xref: /freebsd/sys/dev/agp/agp.c (revision 6014596899c5740a07f5986be3d7380f243565e7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_agp.h"
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/conf.h>
39 #include <sys/ioccom.h>
40 #include <sys/agpio.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/proc.h>
44 #include <sys/rwlock.h>
45 
46 #include <dev/agp/agppriv.h>
47 #include <dev/agp/agpvar.h>
48 #include <dev/agp/agpreg.h>
49 #include <dev/pci/pcivar.h>
50 #include <dev/pci/pcireg.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_param.h>
56 #include <vm/vm_object.h>
57 #include <vm/vm_page.h>
58 #include <vm/vm_pageout.h>
59 #include <vm/vm_radix.h>
60 #include <vm/pmap.h>
61 
62 #include <machine/bus.h>
63 #include <machine/resource.h>
64 #include <sys/rman.h>
65 
66 MODULE_VERSION(agp, 1);
67 
68 MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
69 
70 				/* agp_drv.c */
71 static d_open_t agp_open;
72 static d_close_t agp_close;
73 static d_ioctl_t agp_ioctl;
74 static d_mmap_t agp_mmap;
75 
76 static struct cdevsw agp_cdevsw = {
77 	.d_version =	D_VERSION,
78 	.d_flags =	D_NEEDGIANT,
79 	.d_open =	agp_open,
80 	.d_close =	agp_close,
81 	.d_ioctl =	agp_ioctl,
82 	.d_mmap =	agp_mmap,
83 	.d_name =	"agp",
84 };
85 
86 static devclass_t agp_devclass;
87 
88 /* Helper functions for implementing chipset mini drivers. */
89 
90 u_int8_t
agp_find_caps(device_t dev)91 agp_find_caps(device_t dev)
92 {
93 	int capreg;
94 
95 	if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0)
96 		capreg = 0;
97 	return (capreg);
98 }
99 
100 /*
101  * Find an AGP display device (if any).
102  */
103 static device_t
agp_find_display(void)104 agp_find_display(void)
105 {
106 	devclass_t pci = devclass_find("pci");
107 	device_t bus, dev = 0;
108 	device_t *kids;
109 	int busnum, numkids, i;
110 
111 	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
112 		bus = devclass_get_device(pci, busnum);
113 		if (!bus)
114 			continue;
115 		if (device_get_children(bus, &kids, &numkids) != 0)
116 			continue;
117 		for (i = 0; i < numkids; i++) {
118 			dev = kids[i];
119 			if (pci_get_class(dev) == PCIC_DISPLAY
120 			    && pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
121 				if (agp_find_caps(dev)) {
122 					free(kids, M_TEMP);
123 					return dev;
124 				}
125 
126 		}
127 		free(kids, M_TEMP);
128 	}
129 
130 	return 0;
131 }
132 
133 struct agp_gatt *
agp_alloc_gatt(device_t dev)134 agp_alloc_gatt(device_t dev)
135 {
136 	u_int32_t apsize = AGP_GET_APERTURE(dev);
137 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
138 	struct agp_gatt *gatt;
139 
140 	if (bootverbose)
141 		device_printf(dev,
142 			      "allocating GATT for aperture of size %dM\n",
143 			      apsize / (1024*1024));
144 
145 	if (entries == 0) {
146 		device_printf(dev, "bad aperture size\n");
147 		return NULL;
148 	}
149 
150 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
151 	if (!gatt)
152 		return 0;
153 
154 	gatt->ag_entries = entries;
155 	gatt->ag_virtual = kmem_alloc_contig(entries * sizeof(uint32_t),
156 	    M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, VM_MEMATTR_WRITE_COMBINING);
157 	if (!gatt->ag_virtual) {
158 		if (bootverbose)
159 			device_printf(dev, "contiguous allocation failed\n");
160 		free(gatt, M_AGP);
161 		return 0;
162 	}
163 	gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
164 
165 	return gatt;
166 }
167 
168 void
agp_free_gatt(struct agp_gatt * gatt)169 agp_free_gatt(struct agp_gatt *gatt)
170 {
171 	kmem_free(gatt->ag_virtual, gatt->ag_entries * sizeof(uint32_t));
172 	free(gatt, M_AGP);
173 }
174 
175 static u_int agp_max[][2] = {
176 	{0,	0},
177 	{32,	4},
178 	{64,	28},
179 	{128,	96},
180 	{256,	204},
181 	{512,	440},
182 	{1024,	942},
183 	{2048,	1920},
184 	{4096,	3932}
185 };
186 #define	AGP_MAX_SIZE	nitems(agp_max)
187 
188 /**
189  * Sets the PCI resource which represents the AGP aperture.
