xref: /freebsd/sys/kern/vfs_aio.c (revision ab01a5f5628eb0d334f491ff06462cff214d5f49)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1997 John S. Dyson.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. John S. Dyson's name may not be used to endorse or promote products
12  *    derived from this software without specific prior written permission.
13  *
14  * DISCLAIMER:  This code isn't warranted to do anything useful.  Anything
15  * bad that happens because of using this software isn't the responsibility
16  * of the author.  This software is distributed AS-IS.
17  */
18 
19 /*
20  * This file contains support for the POSIX 1003.1B AIO/LIO facility.
21  */
22 
23 #include <sys/param.h>
24 #include <sys/systm.h>
25 #include <sys/malloc.h>
26 #include <sys/bio.h>
27 #include <sys/buf.h>
28 #include <sys/capsicum.h>
29 #include <sys/eventhandler.h>
30 #include <sys/sysproto.h>
31 #include <sys/filedesc.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/kthread.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/limits.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/unistd.h>
41 #include <sys/posix4.h>
42 #include <sys/proc.h>
43 #include <sys/resourcevar.h>
44 #include <sys/signalvar.h>
45 #include <sys/syscallsubr.h>
46 #include <sys/protosw.h>
47 #include <sys/rwlock.h>
48 #include <sys/sema.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/syscall.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/sx.h>
55 #include <sys/taskqueue.h>
56 #include <sys/vnode.h>
57 #include <sys/conf.h>
58 #include <sys/event.h>
59 #include <sys/mount.h>
60 #include <geom/geom.h>
61 
62 #include <machine/atomic.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_extern.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_object.h>
70 #include <vm/vnode_pager.h>
71 #include <vm/uma.h>
72 #include <sys/aio.h>
73 
74 /*
75  * Counter for aio_fsync.
76  */
77 static uint64_t jobseqno;
78 
79 #ifndef MAX_AIO_PER_PROC
80 #define MAX_AIO_PER_PROC	32
81 #endif
82 
83 #ifndef MAX_AIO_QUEUE_PER_PROC
84 #define MAX_AIO_QUEUE_PER_PROC	256
85 #endif
86 
87 #ifndef MAX_AIO_QUEUE
88 #define MAX_AIO_QUEUE		1024 /* Bigger than MAX_AIO_QUEUE_PER_PROC */
89 #endif
90 
91 #ifndef MAX_BUF_AIO
92 #define MAX_BUF_AIO		16
93 #endif
94 
95 FEATURE(aio, "Asynchronous I/O");
96 SYSCTL_DECL(_p1003_1b);
97 
98 static MALLOC_DEFINE(M_LIO, "lio", "listio aio control block list");
99 static MALLOC_DEFINE(M_AIO, "aio", "structures for asynchronous I/O");
100 
101 static SYSCTL_NODE(_vfs, OID_AUTO, aio, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
102     "Async IO management");
103 
104 static int enable_aio_unsafe = 0;
105 SYSCTL_INT(_vfs_aio, OID_AUTO, enable_unsafe, CTLFLAG_RW, &enable_aio_unsafe, 0,
106     "Permit asynchronous IO on all file types, not just known-safe types");
107 
108 static unsigned int unsafe_warningcnt = 1;
109 SYSCTL_UINT(_vfs_aio, OID_AUTO, unsafe_warningcnt, CTLFLAG_RW,
110     &unsafe_warningcnt, 0,
111     "Warnings that will be triggered upon failed IO requests on unsafe files");
112 
113 static int max_aio_procs = MAX_AIO_PROCS;
114 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_procs, CTLFLAG_RW, &max_aio_procs, 0,
115     "Maximum number of kernel processes to use for handling async IO ");
116 
117 static int num_aio_procs = 0;
118 SYSCTL_INT(_vfs_aio, OID_AUTO, num_aio_procs, CTLFLAG_RD, &num_aio_procs, 0,
119     "Number of presently active kernel processes for async IO");
120 
121 /*
122  * The code will adjust the actual number of AIO processes towards this
123  * number when it gets a chance.
124  */
125 static int target_aio_procs = TARGET_AIO_PROCS;
126 SYSCTL_INT(_vfs_aio, OID_AUTO, target_aio_procs, CTLFLAG_RW, &target_aio_procs,
127     0,
128     "Preferred number of ready kernel processes for async IO");
129 
130 static int max_queue_count = MAX_AIO_QUEUE;
131 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue, CTLFLAG_RW, &max_queue_count, 0,
132     "Maximum number of aio requests to queue, globally");
133 
134 static int num_queue_count = 0;
135 SYSCTL_INT(_vfs_aio, OID_AUTO, num_queue_count, CTLFLAG_RD, &num_queue_count, 0,
136     "Number of queued aio requests");
137 
138 static int num_buf_aio = 0;
139 SYSCTL_INT(_vfs_aio, OID_AUTO, num_buf_aio, CTLFLAG_RD, &num_buf_aio, 0,
140     "Number of aio requests presently handled by the buf subsystem");
141 
142 static int num_unmapped_aio = 0;
143 SYSCTL_INT(_vfs_aio, OID_AUTO, num_unmapped_aio, CTLFLAG_RD, &num_unmapped_aio,
144     0,
145     "Number of aio requests presently handled by unmapped I/O buffers");
146 
147 /* Number of async I/O processes in the process of being started */
148 /* XXX This should be local to aio_aqueue() */
149 static int num_aio_resv_start = 0;
150 
151 static int aiod_lifetime;
152 SYSCTL_INT(_vfs_aio, OID_AUTO, aiod_lifetime, CTLFLAG_RW, &aiod_lifetime, 0,
153     "Maximum lifetime for idle aiod");
154 
155 static int max_aio_per_proc = MAX_AIO_PER_PROC;
156 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_per_proc, CTLFLAG_RW, &max_aio_per_proc,
157     0,
158     "Maximum active aio requests per process");
159 
160 static int max_aio_queue_per_proc = MAX_AIO_QUEUE_PER_PROC;
161 SYSCTL_INT(_vfs_aio, OID_AUTO, max_aio_queue_per_proc, CTLFLAG_RW,
162     &max_aio_queue_per_proc, 0,
163     "Maximum queued aio requests per process");
164 
165 static int max_buf_aio = MAX_BUF_AIO;
166 SYSCTL_INT(_vfs_aio, OID_AUTO, max_buf_aio, CTLFLAG_RW, &max_buf_aio, 0,
167     "Maximum buf aio requests per process");
168 
169 /*
170  * Though redundant with vfs.aio.max_aio_queue_per_proc, POSIX requires
171  * sysconf(3) to support AIO_LISTIO_MAX, and we implement that with
172  * vfs.aio.aio_listio_max.
173  */
174 SYSCTL_INT(_p1003_1b, CTL_P1003_1B_AIO_LISTIO_MAX, aio_listio_max,
175     CTLFLAG_RD | CTLFLAG_CAPRD, &max_aio_queue_per_proc,
176     0, "Maximum aio requests for a single lio_listio call");
177 
178 #ifdef COMPAT_FREEBSD6
179 typedef struct oaiocb {
180 	int	aio_fildes;		/* File descriptor */
181 	off_t	aio_offset;		/* File offset for I/O */
182 	volatile void *aio_buf;         /* I/O buffer in process space */
183 	size_t	aio_nbytes;		/* Number of bytes for I/O */
184 	struct	osigevent aio_sigevent;	/* Signal to deliver */
185 	int	aio_lio_opcode;		/* LIO opcode */
186 	int	aio_reqprio;		/* Request priority -- ignored */
187 	struct	__aiocb_private	_aiocb_private;
188 } oaiocb_t;
189 #endif
190 
191 /*
192  * Below is a key of locks used to protect each member of struct kaiocb
193  * aioliojob and kaioinfo and any backends.
194  *
195  * * - need not protected
196  * a - locked by kaioinfo lock
197  * b - locked by backend lock, the backend lock can be null in some cases,
198  *     for example, BIO belongs to this type, in this case, proc lock is
199  *     reused.
200  * c - locked by aio_job_mtx, the lock for the generic file I/O backend.
201  */
202 
203 /*
204  * If the routine that services an AIO request blocks while running in an
205  * AIO kernel process it can starve other I/O requests.  BIO requests
206  * queued via aio_qbio() complete asynchronously and do not use AIO kernel
207  * processes at all.  Socket I/O requests use a separate pool of
208  * kprocs and also force non-blocking I/O.  Other file I/O requests
209  * use the generic fo_read/fo_write operations which can block.  The
210  * fsync and mlock operations can also block while executing.  Ideally
211  * none of these requests would block while executing.
212  *
213  * Note that the service routines cannot toggle O_NONBLOCK in the file
214  * structure directly while handling a request due to races with
215  * userland threads.
216  */
217 
218 /* jobflags */
219 #define	KAIOCB_QUEUEING		0x01
220 #define	KAIOCB_CANCELLED	0x02
221 #define	KAIOCB_CANCELLING	0x04
222 #define	KAIOCB_CHECKSYNC	0x08
223 #define	KAIOCB_CLEARED		0x10
224 #define	KAIOCB_FINISHED		0x20
225 
226 /* ioflags */
227 #define	KAIOCB_IO_FOFFSET	0x01
228 
229 /*
230  * AIO process info
231  */
232 #define AIOP_FREE	0x1			/* proc on free queue */
233 
234 struct aioproc {
235 	int	aioprocflags;			/* (c) AIO proc flags */
236 	TAILQ_ENTRY(aioproc) list;		/* (c) list of processes */
237 	struct	proc *aioproc;			/* (*) the AIO proc */
238 };
239 
240 /*
241  * data-structure for lio signal management
242  */
243 struct aioliojob {
244 	int	lioj_flags;			/* (a) listio flags */
245 	int	lioj_count;			/* (a) count of jobs */
246 	int	lioj_finished_count;		/* (a) count of finished jobs */
247 	struct	sigevent lioj_signal;		/* (a) signal on all I/O done */
248 	TAILQ_ENTRY(aioliojob) lioj_list;	/* (a) lio list */
249 	struct	knlist klist;			/* (a) list of knotes */
250 	ksiginfo_t lioj_ksi;			/* (a) Realtime signal info */
251 };
252 
253 #define	LIOJ_SIGNAL		0x1	/* signal on all done (lio) */
254 #define	LIOJ_SIGNAL_POSTED	0x2	/* signal has been posted */
255 #define LIOJ_KEVENT_POSTED	0x4	/* kevent triggered */
256 
257 /*
258  * per process aio data structure
259  */
260 struct kaioinfo {
261 	struct	mtx kaio_mtx;		/* the lock to protect this struct */
262 	int	kaio_flags;		/* (a) per process kaio flags */
263 	int	kaio_active_count;	/* (c) number of currently used AIOs */
264 	int	kaio_count;		/* (a) size of AIO queue */
265 	int	kaio_buffer_count;	/* (a) number of bio buffers */
266 	TAILQ_HEAD(,kaiocb) kaio_all;	/* (a) all AIOs in a process */
267 	TAILQ_HEAD(,kaiocb) kaio_done;	/* (a) done queue for process */
268 	TAILQ_HEAD(,aioliojob) kaio_liojoblist; /* (a) list of lio jobs */
269 	TAILQ_HEAD(,kaiocb) kaio_jobqueue;	/* (a) job queue for process */
270 	TAILQ_HEAD(,kaiocb) kaio_syncqueue;	/* (a) queue for aio_fsync */
271 	TAILQ_HEAD(,kaiocb) kaio_syncready;  /* (a) second q for aio_fsync */
272 	struct	task kaio_task;		/* (*) task to kick aio processes */
273 	struct	task kaio_sync_task;	/* (*) task to schedule fsync jobs */
274 };
275 
276 #define AIO_LOCK(ki)		mtx_lock(&(ki)->kaio_mtx)
277 #define AIO_UNLOCK(ki)		mtx_unlock(&(ki)->kaio_mtx)
278 #define AIO_LOCK_ASSERT(ki, f)	mtx_assert(&(ki)->kaio_mtx, (f))
279 #define AIO_MTX(ki)		(&(ki)->kaio_mtx)
280 
281 #define KAIO_RUNDOWN	0x1	/* process is being run down */
282 #define KAIO_WAKEUP	0x2	/* wakeup process when AIO completes */
283 
284 /*
285  * Operations used to interact with userland aio control blocks.
286  * Different ABIs provide their own operations.
287  */
288 struct aiocb_ops {
289 	int	(*aio_copyin)(struct aiocb *ujob, struct kaiocb *kjob, int ty);
290 	long	(*fetch_status)(struct aiocb *ujob);
291 	long	(*fetch_error)(struct aiocb *ujob);
292 	int	(*store_status)(struct aiocb *ujob, long status);
293 	int	(*store_error)(struct aiocb *ujob, long error);
294 	int	(*store_aiocb)(struct aiocb **ujobp, struct aiocb *ujob);
295 };
296 
297 static TAILQ_HEAD(,aioproc) aio_freeproc;		/* (c) Idle daemons */
298 static struct sema aio_newproc_sem;
299 static struct mtx aio_job_mtx;
300 static TAILQ_HEAD(,kaiocb) aio_jobs;			/* (c) Async job list */
301 static struct unrhdr *aiod_unr;
302 
303 static void	aio_biocleanup(struct bio *bp);
304 void		aio_init_aioinfo(struct proc *p);
305 static int	aio_onceonly(void);
306 static int	aio_free_entry(struct kaiocb *job);
307 static void	aio_process_rw(struct kaiocb *job);
308 static void	aio_process_sync(struct kaiocb *job);
309 static void	aio_process_mlock(struct kaiocb *job);
310 static void	aio_schedule_fsync(void *context, int pending);
311 static int	aio_newproc(int *);
312 int		aio_aqueue(struct thread *td, struct aiocb *ujob,
313 		    struct aioliojob *lio, int type, struct aiocb_ops *ops);
314 static int	aio_queue_file(struct file *fp, struct kaiocb *job);
315 static void	aio_biowakeup(struct bio *bp);
316 static void	aio_proc_rundown(void *arg, struct proc *p);
317 static void	aio_proc_rundown_exec(void *arg, struct proc *p,
318 		    struct image_params *imgp);
319 static int	aio_qbio(struct proc *p, struct kaiocb *job);
320 static void	aio_daemon(void *param);
321 static void	aio_bio_done_notify(struct proc *userp, struct kaiocb *job);
322 static bool	aio_clear_cancel_function_locked(struct kaiocb *job);
323 static int	aio_kick(struct proc *userp);
324 static void	aio_kick_nowait(struct proc *userp);
325 static void	aio_kick_helper(void *context, int pending);
326 static int	filt_aioattach(struct knote *kn);
327 static void	filt_aiodetach(struct knote *kn);
328 static int	filt_aio(struct knote *kn, long hint);
329 static int	filt_lioattach(struct knote *kn);
330 static void	filt_liodetach(struct knote *kn);
331 static int	filt_lio(struct knote *kn, long hint);
332 
333 /*
334  * Zones for:
335  * 	kaio	Per process async io info
336  *	aiocb	async io jobs
337  *	aiolio	list io jobs
338  */
339 static uma_zone_t kaio_zone, aiocb_zone, aiolio_zone;
340 
341 /* kqueue filters for aio */
342 static const struct filterops aio_filtops = {
343 	.f_isfd = 0,
344 	.f_attach = filt_aioattach,
345 	.f_detach = filt_aiodetach,
346 	.f_event = filt_aio,
347 };
348 static const struct filterops lio_filtops = {
349 	.f_isfd = 0,
350 	.f_attach = filt_lioattach,
351 	.f_detach = filt_liodetach,
352 	.f_event = filt_lio
353 };
354 
355 static eventhandler_tag exit_tag, exec_tag;
356 
357 TASKQUEUE_DEFINE_THREAD(aiod_kick);
358 
359 /*
360  * Main operations function for use as a kernel module.
