_notify_kqueue;
1387 nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1388 break;
1389 default:
1390 return (EINVAL);
1391 }
1392 return (0);
1393 }
1394
1395 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1396 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1397 int type __unused)
1398 {
1399 struct oaiocb *ojob;
1400 struct aiocb *kcb = &kjob->uaiocb;
1401 int error;
1402
1403 bzero(kcb, sizeof(struct aiocb));
1404 error = copyin(ujob, kcb, sizeof(struct oaiocb));
1405 if (error)
1406 return (error);
1407 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1408 ojob = (struct oaiocb *)kcb;
1409 return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1410 }
1411 #endif
1412
1413 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1414 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1415 {
1416 struct aiocb *kcb = &kjob->uaiocb;
1417 int error;
1418
1419 error = copyin(ujob, kcb, sizeof(struct aiocb));
1420 if (error)
1421 return (error);
1422 if (type == LIO_NOP)
1423 type = kcb->aio_lio_opcode;
1424 if (type & LIO_VECTORED) {
1425 /* malloc a uio and copy in the iovec */
1426 error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1427 kcb->aio_iovcnt, &kjob->uiop);
1428 }
1429
1430 return (error);
1431 }
1432
1433 static long
aiocb_fetch_status(struct aiocb * ujob)1434 aiocb_fetch_status(struct aiocb *ujob)
1435 {
1436
1437 return (fuword(&ujob->_aiocb_private.status));
1438 }
1439
1440 static long
aiocb_fetch_error(struct aiocb * ujob)1441 aiocb_fetch_error(struct aiocb *ujob)
1442 {
1443
1444 return (fuword(&ujob->_aiocb_private.error));
1445 }
1446
1447 static int
aiocb_store_status(struct aiocb * ujob,long status)1448 aiocb_store_status(struct aiocb *ujob, long status)
1449 {
1450
1451 return (suword(&ujob->_aiocb_private.status, status));
1452 }
1453
1454 static int
aiocb_store_error(struct aiocb * ujob,long error)1455 aiocb_store_error(struct aiocb *ujob, long error)
1456 {
1457
1458 return (suword(&ujob->_aiocb_private.error, error));
1459 }
1460
1461 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1462 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1463 {
1464
1465 return (suword(ujobp, (long)ujob));
1466 }
1467
1468 static struct aiocb_ops aiocb_ops = {
1469 .aio_copyin = aiocb_copyin,
1470 .fetch_status = aiocb_fetch_status,
1471 .fetch_error = aiocb_fetch_error,
1472 .store_status = aiocb_store_status,
1473 .store_error = aiocb_store_error,
1474 .store_aiocb = aiocb_store_aiocb,
1475 };
1476
1477 #ifdef COMPAT_FREEBSD6
1478 static struct aiocb_ops aiocb_ops_osigevent = {
1479 .aio_copyin = aiocb_copyin_old_sigevent,
1480 .fetch_status = aiocb_fetch_status,
1481 .fetch_error = aiocb_fetch_error,
1482 .store_status = aiocb_store_status,
1483 .store_error = aiocb_store_error,
1484 .store_aiocb = aiocb_store_aiocb,
1485 };
1486 #endif
1487
1488 /*
1489 * Queue a new AIO request. Choosing either the threaded or direct bio VCHR
1490 * technique is done in this code.
1491 */
1492 static int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1493 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1494 int type, struct aiocb_ops *ops)
1495 {
1496 struct proc *p = td->td_proc;
1497 struct file *fp = NULL;
1498 struct kaiocb *job;
1499 struct kaioinfo *ki;
1500 struct kevent kev;
1501 int opcode;
1502 int error;
1503 int fd, kqfd;
1504 u_short evflags;
1505
1506 if (p->p_aioinfo == NULL) {
1507 error = aio_init_aioinfo(p);
1508 if (error != 0)
1509 goto err1;
1510 }
1511
1512 ki = p->p_aioinfo;
1513
1514 ops->store_status(ujob, -1);
1515 ops->store_error(ujob, 0);
1516
1517 if (num_queue_count >= max_queue_count ||
1518 ki->kaio_count >= max_aio_queue_per_proc) {
1519 error = EAGAIN;
1520 goto err1;
1521 }
1522
1523 job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1524 knlist_init_mtx(&job->klist, AIO_MTX(ki));
1525
1526 error = ops->aio_copyin(ujob, job, type);
1527 if (error)
1528 goto err2;
1529
1530 if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1531 error = EINVAL;
1532 goto err2;
1533 }
1534
1535 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1536 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1537 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1538 job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1539 error = EINVAL;
1540 goto err2;
1541 }
1542
1543 if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1544 job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1545 !_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1546 error = EINVAL;
1547 goto err2;
1548 }
1549
1550 /* Get the opcode. */
1551 if (type == LIO_NOP) {
1552 switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1553 case LIO_WRITE:
1554 case LIO_WRITEV:
1555 case LIO_NOP:
1556 case LIO_READ:
1557 case LIO_READV:
1558 opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1559 if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1560 job->ioflags |= KAIOCB_IO_FOFFSET;
1561 break;
1562 default:
1563 error = EINVAL;
1564 goto err2;
1565 }
1566 } else
1567 opcode = job->uaiocb.aio_lio_opcode = type;
1568
1569 ksiginfo_init(&job->ksi);
1570
1571 /* Save userspace address of the job info. */
1572 job->ujob = ujob;
1573
1574 /*
1575 * Validate the opcode and fetch the file object for the specified
1576 * file descriptor.
1577 *
1578 * XXXRW: Moved the opcode validation up here so that we don't
1579 * retrieve a file descriptor without knowing what the capabiltity
1580 * should be.