190  *
191  * If not called, the default AGP aperture resource of AGP_APBASE will
192  * be used.  Must be called before agp_generic_attach().
193  */
194 void
agp_set_aperture_resource(device_t dev,int rid)195 agp_set_aperture_resource(device_t dev, int rid)
196 {
197 	struct agp_softc *sc = device_get_softc(dev);
198 
199 	sc->as_aperture_rid = rid;
200 }
201 
202 int
agp_generic_attach(device_t dev)203 agp_generic_attach(device_t dev)
204 {
205 	struct make_dev_args mdargs;
206 	struct agp_softc *sc = device_get_softc(dev);
207 	int error, i, unit;
208 	u_int memsize;
209 
210 	/*
211 	 * Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
212 	 * because the kernel doesn't need to map it.
213 	 */
214 
215 	if (sc->as_aperture_rid != -1) {
216 		if (sc->as_aperture_rid == 0)
217 			sc->as_aperture_rid = AGP_APBASE;
218 
219 		sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
220 		    &sc->as_aperture_rid, RF_SHAREABLE);
221 		if (!sc->as_aperture)
222 			return ENOMEM;
223 	}
224 
225 	/*
226 	 * Work out an upper bound for agp memory allocation. This
227 	 * uses a heurisitc table from the Linux driver.
228 	 */
229 	memsize = ptoa(realmem) >> 20;
230 	for (i = 0; i < AGP_MAX_SIZE; i++) {
231 		if (memsize <= agp_max[i][0])
232 			break;
233 	}
234 	if (i == AGP_MAX_SIZE)
235 		i = AGP_MAX_SIZE - 1;
236 	sc->as_maxmem = agp_max[i][1] << 20U;
237 
238 	/*
239 	 * The lock is used to prevent re-entry to
240 	 * agp_generic_bind_memory() since that function can sleep.
241 	 */
242 	mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
243 
244 	/*
245 	 * Initialise stuff for the userland device.
246 	 */
247 	agp_devclass = devclass_find("agp");
248 	TAILQ_INIT(&sc->as_memory);
249 	sc->as_nextid = 1;
250 
251 	sc->as_devalias = NULL;
252 
253 	make_dev_args_init(&mdargs);
254 	mdargs.mda_devsw = &agp_cdevsw;
255 	mdargs.mda_uid = UID_ROOT;
256 	mdargs.mda_gid = GID_WHEEL;
257 	mdargs.mda_mode = 0600;
258 	mdargs.mda_si_drv1 = dev;
259 	mdargs.mda_si_drv2 = NULL;
260 
261 	unit = device_get_unit(dev);
262 	error = make_dev_s(&mdargs, &sc->as_devnode, "agpgart%d", unit);
263 	if (error == 0) {
264 		/*
265 		 * Create an alias for the first device that shows up.
266 		 */
267 		if (unit == 0) {
268 			(void)make_dev_alias_p(MAKEDEV_CHECKNAME,
269 			    &sc->as_devalias, sc->as_devnode, "agpgart");
270 		}
271 	} else {
272 		agp_free_res(dev);
273 	}
274 
275 	return error;
276 }
277 
278 void
agp_free_cdev(device_t dev)279 agp_free_cdev(device_t dev)
280 {
281 	struct agp_softc *sc = device_get_softc(dev);
282 
283 	destroy_dev(sc->as_devnode);
284 	if (sc->as_devalias != NULL)
285 		destroy_dev(sc->as_devalias);
286 }
287 
288 void
agp_free_res(device_t dev)289 agp_free_res(device_t dev)
290 {
291 	struct agp_softc *sc = device_get_softc(dev);
292 
293 	if (sc->as_aperture != NULL)
294 		bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
295 		    sc->as_aperture);
296 	mtx_destroy(&sc->as_lock);
297 }
298 
299 int
agp_generic_detach(device_t dev)300 agp_generic_detach(device_t dev)
301 {
302 
303 	agp_free_cdev(dev);
304 	agp_free_res(dev);
305 	return 0;
306 }
307 
308 /**
309  * Default AGP aperture size detection which simply returns the size of
310  * the aperture's PCI resource.
311  */
312 u_int32_t
agp_generic_get_aperture(device_t dev)313 agp_generic_get_aperture(device_t dev)
314 {
315 	struct agp_softc *sc = device_get_softc(dev);
316 
317 	return rman_get_size(sc->as_aperture);
318 }
319 
320 /**
321  * Default AGP aperture size setting function, which simply doesn't allow
322  * changes to resource size.
