xref: /freebsd/sys/dev/age/if_age.c (revision ddaf6524682b3ab9e50f7575db319814dbbd053a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/endian.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/rman.h>
40 #include <sys/module.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/age/if_agereg.h>
72 #include <dev/age/if_agevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 #define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78 
79 MODULE_DEPEND(age, pci, 1, 1, 1);
80 MODULE_DEPEND(age, ether, 1, 1, 1);
81 MODULE_DEPEND(age, miibus, 1, 1, 1);
82 
83 /* Tunables. */
84 static int msi_disable = 0;
85 static int msix_disable = 0;
86 TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87 TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88 
89 /*
90  * Devices supported by this driver.
91  */
92 static struct age_dev {
93 	uint16_t	age_vendorid;
94 	uint16_t	age_deviceid;
95 	const char	*age_name;
96 } age_devs[] = {
97 	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98 	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99 };
100 
101 static int age_miibus_readreg(device_t, int, int);
102 static int age_miibus_writereg(device_t, int, int, int);
103 static void age_miibus_statchg(device_t);
104 static void age_mediastatus(if_t, struct ifmediareq *);
105 static int age_mediachange(if_t);
106 static int age_probe(device_t);
107 static void age_get_macaddr(struct age_softc *);
108 static void age_phy_reset(struct age_softc *);
109 static int age_attach(device_t);
110 static int age_detach(device_t);
111 static void age_sysctl_node(struct age_softc *);
112 static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113 static int age_check_boundary(struct age_softc *);
114 static int age_dma_alloc(struct age_softc *);
115 static void age_dma_free(struct age_softc *);
116 static int age_shutdown(device_t);
117 static void age_setwol(struct age_softc *);
118 static int age_suspend(device_t);
119 static int age_resume(device_t);
120 static int age_encap(struct age_softc *, struct mbuf **);
121 static void age_start(if_t);
122 static void age_start_locked(if_t);
123 static void age_watchdog(struct age_softc *);
124 static int age_ioctl(if_t, u_long, caddr_t);
125 static void age_mac_config(struct age_softc *);
126 static void age_link_task(void *, int);
127 static void age_stats_update(struct age_softc *);
128 static int age_intr(void *);
129 static void age_int_task(void *, int);
130 static void age_txintr(struct age_softc *, int);
131 static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132 static int age_rxintr(struct age_softc *, int, int);
133 static void age_tick(void *);
134 static void age_reset(struct age_softc *);
135 static void age_init(void *);
136 static void age_init_locked(struct age_softc *);
137 static void age_stop(struct age_softc *);
138 static void age_stop_txmac(struct age_softc *);
139 static void age_stop_rxmac(struct age_softc *);
140 static void age_init_tx_ring(struct age_softc *);
141 static int age_init_rx_ring(struct age_softc *);
142 static void age_init_rr_ring(struct age_softc *);
143 static void age_init_cmb_block(struct age_softc *);
144 static void age_init_smb_block(struct age_softc *);
145 #ifndef __NO_STRICT_ALIGNMENT
146 static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
147 #endif
148 static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149 static void age_rxvlan(struct age_softc *);
150 static void age_rxfilter(struct age_softc *);
151 static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153 static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154 static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155 
156 static device_method_t age_methods[] = {
157 	/* Device interface. */
158 	DEVMETHOD(device_probe,		age_probe),
159 	DEVMETHOD(device_attach,	age_attach),
160 	DEVMETHOD(device_detach,	age_detach),
161 	DEVMETHOD(device_shutdown,	age_shutdown),
162 	DEVMETHOD(device_suspend,	age_suspend),
163 	DEVMETHOD(device_resume,	age_resume),
164 
165 	/* MII interface. */
166 	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
167 	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
168 	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
169 	{ NULL, NULL }
170 };
171 
172 static driver_t age_driver = {
173 	"age",
174 	age_methods,
175 	sizeof(struct age_softc)
176 };
177 
178 DRIVER_MODULE(age, pci, age_driver, 0, 0);
179 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
180     nitems(age_devs));
181 DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
182 
183 static struct resource_spec age_res_spec_mem[] = {
184 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
185 	{ -1,			0,		0 }
186 };
187 
188 static struct resource_spec age_irq_spec_legacy[] = {
189 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
190 	{ -1,			0,		0 }
191 };
192 
193 static struct resource_spec age_irq_spec_msi[] = {
194 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec age_irq_spec_msix[] = {
199 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 /*
204  *	Read a PHY register on the MII of the L1.
205  */
206 static int
age_miibus_readreg(device_t dev,int phy,int reg)207 age_miibus_readreg(device_t dev, int phy, int reg)
208 {
209 	struct age_softc *sc;
210 	uint32_t v;
211 	int i;
212 
213 	sc = device_get_softc(dev);
214 
215 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
216 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
217 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
218 		DELAY(1);
219 		v = CSR_READ_4(sc, AGE_MDIO);
220 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
221 			break;
222 	}
223 
224 	if (i == 0) {
225 		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
226 		return (0);
227 	}
228 
229 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
230 }
231 
232 /*
233  *	Write a PHY register on the MII of the L1.
234  */
235 static int
age_miibus_writereg(device_t dev,int phy,int reg,int val)236 age_miibus_writereg(device_t dev, int phy, int reg, int val)
237 {
238 	struct age_softc *sc;
239 	uint32_t v;
240 	int i;
241 
242 	sc = device_get_softc(dev);
243 
244 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
245 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
246 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
247 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
248 		DELAY(1);
249 		v = CSR_READ_4(sc, AGE_MDIO);
250 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
251 			break;
252 	}
253 
254 	if (i == 0)
255 		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
256 
257 	return (0);
258 }
259 
260 /*
261  *	Callback from MII layer when media changes.
262  */
263 static void
age_miibus_statchg(device_t dev)264 age_miibus_statchg(device_t dev)
265 {
266 	struct age_softc *sc;
267 
268 	sc = device_get_softc(dev);
269 	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
270 }
271 
272 /*
273  *	Get the current interface media status.
274  */
275 static void
age_mediastatus(if_t ifp,struct ifmediareq * ifmr)276 age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
277 {
278 	struct age_softc *sc;
279 	struct mii_data *mii;
280 
281 	sc = if_getsoftc(ifp);
282 	AGE_LOCK(sc);
283 	mii = device_get_softc(sc->age_miibus);
284 
285 	mii_pollstat(mii);
286 	ifmr->ifm_status = mii->mii_media_status;
287 	ifmr->ifm_active = mii->mii_media_active;
288 	AGE_UNLOCK(sc);
289 }
290 
291 /*
292  *	Set hardware to newly-selected media.
293  */
294 static int
age_mediachange(if_t ifp)295 age_mediachange(if_t ifp)
296 {
297 	struct age_softc *sc;
298 	struct mii_data *mii;
299 	struct mii_softc *miisc;
300 	int error;
301 
302 	sc = if_getsoftc(ifp);
303 	AGE_LOCK(sc);
304 	mii = device_get_softc(sc->age_miibus);
305 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306 		PHY_RESET(miisc);
307 	error = mii_mediachg(mii);
308 	AGE_UNLOCK(sc);
309 
310 	return (error);
311 }
312 
313 static int
age_probe(device_t dev)314 age_probe(device_t dev)
315 {
316 	struct age_dev *sp;
317 	int i;
318 	uint16_t vendor, devid;
319 
320 	vendor = pci_get_vendor(dev);
321 	devid = pci_get_device(dev);
322 	sp = age_devs;
323 	for (i = 0; i < nitems(age_devs); i++, sp++) {
324 		if (vendor == sp->age_vendorid &&
325 		    devid == sp->age_deviceid) {
326 			device_set_desc(dev, sp->age_name);
327 			return (BUS_PROBE_DEFAULT);
328 		}
329 	}
330 
331 	return (ENXIO);
332 }
333 
334 static void
age_get_macaddr(struct age_softc * sc)335 age_get_macaddr(struct age_softc *sc)
336 {
337 	uint32_t ea[2], reg;
338 	int i, vpdc;
339 
340 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341 	if ((reg & SPI_VPD_ENB) != 0) {
342 		/* Get VPD stored in TWSI EEPROM. */
343 		reg &= ~SPI_VPD_ENB;
344 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345 	}
346 
347 	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348 		/*
349 		 * PCI VPD capability found, let TWSI reload EEPROM.
350 		 * This will set ethernet address of controller.
351 		 */
352 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353 		    TWSI_CTRL_SW_LD_START);
354 		for (i = 100; i > 0; i--) {
355 			DELAY(1000);
356 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358 				break;
359 		}
360 		if (i == 0)
361 			device_printf(sc->age_dev,
362 			    "reloading EEPROM timeout!\n");
363 	} else {
364 		if (bootverbose)
365 			device_printf(sc->age_dev,
366 			    "PCI VPD capability not found!\n");
367 	}
368 
369 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377 }
378 
379 static void
age_phy_reset(struct age_softc * sc)380 age_phy_reset(struct age_softc *sc)
381 {
382 	uint16_t reg, pn;
383 	int i, linkup;
384 
385 	/* Reset PHY. */
386 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387 	DELAY(2000);
388 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389 	DELAY(2000);
390 
391 #define	ATPHY_DBG_ADDR		0x1D
392 #define	ATPHY_DBG_DATA		0x1E
393 #define	ATPHY_CDTC		0x16
394 #define	PHY_CDTC_ENB		0x0001
395 #define	PHY_CDTC_POFF		8
396 #define	ATPHY_CDTS		0x1C
397 #define	PHY_CDTS_STAT_OK	0x0000
398 #define	PHY_CDTS_STAT_SHORT	0x0100
399 #define	PHY_CDTS_STAT_OPEN	0x0200
400 #define	PHY_CDTS_STAT_INVAL	0x0300
401 #define	PHY_CDTS_STAT_MASK	0x0300
402 
403 	/* Check power saving mode. Magic from Linux. */
404 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405 	for (linkup = 0, pn = 0; pn < 4; pn++) {
406 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408 		for (i = 200; i > 0; i--) {
409 			DELAY(1000);
410 			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411 			    ATPHY_CDTC);
412 			if ((reg & PHY_CDTC_ENB) == 0)
413 				break;
414 		}
415 		DELAY(1000);
416 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417 		    ATPHY_CDTS);
418 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419 			linkup++;
420 			break;
421 		}
422 	}
423 	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425 	if (linkup == 0) {
426 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427 		    ATPHY_DBG_ADDR, 0);
428 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429 		    ATPHY_DBG_DATA, 0x124E);
430 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431 		    ATPHY_DBG_ADDR, 1);
432 		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433 		    ATPHY_DBG_DATA);
434 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435 		    ATPHY_DBG_DATA, reg | 0x03);
436 		/* XXX */
437 		DELAY(1500 * 1000);
438 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439 		    ATPHY_DBG_ADDR, 0);
440 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441 		    ATPHY_DBG_DATA, 0x024E);
442     }
443 
444 #undef	ATPHY_DBG_ADDR
445 #undef	ATPHY_DBG_DATA
446 #undef	ATPHY_CDTC
447 #undef	PHY_CDTC_ENB
448 #undef	PHY_CDTC_POFF
449 #undef	ATPHY_CDTS
450 #undef	PHY_CDTS_STAT_OK
451 #undef	PHY_CDTS_STAT_SHORT
452 #undef	PHY_CDTS_STAT_OPEN
453 #undef	PHY_CDTS_STAT_INVAL
454 #undef	PHY_CDTS_STAT_MASK
455 }
456 
457 static int
age_attach(device_t dev)458 age_attach(device_t dev)
459 {
460 	struct age_softc *sc;
461 	if_t ifp;
462 	uint16_t burst;
463 	int error, i, msic, msixc;
464 
465 	error = 0;
466 	sc = device_get_softc(dev);
467 	sc->age_dev = dev;
468 
469 	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470 	    MTX_DEF);
471 	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472 	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473 	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474 
475 	/* Map the device. */
476 	pci_enable_busmaster(dev);
477 	sc->age_res_spec = age_res_spec_mem;
478 	sc->age_irq_spec = age_irq_spec_legacy;
479 	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480 	if (error != 0) {
481 		device_printf(dev, "cannot allocate memory resources.\n");
482 		goto fail;
483 	}
484 
485 	/* Set PHY address. */
486 	sc->age_phyaddr = AGE_PHY_ADDR;
487 
488 	/* Reset PHY. */
489 	age_phy_reset(sc);
490 
491 	/* Reset the ethernet controller. */
492 	age_reset(sc);
493 
494 	/* Get PCI and chip id/revision. */
495 	sc->age_rev = pci_get_revid(dev);
496 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497 	    MASTER_CHIP_REV_SHIFT;
498 	if (bootverbose) {
499 		device_printf(dev, "PCI device revision : 0x%04x\n",
500 		    sc->age_rev);
501 		device_printf(dev, "Chip id/revision : 0x%04x\n",
502 		    sc->age_chip_rev);
503 	}
504 
505 	/*
506 	 * XXX
507 	 * Unintialized hardware returns an invalid chip id/revision
508 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509 	 * unplugged cable results in putting hardware into automatic
510 	 * power down mode which in turn returns invalld chip revision.
