xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/ScopedHashTable.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/ADT/ilist_iterator.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/Analysis/AssumptionCache.h"
30 #include "llvm/Analysis/DomTreeUpdater.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopIterator.h"
34 #include "llvm/Analysis/MemorySSA.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/ScalarEvolution.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/IR/ValueMap.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/GenericDomTree.h"
59 #include "llvm/Support/MathExtras.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/LoopSimplify.h"
65 #include "llvm/Transforms/Utils/LoopUtils.h"
66 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
67 #include "llvm/Transforms/Utils/UnrollLoop.h"
68 #include "llvm/Transforms/Utils/ValueMapper.h"
69 #include <algorithm>
70 #include <assert.h>
71 #include <numeric>
72 #include <type_traits>
73 #include <vector>
74 
75 namespace llvm {
76 class DataLayout;
77 class Value;
78 } // namespace llvm
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "loop-unroll"
83 
84 // TODO: Should these be here or in LoopUnroll?
85 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
86 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
87 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
88                                "latch (completely or otherwise)");
89 
90 static cl::opt<bool>
91 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
92                     cl::desc("Allow runtime unrolled loops to be unrolled "
93                              "with epilog instead of prolog."));
94 
95 static cl::opt<bool>
96 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
97                     cl::desc("Verify domtree after unrolling"),
98 #ifdef EXPENSIVE_CHECKS
99     cl::init(true)
100 #else
101     cl::init(false)
102 #endif
103                     );
104 
105 static cl::opt<bool>
106 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
107                     cl::desc("Verify loopinfo after unrolling"),
108 #ifdef EXPENSIVE_CHECKS
109     cl::init(true)
110 #else
111     cl::init(false)
112 #endif
113                     );
114 
115 
116 /// Check if unrolling created a situation where we need to insert phi nodes to
117 /// preserve LCSSA form.
118 /// \param Blocks is a vector of basic blocks representing unrolled loop.
119 /// \param L is the outer loop.
120 /// It's possible that some of the blocks are in L, and some are not. In this
121 /// case, if there is a use is outside L, and definition is inside L, we need to
122 /// insert a phi-node, otherwise LCSSA will be broken.
123 /// The function is just a helper function for llvm::UnrollLoop that returns
124 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
needToInsertPhisForLCSSA(Loop * L,const std::vector<BasicBlock * > & Blocks,LoopInfo * LI)125 static bool needToInsertPhisForLCSSA(Loop *L,
126                                      const std::vector<BasicBlock *> &Blocks,
127                                      LoopInfo *LI) {
128   for (BasicBlock *BB : Blocks) {
129     if (LI->getLoopFor(BB) == L)
130       continue;
131     for (Instruction &I : *BB) {
132       for (Use &U : I.operands()) {
133         if (const auto *Def = dyn_cast<Instruction>(U)) {
134           Loop *DefLoop = LI->getLoopFor(Def->getParent());
135           if (!DefLoop)
136             continue;
137           if (DefLoop->contains(L))
138             return true;
139         }
140       }
141     }
142   }
143   return false;
144 }
145 
146 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
147 /// and adds a mapping from the original loop to the new loop to NewLoops.
148 /// Returns nullptr if no new loop was created and a pointer to the
149 /// original loop OriginalBB was part of otherwise.
addClonedBlockToLoopInfo(BasicBlock * OriginalBB,BasicBlock * ClonedBB,LoopInfo * LI,NewLoopsMap & NewLoops)150 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
151                                            BasicBlock *ClonedBB, LoopInfo *LI,
152                                            NewLoopsMap &NewLoops) {
153   // Figure out which loop New is in.
154   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
155   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
156 
157   Loop *&NewLoop = NewLoops[OldLoop];
158   if (!NewLoop) {
159     // Found a new sub-loop.