323  */
324 int
agp_generic_set_aperture(device_t dev,u_int32_t aperture)325 agp_generic_set_aperture(device_t dev, u_int32_t aperture)
326 {
327 	u_int32_t current_aperture;
328 
329 	current_aperture = AGP_GET_APERTURE(dev);
330 	if (current_aperture != aperture)
331 		return EINVAL;
332 	else
333 		return 0;
334 }
335 
336 /*
337  * This does the enable logic for v3, with the same topology
338  * restrictions as in place for v2 -- one bus, one device on the bus.
339  */
340 static int
agp_v3_enable(device_t dev,device_t mdev,u_int32_t mode)341 agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
342 {
343 	u_int32_t tstatus, mstatus;
344 	u_int32_t command;
345 	int rq, sba, fw, rate, arqsz, cal;
346 
347 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
348 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
349 
350 	/* Set RQ to the min of mode, tstatus and mstatus */
351 	rq = AGP_MODE_GET_RQ(mode);
352 	if (AGP_MODE_GET_RQ(tstatus) < rq)
353 		rq = AGP_MODE_GET_RQ(tstatus);
354 	if (AGP_MODE_GET_RQ(mstatus) < rq)
355 		rq = AGP_MODE_GET_RQ(mstatus);
356 
357 	/*
358 	 * ARQSZ - Set the value to the maximum one.
359 	 * Don't allow the mode register to override values.
360 	 */
361 	arqsz = AGP_MODE_GET_ARQSZ(mode);
362 	if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
363 		rq = AGP_MODE_GET_ARQSZ(tstatus);
364 	if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
365 		rq = AGP_MODE_GET_ARQSZ(mstatus);
366 
367 	/* Calibration cycle - don't allow override by mode register */
368 	cal = AGP_MODE_GET_CAL(tstatus);
369 	if (AGP_MODE_GET_CAL(mstatus) < cal)
370 		cal = AGP_MODE_GET_CAL(mstatus);
371 
372 	/* SBA must be supported for AGP v3. */
373 	sba = 1;
374 
375 	/* Set FW if all three support it. */
376 	fw = (AGP_MODE_GET_FW(tstatus)
377 	       & AGP_MODE_GET_FW(mstatus)
378 	       & AGP_MODE_GET_FW(mode));
379 
380 	/* Figure out the max rate */
381 	rate = (AGP_MODE_GET_RATE(tstatus)
382 		& AGP_MODE_GET_RATE(mstatus)
383 		& AGP_MODE_GET_RATE(mode));
384 	if (rate & AGP_MODE_V3_RATE_8x)
385 		rate = AGP_MODE_V3_RATE_8x;
386 	else
387 		rate = AGP_MODE_V3_RATE_4x;
388 	if (bootverbose)
389 		device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
390 
391 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
392 
393 	/* Construct the new mode word and tell the hardware */
394 	command = 0;
395 	command = AGP_MODE_SET_RQ(0, rq);
396 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
397 	command = AGP_MODE_SET_CAL(command, cal);
398 	command = AGP_MODE_SET_SBA(command, sba);
399 	command = AGP_MODE_SET_FW(command, fw);
400 	command = AGP_MODE_SET_RATE(command, rate);
401 	command = AGP_MODE_SET_MODE_3(command, 1);
402 	command = AGP_MODE_SET_AGP(command, 1);
403 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
404 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
405 
406 	return 0;
407 }
408 
409 static int
agp_v2_enable(device_t dev,device_t mdev,u_int32_t mode)410 agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
411 {
412 	u_int32_t tstatus, mstatus;
413 	u_int32_t command;
414 	int rq, sba, fw, rate;
415 
416 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
417 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
418 
419 	/* Set RQ to the min of mode, tstatus and mstatus */
420 	rq = AGP_MODE_GET_RQ(mode);
421 	if (AGP_MODE_GET_RQ(tstatus) < rq)
422 		rq = AGP_MODE_GET_RQ(tstatus);
423 	if (AGP_MODE_GET_RQ(mstatus) < rq)
424 		rq = AGP_MODE_GET_RQ(mstatus);
425 
426 	/* Set SBA if all three can deal with SBA */
427 	sba = (AGP_MODE_GET_SBA(tstatus)
428 	       & AGP_MODE_GET_SBA(mstatus)
429 	       & AGP_MODE_GET_SBA(mode));
430 
431 	/* Similar for FW */
432 	fw = (AGP_MODE_GET_FW(tstatus)
433 	       & AGP_MODE_GET_FW(mstatus)
434 	       & AGP_MODE_GET_FW(mode));
435 
436 	/* Figure out the max rate */
437 	rate = (AGP_MODE_GET_RATE(tstatus)
438 		& AGP_MODE_GET_RATE(mstatus)