511 	 */
512 	if (sc->age_chip_rev == 0xFFFF) {
513 		device_printf(dev,"invalid chip revision : 0x%04x -- "
514 		    "not initialized?\n", sc->age_chip_rev);
515 		error = ENXIO;
516 		goto fail;
517 	}
518 
519 	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520 	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521 	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522 
523 	/* Allocate IRQ resources. */
524 	msixc = pci_msix_count(dev);
525 	msic = pci_msi_count(dev);
526 	if (bootverbose) {
527 		device_printf(dev, "MSIX count : %d\n", msixc);
528 		device_printf(dev, "MSI count : %d\n", msic);
529 	}
530 
531 	/* Prefer MSIX over MSI. */
532 	if (msix_disable == 0 || msi_disable == 0) {
533 		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534 		    pci_alloc_msix(dev, &msixc) == 0) {
535 			if (msic == AGE_MSIX_MESSAGES) {
536 				device_printf(dev, "Using %d MSIX messages.\n",
537 				    msixc);
538 				sc->age_flags |= AGE_FLAG_MSIX;
539 				sc->age_irq_spec = age_irq_spec_msix;
540 			} else
541 				pci_release_msi(dev);
542 		}
543 		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544 		    msic == AGE_MSI_MESSAGES &&
545 		    pci_alloc_msi(dev, &msic) == 0) {
546 			if (msic == AGE_MSI_MESSAGES) {
547 				device_printf(dev, "Using %d MSI messages.\n",
548 				    msic);
549 				sc->age_flags |= AGE_FLAG_MSI;
550 				sc->age_irq_spec = age_irq_spec_msi;
551 			} else
552 				pci_release_msi(dev);
553 		}
554 	}
555 
556 	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557 	if (error != 0) {
558 		device_printf(dev, "cannot allocate IRQ resources.\n");
559 		goto fail;
560 	}
561 
562 	/* Get DMA parameters from PCIe device control register. */
563 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
564 		sc->age_flags |= AGE_FLAG_PCIE;
565 		burst = pci_read_config(dev, i + 0x08, 2);
566 		/* Max read request size. */
567 		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
568 		    DMA_CFG_RD_BURST_SHIFT;
569 		/* Max payload size. */
570 		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
571 		    DMA_CFG_WR_BURST_SHIFT;
572 		if (bootverbose) {
573 			device_printf(dev, "Read request size : %d bytes.\n",
574 			    128 << ((burst >> 12) & 0x07));
575 			device_printf(dev, "TLP payload size : %d bytes.\n",
576 			    128 << ((burst >> 5) & 0x07));
577 		}
578 	} else {
579 		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
580 		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
581 	}
582 
583 	/* Create device sysctl node. */
584 	age_sysctl_node(sc);
585 
586 	if ((error = age_dma_alloc(sc)) != 0)
587 		goto fail;
588 
589 	/* Load station address. */
590 	age_get_macaddr(sc);
591 
592 	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
593 	if_setsoftc(ifp, sc);
594 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596 	if_setioctlfn(ifp, age_ioctl);
597 	if_setstartfn(ifp, age_start);
598 	if_setinitfn(ifp, age_init);
599 	if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
600 	if_setsendqready(ifp);
601 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
602 	if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
603 	if (pci_has_pm(dev)) {
604 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
605 	}
606 	if_setcapenable(ifp, if_getcapabilities(ifp));
607 
608 	/* Set up MII bus. */
609 	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
610 	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
611 	    0);
612 	if (error != 0) {
613 		device_printf(dev, "attaching PHYs failed\n");
614 		goto fail;
615 	}
616 
617 	ether_ifattach(ifp, sc->age_eaddr);
618 
619 	/* VLAN capability setup. */
620 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
621 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
622 	if_setcapenable(ifp, if_getcapabilities(ifp));
623 
624 	/* Tell the upper layer(s) we support long frames. */
625 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
626 
627 	/* Create local taskq. */
628 	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
629 	    taskqueue_thread_enqueue, &sc->age_tq);
630 	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
631 	    device_get_nameunit(sc->age_dev));
632 
633 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
634 		msic = AGE_MSIX_MESSAGES;
635 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
636 		msic = AGE_MSI_MESSAGES;
637 	else
638 		msic = 1;
639 	for (i = 0; i < msic; i++) {
640 		error = bus_setup_intr(dev, sc->age_irq[i],
641 		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
642 		    &sc->age_intrhand[i]);
643 		if (error != 0)
644 			break;
645 	}
646 	if (error != 0) {
647 		device_printf(dev, "could not set up interrupt handler.\n");
648 		taskqueue_free(sc->age_tq);
649 		sc->age_tq = NULL;
650 		ether_ifdetach(ifp);
651 		goto fail;
652 	}
653 
654 fail:
655 	if (error != 0)
656 		age_detach(dev);
657 
658 	return (error);
659 }
660 
661 static int
age_detach(device_t dev)662 age_detach(device_t dev)
663 {
664 	struct age_softc *sc;
665 	if_t ifp;
666 	int i, msic;
667 
668 	sc = device_get_softc(dev);
669 
670 	ifp = sc->age_ifp;
671 	if (device_is_attached(dev)) {
672 		AGE_LOCK(sc);
673 		sc->age_flags |= AGE_FLAG_DETACH;
674 		age_stop(sc);
675 		AGE_UNLOCK(sc);
676 		callout_drain(&sc->age_tick_ch);
677 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
678 		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
679 		ether_ifdetach(ifp);
680 	}
681 
682 	if (sc->age_tq != NULL) {
683 		taskqueue_drain(sc->age_tq, &sc->age_int_task);
684 		taskqueue_free(sc->age_tq);
685 		sc->age_tq = NULL;
686 	}
687 
688 	bus_generic_detach(dev);
689 	age_dma_free(sc);
690 
691 	if (ifp != NULL) {
692 		if_free(ifp);
693 		sc->age_ifp = NULL;
694 	}
695 
696 	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
697 		msic = AGE_MSIX_MESSAGES;
698 	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
699 		msic = AGE_MSI_MESSAGES;
700 	else
701 		msic = 1;
702 	for (i = 0; i < msic; i++) {
703 		if (sc->age_intrhand[i] != NULL) {
704 			bus_teardown_intr(dev, sc->age_irq[i],
705 			    sc->age_intrhand[i]);
706 			sc->age_intrhand[i] = NULL;
707 		}
708 	}
709 
710 	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
711 	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
712 		pci_release_msi(dev);
713 	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
714 	mtx_destroy(&sc->age_mtx);
715 
716 	return (0);
717 }
718 
719 static void
age_sysctl_node(struct age_softc * sc)720 age_sysctl_node(struct age_softc *sc)
721 {
722 	int error;
723 
724 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
725 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
726 	    "stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
727 	    sc, 0, sysctl_age_stats, "I", "Statistics");
728 
729 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
730 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
731 	    "int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
732 	    &sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
733 	    "age interrupt moderation");
734 
735 	/* Pull in device tunables. */
736 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
737 	error = resource_int_value(device_get_name(sc->age_dev),
738 	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
739 	if (error == 0) {
740 		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
741 		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
742 			device_printf(sc->age_dev,
743 			    "int_mod value out of range; using default: %d\n",
744 			    AGE_IM_TIMER_DEFAULT);
745 			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
746 		}
747 	}
748 
749 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751 	    "process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
752 	    &sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
753 	    "max number of Rx events to process");
754 
755 	/* Pull in device tunables. */
756 	sc->age_process_limit = AGE_PROC_DEFAULT;
757 	error = resource_int_value(device_get_name(sc->age_dev),
758 	    device_get_unit(sc->age_dev), "process_limit",
759 	    &sc->age_process_limit);
760 	if (error == 0) {
761 		if (sc->age_process_limit < AGE_PROC_MIN ||
762 		    sc->age_process_limit > AGE_PROC_MAX) {
763 			device_printf(sc->age_dev,
764 			    "process_limit value out of range; "
765 			    "using default: %d\n", AGE_PROC_DEFAULT);
766 			sc->age_process_limit = AGE_PROC_DEFAULT;
767 		}
768 	}
769 }
770 
771 struct age_dmamap_arg {
772 	bus_addr_t	age_busaddr;
773 };
774 
775 static void
age_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nsegs,int error)776 age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
777 {
778 	struct age_dmamap_arg *ctx;
779 
780 	if (error != 0)
781 		return;
782 
783 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
784 
785 	ctx = (struct age_dmamap_arg *)arg;
786 	ctx->age_busaddr = segs[0].ds_addr;
787 }
788 
789 /*
790  * Attansic L1 controller have single register to specify high
791  * address part of DMA blocks. So all descriptor structures and
792  * DMA memory blocks should have the same high address of given
793  * 4GB address space(i.e. crossing 4GB boundary is not allowed).
794  */
795 static int
age_check_boundary(struct age_softc * sc)796 age_check_boundary(struct age_softc *sc)
797 {
798 	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
799 	bus_addr_t cmb_block_end, smb_block_end;
800 
801 	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
802 	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
803 	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
804 	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
805 	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
806 	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
807 
808 	if ((AGE_ADDR_HI(tx_ring_end) !=
809 	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
810 	    (AGE_ADDR_HI(rx_ring_end) !=
811 	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
812 	    (AGE_ADDR_HI(rr_ring_end) !=
813 	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
814 	    (AGE_ADDR_HI(cmb_block_end) !=
815 	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
816 	    (AGE_ADDR_HI(smb_block_end) !=
817 	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
818 		return (EFBIG);
819 
820 	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
821 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
822 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
823 	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
824 		return (EFBIG);
825 
826 	return (0);
827 }
828 
829 static int
age_dma_alloc(struct age_softc * sc)830 age_dma_alloc(struct age_softc *sc)
831 {
832 	struct age_txdesc *txd;
833 	struct age_rxdesc *rxd;
834 	bus_addr_t lowaddr;
835 	struct age_dmamap_arg ctx;
836 	int error, i;
837 
838 	lowaddr = BUS_SPACE_MAXADDR;
839 
840 again:
841 	/* Create parent ring/DMA block tag. */
842 	error = bus_dma_tag_create(
843 	    bus_get_dma_tag(sc->age_dev), /* parent */
844 	    1, 0,			/* alignment, boundary */
845 	    lowaddr,			/* lowaddr */
846 	    BUS_SPACE_MAXADDR,		/* highaddr */
847 	    NULL, NULL,			/* filter, filterarg */
848 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
849 	    0,				/* nsegments */
850 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
851 	    0,				/* flags */
852 	    NULL, NULL,			/* lockfunc, lockarg */
853 	    &sc->age_cdata.age_parent_tag);
854 	if (error != 0) {
855 		device_printf(sc->age_dev,
856 		    "could not create parent DMA tag.\n");
857 		goto fail;
858 	}
859 
860 	/* Create tag for Tx ring. */
861 	error = bus_dma_tag_create(
862 	    sc->age_cdata.age_parent_tag, /* parent */
863 	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
864 	    BUS_SPACE_MAXADDR,		/* lowaddr */
865 	    BUS_SPACE_MAXADDR,		/* highaddr */
866 	    NULL, NULL,			/* filter, filterarg */
867 	    AGE_TX_RING_SZ,		/* maxsize */
868 	    1,				/* nsegments */
869 	    AGE_TX_RING_SZ,		/* maxsegsize */
870 	    0,				/* flags */
871 	    NULL, NULL,			/* lockfunc, lockarg */
872 	    &sc->age_cdata.age_tx_ring_tag);
873 	if (error != 0) {
874 		device_printf(sc->age_dev,
875 		    "could not create Tx ring DMA tag.\n");
876 		goto fail;
877 	}
878 
879 	/* Create tag for Rx ring. */
880 	error = bus_dma_tag_create(
881 	    sc->age_cdata.age_parent_tag, /* parent */
882 	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
883 	    BUS_SPACE_MAXADDR,		/* lowaddr */
884 	    BUS_SPACE_MAXADDR,		/* highaddr */
885 	    NULL, NULL,			/* filter, filterarg */
886 	    AGE_RX_RING_SZ,		/* maxsize */
887 	    1,				/* nsegments */
888 	    AGE_RX_RING_SZ,		/* maxsegsize */
889 	    0,				/* flags */
890 	    NULL, NULL,			/* lockfunc, lockarg */
891 	    &sc->age_cdata.age_rx_ring_tag);
892 	if (error != 0) {
893 		device_printf(sc->age_dev,
894 		    "could not create Rx ring DMA tag.\n");
895 		goto fail;
896 	}
897 
898 	/* Create tag for Rx return ring. */
899 	error = bus_dma_tag_create(
900 	    sc->age_cdata.age_parent_tag, /* parent */
901 	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
902 	    BUS_SPACE_MAXADDR,		/* lowaddr */
903 	    BUS_SPACE_MAXADDR,		/* highaddr */
904 	    NULL, NULL,			/* filter, filterarg */
905 	    AGE_RR_RING_SZ,		/* maxsize */
906 	    1,				/* nsegments */
907 	    AGE_RR_RING_SZ,		/* maxsegsize */
908 	    0,				/* flags */
909 	    NULL, NULL,			/* lockfunc, lockarg */
910 	    &sc->age_cdata.age_rr_ring_tag);
911 	if (error != 0) {
912 		device_printf(sc->age_dev,
913 		    "could not create Rx return ring DMA tag.\n");
914 		goto fail;
915 	}
916 
917 	/* Create tag for coalesing message block. */
918 	error = bus_dma_tag_create(
919 	    sc->age_cdata.age_parent_tag, /* parent */
920 	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
921 	    BUS_SPACE_MAXADDR,		/* lowaddr */
922 	    BUS_SPACE_MAXADDR,		/* highaddr */
923 	    NULL, NULL,			/* filter, filterarg */
924 	    AGE_CMB_BLOCK_SZ,		/* maxsize */
925 	    1,				/* nsegments */
