xref: /linux/fs/dlm/lowcomms.c (revision 3d3a9c8b89d4f8a3785e06ffd15405c670696f02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58 
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64 
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define DLM_MAX_PROCESS_BUFFERS 24
67 #define NEEDED_RMEM (4*1024*1024)
68 
69 struct connection {
70 	struct socket *sock;	/* NULL if not connected */
71 	uint32_t nodeid;	/* So we know who we are in the list */
72 	/* this semaphore is used to allow parallel recv/send in read
73 	 * lock mode. When we release a sock we need to held the write lock.
74 	 *
75 	 * However this is locking code and not nice. When we remove the
76 	 * othercon handling we can look into other mechanism to synchronize
77 	 * io handling to call sock_release() at the right time.
78 	 */
79 	struct rw_semaphore sock_lock;
80 	unsigned long flags;
81 #define CF_APP_LIMITED 0
82 #define CF_RECV_PENDING 1
83 #define CF_SEND_PENDING 2
84 #define CF_RECV_INTR 3
85 #define CF_IO_STOP 4
86 #define CF_IS_OTHERCON 5
87 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
88 	spinlock_t writequeue_lock;
89 	int retries;
90 	struct hlist_node list;
91 	/* due some connect()/accept() races we currently have this cross over
92 	 * connection attempt second connection for one node.
93 	 *
94 	 * There is a solution to avoid the race by introducing a connect
95 	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96 	 * connect. Otherside can connect but will only be considered that
97 	 * the other side wants to have a reconnect.
98 	 *
99 	 * However changing to this behaviour will break backwards compatible.
100 	 * In a DLM protocol major version upgrade we should remove this!
101 	 */
102 	struct connection *othercon;
103 	struct work_struct rwork; /* receive worker */
104 	struct work_struct swork; /* send worker */
105 	wait_queue_head_t shutdown_wait;
106 	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107 	int rx_leftover;
108 	int mark;
109 	int addr_count;
110 	int curr_addr_index;
111 	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112 	spinlock_t addrs_lock;
113 	struct rcu_head rcu;
114 };
115 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
116 
117 struct listen_connection {
118 	struct socket *sock;
119 	struct work_struct rwork;
120 };
121 
122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124 
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 	struct list_head list;
128 	struct page *page;
129 	int offset;
130 	int len;
131 	int end;
132 	int users;
133 	bool dirty;
134 	struct connection *con;
135 	struct list_head msgs;
136 	struct kref ref;
137 };
138 
139 struct dlm_msg {
140 	struct writequeue_entry *entry;
141 	struct dlm_msg *orig_msg;
142 	bool retransmit;
143 	void *ppc;
144 	int len;
145 	int idx; /* new()/commit() idx exchange */
146 
147 	struct list_head list;
148 	struct kref ref;
149 };
150 
151 struct processqueue_entry {
152 	unsigned char *buf;
153 	int nodeid;
154 	int buflen;
155 
156 	struct list_head list;
157 };
158 
159 struct dlm_proto_ops {
160 	bool try_new_addr;
161 	const char *name;
162 	int proto;
163 
164 	void (*sockopts)(struct socket *sock);
165 	int (*bind)(struct socket *sock);
166 	int (*listen_validate)(void);
167 	void (*listen_sockopts)(struct socket *sock);
168 	int (*listen_bind)(struct socket *sock);
169 };
170 
171 static struct listen_sock_callbacks {
172 	void (*sk_error_report)(struct sock *);
173 	void (*sk_data_ready)(struct sock *);
174 	void (*sk_state_change)(struct sock *);
175 	void (*sk_write_space)(struct sock *);
176 } listen_sock;
177 
178 static struct listen_connection listen_con;
179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180 static int dlm_local_count;
181 
182 /* Work queues */
183 static struct workqueue_struct *io_workqueue;
184 static struct workqueue_struct *process_workqueue;
185 
186 static struct hlist_head connection_hash[CONN_HASH_SIZE];
187 static DEFINE_SPINLOCK(connections_lock);
188 DEFINE_STATIC_SRCU(connections_srcu);
189 
190 static const struct dlm_proto_ops *dlm_proto_ops;
191 
192 #define DLM_IO_SUCCESS 0
193 #define DLM_IO_END 1
194 #define DLM_IO_EOF 2
195 #define DLM_IO_RESCHED 3
196 #define DLM_IO_FLUSH 4
197 
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201 
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq);
206 static atomic_t processqueue_count;
207 static LIST_HEAD(processqueue);
208 
dlm_lowcomms_is_running(void)209 bool dlm_lowcomms_is_running(void)
210 {
211 	return !!listen_con.sock;
212 }
213 
lowcomms_queue_swork(struct connection * con)214 static void lowcomms_queue_swork(struct connection *con)
215 {
216 	assert_spin_locked(&con->writequeue_lock);
217 
218 	if (!test_bit(CF_IO_STOP, &con->flags) &&
219 	    !test_bit(CF_APP_LIMITED, &con->flags) &&
220 	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
221 		queue_work(io_workqueue, &con->swork);
222 }
223 
lowcomms_queue_rwork(struct connection * con)224 static void lowcomms_queue_rwork(struct connection *con)
225 {
226 #ifdef CONFIG_LOCKDEP
227 	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
228 #endif
229 
230 	if (!test_bit(CF_IO_STOP, &con->flags) &&
231 	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
232 		queue_work(io_workqueue, &con->rwork);
233 }
234 
writequeue_entry_ctor(void * data)235 static void writequeue_entry_ctor(void *data)
236 {
237 	struct writequeue_entry *entry = data;
238 
239 	INIT_LIST_HEAD(&entry->msgs);
240 }
241 
dlm_lowcomms_writequeue_cache_create(void)242 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
243 {
244 	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
245 				 0, 0, writequeue_entry_ctor);
246 }
247 
dlm_lowcomms_msg_cache_create(void)248 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
249 {
250 	return KMEM_CACHE(dlm_msg, 0);
251 }
252 
253 /* need to held writequeue_lock */
con_next_wq(struct connection * con)254 static struct writequeue_entry *con_next_wq(struct connection *con)
255 {
256 	struct writequeue_entry *e;
257 
258 	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
259 				     list);
260 	/* if len is zero nothing is to send, if there are users filling
261 	 * buffers we wait until the users are done so we can send more.
262 	 */
263 	if (!e || e->users || e->len == 0)
264 		return NULL;
265 
266 	return e;
267 }
268 
__find_con(int nodeid,int r)269 static struct connection *__find_con(int nodeid, int r)
270 {
271 	struct connection *con;
272 
273 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
274 		if (con->nodeid == nodeid)
275 			return con;
276 	}
277 
278 	return NULL;
279 }
280 
dlm_con_init(struct connection * con,int nodeid)281 static void dlm_con_init(struct connection *con, int nodeid)
282 {
283 	con->nodeid = nodeid;
284 	init_rwsem(&con->sock_lock);
285 	INIT_LIST_HEAD(&con->writequeue);
286 	spin_lock_init(&con->writequeue_lock);
287 	INIT_WORK(&con->swork, process_send_sockets);
288 	INIT_WORK(&con->rwork, process_recv_sockets);
289 	spin_lock_init(&con->addrs_lock);
290 	init_waitqueue_head(&con->shutdown_wait);
291 }
292 
293 /*
294  * If 'allocation' is zero then we don't attempt to create a new
295  * connection structure for this node.
296  */
nodeid2con(int nodeid,gfp_t alloc)297 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
298 {
299 	struct connection *con, *tmp;
300 	int r;
301 
302 	r = nodeid_hash(nodeid);
303 	con = __find_con(nodeid, r);
304 	if (con || !alloc)
305 		return con;
306 
307 	con = kzalloc(sizeof(*con), alloc);
308 	if (!con)
309 		return NULL;
310 
311 	dlm_con_init(con, nodeid);
312 
313 	spin_lock(&connections_lock);
314 	/* Because multiple workqueues/threads calls this function it can
315 	 * race on multiple cpu's. Instead of locking hot path __find_con()
316 	 * we just check in rare cases of recently added nodes again
317 	 * under protection of connections_lock. If this is the case we
318 	 * abort our connection creation and return the existing connection.