1581 */
1582 fd = job->uaiocb.aio_fildes;
1583 switch (opcode) {
1584 case LIO_WRITE:
1585 case LIO_WRITEV:
1586 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1587 break;
1588 case LIO_READ:
1589 case LIO_READV:
1590 error = fget_read(td, fd, &cap_pread_rights, &fp);
1591 break;
1592 case LIO_SYNC:
1593 case LIO_DSYNC:
1594 error = fget(td, fd, &cap_fsync_rights, &fp);
1595 break;
1596 case LIO_MLOCK:
1597 break;
1598 case LIO_NOP:
1599 error = fget(td, fd, &cap_no_rights, &fp);
1600 break;
1601 default:
1602 error = EINVAL;
1603 }
1604 if (error)
1605 goto err3;
1606
1607 if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1608 error = EINVAL;
1609 goto err3;
1610 }
1611
1612 if ((opcode == LIO_READ || opcode == LIO_READV ||
1613 opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1614 job->uaiocb.aio_offset < 0 &&
1615 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1616 error = EINVAL;
1617 goto err3;
1618 }
1619
1620 if (fp != NULL && fp->f_ops == &path_fileops) {
1621 error = EBADF;
1622 goto err3;
1623 }
1624
1625 job->fd_file = fp;
1626
1627 mtx_lock(&aio_job_mtx);
1628 job->seqno = jobseqno++;
1629 mtx_unlock(&aio_job_mtx);
1630 if (opcode == LIO_NOP) {
1631 fdrop(fp, td);
1632 MPASS(job->uiop == &job->uio || job->uiop == NULL);
1633 uma_zfree(aiocb_zone, job);
1634 return (0);
1635 }
1636
1637 if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1638 goto no_kqueue;
1639 evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1640 if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1641 error = EINVAL;
1642 goto err3;
1643 }
1644 kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1645 memset(&kev, 0, sizeof(kev));
1646 kev.ident = (uintptr_t)job->ujob;
1647 kev.filter = EVFILT_AIO;
1648 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1649 kev.data = (intptr_t)job;
1650 kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1651 error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1652 if (error)
1653 goto err3;
1654
1655 no_kqueue:
1656
1657 ops->store_error(ujob, EINPROGRESS);
1658 job->uaiocb._aiocb_private.error = EINPROGRESS;
1659 job->userproc = p;
1660 job->cred = crhold(td->td_ucred);
1661 job->jobflags = KAIOCB_QUEUEING;
1662 job->lio = lj;
1663
1664 if (opcode & LIO_VECTORED) {
1665 /* Use the uio copied in by aio_copyin */
1666 MPASS(job->uiop != &job->uio && job->uiop != NULL);
1667 } else {
1668 /* Setup the inline uio */
1669 job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1670 job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1671 job->uio.uio_iov = job->iov;
1672 job->uio.uio_iovcnt = 1;
1673 job->uio.uio_resid = job->uaiocb.aio_nbytes;
1674 job->uio.uio_segflg = UIO_USERSPACE;
1675 job->uiop = &job->uio;
1676 }
1677 switch (opcode & (LIO_READ | LIO_WRITE)) {
1678 case LIO_READ:
1679 job->uiop->uio_rw = UIO_READ;
1680 break;
1681 case LIO_WRITE:
1682 job->uiop->uio_rw = UIO_WRITE;
1683 break;
1684 }
1685 job->uiop->uio_offset = job->uaiocb.aio_offset;
1686 job->uiop->uio_td = td;
1687
1688 if (opcode == LIO_MLOCK) {
1689 aio_schedule(job, aio_process_mlock);
1690 error = 0;
1691 } else if (fp->f_ops->fo_aio_queue == NULL)
1692 error = aio_queue_file(fp, job);
1693 else
1694 error = fo_aio_queue(fp, job);
1695 if (error)
1696 goto err4;
1697
1698 AIO_LOCK(ki);
1699 job->jobflags &= ~KAIOCB_QUEUEING;
1700 TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1701 ki->kaio_count++;
1702 if (lj)
1703 lj->lioj_count++;
1704 atomic_add_int(&num_queue_count, 1);
1705 if (job->jobflags & KAIOCB_FINISHED) {
1706 /*
1707 * The queue callback completed the request synchronously.
1708 * The bulk of the completion is deferred in that case
1709 * until this point.
1710 */
1711 aio_bio_done_notify(p, job);
1712 } else
1713 TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1714 AIO_UNLOCK(ki);
1715 return (0);
1716
1717 err4:
1718 crfree(job->cred);
1719 err3:
1720 if (fp)
1721 fdrop(fp, td);
1722 knlist_delete(&job->klist, curthread, 0);
1723 err2:
1724 if (job->uiop != &job->uio)
1725 freeuio(job->uiop);
1726 uma_zfree(aiocb_zone, job);
1727 err1:
1728 ops->store_error(ujob, error);
1729 return (error);
1730 }
1731
1732 static void
aio_cancel_daemon_job(struct kaiocb * job)1733 aio_cancel_daemon_job(struct kaiocb *job)
1734 {
1735
1736 mtx_lock(&aio_job_mtx);
1737 if (!aio_cancel_cleared(job))
1738 TAILQ_REMOVE(&aio_jobs, job, list);
1739 mtx_unlock(&aio_job_mtx);
1740 aio_cancel(job);
1741 }
1742
1743 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1744 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1745 {
1746
1747 mtx_lock(&aio_job_mtx);
1748 if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1749 mtx_unlock(&aio_job_mtx);
1750 aio_cancel(job);
1751 return;
1752 }
1753 job->handle_fn = func;
1754 TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1755 aio_kick_nowait(job->userproc);
1756 mtx_unlock(&aio_job_mtx);
1757 }
1758
1759 static void
aio_cancel_sync(struct kaiocb * job)1760 aio_cancel_sync(struct kaiocb *job)
1761 {
1762 struct kaioinfo *ki;
1763
1764 ki = job->userproc->p_aioinfo;
1765 AIO_LOCK(ki);
1766 if (!aio_cancel_cleared(job))
1767 TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1768 AIO_UNLOCK(ki);
1769 aio_cancel(job);
1770 }
1771
1772 int
aio_queue_file(struct file * fp,struct kaiocb * job)1773 aio_queue_file(struct file *fp, struct kaiocb *job)
1774 {
1775 struct kaioinfo *ki;
1776 struct kaiocb *job2;
1777 struct vnode *vp;
1778 struct mount *mp;
1779 int error;
1780 bool safe;
1781
1782 ki = job->userproc->p_aioinfo;
1783 error = aio_qbio(job->userproc, job);
1784 if (error >= 0)
1785 return (error);
1786 safe = false;
1787 if (fp->f_type == DTYPE_VNODE) {
1788 vp = fp->f_vnode;
1789 if (vp->v_type == VREG || vp->v_type == VDIR) {
1790 mp = fp->f_vnode->v_mount;
1791 if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1792 safe = true;
1793 }
1794 }
1795 if (!(safe || enable_aio_unsafe)) {
1796 counted_warning(&unsafe_warningcnt,
1797 "is attempting to use unsafe AIO requests");
1798 return (EOPNOTSUPP);
1799 }
1800
1801 if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1802 aio_schedule(job, aio_process_rw);