926 	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
927 	    0,				/* flags */
928 	    NULL, NULL,			/* lockfunc, lockarg */
929 	    &sc->age_cdata.age_cmb_block_tag);
930 	if (error != 0) {
931 		device_printf(sc->age_dev,
932 		    "could not create CMB DMA tag.\n");
933 		goto fail;
934 	}
935 
936 	/* Create tag for statistics message block. */
937 	error = bus_dma_tag_create(
938 	    sc->age_cdata.age_parent_tag, /* parent */
939 	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
940 	    BUS_SPACE_MAXADDR,		/* lowaddr */
941 	    BUS_SPACE_MAXADDR,		/* highaddr */
942 	    NULL, NULL,			/* filter, filterarg */
943 	    AGE_SMB_BLOCK_SZ,		/* maxsize */
944 	    1,				/* nsegments */
945 	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
946 	    0,				/* flags */
947 	    NULL, NULL,			/* lockfunc, lockarg */
948 	    &sc->age_cdata.age_smb_block_tag);
949 	if (error != 0) {
950 		device_printf(sc->age_dev,
951 		    "could not create SMB DMA tag.\n");
952 		goto fail;
953 	}
954 
955 	/* Allocate DMA'able memory and load the DMA map. */
956 	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
957 	    (void **)&sc->age_rdata.age_tx_ring,
958 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
959 	    &sc->age_cdata.age_tx_ring_map);
960 	if (error != 0) {
961 		device_printf(sc->age_dev,
962 		    "could not allocate DMA'able memory for Tx ring.\n");
963 		goto fail;
964 	}
965 	ctx.age_busaddr = 0;
966 	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
967 	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
968 	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
969 	if (error != 0 || ctx.age_busaddr == 0) {
970 		device_printf(sc->age_dev,
971 		    "could not load DMA'able memory for Tx ring.\n");
972 		goto fail;
973 	}
974 	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
975 	/* Rx ring */
976 	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
977 	    (void **)&sc->age_rdata.age_rx_ring,
978 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979 	    &sc->age_cdata.age_rx_ring_map);
980 	if (error != 0) {
981 		device_printf(sc->age_dev,
982 		    "could not allocate DMA'able memory for Rx ring.\n");
983 		goto fail;
984 	}
985 	ctx.age_busaddr = 0;
986 	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
987 	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
988 	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
989 	if (error != 0 || ctx.age_busaddr == 0) {
990 		device_printf(sc->age_dev,
991 		    "could not load DMA'able memory for Rx ring.\n");
992 		goto fail;
993 	}
994 	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
995 	/* Rx return ring */
996 	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
997 	    (void **)&sc->age_rdata.age_rr_ring,
998 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999 	    &sc->age_cdata.age_rr_ring_map);
1000 	if (error != 0) {
1001 		device_printf(sc->age_dev,
1002 		    "could not allocate DMA'able memory for Rx return ring.\n");
1003 		goto fail;
1004 	}
1005 	ctx.age_busaddr = 0;
1006 	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1007 	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1008 	    AGE_RR_RING_SZ, age_dmamap_cb,
1009 	    &ctx, 0);
1010 	if (error != 0 || ctx.age_busaddr == 0) {
1011 		device_printf(sc->age_dev,
1012 		    "could not load DMA'able memory for Rx return ring.\n");
1013 		goto fail;
1014 	}
1015 	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1016 	/* CMB block */
1017 	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1018 	    (void **)&sc->age_rdata.age_cmb_block,
1019 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020 	    &sc->age_cdata.age_cmb_block_map);
1021 	if (error != 0) {
1022 		device_printf(sc->age_dev,
1023 		    "could not allocate DMA'able memory for CMB block.\n");
1024 		goto fail;
1025 	}
1026 	ctx.age_busaddr = 0;
1027 	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1028 	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1029 	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1030 	if (error != 0 || ctx.age_busaddr == 0) {
1031 		device_printf(sc->age_dev,
1032 		    "could not load DMA'able memory for CMB block.\n");
1033 		goto fail;
1034 	}
1035 	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1036 	/* SMB block */
1037 	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1038 	    (void **)&sc->age_rdata.age_smb_block,
1039 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040 	    &sc->age_cdata.age_smb_block_map);
1041 	if (error != 0) {
1042 		device_printf(sc->age_dev,
1043 		    "could not allocate DMA'able memory for SMB block.\n");
1044 		goto fail;
1045 	}
1046 	ctx.age_busaddr = 0;
1047 	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1048 	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1049 	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050 	if (error != 0 || ctx.age_busaddr == 0) {
1051 		device_printf(sc->age_dev,
1052 		    "could not load DMA'able memory for SMB block.\n");
1053 		goto fail;
1054 	}
1055 	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1056 
1057 	/*
1058 	 * All ring buffer and DMA blocks should have the same
1059 	 * high address part of 64bit DMA address space.
1060 	 */
1061 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1062 	    (error = age_check_boundary(sc)) != 0) {
1063 		device_printf(sc->age_dev, "4GB boundary crossed, "
1064 		    "switching to 32bit DMA addressing mode.\n");
1065 		age_dma_free(sc);
1066 		/* Limit DMA address space to 32bit and try again. */
1067 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1068 		goto again;
1069 	}
1070 
1071 	/*
1072 	 * Create Tx/Rx buffer parent tag.
1073 	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1074 	 * so it needs separate parent DMA tag.
1075 	 * XXX
1076 	 * It seems enabling 64bit DMA causes data corruption. Limit
1077 	 * DMA address space to 32bit.
1078 	 */
1079 	error = bus_dma_tag_create(
1080 	    bus_get_dma_tag(sc->age_dev), /* parent */
1081 	    1, 0,			/* alignment, boundary */
1082 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1083 	    BUS_SPACE_MAXADDR,		/* highaddr */
1084 	    NULL, NULL,			/* filter, filterarg */
1085 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1086 	    0,				/* nsegments */
1087 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1088 	    0,				/* flags */
1089 	    NULL, NULL,			/* lockfunc, lockarg */
1090 	    &sc->age_cdata.age_buffer_tag);
1091 	if (error != 0) {
1092 		device_printf(sc->age_dev,
1093 		    "could not create parent buffer DMA tag.\n");
1094 		goto fail;
1095 	}
1096 
1097 	/* Create tag for Tx buffers. */
1098 	error = bus_dma_tag_create(
1099 	    sc->age_cdata.age_buffer_tag, /* parent */
1100 	    1, 0,			/* alignment, boundary */
1101 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1102 	    BUS_SPACE_MAXADDR,		/* highaddr */
1103 	    NULL, NULL,			/* filter, filterarg */
1104 	    AGE_TSO_MAXSIZE,		/* maxsize */
1105 	    AGE_MAXTXSEGS,		/* nsegments */
1106 	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1107 	    0,				/* flags */
1108 	    NULL, NULL,			/* lockfunc, lockarg */
1109 	    &sc->age_cdata.age_tx_tag);
1110 	if (error != 0) {
1111 		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1112 		goto fail;
1113 	}
1114 
1115 	/* Create tag for Rx buffers. */
1116 	error = bus_dma_tag_create(
1117 	    sc->age_cdata.age_buffer_tag, /* parent */
1118 	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1119 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1120 	    BUS_SPACE_MAXADDR,		/* highaddr */
1121 	    NULL, NULL,			/* filter, filterarg */
1122 	    MCLBYTES,			/* maxsize */
1123 	    1,				/* nsegments */
1124 	    MCLBYTES,			/* maxsegsize */
1125 	    0,				/* flags */
1126 	    NULL, NULL,			/* lockfunc, lockarg */
1127 	    &sc->age_cdata.age_rx_tag);
1128 	if (error != 0) {
1129 		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1130 		goto fail;
1131 	}
1132 
1133 	/* Create DMA maps for Tx buffers. */
1134 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1135 		txd = &sc->age_cdata.age_txdesc[i];
1136 		txd->tx_m = NULL;
1137 		txd->tx_dmamap = NULL;
1138 		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1139 		    &txd->tx_dmamap);
1140 		if (error != 0) {
1141 			device_printf(sc->age_dev,
1142 			    "could not create Tx dmamap.\n");
1143 			goto fail;
1144 		}
1145 	}
1146 	/* Create DMA maps for Rx buffers. */
1147 	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1148 	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1149 		device_printf(sc->age_dev,
1150 		    "could not create spare Rx dmamap.\n");
1151 		goto fail;
1152 	}
1153 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1154 		rxd = &sc->age_cdata.age_rxdesc[i];
1155 		rxd->rx_m = NULL;
1156 		rxd->rx_dmamap = NULL;
1157 		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1158 		    &rxd->rx_dmamap);
1159 		if (error != 0) {
1160 			device_printf(sc->age_dev,
1161 			    "could not create Rx dmamap.\n");
1162 			goto fail;
1163 		}
1164 	}
1165 
1166 fail:
1167 	return (error);
1168 }
1169 
1170 static void
age_dma_free(struct age_softc * sc)1171 age_dma_free(struct age_softc *sc)
1172 {
1173 	struct age_txdesc *txd;
1174 	struct age_rxdesc *rxd;
1175 	int i;
1176 
1177 	/* Tx buffers */
1178 	if (sc->age_cdata.age_tx_tag != NULL) {
1179 		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1180 			txd = &sc->age_cdata.age_txdesc[i];
1181 			if (txd->tx_dmamap != NULL) {
1182 				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1183 				    txd->tx_dmamap);
1184 				txd->tx_dmamap = NULL;
1185 			}
1186 		}
1187 		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1188 		sc->age_cdata.age_tx_tag = NULL;
1189 	}
1190 	/* Rx buffers */
1191 	if (sc->age_cdata.age_rx_tag != NULL) {
1192 		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1193 			rxd = &sc->age_cdata.age_rxdesc[i];
1194 			if (rxd->rx_dmamap != NULL) {
1195 				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1196 				    rxd->rx_dmamap);
1197 				rxd->rx_dmamap = NULL;
1198 			}
1199 		}
1200 		if (sc->age_cdata.age_rx_sparemap != NULL) {
1201 			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1202 			    sc->age_cdata.age_rx_sparemap);
1203 			sc->age_cdata.age_rx_sparemap = NULL;
1204 		}
1205 		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1206 		sc->age_cdata.age_rx_tag = NULL;
1207 	}
1208 	/* Tx ring. */
1209 	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1210 		if (sc->age_rdata.age_tx_ring_paddr != 0)
1211 			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1212 			    sc->age_cdata.age_tx_ring_map);
1213 		if (sc->age_rdata.age_tx_ring != NULL)
1214 			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1215 			    sc->age_rdata.age_tx_ring,
1216 			    sc->age_cdata.age_tx_ring_map);
1217 		sc->age_rdata.age_tx_ring_paddr = 0;
1218 		sc->age_rdata.age_tx_ring = NULL;
1219 		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1220 		sc->age_cdata.age_tx_ring_tag = NULL;
1221 	}
1222 	/* Rx ring. */
1223 	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1224 		if (sc->age_rdata.age_rx_ring_paddr != 0)
1225 			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1226 			    sc->age_cdata.age_rx_ring_map);
1227 		if (sc->age_rdata.age_rx_ring != NULL)
1228 			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1229 			    sc->age_rdata.age_rx_ring,
1230 			    sc->age_cdata.age_rx_ring_map);
1231 		sc->age_rdata.age_rx_ring_paddr = 0;
1232 		sc->age_rdata.age_rx_ring = NULL;
1233 		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1234 		sc->age_cdata.age_rx_ring_tag = NULL;
1235 	}
1236 	/* Rx return ring. */
1237 	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1238 		if (sc->age_rdata.age_rr_ring_paddr != 0)
1239 			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1240 			    sc->age_cdata.age_rr_ring_map);
1241 		if (sc->age_rdata.age_rr_ring != NULL)
1242 			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1243 			    sc->age_rdata.age_rr_ring,
1244 			    sc->age_cdata.age_rr_ring_map);
1245 		sc->age_rdata.age_rr_ring_paddr = 0;
1246 		sc->age_rdata.age_rr_ring = NULL;
1247 		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1248 		sc->age_cdata.age_rr_ring_tag = NULL;
1249 	}
1250 	/* CMB block */
1251 	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1252 		if (sc->age_rdata.age_cmb_block_paddr != 0)
1253 			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1254 			    sc->age_cdata.age_cmb_block_map);
1255 		if (sc->age_rdata.age_cmb_block != NULL)
1256 			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1257 			    sc->age_rdata.age_cmb_block,
1258 			    sc->age_cdata.age_cmb_block_map);
1259 		sc->age_rdata.age_cmb_block_paddr = 0;
1260 		sc->age_rdata.age_cmb_block = NULL;
1261 		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1262 		sc->age_cdata.age_cmb_block_tag = NULL;
1263 	}
1264 	/* SMB block */
1265 	if (sc->age_cdata.age_smb_block_tag != NULL) {
1266 		if (sc->age_rdata.age_smb_block_paddr != 0)
1267 			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1268 			    sc->age_cdata.age_smb_block_map);
1269 		if (sc->age_rdata.age_smb_block != NULL)
1270 			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1271 			    sc->age_rdata.age_smb_block,
1272 			    sc->age_cdata.age_smb_block_map);
1273 		sc->age_rdata.age_smb_block_paddr = 0;
1274 		sc->age_rdata.age_smb_block = NULL;
1275 		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1276 		sc->age_cdata.age_smb_block_tag = NULL;
1277 	}
1278 
1279 	if (sc->age_cdata.age_buffer_tag != NULL) {
1280 		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1281 		sc->age_cdata.age_buffer_tag = NULL;
1282 	}
1283 	if (sc->age_cdata.age_parent_tag != NULL) {
1284 		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1285 		sc->age_cdata.age_parent_tag = NULL;
1286 	}
1287 }
1288 
1289 /*
1290  *	Make sure the interface is stopped at reboot time.