319 	 */
320 	tmp = __find_con(nodeid, r);
321 	if (tmp) {
322 		spin_unlock(&connections_lock);
323 		kfree(con);
324 		return tmp;
325 	}
326 
327 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
328 	spin_unlock(&connections_lock);
329 
330 	return con;
331 }
332 
addr_compare(const struct sockaddr_storage * x,const struct sockaddr_storage * y)333 static int addr_compare(const struct sockaddr_storage *x,
334 			const struct sockaddr_storage *y)
335 {
336 	switch (x->ss_family) {
337 	case AF_INET: {
338 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
339 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
340 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
341 			return 0;
342 		if (sinx->sin_port != siny->sin_port)
343 			return 0;
344 		break;
345 	}
346 	case AF_INET6: {
347 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
348 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
349 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
350 			return 0;
351 		if (sinx->sin6_port != siny->sin6_port)
352 			return 0;
353 		break;
354 	}
355 	default:
356 		return 0;
357 	}
358 	return 1;
359 }
360 
nodeid_to_addr(int nodeid,struct sockaddr_storage * sas_out,struct sockaddr * sa_out,bool try_new_addr,unsigned int * mark)361 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
362 			  struct sockaddr *sa_out, bool try_new_addr,
363 			  unsigned int *mark)
364 {
365 	struct sockaddr_storage sas;
366 	struct connection *con;
367 	int idx;
368 
369 	if (!dlm_local_count)
370 		return -1;
371 
372 	idx = srcu_read_lock(&connections_srcu);
373 	con = nodeid2con(nodeid, 0);
374 	if (!con) {
375 		srcu_read_unlock(&connections_srcu, idx);
376 		return -ENOENT;
377 	}
378 
379 	spin_lock(&con->addrs_lock);
380 	if (!con->addr_count) {
381 		spin_unlock(&con->addrs_lock);
382 		srcu_read_unlock(&connections_srcu, idx);
383 		return -ENOENT;
384 	}
385 
386 	memcpy(&sas, &con->addr[con->curr_addr_index],
387 	       sizeof(struct sockaddr_storage));
388 
389 	if (try_new_addr) {
390 		con->curr_addr_index++;
391 		if (con->curr_addr_index == con->addr_count)
392 			con->curr_addr_index = 0;
393 	}
394 
395 	*mark = con->mark;
396 	spin_unlock(&con->addrs_lock);
397 
398 	if (sas_out)
399 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
400 
401 	if (!sa_out) {
402 		srcu_read_unlock(&connections_srcu, idx);
403 		return 0;
404 	}
405 
406 	if (dlm_local_addr[0].ss_family == AF_INET) {
407 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
408 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
409 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
410 	} else {
411 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
412 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
413 		ret6->sin6_addr = in6->sin6_addr;
414 	}
415 
416 	srcu_read_unlock(&connections_srcu, idx);
417 	return 0;
418 }
419 
addr_to_nodeid(struct sockaddr_storage * addr,int * nodeid,unsigned int * mark)420 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
421 			  unsigned int *mark)
422 {
423 	struct connection *con;
424 	int i, idx, addr_i;
425 
426 	idx = srcu_read_lock(&connections_srcu);
427 	for (i = 0; i < CONN_HASH_SIZE; i++) {
428 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
429 			WARN_ON_ONCE(!con->addr_count);
430 
431 			spin_lock(&con->addrs_lock);
432 			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
433 				if (addr_compare(&con->addr[addr_i], addr)) {
434 					*nodeid = con->nodeid;
435 					*mark = con->mark;
436 					spin_unlock(&con->addrs_lock);
437 					srcu_read_unlock(&connections_srcu, idx);
438 					return 0;
439 				}
440 			}
441 			spin_unlock(&con->addrs_lock);
442 		}
443 	}
444 	srcu_read_unlock(&connections_srcu, idx);
445 
446 	return -ENOENT;
447 }
448 
dlm_lowcomms_con_has_addr(const struct connection * con,const struct sockaddr_storage * addr)449 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
450 				      const struct sockaddr_storage *addr)
451 {
452 	int i;
453 
454 	for (i = 0; i < con->addr_count; i++) {
455 		if (addr_compare(&con->addr[i], addr))
456 			return true;
457 	}
458 
459 	return false;
460 }
461 
dlm_lowcomms_addr(int nodeid,struct sockaddr_storage * addr)462 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr)
463 {
464 	struct connection *con;
465 	bool ret;
466 	int idx;
467 
468 	idx = srcu_read_lock(&connections_srcu);
469 	con = nodeid2con(nodeid, GFP_NOFS);
470 	if (!con) {
471 		srcu_read_unlock(&connections_srcu, idx);
472 		return -ENOMEM;
473 	}
474 
475 	spin_lock(&con->addrs_lock);
476 	if (!con->addr_count) {
477 		memcpy(&con->addr[0], addr, sizeof(*addr));
478 		con->addr_count = 1;
479 		con->mark = dlm_config.ci_mark;
480 		spin_unlock(&con->addrs_lock);
481 		srcu_read_unlock(&connections_srcu, idx);
482 		return 0;
483 	}
484 
485 	ret = dlm_lowcomms_con_has_addr(con, addr);
486 	if (ret) {
487 		spin_unlock(&con->addrs_lock);
488 		srcu_read_unlock(&connections_srcu, idx);
489 		return -EEXIST;
490 	}
491 
492 	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
493 		spin_unlock(&con->addrs_lock);
494 		srcu_read_unlock(&connections_srcu, idx);
495 		return -ENOSPC;
496 	}
497 
498 	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
499 	srcu_read_unlock(&connections_srcu, idx);
500 	spin_unlock(&con->addrs_lock);
501 	return 0;
502 }
503 
504 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk)505 static void lowcomms_data_ready(struct sock *sk)
506 {
507 	struct connection *con = sock2con(sk);
508 
509 	trace_sk_data_ready(sk);
510 
511 	set_bit(CF_RECV_INTR, &con->flags);
512 	lowcomms_queue_rwork(con);
513 }
514 
lowcomms_write_space(struct sock * sk)515 static void lowcomms_write_space(struct sock *sk)
516 {
517 	struct connection *con = sock2con(sk);
518 
519 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
520 
521 	spin_lock_bh(&con->writequeue_lock);
522 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
523 		con->sock->sk->sk_write_pending--;
524 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
525 	}
526 
527 	lowcomms_queue_swork(con);
528 	spin_unlock_bh(&con->writequeue_lock);
529 }
530 
lowcomms_state_change(struct sock * sk)531 static void lowcomms_state_change(struct sock *sk)
532 {
533 	/* SCTP layer is not calling sk_data_ready when the connection
534 	 * is done, so we catch the signal through here.