1803 error = 0;
1804 } else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1805 AIO_LOCK(ki);
1806 TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1807 if (job2->fd_file == job->fd_file &&
1808 ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1809 job2->seqno < job->seqno) {
1810 job2->jobflags |= KAIOCB_CHECKSYNC;
1811 job->pending++;
1812 }
1813 }
1814 if (job->pending != 0) {
1815 if (!aio_set_cancel_function_locked(job,
1816 aio_cancel_sync)) {
1817 AIO_UNLOCK(ki);
1818 aio_cancel(job);
1819 return (0);
1820 }
1821 TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1822 AIO_UNLOCK(ki);
1823 return (0);
1824 }
1825 AIO_UNLOCK(ki);
1826 aio_schedule(job, aio_process_sync);
1827 error = 0;
1828 } else {
1829 error = EINVAL;
1830 }
1831 return (error);
1832 }
1833
1834 static void
aio_kick_nowait(struct proc * userp)1835 aio_kick_nowait(struct proc *userp)
1836 {
1837 struct kaioinfo *ki = userp->p_aioinfo;
1838 struct aioproc *aiop;
1839
1840 mtx_assert(&aio_job_mtx, MA_OWNED);
1841 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1842 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1843 aiop->aioprocflags &= ~AIOP_FREE;
1844 wakeup(aiop->aioproc);
1845 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1846 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1847 taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1848 }
1849 }
1850
1851 static int
aio_kick(struct proc * userp)1852 aio_kick(struct proc *userp)
1853 {
1854 struct kaioinfo *ki = userp->p_aioinfo;
1855 struct aioproc *aiop;
1856 int error, ret = 0;
1857
1858 mtx_assert(&aio_job_mtx, MA_OWNED);
1859 retryproc:
1860 if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1861 TAILQ_REMOVE(&aio_freeproc, aiop, list);
1862 aiop->aioprocflags &= ~AIOP_FREE;
1863 wakeup(aiop->aioproc);
1864 } else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1865 ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1866 num_aio_resv_start++;
1867 mtx_unlock(&aio_job_mtx);
1868 error = aio_newproc(&num_aio_resv_start);
1869 mtx_lock(&aio_job_mtx);
1870 if (error) {
1871 num_aio_resv_start--;
1872 goto retryproc;
1873 }
1874 } else {
1875 ret = -1;
1876 }
1877 return (ret);
1878 }
1879
1880 static void
aio_kick_helper(void * context,int pending)1881 aio_kick_helper(void *context, int pending)
1882 {
1883 struct proc *userp = context;
1884
1885 mtx_lock(&aio_job_mtx);
1886 while (--pending >= 0) {
1887 if (aio_kick(userp))
1888 break;
1889 }
1890 mtx_unlock(&aio_job_mtx);
1891 }
1892
1893 /*
1894 * Support the aio_return system call, as a side-effect, kernel resources are
1895 * released.
1896 */
1897 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1898 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1899 {
1900 struct proc *p = td->td_proc;
1901 struct kaiocb *job;
1902 struct kaioinfo *ki;
1903 long status, error;
1904
1905 ki = p->p_aioinfo;
1906 if (ki == NULL)
1907 return (EINVAL);
1908 AIO_LOCK(ki);
1909 TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1910 if (job->ujob == ujob)
1911 break;
1912 }
1913 if (job != NULL) {
1914 MPASS(job->jobflags & KAIOCB_FINISHED);
1915 status = job->uaiocb._aiocb_private.status;
1916 error = job->uaiocb._aiocb_private.error;
1917 td->td_retval[0] = status;
1918 td->td_ru.ru_oublock += job->outblock;
1919 td->td_ru.ru_inblock += job->inblock;
1920 td->td_ru.ru_msgsnd += job->msgsnd;
1921 td->td_ru.ru_msgrcv += job->msgrcv;
1922 aio_free_entry(job);
1923 AIO_UNLOCK(ki);
1924 ops->store_error(ujob, error);
1925 ops->store_status(ujob, status);
1926 } else {
1927 error = EINVAL;
1928 AIO_UNLOCK(ki);
1929 }
1930 return (error);
1931 }
1932
1933 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1934 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1935 {
1936
1937 return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1938 }
1939
1940 /*
1941 * Allow a process to wakeup when any of the I/O requests are completed.
1942 */
1943 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1944 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1945 struct timespec *ts)
1946 {
1947 struct proc *p = td->td_proc;
1948 struct timeval atv;
1949 struct kaioinfo *ki;
1950 struct kaiocb *firstjob, *job;
1951 int error, i, timo;
1952
1953 timo = 0;
1954 if (ts) {
1955 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1956 return (EINVAL);
1957
1958 TIMESPEC_TO_TIMEVAL(&atv, ts);
1959 if (itimerfix(&atv))
1960 return (EINVAL);
1961 timo = tvtohz(&atv);
1962 }
1963
1964 ki = p->p_aioinfo;
1965 if (ki == NULL)
1966 return (EAGAIN);
1967
1968 if (njoblist == 0)
1969 return (0);
1970
1971 AIO_LOCK(ki);
1972 for (;;) {
1973 firstjob = NULL;
1974 error = 0;
1975 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1976 for (i = 0; i < njoblist; i++) {
1977 if (job->ujob == ujoblist[i]) {
1978 if (firstjob == NULL)
1979 firstjob = job;
1980 if (job->jobflags & KAIOCB_FINISHED)
1981 goto RETURN;
1982 }
1983 }
1984 }
1985 /* All tasks were finished. */
1986 if (firstjob == NULL)
1987 break;
1988
1989 ki->kaio_flags |= KAIO_WAKEUP;
1990 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1991 "aiospn", timo);
1992 if (error == ERESTART)
1993 error = EINTR;
1994 if (error)
1995 break;
1996 }
1997 RETURN:
1998 AIO_UNLOCK(ki);
1999 return (error);
2000 }
2001
2002 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)2003 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
2004 {
2005 struct timespec ts, *tsp;
2006 struct aiocb **ujoblist;
2007 int error;
2008
2009 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2010 return (EINVAL);
2011
2012 if (uap->timeout) {
2013 /* Get timespec struct. */
2014 if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
2015 return (error);
2016 tsp = &ts;
2017 } else
2018 tsp = NULL;
2019
2020 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2021 error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2022 if (error == 0)
2023 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2024 free(ujoblist, M_AIO);
2025 return (error);
2026 }
2027
2028 /*
2029 * aio_cancel cancels any non-bio aio operations not currently in progress.