1291  */
1292 static int
age_shutdown(device_t dev)1293 age_shutdown(device_t dev)
1294 {
1295 
1296 	return (age_suspend(dev));
1297 }
1298 
1299 static void
age_setwol(struct age_softc * sc)1300 age_setwol(struct age_softc *sc)
1301 {
1302 	if_t ifp;
1303 	struct mii_data *mii;
1304 	uint32_t reg, pmcs;
1305 	int aneg, i;
1306 
1307 	AGE_LOCK_ASSERT(sc);
1308 
1309 	if (!pci_has_pm(sc->age_dev)) {
1310 		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1311 		/*
1312 		 * No PME capability, PHY power down.
1313 		 * XXX
1314 		 * Due to an unknown reason powering down PHY resulted
1315 		 * in unexpected results such as inaccessbility of
1316 		 * hardware of freshly rebooted system. Disable
1317 		 * powering down PHY until I got more information for
1318 		 * Attansic/Atheros PHY hardwares.
1319 		 */
1320 #ifdef notyet
1321 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1322 		    MII_BMCR, BMCR_PDOWN);
1323 #endif
1324 		return;
1325 	}
1326 
1327 	ifp = sc->age_ifp;
1328 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1329 		/*
1330 		 * Note, this driver resets the link speed to 10/100Mbps with
1331 		 * auto-negotiation but we don't know whether that operation
1332 		 * would succeed or not as it have no control after powering
1333 		 * off. If the renegotiation fail WOL may not work. Running
1334 		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1335 		 * specified in PCI specification and that would result in
1336 		 * complete shutdowning power to ethernet controller.
1337 		 *
1338 		 * TODO
1339 		 *  Save current negotiated media speed/duplex/flow-control
1340 		 *  to softc and restore the same link again after resuming.
1341 		 *  PHY handling such as power down/resetting to 100Mbps
1342 		 *  may be better handled in suspend method in phy driver.
1343 		 */
1344 		mii = device_get_softc(sc->age_miibus);
1345 		mii_pollstat(mii);
1346 		aneg = 0;
1347 		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1348 			switch IFM_SUBTYPE(mii->mii_media_active) {
1349 			case IFM_10_T:
1350 			case IFM_100_TX:
1351 				goto got_link;
1352 			case IFM_1000_T:
1353 				aneg++;
1354 			default:
1355 				break;
1356 			}
1357 		}
1358 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1359 		    MII_100T2CR, 0);
1360 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1361 		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1362 		    ANAR_10 | ANAR_CSMA);
1363 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1364 		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1365 		DELAY(1000);
1366 		if (aneg != 0) {
1367 			/* Poll link state until age(4) get a 10/100 link. */
1368 			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1369 				mii_pollstat(mii);
1370 				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371 					switch (IFM_SUBTYPE(
1372 					    mii->mii_media_active)) {
1373 					case IFM_10_T:
1374 					case IFM_100_TX:
1375 						age_mac_config(sc);
1376 						goto got_link;
1377 					default:
1378 						break;
1379 					}
1380 				}
1381 				AGE_UNLOCK(sc);
1382 				pause("agelnk", hz);
1383 				AGE_LOCK(sc);
1384 			}
1385 			if (i == MII_ANEGTICKS_GIGE)
1386 				device_printf(sc->age_dev,
1387 				    "establishing link failed, "
1388 				    "WOL may not work!");
1389 		}
1390 		/*
1391 		 * No link, force MAC to have 100Mbps, full-duplex link.
1392 		 * This is the last resort and may/may not work.
1393 		 */
1394 		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1395 		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1396 		age_mac_config(sc);
1397 	}
1398 
1399 got_link:
1400 	pmcs = 0;
1401 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1402 		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1403 	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1404 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1405 	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1406 	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1407 	if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1408 		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1409 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1410 		reg |= MAC_CFG_RX_ENB;
1411 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1412 	}
1413 
1414 	/* Request PME. */
1415 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1416 		pci_enable_pme(sc->age_dev);
1417 #ifdef notyet
1418 	/* See above for powering down PHY issues. */
1419 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1420 		/* No WOL, PHY power down. */
1421 		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1422 		    MII_BMCR, BMCR_PDOWN);
1423 	}
1424 #endif
1425 }
1426 
1427 static int
age_suspend(device_t dev)1428 age_suspend(device_t dev)
1429 {
1430 	struct age_softc *sc;
1431 
1432 	sc = device_get_softc(dev);
1433 
1434 	AGE_LOCK(sc);
1435 	age_stop(sc);
1436 	age_setwol(sc);
1437 	AGE_UNLOCK(sc);
1438 
1439 	return (0);
1440 }
1441 
1442 static int
age_resume(device_t dev)1443 age_resume(device_t dev)
1444 {
1445 	struct age_softc *sc;
1446 	if_t ifp;
1447 
1448 	sc = device_get_softc(dev);
1449 
1450 	AGE_LOCK(sc);
1451 	age_phy_reset(sc);
1452 	ifp = sc->age_ifp;
1453 	if ((if_getflags(ifp) & IFF_UP) != 0)
1454 		age_init_locked(sc);
1455 
1456 	AGE_UNLOCK(sc);
1457 
1458 	return (0);
1459 }
1460 
1461 static int
age_encap(struct age_softc * sc,struct mbuf ** m_head)1462 age_encap(struct age_softc *sc, struct mbuf **m_head)
1463 {
1464 	struct age_txdesc *txd, *txd_last;
1465 	struct tx_desc *desc;
1466 	struct mbuf *m;
1467 	struct ip *ip;
1468 	struct tcphdr *tcp;
1469 	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1470 	bus_dmamap_t map;
1471 	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1472 	int error, i, nsegs, prod, si;
1473 
1474 	AGE_LOCK_ASSERT(sc);
1475 
1476 	M_ASSERTPKTHDR((*m_head));
1477 
1478 	m = *m_head;
1479 	ip = NULL;
1480 	tcp = NULL;
1481 	cflags = vtag = 0;
1482 	ip_off = poff = 0;
1483 	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1484 		/*
1485 		 * L1 requires offset of TCP/UDP payload in its Tx
1486 		 * descriptor to perform hardware Tx checksum offload.
1487 		 * Additionally, TSO requires IP/TCP header size and
1488 		 * modification of IP/TCP header in order to make TSO
1489 		 * engine work. This kind of operation takes many CPU
1490 		 * cycles on FreeBSD so fast host CPU is needed to get
1491 		 * smooth TSO performance.
1492 		 */
1493 		struct ether_header *eh;
1494 
1495 		if (M_WRITABLE(m) == 0) {
1496 			/* Get a writable copy. */
1497 			m = m_dup(*m_head, M_NOWAIT);
1498 			/* Release original mbufs. */
1499 			m_freem(*m_head);
1500 			if (m == NULL) {
1501 				*m_head = NULL;
1502 				return (ENOBUFS);
1503 			}
1504 			*m_head = m;
1505 		}
1506 		ip_off = sizeof(struct ether_header);
1507 		m = m_pullup(m, ip_off);
1508 		if (m == NULL) {
1509 			*m_head = NULL;
1510 			return (ENOBUFS);
1511 		}
1512 		eh = mtod(m, struct ether_header *);
1513 		/*
1514 		 * Check if hardware VLAN insertion is off.
1515 		 * Additional check for LLC/SNAP frame?
1516 		 */
1517 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1518 			ip_off = sizeof(struct ether_vlan_header);
1519 			m = m_pullup(m, ip_off);
1520 			if (m == NULL) {
1521 				*m_head = NULL;
1522 				return (ENOBUFS);
1523 			}
1524 		}
1525 		m = m_pullup(m, ip_off + sizeof(struct ip));
1526 		if (m == NULL) {
1527 			*m_head = NULL;
1528 			return (ENOBUFS);
1529 		}
1530 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1531 		poff = ip_off + (ip->ip_hl << 2);
1532 		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1533 			m = m_pullup(m, poff + sizeof(struct tcphdr));
1534 			if (m == NULL) {
1535 				*m_head = NULL;
1536 				return (ENOBUFS);
1537 			}
1538 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1539 			m = m_pullup(m, poff + (tcp->th_off << 2));
1540 			if (m == NULL) {
1541 				*m_head = NULL;
1542 				return (ENOBUFS);
1543 			}
1544 			/*
1545 			 * L1 requires IP/TCP header size and offset as
1546 			 * well as TCP pseudo checksum which complicates
1547 			 * TSO configuration. I guess this comes from the
1548 			 * adherence to Microsoft NDIS Large Send
1549 			 * specification which requires insertion of
1550 			 * pseudo checksum by upper stack. The pseudo
1551 			 * checksum that NDIS refers to doesn't include
1552 			 * TCP payload length so age(4) should recompute
1553 			 * the pseudo checksum here. Hopefully this wouldn't
1554 			 * be much burden on modern CPUs.
1555 			 * Reset IP checksum and recompute TCP pseudo
1556 			 * checksum as NDIS specification said.
1557 			 */
1558 			ip = (struct ip *)(mtod(m, char *) + ip_off);
1559 			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1560 			ip->ip_sum = 0;
1561 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1562 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1563 		}
1564 		*m_head = m;
1565 	}
1566 
1567 	si = prod = sc->age_cdata.age_tx_prod;
1568 	txd = &sc->age_cdata.age_txdesc[prod];
1569 	txd_last = txd;
1570 	map = txd->tx_dmamap;
1571 
1572 	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1573 	    *m_head, txsegs, &nsegs, 0);
1574 	if (error == EFBIG) {
1575 		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1576 		if (m == NULL) {
1577 			m_freem(*m_head);
1578 			*m_head = NULL;
1579 			return (ENOMEM);
1580 		}
1581 		*m_head = m;
1582 		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1583 		    *m_head, txsegs, &nsegs, 0);
1584 		if (error != 0) {
1585 			m_freem(*m_head);
1586 			*m_head = NULL;
1587 			return (error);
1588 		}
1589 	} else if (error != 0)
1590 		return (error);
1591 	if (nsegs == 0) {
1592 		m_freem(*m_head);
1593 		*m_head = NULL;
1594 		return (EIO);
1595 	}
1596 
1597 	/* Check descriptor overrun. */
1598 	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1599 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1600 		return (ENOBUFS);
1601 	}
1602 
1603 	m = *m_head;
1604 	/* Configure VLAN hardware tag insertion. */
1605 	if ((m->m_flags & M_VLANTAG) != 0) {
1606 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1607 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1608 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1609 	}
1610 
1611 	desc = NULL;
1612 	i = 0;
1613 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1614 		/* Request TSO and set MSS. */
1615 		cflags |= AGE_TD_TSO_IPV4;
1616 		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1617 		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1618 		    AGE_TD_TSO_MSS_SHIFT);
1619 		/* Set IP/TCP header size. */
1620 		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1621 		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1622 		/*
1623 		 * L1 requires the first buffer should only hold IP/TCP
1624 		 * header data. TCP payload should be handled in other
1625 		 * descriptors.