160     assert(OriginalBB == OldLoop->getHeader() &&
161            "Header should be first in RPO");
162 
163     NewLoop = LI->AllocateLoop();
164     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
165 
166     if (NewLoopParent)
167       NewLoopParent->addChildLoop(NewLoop);
168     else
169       LI->addTopLevelLoop(NewLoop);
170 
171     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
172     return OldLoop;
173   } else {
174     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
175     return nullptr;
176   }
177 }
178 
179 /// The function chooses which type of unroll (epilog or prolog) is more
180 /// profitabale.
181 /// Epilog unroll is more profitable when there is PHI that starts from
182 /// constant.  In this case epilog will leave PHI start from constant,
183 /// but prolog will convert it to non-constant.
184 ///
185 /// loop:
186 ///   PN = PHI [I, Latch], [CI, PreHeader]
187 ///   I = foo(PN)
188 ///   ...
189 ///
190 /// Epilog unroll case.
191 /// loop:
192 ///   PN = PHI [I2, Latch], [CI, PreHeader]
193 ///   I1 = foo(PN)
194 ///   I2 = foo(I1)
195 ///   ...
196 /// Prolog unroll case.
197 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
198 /// loop:
199 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
200 ///   I1 = foo(PN)
201 ///   I2 = foo(I1)
202 ///   ...
203 ///
isEpilogProfitable(Loop * L)204 static bool isEpilogProfitable(Loop *L) {
205   BasicBlock *PreHeader = L->getLoopPreheader();
206   BasicBlock *Header = L->getHeader();
207   assert(PreHeader && Header);
208   for (const PHINode &PN : Header->phis()) {
209     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
210       return true;
211   }
212   return false;
213 }
214 
215 struct LoadValue {
216   Instruction *DefI = nullptr;
217   unsigned Generation = 0;
218   LoadValue() = default;
LoadValueLoadValue219   LoadValue(Instruction *Inst, unsigned Generation)
220       : DefI(Inst), Generation(Generation) {}
221 };
222 
223 class StackNode {
224   ScopedHashTable<const SCEV *, LoadValue>::ScopeTy LoadScope;
225   unsigned CurrentGeneration;
226   unsigned ChildGeneration;
227   DomTreeNode *Node;
228   DomTreeNode::const_iterator ChildIter;
229   DomTreeNode::const_iterator EndIter;
230   bool Processed = false;
231 
232 public:
StackNode(ScopedHashTable<const SCEV *,LoadValue> & AvailableLoads,unsigned cg,DomTreeNode * N,DomTreeNode::const_iterator Child,DomTreeNode::const_iterator End)233   StackNode(ScopedHashTable<const SCEV *, LoadValue> &AvailableLoads,
234             unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child,
235             DomTreeNode::const_iterator End)
236       : LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg),
237         Node(N), ChildIter(Child), EndIter(End) {}
238   // Accessors.