361  */
362 static int
aio_modload(struct module * module,int cmd,void * arg)363 aio_modload(struct module *module, int cmd, void *arg)
364 {
365 	int error = 0;
366 
367 	switch (cmd) {
368 	case MOD_LOAD:
369 		aio_onceonly();
370 		break;
371 	case MOD_SHUTDOWN:
372 		break;
373 	default:
374 		error = EOPNOTSUPP;
375 		break;
376 	}
377 	return (error);
378 }
379 
380 static moduledata_t aio_mod = {
381 	"aio",
382 	&aio_modload,
383 	NULL
384 };
385 
386 DECLARE_MODULE(aio, aio_mod, SI_SUB_VFS, SI_ORDER_ANY);
387 MODULE_VERSION(aio, 1);
388 
389 /*
390  * Startup initialization
391  */
392 static int
aio_onceonly(void)393 aio_onceonly(void)
394 {
395 
396 	exit_tag = EVENTHANDLER_REGISTER(process_exit, aio_proc_rundown, NULL,
397 	    EVENTHANDLER_PRI_ANY);
398 	exec_tag = EVENTHANDLER_REGISTER(process_exec, aio_proc_rundown_exec,
399 	    NULL, EVENTHANDLER_PRI_ANY);
400 	kqueue_add_filteropts(EVFILT_AIO, &aio_filtops);
401 	kqueue_add_filteropts(EVFILT_LIO, &lio_filtops);
402 	TAILQ_INIT(&aio_freeproc);
403 	sema_init(&aio_newproc_sem, 0, "aio_new_proc");
404 	mtx_init(&aio_job_mtx, "aio_job", NULL, MTX_DEF);
405 	TAILQ_INIT(&aio_jobs);
406 	aiod_unr = new_unrhdr(1, INT_MAX, NULL);
407 	kaio_zone = uma_zcreate("AIO", sizeof(struct kaioinfo), NULL, NULL,
408 	    NULL, NULL, UMA_ALIGN_PTR, 0);
409 	aiocb_zone = uma_zcreate("AIOCB", sizeof(struct kaiocb), NULL, NULL,
410 	    NULL, NULL, UMA_ALIGN_PTR, 0);
411 	aiolio_zone = uma_zcreate("AIOLIO", sizeof(struct aioliojob), NULL,
412 	    NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
413 	aiod_lifetime = AIOD_LIFETIME_DEFAULT;
414 	p31b_setcfg(CTL_P1003_1B_ASYNCHRONOUS_IO, _POSIX_ASYNCHRONOUS_IO);
415 	p31b_setcfg(CTL_P1003_1B_AIO_MAX, MAX_AIO_QUEUE);
416 	p31b_setcfg(CTL_P1003_1B_AIO_PRIO_DELTA_MAX, 0);
417 
418 	return (0);
419 }
420 
421 /*
422  * Init the per-process aioinfo structure.  The aioinfo limits are set
423  * per-process for user limit (resource) management.
424  */
425 void
aio_init_aioinfo(struct proc * p)426 aio_init_aioinfo(struct proc *p)
427 {
428 	struct kaioinfo *ki;
429 
430 	ki = uma_zalloc(kaio_zone, M_WAITOK);
431 	mtx_init(&ki->kaio_mtx, "aiomtx", NULL, MTX_DEF | MTX_NEW);
432 	ki->kaio_flags = 0;
433 	ki->kaio_active_count = 0;
434 	ki->kaio_count = 0;
435 	ki->kaio_buffer_count = 0;
436 	TAILQ_INIT(&ki->kaio_all);
437 	TAILQ_INIT(&ki->kaio_done);
438 	TAILQ_INIT(&ki->kaio_jobqueue);
439 	TAILQ_INIT(&ki->kaio_liojoblist);
440 	TAILQ_INIT(&ki->kaio_syncqueue);
441 	TAILQ_INIT(&ki->kaio_syncready);
442 	TASK_INIT(&ki->kaio_task, 0, aio_kick_helper, p);
443 	TASK_INIT(&ki->kaio_sync_task, 0, aio_schedule_fsync, ki);
444 	PROC_LOCK(p);
445 	if (p->p_aioinfo == NULL) {
446 		p->p_aioinfo = ki;
447 		PROC_UNLOCK(p);
448 	} else {
449 		PROC_UNLOCK(p);
450 		mtx_destroy(&ki->kaio_mtx);
451 		uma_zfree(kaio_zone, ki);
452 	}
453 
454 	while (num_aio_procs < MIN(target_aio_procs, max_aio_procs))
455 		aio_newproc(NULL);
456 }
457 
458 static int
aio_sendsig(struct proc * p,struct sigevent * sigev,ksiginfo_t * ksi,bool ext)459 aio_sendsig(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi, bool ext)
460 {
461 	struct thread *td;
462 	int error;
463 
464 	error = sigev_findtd(p, sigev, &td);
465 	if (error)
466 		return (error);
467 	if (!KSI_ONQ(ksi)) {
468 		ksiginfo_set_sigev(ksi, sigev);
469 		ksi->ksi_code = SI_ASYNCIO;
470 		ksi->ksi_flags |= ext ? (KSI_EXT | KSI_INS) : 0;
471 		tdsendsignal(p, td, ksi->ksi_signo, ksi);
472 	}
473 	PROC_UNLOCK(p);
474 	return (error);
475 }
476 
477 /*
478  * Free a job entry.  Wait for completion if it is currently active, but don't
479  * delay forever.  If we delay, we return a flag that says that we have to
480  * restart the queue scan.
481  */
482 static int
aio_free_entry(struct kaiocb * job)483 aio_free_entry(struct kaiocb *job)
484 {
485 	struct kaioinfo *ki;
486 	struct aioliojob *lj;
487 	struct proc *p;
488 
489 	p = job->userproc;
490 	MPASS(curproc == p);
491 	ki = p->p_aioinfo;
492 	MPASS(ki != NULL);
493 
494 	AIO_LOCK_ASSERT(ki, MA_OWNED);
495 	MPASS(job->jobflags & KAIOCB_FINISHED);
496 
497 	atomic_subtract_int(&num_queue_count, 1);
498 
499 	ki->kaio_count--;
500 	MPASS(ki->kaio_count >= 0);
501 
502 	TAILQ_REMOVE(&ki->kaio_done, job, plist);
503 	TAILQ_REMOVE(&ki->kaio_all, job, allist);
504 
505 	lj = job->lio;
506 	if (lj) {
507 		lj->lioj_count--;
508 		lj->lioj_finished_count--;
509 
510 		if (lj->lioj_count == 0) {
511 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
512 			/* lio is going away, we need to destroy any knotes */
513 			knlist_delete(&lj->klist, curthread, 1);
514 			PROC_LOCK(p);
515 			sigqueue_take(&lj->lioj_ksi);
516 			PROC_UNLOCK(p);
517 			uma_zfree(aiolio_zone, lj);
518 		}
519 	}
520 
521 	/* job is going away, we need to destroy any knotes */
522 	knlist_delete(&job->klist, curthread, 1);
523 	PROC_LOCK(p);
524 	sigqueue_take(&job->ksi);
525 	PROC_UNLOCK(p);
526 
527 	AIO_UNLOCK(ki);
528 
529 	/*
530 	 * The thread argument here is used to find the owning process
531 	 * and is also passed to fo_close() which may pass it to various
532 	 * places such as devsw close() routines.  Because of that, we
533 	 * need a thread pointer from the process owning the job that is
534 	 * persistent and won't disappear out from under us or move to
535 	 * another process.
536 	 *
537 	 * Currently, all the callers of this function call it to remove
538 	 * a kaiocb from the current process' job list either via a
539 	 * syscall or due to the current process calling exit() or
540 	 * execve().  Thus, we know that p == curproc.  We also know that
541 	 * curthread can't exit since we are curthread.
542 	 *
543 	 * Therefore, we use curthread as the thread to pass to
544 	 * knlist_delete().  This does mean that it is possible for the
545 	 * thread pointer at close time to differ from the thread pointer
546 	 * at open time, but this is already true of file descriptors in
547 	 * a multithreaded process.
548 	 */
549 	if (job->fd_file)
550 		fdrop(job->fd_file, curthread);
551 	crfree(job->cred);
552 	if (job->uiop != &job->uio)
553 		freeuio(job->uiop);
554 	uma_zfree(aiocb_zone, job);
555 	AIO_LOCK(ki);
556 
557 	return (0);
558 }
559 
560 static void
aio_proc_rundown_exec(void * arg,struct proc * p,struct image_params * imgp __unused)561 aio_proc_rundown_exec(void *arg, struct proc *p,
562     struct image_params *imgp __unused)
563 {
564    	aio_proc_rundown(arg, p);
565 }
566 
567 static int
aio_cancel_job(struct proc * p,struct kaioinfo * ki,struct kaiocb * job)568 aio_cancel_job(struct proc *p, struct kaioinfo *ki, struct kaiocb *job)
569 {
570 	aio_cancel_fn_t *func;
571 	int cancelled;
572 
573 	AIO_LOCK_ASSERT(ki, MA_OWNED);
574 	if (job->jobflags & (KAIOCB_CANCELLED | KAIOCB_FINISHED))
575 		return (0);
576 	MPASS((job->jobflags & KAIOCB_CANCELLING) == 0);
577 	job->jobflags |= KAIOCB_CANCELLED;
578 
579 	func = job->cancel_fn;
580 
581 	/*
582 	 * If there is no cancel routine, just leave the job marked as
583 	 * cancelled.  The job should be in active use by a caller who
584 	 * should complete it normally or when it fails to install a
585 	 * cancel routine.
586 	 */
587 	if (func == NULL)
588 		return (0);
589 
590 	/*
591 	 * Set the CANCELLING flag so that aio_complete() will defer
592 	 * completions of this job.  This prevents the job from being
593 	 * freed out from under the cancel callback.  After the
594 	 * callback any deferred completion (whether from the callback
595 	 * or any other source) will be completed.
596 	 */
597 	job->jobflags |= KAIOCB_CANCELLING;
598 	AIO_UNLOCK(ki);
599 	func(job);
600 	AIO_LOCK(ki);
601 	job->jobflags &= ~KAIOCB_CANCELLING;
602 	if (job->jobflags & KAIOCB_FINISHED) {
603 		cancelled = job->uaiocb._aiocb_private.error == ECANCELED;
604 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
605 		aio_bio_done_notify(p, job);
606 	} else {
607 		/*
608 		 * The cancel callback might have scheduled an
609 		 * operation to cancel this request, but it is
610 		 * only counted as cancelled if the request is
611 		 * cancelled when the callback returns.
612 		 */
613 		cancelled = 0;
614 	}
615 	return (cancelled);
616 }
617 
618 /*
619  * Rundown the jobs for a given process.
620  */
621 static void
aio_proc_rundown(void * arg,struct proc * p)622 aio_proc_rundown(void *arg, struct proc *p)
623 {
624 	struct kaioinfo *ki;
625 	struct aioliojob *lj;
626 	struct kaiocb *job, *jobn;
627 
628 	KASSERT(curthread->td_proc == p,
629 	    ("%s: called on non-curproc", __func__));
630 	ki = p->p_aioinfo;
631 	if (ki == NULL)
632 		return;
633 
634 	AIO_LOCK(ki);
635 	ki->kaio_flags |= KAIO_RUNDOWN;
636 
637 restart:
638 
639 	/*
640 	 * Try to cancel all pending requests. This code simulates
641 	 * aio_cancel on all pending I/O requests.
642 	 */
643 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
644 		aio_cancel_job(p, ki, job);
645 	}
646 
647 	/* Wait for all running I/O to be finished */
648 	if (TAILQ_FIRST(&ki->kaio_jobqueue) || ki->kaio_active_count != 0) {
649 		ki->kaio_flags |= KAIO_WAKEUP;
650 		msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO, "aioprn", hz);
651 		goto restart;
652 	}
653 
654 	/* Free all completed I/O requests. */
655 	while ((job = TAILQ_FIRST(&ki->kaio_done)) != NULL)
656 		aio_free_entry(job);
657 
658 	while ((lj = TAILQ_FIRST(&ki->kaio_liojoblist)) != NULL) {
659 		if (lj->lioj_count == 0) {
660 			TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
661 			knlist_delete(&lj->klist, curthread, 1);
662 			PROC_LOCK(p);
663 			sigqueue_take(&lj->lioj_ksi);
664 			PROC_UNLOCK(p);
665 			uma_zfree(aiolio_zone, lj);
666 		} else {
667 			panic("LIO job not cleaned up: C:%d, FC:%d\n",
668 			    lj->lioj_count, lj->lioj_finished_count);
669 		}
670 	}
671 	AIO_UNLOCK(ki);
672 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_task);
673 	taskqueue_drain(taskqueue_aiod_kick, &ki->kaio_sync_task);
674 	mtx_destroy(&ki->kaio_mtx);
675 	uma_zfree(kaio_zone, ki);
676 	p->p_aioinfo = NULL;
677 }
678 
679 /*
680  * Select a job to run (called by an AIO daemon).
681  */
682 static struct kaiocb *
aio_selectjob(struct aioproc * aiop)683 aio_selectjob(struct aioproc *aiop)
684 {
685 	struct kaiocb *job;
686 	struct kaioinfo *ki;
687 	struct proc *userp;
688 
689 	mtx_assert(&aio_job_mtx, MA_OWNED);
690 restart:
691 	TAILQ_FOREACH(job, &aio_jobs, list) {
692 		userp = job->userproc;
693 		ki = userp->p_aioinfo;
694 
695 		if (ki->kaio_active_count < max_aio_per_proc) {
696 			TAILQ_REMOVE(&aio_jobs, job, list);
697 			if (!aio_clear_cancel_function(job))
698 				goto restart;
699 
700 			/* Account for currently active jobs. */
701 			ki->kaio_active_count++;
702 			break;
703 		}
704 	}
705 	return (job);
706 }
707 
708 /*
709  * Move all data to a permanent storage device.  This code
710  * simulates the fsync and fdatasync syscalls.
711  */
712 static int
aio_fsync_vnode(struct thread * td,struct vnode * vp,int op)713 aio_fsync_vnode(struct thread *td, struct vnode *vp, int op)
714 {
715 	struct mount *mp;
716 	int error;
717 
718 	for (;;) {
719 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
720 		if (error != 0)
721 			break;
722 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
723 		vnode_pager_clean_async(vp);
724 		if (op == LIO_DSYNC)
725 			error = VOP_FDATASYNC(vp, td);
726 		else
727 			error = VOP_FSYNC(vp, MNT_WAIT, td);
728 
729 		VOP_UNLOCK(vp);
730 		vn_finished_write(mp);
731 		if (error != ERELOOKUP)
732 			break;
733 	}
734 	return (error);
735 }
736 
737 /*
738  * The AIO processing activity for LIO_READ/LIO_WRITE.  This is the code that
739  * does the I/O request for the non-bio version of the operations.  The normal
740  * vn operations are used, and this code should work in all instances for every
741  * type of file, including pipes, sockets, fifos, and regular files.
742  *
743  * XXX I don't think it works well for socket, pipe, and fifo.