2030 */
2031 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2032 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2033 {
2034 struct proc *p = td->td_proc;
2035 struct kaioinfo *ki;
2036 struct kaiocb *job, *jobn;
2037 struct file *fp;
2038 int error;
2039 int cancelled = 0;
2040 int notcancelled = 0;
2041 struct vnode *vp;
2042
2043 /* Lookup file object. */
2044 error = fget(td, uap->fd, &cap_no_rights, &fp);
2045 if (error)
2046 return (error);
2047
2048 ki = p->p_aioinfo;
2049 if (ki == NULL)
2050 goto done;
2051
2052 if (fp->f_type == DTYPE_VNODE) {
2053 vp = fp->f_vnode;
2054 if (vn_isdisk(vp)) {
2055 fdrop(fp, td);
2056 td->td_retval[0] = AIO_NOTCANCELED;
2057 return (0);
2058 }
2059 }
2060
2061 AIO_LOCK(ki);
2062 TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2063 if ((uap->fd == job->uaiocb.aio_fildes) &&
2064 ((uap->aiocbp == NULL) ||
2065 (uap->aiocbp == job->ujob))) {
2066 if (aio_cancel_job(p, ki, job)) {
2067 cancelled++;
2068 } else {
2069 notcancelled++;
2070 }
2071 if (uap->aiocbp != NULL)
2072 break;
2073 }
2074 }
2075 AIO_UNLOCK(ki);
2076
2077 done:
2078 fdrop(fp, td);
2079
2080 if (uap->aiocbp != NULL) {
2081 if (cancelled) {
2082 td->td_retval[0] = AIO_CANCELED;
2083 return (0);
2084 }
2085 }
2086
2087 if (notcancelled) {
2088 td->td_retval[0] = AIO_NOTCANCELED;
2089 return (0);
2090 }
2091
2092 if (cancelled) {
2093 td->td_retval[0] = AIO_CANCELED;
2094 return (0);
2095 }
2096
2097 td->td_retval[0] = AIO_ALLDONE;
2098
2099 return (0);
2100 }
2101
2102 /*
2103 * aio_error is implemented in the kernel level for compatibility purposes
2104 * only. For a user mode async implementation, it would be best to do it in
2105 * a userland subroutine.
2106 */
2107 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2108 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2109 {
2110 struct proc *p = td->td_proc;
2111 struct kaiocb *job;
2112 struct kaioinfo *ki;
2113 int status;
2114
2115 ki = p->p_aioinfo;
2116 if (ki == NULL) {
2117 td->td_retval[0] = EINVAL;
2118 return (0);
2119 }
2120
2121 AIO_LOCK(ki);
2122 TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2123 if (job->ujob == ujob) {
2124 if (job->jobflags & KAIOCB_FINISHED)
2125 td->td_retval[0] =
2126 job->uaiocb._aiocb_private.error;
2127 else
2128 td->td_retval[0] = EINPROGRESS;
2129 AIO_UNLOCK(ki);
2130 return (0);
2131 }
2132 }
2133 AIO_UNLOCK(ki);
2134
2135 /*
2136 * Hack for failure of aio_aqueue.
2137 */
2138 status = ops->fetch_status(ujob);
2139 if (status == -1) {
2140 td->td_retval[0] = ops->fetch_error(ujob);
2141 return (0);
2142 }
2143
2144 td->td_retval[0] = EINVAL;
2145 return (0);
2146 }
2147
2148 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2149 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2150 {
2151
2152 return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2153 }
2154
2155 /* syscall - asynchronous read from a file (REALTIME) */
2156 #ifdef COMPAT_FREEBSD6
2157 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2158 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2159 {
2160
2161 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2162 &aiocb_ops_osigevent));
2163 }
2164 #endif
2165
2166 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2167 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2168 {
2169
2170 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2171 }
2172
2173 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2174 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2175 {
2176
2177 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2178 }
2179
2180 /* syscall - asynchronous write to a file (REALTIME) */
2181 #ifdef COMPAT_FREEBSD6
2182 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2183 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2184 {
2185
2186 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2187 &aiocb_ops_osigevent));
2188 }
2189 #endif
2190
2191 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2192 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2193 {
2194
2195 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2196 }
2197
2198 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2199 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2200 {
2201
2202 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2203 }
2204
2205 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2206 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2207 {
2208
2209 return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2210 }
2211
2212 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2213 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2214 struct aiocb **acb_list, int nent, struct sigevent *sig,
2215 struct aiocb_ops *ops)
2216 {
2217 struct proc *p = td->td_proc;
2218 struct aiocb *job;
2219 struct kaioinfo *ki;
2220 struct aioliojob *lj;
2221 struct kevent kev;
2222 int error;
2223 int nagain, nerror;
2224 int i;
2225
2226 if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2227 return (EINVAL);
2228
2229 if (nent < 0 || nent > max_aio_queue_per_proc)
2230 return (EINVAL);
2231
2232 if (p->p_aioinfo == NULL) {
2233 error = aio_init_aioinfo(p);
2234 if (error != 0)
2235 return (error);
2236 }
2237
2238 ki = p->p_aioinfo;
2239
2240 lj = uma_zalloc(aiolio_zone, M_WAITOK);
2241 lj->lioj_flags = 0;
2242 lj->lioj_count = 0;
2243 lj->lioj_finished_count = 0;
2244 lj->lioj_signal.sigev_notify = SIGEV_NONE;
2245 knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2246 ksiginfo_init(&lj->lioj_ksi);
2247
2248 /*
2249 * Setup signal.
2250 */
2251 if (sig && (mode == LIO_NOWAIT)) {
2252 bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2253 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2254 /* Assume only new style KEVENT */
2255 memset(&kev, 0, sizeof(kev));
2256 kev.filter = EVFILT_LIO;
2257 kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2258 kev.ident = (uintptr_t)uacb_list; /* something unique */
2259 kev.data = (intptr_t)lj;
2260 /* pass user defined sigval data */
2261 kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2262 error = kqfd_register(
2263 lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2264 M_WAITOK);
2265 if (error) {
2266 uma_zfree(aiolio_zone, lj);
2267 return (error);
2268 }
2269 } else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2270 ;
2271 } else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2272 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2273 if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2274 uma_zfree(aiolio_zone, lj);
2275 return EINVAL;
2276 }
2277 lj->lioj_flags |= LIOJ_SIGNAL;
2278 } else {
2279 uma_zfree(aiolio_zone, lj);
2280 return EINVAL;
2281 }
2282 }
2283
2284 AIO_LOCK(ki);
2285 TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2286 /*
2287 * Add extra aiocb count to avoid the lio to be freed
2288 * by other threads doing aio_waitcomplete or aio_return,
2289 * and prevent event from being sent until we have queued
2290 * all tasks.