currentGeneration() const239   unsigned currentGeneration() const { return CurrentGeneration; }
childGeneration() const240   unsigned childGeneration() const { return ChildGeneration; }
childGeneration(unsigned generation)241   void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()242   DomTreeNode *node() { return Node; }
childIter() const243   DomTreeNode::const_iterator childIter() const { return ChildIter; }
244 
nextChild()245   DomTreeNode *nextChild() {
246     DomTreeNode *Child = *ChildIter;
247     ++ChildIter;
248     return Child;
249   }
250 
end() const251   DomTreeNode::const_iterator end() const { return EndIter; }
isProcessed() const252   bool isProcessed() const { return Processed; }
process()253   void process() { Processed = true; }
254 };
255 
getMatchingValue(LoadValue LV,LoadInst * LI,unsigned CurrentGeneration,BatchAAResults & BAA,function_ref<MemorySSA * ()> GetMSSA)256 Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration,
257                         BatchAAResults &BAA,
258                         function_ref<MemorySSA *()> GetMSSA) {
259   if (!LV.DefI)
260     return nullptr;
261   if (LV.DefI->getType() != LI->getType())
262     return nullptr;
263   if (LV.Generation != CurrentGeneration) {
264     MemorySSA *MSSA = GetMSSA();
265     if (!MSSA)
266       return nullptr;
267     auto *EarlierMA = MSSA->getMemoryAccess(LV.DefI);
268     MemoryAccess *LaterDef =
269         MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA);
270     if (!MSSA->dominates(LaterDef, EarlierMA))
271       return nullptr;
272   }
273   return LV.DefI;
274 }
275 
loadCSE(Loop * L,DominatorTree & DT,ScalarEvolution & SE,LoopInfo & LI,BatchAAResults & BAA,function_ref<MemorySSA * ()> GetMSSA)276 void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI,
277              BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) {
278   ScopedHashTable<const SCEV *, LoadValue> AvailableLoads;
279   SmallVector<std::unique_ptr<StackNode>> NodesToProcess;
280   DomTreeNode *HeaderD = DT.getNode(L->getHeader());
281   NodesToProcess.emplace_back(new StackNode(AvailableLoads, 0, HeaderD,
282                                             HeaderD->begin(), HeaderD->end()));
283 
284   unsigned CurrentGeneration = 0;
285   while (!NodesToProcess.empty()) {
286     StackNode *NodeToProcess = &*NodesToProcess.back();
287 
288     CurrentGeneration = NodeToProcess->currentGeneration();
289 
290     if (!NodeToProcess->isProcessed()) {
291       // Process the node.
292 
293       // If this block has a single predecessor, then the predecessor is the
294       // parent
295       // of the domtree node and all of the live out memory values are still
296       // current in this block.  If this block has multiple predecessors, then
297       // they could have invalidated the live-out memory values of our parent
298       // value.  For now, just be conservative and invalidate memory if this
299       // block has multiple predecessors.
300       if (!NodeToProcess->node()->getBlock()->getSinglePredecessor())
301         ++CurrentGeneration;
302       for (auto &I : make_early_inc_range(*NodeToProcess->node()->getBlock())) {
303 
304         auto *Load = dyn_cast<LoadInst>(&I);
305         if (!Load || !Load->isSimple()) {
306           if (I.mayWriteToMemory())
307             CurrentGeneration++;
308           continue;
309         }
310 
311         const SCEV *PtrSCEV = SE.getSCEV(Load->getPointerOperand());
312         LoadValue LV = AvailableLoads.lookup(PtrSCEV);
313         if (Value *M =
314                 getMatchingValue(LV, Load, CurrentGeneration, BAA, GetMSSA)) {
315           if (LI.replacementPreservesLCSSAForm(Load, M)) {
316             Load->replaceAllUsesWith(M);
317             Load->eraseFromParent();
318           }
319         } else {
320           AvailableLoads.insert(PtrSCEV, LoadValue(Load, CurrentGeneration));
321         }
322       }
323       NodeToProcess->childGeneration(CurrentGeneration);
324       NodeToProcess->process();
325     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
326       // Push the next child onto the stack.
327       DomTreeNode *Child = NodeToProcess->nextChild();
328       if (!L->contains(Child->getBlock()))
329         continue;
330       NodesToProcess.emplace_back(
331           new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child,
332                         Child->begin(), Child->end()));
333     } else {
334       // It has been processed, and there are no more children to process,
335       // so delete it and pop it off the stack.
336       NodesToProcess.pop_back();
337     }
338   }
339 }
340 
341 /// Perform some cleanup and simplifications on loops after unrolling. It is
342 /// useful to simplify the IV's in the new loop, as well as do a quick
343 /// simplify/dce pass of the instructions.
simplifyLoopAfterUnroll(Loop * L,bool SimplifyIVs,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,const TargetTransformInfo * TTI,AAResults * AA)344 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
345                                    ScalarEvolution *SE, DominatorTree *DT,
346                                    AssumptionCache *AC,
347                                    const TargetTransformInfo *TTI,
348                                    AAResults *AA) {
349   using namespace llvm::PatternMatch;
350 
351   // Simplify any new induction variables in the partially unrolled loop.