439 		& AGP_MODE_GET_RATE(mode));
440 	if (rate & AGP_MODE_V2_RATE_4x)
441 		rate = AGP_MODE_V2_RATE_4x;
442 	else if (rate & AGP_MODE_V2_RATE_2x)
443 		rate = AGP_MODE_V2_RATE_2x;
444 	else
445 		rate = AGP_MODE_V2_RATE_1x;
446 	if (bootverbose)
447 		device_printf(dev, "Setting AGP v2 mode %d\n", rate);
448 
449 	/* Construct the new mode word and tell the hardware */
450 	command = 0;
451 	command = AGP_MODE_SET_RQ(0, rq);
452 	command = AGP_MODE_SET_SBA(command, sba);
453 	command = AGP_MODE_SET_FW(command, fw);
454 	command = AGP_MODE_SET_RATE(command, rate);
455 	command = AGP_MODE_SET_AGP(command, 1);
456 	pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
457 	pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
458 
459 	return 0;
460 }
461 
462 int
agp_generic_enable(device_t dev,u_int32_t mode)463 agp_generic_enable(device_t dev, u_int32_t mode)
464 {
465 	device_t mdev = agp_find_display();
466 	u_int32_t tstatus, mstatus;
467 
468 	if (!mdev) {
469 		AGP_DPF("can't find display\n");
470 		return ENXIO;
471 	}
472 
473 	tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
474 	mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
475 
476 	/*
477 	 * Check display and bridge for AGP v3 support.  AGP v3 allows
478 	 * more variety in topology than v2, e.g. multiple AGP devices
479 	 * attached to one bridge, or multiple AGP bridges in one
480 	 * system.  This doesn't attempt to address those situations,
481 	 * but should work fine for a classic single AGP slot system
482 	 * with AGP v3.
483 	 */
484 	if (AGP_MODE_GET_MODE_3(mode) &&
485 	    AGP_MODE_GET_MODE_3(tstatus) &&
486 	    AGP_MODE_GET_MODE_3(mstatus))
487 		return (agp_v3_enable(dev, mdev, mode));
488 	else
489 		return (agp_v2_enable(dev, mdev, mode));
490 }
491 
492 struct agp_memory *
agp_generic_alloc_memory(device_t dev,int type,vm_size_t size)493 agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
494 {
495 	struct agp_softc *sc = device_get_softc(dev);
496 	struct agp_memory *mem;
497 
498 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
499 		return 0;
500 
501 	if (size > sc->as_maxmem - sc->as_allocated)
502 		return 0;
503 
504 	if (type != 0) {
505 		printf("agp_generic_alloc_memory: unsupported type %d\n",
506 		       type);
507 		return 0;
508 	}
509 
510 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
511 	mem->am_id = sc->as_nextid++;
512 	mem->am_size = size;
513 	mem->am_type = 0;
514 	mem->am_obj = vm_object_allocate(OBJT_SWAP, atop(round_page(size)));
515 	mem->am_physical = 0;
516 	mem->am_offset = 0;
517 	mem->am_is_bound = 0;
518 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
519 	sc->as_allocated += size;
520 
521 	return mem;
522 }
523 
524 int
agp_generic_free_memory(device_t dev,struct agp_memory * mem)525 agp_generic_free_memory(device_t dev, struct agp_memory *mem)
526 {
527 	struct agp_softc *sc = device_get_softc(dev);
528 
529 	if (mem->am_is_bound)
530 		return EBUSY;
531 
532 	sc->as_allocated -= mem->am_size;
533 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
534 	vm_object_deallocate(mem->am_obj);
535 	free(mem, M_AGP);
536 	return 0;
537 }
538 
539 int
agp_generic_bind_memory(device_t dev,struct agp_memory * mem,vm_offset_t offset)540 agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
541 			vm_offset_t offset)
542 {
543 	struct pctrie_iter pages;
544 	struct agp_softc *sc = device_get_softc(dev);
545 	vm_offset_t i, j, k;
546 	vm_page_t m;
547 	int error;
548 
549 	/* Do some sanity checks first. */
550 	if ((offset & (AGP_PAGE_SIZE - 1)) != 0 ||
551 	    offset + mem->am_size > AGP_GET_APERTURE(dev)) {
552 		device_printf(dev, "binding memory at bad offset %#x\n",
553 		    (int)offset);
554 		return EINVAL;
555 	}
556 
557 	/*
558 	 * Allocate the pages early, before acquiring the lock,
559 	 * because vm_page_grab() may sleep and we can't hold a mutex
560 	 * while sleeping.