1626 		 */
1627 		hdrlen = poff + (tcp->th_off << 2);
1628 		desc = &sc->age_rdata.age_tx_ring[prod];
1629 		desc->addr = htole64(txsegs[0].ds_addr);
1630 		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1631 		desc->flags = htole32(cflags);
1632 		sc->age_cdata.age_tx_cnt++;
1633 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1634 		if (m->m_len - hdrlen > 0) {
1635 			/* Handle remaining payload of the 1st fragment. */
1636 			desc = &sc->age_rdata.age_tx_ring[prod];
1637 			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1638 			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1639 			    vtag);
1640 			desc->flags = htole32(cflags);
1641 			sc->age_cdata.age_tx_cnt++;
1642 			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1643 		}
1644 		/* Handle remaining fragments. */
1645 		i = 1;
1646 	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1647 		/* Configure Tx IP/TCP/UDP checksum offload. */
1648 		cflags |= AGE_TD_CSUM;
1649 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1650 			cflags |= AGE_TD_TCPCSUM;
1651 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1652 			cflags |= AGE_TD_UDPCSUM;
1653 		/* Set checksum start offset. */
1654 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1655 		/* Set checksum insertion position of TCP/UDP. */
1656 		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1657 		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1658 	}
1659 	for (; i < nsegs; i++) {
1660 		desc = &sc->age_rdata.age_tx_ring[prod];
1661 		desc->addr = htole64(txsegs[i].ds_addr);
1662 		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1663 		desc->flags = htole32(cflags);
1664 		sc->age_cdata.age_tx_cnt++;
1665 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1666 	}
1667 	/* Update producer index. */
1668 	sc->age_cdata.age_tx_prod = prod;
1669 
1670 	/* Set EOP on the last descriptor. */
1671 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1672 	desc = &sc->age_rdata.age_tx_ring[prod];
1673 	desc->flags |= htole32(AGE_TD_EOP);
1674 
1675 	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1676 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1677 		desc = &sc->age_rdata.age_tx_ring[si];
1678 		desc->flags |= htole32(AGE_TD_TSO_HDR);
1679 	}
1680 
1681 	/* Swap dmamap of the first and the last. */
1682 	txd = &sc->age_cdata.age_txdesc[prod];
1683 	map = txd_last->tx_dmamap;
1684 	txd_last->tx_dmamap = txd->tx_dmamap;
1685 	txd->tx_dmamap = map;
1686 	txd->tx_m = m;
1687 
1688 	/* Sync descriptors. */
1689 	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1690 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1691 	    sc->age_cdata.age_tx_ring_map,
1692 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1693 
1694 	return (0);
1695 }
1696 
1697 static void
age_start(if_t ifp)1698 age_start(if_t ifp)
1699 {
1700         struct age_softc *sc;
1701 
1702 	sc = if_getsoftc(ifp);
1703 	AGE_LOCK(sc);
1704 	age_start_locked(ifp);
1705 	AGE_UNLOCK(sc);
1706 }
1707 
1708 static void
age_start_locked(if_t ifp)1709 age_start_locked(if_t ifp)
1710 {
1711         struct age_softc *sc;
1712         struct mbuf *m_head;
1713 	int enq;
1714 
1715 	sc = if_getsoftc(ifp);
1716 
1717 	AGE_LOCK_ASSERT(sc);
1718 
1719 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1720 	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1721 		return;
1722 
1723 	for (enq = 0; !if_sendq_empty(ifp); ) {
1724 		m_head = if_dequeue(ifp);
1725 		if (m_head == NULL)
1726 			break;
1727 		/*
1728 		 * Pack the data into the transmit ring. If we
1729 		 * don't have room, set the OACTIVE flag and wait
1730 		 * for the NIC to drain the ring.
1731 		 */
1732 		if (age_encap(sc, &m_head)) {
1733 			if (m_head == NULL)
1734 				break;
1735 			if_sendq_prepend(ifp, m_head);
1736 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1737 			break;
1738 		}
1739 
1740 		enq++;
1741 		/*
1742 		 * If there's a BPF listener, bounce a copy of this frame
1743 		 * to him.
1744 		 */
1745 		ETHER_BPF_MTAP(ifp, m_head);
1746 	}
1747 
1748 	if (enq > 0) {
1749 		/* Update mbox. */
1750 		AGE_COMMIT_MBOX(sc);
1751 		/* Set a timeout in case the chip goes out to lunch. */
1752 		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1753 	}
1754 }
1755 
1756 static void
age_watchdog(struct age_softc * sc)1757 age_watchdog(struct age_softc *sc)
1758 {
1759 	if_t ifp;
1760 
1761 	AGE_LOCK_ASSERT(sc);
1762 
1763 	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1764 		return;
1765 
1766 	ifp = sc->age_ifp;
1767 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1768 		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1769 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1770 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1771 		age_init_locked(sc);
1772 		return;
1773 	}
1774 	if (sc->age_cdata.age_tx_cnt == 0) {
1775 		if_printf(sc->age_ifp,
1776 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1777 		if (!if_sendq_empty(ifp))
1778 			age_start_locked(ifp);
1779 		return;
1780 	}
1781 	if_printf(sc->age_ifp, "watchdog timeout\n");
1782 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1783 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1784 	age_init_locked(sc);
1785 	if (!if_sendq_empty(ifp))
1786 		age_start_locked(ifp);
1787 }
1788 
1789 static int
age_ioctl(if_t ifp,u_long cmd,caddr_t data)1790 age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1791 {
1792 	struct age_softc *sc;
1793 	struct ifreq *ifr;
1794 	struct mii_data *mii;
1795 	uint32_t reg;
1796 	int error, mask;
1797 
1798 	sc = if_getsoftc(ifp);
1799 	ifr = (struct ifreq *)data;
1800 	error = 0;
1801 	switch (cmd) {
1802 	case SIOCSIFMTU:
1803 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1804 			error = EINVAL;
1805 		else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1806 			AGE_LOCK(sc);
1807 			if_setmtu(ifp, ifr->ifr_mtu);
1808 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1809 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1810 				age_init_locked(sc);
1811 			}
1812 			AGE_UNLOCK(sc);
1813 		}
1814 		break;
1815 	case SIOCSIFFLAGS:
1816 		AGE_LOCK(sc);
1817 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1818 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1819 				if (((if_getflags(ifp) ^ sc->age_if_flags)
1820 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1821 					age_rxfilter(sc);
1822 			} else {
1823 				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1824 					age_init_locked(sc);
1825 			}
1826 		} else {
1827 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1828 				age_stop(sc);
1829 		}
1830 		sc->age_if_flags = if_getflags(ifp);
1831 		AGE_UNLOCK(sc);
1832 		break;
1833 	case SIOCADDMULTI:
1834 	case SIOCDELMULTI:
1835 		AGE_LOCK(sc);
1836 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1837 			age_rxfilter(sc);
1838 		AGE_UNLOCK(sc);
1839 		break;
1840 	case SIOCSIFMEDIA:
1841 	case SIOCGIFMEDIA:
1842 		mii = device_get_softc(sc->age_miibus);
1843 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1844 		break;
1845 	case SIOCSIFCAP:
1846 		AGE_LOCK(sc);
1847 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1848 		if ((mask & IFCAP_TXCSUM) != 0 &&
1849 		    (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1850 			if_togglecapenable(ifp, IFCAP_TXCSUM);
1851 			if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1852 				if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1853 			else
1854 				if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1855 		}
1856 		if ((mask & IFCAP_RXCSUM) != 0 &&
1857 		    (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1858 			if_togglecapenable(ifp, IFCAP_RXCSUM);
1859 			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1860 			reg &= ~MAC_CFG_RXCSUM_ENB;
1861 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1862 				reg |= MAC_CFG_RXCSUM_ENB;
1863 			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1864 		}
1865 		if ((mask & IFCAP_TSO4) != 0 &&
1866 		    (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1867 			if_togglecapenable(ifp, IFCAP_TSO4);
1868 			if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1869 				if_sethwassistbits(ifp, CSUM_TSO, 0);
1870 			else
1871 				if_sethwassistbits(ifp, 0, CSUM_TSO);
1872 		}
1873 
1874 		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1875 		    (if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1876 			if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1877 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1878 		    (if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1879 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1880 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1881 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1882 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1883 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1884 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1885 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1886 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1887 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1888 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1889 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1890 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1891 			age_rxvlan(sc);
1892 		}
1893 		AGE_UNLOCK(sc);
1894 		VLAN_CAPABILITIES(ifp);
1895 		break;
1896 	default:
1897 		error = ether_ioctl(ifp, cmd, data);
1898 		break;
1899 	}
1900 
1901 	return (error);
1902 }
1903 
1904 static void
age_mac_config(struct age_softc * sc)1905 age_mac_config(struct age_softc *sc)
1906 {
1907 	struct mii_data *mii;
1908 	uint32_t reg;
1909 
1910 	AGE_LOCK_ASSERT(sc);
1911 
1912 	mii = device_get_softc(sc->age_miibus);
1913 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1914 	reg &= ~MAC_CFG_FULL_DUPLEX;
1915 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1916 	reg &= ~MAC_CFG_SPEED_MASK;
1917 	/* Reprogram MAC with resolved speed/duplex. */
1918 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1919 	case IFM_10_T:
1920 	case IFM_100_TX:
1921 		reg |= MAC_CFG_SPEED_10_100;
1922 		break;
1923 	case IFM_1000_T:
1924 		reg |= MAC_CFG_SPEED_1000;
1925 		break;
1926 	}
1927 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1928 		reg |= MAC_CFG_FULL_DUPLEX;
1929 #ifdef notyet
1930 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1931 			reg |= MAC_CFG_TX_FC;
1932 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1933 			reg |= MAC_CFG_RX_FC;
1934 #endif
1935 	}
1936 
1937 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1938 }
1939 
1940 static void
age_link_task(void * arg,int pending)1941 age_link_task(void *arg, int pending)
1942 {
1943 	struct age_softc *sc;
1944 	struct mii_data *mii;
1945 	if_t ifp;
1946 	uint32_t reg;
1947 
1948 	sc = (struct age_softc *)arg;
1949 
1950 	AGE_LOCK(sc);
1951 	mii = device_get_softc(sc->age_miibus);
1952 	ifp = sc->age_ifp;
1953 	if (mii == NULL || ifp == NULL ||
1954 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1955 		AGE_UNLOCK(sc);
1956 		return;
1957 	}
1958 
1959 	sc->age_flags &= ~AGE_FLAG_LINK;
1960 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1961 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1962 		case IFM_10_T:
1963 		case IFM_100_TX:
1964 		case IFM_1000_T:
1965 			sc->age_flags |= AGE_FLAG_LINK;
1966 			break;
1967 		default:
1968 			break;
1969 		}
1970 	}
1971 
1972 	/* Stop Rx/Tx MACs. */
1973 	age_stop_rxmac(sc);
1974 	age_stop_txmac(sc);
1975 
1976 	/* Program MACs with resolved speed/duplex/flow-control. */
1977 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1978 		age_mac_config(sc);
1979 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1980 		/* Restart DMA engine and Tx/Rx MAC. */
1981 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1982 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1983 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1984 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1985 	}
1986 
1987 	AGE_UNLOCK(sc);
1988 }
1989 
1990 static void
age_stats_update(struct age_softc * sc)1991 age_stats_update(struct age_softc *sc)
1992 {
1993 	struct age_stats *stat;
1994 	struct smb *smb;
1995 	if_t ifp;
1996 
1997 	AGE_LOCK_ASSERT(sc);
1998 
1999 	stat = &sc->age_stat;
2000 
2001 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2002 	    sc->age_cdata.age_smb_block_map,
2003 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2004 
2005 	smb = sc->age_rdata.age_smb_block;
2006 	if (smb->updated == 0)
2007 		return;
2008 
2009 	ifp = sc->age_ifp;
2010 	/* Rx stats. */
2011 	stat->rx_frames += smb->rx_frames;
2012 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2013 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2014 	stat->rx_pause_frames += smb->rx_pause_frames;
2015 	stat->rx_control_frames += smb->rx_control_frames;
2016 	stat->rx_crcerrs += smb->rx_crcerrs;
2017 	stat->rx_lenerrs += smb->rx_lenerrs;
2018 	stat->rx_bytes += smb->rx_bytes;
2019 	stat->rx_runts += smb->rx_runts;
2020 	stat->rx_fragments += smb->rx_fragments;
2021 	stat->rx_pkts_64 += smb->rx_pkts_64;
2022 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2023 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2024 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2025 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2026 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2027 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2028 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2029 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2030 	stat->rx_desc_oflows += smb->rx_desc_oflows;
2031 	stat->rx_alignerrs += smb->rx_alignerrs;
2032 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2033 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2034 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2035 
2036 	/* Tx stats. */
2037 	stat->tx_frames += smb->tx_frames;
2038 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2039 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2040 	stat->tx_pause_frames += smb->tx_pause_frames;
2041 	stat->tx_excess_defer += smb->tx_excess_defer;
2042 	stat->tx_control_frames += smb->tx_control_frames;
2043 	stat->tx_deferred += smb->tx_deferred;
2044 	stat->tx_bytes += smb->tx_bytes;
2045 	stat->tx_pkts_64 += smb->tx_pkts_64;
2046 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2047 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2048 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2049 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2050 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2051 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2052 	stat->tx_single_colls += smb->tx_single_colls;
2053 	stat->tx_multi_colls += smb->tx_multi_colls;
2054 	stat->tx_late_colls += smb->tx_late_colls;
2055 	stat->tx_excess_colls += smb->tx_excess_colls;
2056 	stat->tx_underrun += smb->tx_underrun;
2057 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2058 	stat->tx_lenerrs += smb->tx_lenerrs;
2059 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2060 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2061 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2062 
2063 	/* Update counters in ifnet. */
2064 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2065 
2066 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2067 	    smb->tx_multi_colls + smb->tx_late_colls +
2068 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2069 
2070 	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2071 	    smb->tx_late_colls + smb->tx_underrun +
2072 	    smb->tx_pkts_truncated);
2073 
2074 	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2075 
2076 	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2077 	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2078 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2079 	    smb->rx_alignerrs);
2080 
2081 	/* Update done, clear. */
2082 	smb->updated = 0;
2083 
2084 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2085 	    sc->age_cdata.age_smb_block_map,
2086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2087 }
2088 
2089 static int
age_intr(void * arg)2090 age_intr(void *arg)
2091 {
2092 	struct age_softc *sc;
2093 	uint32_t status;
2094 
2095 	sc = (struct age_softc *)arg;
2096 
2097 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2098 	if (status == 0 || (status & AGE_INTRS) == 0)
2099 		return (FILTER_STRAY);
2100 	/* Disable interrupts. */
2101 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2102 	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2103 
2104 	return (FILTER_HANDLED);
2105 }
2106 
2107 static void
age_int_task(void * arg,int pending)2108 age_int_task(void *arg, int pending)
2109 {
2110 	struct age_softc *sc;
2111 	if_t ifp;
2112 	struct cmb *cmb;
2113 	uint32_t status;
2114 
2115 	sc = (struct age_softc *)arg;
2116 
2117 	AGE_LOCK(sc);
2118 
2119 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2120 	    sc->age_cdata.age_cmb_block_map,
2121 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2122 	cmb = sc->age_rdata.age_cmb_block;
2123 	status = le32toh(cmb->intr_status);
2124 	if (sc->age_morework != 0)
2125 		status |= INTR_CMB_RX;
2126 	if ((status & AGE_INTRS) == 0)
2127 		goto done;
2128 
2129 	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2130 	    TPD_CONS_SHIFT;
2131 	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2132 	    RRD_PROD_SHIFT;
2133 	/* Let hardware know CMB was served. */
2134 	cmb->intr_status = 0;
2135 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2136 	    sc->age_cdata.age_cmb_block_map,
2137 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2138 
2139 	ifp = sc->age_ifp;
2140 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2141 		if ((status & INTR_CMB_RX) != 0)
2142 			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2143 			    sc->age_process_limit);
2144 		if ((status & INTR_CMB_TX) != 0)
2145 			age_txintr(sc, sc->age_tpd_cons);
2146 		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2147 			if ((status & INTR_DMA_RD_TO_RST) != 0)
2148 				device_printf(sc->age_dev,
2149 				    "DMA read error! -- resetting\n");
2150 			if ((status & INTR_DMA_WR_TO_RST) != 0)
2151 				device_printf(sc->age_dev,
2152 				    "DMA write error! -- resetting\n");
2153 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2154 			age_init_locked(sc);
2155 		}
2156 		if (!if_sendq_empty(ifp))
2157 			age_start_locked(ifp);
2158 		if ((status & INTR_SMB) != 0)
2159 			age_stats_update(sc);
2160 	}
2161 
2162 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2163 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2164 	    sc->age_cdata.age_cmb_block_map,
2165 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2166 	status = le32toh(cmb->intr_status);
2167 	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2168 		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2169 		AGE_UNLOCK(sc);
2170 		return;
2171 	}
2172 
2173 done:
2174 	/* Re-enable interrupts. */
2175 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2176 	AGE_UNLOCK(sc);
2177 }
2178 
2179 static void
age_txintr(struct age_softc * sc,int tpd_cons)2180 age_txintr(struct age_softc *sc, int tpd_cons)
2181 {
2182 	if_t ifp;
2183 	struct age_txdesc *txd;
2184 	int cons, prog;
2185 
2186 	AGE_LOCK_ASSERT(sc);
2187 
2188 	ifp = sc->age_ifp;
2189 
2190 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2191 	    sc->age_cdata.age_tx_ring_map,
2192 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2193 
2194 	/*
2195 	 * Go through our Tx list and free mbufs for those
2196 	 * frames which have been transmitted.