352   if (SE && SimplifyIVs) {
353     SmallVector<WeakTrackingVH, 16> DeadInsts;
354     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
355 
356     // Aggressively clean up dead instructions that simplifyLoopIVs already
357     // identified. Any remaining should be cleaned up below.
358     while (!DeadInsts.empty()) {
359       Value *V = DeadInsts.pop_back_val();
360       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
361         RecursivelyDeleteTriviallyDeadInstructions(Inst);
362     }
363 
364     if (AA) {
365       std::unique_ptr<MemorySSA> MSSA = nullptr;
366       BatchAAResults BAA(*AA);
367       loadCSE(L, *DT, *SE, *LI, BAA, [L, AA, DT, &MSSA]() -> MemorySSA * {
368         if (!MSSA)
369           MSSA.reset(new MemorySSA(*L, AA, DT));
370         return &*MSSA;
371       });
372     }
373   }
374 
375   // At this point, the code is well formed.  Perform constprop, instsimplify,
376   // and dce.
377   const DataLayout &DL = L->getHeader()->getDataLayout();
378   SmallVector<WeakTrackingVH, 16> DeadInsts;
379   for (BasicBlock *BB : L->getBlocks()) {
380     // Remove repeated debug instructions after loop unrolling.
381     if (BB->getParent()->getSubprogram())
382       RemoveRedundantDbgInstrs(BB);
383 
384     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
385       if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
386         if (LI->replacementPreservesLCSSAForm(&Inst, V))
387           Inst.replaceAllUsesWith(V);
388       if (isInstructionTriviallyDead(&Inst))
389         DeadInsts.emplace_back(&Inst);
390 
391       // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
392       // unrolled loops, and handling this early allows following code to
393       // identify the IV as a "simple recurrence" without first folding away
394       // a long chain of adds.
395       {
396         Value *X;
397         const APInt *C1, *C2;
398         if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
399           auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
400           auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
401           bool SignedOverflow;
402           APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
403           Inst.setOperand(0, X);
404           Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
405           Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
406                                     InnerOBO->hasNoUnsignedWrap());
407           Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
408                                   InnerOBO->hasNoSignedWrap() &&
409                                   !SignedOverflow);
410           if (InnerI && isInstructionTriviallyDead(InnerI))
411             DeadInsts.emplace_back(InnerI);
412         }
413       }
414     }
415     // We can't do recursive deletion until we're done iterating, as we might
416     // have a phi which (potentially indirectly) uses instructions later in
417     // the block we're iterating through.
418     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
419   }
420 }
421 
422 // Loops containing convergent instructions that are uncontrolled or controlled
423 // from outside the loop must have a count that divides their TripMultiple.
424 LLVM_ATTRIBUTE_USED
canHaveUnrollRemainder(const Loop * L)425 static bool canHaveUnrollRemainder(const Loop *L) {
426   if (getLoopConvergenceHeart(L))
427     return false;
428 
429   // Check for uncontrolled convergent operations.
430   for (auto &BB : L->blocks()) {
431     for (auto &I : *BB) {
432       if (isa<ConvergenceControlInst>(I))
433         return true;
434       if (auto *CB = dyn_cast<CallBase>(&I))
435         if (CB->isConvergent())
436           return CB->getConvergenceControlToken();
437     }
438   }
439   return true;
440 }
441 
442 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
443 /// can only fail when the loop's latch block is not terminated by a conditional
444 /// branch instruction. However, if the trip count (and multiple) are not known,
445 /// loop unrolling will mostly produce more code that is no faster.
446 ///
447 /// If Runtime is true then UnrollLoop will try to insert a prologue or
448 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
449 /// will not runtime-unroll the loop if computing the run-time trip count will
450 /// be expensive and AllowExpensiveTripCount is false.