744  */
745 static void
aio_process_rw(struct kaiocb * job)746 aio_process_rw(struct kaiocb *job)
747 {
748 	struct ucred *td_savedcred;
749 	struct thread *td;
750 	struct file *fp;
751 	ssize_t cnt;
752 	long msgsnd_st, msgsnd_end;
753 	long msgrcv_st, msgrcv_end;
754 	long oublock_st, oublock_end;
755 	long inblock_st, inblock_end;
756 	int error, opcode;
757 
758 	opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
759 	KASSERT(opcode == LIO_READ || opcode == LIO_READV ||
760 	    opcode == LIO_WRITE || opcode == LIO_WRITEV,
761 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
762 
763 	aio_switch_vmspace(job);
764 	td = curthread;
765 	td_savedcred = td->td_ucred;
766 	td->td_ucred = job->cred;
767 	job->uiop->uio_td = td;
768 	fp = job->fd_file;
769 
770 	cnt = job->uiop->uio_resid;
771 
772 	msgrcv_st = td->td_ru.ru_msgrcv;
773 	msgsnd_st = td->td_ru.ru_msgsnd;
774 	inblock_st = td->td_ru.ru_inblock;
775 	oublock_st = td->td_ru.ru_oublock;
776 
777 	/*
778 	 * aio_aqueue() acquires a reference to the file that is
779 	 * released in aio_free_entry().
780 	 */
781 	if (opcode == LIO_READ || opcode == LIO_READV) {
782 		if (job->uiop->uio_resid == 0)
783 			error = 0;
784 		else
785 			error = fo_read(fp, job->uiop, fp->f_cred,
786 			    (job->ioflags & KAIOCB_IO_FOFFSET) != 0 ? 0 :
787 			    FOF_OFFSET, td);
788 	} else {
789 		if (fp->f_type == DTYPE_VNODE)
790 			bwillwrite();
791 		error = fo_write(fp, job->uiop, fp->f_cred, (job->ioflags &
792 		    KAIOCB_IO_FOFFSET) != 0 ? 0 : FOF_OFFSET, td);
793 	}
794 	msgrcv_end = td->td_ru.ru_msgrcv;
795 	msgsnd_end = td->td_ru.ru_msgsnd;
796 	inblock_end = td->td_ru.ru_inblock;
797 	oublock_end = td->td_ru.ru_oublock;
798 
799 	job->msgrcv = msgrcv_end - msgrcv_st;
800 	job->msgsnd = msgsnd_end - msgsnd_st;
801 	job->inblock = inblock_end - inblock_st;
802 	job->outblock = oublock_end - oublock_st;
803 
804 	if (error != 0 && job->uiop->uio_resid != cnt) {
805 		if (error == ERESTART || error == EINTR || error == EWOULDBLOCK)
806 			error = 0;
807 		if (error == EPIPE && (opcode & LIO_WRITE)) {
808 			PROC_LOCK(job->userproc);
809 			kern_psignal(job->userproc, SIGPIPE);
810 			PROC_UNLOCK(job->userproc);
811 		}
812 	}
813 
814 	cnt -= job->uiop->uio_resid;
815 	td->td_ucred = td_savedcred;
816 	if (error)
817 		aio_complete(job, -1, error);
818 	else
819 		aio_complete(job, cnt, 0);
820 }
821 
822 static void
aio_process_sync(struct kaiocb * job)823 aio_process_sync(struct kaiocb *job)
824 {
825 	struct thread *td = curthread;
826 	struct ucred *td_savedcred = td->td_ucred;
827 	struct file *fp = job->fd_file;
828 	int error = 0;
829 
830 	KASSERT(job->uaiocb.aio_lio_opcode & LIO_SYNC,
831 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
832 
833 	td->td_ucred = job->cred;
834 	if (fp->f_vnode != NULL) {
835 		error = aio_fsync_vnode(td, fp->f_vnode,
836 		    job->uaiocb.aio_lio_opcode);
837 	}
838 	td->td_ucred = td_savedcred;
839 	if (error)
840 		aio_complete(job, -1, error);
841 	else
842 		aio_complete(job, 0, 0);
843 }
844 
845 static void
aio_process_mlock(struct kaiocb * job)846 aio_process_mlock(struct kaiocb *job)
847 {
848 	struct aiocb *cb = &job->uaiocb;
849 	int error;
850 
851 	KASSERT(job->uaiocb.aio_lio_opcode == LIO_MLOCK,
852 	    ("%s: opcode %d", __func__, job->uaiocb.aio_lio_opcode));
853 
854 	aio_switch_vmspace(job);
855 	error = kern_mlock(job->userproc, job->cred,
856 	    __DEVOLATILE(uintptr_t, cb->aio_buf), cb->aio_nbytes);
857 	aio_complete(job, error != 0 ? -1 : 0, error);
858 }
859 
860 static void
aio_bio_done_notify(struct proc * userp,struct kaiocb * job)861 aio_bio_done_notify(struct proc *userp, struct kaiocb *job)
862 {
863 	struct aioliojob *lj;
864 	struct kaioinfo *ki;
865 	struct kaiocb *sjob, *sjobn;
866 	int lj_done;
867 	bool schedule_fsync;
868 
869 	ki = userp->p_aioinfo;
870 	AIO_LOCK_ASSERT(ki, MA_OWNED);
871 	lj = job->lio;
872 	lj_done = 0;
873 	if (lj) {
874 		lj->lioj_finished_count++;
875 		if (lj->lioj_count == lj->lioj_finished_count)
876 			lj_done = 1;
877 	}
878 	TAILQ_INSERT_TAIL(&ki->kaio_done, job, plist);
879 	MPASS(job->jobflags & KAIOCB_FINISHED);
880 
881 	if (ki->kaio_flags & KAIO_RUNDOWN)
882 		goto notification_done;
883 
884 	if (job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
885 	    job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID)
886 		aio_sendsig(userp, &job->uaiocb.aio_sigevent, &job->ksi, true);
887 
888 	KNOTE_LOCKED(&job->klist, 1);
889 
890 	if (lj_done) {
891 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
892 			lj->lioj_flags |= LIOJ_KEVENT_POSTED;
893 			KNOTE_LOCKED(&lj->klist, 1);
894 		}
895 		if ((lj->lioj_flags & (LIOJ_SIGNAL | LIOJ_SIGNAL_POSTED))
896 		    == LIOJ_SIGNAL &&
897 		    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
898 		    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
899 			aio_sendsig(userp, &lj->lioj_signal, &lj->lioj_ksi,
900 			    true);
901 			lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
902 		}
903 	}
904 
905 notification_done:
906 	if (job->jobflags & KAIOCB_CHECKSYNC) {
907 		schedule_fsync = false;
908 		TAILQ_FOREACH_SAFE(sjob, &ki->kaio_syncqueue, list, sjobn) {
909 			if (job->fd_file != sjob->fd_file ||
910 			    job->seqno >= sjob->seqno)
911 				continue;
912 			if (--sjob->pending > 0)
913 				continue;
914 			TAILQ_REMOVE(&ki->kaio_syncqueue, sjob, list);
915 			if (!aio_clear_cancel_function_locked(sjob))
916 				continue;
917 			TAILQ_INSERT_TAIL(&ki->kaio_syncready, sjob, list);
918 			schedule_fsync = true;
919 		}
920 		if (schedule_fsync)
921 			taskqueue_enqueue(taskqueue_aiod_kick,
922 			    &ki->kaio_sync_task);
923 	}
924 	if (ki->kaio_flags & KAIO_WAKEUP) {
925 		ki->kaio_flags &= ~KAIO_WAKEUP;
926 		wakeup(&userp->p_aioinfo);
927 	}
928 }
929 
930 static void
aio_schedule_fsync(void * context,int pending)931 aio_schedule_fsync(void *context, int pending)
932 {
933 	struct kaioinfo *ki;
934 	struct kaiocb *job;
935 
936 	ki = context;
937 	AIO_LOCK(ki);
938 	while (!TAILQ_EMPTY(&ki->kaio_syncready)) {
939 		job = TAILQ_FIRST(&ki->kaio_syncready);
940 		TAILQ_REMOVE(&ki->kaio_syncready, job, list);
941 		AIO_UNLOCK(ki);
942 		aio_schedule(job, aio_process_sync);
943 		AIO_LOCK(ki);
944 	}
945 	AIO_UNLOCK(ki);
946 }
947 
948 bool
aio_cancel_cleared(struct kaiocb * job)949 aio_cancel_cleared(struct kaiocb *job)
950 {
951 
952 	/*
953 	 * The caller should hold the same queue lock held when
954 	 * aio_clear_cancel_function() was called and set this flag
955 	 * ensuring this check sees an up-to-date value.  However,
956 	 * there is no way to assert that.
957 	 */
958 	return ((job->jobflags & KAIOCB_CLEARED) != 0);
959 }
960 
961 static bool
aio_clear_cancel_function_locked(struct kaiocb * job)962 aio_clear_cancel_function_locked(struct kaiocb *job)
963 {
964 
965 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
966 	MPASS(job->cancel_fn != NULL);
967 	if (job->jobflags & KAIOCB_CANCELLING) {
968 		job->jobflags |= KAIOCB_CLEARED;
969 		return (false);
970 	}
971 	job->cancel_fn = NULL;
972 	return (true);
973 }
974 
975 bool
aio_clear_cancel_function(struct kaiocb * job)976 aio_clear_cancel_function(struct kaiocb *job)
977 {
978 	struct kaioinfo *ki;
979 	bool ret;
980 
981 	ki = job->userproc->p_aioinfo;
982 	AIO_LOCK(ki);
983 	ret = aio_clear_cancel_function_locked(job);
984 	AIO_UNLOCK(ki);
985 	return (ret);
986 }
987 
988 static bool
aio_set_cancel_function_locked(struct kaiocb * job,aio_cancel_fn_t * func)989 aio_set_cancel_function_locked(struct kaiocb *job, aio_cancel_fn_t *func)
990 {
991 
992 	AIO_LOCK_ASSERT(job->userproc->p_aioinfo, MA_OWNED);
993 	if (job->jobflags & KAIOCB_CANCELLED)
994 		return (false);
995 	job->cancel_fn = func;
996 	return (true);
997 }
998 
999 bool
aio_set_cancel_function(struct kaiocb * job,aio_cancel_fn_t * func)1000 aio_set_cancel_function(struct kaiocb *job, aio_cancel_fn_t *func)
1001 {
1002 	struct kaioinfo *ki;
1003 	bool ret;
1004 
1005 	ki = job->userproc->p_aioinfo;
1006 	AIO_LOCK(ki);
1007 	ret = aio_set_cancel_function_locked(job, func);
1008 	AIO_UNLOCK(ki);
1009 	return (ret);
1010 }
1011 
1012 void
aio_complete(struct kaiocb * job,long status,int error)1013 aio_complete(struct kaiocb *job, long status, int error)
1014 {
1015 	struct kaioinfo *ki;
1016 	struct proc *userp;
1017 
1018 	job->uaiocb._aiocb_private.error = error;
1019 	job->uaiocb._aiocb_private.status = status;
1020 
1021 	userp = job->userproc;
1022 	ki = userp->p_aioinfo;
1023 
1024 	AIO_LOCK(ki);
1025 	KASSERT(!(job->jobflags & KAIOCB_FINISHED),
1026 	    ("duplicate aio_complete"));
1027 	job->jobflags |= KAIOCB_FINISHED;
1028 	if ((job->jobflags & (KAIOCB_QUEUEING | KAIOCB_CANCELLING)) == 0) {
1029 		TAILQ_REMOVE(&ki->kaio_jobqueue, job, plist);
1030 		aio_bio_done_notify(userp, job);
1031 	}
1032 	AIO_UNLOCK(ki);
1033 }
1034 
1035 void
aio_cancel(struct kaiocb * job)1036 aio_cancel(struct kaiocb *job)
1037 {
1038 
1039 	aio_complete(job, -1, ECANCELED);
1040 }
1041 
1042 void
aio_switch_vmspace(struct kaiocb * job)1043 aio_switch_vmspace(struct kaiocb *job)
1044 {
1045 
1046 	vmspace_switch_aio(job->userproc->p_vmspace);
1047 }
1048 
1049 /*
1050  * The AIO daemon, most of the actual work is done in aio_process_*,
1051  * but the setup (and address space mgmt) is done in this routine.
1052  */
1053 static void
aio_daemon(void * _id)1054 aio_daemon(void *_id)
1055 {
1056 	struct kaiocb *job;
1057 	struct aioproc *aiop;
1058 	struct kaioinfo *ki;
1059 	struct proc *p;
1060 	struct vmspace *myvm;
1061 	struct thread *td = curthread;
1062 	int id = (intptr_t)_id;
1063 
1064 	/*
1065 	 * Grab an extra reference on the daemon's vmspace so that it
1066 	 * doesn't get freed by jobs that switch to a different
1067 	 * vmspace.
1068 	 */
1069 	p = td->td_proc;
1070 	myvm = vmspace_acquire_ref(p);
1071 
1072 	KASSERT(p->p_textvp == NULL, ("kthread has a textvp"));
1073 
1074 	/*
1075 	 * Allocate and ready the aio control info.  There is one aiop structure
1076 	 * per daemon.
1077 	 */
1078 	aiop = malloc(sizeof(*aiop), M_AIO, M_WAITOK);
1079 	aiop->aioproc = p;
1080 	aiop->aioprocflags = 0;
1081 
1082 	/*
1083 	 * Wakeup parent process.  (Parent sleeps to keep from blasting away
1084 	 * and creating too many daemons.)
1085 	 */
1086 	sema_post(&aio_newproc_sem);
1087 
1088 	mtx_lock(&aio_job_mtx);
1089 	for (;;) {
1090 		/*
1091 		 * Take daemon off of free queue
1092 		 */
1093 		if (aiop->aioprocflags & AIOP_FREE) {
1094 			TAILQ_REMOVE(&aio_freeproc, aiop, list);
1095 			aiop->aioprocflags &= ~AIOP_FREE;
1096 		}
1097 
1098 		/*
1099 		 * Check for jobs.
1100 		 */
1101 		while ((job = aio_selectjob(aiop)) != NULL) {
1102 			mtx_unlock(&aio_job_mtx);
1103 
1104 			ki = job->userproc->p_aioinfo;
1105 			job->handle_fn(job);
1106 
1107 			mtx_lock(&aio_job_mtx);
1108 			/* Decrement the active job count. */
1109 			ki->kaio_active_count--;
1110 		}
1111 
1112 		/*
1113 		 * Disconnect from user address space.
1114 		 */
1115 		if (p->p_vmspace != myvm) {
1116 			mtx_unlock(&aio_job_mtx);
1117 			vmspace_switch_aio(myvm);
1118 			mtx_lock(&aio_job_mtx);
1119 			/*
1120 			 * We have to restart to avoid race, we only sleep if
1121 			 * no job can be selected.
1122 			 */
1123 			continue;
1124 		}
1125 
1126 		mtx_assert(&aio_job_mtx, MA_OWNED);
1127 
1128 		TAILQ_INSERT_HEAD(&aio_freeproc, aiop, list);
1129 		aiop->aioprocflags |= AIOP_FREE;
1130 
1131 		/*
1132 		 * If daemon is inactive for a long time, allow it to exit,
1133 		 * thereby freeing resources.
1134 		 */
1135 		if (msleep(p, &aio_job_mtx, PRIBIO, "aiordy",
1136 		    aiod_lifetime) == EWOULDBLOCK && TAILQ_EMPTY(&aio_jobs) &&
1137 		    (aiop->aioprocflags & AIOP_FREE) &&
1138 		    num_aio_procs > target_aio_procs)
1139 			break;
1140 	}
1141 	TAILQ_REMOVE(&aio_freeproc, aiop, list);
1142 	num_aio_procs--;
1143 	mtx_unlock(&aio_job_mtx);
1144 	free(aiop, M_AIO);
1145 	free_unr(aiod_unr, id);
1146 	vmspace_free(myvm);
1147 
1148 	KASSERT(p->p_vmspace == myvm,
1149 	    ("AIOD: bad vmspace for exiting daemon"));
1150 	KASSERT(refcount_load(&myvm->vm_refcnt) > 1,
1151 	    ("AIOD: bad vm refcnt for exiting daemon: %d",
1152 	    refcount_load(&myvm->vm_refcnt)));
1153 	kproc_exit(0);
1154 }
1155 
1156 /*
1157  * Create a new AIO daemon. This is mostly a kernel-thread fork routine. The
1158  * AIO daemon modifies its environment itself.