561 	 */
562 	VM_OBJECT_WLOCK(mem->am_obj);
563 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
564 		/*
565 		 * Find a page from the object and wire it
566 		 * down. This page will be mapped using one or more
567 		 * entries in the GATT (assuming that PAGE_SIZE >=
568 		 * AGP_PAGE_SIZE. If this is the first call to bind,
569 		 * the pages will be allocated and zeroed.
570 		 */
571 		m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
572 		    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
573 		AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m));
574 	}
575 	VM_OBJECT_WUNLOCK(mem->am_obj);
576 	vm_page_iter_init(&pages, mem->am_obj);
577 	mtx_lock(&sc->as_lock);
578 
579 	if (mem->am_is_bound) {
580 		device_printf(dev, "memory already bound\n");
581 		error = EINVAL;
582 		VM_OBJECT_WLOCK(mem->am_obj);
583 		i = 0;
584 		goto bad;
585 	}
586 
587 	/*
588 	 * Bind the individual pages and flush the chipset's
589 	 * TLB.
590 	 */
591 	VM_OBJECT_WLOCK(mem->am_obj);
592 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
593 		m = vm_radix_iter_lookup(&pages, OFF_TO_IDX(i));
594 
595 		/*
596 		 * Install entries in the GATT, making sure that if
597 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
598 		 * aligned to PAGE_SIZE, we don't modify too many GATT
599 		 * entries.
600 		 */
601 		for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
602 		     j += AGP_PAGE_SIZE) {
603 			vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
604 			AGP_DPF("binding offset %#jx to pa %#jx\n",
605 				(uintmax_t)offset + i + j, (uintmax_t)pa);
606 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
607 			if (error) {
608 				/*
609 				 * Bail out. Reverse all the mappings
610 				 * and unwire the pages.
611 				 */
612 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
613 					AGP_UNBIND_PAGE(dev, offset + k);
614 				goto bad;
615 			}
616 		}
617 		vm_page_xunbusy(m);
618 	}
619 	VM_OBJECT_WUNLOCK(mem->am_obj);
620 
621 	/*
622 	 * Make sure the chipset gets the new mappings.
623 	 */
624 	AGP_FLUSH_TLB(dev);
625 
626 	mem->am_offset = offset;
627 	mem->am_is_bound = 1;
628 
629 	mtx_unlock(&sc->as_lock);
630 
631 	return 0;
632 bad:
633 	mtx_unlock(&sc->as_lock);
634 	VM_OBJECT_ASSERT_WLOCKED(mem->am_obj);
635 	for (k = 0; k < mem->am_size; k += PAGE_SIZE) {
636 		m = vm_radix_iter_lookup(&pages, OFF_TO_IDX(k));
637 		if (k >= i)
638 			vm_page_xunbusy(m);
639 		vm_page_unwire(m, PQ_INACTIVE);
640 	}
641 	VM_OBJECT_WUNLOCK(mem->am_obj);
642 
643 	return error;
644 }
645 
646 int
agp_generic_unbind_memory(device_t dev,struct agp_memory * mem)647 agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
648 {
649 	struct pctrie_iter pages;
650 	struct agp_softc *sc = device_get_softc(dev);
651 	vm_page_t m;
652 	int i;
653 
654 	mtx_lock(&sc->as_lock);
655 
656 	if (!mem->am_is_bound) {
657 		device_printf(dev, "memory is not bound\n");
658 		mtx_unlock(&sc->as_lock);
659 		return EINVAL;
660 	}
661 
662 	/*
663 	 * Unbind the individual pages and flush the chipset's
664 	 * TLB. Unwire the pages so they can be swapped.