451 ///
452 /// The LoopInfo Analysis that is passed will be kept consistent.
453 ///
454 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
455 /// DominatorTree if they are non-null.
456 ///
457 /// If RemainderLoop is non-null, it will receive the remainder loop (if
458 /// required and not fully unrolled).
459 LoopUnrollResult
UnrollLoop(Loop * L,UnrollLoopOptions ULO,LoopInfo * LI,ScalarEvolution * SE,DominatorTree * DT,AssumptionCache * AC,const TargetTransformInfo * TTI,OptimizationRemarkEmitter * ORE,bool PreserveLCSSA,Loop ** RemainderLoop,AAResults * AA)460 llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
461                  ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
462                  const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE,
463                  bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) {
464   assert(DT && "DomTree is required");
465 
466   if (!L->getLoopPreheader()) {
467     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
468     return LoopUnrollResult::Unmodified;
469   }
470 
471   if (!L->getLoopLatch()) {
472     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
473     return LoopUnrollResult::Unmodified;
474   }
475 
476   // Loops with indirectbr cannot be cloned.
477   if (!L->isSafeToClone()) {
478     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
479     return LoopUnrollResult::Unmodified;
480   }
481 
482   if (L->getHeader()->hasAddressTaken()) {
483     // The loop-rotate pass can be helpful to avoid this in many cases.
484     LLVM_DEBUG(
485         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
486     return LoopUnrollResult::Unmodified;
487   }
488 
489   assert(ULO.Count > 0);
490 
491   // All these values should be taken only after peeling because they might have
492   // changed.
493   BasicBlock *Preheader = L->getLoopPreheader();
494   BasicBlock *Header = L->getHeader();
495   BasicBlock *LatchBlock = L->getLoopLatch();
496   SmallVector<BasicBlock *, 4> ExitBlocks;
497   L->getExitBlocks(ExitBlocks);
498   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
499 
500   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
501   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
502   unsigned EstimatedLoopInvocationWeight = 0;
503   std::optional<unsigned> OriginalTripCount =
504       llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
505 
506   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
507   // and will never be executed.
508   if (MaxTripCount && ULO.Count > MaxTripCount)
509     ULO.Count = MaxTripCount;
510 
511   struct ExitInfo {
512     unsigned TripCount;
513     unsigned TripMultiple;
514     unsigned BreakoutTrip;
515     bool ExitOnTrue;
516     BasicBlock *FirstExitingBlock = nullptr;
517     SmallVector<BasicBlock *> ExitingBlocks;
518   };
519   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
520   SmallVector<BasicBlock *, 4> ExitingBlocks;
521   L->getExitingBlocks(ExitingBlocks);
522   for (auto *ExitingBlock : ExitingBlocks) {
523     // The folding code is not prepared to deal with non-branch instructions
524     // right now.
525     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
526     if (!BI)
527       continue;
528 
529     ExitInfo &Info = ExitInfos.try_emplace(ExitingBlock).first->second;
530     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
531     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
532     if (Info.TripCount != 0) {
533       Info.BreakoutTrip = Info.TripCount % ULO.Count;
534       Info.TripMultiple = 0;
535     } else {
536       Info.BreakoutTrip = Info.TripMultiple =
537           (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
538     }
539     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
540     Info.ExitingBlocks.push_back(ExitingBlock);
541     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
542                       << ": TripCount=" << Info.TripCount
543                       << ", TripMultiple=" << Info.TripMultiple
544                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
545   }
546 
547   // Are we eliminating the loop control altogether?  Note that we can know
548   // we're eliminating the backedge without knowing exactly which iteration
549   // of the unrolled body exits.
550   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
551 
552   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
553 
554   // There's no point in performing runtime unrolling if this unroll count
555   // results in a full unroll.