2197 	 */
2198 	cons = sc->age_cdata.age_tx_cons;
2199 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2200 		if (sc->age_cdata.age_tx_cnt <= 0)
2201 			break;
2202 		prog++;
2203 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2204 		sc->age_cdata.age_tx_cnt--;
2205 		txd = &sc->age_cdata.age_txdesc[cons];
2206 		/*
2207 		 * Clear Tx descriptors, it's not required but would
2208 		 * help debugging in case of Tx issues.
2209 		 */
2210 		txd->tx_desc->addr = 0;
2211 		txd->tx_desc->len = 0;
2212 		txd->tx_desc->flags = 0;
2213 
2214 		if (txd->tx_m == NULL)
2215 			continue;
2216 		/* Reclaim transmitted mbufs. */
2217 		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2218 		    BUS_DMASYNC_POSTWRITE);
2219 		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2220 		m_freem(txd->tx_m);
2221 		txd->tx_m = NULL;
2222 	}
2223 
2224 	if (prog > 0) {
2225 		sc->age_cdata.age_tx_cons = cons;
2226 
2227 		/*
2228 		 * Unarm watchdog timer only when there are no pending
2229 		 * Tx descriptors in queue.
2230 		 */
2231 		if (sc->age_cdata.age_tx_cnt == 0)
2232 			sc->age_watchdog_timer = 0;
2233 		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2234 		    sc->age_cdata.age_tx_ring_map,
2235 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2236 	}
2237 }
2238 
2239 #ifndef __NO_STRICT_ALIGNMENT
2240 static struct mbuf *
age_fixup_rx(if_t ifp,struct mbuf * m)2241 age_fixup_rx(if_t ifp, struct mbuf *m)
2242 {
2243 	struct mbuf *n;
2244         int i;
2245         uint16_t *src, *dst;
2246 
2247 	src = mtod(m, uint16_t *);
2248 	dst = src - 3;
2249 
2250 	if (m->m_next == NULL) {
2251 		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2252 			*dst++ = *src++;
2253 		m->m_data -= 6;
2254 		return (m);
2255 	}
2256 	/*
2257 	 * Append a new mbuf to received mbuf chain and copy ethernet
2258 	 * header from the mbuf chain. This can save lots of CPU
2259 	 * cycles for jumbo frame.
2260 	 */
2261 	MGETHDR(n, M_NOWAIT, MT_DATA);
2262 	if (n == NULL) {
2263 		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2264 		m_freem(m);
2265 		return (NULL);
2266 	}
2267 	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2268 	m->m_data += ETHER_HDR_LEN;
2269 	m->m_len -= ETHER_HDR_LEN;
2270 	n->m_len = ETHER_HDR_LEN;
2271 	M_MOVE_PKTHDR(n, m);
2272 	n->m_next = m;
2273 	return (n);
2274 }
2275 #endif
2276 
2277 /* Receive a frame. */
2278 static void
age_rxeof(struct age_softc * sc,struct rx_rdesc * rxrd)2279 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2280 {
2281 	struct age_rxdesc *rxd;
2282 	if_t ifp;
2283 	struct mbuf *mp, *m;
2284 	uint32_t status, index, vtag;
2285 	int count, nsegs;
2286 	int rx_cons;
2287 
2288 	AGE_LOCK_ASSERT(sc);
2289 
2290 	ifp = sc->age_ifp;
2291 	status = le32toh(rxrd->flags);
2292 	index = le32toh(rxrd->index);
2293 	rx_cons = AGE_RX_CONS(index);
2294 	nsegs = AGE_RX_NSEGS(index);
2295 
2296 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2297 	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2298 		/*
2299 		 * We want to pass the following frames to upper
2300 		 * layer regardless of error status of Rx return
2301 		 * ring.
2302 		 *
2303 		 *  o IP/TCP/UDP checksum is bad.
2304 		 *  o frame length and protocol specific length
2305 		 *     does not match.
2306 		 */
2307 		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2308 		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2309 		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2310 			return;
2311 	}
2312 
2313 	for (count = 0; count < nsegs; count++,
2314 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2315 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2316 		mp = rxd->rx_m;
2317 		/* Add a new receive buffer to the ring. */
2318 		if (age_newbuf(sc, rxd) != 0) {
2319 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2320 			/* Reuse Rx buffers. */
2321 			if (sc->age_cdata.age_rxhead != NULL)
2322 				m_freem(sc->age_cdata.age_rxhead);
2323 			break;
2324 		}
2325 
2326 		/*
2327 		 * Assume we've received a full sized frame.
2328 		 * Actual size is fixed when we encounter the end of
2329 		 * multi-segmented frame.
2330 		 */
2331 		mp->m_len = AGE_RX_BUF_SIZE;
2332 
2333 		/* Chain received mbufs. */
2334 		if (sc->age_cdata.age_rxhead == NULL) {
2335 			sc->age_cdata.age_rxhead = mp;
2336 			sc->age_cdata.age_rxtail = mp;
2337 		} else {
2338 			mp->m_flags &= ~M_PKTHDR;
2339 			sc->age_cdata.age_rxprev_tail =
2340 			    sc->age_cdata.age_rxtail;
2341 			sc->age_cdata.age_rxtail->m_next = mp;
2342 			sc->age_cdata.age_rxtail = mp;
2343 		}
2344 
2345 		if (count == nsegs - 1) {
2346 			/* Last desc. for this frame. */
2347 			m = sc->age_cdata.age_rxhead;
2348 			m->m_flags |= M_PKTHDR;
2349 			/*
2350 			 * It seems that L1 controller has no way
2351 			 * to tell hardware to strip CRC bytes.
2352 			 */
2353 			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2354 			    ETHER_CRC_LEN;
2355 			if (nsegs > 1) {
2356 				/* Set last mbuf size. */
2357 				mp->m_len = sc->age_cdata.age_rxlen -
2358 				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2359 				/* Remove the CRC bytes in chained mbufs. */
2360 				if (mp->m_len <= ETHER_CRC_LEN) {
2361 					sc->age_cdata.age_rxtail =
2362 					    sc->age_cdata.age_rxprev_tail;
2363 					sc->age_cdata.age_rxtail->m_len -=
2364 					    (ETHER_CRC_LEN - mp->m_len);
2365 					sc->age_cdata.age_rxtail->m_next = NULL;
2366 					m_freem(mp);
2367 				} else {
2368 					mp->m_len -= ETHER_CRC_LEN;
2369 				}
2370 			} else
2371 				m->m_len = m->m_pkthdr.len;
2372 			m->m_pkthdr.rcvif = ifp;
2373 			/*
2374 			 * Set checksum information.
2375 			 * It seems that L1 controller can compute partial
2376 			 * checksum. The partial checksum value can be used
2377 			 * to accelerate checksum computation for fragmented
2378 			 * TCP/UDP packets. Upper network stack already
2379 			 * takes advantage of the partial checksum value in
2380 			 * IP reassembly stage. But I'm not sure the
2381 			 * correctness of the partial hardware checksum
2382 			 * assistance due to lack of data sheet. If it is
2383 			 * proven to work on L1 I'll enable it.
2384 			 */
2385 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2386 			    (status & AGE_RRD_IPV4) != 0) {
2387 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2388 					m->m_pkthdr.csum_flags |=
2389 					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2390 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2391 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2392 					m->m_pkthdr.csum_flags |=
2393 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2394 					m->m_pkthdr.csum_data = 0xffff;
2395 				}
2396 				/*
2397 				 * Don't mark bad checksum for TCP/UDP frames
2398 				 * as fragmented frames may always have set
2399 				 * bad checksummed bit of descriptor status.
2400 				 */
2401 			}
2402 
2403 			/* Check for VLAN tagged frames. */
2404 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2405 			    (status & AGE_RRD_VLAN) != 0) {
2406 				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2407 				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2408 				m->m_flags |= M_VLANTAG;
2409 			}
2410 #ifndef __NO_STRICT_ALIGNMENT
2411 			m = age_fixup_rx(ifp, m);
2412 			if (m != NULL)
2413 #endif
2414 			{
2415 			/* Pass it on. */
2416 			AGE_UNLOCK(sc);
2417 			if_input(ifp, m);
2418 			AGE_LOCK(sc);
2419 			}
2420 		}
2421 	}
2422 
2423 	/* Reset mbuf chains. */
2424 	AGE_RXCHAIN_RESET(sc);
2425 }
2426 
2427 static int
age_rxintr(struct age_softc * sc,int rr_prod,int count)2428 age_rxintr(struct age_softc *sc, int rr_prod, int count)
2429 {
2430 	struct rx_rdesc *rxrd;
2431 	int rr_cons, nsegs, pktlen, prog;
2432 
2433 	AGE_LOCK_ASSERT(sc);
2434 
2435 	rr_cons = sc->age_cdata.age_rr_cons;
2436 	if (rr_cons == rr_prod)
2437 		return (0);
2438 
2439 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2440 	    sc->age_cdata.age_rr_ring_map,
2441 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2442 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2443 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2444 
2445 	for (prog = 0; rr_cons != rr_prod; prog++) {
2446 		if (count-- <= 0)
2447 			break;
2448 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2449 		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2450 		if (nsegs == 0)
2451 			break;
2452 		/*
2453 		 * Check number of segments against received bytes.
2454 		 * Non-matching value would indicate that hardware
2455 		 * is still trying to update Rx return descriptors.
2456 		 * I'm not sure whether this check is really needed.