665 	 */
666 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
667 		AGP_UNBIND_PAGE(dev, mem->am_offset + i);
668 
669 	AGP_FLUSH_TLB(dev);
670 
671 	vm_page_iter_init(&pages, mem->am_obj);
672 	VM_OBJECT_WLOCK(mem->am_obj);
673 	for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
674 		m = vm_radix_iter_lookup(&pages, atop(i));
675 		vm_page_unwire(m, PQ_INACTIVE);
676 	}
677 	VM_OBJECT_WUNLOCK(mem->am_obj);
678 
679 	mem->am_offset = 0;
680 	mem->am_is_bound = 0;
681 
682 	mtx_unlock(&sc->as_lock);
683 
684 	return 0;
685 }
686 
687 /* Helper functions for implementing user/kernel api */
688 
689 static int
agp_acquire_helper(device_t dev,enum agp_acquire_state state)690 agp_acquire_helper(device_t dev, enum agp_acquire_state state)
691 {
692 	struct agp_softc *sc = device_get_softc(dev);
693 
694 	if (sc->as_state != AGP_ACQUIRE_FREE)
695 		return EBUSY;
696 	sc->as_state = state;
697 
698 	return 0;
699 }
700 
701 static int
agp_release_helper(device_t dev,enum agp_acquire_state state)702 agp_release_helper(device_t dev, enum agp_acquire_state state)
703 {
704 	struct agp_softc *sc = device_get_softc(dev);
705 
706 	if (sc->as_state == AGP_ACQUIRE_FREE)
707 		return 0;
708 
709 	if (sc->as_state != state)
710 		return EBUSY;
711 
712 	sc->as_state = AGP_ACQUIRE_FREE;
713 	return 0;
714 }
715 
716 static struct agp_memory *
agp_find_memory(device_t dev,int id)717 agp_find_memory(device_t dev, int id)
718 {
719 	struct agp_softc *sc = device_get_softc(dev);
720 	struct agp_memory *mem;
721 
722 	AGP_DPF("searching for memory block %d\n", id);
723 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
724 		AGP_DPF("considering memory block %d\n", mem->am_id);
725 		if (mem->am_id == id)
726 			return mem;
727 	}
728 	return 0;
729 }
730 
731 /* Implementation of the userland ioctl api */
732 
733 static int
agp_info_user(device_t dev,agp_info * info)734 agp_info_user(device_t dev, agp_info *info)
735 {
736 	struct agp_softc *sc = device_get_softc(dev);
737 
738 	bzero(info, sizeof *info);
739 	info->bridge_id = pci_get_devid(dev);
740 	info->agp_mode =
741 	    pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
742 	if (sc->as_aperture)
743 		info->aper_base = rman_get_start(sc->as_aperture);
744 	else
745 		info->aper_base = 0;
746 	info->aper_size = AGP_GET_APERTURE(dev) >> 20;
747 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
748 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
749 
750 	return 0;
751 }
752 
753 static int
agp_setup_user(device_t dev,agp_setup * setup)754 agp_setup_user(device_t dev, agp_setup *setup)
755 {
756 	return AGP_ENABLE(dev, setup->agp_mode);
757 }
758 
759 static int
agp_allocate_user(device_t dev,agp_allocate * alloc)760 agp_allocate_user(device_t dev, agp_allocate *alloc)
761 {
762 	struct agp_memory *mem;
763 
764 	mem = AGP_ALLOC_MEMORY(dev,
765 			       alloc->type,
766 			       alloc->pg_count << AGP_PAGE_SHIFT);
767 	if (mem) {
768 		alloc->key = mem->am_id;
769 		alloc->physical = mem->am_physical;
770 		return 0;
771 	} else {
772 		return ENOMEM;
773 	}
774 }
775 
776 static int
agp_deallocate_user(device_t dev,int id)777 agp_deallocate_user(device_t dev, int id)
778 {
779 	struct agp_memory *mem = agp_find_memory(dev, id);
780 
781 	if (mem) {
782 		AGP_FREE_MEMORY(dev, mem);
783 		return 0;
784 	} else {
785 		return ENOENT;
786 	}
787 }
788 
789 static int
agp_bind_user(device_t dev,agp_bind * bind)790 agp_bind_user(device_t dev, agp_bind *bind)
791 {
792 	struct agp_memory *mem = agp_find_memory(dev, bind->key);
793 
794 	if (!mem)
795 		return ENOENT;
796 
797 	return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
798 }
799 
800 static int
agp_unbind_user(device_t dev,agp_unbind * unbind)801 agp_unbind_user(device_t dev, agp_unbind *unbind)
802 {
803 	struct agp_memory *mem = agp_find_memory(dev, unbind->key);
804 
805 	if (!mem)
806 		return ENOENT;
807 