556   if (CompletelyUnroll)
557     ULO.Runtime = false;
558 
559   // Go through all exits of L and see if there are any phi-nodes there. We just
560   // conservatively assume that they're inserted to preserve LCSSA form, which
561   // means that complete unrolling might break this form. We need to either fix
562   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
563   // now we just recompute LCSSA for the outer loop, but it should be possible
564   // to fix it in-place.
565   bool NeedToFixLCSSA =
566       PreserveLCSSA && CompletelyUnroll &&
567       any_of(ExitBlocks,
568              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
569 
570   // The current loop unroll pass can unroll loops that have
571   // (1) single latch; and
572   // (2a) latch is unconditional; or
573   // (2b) latch is conditional and is an exiting block
574   // FIXME: The implementation can be extended to work with more complicated
575   // cases, e.g. loops with multiple latches.
576   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
577 
578   // A conditional branch which exits the loop, which can be optimized to an
579   // unconditional branch in the unrolled loop in some cases.
580   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
581   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
582     LLVM_DEBUG(
583         dbgs() << "Can't unroll; a conditional latch must exit the loop");
584     return LoopUnrollResult::Unmodified;
585   }
586 
587   assert((!ULO.Runtime || canHaveUnrollRemainder(L)) &&
588          "Can't runtime unroll if loop contains a convergent operation.");
589 
590   bool EpilogProfitability =
591       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
592                                               : isEpilogProfitable(L);
593 
594   if (ULO.Runtime &&
595       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
596                                   EpilogProfitability, ULO.UnrollRemainder,
597                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
598                                   PreserveLCSSA, RemainderLoop)) {
599     if (ULO.Force)
600       ULO.Runtime = false;
601     else {
602       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
603                            "generated when assuming runtime trip count\n");
604       return LoopUnrollResult::Unmodified;
605     }
606   }
607 
608   using namespace ore;
609   // Report the unrolling decision.
610   if (CompletelyUnroll) {
611     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
612                       << " with trip count " << ULO.Count << "!\n");
613     if (ORE)
614       ORE->emit([&]() {
615         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
616                                   L->getHeader())
617                << "completely unrolled loop with "
618                << NV("UnrollCount", ULO.Count) << " iterations";
619       });
620   } else {
621     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
622                       << ULO.Count);
623     if (ULO.Runtime)
624       LLVM_DEBUG(dbgs() << " with run-time trip count");
625     LLVM_DEBUG(dbgs() << "!\n");
626 
627     if (ORE)
628       ORE->emit([&]() {
629         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
630                                 L->getHeader());
631         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
632         if (ULO.Runtime)
633           Diag << " with run-time trip count";
634         return Diag;
635       });
636   }
637 
638   // We are going to make changes to this loop. SCEV may be keeping cached info
639   // about it, in particular about backedge taken count. The changes we make
640   // are guaranteed to invalidate this information for our loop. It is tempting
641   // to only invalidate the loop being unrolled, but it is incorrect as long as
642   // all exiting branches from all inner loops have impact on the outer loops,
643   // and if something changes inside them then any of outer loops may also
644   // change. When we forget outermost loop, we also forget all contained loops
645   // and this is what we need here.
646   if (SE) {
647     if (ULO.ForgetAllSCEV)
648       SE->forgetAllLoops();
649     else {
650       SE->forgetTopmostLoop(L);
651       SE->forgetBlockAndLoopDispositions();
652     }
653   }
654 
655   if (!LatchIsExiting)
656     ++NumUnrolledNotLatch;
657 
658   // For the first iteration of the loop, we should use the precloned values for
659   // PHI nodes.  Insert associations now.
660   ValueToValueMapTy LastValueMap;
661   std::vector<PHINode*> OrigPHINode;
662   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
663     OrigPHINode.push_back(cast<PHINode>(I));
664   }
665 
666   std::vector<BasicBlock *> Headers;
667   std::vector<BasicBlock *> Latches;
668   Headers.push_back(Header);
669   Latches.push_back(LatchBlock);
670 
671   // The current on-the-fly SSA update requires blocks to be processed in
672   // reverse postorder so that LastValueMap contains the correct value at each
673   // exit.