535 	 */
536 	if (sk->sk_shutdown == RCV_SHUTDOWN)
537 		lowcomms_data_ready(sk);
538 }
539 
lowcomms_listen_data_ready(struct sock * sk)540 static void lowcomms_listen_data_ready(struct sock *sk)
541 {
542 	trace_sk_data_ready(sk);
543 
544 	queue_work(io_workqueue, &listen_con.rwork);
545 }
546 
dlm_lowcomms_connect_node(int nodeid)547 int dlm_lowcomms_connect_node(int nodeid)
548 {
549 	struct connection *con;
550 	int idx;
551 
552 	idx = srcu_read_lock(&connections_srcu);
553 	con = nodeid2con(nodeid, 0);
554 	if (WARN_ON_ONCE(!con)) {
555 		srcu_read_unlock(&connections_srcu, idx);
556 		return -ENOENT;
557 	}
558 
559 	down_read(&con->sock_lock);
560 	if (!con->sock) {
561 		spin_lock_bh(&con->writequeue_lock);
562 		lowcomms_queue_swork(con);
563 		spin_unlock_bh(&con->writequeue_lock);
564 	}
565 	up_read(&con->sock_lock);
566 	srcu_read_unlock(&connections_srcu, idx);
567 
568 	cond_resched();
569 	return 0;
570 }
571 
dlm_lowcomms_nodes_set_mark(int nodeid,unsigned int mark)572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
573 {
574 	struct connection *con;
575 	int idx;
576 
577 	idx = srcu_read_lock(&connections_srcu);
578 	con = nodeid2con(nodeid, 0);
579 	if (!con) {
580 		srcu_read_unlock(&connections_srcu, idx);
581 		return -ENOENT;
582 	}
583 
584 	spin_lock(&con->addrs_lock);
585 	con->mark = mark;
586 	spin_unlock(&con->addrs_lock);
587 	srcu_read_unlock(&connections_srcu, idx);
588 	return 0;
589 }
590 
lowcomms_error_report(struct sock * sk)591 static void lowcomms_error_report(struct sock *sk)
592 {
593 	struct connection *con = sock2con(sk);
594 	struct inet_sock *inet;
595 
596 	inet = inet_sk(sk);
597 	switch (sk->sk_family) {
598 	case AF_INET:
599 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600 				   "sending to node %d at %pI4, dport %d, "
601 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
602 				   con->nodeid, &inet->inet_daddr,
603 				   ntohs(inet->inet_dport), sk->sk_err,
604 				   READ_ONCE(sk->sk_err_soft));
605 		break;
606 #if IS_ENABLED(CONFIG_IPV6)
607 	case AF_INET6:
608 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609 				   "sending to node %d at %pI6c, "
610 				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611 				   con->nodeid, &sk->sk_v6_daddr,
612 				   ntohs(inet->inet_dport), sk->sk_err,
613 				   READ_ONCE(sk->sk_err_soft));
614 		break;
615 #endif
616 	default:
617 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618 				   "invalid socket family %d set, "
619 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
620 				   sk->sk_family, sk->sk_err,
621 				   READ_ONCE(sk->sk_err_soft));
622 		break;
623 	}
624 
625 	dlm_midcomms_unack_msg_resend(con->nodeid);
626 
627 	listen_sock.sk_error_report(sk);
628 }
629 
restore_callbacks(struct sock * sk)630 static void restore_callbacks(struct sock *sk)
631 {
632 #ifdef CONFIG_LOCKDEP
633 	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634 #endif
635 
636 	sk->sk_user_data = NULL;
637 	sk->sk_data_ready = listen_sock.sk_data_ready;
638 	sk->sk_state_change = listen_sock.sk_state_change;
639 	sk->sk_write_space = listen_sock.sk_write_space;
640 	sk->sk_error_report = listen_sock.sk_error_report;
641 }
642 
643 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)644 static void add_sock(struct socket *sock, struct connection *con)
645 {
646 	struct sock *sk = sock->sk;
647 
648 	lock_sock(sk);
649 	con->sock = sock;
650 
651 	sk->sk_user_data = con;
652 	sk->sk_data_ready = lowcomms_data_ready;
653 	sk->sk_write_space = lowcomms_write_space;
654 	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655 		sk->sk_state_change = lowcomms_state_change;
656 	sk->sk_allocation = GFP_NOFS;
657 	sk->sk_use_task_frag = false;
658 	sk->sk_error_report = lowcomms_error_report;
659 	release_sock(sk);
660 }
661 
662 /* Add the port number to an IPv6 or 4 sockaddr and return the address
663    length */
make_sockaddr(struct sockaddr_storage * saddr,__be16 port,int * addr_len)664 static void make_sockaddr(struct sockaddr_storage *saddr, __be16 port,
665 			  int *addr_len)
666 {
667 	saddr->ss_family =  dlm_local_addr[0].ss_family;
668 	if (saddr->ss_family == AF_INET) {
669 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670 		in4_addr->sin_port = port;
671 		*addr_len = sizeof(struct sockaddr_in);
672 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673 	} else {
674 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675 		in6_addr->sin6_port = port;
676 		*addr_len = sizeof(struct sockaddr_in6);
677 	}
678 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
679 }
680 
dlm_page_release(struct kref * kref)681 static void dlm_page_release(struct kref *kref)
682 {
683 	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684 						  ref);
685 
686 	__free_page(e->page);
687 	dlm_free_writequeue(e);
688 }
689 
dlm_msg_release(struct kref * kref)690 static void dlm_msg_release(struct kref *kref)
691 {
692 	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
693 
694 	kref_put(&msg->entry->ref, dlm_page_release);
695 	dlm_free_msg(msg);
696 }
697 
free_entry(struct writequeue_entry * e)698 static void free_entry(struct writequeue_entry *e)
699 {
700 	struct dlm_msg *msg, *tmp;
701 
702 	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703 		if (msg->orig_msg) {
704 			msg->orig_msg->retransmit = false;
705 			kref_put(&msg->orig_msg->ref, dlm_msg_release);
706 		}
707 
708 		list_del(&msg->list);
709 		kref_put(&msg->ref, dlm_msg_release);
710 	}
711 
712 	list_del(&e->list);
713 	kref_put(&e->ref, dlm_page_release);
714 }
715 
dlm_close_sock(struct socket ** sock)716 static void dlm_close_sock(struct socket **sock)
717 {
718 	lock_sock((*sock)->sk);
719 	restore_callbacks((*sock)->sk);
720 	release_sock((*sock)->sk);
721 
722 	sock_release(*sock);
723 	*sock = NULL;
724 }
725 
allow_connection_io(struct connection * con)726 static void allow_connection_io(struct connection *con)
727 {
728 	if (con->othercon)
729 		clear_bit(CF_IO_STOP, &con->othercon->flags);
730 	clear_bit(CF_IO_STOP, &con->flags);
731 }
732 
stop_connection_io(struct connection * con)733 static void stop_connection_io(struct connection *con)
734 {
735 	if (con->othercon)
736 		stop_connection_io(con->othercon);
737 
738 	spin_lock_bh(&con->writequeue_lock);
739 	set_bit(CF_IO_STOP, &con->flags);
740 	spin_unlock_bh(&con->writequeue_lock);
741 
742 	down_write(&con->sock_lock);
743 	if (con->sock) {
744 		lock_sock(con->sock->sk);
745 		restore_callbacks(con->sock->sk);
746 		release_sock(con->sock->sk);
747 	}
748 	up_write(&con->sock_lock);
749 
750 	cancel_work_sync(&con->swork);
751 	cancel_work_sync(&con->rwork);
752 }
753 
754 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other)755 static void close_connection(struct connection *con, bool and_other)
756 {
757 	struct writequeue_entry *e;
758 
759 	if (con->othercon && and_other)
760 		close_connection(con->othercon, false);
761 
762 	down_write(&con->sock_lock);
763 	if (!con->sock) {
764 		up_write(&con->sock_lock);
765 		return;
766 	}
767 
768 	dlm_close_sock(&con->sock);
769 
770 	/* if we send a writequeue entry only a half way, we drop the
771 	 * whole entry because reconnection and that we not start of the
772 	 * middle of a msg which will confuse the other end.
773 	 *
774 	 * we can always drop messages because retransmits, but what we
775 	 * cannot allow is to transmit half messages which may be processed
776 	 * at the other side.
777 	 *
778 	 * our policy is to start on a clean state when disconnects, we don't
779 	 * know what's send/received on transport layer in this case.