808 	return AGP_UNBIND_MEMORY(dev, mem);
809 }
810 
811 static int
agp_chipset_flush(device_t dev)812 agp_chipset_flush(device_t dev)
813 {
814 
815 	return (AGP_CHIPSET_FLUSH(dev));
816 }
817 
818 static int
agp_open(struct cdev * kdev,int oflags,int devtype,struct thread * td)819 agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
820 {
821 	device_t dev = kdev->si_drv1;
822 	struct agp_softc *sc = device_get_softc(dev);
823 
824 	if (!sc->as_isopen) {
825 		sc->as_isopen = 1;
826 		device_busy(dev);
827 	}
828 
829 	return 0;
830 }
831 
832 static int
agp_close(struct cdev * kdev,int fflag,int devtype,struct thread * td)833 agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
834 {
835 	device_t dev = kdev->si_drv1;
836 	struct agp_softc *sc = device_get_softc(dev);
837 	struct agp_memory *mem;
838 
839 	/*
840 	 * Clear the GATT and force release on last close
841 	 */
842 	while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) {
843 		if (mem->am_is_bound)
844 			AGP_UNBIND_MEMORY(dev, mem);
845 		AGP_FREE_MEMORY(dev, mem);
846 	}
847 	if (sc->as_state == AGP_ACQUIRE_USER)
848 		agp_release_helper(dev, AGP_ACQUIRE_USER);
849 	sc->as_isopen = 0;
850 	device_unbusy(dev);
851 
852 	return 0;
853 }
854 
855 static int
agp_ioctl(struct cdev * kdev,u_long cmd,caddr_t data,int fflag,struct thread * td)856 agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
857 {
858 	device_t dev = kdev->si_drv1;
859 
860 	switch (cmd) {
861 	case AGPIOC_INFO:
862 		return agp_info_user(dev, (agp_info *) data);
863 
864 	case AGPIOC_ACQUIRE:
865 		return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
866 
867 	case AGPIOC_RELEASE:
868 		return agp_release_helper(dev, AGP_ACQUIRE_USER);
869 
870 	case AGPIOC_SETUP:
871 		return agp_setup_user(dev, (agp_setup *)data);
872 
873 	case AGPIOC_ALLOCATE:
874 		return agp_allocate_user(dev, (agp_allocate *)data);
875 
876 	case AGPIOC_DEALLOCATE:
877 		return agp_deallocate_user(dev, *(int *) data);
878 
879 	case AGPIOC_BIND:
880 		return agp_bind_user(dev, (agp_bind *)data);
881 
882 	case AGPIOC_UNBIND:
883 		return agp_unbind_user(dev, (agp_unbind *)data);
884 
885 	case AGPIOC_CHIPSET_FLUSH:
886 		return agp_chipset_flush(dev);
887 	}
888 
889 	return EINVAL;
890 }
891 
892 static int
agp_mmap(struct cdev * kdev,vm_ooffset_t offset,vm_paddr_t * paddr,int prot,vm_memattr_t * memattr)893 agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr,
894     int prot, vm_memattr_t *memattr)
895 {
896 	device_t dev = kdev->si_drv1;
897 	struct agp_softc *sc = device_get_softc(dev);
898 
899 	if (offset > AGP_GET_APERTURE(dev))
900 		return -1;
901 	if (sc->as_aperture == NULL)
902 		return -1;
903 	*paddr = rman_get_start(sc->as_aperture) + offset;
904 	return 0;
905 }
906 
907 /* Implementation of the kernel api */
908 
909 device_t
agp_find_device(void)910 agp_find_device(void)
911 {
912 	device_t *children, child;
913 	int i, count;
914 
915 	if (!agp_devclass)
916 		return NULL;
917 	if (devclass_get_devices(agp_devclass, &children, &count) != 0)
918 		return NULL;
919 	child = NULL;
920 	for (i = 0; i < count; i++) {
921 		if (device_is_attached(children[i])) {
922 			child = children[i];
923 			break;
924 		}
925 	}
926 	free(children, M_TEMP);
927 	return child;
928 }
929 
930 enum agp_acquire_state
agp_state(device_t dev)931 agp_state(device_t dev)
932 {
933 	struct agp_softc *sc = device_get_softc(dev);
934 	return sc->as_state;
935 }
936 
937 void
agp_get_info(device_t dev,struct agp_info * info)938 agp_get_info(device_t dev, struct agp_info *info)
939 {
940 	struct agp_softc *sc = device_get_softc(dev);
941 
942 	info->ai_mode =
943 		pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
944 	if (sc->as_aperture != NULL)
945 		info->ai_aperture_base = rman_get_start(sc->as_aperture);
946 	else
947 		info->ai_aperture_base = 0;
948 	info->ai_aperture_size = AGP_GET_APERTURE(dev);