674   LoopBlocksDFS DFS(L);
675   DFS.perform(LI);
676 
677   // Stash the DFS iterators before adding blocks to the loop.
678   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
679   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
680 
681   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
682 
683   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
684   // might break loop-simplified form for these loops (as they, e.g., would
685   // share the same exit blocks). We'll keep track of loops for which we can
686   // break this so that later we can re-simplify them.
687   SmallSetVector<Loop *, 4> LoopsToSimplify;
688   for (Loop *SubLoop : *L)
689     LoopsToSimplify.insert(SubLoop);
690 
691   // When a FSDiscriminator is enabled, we don't need to add the multiply
692   // factors to the discriminators.
693   if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
694       !EnableFSDiscriminator)
695     for (BasicBlock *BB : L->getBlocks())
696       for (Instruction &I : *BB)
697         if (!I.isDebugOrPseudoInst())
698           if (const DILocation *DIL = I.getDebugLoc()) {
699             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
700             if (NewDIL)
701               I.setDebugLoc(*NewDIL);
702             else
703               LLVM_DEBUG(dbgs()
704                          << "Failed to create new discriminator: "
705                          << DIL->getFilename() << " Line: " << DIL->getLine());
706           }
707 
708   // Identify what noalias metadata is inside the loop: if it is inside the
709   // loop, the associated metadata must be cloned for each iteration.
710   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
711   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
712 
713   // We place the unrolled iterations immediately after the original loop
714   // latch.  This is a reasonable default placement if we don't have block
715   // frequencies, and if we do, well the layout will be adjusted later.
716   auto BlockInsertPt = std::next(LatchBlock->getIterator());
717   for (unsigned It = 1; It != ULO.Count; ++It) {
718     SmallVector<BasicBlock *, 8> NewBlocks;
719     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
720     NewLoops[L] = L;
721 
722     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
723       ValueToValueMapTy VMap;
724       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
725       Header->getParent()->insert(BlockInsertPt, New);
726 
727       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
728              "Header should not be in a sub-loop");
729       // Tell LI about New.
730       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
731       if (OldLoop)
732         LoopsToSimplify.insert(NewLoops[OldLoop]);
733 
734       if (*BB == Header) {
735         // Loop over all of the PHI nodes in the block, changing them to use
736         // the incoming values from the previous block.
737         for (PHINode *OrigPHI : OrigPHINode) {
738           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
739           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
740           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
741             if (It > 1 && L->contains(InValI))
742               InVal = LastValueMap[InValI];
743           VMap[OrigPHI] = InVal;
744           NewPHI->eraseFromParent();
745         }
746 
747         // Eliminate copies of the loop heart intrinsic, if any.
748         if (ULO.Heart) {
749           auto it = VMap.find(ULO.Heart);
750           assert(it != VMap.end());
751           Instruction *heartCopy = cast<Instruction>(it->second);
752           heartCopy->eraseFromParent();
753           VMap.erase(it);
754         }
755       }
756 
757       // Update our running map of newest clones
758       LastValueMap[*BB] = New;
759       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
760            VI != VE; ++VI)
761         LastValueMap[VI->first] = VI->second;
762 
763       // Add phi entries for newly created values to all exit blocks.
764       for (BasicBlock *Succ : successors(*BB)) {
765         if (L->contains(Succ))
766           continue;
767         for (PHINode &PHI : Succ->phis()) {
768           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
769           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
770           if (It != LastValueMap.end())
771             Incoming = It->second;
772           PHI.addIncoming(Incoming, New);
773           SE->forgetValue(&PHI);
774         }
775       }
776       // Keep track of new headers and latches as we create them, so that
777       // we can insert the proper branches later.