780 	 */
781 	spin_lock_bh(&con->writequeue_lock);
782 	if (!list_empty(&con->writequeue)) {
783 		e = list_first_entry(&con->writequeue, struct writequeue_entry,
784 				     list);
785 		if (e->dirty)
786 			free_entry(e);
787 	}
788 	spin_unlock_bh(&con->writequeue_lock);
789 
790 	con->rx_leftover = 0;
791 	con->retries = 0;
792 	clear_bit(CF_APP_LIMITED, &con->flags);
793 	clear_bit(CF_RECV_PENDING, &con->flags);
794 	clear_bit(CF_SEND_PENDING, &con->flags);
795 	up_write(&con->sock_lock);
796 }
797 
shutdown_connection(struct connection * con,bool and_other)798 static void shutdown_connection(struct connection *con, bool and_other)
799 {
800 	int ret;
801 
802 	if (con->othercon && and_other)
803 		shutdown_connection(con->othercon, false);
804 
805 	flush_workqueue(io_workqueue);
806 	down_read(&con->sock_lock);
807 	/* nothing to shutdown */
808 	if (!con->sock) {
809 		up_read(&con->sock_lock);
810 		return;
811 	}
812 
813 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814 	up_read(&con->sock_lock);
815 	if (ret) {
816 		log_print("Connection %p failed to shutdown: %d will force close",
817 			  con, ret);
818 		goto force_close;
819 	} else {
820 		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
822 		if (ret == 0) {
823 			log_print("Connection %p shutdown timed out, will force close",
824 				  con);
825 			goto force_close;
826 		}
827 	}
828 
829 	return;
830 
831 force_close:
832 	close_connection(con, false);
833 }
834 
new_processqueue_entry(int nodeid,int buflen)835 static struct processqueue_entry *new_processqueue_entry(int nodeid,
836 							 int buflen)
837 {
838 	struct processqueue_entry *pentry;
839 
840 	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841 	if (!pentry)
842 		return NULL;
843 
844 	pentry->buf = kmalloc(buflen, GFP_NOFS);
845 	if (!pentry->buf) {
846 		kfree(pentry);
847 		return NULL;
848 	}
849 
850 	pentry->nodeid = nodeid;
851 	return pentry;
852 }
853 
free_processqueue_entry(struct processqueue_entry * pentry)854 static void free_processqueue_entry(struct processqueue_entry *pentry)
855 {
856 	kfree(pentry->buf);
857 	kfree(pentry);
858 }
859 
process_dlm_messages(struct work_struct * work)860 static void process_dlm_messages(struct work_struct *work)
861 {
862 	struct processqueue_entry *pentry;
863 
864 	spin_lock_bh(&processqueue_lock);
865 	pentry = list_first_entry_or_null(&processqueue,
866 					  struct processqueue_entry, list);
867 	if (WARN_ON_ONCE(!pentry)) {
868 		process_dlm_messages_pending = false;
869 		spin_unlock_bh(&processqueue_lock);
870 		return;
871 	}
872 
873 	list_del(&pentry->list);
874 	if (atomic_dec_and_test(&processqueue_count))
875 		wake_up(&processqueue_wq);
876 	spin_unlock_bh(&processqueue_lock);
877 
878 	for (;;) {
879 		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
880 					    pentry->buflen);
881 		free_processqueue_entry(pentry);
882 
883 		spin_lock_bh(&processqueue_lock);
884 		pentry = list_first_entry_or_null(&processqueue,
885 						  struct processqueue_entry, list);
886 		if (!pentry) {
887 			process_dlm_messages_pending = false;
888 			spin_unlock_bh(&processqueue_lock);
889 			break;
890 		}
891 
892 		list_del(&pentry->list);
893 		if (atomic_dec_and_test(&processqueue_count))
894 			wake_up(&processqueue_wq);
895 		spin_unlock_bh(&processqueue_lock);
896 	}
897 }
898 
899 /* Data received from remote end */
receive_from_sock(struct connection * con,int buflen)900 static int receive_from_sock(struct connection *con, int buflen)
901 {
902 	struct processqueue_entry *pentry;
903 	int ret, buflen_real;
904 	struct msghdr msg;
905 	struct kvec iov;
906 
907 	pentry = new_processqueue_entry(con->nodeid, buflen);
908 	if (!pentry)
909 		return DLM_IO_RESCHED;
910 
911 	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
912 
913 	/* calculate new buffer parameter regarding last receive and
914 	 * possible leftover bytes
915 	 */
916 	iov.iov_base = pentry->buf + con->rx_leftover;
917 	iov.iov_len = buflen - con->rx_leftover;
918 
919 	memset(&msg, 0, sizeof(msg));
920 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
921 	clear_bit(CF_RECV_INTR, &con->flags);
922 again:
923 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
924 			     msg.msg_flags);
925 	trace_dlm_recv(con->nodeid, ret);
926 	if (ret == -EAGAIN) {
927 		lock_sock(con->sock->sk);
928 		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
929 			release_sock(con->sock->sk);
930 			goto again;
931 		}
932 
933 		clear_bit(CF_RECV_PENDING, &con->flags);
934 		release_sock(con->sock->sk);
935 		free_processqueue_entry(pentry);
936 		return DLM_IO_END;
937 	} else if (ret == 0) {
938 		/* close will clear CF_RECV_PENDING */
939 		free_processqueue_entry(pentry);
940 		return DLM_IO_EOF;
941 	} else if (ret < 0) {
942 		free_processqueue_entry(pentry);
943 		return ret;
944 	}
945 
946 	/* new buflen according readed bytes and leftover from last receive */
947 	buflen_real = ret + con->rx_leftover;
948 	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
949 					   buflen_real);
950 	if (ret < 0) {
951 		free_processqueue_entry(pentry);
952 		return ret;
953 	}
954 
955 	pentry->buflen = ret;
956 
957 	/* calculate leftover bytes from process and put it into begin of
958 	 * the receive buffer, so next receive we have the full message
959 	 * at the start address of the receive buffer.
960 	 */
961 	con->rx_leftover = buflen_real - ret;
962 	memmove(con->rx_leftover_buf, pentry->buf + ret,
963 		con->rx_leftover);
964 
965 	spin_lock_bh(&processqueue_lock);
966 	ret = atomic_inc_return(&processqueue_count);
967 	list_add_tail(&pentry->list, &processqueue);
968 	if (!process_dlm_messages_pending) {
969 		process_dlm_messages_pending = true;
970 		queue_work(process_workqueue, &process_work);
971 	}
972 	spin_unlock_bh(&processqueue_lock);
973 
974 	if (ret > DLM_MAX_PROCESS_BUFFERS)
975 		return DLM_IO_FLUSH;
976 
977 	return DLM_IO_SUCCESS;
978 }
979 
980 /* Listening socket is busy, accept a connection */
accept_from_sock(void)981 static int accept_from_sock(void)
982 {
983 	struct sockaddr_storage peeraddr;
984 	int len, idx, result, nodeid;
985 	struct connection *newcon;
986 	struct socket *newsock;
987 	unsigned int mark;
988 
989 	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
990 	if (result == -EAGAIN)
991 		return DLM_IO_END;
992 	else if (result < 0)
993 		goto accept_err;
994 
995 	/* Get the connected socket's peer */
996 	memset(&peeraddr, 0, sizeof(peeraddr));
997 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
998 	if (len < 0) {
999 		result = -ECONNABORTED;
1000 		goto accept_err;
1001 	}
1002 
1003 	/* Get the new node's NODEID */
1004 	make_sockaddr(&peeraddr, 0, &len);
1005 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1006 		switch (peeraddr.ss_family) {
1007 		case AF_INET: {
1008 			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1009 
1010 			log_print("connect from non cluster IPv4 node %pI4",
1011 				  &sin->sin_addr);
1012 			break;
1013 		}
1014 #if IS_ENABLED(CONFIG_IPV6)
1015 		case AF_INET6: {
1016 			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1017 
1018 			log_print("connect from non cluster IPv6 node %pI6c",
1019 				  &sin6->sin6_addr);
1020 			break;
1021 		}
1022 #endif
1023 		default:
1024 			log_print("invalid family from non cluster node");
1025 			break;
1026 		}
1027 
1028 		sock_release(newsock);
1029 		return -1;
1030 	}
1031 
1032 	log_print("got connection from %d", nodeid);
1033 
1034 	/*  Check to see if we already have a connection to this node. This
1035 	 *  could happen if the two nodes initiate a connection at roughly
1036 	 *  the same time and the connections cross on the wire.