949 	info->ai_memory_allowed = sc->as_maxmem;
950 	info->ai_memory_used = sc->as_allocated;
951 }
952 
953 int
agp_acquire(device_t dev)954 agp_acquire(device_t dev)
955 {
956 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
957 }
958 
959 int
agp_release(device_t dev)960 agp_release(device_t dev)
961 {
962 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
963 }
964 
965 int
agp_enable(device_t dev,u_int32_t mode)966 agp_enable(device_t dev, u_int32_t mode)
967 {
968 	return AGP_ENABLE(dev, mode);
969 }
970 
agp_alloc_memory(device_t dev,int type,vm_size_t bytes)971 void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
972 {
973 	return  (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
974 }
975 
agp_free_memory(device_t dev,void * handle)976 void agp_free_memory(device_t dev, void *handle)
977 {
978 	struct agp_memory *mem = (struct agp_memory *) handle;
979 	AGP_FREE_MEMORY(dev, mem);
980 }
981 
agp_bind_memory(device_t dev,void * handle,vm_offset_t offset)982 int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
983 {
984 	struct agp_memory *mem = (struct agp_memory *) handle;
985 	return AGP_BIND_MEMORY(dev, mem, offset);
986 }
987 
agp_unbind_memory(device_t dev,void * handle)988 int agp_unbind_memory(device_t dev, void *handle)
989 {
990 	struct agp_memory *mem = (struct agp_memory *) handle;
991 	return AGP_UNBIND_MEMORY(dev, mem);
992 }
993 
agp_memory_info(device_t dev,void * handle,struct agp_memory_info * mi)994 void agp_memory_info(device_t dev, void *handle, struct
995 		     agp_memory_info *mi)
996 {
997 	struct agp_memory *mem = (struct agp_memory *) handle;
998 
999 	mi->ami_size = mem->am_size;
1000 	mi->ami_physical = mem->am_physical;
1001 	mi->ami_offset = mem->am_offset;
1002 	mi->ami_is_bound = mem->am_is_bound;
1003 }
1004 
1005 int
agp_bind_pages(device_t dev,vm_page_t * pages,vm_size_t size,vm_offset_t offset)1006 agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size,
1007     vm_offset_t offset)
1008 {
1009 	struct agp_softc *sc;
1010 	vm_offset_t i, j, k, pa;
1011 	vm_page_t m;
1012 	int error;
1013 
1014 	if ((size & (AGP_PAGE_SIZE - 1)) != 0 ||
1015 	    (offset & (AGP_PAGE_SIZE - 1)) != 0)
1016 		return (EINVAL);
1017 
1018 	sc = device_get_softc(dev);
1019 
1020 	mtx_lock(&sc->as_lock);
1021 	for (i = 0; i < size; i += PAGE_SIZE) {
1022 		m = pages[OFF_TO_IDX(i)];
1023 		KASSERT(vm_page_wired(m),
1024 		    ("agp_bind_pages: page %p hasn't been wired", m));
1025 
1026 		/*
1027 		 * Install entries in the GATT, making sure that if
1028 		 * AGP_PAGE_SIZE < PAGE_SIZE and size is not
1029 		 * aligned to PAGE_SIZE, we don't modify too many GATT
1030 		 * entries.
1031 		 */
1032 		for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) {
1033 			pa = VM_PAGE_TO_PHYS(m) + j;
1034 			AGP_DPF("binding offset %#jx to pa %#jx\n",
1035 				(uintmax_t)offset + i + j, (uintmax_t)pa);
1036 			error = AGP_BIND_PAGE(dev, offset + i + j, pa);
1037 			if (error) {
1038 				/*
1039 				 * Bail out. Reverse all the mappings.
1040 				 */
1041 				for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
1042 					AGP_UNBIND_PAGE(dev, offset + k);
1043 
1044 				mtx_unlock(&sc->as_lock);
1045 				return (error);
1046 			}
1047 		}
1048 	}
1049 
1050 	AGP_FLUSH_TLB(dev);
1051 
1052 	mtx_unlock(&sc->as_lock);
1053 	return (0);
1054 }
1055 
1056 int
agp_unbind_pages(device_t dev,vm_size_t size,vm_offset_t offset)1057 agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset)
1058 {
1059 	struct agp_softc *sc;
1060 	vm_offset_t i;
1061 
1062 	if ((size & (AGP_PAGE_SIZE - 1)) != 0 ||
1063 	    (offset & (AGP_PAGE_SIZE - 1)) != 0)
1064 		return (EINVAL);
1065 
1066 	sc = device_get_softc(dev);
1067 
1068 	mtx_lock(&sc->as_lock);
1069 	for (i = 0; i < size; i += AGP_PAGE_SIZE)
1070 		AGP_UNBIND_PAGE(dev, offset + i);
1071 
1072 	AGP_FLUSH_TLB(dev);
1073 
1074 	mtx_unlock(&sc->as_lock);
1075 	return (0);
1076 }
1077