2457 		 */
2458 		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2459 		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2460 			break;
2461 
2462 		/* Received a frame. */
2463 		age_rxeof(sc, rxrd);
2464 		/* Clear return ring. */
2465 		rxrd->index = 0;
2466 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2467 		sc->age_cdata.age_rx_cons += nsegs;
2468 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2469 	}
2470 
2471 	if (prog > 0) {
2472 		/* Update the consumer index. */
2473 		sc->age_cdata.age_rr_cons = rr_cons;
2474 
2475 		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2476 		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2477 		/* Sync descriptors. */
2478 		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2479 		    sc->age_cdata.age_rr_ring_map,
2480 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2481 
2482 		/* Notify hardware availability of new Rx buffers. */
2483 		AGE_COMMIT_MBOX(sc);
2484 	}
2485 
2486 	return (count > 0 ? 0 : EAGAIN);
2487 }
2488 
2489 static void
age_tick(void * arg)2490 age_tick(void *arg)
2491 {
2492 	struct age_softc *sc;
2493 	struct mii_data *mii;
2494 
2495 	sc = (struct age_softc *)arg;
2496 
2497 	AGE_LOCK_ASSERT(sc);
2498 
2499 	mii = device_get_softc(sc->age_miibus);
2500 	mii_tick(mii);
2501 	age_watchdog(sc);
2502 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2503 }
2504 
2505 static void
age_reset(struct age_softc * sc)2506 age_reset(struct age_softc *sc)
2507 {
2508 	uint32_t reg;
2509 	int i;
2510 
2511 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2512 	CSR_READ_4(sc, AGE_MASTER_CFG);
2513 	DELAY(1000);
2514 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2515 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2516 			break;
2517 		DELAY(10);
2518 	}
2519 
2520 	if (i == 0)
2521 		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2522 	/* Initialize PCIe module. From Linux. */
2523 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2524 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2525 }
2526 
2527 static void
age_init(void * xsc)2528 age_init(void *xsc)
2529 {
2530 	struct age_softc *sc;
2531 
2532 	sc = (struct age_softc *)xsc;
2533 	AGE_LOCK(sc);
2534 	age_init_locked(sc);
2535 	AGE_UNLOCK(sc);
2536 }
2537 
2538 static void
age_init_locked(struct age_softc * sc)2539 age_init_locked(struct age_softc *sc)
2540 {
2541 	if_t ifp;
2542 	struct mii_data *mii;
2543 	uint8_t eaddr[ETHER_ADDR_LEN];
2544 	bus_addr_t paddr;
2545 	uint32_t reg, fsize;
2546 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2547 	int error;
2548 
2549 	AGE_LOCK_ASSERT(sc);
2550 
2551 	ifp = sc->age_ifp;
2552 	mii = device_get_softc(sc->age_miibus);
2553 
2554 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2555 		return;
2556 
2557 	/*
2558 	 * Cancel any pending I/O.
2559 	 */
2560 	age_stop(sc);
2561 
2562 	/*
2563 	 * Reset the chip to a known state.
2564 	 */
2565 	age_reset(sc);
2566 
2567 	/* Initialize descriptors. */
2568 	error = age_init_rx_ring(sc);
2569         if (error != 0) {
2570                 device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2571                 age_stop(sc);
2572 		return;
2573         }
2574 	age_init_rr_ring(sc);
2575 	age_init_tx_ring(sc);
2576 	age_init_cmb_block(sc);
2577 	age_init_smb_block(sc);
2578 
2579 	/* Reprogram the station address. */
2580 	bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2581 	CSR_WRITE_4(sc, AGE_PAR0,
2582 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2583 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2584 
2585 	/* Set descriptor base addresses. */
2586 	paddr = sc->age_rdata.age_tx_ring_paddr;
2587 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2588 	paddr = sc->age_rdata.age_rx_ring_paddr;
2589 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2590 	paddr = sc->age_rdata.age_rr_ring_paddr;
2591 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2592 	paddr = sc->age_rdata.age_tx_ring_paddr;
2593 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2594 	paddr = sc->age_rdata.age_cmb_block_paddr;
2595 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2596 	paddr = sc->age_rdata.age_smb_block_paddr;
2597 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2598 	/* Set Rx/Rx return descriptor counter. */
2599 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2600 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2601 	    DESC_RRD_CNT_MASK) |
2602 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2603 	/* Set Tx descriptor counter. */
2604 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2605 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2606 
2607 	/* Tell hardware that we're ready to load descriptors. */
2608 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2609 
2610 	/*
2611 	 * Initialize mailbox register.
2612 	 * Updated producer/consumer index information is exchanged
2613 	 * through this mailbox register. However Tx producer and
2614 	 * Rx return consumer/Rx producer are all shared such that
2615 	 * it's hard to separate code path between Tx and Rx without
2616 	 * locking. If L1 hardware have a separate mail box register
2617 	 * for Tx and Rx consumer/producer management we could have
2618 	 * independent Tx/Rx handler which in turn Rx handler could have
2619 	 * been run without any locking.
2620 	 */
2621 	AGE_COMMIT_MBOX(sc);
2622 
2623 	/* Configure IPG/IFG parameters. */
2624 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2625 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2626 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2627 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2628 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2629 
2630 	/* Set parameters for half-duplex media. */
2631 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2632 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2633 	    HDPX_CFG_LCOL_MASK) |
2634 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2635 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2636 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2637 	    HDPX_CFG_ABEBT_MASK) |
2638 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2639 	    HDPX_CFG_JAMIPG_MASK));
2640 
2641 	/* Configure interrupt moderation timer. */
2642 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2643 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2644 	reg &= ~MASTER_MTIMER_ENB;
2645 	if (AGE_USECS(sc->age_int_mod) == 0)
2646 		reg &= ~MASTER_ITIMER_ENB;
2647 	else
2648 		reg |= MASTER_ITIMER_ENB;
2649 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2650 	if (bootverbose)
2651 		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2652 		    sc->age_int_mod);
2653 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2654 
2655 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2656 	if (if_getmtu(ifp) < ETHERMTU)
2657 		sc->age_max_frame_size = ETHERMTU;
2658 	else
2659 		sc->age_max_frame_size = if_getmtu(ifp);
2660 	sc->age_max_frame_size += ETHER_HDR_LEN +
2661 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2662 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2663 	/* Configure jumbo frame. */
2664 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2665 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2666 	    (((fsize / sizeof(uint64_t)) <<
2667 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2668 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2669 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2670 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2671 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2672 
2673 	/* Configure flow-control parameters. From Linux. */
2674 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2675 		/*
2676 		 * Magic workaround for old-L1.
2677 		 * Don't know which hw revision requires this magic.
2678 		 */
2679 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2680 		/*
2681 		 * Another magic workaround for flow-control mode
2682 		 * change. From Linux.
2683 		 */
2684 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2685 	}
2686 	/*
2687 	 * TODO
2688 	 *  Should understand pause parameter relationships between FIFO
2689 	 *  size and number of Rx descriptors and Rx return descriptors.
2690 	 *
2691 	 *  Magic parameters came from Linux.
2692 	 */
2693 	switch (sc->age_chip_rev) {
2694 	case 0x8001:
2695 	case 0x9001:
2696 	case 0x9002:
2697 	case 0x9003:
2698 		rxf_hi = AGE_RX_RING_CNT / 16;
2699 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2700 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2701 		rrd_lo = AGE_RR_RING_CNT / 16;
2702 		break;
2703 	default:
2704 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2705 		rxf_lo = reg / 16;
2706 		if (rxf_lo < 192)
2707 			rxf_lo = 192;
2708 		rxf_hi = (reg * 7) / 8;
2709 		if (rxf_hi < rxf_lo)
2710 			rxf_hi = rxf_lo + 16;
2711 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2712 		rrd_lo = reg / 8;
2713 		rrd_hi = (reg * 7) / 8;
2714 		if (rrd_lo < 2)
2715 			rrd_lo = 2;
2716 		if (rrd_hi < rrd_lo)
2717 			rrd_hi = rrd_lo + 3;
2718 		break;
2719 	}
2720 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2721 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2722 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2723 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2724 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2725 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2726 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2727 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2728 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2729 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2730 
2731 	/* Configure RxQ. */
2732 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2733 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2734 	    RXQ_CFG_RD_BURST_MASK) |
2735 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2736 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2737 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2738 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2739 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2740 
2741 	/* Configure TxQ. */
2742 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2743 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2744 	    TXQ_CFG_TPD_BURST_MASK) |
2745 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2746 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2747 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2748 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2749 	    TXQ_CFG_ENB);
2750 
2751 	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2752 	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2753 	    TX_JUMBO_TPD_TH_MASK) |
2754 	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2755 	    TX_JUMBO_TPD_IPG_MASK));
2756 	/* Configure DMA parameters. */
2757 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2758 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2759 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2760 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2761 
2762 	/* Configure CMB DMA write threshold. */
2763 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2764 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2765 	    CMB_WR_THRESH_RRD_MASK) |
2766 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2767 	    CMB_WR_THRESH_TPD_MASK));
2768 
2769 	/* Set CMB/SMB timer and enable them. */
2770 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2771 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2772 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2773 	/* Request SMB updates for every seconds. */
2774 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2775 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2776 
2777 	/*
2778 	 * Disable all WOL bits as WOL can interfere normal Rx
2779 	 * operation.
2780 	 */
2781 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2782 
2783 	/*
2784 	 * Configure Tx/Rx MACs.
2785 	 *  - Auto-padding for short frames.
2786 	 *  - Enable CRC generation.
2787 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2788 	 *  of MAC is followed after link establishment.
2789 	 */
2790 	CSR_WRITE_4(sc, AGE_MAC_CFG,
2791 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2792 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2793 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2794 	    MAC_CFG_PREAMBLE_MASK));
2795 	/* Set up the receive filter. */
2796 	age_rxfilter(sc);
2797 	age_rxvlan(sc);
2798 
2799 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2800 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2801 		reg |= MAC_CFG_RXCSUM_ENB;
2802 
2803 	/* Ack all pending interrupts and clear it. */
2804 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2805 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2806 
2807 	/* Finally enable Tx/Rx MAC. */
2808 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2809 
2810 	sc->age_flags &= ~AGE_FLAG_LINK;
2811 	/* Switch to the current media. */
2812 	mii_mediachg(mii);
2813 
2814 	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2815 
2816 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2817 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2818 }
2819 
2820 static void
age_stop(struct age_softc * sc)2821 age_stop(struct age_softc *sc)
2822 {
2823 	if_t ifp;
2824 	struct age_txdesc *txd;
2825 	struct age_rxdesc *rxd;
2826 	uint32_t reg;
2827 	int i;
2828 
2829 	AGE_LOCK_ASSERT(sc);
2830 	/*
2831 	 * Mark the interface down and cancel the watchdog timer.
2832 	 */
2833 	ifp = sc->age_ifp;
2834 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2835 	sc->age_flags &= ~AGE_FLAG_LINK;
2836 	callout_stop(&sc->age_tick_ch);
2837 	sc->age_watchdog_timer = 0;
2838 
2839 	/*
2840 	 * Disable interrupts.
2841 	 */
2842 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2843 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2844 	/* Stop CMB/SMB updates. */
2845 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2846 	/* Stop Rx/Tx MAC. */
2847 	age_stop_rxmac(sc);
2848 	age_stop_txmac(sc);
2849 	/* Stop DMA. */
2850 	CSR_WRITE_4(sc, AGE_DMA_CFG,
2851 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2852 	/* Stop TxQ/RxQ. */
2853 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2854 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2855 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2856 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2857 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2858 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2859 			break;
2860 		DELAY(10);
2861 	}
2862 	if (i == 0)
2863 		device_printf(sc->age_dev,
2864 		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2865 
2866 	 /* Reclaim Rx buffers that have been processed. */
2867 	if (sc->age_cdata.age_rxhead != NULL)
2868 		m_freem(sc->age_cdata.age_rxhead);
2869 	AGE_RXCHAIN_RESET(sc);
2870 	/*
2871 	 * Free RX and TX mbufs still in the queues.