1037 	 *  In this case we store the incoming one in "othercon"
1038 	 */
1039 	idx = srcu_read_lock(&connections_srcu);
1040 	newcon = nodeid2con(nodeid, 0);
1041 	if (WARN_ON_ONCE(!newcon)) {
1042 		srcu_read_unlock(&connections_srcu, idx);
1043 		result = -ENOENT;
1044 		goto accept_err;
1045 	}
1046 
1047 	sock_set_mark(newsock->sk, mark);
1048 
1049 	down_write(&newcon->sock_lock);
1050 	if (newcon->sock) {
1051 		struct connection *othercon = newcon->othercon;
1052 
1053 		if (!othercon) {
1054 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1055 			if (!othercon) {
1056 				log_print("failed to allocate incoming socket");
1057 				up_write(&newcon->sock_lock);
1058 				srcu_read_unlock(&connections_srcu, idx);
1059 				result = -ENOMEM;
1060 				goto accept_err;
1061 			}
1062 
1063 			dlm_con_init(othercon, nodeid);
1064 			lockdep_set_subclass(&othercon->sock_lock, 1);
1065 			newcon->othercon = othercon;
1066 			set_bit(CF_IS_OTHERCON, &othercon->flags);
1067 		} else {
1068 			/* close other sock con if we have something new */
1069 			close_connection(othercon, false);
1070 		}
1071 
1072 		down_write(&othercon->sock_lock);
1073 		add_sock(newsock, othercon);
1074 
1075 		/* check if we receved something while adding */
1076 		lock_sock(othercon->sock->sk);
1077 		lowcomms_queue_rwork(othercon);
1078 		release_sock(othercon->sock->sk);
1079 		up_write(&othercon->sock_lock);
1080 	}
1081 	else {
1082 		/* accept copies the sk after we've saved the callbacks, so we
1083 		   don't want to save them a second time or comm errors will
1084 		   result in calling sk_error_report recursively. */
1085 		add_sock(newsock, newcon);
1086 
1087 		/* check if we receved something while adding */
1088 		lock_sock(newcon->sock->sk);
1089 		lowcomms_queue_rwork(newcon);
1090 		release_sock(newcon->sock->sk);
1091 	}
1092 	up_write(&newcon->sock_lock);
1093 	srcu_read_unlock(&connections_srcu, idx);
1094 
1095 	return DLM_IO_SUCCESS;
1096 
1097 accept_err:
1098 	if (newsock)
1099 		sock_release(newsock);
1100 
1101 	return result;
1102 }
1103 
1104 /*
1105  * writequeue_entry_complete - try to delete and free write queue entry
1106  * @e: write queue entry to try to delete
1107  * @completed: bytes completed
1108  *
1109  * writequeue_lock must be held.
1110  */
writequeue_entry_complete(struct writequeue_entry * e,int completed)1111 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1112 {
1113 	e->offset += completed;
1114 	e->len -= completed;
1115 	/* signal that page was half way transmitted */
1116 	e->dirty = true;
1117 
1118 	if (e->len == 0 && e->users == 0)
1119 		free_entry(e);
1120 }
1121 
1122 /*
1123  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1124  */
sctp_bind_addrs(struct socket * sock,__be16 port)1125 static int sctp_bind_addrs(struct socket *sock, __be16 port)
1126 {
1127 	struct sockaddr_storage localaddr;
1128 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1129 	int i, addr_len, result = 0;
1130 
1131 	for (i = 0; i < dlm_local_count; i++) {
1132 		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1133 		make_sockaddr(&localaddr, port, &addr_len);
1134 
1135 		if (!i)
1136 			result = kernel_bind(sock, addr, addr_len);
1137 		else
1138 			result = sock_bind_add(sock->sk, addr, addr_len);
1139 
1140 		if (result < 0) {
1141 			log_print("Can't bind to %d addr number %d, %d.\n",
1142 				  port, i + 1, result);
1143 			break;
1144 		}
1145 	}
1146 	return result;
1147 }
1148 
1149 /* Get local addresses */
init_local(void)1150 static void init_local(void)
1151 {
1152 	struct sockaddr_storage sas;
1153 	int i;
1154 
1155 	dlm_local_count = 0;
1156 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1157 		if (dlm_our_addr(&sas, i))
1158 			break;
1159 
1160 		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1161 	}
1162 }
1163 
new_writequeue_entry(struct connection * con)1164 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1165 {
1166 	struct writequeue_entry *entry;
1167 
1168 	entry = dlm_allocate_writequeue();
1169 	if (!entry)
1170 		return NULL;
1171 
1172 	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1173 	if (!entry->page) {
1174 		dlm_free_writequeue(entry);
1175 		return NULL;
1176 	}
1177 
1178 	entry->offset = 0;
1179 	entry->len = 0;
1180 	entry->end = 0;
1181 	entry->dirty = false;
1182 	entry->con = con;
1183 	entry->users = 1;
1184 	kref_init(&entry->ref);
1185 	return entry;
1186 }
1187 
new_wq_entry(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1188 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1189 					     char **ppc, void (*cb)(void *data),
1190 					     void *data)
1191 {
1192 	struct writequeue_entry *e;
1193 
1194 	spin_lock_bh(&con->writequeue_lock);
1195 	if (!list_empty(&con->writequeue)) {
1196 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1197 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1198 			kref_get(&e->ref);
1199 
1200 			*ppc = page_address(e->page) + e->end;
1201 			if (cb)
1202 				cb(data);
1203 
1204 			e->end += len;
1205 			e->users++;
1206 			goto out;
1207 		}
1208 	}
1209 
1210 	e = new_writequeue_entry(con);
1211 	if (!e)
1212 		goto out;
1213 
1214 	kref_get(&e->ref);
1215 	*ppc = page_address(e->page);
1216 	e->end += len;
1217 	if (cb)
1218 		cb(data);
1219 
1220 	list_add_tail(&e->list, &con->writequeue);
1221 
1222 out:
1223 	spin_unlock_bh(&con->writequeue_lock);
1224 	return e;
1225 };
1226 
dlm_lowcomms_new_msg_con(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1227 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1228 						char **ppc, void (*cb)(void *data),
1229 						void *data)
1230 {
1231 	struct writequeue_entry *e;
1232 	struct dlm_msg *msg;
1233 
1234 	msg = dlm_allocate_msg();
1235 	if (!msg)
1236 		return NULL;
1237 
1238 	kref_init(&msg->ref);
1239 
1240 	e = new_wq_entry(con, len, ppc, cb, data);
1241 	if (!e) {
1242 		dlm_free_msg(msg);
1243 		return NULL;
1244 	}
1245 
1246 	msg->retransmit = false;
1247 	msg->orig_msg = NULL;
1248 	msg->ppc = *ppc;
1249 	msg->len = len;
1250 	msg->entry = e;
1251 
1252 	return msg;
1253 }
1254 
1255 /* avoid false positive for nodes_srcu, unlock happens in
1256  * dlm_lowcomms_commit_msg which is a must call if success
1257  */
1258 #ifndef __CHECKER__
dlm_lowcomms_new_msg(int nodeid,int len,char ** ppc,void (* cb)(void * data),void * data)1259 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc,
1260 				     void (*cb)(void *data), void *data)
1261 {
1262 	struct connection *con;
1263 	struct dlm_msg *msg;
1264 	int idx;
1265 
1266 	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1267 	    len < sizeof(struct dlm_header)) {
1268 		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1269 		log_print("failed to allocate a buffer of size %d", len);
1270 		WARN_ON_ONCE(1);
1271 		return NULL;
1272 	}
1273 
1274 	idx = srcu_read_lock(&connections_srcu);
1275 	con = nodeid2con(nodeid, 0);
1276 	if (WARN_ON_ONCE(!con)) {
1277 		srcu_read_unlock(&connections_srcu, idx);
1278 		return NULL;
1279 	}
1280 
1281 	msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data);