1159  */
1160 static int
aio_newproc(int * start)1161 aio_newproc(int *start)
1162 {
1163 	int error;
1164 	struct proc *p;
1165 	int id;
1166 
1167 	id = alloc_unr(aiod_unr);
1168 	error = kproc_create(aio_daemon, (void *)(intptr_t)id, &p,
1169 		RFNOWAIT, 0, "aiod%d", id);
1170 	if (error == 0) {
1171 		/*
1172 		 * Wait until daemon is started.
1173 		 */
1174 		sema_wait(&aio_newproc_sem);
1175 		mtx_lock(&aio_job_mtx);
1176 		num_aio_procs++;
1177 		if (start != NULL)
1178 			(*start)--;
1179 		mtx_unlock(&aio_job_mtx);
1180 	} else {
1181 		free_unr(aiod_unr, id);
1182 	}
1183 	return (error);
1184 }
1185 
1186 /*
1187  * Try the high-performance, low-overhead bio method for eligible
1188  * VCHR devices.  This method doesn't use an aio helper thread, and
1189  * thus has very low overhead.
1190  *
1191  * Assumes that the caller, aio_aqueue(), has incremented the file
1192  * structure's reference count, preventing its deallocation for the
1193  * duration of this call.
1194  */
1195 static int
aio_qbio(struct proc * p,struct kaiocb * job)1196 aio_qbio(struct proc *p, struct kaiocb *job)
1197 {
1198 	struct aiocb *cb;
1199 	struct file *fp;
1200 	struct buf *pbuf;
1201 	struct vnode *vp;
1202 	struct cdevsw *csw;
1203 	struct cdev *dev;
1204 	struct kaioinfo *ki;
1205 	struct bio **bios = NULL;
1206 	off_t offset;
1207 	int bio_cmd, error, i, iovcnt, opcode, poff, ref;
1208 	vm_prot_t prot;
1209 	bool use_unmapped;
1210 
1211 	cb = &job->uaiocb;
1212 	fp = job->fd_file;
1213 	opcode = cb->aio_lio_opcode;
1214 
1215 	if (!(opcode == LIO_WRITE || opcode == LIO_WRITEV ||
1216 	    opcode == LIO_READ || opcode == LIO_READV))
1217 		return (-1);
1218 	if (fp == NULL || fp->f_type != DTYPE_VNODE)
1219 		return (-1);
1220 
1221 	vp = fp->f_vnode;
1222 	if (vp->v_type != VCHR)
1223 		return (-1);
1224 	if (vp->v_bufobj.bo_bsize == 0)
1225 		return (-1);
1226 
1227 	bio_cmd = (opcode & LIO_WRITE) ? BIO_WRITE : BIO_READ;
1228 	iovcnt = job->uiop->uio_iovcnt;
1229 	if (iovcnt > max_buf_aio)
1230 		return (-1);
1231 	for (i = 0; i < iovcnt; i++) {
1232 		if (job->uiop->uio_iov[i].iov_len % vp->v_bufobj.bo_bsize != 0)
1233 			return (-1);
1234 		if (job->uiop->uio_iov[i].iov_len > maxphys) {
1235 			error = -1;
1236 			return (-1);
1237 		}
1238 	}
1239 	offset = cb->aio_offset;
1240 
1241 	ref = 0;
1242 	csw = devvn_refthread(vp, &dev, &ref);
1243 	if (csw == NULL)
1244 		return (ENXIO);
1245 
1246 	if ((csw->d_flags & D_DISK) == 0) {
1247 		error = -1;
1248 		goto unref;
1249 	}
1250 	if (job->uiop->uio_resid > dev->si_iosize_max) {
1251 		error = -1;
1252 		goto unref;
1253 	}
1254 
1255 	ki = p->p_aioinfo;
1256 	job->error = 0;
1257 
1258 	use_unmapped = (dev->si_flags & SI_UNMAPPED) && unmapped_buf_allowed;
1259 	if (!use_unmapped) {
1260 		AIO_LOCK(ki);
1261 		if (ki->kaio_buffer_count + iovcnt > max_buf_aio) {
1262 			AIO_UNLOCK(ki);
1263 			error = EAGAIN;
1264 			goto unref;
1265 		}
1266 		ki->kaio_buffer_count += iovcnt;
1267 		AIO_UNLOCK(ki);
1268 	}
1269 
1270 	bios = malloc(sizeof(struct bio *) * iovcnt, M_TEMP, M_WAITOK);
1271 	refcount_init(&job->nbio, iovcnt);
1272 	for (i = 0; i < iovcnt; i++) {
1273 		struct vm_page** pages;
1274 		struct bio *bp;
1275 		void *buf;
1276 		size_t nbytes;
1277 		int npages;
1278 
1279 		buf = job->uiop->uio_iov[i].iov_base;
1280 		nbytes = job->uiop->uio_iov[i].iov_len;
1281 
1282 		bios[i] = g_alloc_bio();
1283 		bp = bios[i];
1284 
1285 		poff = (vm_offset_t)buf & PAGE_MASK;
1286 		if (use_unmapped) {
1287 			pbuf = NULL;
1288 			pages = malloc(sizeof(vm_page_t) * (atop(round_page(
1289 			    nbytes)) + 1), M_TEMP, M_WAITOK | M_ZERO);
1290 		} else {
1291 			pbuf = uma_zalloc(pbuf_zone, M_WAITOK);
1292 			BUF_KERNPROC(pbuf);
1293 			pages = pbuf->b_pages;
1294 		}
1295 
1296 		bp->bio_length = nbytes;
1297 		bp->bio_bcount = nbytes;
1298 		bp->bio_done = aio_biowakeup;
1299 		bp->bio_offset = offset;
1300 		bp->bio_cmd = bio_cmd;
1301 		bp->bio_dev = dev;
1302 		bp->bio_caller1 = job;
1303 		bp->bio_caller2 = pbuf;
1304 
1305 		prot = VM_PROT_READ;
1306 		if (opcode == LIO_READ || opcode == LIO_READV)
1307 			prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
1308 		npages = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
1309 		    (vm_offset_t)buf, bp->bio_length, prot, pages,
1310 		    atop(maxphys) + 1);
1311 		if (npages < 0) {
1312 			if (pbuf != NULL)
1313 				uma_zfree(pbuf_zone, pbuf);
1314 			else
1315 				free(pages, M_TEMP);
1316 			error = EFAULT;
1317 			g_destroy_bio(bp);
1318 			i--;
1319 			goto destroy_bios;
1320 		}
1321 		if (pbuf != NULL) {
1322 			pmap_qenter((vm_offset_t)pbuf->b_data, pages, npages);
1323 			bp->bio_data = pbuf->b_data + poff;
1324 			pbuf->b_npages = npages;
1325 			atomic_add_int(&num_buf_aio, 1);
1326 		} else {
1327 			bp->bio_ma = pages;
1328 			bp->bio_ma_n = npages;
1329 			bp->bio_ma_offset = poff;
1330 			bp->bio_data = unmapped_buf;
1331 			bp->bio_flags |= BIO_UNMAPPED;
1332 			atomic_add_int(&num_unmapped_aio, 1);
1333 		}
1334 
1335 		offset += nbytes;
1336 	}
1337 
1338 	/* Perform transfer. */
1339 	for (i = 0; i < iovcnt; i++)
1340 		csw->d_strategy(bios[i]);
1341 	free(bios, M_TEMP);
1342 
1343 	dev_relthread(dev, ref);
1344 	return (0);
1345 
1346 destroy_bios:
1347 	for (; i >= 0; i--)
1348 		aio_biocleanup(bios[i]);
1349 	free(bios, M_TEMP);
1350 unref:
1351 	dev_relthread(dev, ref);
1352 	return (error);
1353 }
1354 
1355 #ifdef COMPAT_FREEBSD6
1356 static int
convert_old_sigevent(struct osigevent * osig,struct sigevent * nsig)1357 convert_old_sigevent(struct osigevent *osig, struct sigevent *nsig)
1358 {
1359 
1360 	/*
1361 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
1362 	 * supported by AIO with the old sigevent structure.
1363 	 */
1364 	nsig->sigev_notify = osig->sigev_notify;
1365 	switch (nsig->sigev_notify) {
1366 	case SIGEV_NONE:
1367 		break;
1368 	case SIGEV_SIGNAL:
1369 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
1370 		break;
1371 	case SIGEV_KEVENT:
1372 		nsig->sigev_notify_kqueue =
1373 		    osig->__sigev_u.__sigev_notify_kqueue;
1374 		nsig->sigev_value.sival_ptr = osig->sigev_value.sival_ptr;
1375 		break;
1376 	default:
1377 		return (EINVAL);
1378 	}
1379 	return (0);
1380 }
1381 
1382 static int
aiocb_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)1383 aiocb_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
1384     int type __unused)
1385 {
1386 	struct oaiocb *ojob;
1387 	struct aiocb *kcb = &kjob->uaiocb;
1388 	int error;
1389 
1390 	bzero(kcb, sizeof(struct aiocb));
1391 	error = copyin(ujob, kcb, sizeof(struct oaiocb));
1392 	if (error)
1393 		return (error);
1394 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
1395 	ojob = (struct oaiocb *)kcb;
1396 	return (convert_old_sigevent(&ojob->aio_sigevent, &kcb->aio_sigevent));
1397 }
1398 #endif
1399 
1400 static int
aiocb_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)1401 aiocb_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
1402 {
1403 	struct aiocb *kcb = &kjob->uaiocb;
1404 	int error;
1405 
1406 	error = copyin(ujob, kcb, sizeof(struct aiocb));
1407 	if (error)
1408 		return (error);
1409 	if (type == LIO_NOP)
1410 		type = kcb->aio_lio_opcode;
1411 	if (type & LIO_VECTORED) {
1412 		/* malloc a uio and copy in the iovec */
1413 		error = copyinuio(__DEVOLATILE(struct iovec*, kcb->aio_iov),
1414 		    kcb->aio_iovcnt, &kjob->uiop);
1415 	}
1416 
1417 	return (error);
1418 }
1419 
1420 static long
aiocb_fetch_status(struct aiocb * ujob)1421 aiocb_fetch_status(struct aiocb *ujob)
1422 {
1423 
1424 	return (fuword(&ujob->_aiocb_private.status));
1425 }
1426 
1427 static long
aiocb_fetch_error(struct aiocb * ujob)1428 aiocb_fetch_error(struct aiocb *ujob)
1429 {
1430 
1431 	return (fuword(&ujob->_aiocb_private.error));
1432 }
1433 
1434 static int
aiocb_store_status(struct aiocb * ujob,long status)1435 aiocb_store_status(struct aiocb *ujob, long status)
1436 {
1437 
1438 	return (suword(&ujob->_aiocb_private.status, status));
1439 }
1440 
1441 static int
aiocb_store_error(struct aiocb * ujob,long error)1442 aiocb_store_error(struct aiocb *ujob, long error)
1443 {
1444 
1445 	return (suword(&ujob->_aiocb_private.error, error));
1446 }
1447 
1448 static int
aiocb_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)1449 aiocb_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
1450 {
1451 
1452 	return (suword(ujobp, (long)ujob));
1453 }
1454 
1455 static struct aiocb_ops aiocb_ops = {
1456 	.aio_copyin = aiocb_copyin,
1457 	.fetch_status = aiocb_fetch_status,
1458 	.fetch_error = aiocb_fetch_error,
1459 	.store_status = aiocb_store_status,
1460 	.store_error = aiocb_store_error,
1461 	.store_aiocb = aiocb_store_aiocb,
1462 };
1463 
1464 #ifdef COMPAT_FREEBSD6
1465 static struct aiocb_ops aiocb_ops_osigevent = {
1466 	.aio_copyin = aiocb_copyin_old_sigevent,
1467 	.fetch_status = aiocb_fetch_status,
1468 	.fetch_error = aiocb_fetch_error,
1469 	.store_status = aiocb_store_status,
1470 	.store_error = aiocb_store_error,
1471 	.store_aiocb = aiocb_store_aiocb,
1472 };
1473 #endif
1474 
1475 /*
1476  * Queue a new AIO request.  Choosing either the threaded or direct bio VCHR
1477  * technique is done in this code.
1478  */
1479 int
aio_aqueue(struct thread * td,struct aiocb * ujob,struct aioliojob * lj,int type,struct aiocb_ops * ops)1480 aio_aqueue(struct thread *td, struct aiocb *ujob, struct aioliojob *lj,
1481     int type, struct aiocb_ops *ops)
1482 {
1483 	struct proc *p = td->td_proc;
1484 	struct file *fp = NULL;
1485 	struct kaiocb *job;
1486 	struct kaioinfo *ki;
1487 	struct kevent kev;
1488 	int opcode;
1489 	int error;
1490 	int fd, kqfd;
1491 	u_short evflags;
1492 
1493 	if (p->p_aioinfo == NULL)
1494 		aio_init_aioinfo(p);
1495 
1496 	ki = p->p_aioinfo;
1497 
1498 	ops->store_status(ujob, -1);
1499 	ops->store_error(ujob, 0);
1500 
1501 	if (num_queue_count >= max_queue_count ||
1502 	    ki->kaio_count >= max_aio_queue_per_proc) {
1503 		error = EAGAIN;
1504 		goto err1;
1505 	}
1506 
1507 	job = uma_zalloc(aiocb_zone, M_WAITOK | M_ZERO);
1508 	knlist_init_mtx(&job->klist, AIO_MTX(ki));
1509 
1510 	error = ops->aio_copyin(ujob, job, type);
1511 	if (error)
1512 		goto err2;
1513 
1514 	if (job->uaiocb.aio_nbytes > IOSIZE_MAX) {
1515 		error = EINVAL;
1516 		goto err2;
1517 	}
1518 
1519 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT &&
1520 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_SIGNAL &&
1521 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_THREAD_ID &&
1522 	    job->uaiocb.aio_sigevent.sigev_notify != SIGEV_NONE) {
1523 		error = EINVAL;
1524 		goto err2;
1525 	}
1526 
1527 	if ((job->uaiocb.aio_sigevent.sigev_notify == SIGEV_SIGNAL ||
1528 	     job->uaiocb.aio_sigevent.sigev_notify == SIGEV_THREAD_ID) &&
1529 		!_SIG_VALID(job->uaiocb.aio_sigevent.sigev_signo)) {
1530 		error = EINVAL;
1531 		goto err2;
1532 	}
1533 
1534 	/* Get the opcode. */
1535 	if (type == LIO_NOP) {
1536 		switch (job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET) {
1537 		case LIO_WRITE:
1538 		case LIO_WRITEV:
1539 		case LIO_NOP:
1540 		case LIO_READ:
1541 		case LIO_READV:
1542 			opcode = job->uaiocb.aio_lio_opcode & ~LIO_FOFFSET;
1543 			if ((job->uaiocb.aio_lio_opcode & LIO_FOFFSET) != 0)
1544 				job->ioflags |= KAIOCB_IO_FOFFSET;
1545 			break;
1546 		default:
1547 			error = EINVAL;
1548 			goto err2;
1549 		}
1550 	} else
1551 		opcode = job->uaiocb.aio_lio_opcode = type;
1552 
1553 	ksiginfo_init(&job->ksi);
1554 
1555 	/* Save userspace address of the job info. */
1556 	job->ujob = ujob;
1557 
1558 	/*
1559 	 * Validate the opcode and fetch the file object for the specified
1560 	 * file descriptor.
1561 	 *
1562 	 * XXXRW: Moved the opcode validation up here so that we don't
1563 	 * retrieve a file descriptor without knowing what the capabiltity
1564 	 * should be.