2291 */
2292 lj->lioj_count = 1;
2293 AIO_UNLOCK(ki);
2294
2295 /*
2296 * Get pointers to the list of I/O requests.
2297 */
2298 nagain = 0;
2299 nerror = 0;
2300 for (i = 0; i < nent; i++) {
2301 job = acb_list[i];
2302 if (job != NULL) {
2303 error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2304 if (error == EAGAIN)
2305 nagain++;
2306 else if (error != 0)
2307 nerror++;
2308 }
2309 }
2310
2311 error = 0;
2312 AIO_LOCK(ki);
2313 if (mode == LIO_WAIT) {
2314 while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2315 ki->kaio_flags |= KAIO_WAKEUP;
2316 error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2317 PRIBIO | PCATCH, "aiospn", 0);
2318 if (error == ERESTART)
2319 error = EINTR;
2320 if (error)
2321 break;
2322 }
2323 } else {
2324 if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2325 if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2326 lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2327 KNOTE_LOCKED(&lj->klist, 1);
2328 }
2329 if ((lj->lioj_flags & (LIOJ_SIGNAL |
2330 LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2331 (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2332 lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2333 aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2334 lj->lioj_count != 1);
2335 lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2336 }
2337 }
2338 }
2339 lj->lioj_count--;
2340 if (lj->lioj_count == 0) {
2341 TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2342 knlist_delete(&lj->klist, curthread, 1);
2343 PROC_LOCK(p);
2344 sigqueue_take(&lj->lioj_ksi);
2345 PROC_UNLOCK(p);
2346 AIO_UNLOCK(ki);
2347 uma_zfree(aiolio_zone, lj);
2348 } else
2349 AIO_UNLOCK(ki);
2350
2351 if (nerror)
2352 return (EIO);
2353 else if (nagain)
2354 return (EAGAIN);
2355 else
2356 return (error);
2357 }
2358
2359 /* syscall - list directed I/O (REALTIME) */
2360 #ifdef COMPAT_FREEBSD6
2361 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2362 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2363 {
2364 struct aiocb **acb_list;
2365 struct sigevent *sigp, sig;
2366 struct osigevent osig;
2367 int error, nent;
2368
2369 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2370 return (EINVAL);
2371
2372 nent = uap->nent;
2373 if (nent < 0 || nent > max_aio_queue_per_proc)
2374 return (EINVAL);
2375
2376 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2377 error = copyin(uap->sig, &osig, sizeof(osig));
2378 if (error)
2379 return (error);
2380 error = convert_old_sigevent(&osig, &sig);
2381 if (error)
2382 return (error);
2383 sigp = &sig;
2384 } else
2385 sigp = NULL;
2386
2387 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2388 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2389 if (error == 0)
2390 error = kern_lio_listio(td, uap->mode,
2391 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2392 &aiocb_ops_osigevent);
2393 free(acb_list, M_LIO);
2394 return (error);
2395 }
2396 #endif
2397
2398 /* syscall - list directed I/O (REALTIME) */
2399 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2400 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2401 {
2402 struct aiocb **acb_list;
2403 struct sigevent *sigp, sig;
2404 int error, nent;
2405
2406 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2407 return (EINVAL);
2408
2409 nent = uap->nent;
2410 if (nent < 0 || nent > max_aio_queue_per_proc)
2411 return (EINVAL);
2412
2413 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2414 error = copyin(uap->sig, &sig, sizeof(sig));
2415 if (error)
2416 return (error);
2417 sigp = &sig;
2418 } else
2419 sigp = NULL;
2420
2421 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2422 error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2423 if (error == 0)
2424 error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2425 nent, sigp, &aiocb_ops);
2426 free(acb_list, M_LIO);
2427 return (error);
2428 }
2429
2430 static void
aio_biocleanup(struct bio * bp)2431 aio_biocleanup(struct bio *bp)
2432 {
2433 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2434 struct kaioinfo *ki;
2435 struct buf *pbuf = (struct buf *)bp->bio_caller2;
2436
2437 /* Release mapping into kernel space. */
2438 if (pbuf != NULL) {
2439 MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2440 pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2441 vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2442 uma_zfree(pbuf_zone, pbuf);
2443 atomic_subtract_int(&num_buf_aio, 1);
2444 ki = job->userproc->p_aioinfo;
2445 AIO_LOCK(ki);
2446 ki->kaio_buffer_count--;
2447 AIO_UNLOCK(ki);
2448 } else {
2449 MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2450 vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2451 free(bp->bio_ma, M_TEMP);
2452 atomic_subtract_int(&num_unmapped_aio, 1);
2453 }
2454 g_destroy_bio(bp);
2455 }
2456
2457 static void
aio_biowakeup(struct bio * bp)2458 aio_biowakeup(struct bio *bp)
2459 {
2460 struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2461 size_t nbytes;
2462 long bcount = bp->bio_bcount;
2463 long resid = bp->bio_resid;
2464 int opcode, nblks;
2465 int bio_error = bp->bio_error;
2466 uint16_t flags = bp->bio_flags;
2467
2468 opcode = job->uaiocb.aio_lio_opcode;
2469
2470 aio_biocleanup(bp);
2471
2472 nbytes = bcount - resid;
2473 atomic_add_acq_long(&job->nbytes, nbytes);
2474 nblks = btodb(nbytes);
2475
2476 /*
2477 * If multiple bios experienced an error, the job will reflect the
2478 * error of whichever failed bio completed last.