1282 	if (!msg) {
1283 		srcu_read_unlock(&connections_srcu, idx);
1284 		return NULL;
1285 	}
1286 
1287 	/* for dlm_lowcomms_commit_msg() */
1288 	kref_get(&msg->ref);
1289 	/* we assume if successful commit must called */
1290 	msg->idx = idx;
1291 	return msg;
1292 }
1293 #endif
1294 
_dlm_lowcomms_commit_msg(struct dlm_msg * msg)1295 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1296 {
1297 	struct writequeue_entry *e = msg->entry;
1298 	struct connection *con = e->con;
1299 	int users;
1300 
1301 	spin_lock_bh(&con->writequeue_lock);
1302 	kref_get(&msg->ref);
1303 	list_add(&msg->list, &e->msgs);
1304 
1305 	users = --e->users;
1306 	if (users)
1307 		goto out;
1308 
1309 	e->len = DLM_WQ_LENGTH_BYTES(e);
1310 
1311 	lowcomms_queue_swork(con);
1312 
1313 out:
1314 	spin_unlock_bh(&con->writequeue_lock);
1315 	return;
1316 }
1317 
1318 /* avoid false positive for nodes_srcu, lock was happen in
1319  * dlm_lowcomms_new_msg
1320  */
1321 #ifndef __CHECKER__
dlm_lowcomms_commit_msg(struct dlm_msg * msg)1322 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1323 {
1324 	_dlm_lowcomms_commit_msg(msg);
1325 	srcu_read_unlock(&connections_srcu, msg->idx);
1326 	/* because dlm_lowcomms_new_msg() */
1327 	kref_put(&msg->ref, dlm_msg_release);
1328 }
1329 #endif
1330 
dlm_lowcomms_put_msg(struct dlm_msg * msg)1331 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1332 {
1333 	kref_put(&msg->ref, dlm_msg_release);
1334 }
1335 
1336 /* does not held connections_srcu, usage lowcomms_error_report only */
dlm_lowcomms_resend_msg(struct dlm_msg * msg)1337 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1338 {
1339 	struct dlm_msg *msg_resend;
1340 	char *ppc;
1341 
1342 	if (msg->retransmit)
1343 		return 1;
1344 
1345 	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc,
1346 					      NULL, NULL);
1347 	if (!msg_resend)
1348 		return -ENOMEM;
1349 
1350 	msg->retransmit = true;
1351 	kref_get(&msg->ref);
1352 	msg_resend->orig_msg = msg;
1353 
1354 	memcpy(ppc, msg->ppc, msg->len);
1355 	_dlm_lowcomms_commit_msg(msg_resend);
1356 	dlm_lowcomms_put_msg(msg_resend);
1357 
1358 	return 0;
1359 }
1360 
1361 /* Send a message */
send_to_sock(struct connection * con)1362 static int send_to_sock(struct connection *con)
1363 {
1364 	struct writequeue_entry *e;
1365 	struct bio_vec bvec;
1366 	struct msghdr msg = {
1367 		.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1368 	};
1369 	int len, offset, ret;
1370 
1371 	spin_lock_bh(&con->writequeue_lock);
1372 	e = con_next_wq(con);
1373 	if (!e) {
1374 		clear_bit(CF_SEND_PENDING, &con->flags);
1375 		spin_unlock_bh(&con->writequeue_lock);
1376 		return DLM_IO_END;
1377 	}
1378 
1379 	len = e->len;
1380 	offset = e->offset;
1381 	WARN_ON_ONCE(len == 0 && e->users == 0);
1382 	spin_unlock_bh(&con->writequeue_lock);
1383 
1384 	bvec_set_page(&bvec, e->page, len, offset);
1385 	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1386 	ret = sock_sendmsg(con->sock, &msg);
1387 	trace_dlm_send(con->nodeid, ret);
1388 	if (ret == -EAGAIN || ret == 0) {
1389 		lock_sock(con->sock->sk);
1390 		spin_lock_bh(&con->writequeue_lock);
1391 		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1392 		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1393 			/* Notify TCP that we're limited by the
1394 			 * application window size.
1395 			 */
1396 			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1397 			con->sock->sk->sk_write_pending++;
1398 
1399 			clear_bit(CF_SEND_PENDING, &con->flags);
1400 			spin_unlock_bh(&con->writequeue_lock);
1401 			release_sock(con->sock->sk);
1402 
1403 			/* wait for write_space() event */
1404 			return DLM_IO_END;
1405 		}
1406 		spin_unlock_bh(&con->writequeue_lock);
1407 		release_sock(con->sock->sk);
1408 
1409 		return DLM_IO_RESCHED;
1410 	} else if (ret < 0) {
1411 		return ret;
1412 	}
1413 
1414 	spin_lock_bh(&con->writequeue_lock);
1415 	writequeue_entry_complete(e, ret);
1416 	spin_unlock_bh(&con->writequeue_lock);
1417 
1418 	return DLM_IO_SUCCESS;
1419 }
1420 
clean_one_writequeue(struct connection * con)1421 static void clean_one_writequeue(struct connection *con)
1422 {
1423 	struct writequeue_entry *e, *safe;
1424 
1425 	spin_lock_bh(&con->writequeue_lock);
1426 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1427 		free_entry(e);
1428 	}
1429 	spin_unlock_bh(&con->writequeue_lock);
1430 }
1431 
connection_release(struct rcu_head * rcu)1432 static void connection_release(struct rcu_head *rcu)
1433 {
1434 	struct connection *con = container_of(rcu, struct connection, rcu);
1435 
1436 	WARN_ON_ONCE(!list_empty(&con->writequeue));
1437 	WARN_ON_ONCE(con->sock);
1438 	kfree(con);
1439 }
1440 
1441 /* Called from recovery when it knows that a node has
1442    left the cluster */
dlm_lowcomms_close(int nodeid)1443 int dlm_lowcomms_close(int nodeid)
1444 {
1445 	struct connection *con;
1446 	int idx;
1447 
1448 	log_print("closing connection to node %d", nodeid);
1449 
1450 	idx = srcu_read_lock(&connections_srcu);
1451 	con = nodeid2con(nodeid, 0);
1452 	if (WARN_ON_ONCE(!con)) {
1453 		srcu_read_unlock(&connections_srcu, idx);
1454 		return -ENOENT;
1455 	}
1456 
1457 	stop_connection_io(con);
1458 	log_print("io handling for node: %d stopped", nodeid);
1459 	close_connection(con, true);
1460 
1461 	spin_lock(&connections_lock);
1462 	hlist_del_rcu(&con->list);
1463 	spin_unlock(&connections_lock);
1464 
1465 	clean_one_writequeue(con);
1466 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1467 	if (con->othercon) {
1468 		clean_one_writequeue(con->othercon);
1469 		call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1470 	}
1471 	srcu_read_unlock(&connections_srcu, idx);
1472 
1473 	/* for debugging we print when we are done to compare with other
1474 	 * messages in between. This function need to be correctly synchronized
1475 	 * with io handling
1476 	 */
1477 	log_print("closing connection to node %d done", nodeid);
1478 
1479 	return 0;
1480 }
1481 
1482 /* Receive worker function */
process_recv_sockets(struct work_struct * work)1483 static void process_recv_sockets(struct work_struct *work)
1484 {
1485 	struct connection *con = container_of(work, struct connection, rwork);
1486 	int ret, buflen;
1487 
1488 	down_read(&con->sock_lock);
1489 	if (!con->sock) {
1490 		up_read(&con->sock_lock);
1491 		return;
1492 	}
1493 
1494 	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1495 	do {
1496 		ret = receive_from_sock(con, buflen);
1497 	} while (ret == DLM_IO_SUCCESS);
1498 	up_read(&con->sock_lock);
1499 
1500 	switch (ret) {
1501 	case DLM_IO_END:
1502 		/* CF_RECV_PENDING cleared */
1503 		break;
1504 	case DLM_IO_EOF:
1505 		close_connection(con, false);
1506 		wake_up(&con->shutdown_wait);
1507 		/* CF_RECV_PENDING cleared */
1508 		break;
1509 	case DLM_IO_FLUSH:
1510 		/* we can't flush the process_workqueue here because a
1511 		 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non
1512 		 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead
1513 		 * we have a waitqueue to wait until all messages are
1514 		 * processed.