1565 	 */
1566 	fd = job->uaiocb.aio_fildes;
1567 	switch (opcode) {
1568 	case LIO_WRITE:
1569 	case LIO_WRITEV:
1570 		error = fget_write(td, fd, &cap_pwrite_rights, &fp);
1571 		break;
1572 	case LIO_READ:
1573 	case LIO_READV:
1574 		error = fget_read(td, fd, &cap_pread_rights, &fp);
1575 		break;
1576 	case LIO_SYNC:
1577 	case LIO_DSYNC:
1578 		error = fget(td, fd, &cap_fsync_rights, &fp);
1579 		break;
1580 	case LIO_MLOCK:
1581 		break;
1582 	case LIO_NOP:
1583 		error = fget(td, fd, &cap_no_rights, &fp);
1584 		break;
1585 	default:
1586 		error = EINVAL;
1587 	}
1588 	if (error)
1589 		goto err3;
1590 
1591 	if ((opcode & LIO_SYNC) && fp->f_vnode == NULL) {
1592 		error = EINVAL;
1593 		goto err3;
1594 	}
1595 
1596 	if ((opcode == LIO_READ || opcode == LIO_READV ||
1597 	    opcode == LIO_WRITE || opcode == LIO_WRITEV) &&
1598 	    job->uaiocb.aio_offset < 0 &&
1599 	    (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR)) {
1600 		error = EINVAL;
1601 		goto err3;
1602 	}
1603 
1604 	if (fp != NULL && fp->f_ops == &path_fileops) {
1605 		error = EBADF;
1606 		goto err3;
1607 	}
1608 
1609 	job->fd_file = fp;
1610 
1611 	mtx_lock(&aio_job_mtx);
1612 	job->seqno = jobseqno++;
1613 	mtx_unlock(&aio_job_mtx);
1614 	if (opcode == LIO_NOP) {
1615 		fdrop(fp, td);
1616 		MPASS(job->uiop == &job->uio || job->uiop == NULL);
1617 		uma_zfree(aiocb_zone, job);
1618 		return (0);
1619 	}
1620 
1621 	if (job->uaiocb.aio_sigevent.sigev_notify != SIGEV_KEVENT)
1622 		goto no_kqueue;
1623 	evflags = job->uaiocb.aio_sigevent.sigev_notify_kevent_flags;
1624 	if ((evflags & ~(EV_CLEAR | EV_DISPATCH | EV_ONESHOT)) != 0) {
1625 		error = EINVAL;
1626 		goto err3;
1627 	}
1628 	kqfd = job->uaiocb.aio_sigevent.sigev_notify_kqueue;
1629 	memset(&kev, 0, sizeof(kev));
1630 	kev.ident = (uintptr_t)job->ujob;
1631 	kev.filter = EVFILT_AIO;
1632 	kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1 | evflags;
1633 	kev.data = (intptr_t)job;
1634 	kev.udata = job->uaiocb.aio_sigevent.sigev_value.sival_ptr;
1635 	error = kqfd_register(kqfd, &kev, td, M_WAITOK);
1636 	if (error)
1637 		goto err3;
1638 
1639 no_kqueue:
1640 
1641 	ops->store_error(ujob, EINPROGRESS);
1642 	job->uaiocb._aiocb_private.error = EINPROGRESS;
1643 	job->userproc = p;
1644 	job->cred = crhold(td->td_ucred);
1645 	job->jobflags = KAIOCB_QUEUEING;
1646 	job->lio = lj;
1647 
1648 	if (opcode & LIO_VECTORED) {
1649 		/* Use the uio copied in by aio_copyin */
1650 		MPASS(job->uiop != &job->uio && job->uiop != NULL);
1651 	} else {
1652 		/* Setup the inline uio */
1653 		job->iov[0].iov_base = (void *)(uintptr_t)job->uaiocb.aio_buf;
1654 		job->iov[0].iov_len = job->uaiocb.aio_nbytes;
1655 		job->uio.uio_iov = job->iov;
1656 		job->uio.uio_iovcnt = 1;
1657 		job->uio.uio_resid = job->uaiocb.aio_nbytes;
1658 		job->uio.uio_segflg = UIO_USERSPACE;
1659 		job->uiop = &job->uio;
1660 	}
1661 	switch (opcode & (LIO_READ | LIO_WRITE)) {
1662 	case LIO_READ:
1663 		job->uiop->uio_rw = UIO_READ;
1664 		break;
1665 	case LIO_WRITE:
1666 		job->uiop->uio_rw = UIO_WRITE;
1667 		break;
1668 	}
1669 	job->uiop->uio_offset = job->uaiocb.aio_offset;
1670 	job->uiop->uio_td = td;
1671 
1672 	if (opcode == LIO_MLOCK) {
1673 		aio_schedule(job, aio_process_mlock);
1674 		error = 0;
1675 	} else if (fp->f_ops->fo_aio_queue == NULL)
1676 		error = aio_queue_file(fp, job);
1677 	else
1678 		error = fo_aio_queue(fp, job);
1679 	if (error)
1680 		goto err4;
1681 
1682 	AIO_LOCK(ki);
1683 	job->jobflags &= ~KAIOCB_QUEUEING;
1684 	TAILQ_INSERT_TAIL(&ki->kaio_all, job, allist);
1685 	ki->kaio_count++;
1686 	if (lj)
1687 		lj->lioj_count++;
1688 	atomic_add_int(&num_queue_count, 1);
1689 	if (job->jobflags & KAIOCB_FINISHED) {
1690 		/*
1691 		 * The queue callback completed the request synchronously.
1692 		 * The bulk of the completion is deferred in that case
1693 		 * until this point.
1694 		 */
1695 		aio_bio_done_notify(p, job);
1696 	} else
1697 		TAILQ_INSERT_TAIL(&ki->kaio_jobqueue, job, plist);
1698 	AIO_UNLOCK(ki);
1699 	return (0);
1700 
1701 err4:
1702 	crfree(job->cred);
1703 err3:
1704 	if (fp)
1705 		fdrop(fp, td);
1706 	knlist_delete(&job->klist, curthread, 0);
1707 err2:
1708 	if (job->uiop != &job->uio)
1709 		freeuio(job->uiop);
1710 	uma_zfree(aiocb_zone, job);
1711 err1:
1712 	ops->store_error(ujob, error);
1713 	return (error);
1714 }
1715 
1716 static void
aio_cancel_daemon_job(struct kaiocb * job)1717 aio_cancel_daemon_job(struct kaiocb *job)
1718 {
1719 
1720 	mtx_lock(&aio_job_mtx);
1721 	if (!aio_cancel_cleared(job))
1722 		TAILQ_REMOVE(&aio_jobs, job, list);
1723 	mtx_unlock(&aio_job_mtx);
1724 	aio_cancel(job);
1725 }
1726 
1727 void
aio_schedule(struct kaiocb * job,aio_handle_fn_t * func)1728 aio_schedule(struct kaiocb *job, aio_handle_fn_t *func)
1729 {
1730 
1731 	mtx_lock(&aio_job_mtx);
1732 	if (!aio_set_cancel_function(job, aio_cancel_daemon_job)) {
1733 		mtx_unlock(&aio_job_mtx);
1734 		aio_cancel(job);
1735 		return;
1736 	}
1737 	job->handle_fn = func;
1738 	TAILQ_INSERT_TAIL(&aio_jobs, job, list);
1739 	aio_kick_nowait(job->userproc);
1740 	mtx_unlock(&aio_job_mtx);
1741 }
1742 
1743 static void
aio_cancel_sync(struct kaiocb * job)1744 aio_cancel_sync(struct kaiocb *job)
1745 {
1746 	struct kaioinfo *ki;
1747 
1748 	ki = job->userproc->p_aioinfo;
1749 	AIO_LOCK(ki);
1750 	if (!aio_cancel_cleared(job))
1751 		TAILQ_REMOVE(&ki->kaio_syncqueue, job, list);
1752 	AIO_UNLOCK(ki);
1753 	aio_cancel(job);
1754 }
1755 
1756 int
aio_queue_file(struct file * fp,struct kaiocb * job)1757 aio_queue_file(struct file *fp, struct kaiocb *job)
1758 {
1759 	struct kaioinfo *ki;
1760 	struct kaiocb *job2;
1761 	struct vnode *vp;
1762 	struct mount *mp;
1763 	int error;
1764 	bool safe;
1765 
1766 	ki = job->userproc->p_aioinfo;
1767 	error = aio_qbio(job->userproc, job);
1768 	if (error >= 0)
1769 		return (error);
1770 	safe = false;
1771 	if (fp->f_type == DTYPE_VNODE) {
1772 		vp = fp->f_vnode;
1773 		if (vp->v_type == VREG || vp->v_type == VDIR) {
1774 			mp = fp->f_vnode->v_mount;
1775 			if (mp == NULL || (mp->mnt_flag & MNT_LOCAL) != 0)
1776 				safe = true;
1777 		}
1778 	}
1779 	if (!(safe || enable_aio_unsafe)) {
1780 		counted_warning(&unsafe_warningcnt,
1781 		    "is attempting to use unsafe AIO requests");
1782 		return (EOPNOTSUPP);
1783 	}
1784 
1785 	if (job->uaiocb.aio_lio_opcode & (LIO_WRITE | LIO_READ)) {
1786 		aio_schedule(job, aio_process_rw);
1787 		error = 0;
1788 	} else if (job->uaiocb.aio_lio_opcode & LIO_SYNC) {
1789 		AIO_LOCK(ki);
1790 		TAILQ_FOREACH(job2, &ki->kaio_jobqueue, plist) {
1791 			if (job2->fd_file == job->fd_file &&
1792 			    ((job2->uaiocb.aio_lio_opcode & LIO_SYNC) == 0) &&
1793 			    job2->seqno < job->seqno) {
1794 				job2->jobflags |= KAIOCB_CHECKSYNC;
1795 				job->pending++;
1796 			}
1797 		}
1798 		if (job->pending != 0) {
1799 			if (!aio_set_cancel_function_locked(job,
1800 				aio_cancel_sync)) {
1801 				AIO_UNLOCK(ki);
1802 				aio_cancel(job);
1803 				return (0);
1804 			}
1805 			TAILQ_INSERT_TAIL(&ki->kaio_syncqueue, job, list);
1806 			AIO_UNLOCK(ki);
1807 			return (0);
1808 		}
1809 		AIO_UNLOCK(ki);
1810 		aio_schedule(job, aio_process_sync);
1811 		error = 0;
1812 	} else {
1813 		error = EINVAL;
1814 	}
1815 	return (error);
1816 }
1817 
1818 static void
aio_kick_nowait(struct proc * userp)1819 aio_kick_nowait(struct proc *userp)
1820 {
1821 	struct kaioinfo *ki = userp->p_aioinfo;
1822 	struct aioproc *aiop;
1823 
1824 	mtx_assert(&aio_job_mtx, MA_OWNED);
1825 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1826 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1827 		aiop->aioprocflags &= ~AIOP_FREE;
1828 		wakeup(aiop->aioproc);
1829 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1830 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1831 		taskqueue_enqueue(taskqueue_aiod_kick, &ki->kaio_task);
1832 	}
1833 }
1834 
1835 static int
aio_kick(struct proc * userp)1836 aio_kick(struct proc *userp)
1837 {
1838 	struct kaioinfo *ki = userp->p_aioinfo;
1839 	struct aioproc *aiop;
1840 	int error, ret = 0;
1841 
1842 	mtx_assert(&aio_job_mtx, MA_OWNED);
1843 retryproc:
1844 	if ((aiop = TAILQ_FIRST(&aio_freeproc)) != NULL) {
1845 		TAILQ_REMOVE(&aio_freeproc, aiop, list);
1846 		aiop->aioprocflags &= ~AIOP_FREE;
1847 		wakeup(aiop->aioproc);
1848 	} else if (num_aio_resv_start + num_aio_procs < max_aio_procs &&
1849 	    ki->kaio_active_count + num_aio_resv_start < max_aio_per_proc) {
1850 		num_aio_resv_start++;
1851 		mtx_unlock(&aio_job_mtx);
1852 		error = aio_newproc(&num_aio_resv_start);
1853 		mtx_lock(&aio_job_mtx);
1854 		if (error) {
1855 			num_aio_resv_start--;
1856 			goto retryproc;
1857 		}
1858 	} else {
1859 		ret = -1;
1860 	}
1861 	return (ret);
1862 }
1863 
1864 static void
aio_kick_helper(void * context,int pending)1865 aio_kick_helper(void *context, int pending)
1866 {
1867 	struct proc *userp = context;
1868 
1869 	mtx_lock(&aio_job_mtx);
1870 	while (--pending >= 0) {
1871 		if (aio_kick(userp))
1872 			break;
1873 	}
1874 	mtx_unlock(&aio_job_mtx);
1875 }
1876 
1877 /*
1878  * Support the aio_return system call, as a side-effect, kernel resources are
1879  * released.
1880  */
1881 static int
kern_aio_return(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)1882 kern_aio_return(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
1883 {
1884 	struct proc *p = td->td_proc;
1885 	struct kaiocb *job;
1886 	struct kaioinfo *ki;
1887 	long status, error;
1888 
1889 	ki = p->p_aioinfo;
1890 	if (ki == NULL)
1891 		return (EINVAL);
1892 	AIO_LOCK(ki);
1893 	TAILQ_FOREACH(job, &ki->kaio_done, plist) {
1894 		if (job->ujob == ujob)
1895 			break;
1896 	}
1897 	if (job != NULL) {
1898 		MPASS(job->jobflags & KAIOCB_FINISHED);
1899 		status = job->uaiocb._aiocb_private.status;
1900 		error = job->uaiocb._aiocb_private.error;
1901 		td->td_retval[0] = status;
1902 		td->td_ru.ru_oublock += job->outblock;
1903 		td->td_ru.ru_inblock += job->inblock;
1904 		td->td_ru.ru_msgsnd += job->msgsnd;
1905 		td->td_ru.ru_msgrcv += job->msgrcv;
1906 		aio_free_entry(job);
1907 		AIO_UNLOCK(ki);
1908 		ops->store_error(ujob, error);
1909 		ops->store_status(ujob, status);
1910 	} else {
1911 		error = EINVAL;
1912 		AIO_UNLOCK(ki);
1913 	}
1914 	return (error);
1915 }
1916 
1917 int
sys_aio_return(struct thread * td,struct aio_return_args * uap)1918 sys_aio_return(struct thread *td, struct aio_return_args *uap)
1919 {
1920 
1921 	return (kern_aio_return(td, uap->aiocbp, &aiocb_ops));
1922 }
1923 
1924 /*
1925  * Allow a process to wakeup when any of the I/O requests are completed.