2479 */
2480 if (flags & BIO_ERROR)
2481 atomic_store_int(&job->error, bio_error);
2482 if (opcode & LIO_WRITE)
2483 atomic_add_int(&job->outblock, nblks);
2484 else
2485 atomic_add_int(&job->inblock, nblks);
2486
2487 if (refcount_release(&job->nbio)) {
2488 bio_error = atomic_load_int(&job->error);
2489 if (bio_error != 0)
2490 aio_complete(job, -1, bio_error);
2491 else
2492 aio_complete(job, atomic_load_long(&job->nbytes), 0);
2493 }
2494 }
2495
2496 /* syscall - wait for the next completion of an aio request */
2497 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2498 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2499 struct timespec *ts, struct aiocb_ops *ops)
2500 {
2501 struct proc *p = td->td_proc;
2502 struct timeval atv;
2503 struct kaioinfo *ki;
2504 struct kaiocb *job;
2505 struct aiocb *ujob;
2506 long error, status;
2507 int timo;
2508
2509 ops->store_aiocb(ujobp, NULL);
2510
2511 if (ts == NULL) {
2512 timo = 0;
2513 } else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2514 timo = -1;
2515 } else {
2516 if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2517 return (EINVAL);
2518
2519 TIMESPEC_TO_TIMEVAL(&atv, ts);
2520 if (itimerfix(&atv))
2521 return (EINVAL);
2522 timo = tvtohz(&atv);
2523 }
2524
2525 if (p->p_aioinfo == NULL) {
2526 error = aio_init_aioinfo(p);
2527 if (error != 0)
2528 return (error);
2529 }
2530 ki = p->p_aioinfo;
2531
2532 error = 0;
2533 job = NULL;
2534 AIO_LOCK(ki);
2535 while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2536 if (timo == -1) {
2537 error = EWOULDBLOCK;
2538 break;
2539 }
2540 ki->kaio_flags |= KAIO_WAKEUP;
2541 error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2542 "aiowc", timo);
2543 if (timo && error == ERESTART)
2544 error = EINTR;
2545 if (error)
2546 break;
2547 }
2548
2549 if (job != NULL) {
2550 MPASS(job->jobflags & KAIOCB_FINISHED);
2551 ujob = job->ujob;
2552 status = job->uaiocb._aiocb_private.status;
2553 error = job->uaiocb._aiocb_private.error;
2554 td->td_retval[0] = status;
2555 td->td_ru.ru_oublock += job->outblock;
2556 td->td_ru.ru_inblock += job->inblock;
2557 td->td_ru.ru_msgsnd += job->msgsnd;
2558 td->td_ru.ru_msgrcv += job->msgrcv;
2559 aio_free_entry(job);
2560 AIO_UNLOCK(ki);
2561 ops->store_aiocb(ujobp, ujob);
2562 ops->store_error(ujob, error);
2563 ops->store_status(ujob, status);
2564 } else
2565 AIO_UNLOCK(ki);
2566
2567 return (error);
2568 }
2569
2570 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2571 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2572 {
2573 struct timespec ts, *tsp;
2574 int error;
2575
2576 if (uap->timeout) {
2577 /* Get timespec struct. */
2578 error = copyin(uap->timeout, &ts, sizeof(ts));
2579 if (error)
2580 return (error);
2581 tsp = &ts;
2582 } else
2583 tsp = NULL;
2584
2585 return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2586 }
2587
2588 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2589 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2590 struct aiocb_ops *ops)
2591 {
2592 int listop;
2593
2594 switch (op) {
2595 case O_SYNC:
2596 listop = LIO_SYNC;
2597 break;
2598 case O_DSYNC:
2599 listop = LIO_DSYNC;
2600 break;
2601 default:
2602 return (EINVAL);
2603 }
2604
2605 return (aio_aqueue(td, ujob, NULL, listop, ops));
2606 }
2607
2608 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2609 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2610 {
2611
2612 return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2613 }
2614
2615 /* kqueue attach function */
2616 static int
filt_aioattach(struct knote * kn)2617 filt_aioattach(struct knote *kn)
2618 {
2619 struct kaiocb *job;
2620
2621 job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2622
2623 /*
2624 * The job pointer must be validated before using it, so
2625 * registration is restricted to the kernel; the user cannot
2626 * set EV_FLAG1.
2627 */
2628 if ((kn->kn_flags & EV_FLAG1) == 0)
2629 return (EPERM);
2630 kn->kn_ptr.p_aio = job;
2631 kn->kn_flags &= ~EV_FLAG1;
2632
2633 knlist_add(&job->klist, kn, 0);
2634
2635 return (0);
2636 }
2637
2638 /* kqueue detach function */
2639 static void
filt_aiodetach(struct knote * kn)2640 filt_aiodetach(struct knote *kn)
2641 {
2642 struct knlist *knl;
2643
2644 knl = &kn->kn_ptr.p_aio->klist;
2645 knl->kl_lock(knl->kl_lockarg);
2646 if (!knlist_empty(knl))
2647 knlist_remove(knl, kn, 1);
2648 knl->kl_unlock(knl->kl_lockarg);
2649 }
2650
2651 /* kqueue filter function */
2652 /*ARGSUSED*/
2653 static int
filt_aio(struct knote * kn,long hint)2654 filt_aio(struct knote *kn, long hint)
2655 {
2656 struct kaiocb *job = kn->kn_ptr.p_aio;
2657
2658 kn->kn_data = job->uaiocb._aiocb_private.error;
2659 if (!(job->jobflags & KAIOCB_FINISHED))
2660 return (0);
2661 kn->kn_flags |= EV_EOF;
2662 return (1);
2663 }
2664
2665 /* kqueue attach function */
2666 static int
filt_lioattach(struct knote * kn)2667 filt_lioattach(struct knote *kn)
2668 {
2669 struct aioliojob *lj;
2670
2671 lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2672
2673 /*
2674 * The aioliojob pointer must be validated before using it, so
2675 * registration is restricted to the kernel; the user cannot
2676 * set EV_FLAG1.