2872 	 */
2873 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2874 		rxd = &sc->age_cdata.age_rxdesc[i];
2875 		if (rxd->rx_m != NULL) {
2876 			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2877 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2878 			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2879 			    rxd->rx_dmamap);
2880 			m_freem(rxd->rx_m);
2881 			rxd->rx_m = NULL;
2882 		}
2883         }
2884 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2885 		txd = &sc->age_cdata.age_txdesc[i];
2886 		if (txd->tx_m != NULL) {
2887 			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2888 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2889 			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2890 			    txd->tx_dmamap);
2891 			m_freem(txd->tx_m);
2892 			txd->tx_m = NULL;
2893 		}
2894         }
2895 }
2896 
2897 static void
age_stop_txmac(struct age_softc * sc)2898 age_stop_txmac(struct age_softc *sc)
2899 {
2900 	uint32_t reg;
2901 	int i;
2902 
2903 	AGE_LOCK_ASSERT(sc);
2904 
2905 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2906 	if ((reg & MAC_CFG_TX_ENB) != 0) {
2907 		reg &= ~MAC_CFG_TX_ENB;
2908 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2909 	}
2910 	/* Stop Tx DMA engine. */
2911 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2912 	if ((reg & DMA_CFG_RD_ENB) != 0) {
2913 		reg &= ~DMA_CFG_RD_ENB;
2914 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2915 	}
2916 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2917 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2918 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2919 			break;
2920 		DELAY(10);
2921 	}
2922 	if (i == 0)
2923 		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2924 }
2925 
2926 static void
age_stop_rxmac(struct age_softc * sc)2927 age_stop_rxmac(struct age_softc *sc)
2928 {
2929 	uint32_t reg;
2930 	int i;
2931 
2932 	AGE_LOCK_ASSERT(sc);
2933 
2934 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2935 	if ((reg & MAC_CFG_RX_ENB) != 0) {
2936 		reg &= ~MAC_CFG_RX_ENB;
2937 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2938 	}
2939 	/* Stop Rx DMA engine. */
2940 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2941 	if ((reg & DMA_CFG_WR_ENB) != 0) {
2942 		reg &= ~DMA_CFG_WR_ENB;
2943 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2944 	}
2945 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2946 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2947 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2948 			break;
2949 		DELAY(10);
2950 	}
2951 	if (i == 0)
2952 		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2953 }
2954 
2955 static void
age_init_tx_ring(struct age_softc * sc)2956 age_init_tx_ring(struct age_softc *sc)
2957 {
2958 	struct age_ring_data *rd;
2959 	struct age_txdesc *txd;
2960 	int i;
2961 
2962 	AGE_LOCK_ASSERT(sc);
2963 
2964 	sc->age_cdata.age_tx_prod = 0;
2965 	sc->age_cdata.age_tx_cons = 0;
2966 	sc->age_cdata.age_tx_cnt = 0;
2967 
2968 	rd = &sc->age_rdata;
2969 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2970 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2971 		txd = &sc->age_cdata.age_txdesc[i];
2972 		txd->tx_desc = &rd->age_tx_ring[i];
2973 		txd->tx_m = NULL;
2974 	}
2975 
2976 	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2977 	    sc->age_cdata.age_tx_ring_map,
2978 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2979 }
2980 
2981 static int
age_init_rx_ring(struct age_softc * sc)2982 age_init_rx_ring(struct age_softc *sc)
2983 {
2984 	struct age_ring_data *rd;
2985 	struct age_rxdesc *rxd;
2986 	int i;
2987 
2988 	AGE_LOCK_ASSERT(sc);
2989 
2990 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2991 	sc->age_morework = 0;
2992 	rd = &sc->age_rdata;
2993 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2994 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2995 		rxd = &sc->age_cdata.age_rxdesc[i];
2996 		rxd->rx_m = NULL;
2997 		rxd->rx_desc = &rd->age_rx_ring[i];
2998 		if (age_newbuf(sc, rxd) != 0)
2999 			return (ENOBUFS);
3000 	}
3001 
3002 	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3003 	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3004 
3005 	return (0);
3006 }
3007 
3008 static void
age_init_rr_ring(struct age_softc * sc)3009 age_init_rr_ring(struct age_softc *sc)
3010 {
3011 	struct age_ring_data *rd;
3012 
3013 	AGE_LOCK_ASSERT(sc);
3014 
3015 	sc->age_cdata.age_rr_cons = 0;
3016 	AGE_RXCHAIN_RESET(sc);
3017 
3018 	rd = &sc->age_rdata;
3019 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3020 	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3021 	    sc->age_cdata.age_rr_ring_map,
3022 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3023 }
3024 
3025 static void
age_init_cmb_block(struct age_softc * sc)3026 age_init_cmb_block(struct age_softc *sc)
3027 {
3028 	struct age_ring_data *rd;
3029 
3030 	AGE_LOCK_ASSERT(sc);
3031 
3032 	rd = &sc->age_rdata;
3033 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3034 	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3035 	    sc->age_cdata.age_cmb_block_map,
3036 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3037 }
3038 
3039 static void
age_init_smb_block(struct age_softc * sc)3040 age_init_smb_block(struct age_softc *sc)
3041 {
3042 	struct age_ring_data *rd;
3043 
3044 	AGE_LOCK_ASSERT(sc);
3045 
3046 	rd = &sc->age_rdata;
3047 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3048 	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3049 	    sc->age_cdata.age_smb_block_map,
3050 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3051 }
3052 
3053 static int
age_newbuf(struct age_softc * sc,struct age_rxdesc * rxd)3054 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3055 {
3056 	struct rx_desc *desc;
3057 	struct mbuf *m;
3058 	bus_dma_segment_t segs[1];
3059 	bus_dmamap_t map;
3060 	int nsegs;
3061 
3062 	AGE_LOCK_ASSERT(sc);
3063 
3064 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3065 	if (m == NULL)
3066 		return (ENOBUFS);
3067 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3068 #ifndef __NO_STRICT_ALIGNMENT
3069 	m_adj(m, AGE_RX_BUF_ALIGN);
3070 #endif
3071 
3072 	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3073 	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3074 		m_freem(m);
3075 		return (ENOBUFS);
3076 	}
3077 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3078 
3079 	if (rxd->rx_m != NULL) {
3080 		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3081 		    BUS_DMASYNC_POSTREAD);
3082 		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3083 	}
3084 	map = rxd->rx_dmamap;
3085 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3086 	sc->age_cdata.age_rx_sparemap = map;
3087 	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3088 	    BUS_DMASYNC_PREREAD);
3089 	rxd->rx_m = m;
3090 
3091 	desc = rxd->rx_desc;
3092 	desc->addr = htole64(segs[0].ds_addr);
3093 	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3094 	    AGE_RD_LEN_SHIFT);
3095 	return (0);
3096 }
3097 
3098 static void
age_rxvlan(struct age_softc * sc)3099 age_rxvlan(struct age_softc *sc)
3100 {
3101 	if_t ifp;
3102 	uint32_t reg;
3103 
3104 	AGE_LOCK_ASSERT(sc);
3105 
3106 	ifp = sc->age_ifp;
3107 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3108 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3109 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3110 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3111 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3112 }
3113 
3114 static u_int
age_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)3115 age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3116 {
3117 	uint32_t *mchash = arg;
3118 	uint32_t crc;
3119 
3120 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3121 	mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3122 
3123 	return (1);
3124 }
3125 
3126 static void
age_rxfilter(struct age_softc * sc)3127 age_rxfilter(struct age_softc *sc)
3128 {
3129 	if_t ifp;
3130 	uint32_t mchash[2];
3131 	uint32_t rxcfg;
3132 
3133 	AGE_LOCK_ASSERT(sc);
3134 
3135 	ifp = sc->age_ifp;
3136 
3137 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3138 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3139 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3140 		rxcfg |= MAC_CFG_BCAST;
3141 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3142 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3143 			rxcfg |= MAC_CFG_PROMISC;
3144 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3145 			rxcfg |= MAC_CFG_ALLMULTI;
3146 		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3147 		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3148 		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3149 		return;
3150 	}
3151 
3152 	/* Program new filter. */
3153 	bzero(mchash, sizeof(mchash));
3154 	if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3155 
3156 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3157 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3158 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3159 }
3160 
3161 static int
sysctl_age_stats(SYSCTL_HANDLER_ARGS)3162 sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3163 {
3164 	struct age_softc *sc;
3165 	struct age_stats *stats;
3166 	int error, result;
3167 
3168 	result = -1;
3169 	error = sysctl_handle_int(oidp, &result, 0, req);
3170 
3171 	if (error != 0 || req->newptr == NULL)
3172 		return (error);
3173 
3174 	if (result != 1)
3175 		return (error);
3176 
3177 	sc = (struct age_softc *)arg1;
3178 	stats = &sc->age_stat;
3179 	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3180 	printf("Transmit good frames : %ju\n",
3181 	    (uintmax_t)stats->tx_frames);
3182 	printf("Transmit good broadcast frames : %ju\n",
3183 	    (uintmax_t)stats->tx_bcast_frames);
3184 	printf("Transmit good multicast frames : %ju\n",
3185 	    (uintmax_t)stats->tx_mcast_frames);
3186 	printf("Transmit pause control frames : %u\n",
3187 	    stats->tx_pause_frames);
3188 	printf("Transmit control frames : %u\n",
3189 	    stats->tx_control_frames);
3190 	printf("Transmit frames with excessive deferrals : %u\n",
3191 	    stats->tx_excess_defer);
3192 	printf("Transmit deferrals : %u\n",
3193 	    stats->tx_deferred);
3194 	printf("Transmit good octets : %ju\n",
3195 	    (uintmax_t)stats->tx_bytes);
3196 	printf("Transmit good broadcast octets : %ju\n",
3197 	    (uintmax_t)stats->tx_bcast_bytes);
3198 	printf("Transmit good multicast octets : %ju\n",
3199 	    (uintmax_t)stats->tx_mcast_bytes);
3200 	printf("Transmit frames 64 bytes : %ju\n",
3201 	    (uintmax_t)stats->tx_pkts_64);
3202 	printf("Transmit frames 65 to 127 bytes : %ju\n",
3203 	    (uintmax_t)stats->tx_pkts_65_127);
3204 	printf("Transmit frames 128 to 255 bytes : %ju\n",
3205 	    (uintmax_t)stats->tx_pkts_128_255);
3206 	printf("Transmit frames 256 to 511 bytes : %ju\n",
3207 	    (uintmax_t)stats->tx_pkts_256_511);
3208 	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3209 	    (uintmax_t)stats->tx_pkts_512_1023);
3210 	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3211 	    (uintmax_t)stats->tx_pkts_1024_1518);
3212 	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3213 	    (uintmax_t)stats->tx_pkts_1519_max);
3214 	printf("Transmit single collisions : %u\n",
3215 	    stats->tx_single_colls);
3216 	printf("Transmit multiple collisions : %u\n",
3217 	    stats->tx_multi_colls);
3218 	printf("Transmit late collisions : %u\n",
3219 	    stats->tx_late_colls);
3220 	printf("Transmit abort due to excessive collisions : %u\n",
3221 	    stats->tx_excess_colls);
3222 	printf("Transmit underruns due to FIFO underruns : %u\n",
3223 	    stats->tx_underrun);
3224 	printf("Transmit descriptor write-back errors : %u\n",
3225 	    stats->tx_desc_underrun);
3226 	printf("Transmit frames with length mismatched frame size : %u\n",
3227 	    stats->tx_lenerrs);
3228 	printf("Transmit frames with truncated due to MTU size : %u\n",
3229 	    stats->tx_lenerrs);
3230 
3231 	printf("Receive good frames : %ju\n",
3232 	    (uintmax_t)stats->rx_frames);
3233 	printf("Receive good broadcast frames : %ju\n",
3234 	    (uintmax_t)stats->rx_bcast_frames);
3235 	printf("Receive good multicast frames : %ju\n",
3236 	    (uintmax_t)stats->rx_mcast_frames);
3237 	printf("Receive pause control frames : %u\n",
3238 	    stats->rx_pause_frames);
3239 	printf("Receive control frames : %u\n",
3240 	    stats->rx_control_frames);
3241 	printf("Receive CRC errors : %u\n",
3242 	    stats->rx_crcerrs);
3243 	printf("Receive frames with length errors : %u\n",
3244 	    stats->rx_lenerrs);
3245 	printf("Receive good octets : %ju\n",
3246 	    (uintmax_t)stats->rx_bytes);
3247 	printf("Receive good broadcast octets : %ju\n",
3248 	    (uintmax_t)stats->rx_bcast_bytes);
3249 	printf("Receive good multicast octets : %ju\n",
3250 	    (uintmax_t)stats->rx_mcast_bytes);
3251 	printf("Receive frames too short : %u\n",
3252 	    stats->rx_runts);
3253 	printf("Receive fragmented frames : %ju\n",
3254 	    (uintmax_t)stats->rx_fragments);
3255 	printf("Receive frames 64 bytes : %ju\n",
3256 	    (uintmax_t)stats->rx_pkts_64);
3257 	printf("Receive frames 65 to 127 bytes : %ju\n",
3258 	    (uintmax_t)stats->rx_pkts_65_127);
3259 	printf("Receive frames 128 to 255 bytes : %ju\n",
3260 	    (uintmax_t)stats->rx_pkts_128_255);
3261 	printf("Receive frames 256 to 511 bytes : %ju\n",
3262 	    (uintmax_t)stats->rx_pkts_256_511);
3263 	printf("Receive frames 512 to 1024 bytes : %ju\n",
3264 	    (uintmax_t)stats->rx_pkts_512_1023);
3265 	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3266 	    (uintmax_t)stats->rx_pkts_1024_1518);
3267 	printf("Receive frames 1519 to MTU bytes : %ju\n",
3268 	    (uintmax_t)stats->rx_pkts_1519_max);
3269 	printf("Receive frames too long : %ju\n",
3270 	    (uint64_t)stats->rx_pkts_truncated);
3271 	printf("Receive frames with FIFO overflow : %u\n",
3272 	    stats->rx_fifo_oflows);
3273 	printf("Receive frames with return descriptor overflow : %u\n",
3274 	    stats->rx_desc_oflows);
3275 	printf("Receive frames with alignment errors : %u\n",
3276 	    stats->rx_alignerrs);
3277 	printf("Receive frames dropped due to address filtering : %ju\n",
3278 	    (uint64_t)stats->rx_pkts_filtered);
3279 
3280 	return (error);
3281 }
3282 
3283 static int
sysctl_int_range(SYSCTL_HANDLER_ARGS,int low,int high)3284 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3285 {
3286 	int error, value;
3287 
3288 	if (arg1 == NULL)
3289 		return (EINVAL);
3290 	value = *(int *)arg1;
3291 	error = sysctl_handle_int(oidp, &value, 0, req);
3292 	if (error || req->newptr == NULL)
3293 		return (error);
3294 	if (value < low || value > high)
3295 		return (EINVAL);
3296         *(int *)arg1 = value;
3297 
3298         return (0);
3299 }
3300 
3301 static int
sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)3302 sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3303 {
3304 	return (sysctl_int_range(oidp, arg1, arg2, req,
3305 	    AGE_PROC_MIN, AGE_PROC_MAX));
3306 }
3307 
3308 static int
sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)3309 sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3310 {
3311 
3312 	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3313 	    AGE_IM_TIMER_MAX));
3314 }
3315