1926  */
1927 static int
kern_aio_suspend(struct thread * td,int njoblist,struct aiocb ** ujoblist,struct timespec * ts)1928 kern_aio_suspend(struct thread *td, int njoblist, struct aiocb **ujoblist,
1929     struct timespec *ts)
1930 {
1931 	struct proc *p = td->td_proc;
1932 	struct timeval atv;
1933 	struct kaioinfo *ki;
1934 	struct kaiocb *firstjob, *job;
1935 	int error, i, timo;
1936 
1937 	timo = 0;
1938 	if (ts) {
1939 		if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1940 			return (EINVAL);
1941 
1942 		TIMESPEC_TO_TIMEVAL(&atv, ts);
1943 		if (itimerfix(&atv))
1944 			return (EINVAL);
1945 		timo = tvtohz(&atv);
1946 	}
1947 
1948 	ki = p->p_aioinfo;
1949 	if (ki == NULL)
1950 		return (EAGAIN);
1951 
1952 	if (njoblist == 0)
1953 		return (0);
1954 
1955 	AIO_LOCK(ki);
1956 	for (;;) {
1957 		firstjob = NULL;
1958 		error = 0;
1959 		TAILQ_FOREACH(job, &ki->kaio_all, allist) {
1960 			for (i = 0; i < njoblist; i++) {
1961 				if (job->ujob == ujoblist[i]) {
1962 					if (firstjob == NULL)
1963 						firstjob = job;
1964 					if (job->jobflags & KAIOCB_FINISHED)
1965 						goto RETURN;
1966 				}
1967 			}
1968 		}
1969 		/* All tasks were finished. */
1970 		if (firstjob == NULL)
1971 			break;
1972 
1973 		ki->kaio_flags |= KAIO_WAKEUP;
1974 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
1975 		    "aiospn", timo);
1976 		if (error == ERESTART)
1977 			error = EINTR;
1978 		if (error)
1979 			break;
1980 	}
1981 RETURN:
1982 	AIO_UNLOCK(ki);
1983 	return (error);
1984 }
1985 
1986 int
sys_aio_suspend(struct thread * td,struct aio_suspend_args * uap)1987 sys_aio_suspend(struct thread *td, struct aio_suspend_args *uap)
1988 {
1989 	struct timespec ts, *tsp;
1990 	struct aiocb **ujoblist;
1991 	int error;
1992 
1993 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
1994 		return (EINVAL);
1995 
1996 	if (uap->timeout) {
1997 		/* Get timespec struct. */
1998 		if ((error = copyin(uap->timeout, &ts, sizeof(ts))) != 0)
1999 			return (error);
2000 		tsp = &ts;
2001 	} else
2002 		tsp = NULL;
2003 
2004 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2005 	error = copyin(uap->aiocbp, ujoblist, uap->nent * sizeof(ujoblist[0]));
2006 	if (error == 0)
2007 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2008 	free(ujoblist, M_AIO);
2009 	return (error);
2010 }
2011 
2012 /*
2013  * aio_cancel cancels any non-bio aio operations not currently in progress.
2014  */
2015 int
sys_aio_cancel(struct thread * td,struct aio_cancel_args * uap)2016 sys_aio_cancel(struct thread *td, struct aio_cancel_args *uap)
2017 {
2018 	struct proc *p = td->td_proc;
2019 	struct kaioinfo *ki;
2020 	struct kaiocb *job, *jobn;
2021 	struct file *fp;
2022 	int error;
2023 	int cancelled = 0;
2024 	int notcancelled = 0;
2025 	struct vnode *vp;
2026 
2027 	/* Lookup file object. */
2028 	error = fget(td, uap->fd, &cap_no_rights, &fp);
2029 	if (error)
2030 		return (error);
2031 
2032 	ki = p->p_aioinfo;
2033 	if (ki == NULL)
2034 		goto done;
2035 
2036 	if (fp->f_type == DTYPE_VNODE) {
2037 		vp = fp->f_vnode;
2038 		if (vn_isdisk(vp)) {
2039 			fdrop(fp, td);
2040 			td->td_retval[0] = AIO_NOTCANCELED;
2041 			return (0);
2042 		}
2043 	}
2044 
2045 	AIO_LOCK(ki);
2046 	TAILQ_FOREACH_SAFE(job, &ki->kaio_jobqueue, plist, jobn) {
2047 		if ((uap->fd == job->uaiocb.aio_fildes) &&
2048 		    ((uap->aiocbp == NULL) ||
2049 		     (uap->aiocbp == job->ujob))) {
2050 			if (aio_cancel_job(p, ki, job)) {
2051 				cancelled++;
2052 			} else {
2053 				notcancelled++;
2054 			}
2055 			if (uap->aiocbp != NULL)
2056 				break;
2057 		}
2058 	}
2059 	AIO_UNLOCK(ki);
2060 
2061 done:
2062 	fdrop(fp, td);
2063 
2064 	if (uap->aiocbp != NULL) {
2065 		if (cancelled) {
2066 			td->td_retval[0] = AIO_CANCELED;
2067 			return (0);
2068 		}
2069 	}
2070 
2071 	if (notcancelled) {
2072 		td->td_retval[0] = AIO_NOTCANCELED;
2073 		return (0);
2074 	}
2075 
2076 	if (cancelled) {
2077 		td->td_retval[0] = AIO_CANCELED;
2078 		return (0);
2079 	}
2080 
2081 	td->td_retval[0] = AIO_ALLDONE;
2082 
2083 	return (0);
2084 }
2085 
2086 /*
2087  * aio_error is implemented in the kernel level for compatibility purposes
2088  * only.  For a user mode async implementation, it would be best to do it in
2089  * a userland subroutine.
2090  */
2091 static int
kern_aio_error(struct thread * td,struct aiocb * ujob,struct aiocb_ops * ops)2092 kern_aio_error(struct thread *td, struct aiocb *ujob, struct aiocb_ops *ops)
2093 {
2094 	struct proc *p = td->td_proc;
2095 	struct kaiocb *job;
2096 	struct kaioinfo *ki;
2097 	int status;
2098 
2099 	ki = p->p_aioinfo;
2100 	if (ki == NULL) {
2101 		td->td_retval[0] = EINVAL;
2102 		return (0);
2103 	}
2104 
2105 	AIO_LOCK(ki);
2106 	TAILQ_FOREACH(job, &ki->kaio_all, allist) {
2107 		if (job->ujob == ujob) {
2108 			if (job->jobflags & KAIOCB_FINISHED)
2109 				td->td_retval[0] =
2110 					job->uaiocb._aiocb_private.error;
2111 			else
2112 				td->td_retval[0] = EINPROGRESS;
2113 			AIO_UNLOCK(ki);
2114 			return (0);
2115 		}
2116 	}
2117 	AIO_UNLOCK(ki);
2118 
2119 	/*
2120 	 * Hack for failure of aio_aqueue.
2121 	 */
2122 	status = ops->fetch_status(ujob);
2123 	if (status == -1) {
2124 		td->td_retval[0] = ops->fetch_error(ujob);
2125 		return (0);
2126 	}
2127 
2128 	td->td_retval[0] = EINVAL;
2129 	return (0);
2130 }
2131 
2132 int
sys_aio_error(struct thread * td,struct aio_error_args * uap)2133 sys_aio_error(struct thread *td, struct aio_error_args *uap)
2134 {
2135 
2136 	return (kern_aio_error(td, uap->aiocbp, &aiocb_ops));
2137 }
2138 
2139 /* syscall - asynchronous read from a file (REALTIME) */
2140 #ifdef COMPAT_FREEBSD6
2141 int
freebsd6_aio_read(struct thread * td,struct freebsd6_aio_read_args * uap)2142 freebsd6_aio_read(struct thread *td, struct freebsd6_aio_read_args *uap)
2143 {
2144 
2145 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2146 	    &aiocb_ops_osigevent));
2147 }
2148 #endif
2149 
2150 int
sys_aio_read(struct thread * td,struct aio_read_args * uap)2151 sys_aio_read(struct thread *td, struct aio_read_args *uap)
2152 {
2153 
2154 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READ, &aiocb_ops));
2155 }
2156 
2157 int
sys_aio_readv(struct thread * td,struct aio_readv_args * uap)2158 sys_aio_readv(struct thread *td, struct aio_readv_args *uap)
2159 {
2160 
2161 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_READV, &aiocb_ops));
2162 }
2163 
2164 /* syscall - asynchronous write to a file (REALTIME) */
2165 #ifdef COMPAT_FREEBSD6
2166 int
freebsd6_aio_write(struct thread * td,struct freebsd6_aio_write_args * uap)2167 freebsd6_aio_write(struct thread *td, struct freebsd6_aio_write_args *uap)
2168 {
2169 
2170 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2171 	    &aiocb_ops_osigevent));
2172 }
2173 #endif
2174 
2175 int
sys_aio_write(struct thread * td,struct aio_write_args * uap)2176 sys_aio_write(struct thread *td, struct aio_write_args *uap)
2177 {
2178 
2179 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITE, &aiocb_ops));
2180 }
2181 
2182 int
sys_aio_writev(struct thread * td,struct aio_writev_args * uap)2183 sys_aio_writev(struct thread *td, struct aio_writev_args *uap)
2184 {
2185 
2186 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_WRITEV, &aiocb_ops));
2187 }
2188 
2189 int
sys_aio_mlock(struct thread * td,struct aio_mlock_args * uap)2190 sys_aio_mlock(struct thread *td, struct aio_mlock_args *uap)
2191 {
2192 
2193 	return (aio_aqueue(td, uap->aiocbp, NULL, LIO_MLOCK, &aiocb_ops));
2194 }
2195 
2196 static int
kern_lio_listio(struct thread * td,int mode,struct aiocb * const * uacb_list,struct aiocb ** acb_list,int nent,struct sigevent * sig,struct aiocb_ops * ops)2197 kern_lio_listio(struct thread *td, int mode, struct aiocb * const *uacb_list,
2198     struct aiocb **acb_list, int nent, struct sigevent *sig,
2199     struct aiocb_ops *ops)
2200 {
2201 	struct proc *p = td->td_proc;
2202 	struct aiocb *job;
2203 	struct kaioinfo *ki;
2204 	struct aioliojob *lj;
2205 	struct kevent kev;
2206 	int error;
2207 	int nagain, nerror;
2208 	int i;
2209 
2210 	if ((mode != LIO_NOWAIT) && (mode != LIO_WAIT))
2211 		return (EINVAL);
2212 
2213 	if (nent < 0 || nent > max_aio_queue_per_proc)
2214 		return (EINVAL);
2215 
2216 	if (p->p_aioinfo == NULL)
2217 		aio_init_aioinfo(p);
2218 
2219 	ki = p->p_aioinfo;
2220 
2221 	lj = uma_zalloc(aiolio_zone, M_WAITOK);
2222 	lj->lioj_flags = 0;
2223 	lj->lioj_count = 0;
2224 	lj->lioj_finished_count = 0;
2225 	lj->lioj_signal.sigev_notify = SIGEV_NONE;
2226 	knlist_init_mtx(&lj->klist, AIO_MTX(ki));
2227 	ksiginfo_init(&lj->lioj_ksi);
2228 
2229 	/*
2230 	 * Setup signal.
2231 	 */
2232 	if (sig && (mode == LIO_NOWAIT)) {
2233 		bcopy(sig, &lj->lioj_signal, sizeof(lj->lioj_signal));
2234 		if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2235 			/* Assume only new style KEVENT */
2236 			memset(&kev, 0, sizeof(kev));
2237 			kev.filter = EVFILT_LIO;
2238 			kev.flags = EV_ADD | EV_ENABLE | EV_FLAG1;
2239 			kev.ident = (uintptr_t)uacb_list; /* something unique */
2240 			kev.data = (intptr_t)lj;
2241 			/* pass user defined sigval data */
2242 			kev.udata = lj->lioj_signal.sigev_value.sival_ptr;
2243 			error = kqfd_register(
2244 			    lj->lioj_signal.sigev_notify_kqueue, &kev, td,
2245 			    M_WAITOK);
2246 			if (error) {
2247 				uma_zfree(aiolio_zone, lj);
2248 				return (error);
2249 			}
2250 		} else if (lj->lioj_signal.sigev_notify == SIGEV_NONE) {
2251 			;
2252 		} else if (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2253 			   lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID) {
2254 				if (!_SIG_VALID(lj->lioj_signal.sigev_signo)) {
2255 					uma_zfree(aiolio_zone, lj);
2256 					return EINVAL;
2257 				}
2258 				lj->lioj_flags |= LIOJ_SIGNAL;
2259 		} else {
2260 			uma_zfree(aiolio_zone, lj);
2261 			return EINVAL;
2262 		}
2263 	}
2264 
2265 	AIO_LOCK(ki);
2266 	TAILQ_INSERT_TAIL(&ki->kaio_liojoblist, lj, lioj_list);
2267 	/*
2268 	 * Add extra aiocb count to avoid the lio to be freed
2269 	 * by other threads doing aio_waitcomplete or aio_return,
2270 	 * and prevent event from being sent until we have queued
2271 	 * all tasks.
2272 	 */
2273 	lj->lioj_count = 1;
2274 	AIO_UNLOCK(ki);
2275 
2276 	/*
2277 	 * Get pointers to the list of I/O requests.