2677 */
2678 if ((kn->kn_flags & EV_FLAG1) == 0)
2679 return (EPERM);
2680 kn->kn_ptr.p_lio = lj;
2681 kn->kn_flags &= ~EV_FLAG1;
2682
2683 knlist_add(&lj->klist, kn, 0);
2684
2685 return (0);
2686 }
2687
2688 /* kqueue detach function */
2689 static void
filt_liodetach(struct knote * kn)2690 filt_liodetach(struct knote *kn)
2691 {
2692 struct knlist *knl;
2693
2694 knl = &kn->kn_ptr.p_lio->klist;
2695 knl->kl_lock(knl->kl_lockarg);
2696 if (!knlist_empty(knl))
2697 knlist_remove(knl, kn, 1);
2698 knl->kl_unlock(knl->kl_lockarg);
2699 }
2700
2701 /* kqueue filter function */
2702 /*ARGSUSED*/
2703 static int
filt_lio(struct knote * kn,long hint)2704 filt_lio(struct knote *kn, long hint)
2705 {
2706 struct aioliojob * lj = kn->kn_ptr.p_lio;
2707
2708 return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2709 }
2710
2711 #ifdef COMPAT_FREEBSD32
2712 #include <sys/mount.h>
2713 #include <sys/socket.h>
2714 #include <sys/sysent.h>
2715 #include <compat/freebsd32/freebsd32.h>
2716 #include <compat/freebsd32/freebsd32_proto.h>
2717 #include <compat/freebsd32/freebsd32_signal.h>
2718 #include <compat/freebsd32/freebsd32_syscall.h>
2719 #include <compat/freebsd32/freebsd32_util.h>
2720
2721 struct __aiocb_private32 {
2722 int32_t status;
2723 int32_t error;
2724 uint32_t spare;
2725 };
2726
2727 #ifdef COMPAT_FREEBSD6
2728 typedef struct oaiocb32 {
2729 int aio_fildes; /* File descriptor */
2730 uint64_t aio_offset __packed; /* File offset for I/O */
2731 uint32_t aio_buf; /* I/O buffer in process space */
2732 uint32_t aio_nbytes; /* Number of bytes for I/O */
2733 struct osigevent32 aio_sigevent; /* Signal to deliver */
2734 int aio_lio_opcode; /* LIO opcode */
2735 int aio_reqprio; /* Request priority -- ignored */
2736 struct __aiocb_private32 _aiocb_private;
2737 } oaiocb32_t;
2738 #endif
2739
2740 typedef struct aiocb32 {
2741 int32_t aio_fildes; /* File descriptor */
2742 uint64_t aio_offset __packed; /* File offset for I/O */
2743 uint32_t aio_buf; /* I/O buffer in process space */
2744 uint32_t aio_nbytes; /* Number of bytes for I/O */
2745 int __spare__[2];
2746 uint32_t __spare2__;
2747 int aio_lio_opcode; /* LIO opcode */
2748 int aio_reqprio; /* Request priority -- ignored */
2749 struct __aiocb_private32 _aiocb_private;
2750 struct sigevent32 aio_sigevent; /* Signal to deliver */
2751 } aiocb32_t;
2752
2753 #ifdef COMPAT_FREEBSD6
2754 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2755 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2756 {
2757
2758 /*
2759 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2760 * supported by AIO with the old sigevent structure.
2761 */
2762 CP(*osig, *nsig, sigev_notify);
2763 switch (nsig->sigev_notify) {
2764 case SIGEV_NONE:
2765 break;
2766 case SIGEV_SIGNAL:
2767 nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2768 break;
2769 case SIGEV_KEVENT:
2770 nsig->sigev_notify_kqueue =
2771 osig->__sigev_u.__sigev_notify_kqueue;
2772 PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2773 break;
2774 default:
2775 return (EINVAL);
2776 }
2777 return (0);
2778 }
2779
2780 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2781 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2782 int type __unused)
2783 {
2784 struct oaiocb32 job32;
2785 struct aiocb *kcb = &kjob->uaiocb;
2786 int error;
2787
2788 bzero(kcb, sizeof(struct aiocb));
2789 error = copyin(ujob, &job32, sizeof(job32));
2790 if (error)
2791 return (error);
2792
2793 /* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2794
2795 CP(job32, *kcb, aio_fildes);
2796 CP(job32, *kcb, aio_offset);
2797 PTRIN_CP(job32, *kcb, aio_buf);
2798 CP(job32, *kcb, aio_nbytes);
2799 CP(job32, *kcb, aio_lio_opcode);
2800 CP(job32, *kcb, aio_reqprio);
2801 CP(job32, *kcb, _aiocb_private.status);
2802 CP(job32, *kcb, _aiocb_private.error);
2803 return (convert_old_sigevent32(&job32.aio_sigevent,
2804 &kcb->aio_sigevent));
2805 }
2806 #endif
2807
2808 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2809 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2810 {
2811 struct aiocb32 job32;
2812 struct aiocb *kcb = &kjob->uaiocb;
2813 struct iovec32 *iov32;
2814 int error;
2815
2816 error = copyin(ujob, &job32, sizeof(job32));
2817 if (error)
2818 return (error);
2819 CP(job32, *kcb, aio_fildes);
2820 CP(job32, *kcb, aio_offset);
2821 CP(job32, *kcb, aio_lio_opcode);
2822 if (type == LIO_NOP)
2823 type = kcb->aio_lio_opcode;
2824 if (type & LIO_VECTORED) {
2825 iov32 = PTRIN(job32.aio_iov);
2826 CP(job32, *kcb, aio_iovcnt);
2827 /* malloc a uio and copy in the iovec */
2828 error = freebsd32_copyinuio(iov32,
2829 kcb->aio_iovcnt, &kjob->uiop);
2830 if (error)
2831 return (error);
2832 } else {
2833 PTRIN_CP(job32, *kcb, aio_buf);
2834 CP(job32, *kcb, aio_nbytes);
2835 }
2836 CP(job32, *kcb, aio_reqprio);
2837 CP(job32, *kcb, _aiocb_private.status);
2838 CP(job32, *kcb, _aiocb_private.error);
2839 error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2840
2841 return (error);
2842 }
2843
2844 static long
aiocb32_fetch_status(struct aiocb * ujob)2845 aiocb32_fetch_status(struct aiocb *ujob)
2846 {
2847 struct aiocb32 *ujob32;
2848
2849 ujob32 = (struct aiocb32 *)ujob;
2850 return (fuword32(&ujob32->_aiocb_private.status));
2851 }
2852
2853 static long
aiocb32_fetch_error(struct aiocb * ujob)2854 aiocb32_fetch_error(struct aiocb *ujob)
2855 {
2856 struct aiocb32 *ujob32;
2857
2858 ujob32 = (struct aiocb32 *)ujob;
2859 return (fuword32(&ujob32->_aiocb_private.error));
2860 }
2861
2862 static int
aiocb32_store_status(struct aiocb * ujob,long status)2863 aiocb32_store_status(struct aiocb *ujob, long status)
2864 {
2865 struct aiocb32 *ujob32;
2866
2867 ujob32 = (struct aiocb32 *)ujob;
2868 return (suword32(&ujob32->_aiocb_private.status, status));
2869 }
2870
2871 static int
aiocb32_store_error(struct aiocb * ujob,long error)2872 aiocb32_store_error(struct aiocb *ujob, long error)
2873 {
2874 struct aiocb32 *ujob32;
2875
2876 ujob32 = (struct aiocb32 *)ujob;
2877 return (suword32(&ujob32->_aiocb_private.error, error));
2878 }
2879
2880 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2881 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2882 {
2883
2884 return (suword32(ujobp, (long)ujob));
2885 }
2886
2887 static struct aiocb_ops aiocb32_ops = {
2888 .aio_copyin = aiocb32_copyin,
2889 .fetch_status = aiocb32_fetch_status,
2890 .fetch_error = aiocb32_fetch_error,
2891 .store_status = aiocb32_store_status,
2892 .store_error = aiocb32_store_error,
2893 .store_aiocb = aiocb32_store_aiocb,
2894 };
2895
2896 #ifdef COMPAT_FREEBSD6
2897 static struct aiocb_ops aiocb32_ops_osigevent = {
2898 .aio_copyin = aiocb32_copyin_old_sigevent,
2899 .fetch_status = aiocb32_fetch_status,
2900 .fetch_error = aiocb32_fetch_error,
2901 .store_status = aiocb32_store_status,