1515 		 *
1516 		 * This handling is only necessary to backoff the sender and
1517 		 * not queue all messages from the socket layer into DLM
1518 		 * processqueue. When DLM is capable to parse multiple messages
1519 		 * on an e.g. per socket basis this handling can might be
1520 		 * removed. Especially in a message burst we are too slow to
1521 		 * process messages and the queue will fill up memory.
1522 		 */
1523 		wait_event(processqueue_wq, !atomic_read(&processqueue_count));
1524 		fallthrough;
1525 	case DLM_IO_RESCHED:
1526 		cond_resched();
1527 		queue_work(io_workqueue, &con->rwork);
1528 		/* CF_RECV_PENDING not cleared */
1529 		break;
1530 	default:
1531 		if (ret < 0) {
1532 			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1533 				close_connection(con, false);
1534 			} else {
1535 				spin_lock_bh(&con->writequeue_lock);
1536 				lowcomms_queue_swork(con);
1537 				spin_unlock_bh(&con->writequeue_lock);
1538 			}
1539 
1540 			/* CF_RECV_PENDING cleared for othercon
1541 			 * we trigger send queue if not already done
1542 			 * and process_send_sockets will handle it
1543 			 */
1544 			break;
1545 		}
1546 
1547 		WARN_ON_ONCE(1);
1548 		break;
1549 	}
1550 }
1551 
process_listen_recv_socket(struct work_struct * work)1552 static void process_listen_recv_socket(struct work_struct *work)
1553 {
1554 	int ret;
1555 
1556 	if (WARN_ON_ONCE(!listen_con.sock))
1557 		return;
1558 
1559 	do {
1560 		ret = accept_from_sock();
1561 	} while (ret == DLM_IO_SUCCESS);
1562 
1563 	if (ret < 0)
1564 		log_print("critical error accepting connection: %d", ret);
1565 }
1566 
dlm_connect(struct connection * con)1567 static int dlm_connect(struct connection *con)
1568 {
1569 	struct sockaddr_storage addr;
1570 	int result, addr_len;
1571 	struct socket *sock;
1572 	unsigned int mark;
1573 
1574 	memset(&addr, 0, sizeof(addr));
1575 	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1576 				dlm_proto_ops->try_new_addr, &mark);
1577 	if (result < 0) {
1578 		log_print("no address for nodeid %d", con->nodeid);
1579 		return result;
1580 	}
1581 
1582 	/* Create a socket to communicate with */
1583 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1584 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1585 	if (result < 0)
1586 		return result;
1587 
1588 	sock_set_mark(sock->sk, mark);
1589 	dlm_proto_ops->sockopts(sock);
1590 
1591 	result = dlm_proto_ops->bind(sock);
1592 	if (result < 0) {
1593 		sock_release(sock);
1594 		return result;
1595 	}
1596 
1597 	add_sock(sock, con);
1598 
1599 	log_print_ratelimited("connecting to %d", con->nodeid);
1600 	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1601 	result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0);
1602 	switch (result) {
1603 	case -EINPROGRESS:
1604 		/* not an error */
1605 		fallthrough;
1606 	case 0:
1607 		break;
1608 	default:
1609 		if (result < 0)
1610 			dlm_close_sock(&con->sock);
1611 
1612 		break;
1613 	}
1614 
1615 	return result;
1616 }
1617 
1618 /* Send worker function */
process_send_sockets(struct work_struct * work)1619 static void process_send_sockets(struct work_struct *work)
1620 {
1621 	struct connection *con = container_of(work, struct connection, swork);
1622 	int ret;
1623 
1624 	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1625 
1626 	down_read(&con->sock_lock);
1627 	if (!con->sock) {
1628 		up_read(&con->sock_lock);
1629 		down_write(&con->sock_lock);
1630 		if (!con->sock) {
1631 			ret = dlm_connect(con);
1632 			switch (ret) {
1633 			case 0:
1634 				break;
1635 			default:
1636 				/* CF_SEND_PENDING not cleared */
1637 				up_write(&con->sock_lock);
1638 				log_print("connect to node %d try %d error %d",
1639 					  con->nodeid, con->retries++, ret);
1640 				msleep(1000);
1641 				/* For now we try forever to reconnect. In
1642 				 * future we should send a event to cluster
1643 				 * manager to fence itself after certain amount
1644 				 * of retries.
1645 				 */
1646 				queue_work(io_workqueue, &con->swork);
1647 				return;
1648 			}
1649 		}
1650 		downgrade_write(&con->sock_lock);
1651 	}
1652 
1653 	do {
1654 		ret = send_to_sock(con);
1655 	} while (ret == DLM_IO_SUCCESS);
1656 	up_read(&con->sock_lock);
1657 
1658 	switch (ret) {
1659 	case DLM_IO_END:
1660 		/* CF_SEND_PENDING cleared */
1661 		break;
1662 	case DLM_IO_RESCHED:
1663 		/* CF_SEND_PENDING not cleared */
1664 		cond_resched();
1665 		queue_work(io_workqueue, &con->swork);
1666 		break;
1667 	default:
1668 		if (ret < 0) {
1669 			close_connection(con, false);
1670 
1671 			/* CF_SEND_PENDING cleared */
1672 			spin_lock_bh(&con->writequeue_lock);
1673 			lowcomms_queue_swork(con);
1674 			spin_unlock_bh(&con->writequeue_lock);
1675 			break;
1676 		}
1677 
1678 		WARN_ON_ONCE(1);
1679 		break;
1680 	}
1681 }
1682 
work_stop(void)1683 static void work_stop(void)
1684 {
1685 	if (io_workqueue) {
1686 		destroy_workqueue(io_workqueue);
1687 		io_workqueue = NULL;
1688 	}
1689 
1690 	if (process_workqueue) {
1691 		destroy_workqueue(process_workqueue);
1692 		process_workqueue = NULL;
1693 	}
1694 }
1695 
work_start(void)1696 static int work_start(void)
1697 {
1698 	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1699 				       WQ_UNBOUND, 0);
1700 	if (!io_workqueue) {
1701 		log_print("can't start dlm_io");
1702 		return -ENOMEM;
1703 	}
1704 
1705 	process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0);
1706 	if (!process_workqueue) {
1707 		log_print("can't start dlm_process");
1708 		destroy_workqueue(io_workqueue);
1709 		io_workqueue = NULL;
1710 		return -ENOMEM;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
dlm_lowcomms_shutdown(void)1716 void dlm_lowcomms_shutdown(void)
1717 {
1718 	struct connection *con;
1719 	int i, idx;
1720 
1721 	/* stop lowcomms_listen_data_ready calls */
1722 	lock_sock(listen_con.sock->sk);
1723 	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1724 	release_sock(listen_con.sock->sk);
1725 
1726 	cancel_work_sync(&listen_con.rwork);
1727 	dlm_close_sock(&listen_con.sock);
1728 
1729 	idx = srcu_read_lock(&connections_srcu);
1730 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1731 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1732 			shutdown_connection(con, true);
1733 			stop_connection_io(con);
1734 			flush_workqueue(process_workqueue);
1735 			close_connection(con, true);
1736 
1737 			clean_one_writequeue(con);
1738 			if (con->othercon)
1739 				clean_one_writequeue(con->othercon);
1740 			allow_connection_io(con);
1741 		}
1742 	}
1743 	srcu_read_unlock(&connections_srcu, idx);
1744 }
1745 
dlm_lowcomms_stop(void)1746 void dlm_lowcomms_stop(void)
1747 {
1748 	work_stop();
1749 	dlm_proto_ops = NULL;
1750 }
1751 
dlm_listen_for_all(void)1752 static int dlm_listen_for_all(void)
1753 {
1754 	struct socket *sock;
1755 	int result;
1756 
1757 	log_print("Using %s for communications",
1758 		  dlm_proto_ops->name);
1759 
1760 	result = dlm_proto_ops->listen_validate();
1761 	if (result < 0)
1762 		return result;
1763 
1764 	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1765 				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1766 	if (result < 0) {
1767 		log_print("Can't create comms socket: %d", result);
1768 		return result;
1769 	}
1770 
1771 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1772 	dlm_proto_ops->listen_sockopts(sock);
1773 
1774 	result = dlm_proto_ops->listen_bind(sock);
1775 	if (result < 0)
1776 		goto out;
1777 
1778 	lock_sock(sock->sk);
1779 	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1780 	listen_sock.sk_write_space = sock->sk->sk_write_space;
1781 	listen_sock.sk_error_report = sock->sk->sk_error_report;
1782 	listen_sock.sk_state_change = sock->sk->sk_state_change;
1783 
1784 	listen_con.sock = sock;
1785 
1786 	sock->sk->sk_allocation = GFP_NOFS;
1787 	sock->sk->sk_use_task_frag = false;
1788 	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1789 	release_sock(sock->sk);
1790 
1791 	result = sock->ops->listen(sock, 128);
1792 	if (result < 0) {
1793 		dlm_close_sock(&listen_con.sock);
1794 		return result;
1795 	}
1796 
1797 	return 0;
1798 
1799 out:
1800 	sock_release(sock);
1801 	return result;
1802 }
1803 
dlm_tcp_bind(struct socket * sock)1804 static int dlm_tcp_bind(struct socket *sock)
1805 {
1806 	struct sockaddr_storage src_addr;
1807 	int result, addr_len;
1808 
1809 	/* Bind to our cluster-known address connecting to avoid
1810 	 * routing problems.