2278 	 */
2279 	nagain = 0;
2280 	nerror = 0;
2281 	for (i = 0; i < nent; i++) {
2282 		job = acb_list[i];
2283 		if (job != NULL) {
2284 			error = aio_aqueue(td, job, lj, LIO_NOP, ops);
2285 			if (error == EAGAIN)
2286 				nagain++;
2287 			else if (error != 0)
2288 				nerror++;
2289 		}
2290 	}
2291 
2292 	error = 0;
2293 	AIO_LOCK(ki);
2294 	if (mode == LIO_WAIT) {
2295 		while (lj->lioj_count - 1 != lj->lioj_finished_count) {
2296 			ki->kaio_flags |= KAIO_WAKEUP;
2297 			error = msleep(&p->p_aioinfo, AIO_MTX(ki),
2298 			    PRIBIO | PCATCH, "aiospn", 0);
2299 			if (error == ERESTART)
2300 				error = EINTR;
2301 			if (error)
2302 				break;
2303 		}
2304 	} else {
2305 		if (lj->lioj_count - 1 == lj->lioj_finished_count) {
2306 			if (lj->lioj_signal.sigev_notify == SIGEV_KEVENT) {
2307 				lj->lioj_flags |= LIOJ_KEVENT_POSTED;
2308 				KNOTE_LOCKED(&lj->klist, 1);
2309 			}
2310 			if ((lj->lioj_flags & (LIOJ_SIGNAL |
2311 			    LIOJ_SIGNAL_POSTED)) == LIOJ_SIGNAL &&
2312 			    (lj->lioj_signal.sigev_notify == SIGEV_SIGNAL ||
2313 			    lj->lioj_signal.sigev_notify == SIGEV_THREAD_ID)) {
2314 				aio_sendsig(p, &lj->lioj_signal, &lj->lioj_ksi,
2315 				    lj->lioj_count != 1);
2316 				lj->lioj_flags |= LIOJ_SIGNAL_POSTED;
2317 			}
2318 		}
2319 	}
2320 	lj->lioj_count--;
2321 	if (lj->lioj_count == 0) {
2322 		TAILQ_REMOVE(&ki->kaio_liojoblist, lj, lioj_list);
2323 		knlist_delete(&lj->klist, curthread, 1);
2324 		PROC_LOCK(p);
2325 		sigqueue_take(&lj->lioj_ksi);
2326 		PROC_UNLOCK(p);
2327 		AIO_UNLOCK(ki);
2328 		uma_zfree(aiolio_zone, lj);
2329 	} else
2330 		AIO_UNLOCK(ki);
2331 
2332 	if (nerror)
2333 		return (EIO);
2334 	else if (nagain)
2335 		return (EAGAIN);
2336 	else
2337 		return (error);
2338 }
2339 
2340 /* syscall - list directed I/O (REALTIME) */
2341 #ifdef COMPAT_FREEBSD6
2342 int
freebsd6_lio_listio(struct thread * td,struct freebsd6_lio_listio_args * uap)2343 freebsd6_lio_listio(struct thread *td, struct freebsd6_lio_listio_args *uap)
2344 {
2345 	struct aiocb **acb_list;
2346 	struct sigevent *sigp, sig;
2347 	struct osigevent osig;
2348 	int error, nent;
2349 
2350 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2351 		return (EINVAL);
2352 
2353 	nent = uap->nent;
2354 	if (nent < 0 || nent > max_aio_queue_per_proc)
2355 		return (EINVAL);
2356 
2357 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2358 		error = copyin(uap->sig, &osig, sizeof(osig));
2359 		if (error)
2360 			return (error);
2361 		error = convert_old_sigevent(&osig, &sig);
2362 		if (error)
2363 			return (error);
2364 		sigp = &sig;
2365 	} else
2366 		sigp = NULL;
2367 
2368 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2369 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2370 	if (error == 0)
2371 		error = kern_lio_listio(td, uap->mode,
2372 		    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
2373 		    &aiocb_ops_osigevent);
2374 	free(acb_list, M_LIO);
2375 	return (error);
2376 }
2377 #endif
2378 
2379 /* syscall - list directed I/O (REALTIME) */
2380 int
sys_lio_listio(struct thread * td,struct lio_listio_args * uap)2381 sys_lio_listio(struct thread *td, struct lio_listio_args *uap)
2382 {
2383 	struct aiocb **acb_list;
2384 	struct sigevent *sigp, sig;
2385 	int error, nent;
2386 
2387 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
2388 		return (EINVAL);
2389 
2390 	nent = uap->nent;
2391 	if (nent < 0 || nent > max_aio_queue_per_proc)
2392 		return (EINVAL);
2393 
2394 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
2395 		error = copyin(uap->sig, &sig, sizeof(sig));
2396 		if (error)
2397 			return (error);
2398 		sigp = &sig;
2399 	} else
2400 		sigp = NULL;
2401 
2402 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
2403 	error = copyin(uap->acb_list, acb_list, nent * sizeof(acb_list[0]));
2404 	if (error == 0)
2405 		error = kern_lio_listio(td, uap->mode, uap->acb_list, acb_list,
2406 		    nent, sigp, &aiocb_ops);
2407 	free(acb_list, M_LIO);
2408 	return (error);
2409 }
2410 
2411 static void
aio_biocleanup(struct bio * bp)2412 aio_biocleanup(struct bio *bp)
2413 {
2414 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2415 	struct kaioinfo *ki;
2416 	struct buf *pbuf = (struct buf *)bp->bio_caller2;
2417 
2418 	/* Release mapping into kernel space. */
2419 	if (pbuf != NULL) {
2420 		MPASS(pbuf->b_npages <= atop(maxphys) + 1);
2421 		pmap_qremove((vm_offset_t)pbuf->b_data, pbuf->b_npages);
2422 		vm_page_unhold_pages(pbuf->b_pages, pbuf->b_npages);
2423 		uma_zfree(pbuf_zone, pbuf);
2424 		atomic_subtract_int(&num_buf_aio, 1);
2425 		ki = job->userproc->p_aioinfo;
2426 		AIO_LOCK(ki);
2427 		ki->kaio_buffer_count--;
2428 		AIO_UNLOCK(ki);
2429 	} else {
2430 		MPASS(bp->bio_ma_n <= atop(maxphys) + 1);
2431 		vm_page_unhold_pages(bp->bio_ma, bp->bio_ma_n);
2432 		free(bp->bio_ma, M_TEMP);
2433 		atomic_subtract_int(&num_unmapped_aio, 1);
2434 	}
2435 	g_destroy_bio(bp);
2436 }
2437 
2438 static void
aio_biowakeup(struct bio * bp)2439 aio_biowakeup(struct bio *bp)
2440 {
2441 	struct kaiocb *job = (struct kaiocb *)bp->bio_caller1;
2442 	size_t nbytes;
2443 	long bcount = bp->bio_bcount;
2444 	long resid = bp->bio_resid;
2445 	int opcode, nblks;
2446 	int bio_error = bp->bio_error;
2447 	uint16_t flags = bp->bio_flags;
2448 
2449 	opcode = job->uaiocb.aio_lio_opcode;
2450 
2451 	aio_biocleanup(bp);
2452 
2453 	nbytes = bcount - resid;
2454 	atomic_add_acq_long(&job->nbytes, nbytes);
2455 	nblks = btodb(nbytes);
2456 
2457 	/*
2458 	 * If multiple bios experienced an error, the job will reflect the
2459 	 * error of whichever failed bio completed last.
2460 	 */
2461 	if (flags & BIO_ERROR)
2462 		atomic_store_int(&job->error, bio_error);
2463 	if (opcode & LIO_WRITE)
2464 		atomic_add_int(&job->outblock, nblks);
2465 	else
2466 		atomic_add_int(&job->inblock, nblks);
2467 
2468 	if (refcount_release(&job->nbio)) {
2469 		bio_error = atomic_load_int(&job->error);
2470 		if (bio_error != 0)
2471 			aio_complete(job, -1, bio_error);
2472 		else
2473 			aio_complete(job, atomic_load_long(&job->nbytes), 0);
2474 	}
2475 }
2476 
2477 /* syscall - wait for the next completion of an aio request */
2478 static int
kern_aio_waitcomplete(struct thread * td,struct aiocb ** ujobp,struct timespec * ts,struct aiocb_ops * ops)2479 kern_aio_waitcomplete(struct thread *td, struct aiocb **ujobp,
2480     struct timespec *ts, struct aiocb_ops *ops)
2481 {
2482 	struct proc *p = td->td_proc;
2483 	struct timeval atv;
2484 	struct kaioinfo *ki;
2485 	struct kaiocb *job;
2486 	struct aiocb *ujob;
2487 	long error, status;
2488 	int timo;
2489 
2490 	ops->store_aiocb(ujobp, NULL);
2491 
2492 	if (ts == NULL) {
2493 		timo = 0;
2494 	} else if (ts->tv_sec == 0 && ts->tv_nsec == 0) {
2495 		timo = -1;
2496 	} else {
2497 		if ((ts->tv_nsec < 0) || (ts->tv_nsec >= 1000000000))
2498 			return (EINVAL);
2499 
2500 		TIMESPEC_TO_TIMEVAL(&atv, ts);
2501 		if (itimerfix(&atv))
2502 			return (EINVAL);
2503 		timo = tvtohz(&atv);
2504 	}
2505 
2506 	if (p->p_aioinfo == NULL)
2507 		aio_init_aioinfo(p);
2508 	ki = p->p_aioinfo;
2509 
2510 	error = 0;
2511 	job = NULL;
2512 	AIO_LOCK(ki);
2513 	while ((job = TAILQ_FIRST(&ki->kaio_done)) == NULL) {
2514 		if (timo == -1) {
2515 			error = EWOULDBLOCK;
2516 			break;
2517 		}
2518 		ki->kaio_flags |= KAIO_WAKEUP;
2519 		error = msleep(&p->p_aioinfo, AIO_MTX(ki), PRIBIO | PCATCH,
2520 		    "aiowc", timo);
2521 		if (timo && error == ERESTART)
2522 			error = EINTR;
2523 		if (error)
2524 			break;
2525 	}
2526 
2527 	if (job != NULL) {
2528 		MPASS(job->jobflags & KAIOCB_FINISHED);
2529 		ujob = job->ujob;
2530 		status = job->uaiocb._aiocb_private.status;
2531 		error = job->uaiocb._aiocb_private.error;
2532 		td->td_retval[0] = status;
2533 		td->td_ru.ru_oublock += job->outblock;
2534 		td->td_ru.ru_inblock += job->inblock;
2535 		td->td_ru.ru_msgsnd += job->msgsnd;
2536 		td->td_ru.ru_msgrcv += job->msgrcv;
2537 		aio_free_entry(job);
2538 		AIO_UNLOCK(ki);
2539 		ops->store_aiocb(ujobp, ujob);
2540 		ops->store_error(ujob, error);
2541 		ops->store_status(ujob, status);
2542 	} else
2543 		AIO_UNLOCK(ki);
2544 
2545 	return (error);
2546 }
2547 
2548 int
sys_aio_waitcomplete(struct thread * td,struct aio_waitcomplete_args * uap)2549 sys_aio_waitcomplete(struct thread *td, struct aio_waitcomplete_args *uap)
2550 {
2551 	struct timespec ts, *tsp;
2552 	int error;
2553 
2554 	if (uap->timeout) {
2555 		/* Get timespec struct. */
2556 		error = copyin(uap->timeout, &ts, sizeof(ts));
2557 		if (error)
2558 			return (error);
2559 		tsp = &ts;
2560 	} else
2561 		tsp = NULL;
2562 
2563 	return (kern_aio_waitcomplete(td, uap->aiocbp, tsp, &aiocb_ops));
2564 }
2565 
2566 static int
kern_aio_fsync(struct thread * td,int op,struct aiocb * ujob,struct aiocb_ops * ops)2567 kern_aio_fsync(struct thread *td, int op, struct aiocb *ujob,
2568     struct aiocb_ops *ops)
2569 {
2570 	int listop;
2571 
2572 	switch (op) {
2573 	case O_SYNC:
2574 		listop = LIO_SYNC;
2575 		break;
2576 	case O_DSYNC:
2577 		listop = LIO_DSYNC;
2578 		break;
2579 	default:
2580 		return (EINVAL);
2581 	}
2582 
2583 	return (aio_aqueue(td, ujob, NULL, listop, ops));
2584 }
2585 
2586 int
sys_aio_fsync(struct thread * td,struct aio_fsync_args * uap)2587 sys_aio_fsync(struct thread *td, struct aio_fsync_args *uap)
2588 {
2589 
2590 	return (kern_aio_fsync(td, uap->op, uap->aiocbp, &aiocb_ops));
2591 }
2592 
2593 /* kqueue attach function */
2594 static int
filt_aioattach(struct knote * kn)2595 filt_aioattach(struct knote *kn)
2596 {
2597 	struct kaiocb *job;
2598 
2599 	job = (struct kaiocb *)(uintptr_t)kn->kn_sdata;
2600 
2601 	/*
2602 	 * The job pointer must be validated before using it, so
2603 	 * registration is restricted to the kernel; the user cannot
2604 	 * set EV_FLAG1.
2605 	 */
2606 	if ((kn->kn_flags & EV_FLAG1) == 0)
2607 		return (EPERM);
2608 	kn->kn_ptr.p_aio = job;
2609 	kn->kn_flags &= ~EV_FLAG1;
2610 
2611 	knlist_add(&job->klist, kn, 0);
2612 
2613 	return (0);
2614 }
2615 
2616 /* kqueue detach function */
2617 static void
filt_aiodetach(struct knote * kn)2618 filt_aiodetach(struct knote *kn)
2619 {
2620 	struct knlist *knl;
2621 
2622 	knl = &kn->kn_ptr.p_aio->klist;
2623 	knl->kl_lock(knl->kl_lockarg);
2624 	if (!knlist_empty(knl))
2625 		knlist_remove(knl, kn, 1);
2626 	knl->kl_unlock(knl->kl_lockarg);
2627 }
2628 
2629 /* kqueue filter function */
2630 /*ARGSUSED*/
2631 static int
filt_aio(struct knote * kn,long hint)2632 filt_aio(struct knote *kn, long hint)
2633 {
2634 	struct kaiocb *job = kn->kn_ptr.p_aio;
2635 
2636 	kn->kn_data = job->uaiocb._aiocb_private.error;
2637 	if (!(job->jobflags & KAIOCB_FINISHED))
2638 		return (0);
2639 	kn->kn_flags |= EV_EOF;
2640 	return (1);
2641 }
2642 
2643 /* kqueue attach function */
2644 static int
filt_lioattach(struct knote * kn)2645 filt_lioattach(struct knote *kn)
2646 {
2647 	struct aioliojob *lj;
2648 
2649 	lj = (struct aioliojob *)(uintptr_t)kn->kn_sdata;
2650 
2651 	/*
2652 	 * The aioliojob pointer must be validated before using it, so
2653 	 * registration is restricted to the kernel; the user cannot
2654 	 * set EV_FLAG1.
2655 	 */
2656 	if ((kn->kn_flags & EV_FLAG1) == 0)
2657 		return (EPERM);
2658 	kn->kn_ptr.p_lio = lj;
2659 	kn->kn_flags &= ~EV_FLAG1;
2660 
2661 	knlist_add(&lj->klist, kn, 0);
2662 
2663 	return (0);
2664 }
2665 
2666 /* kqueue detach function */
2667 static void
filt_liodetach(struct knote * kn)2668 filt_liodetach(struct knote *kn)
2669 {
2670 	struct knlist *knl;
2671 
2672 	knl = &kn->kn_ptr.p_lio->klist;
2673 	knl->kl_lock(knl->kl_lockarg);
2674 	if (!knlist_empty(knl))
2675 		knlist_remove(knl, kn, 1);
2676 	knl->kl_unlock(knl->kl_lockarg);
2677 }
2678 
2679 /* kqueue filter function */
2680 /*ARGSUSED*/
2681 static int
filt_lio(struct knote * kn,long hint)2682 filt_lio(struct knote *kn, long hint)
2683 {
2684 	struct aioliojob * lj = kn->kn_ptr.p_lio;
2685 
2686 	return (lj->lioj_flags & LIOJ_KEVENT_POSTED);
2687 }
2688 
2689 #ifdef COMPAT_FREEBSD32
2690 #include <sys/mount.h>
2691 #include <sys/socket.h>
2692 #include <sys/sysent.h>
2693 #include <compat/freebsd32/freebsd32.h>
2694 #include <compat/freebsd32/freebsd32_proto.h>
2695 #include <compat/freebsd32/freebsd32_signal.h>
2696 #include <compat/freebsd32/freebsd32_syscall.h>
2697 #include <compat/freebsd32/freebsd32_util.h>
2698 
2699 struct __aiocb_private32 {
2700 	int32_t	status;
2701 	int32_t	error;
2702 	uint32_t spare;
2703 };
2704 
2705 #ifdef COMPAT_FREEBSD6
2706 typedef struct oaiocb32 {
2707 	int	aio_fildes;		/* File descriptor */
2708 	uint64_t aio_offset __packed;	/* File offset for I/O */
2709 	uint32_t aio_buf;		/* I/O buffer in process space */
2710 	uint32_t aio_nbytes;		/* Number of bytes for I/O */
2711 	struct	osigevent32 aio_sigevent; /* Signal to deliver */
2712 	int	aio_lio_opcode;		/* LIO opcode */
2713 	int	aio_reqprio;		/* Request priority -- ignored */
2714 	struct	__aiocb_private32 _aiocb_private;
2715 } oaiocb32_t;
2716 #endif
2717 
2718 typedef struct aiocb32 {
2719 	int32_t	aio_fildes;		/* File descriptor */
2720 	uint64_t aio_offset __packed;	/* File offset for I/O */
2721 	uint32_t aio_buf;	/* I/O buffer in process space */
2722 	uint32_t aio_nbytes;	/* Number of bytes for I/O */
2723 	int	__spare__[2];
2724 	uint32_t __spare2__;
2725 	int	aio_lio_opcode;		/* LIO opcode */
2726 	int	aio_reqprio;		/* Request priority -- ignored */
2727 	struct	__aiocb_private32 _aiocb_private;
2728 	struct	sigevent32 aio_sigevent;	/* Signal to deliver */
2729 } aiocb32_t;
2730 
2731 #ifdef COMPAT_FREEBSD6
2732 static int
convert_old_sigevent32(struct osigevent32 * osig,struct sigevent * nsig)2733 convert_old_sigevent32(struct osigevent32 *osig, struct sigevent *nsig)
2734 {
2735 
2736 	/*
2737 	 * Only SIGEV_NONE, SIGEV_SIGNAL, and SIGEV_KEVENT are
2738 	 * supported by AIO with the old sigevent structure.