2902 .store_error = aiocb32_store_error,
2903 .store_aiocb = aiocb32_store_aiocb,
2904 };
2905 #endif
2906
2907 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2908 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2909 {
2910
2911 return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2912 }
2913
2914 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2915 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2916 {
2917 struct timespec32 ts32;
2918 struct timespec ts, *tsp;
2919 struct aiocb **ujoblist;
2920 uint32_t *ujoblist32;
2921 int error, i;
2922
2923 if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2924 return (EINVAL);
2925
2926 if (uap->timeout) {
2927 /* Get timespec struct. */
2928 if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2929 return (error);
2930 CP(ts32, ts, tv_sec);
2931 CP(ts32, ts, tv_nsec);
2932 tsp = &ts;
2933 } else
2934 tsp = NULL;
2935
2936 ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2937 ujoblist32 = (uint32_t *)ujoblist;
2938 error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2939 sizeof(ujoblist32[0]));
2940 if (error == 0) {
2941 for (i = uap->nent - 1; i >= 0; i--)
2942 ujoblist[i] = PTRIN(ujoblist32[i]);
2943
2944 error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2945 }
2946 free(ujoblist, M_AIO);
2947 return (error);
2948 }
2949
2950 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2951 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2952 {
2953
2954 return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2955 }
2956
2957 #ifdef COMPAT_FREEBSD6
2958 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2959 freebsd6_freebsd32_aio_read(struct thread *td,
2960 struct freebsd6_freebsd32_aio_read_args *uap)
2961 {
2962
2963 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2964 &aiocb32_ops_osigevent));
2965 }
2966 #endif
2967
2968 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2969 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2970 {
2971
2972 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2973 &aiocb32_ops));
2974 }
2975
2976 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)2977 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2978 {
2979
2980 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2981 &aiocb32_ops));
2982 }
2983
2984 #ifdef COMPAT_FREEBSD6
2985 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)2986 freebsd6_freebsd32_aio_write(struct thread *td,
2987 struct freebsd6_freebsd32_aio_write_args *uap)
2988 {
2989
2990 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2991 &aiocb32_ops_osigevent));
2992 }
2993 #endif
2994
2995 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)2996 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2997 {
2998
2999 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
3000 &aiocb32_ops));
3001 }
3002
3003 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)3004 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
3005 {
3006
3007 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
3008 &aiocb32_ops));
3009 }
3010
3011 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)3012 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
3013 {
3014
3015 return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
3016 &aiocb32_ops));
3017 }
3018
3019 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)3020 freebsd32_aio_waitcomplete(struct thread *td,
3021 struct freebsd32_aio_waitcomplete_args *uap)
3022 {
3023 struct timespec32 ts32;
3024 struct timespec ts, *tsp;
3025 int error;
3026
3027 if (uap->timeout) {
3028 /* Get timespec struct. */
3029 error = copyin(uap->timeout, &ts32, sizeof(ts32));
3030 if (error)
3031 return (error);
3032 CP(ts32, ts, tv_sec);
3033 CP(ts32, ts, tv_nsec);
3034 tsp = &ts;
3035 } else
3036 tsp = NULL;
3037
3038 return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3039 &aiocb32_ops));
3040 }
3041
3042 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3043 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3044 {
3045
3046 return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3047 &aiocb32_ops));
3048 }
3049
3050 #ifdef COMPAT_FREEBSD6
3051 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3052 freebsd6_freebsd32_lio_listio(struct thread *td,
3053 struct freebsd6_freebsd32_lio_listio_args *uap)
3054 {
3055 struct aiocb **acb_list;
3056 struct sigevent *sigp, sig;
3057 struct osigevent32 osig;
3058 uint32_t *acb_list32;
3059 int error, i, nent;
3060
3061 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3062 return (EINVAL);
3063
3064 nent = uap->nent;
3065 if (nent < 0 || nent > max_aio_queue_per_proc)
3066 return (EINVAL);
3067
3068 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3069 error = copyin(uap->sig, &osig, sizeof(osig));
3070 if (error)
3071 return (error);
3072 error = convert_old_sigevent32(&osig, &sig);
3073 if (error)
3074 return (error);
3075 sigp = &sig;
3076 } else
3077 sigp = NULL;
3078
3079 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3080 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3081 if (error) {
3082 free(acb_list32, M_LIO);
3083 return (error);
3084 }
3085 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3086 for (i = 0; i < nent; i++)
3087 acb_list[i] = PTRIN(acb_list32[i]);
3088 free(acb_list32, M_LIO);
3089
3090 error = kern_lio_listio(td, uap->mode,
3091 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3092 &aiocb32_ops_osigevent);
3093 free(acb_list, M_LIO);
3094 return (error);
3095 }
3096 #endif
3097
3098 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3099 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3100 {
3101 struct aiocb **acb_list;
3102 struct sigevent *sigp, sig;
3103 struct sigevent32 sig32;
3104 uint32_t *acb_list32;
3105 int error, i, nent;
3106
3107 if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3108 return (EINVAL);
3109
3110 nent = uap->nent;
3111 if (nent < 0 || nent > max_aio_queue_per_proc)
3112 return (EINVAL);
3113
3114 if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3115 error = copyin(uap->sig, &sig32, sizeof(sig32));
3116 if (error)
3117 return (error);
3118 error = convert_sigevent32(&sig32, &sig);
3119 if (error)
3120 return (error);
3121 sigp = &sig;
3122 } else
3123 sigp = NULL;
3124
3125 acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3126 error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3127 if (error) {
3128 free(acb_list32, M_LIO);
3129 return (error);
3130 }
3131 acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3132 for (i = 0; i < nent; i++)
3133 acb_list[i] = PTRIN(acb_list32[i]);
3134 free(acb_list32, M_LIO);
3135
3136 error = kern_lio_listio(td, uap->mode,
3137 (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3138 &aiocb32_ops);
3139 free(acb_list, M_LIO);
3140 return (error);
3141 }
3142
3143 #endif
3144