1811 	 */
1812 	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1813 	make_sockaddr(&src_addr, 0, &addr_len);
1814 
1815 	result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1816 			     addr_len);
1817 	if (result < 0) {
1818 		/* This *may* not indicate a critical error */
1819 		log_print("could not bind for connect: %d", result);
1820 	}
1821 
1822 	return 0;
1823 }
1824 
dlm_tcp_listen_validate(void)1825 static int dlm_tcp_listen_validate(void)
1826 {
1827 	/* We don't support multi-homed hosts */
1828 	if (dlm_local_count > 1) {
1829 		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1830 		return -EINVAL;
1831 	}
1832 
1833 	return 0;
1834 }
1835 
dlm_tcp_sockopts(struct socket * sock)1836 static void dlm_tcp_sockopts(struct socket *sock)
1837 {
1838 	/* Turn off Nagle's algorithm */
1839 	tcp_sock_set_nodelay(sock->sk);
1840 }
1841 
dlm_tcp_listen_sockopts(struct socket * sock)1842 static void dlm_tcp_listen_sockopts(struct socket *sock)
1843 {
1844 	dlm_tcp_sockopts(sock);
1845 	sock_set_reuseaddr(sock->sk);
1846 }
1847 
dlm_tcp_listen_bind(struct socket * sock)1848 static int dlm_tcp_listen_bind(struct socket *sock)
1849 {
1850 	int addr_len;
1851 
1852 	/* Bind to our port */
1853 	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1854 	return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1855 			   addr_len);
1856 }
1857 
1858 static const struct dlm_proto_ops dlm_tcp_ops = {
1859 	.name = "TCP",
1860 	.proto = IPPROTO_TCP,
1861 	.sockopts = dlm_tcp_sockopts,
1862 	.bind = dlm_tcp_bind,
1863 	.listen_validate = dlm_tcp_listen_validate,
1864 	.listen_sockopts = dlm_tcp_listen_sockopts,
1865 	.listen_bind = dlm_tcp_listen_bind,
1866 };
1867 
dlm_sctp_bind(struct socket * sock)1868 static int dlm_sctp_bind(struct socket *sock)
1869 {
1870 	return sctp_bind_addrs(sock, 0);
1871 }
1872 
dlm_sctp_listen_validate(void)1873 static int dlm_sctp_listen_validate(void)
1874 {
1875 	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1876 		log_print("SCTP is not enabled by this kernel");
1877 		return -EOPNOTSUPP;
1878 	}
1879 
1880 	request_module("sctp");
1881 	return 0;
1882 }
1883 
dlm_sctp_bind_listen(struct socket * sock)1884 static int dlm_sctp_bind_listen(struct socket *sock)
1885 {
1886 	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1887 }
1888 
dlm_sctp_sockopts(struct socket * sock)1889 static void dlm_sctp_sockopts(struct socket *sock)
1890 {
1891 	/* Turn off Nagle's algorithm */
1892 	sctp_sock_set_nodelay(sock->sk);
1893 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1894 }
1895 
1896 static const struct dlm_proto_ops dlm_sctp_ops = {
1897 	.name = "SCTP",
1898 	.proto = IPPROTO_SCTP,
1899 	.try_new_addr = true,
1900 	.sockopts = dlm_sctp_sockopts,
1901 	.bind = dlm_sctp_bind,
1902 	.listen_validate = dlm_sctp_listen_validate,
1903 	.listen_sockopts = dlm_sctp_sockopts,
1904 	.listen_bind = dlm_sctp_bind_listen,
1905 };
1906 
dlm_lowcomms_start(void)1907 int dlm_lowcomms_start(void)
1908 {
1909 	int error;
1910 
1911 	init_local();
1912 	if (!dlm_local_count) {
1913 		error = -ENOTCONN;
1914 		log_print("no local IP address has been set");
1915 		goto fail;
1916 	}
1917 
1918 	error = work_start();
1919 	if (error)
1920 		goto fail;
1921 
1922 	/* Start listening */
1923 	switch (dlm_config.ci_protocol) {
1924 	case DLM_PROTO_TCP:
1925 		dlm_proto_ops = &dlm_tcp_ops;
1926 		break;
1927 	case DLM_PROTO_SCTP:
1928 		dlm_proto_ops = &dlm_sctp_ops;
1929 		break;
1930 	default:
1931 		log_print("Invalid protocol identifier %d set",
1932 			  dlm_config.ci_protocol);
1933 		error = -EINVAL;
1934 		goto fail_proto_ops;
1935 	}
1936 
1937 	error = dlm_listen_for_all();
1938 	if (error)
1939 		goto fail_listen;
1940 
1941 	return 0;
1942 
1943 fail_listen:
1944 	dlm_proto_ops = NULL;
1945 fail_proto_ops:
1946 	work_stop();
1947 fail:
1948 	return error;
1949 }
1950 
dlm_lowcomms_init(void)1951 void dlm_lowcomms_init(void)
1952 {
1953 	int i;
1954 
1955 	for (i = 0; i < CONN_HASH_SIZE; i++)
1956 		INIT_HLIST_HEAD(&connection_hash[i]);
1957 
1958 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1959 }
1960 
dlm_lowcomms_exit(void)1961 void dlm_lowcomms_exit(void)
1962 {
1963 	struct connection *con;
1964 	int i, idx;
1965 
1966 	idx = srcu_read_lock(&connections_srcu);
1967 	for (i = 0; i < CONN_HASH_SIZE; i++) {
1968 		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1969 			spin_lock(&connections_lock);
1970 			hlist_del_rcu(&con->list);
1971 			spin_unlock(&connections_lock);
1972 
1973 			if (con->othercon)
1974 				call_srcu(&connections_srcu, &con->othercon->rcu,
1975 					  connection_release);
1976 			call_srcu(&connections_srcu, &con->rcu, connection_release);
1977 		}
1978 	}
1979 	srcu_read_unlock(&connections_srcu, idx);
1980 }
1981