2739 	 */
2740 	CP(*osig, *nsig, sigev_notify);
2741 	switch (nsig->sigev_notify) {
2742 	case SIGEV_NONE:
2743 		break;
2744 	case SIGEV_SIGNAL:
2745 		nsig->sigev_signo = osig->__sigev_u.__sigev_signo;
2746 		break;
2747 	case SIGEV_KEVENT:
2748 		nsig->sigev_notify_kqueue =
2749 		    osig->__sigev_u.__sigev_notify_kqueue;
2750 		PTRIN_CP(*osig, *nsig, sigev_value.sival_ptr);
2751 		break;
2752 	default:
2753 		return (EINVAL);
2754 	}
2755 	return (0);
2756 }
2757 
2758 static int
aiocb32_copyin_old_sigevent(struct aiocb * ujob,struct kaiocb * kjob,int type __unused)2759 aiocb32_copyin_old_sigevent(struct aiocb *ujob, struct kaiocb *kjob,
2760     int type __unused)
2761 {
2762 	struct oaiocb32 job32;
2763 	struct aiocb *kcb = &kjob->uaiocb;
2764 	int error;
2765 
2766 	bzero(kcb, sizeof(struct aiocb));
2767 	error = copyin(ujob, &job32, sizeof(job32));
2768 	if (error)
2769 		return (error);
2770 
2771 	/* No need to copyin aio_iov, because it did not exist in FreeBSD 6 */
2772 
2773 	CP(job32, *kcb, aio_fildes);
2774 	CP(job32, *kcb, aio_offset);
2775 	PTRIN_CP(job32, *kcb, aio_buf);
2776 	CP(job32, *kcb, aio_nbytes);
2777 	CP(job32, *kcb, aio_lio_opcode);
2778 	CP(job32, *kcb, aio_reqprio);
2779 	CP(job32, *kcb, _aiocb_private.status);
2780 	CP(job32, *kcb, _aiocb_private.error);
2781 	return (convert_old_sigevent32(&job32.aio_sigevent,
2782 	    &kcb->aio_sigevent));
2783 }
2784 #endif
2785 
2786 static int
aiocb32_copyin(struct aiocb * ujob,struct kaiocb * kjob,int type)2787 aiocb32_copyin(struct aiocb *ujob, struct kaiocb *kjob, int type)
2788 {
2789 	struct aiocb32 job32;
2790 	struct aiocb *kcb = &kjob->uaiocb;
2791 	struct iovec32 *iov32;
2792 	int error;
2793 
2794 	error = copyin(ujob, &job32, sizeof(job32));
2795 	if (error)
2796 		return (error);
2797 	CP(job32, *kcb, aio_fildes);
2798 	CP(job32, *kcb, aio_offset);
2799 	CP(job32, *kcb, aio_lio_opcode);
2800 	if (type == LIO_NOP)
2801 		type = kcb->aio_lio_opcode;
2802 	if (type & LIO_VECTORED) {
2803 		iov32 = PTRIN(job32.aio_iov);
2804 		CP(job32, *kcb, aio_iovcnt);
2805 		/* malloc a uio and copy in the iovec */
2806 		error = freebsd32_copyinuio(iov32,
2807 		    kcb->aio_iovcnt, &kjob->uiop);
2808 		if (error)
2809 			return (error);
2810 	} else {
2811 		PTRIN_CP(job32, *kcb, aio_buf);
2812 		CP(job32, *kcb, aio_nbytes);
2813 	}
2814 	CP(job32, *kcb, aio_reqprio);
2815 	CP(job32, *kcb, _aiocb_private.status);
2816 	CP(job32, *kcb, _aiocb_private.error);
2817 	error = convert_sigevent32(&job32.aio_sigevent, &kcb->aio_sigevent);
2818 
2819 	return (error);
2820 }
2821 
2822 static long
aiocb32_fetch_status(struct aiocb * ujob)2823 aiocb32_fetch_status(struct aiocb *ujob)
2824 {
2825 	struct aiocb32 *ujob32;
2826 
2827 	ujob32 = (struct aiocb32 *)ujob;
2828 	return (fuword32(&ujob32->_aiocb_private.status));
2829 }
2830 
2831 static long
aiocb32_fetch_error(struct aiocb * ujob)2832 aiocb32_fetch_error(struct aiocb *ujob)
2833 {
2834 	struct aiocb32 *ujob32;
2835 
2836 	ujob32 = (struct aiocb32 *)ujob;
2837 	return (fuword32(&ujob32->_aiocb_private.error));
2838 }
2839 
2840 static int
aiocb32_store_status(struct aiocb * ujob,long status)2841 aiocb32_store_status(struct aiocb *ujob, long status)
2842 {
2843 	struct aiocb32 *ujob32;
2844 
2845 	ujob32 = (struct aiocb32 *)ujob;
2846 	return (suword32(&ujob32->_aiocb_private.status, status));
2847 }
2848 
2849 static int
aiocb32_store_error(struct aiocb * ujob,long error)2850 aiocb32_store_error(struct aiocb *ujob, long error)
2851 {
2852 	struct aiocb32 *ujob32;
2853 
2854 	ujob32 = (struct aiocb32 *)ujob;
2855 	return (suword32(&ujob32->_aiocb_private.error, error));
2856 }
2857 
2858 static int
aiocb32_store_aiocb(struct aiocb ** ujobp,struct aiocb * ujob)2859 aiocb32_store_aiocb(struct aiocb **ujobp, struct aiocb *ujob)
2860 {
2861 
2862 	return (suword32(ujobp, (long)ujob));
2863 }
2864 
2865 static struct aiocb_ops aiocb32_ops = {
2866 	.aio_copyin = aiocb32_copyin,
2867 	.fetch_status = aiocb32_fetch_status,
2868 	.fetch_error = aiocb32_fetch_error,
2869 	.store_status = aiocb32_store_status,
2870 	.store_error = aiocb32_store_error,
2871 	.store_aiocb = aiocb32_store_aiocb,
2872 };
2873 
2874 #ifdef COMPAT_FREEBSD6
2875 static struct aiocb_ops aiocb32_ops_osigevent = {
2876 	.aio_copyin = aiocb32_copyin_old_sigevent,
2877 	.fetch_status = aiocb32_fetch_status,
2878 	.fetch_error = aiocb32_fetch_error,
2879 	.store_status = aiocb32_store_status,
2880 	.store_error = aiocb32_store_error,
2881 	.store_aiocb = aiocb32_store_aiocb,
2882 };
2883 #endif
2884 
2885 int
freebsd32_aio_return(struct thread * td,struct freebsd32_aio_return_args * uap)2886 freebsd32_aio_return(struct thread *td, struct freebsd32_aio_return_args *uap)
2887 {
2888 
2889 	return (kern_aio_return(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2890 }
2891 
2892 int
freebsd32_aio_suspend(struct thread * td,struct freebsd32_aio_suspend_args * uap)2893 freebsd32_aio_suspend(struct thread *td, struct freebsd32_aio_suspend_args *uap)
2894 {
2895 	struct timespec32 ts32;
2896 	struct timespec ts, *tsp;
2897 	struct aiocb **ujoblist;
2898 	uint32_t *ujoblist32;
2899 	int error, i;
2900 
2901 	if (uap->nent < 0 || uap->nent > max_aio_queue_per_proc)
2902 		return (EINVAL);
2903 
2904 	if (uap->timeout) {
2905 		/* Get timespec struct. */
2906 		if ((error = copyin(uap->timeout, &ts32, sizeof(ts32))) != 0)
2907 			return (error);
2908 		CP(ts32, ts, tv_sec);
2909 		CP(ts32, ts, tv_nsec);
2910 		tsp = &ts;
2911 	} else
2912 		tsp = NULL;
2913 
2914 	ujoblist = malloc(uap->nent * sizeof(ujoblist[0]), M_AIO, M_WAITOK);
2915 	ujoblist32 = (uint32_t *)ujoblist;
2916 	error = copyin(uap->aiocbp, ujoblist32, uap->nent *
2917 	    sizeof(ujoblist32[0]));
2918 	if (error == 0) {
2919 		for (i = uap->nent - 1; i >= 0; i--)
2920 			ujoblist[i] = PTRIN(ujoblist32[i]);
2921 
2922 		error = kern_aio_suspend(td, uap->nent, ujoblist, tsp);
2923 	}
2924 	free(ujoblist, M_AIO);
2925 	return (error);
2926 }
2927 
2928 int
freebsd32_aio_error(struct thread * td,struct freebsd32_aio_error_args * uap)2929 freebsd32_aio_error(struct thread *td, struct freebsd32_aio_error_args *uap)
2930 {
2931 
2932 	return (kern_aio_error(td, (struct aiocb *)uap->aiocbp, &aiocb32_ops));
2933 }
2934 
2935 #ifdef COMPAT_FREEBSD6
2936 int
freebsd6_freebsd32_aio_read(struct thread * td,struct freebsd6_freebsd32_aio_read_args * uap)2937 freebsd6_freebsd32_aio_read(struct thread *td,
2938     struct freebsd6_freebsd32_aio_read_args *uap)
2939 {
2940 
2941 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2942 	    &aiocb32_ops_osigevent));
2943 }
2944 #endif
2945 
2946 int
freebsd32_aio_read(struct thread * td,struct freebsd32_aio_read_args * uap)2947 freebsd32_aio_read(struct thread *td, struct freebsd32_aio_read_args *uap)
2948 {
2949 
2950 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READ,
2951 	    &aiocb32_ops));
2952 }
2953 
2954 int
freebsd32_aio_readv(struct thread * td,struct freebsd32_aio_readv_args * uap)2955 freebsd32_aio_readv(struct thread *td, struct freebsd32_aio_readv_args *uap)
2956 {
2957 
2958 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_READV,
2959 	    &aiocb32_ops));
2960 }
2961 
2962 #ifdef COMPAT_FREEBSD6
2963 int
freebsd6_freebsd32_aio_write(struct thread * td,struct freebsd6_freebsd32_aio_write_args * uap)2964 freebsd6_freebsd32_aio_write(struct thread *td,
2965     struct freebsd6_freebsd32_aio_write_args *uap)
2966 {
2967 
2968 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2969 	    &aiocb32_ops_osigevent));
2970 }
2971 #endif
2972 
2973 int
freebsd32_aio_write(struct thread * td,struct freebsd32_aio_write_args * uap)2974 freebsd32_aio_write(struct thread *td, struct freebsd32_aio_write_args *uap)
2975 {
2976 
2977 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITE,
2978 	    &aiocb32_ops));
2979 }
2980 
2981 int
freebsd32_aio_writev(struct thread * td,struct freebsd32_aio_writev_args * uap)2982 freebsd32_aio_writev(struct thread *td, struct freebsd32_aio_writev_args *uap)
2983 {
2984 
2985 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_WRITEV,
2986 	    &aiocb32_ops));
2987 }
2988 
2989 int
freebsd32_aio_mlock(struct thread * td,struct freebsd32_aio_mlock_args * uap)2990 freebsd32_aio_mlock(struct thread *td, struct freebsd32_aio_mlock_args *uap)
2991 {
2992 
2993 	return (aio_aqueue(td, (struct aiocb *)uap->aiocbp, NULL, LIO_MLOCK,
2994 	    &aiocb32_ops));
2995 }
2996 
2997 int
freebsd32_aio_waitcomplete(struct thread * td,struct freebsd32_aio_waitcomplete_args * uap)2998 freebsd32_aio_waitcomplete(struct thread *td,
2999     struct freebsd32_aio_waitcomplete_args *uap)
3000 {
3001 	struct timespec32 ts32;
3002 	struct timespec ts, *tsp;
3003 	int error;
3004 
3005 	if (uap->timeout) {
3006 		/* Get timespec struct. */
3007 		error = copyin(uap->timeout, &ts32, sizeof(ts32));
3008 		if (error)
3009 			return (error);
3010 		CP(ts32, ts, tv_sec);
3011 		CP(ts32, ts, tv_nsec);
3012 		tsp = &ts;
3013 	} else
3014 		tsp = NULL;
3015 
3016 	return (kern_aio_waitcomplete(td, (struct aiocb **)uap->aiocbp, tsp,
3017 	    &aiocb32_ops));
3018 }
3019 
3020 int
freebsd32_aio_fsync(struct thread * td,struct freebsd32_aio_fsync_args * uap)3021 freebsd32_aio_fsync(struct thread *td, struct freebsd32_aio_fsync_args *uap)
3022 {
3023 
3024 	return (kern_aio_fsync(td, uap->op, (struct aiocb *)uap->aiocbp,
3025 	    &aiocb32_ops));
3026 }
3027 
3028 #ifdef COMPAT_FREEBSD6
3029 int
freebsd6_freebsd32_lio_listio(struct thread * td,struct freebsd6_freebsd32_lio_listio_args * uap)3030 freebsd6_freebsd32_lio_listio(struct thread *td,
3031     struct freebsd6_freebsd32_lio_listio_args *uap)
3032 {
3033 	struct aiocb **acb_list;
3034 	struct sigevent *sigp, sig;
3035 	struct osigevent32 osig;
3036 	uint32_t *acb_list32;
3037 	int error, i, nent;
3038 
3039 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3040 		return (EINVAL);
3041 
3042 	nent = uap->nent;
3043 	if (nent < 0 || nent > max_aio_queue_per_proc)
3044 		return (EINVAL);
3045 
3046 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3047 		error = copyin(uap->sig, &osig, sizeof(osig));
3048 		if (error)
3049 			return (error);
3050 		error = convert_old_sigevent32(&osig, &sig);
3051 		if (error)
3052 			return (error);
3053 		sigp = &sig;
3054 	} else
3055 		sigp = NULL;
3056 
3057 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3058 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3059 	if (error) {
3060 		free(acb_list32, M_LIO);
3061 		return (error);
3062 	}
3063 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3064 	for (i = 0; i < nent; i++)
3065 		acb_list[i] = PTRIN(acb_list32[i]);
3066 	free(acb_list32, M_LIO);
3067 
3068 	error = kern_lio_listio(td, uap->mode,
3069 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3070 	    &aiocb32_ops_osigevent);
3071 	free(acb_list, M_LIO);
3072 	return (error);
3073 }
3074 #endif
3075 
3076 int
freebsd32_lio_listio(struct thread * td,struct freebsd32_lio_listio_args * uap)3077 freebsd32_lio_listio(struct thread *td, struct freebsd32_lio_listio_args *uap)
3078 {
3079 	struct aiocb **acb_list;
3080 	struct sigevent *sigp, sig;
3081 	struct sigevent32 sig32;
3082 	uint32_t *acb_list32;
3083 	int error, i, nent;
3084 
3085 	if ((uap->mode != LIO_NOWAIT) && (uap->mode != LIO_WAIT))
3086 		return (EINVAL);
3087 
3088 	nent = uap->nent;
3089 	if (nent < 0 || nent > max_aio_queue_per_proc)
3090 		return (EINVAL);
3091 
3092 	if (uap->sig && (uap->mode == LIO_NOWAIT)) {
3093 		error = copyin(uap->sig, &sig32, sizeof(sig32));
3094 		if (error)
3095 			return (error);
3096 		error = convert_sigevent32(&sig32, &sig);
3097 		if (error)
3098 			return (error);
3099 		sigp = &sig;
3100 	} else
3101 		sigp = NULL;
3102 
3103 	acb_list32 = malloc(sizeof(uint32_t) * nent, M_LIO, M_WAITOK);
3104 	error = copyin(uap->acb_list, acb_list32, nent * sizeof(uint32_t));
3105 	if (error) {
3106 		free(acb_list32, M_LIO);
3107 		return (error);
3108 	}
3109 	acb_list = malloc(sizeof(struct aiocb *) * nent, M_LIO, M_WAITOK);
3110 	for (i = 0; i < nent; i++)
3111 		acb_list[i] = PTRIN(acb_list32[i]);
3112 	free(acb_list32, M_LIO);
3113 
3114 	error = kern_lio_listio(td, uap->mode,
3115 	    (struct aiocb * const *)uap->acb_list, acb_list, nent, sigp,
3116 	    &aiocb32_ops);
3117 	free(acb_list, M_LIO);
3118 	return (error);
3119 }
3120 
3121 #endif
3122