778       if (*BB == Header)
779         Headers.push_back(New);
780       if (*BB == LatchBlock)
781         Latches.push_back(New);
782 
783       // Keep track of the exiting block and its successor block contained in
784       // the loop for the current iteration.
785       auto ExitInfoIt = ExitInfos.find(*BB);
786       if (ExitInfoIt != ExitInfos.end())
787         ExitInfoIt->second.ExitingBlocks.push_back(New);
788 
789       NewBlocks.push_back(New);
790       UnrolledLoopBlocks.push_back(New);
791 
792       // Update DomTree: since we just copy the loop body, and each copy has a
793       // dedicated entry block (copy of the header block), this header's copy
794       // dominates all copied blocks. That means, dominance relations in the
795       // copied body are the same as in the original body.
796       if (*BB == Header)
797         DT->addNewBlock(New, Latches[It - 1]);
798       else {
799         auto BBDomNode = DT->getNode(*BB);
800         auto BBIDom = BBDomNode->getIDom();
801         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
802         DT->addNewBlock(
803             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
804       }
805     }
806 
807     // Remap all instructions in the most recent iteration
808     remapInstructionsInBlocks(NewBlocks, LastValueMap);
809     for (BasicBlock *NewBlock : NewBlocks)
810       for (Instruction &I : *NewBlock)
811         if (auto *II = dyn_cast<AssumeInst>(&I))
812           AC->registerAssumption(II);
813 
814     {
815       // Identify what other metadata depends on the cloned version. After
816       // cloning, replace the metadata with the corrected version for both
817       // memory instructions and noalias intrinsics.
818       std::string ext = (Twine("It") + Twine(It)).str();
819       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
820                                  Header->getContext(), ext);
821     }
822   }
823 
824   // Loop over the PHI nodes in the original block, setting incoming values.
825   for (PHINode *PN : OrigPHINode) {
826     if (CompletelyUnroll) {
827       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
828       PN->eraseFromParent();
829     } else if (ULO.Count > 1) {
830       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
831       // If this value was defined in the loop, take the value defined by the
832       // last iteration of the loop.
833       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
834         if (L->contains(InValI))
835           InVal = LastValueMap[InVal];
836       }
837       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
838       PN->addIncoming(InVal, Latches.back());
839     }
840   }
841 
842   // Connect latches of the unrolled iterations to the headers of the next
843   // iteration. Currently they point to the header of the same iteration.
844   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
845     unsigned j = (i + 1) % e;
846     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
847   }
848 
849   // Update dominators of blocks we might reach through exits.
850   // Immediate dominator of such block might change, because we add more
851   // routes which can lead to the exit: we can now reach it from the copied
852   // iterations too.
853   if (ULO.Count > 1) {
854     for (auto *BB : OriginalLoopBlocks) {
855       auto *BBDomNode = DT->getNode(BB);
856       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
857       for (auto *ChildDomNode : BBDomNode->children()) {
858         auto *ChildBB = ChildDomNode->getBlock();
859         if (!L->contains(ChildBB))
860           ChildrenToUpdate.push_back(ChildBB);
861       }
862       // The new idom of the block will be the nearest common dominator
863       // of all copies of the previous idom. This is equivalent to the
864       // nearest common dominator of the previous idom and the first latch,
865       // which dominates all copies of the previous idom.
866       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
867       for (auto *ChildBB : ChildrenToUpdate)
868         DT->changeImmediateDominator(ChildBB, NewIDom);
869     }
870   }
871 
872   assert(!UnrollVerifyDomtree ||
873          DT->verify(DominatorTree::VerificationLevel::Fast));
874 
875   SmallVector<DominatorTree::UpdateType> DTUpdates;
876   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
877     auto *Term = cast<BranchInst>(Src->getTerminator());
878     const unsigned Idx = ExitOnTrue ^ WillExit;
879     BasicBlock *Dest = Term->getSuccessor(Idx);
880     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
881 
882     // Remove predecessors from all non-Dest successors.
883     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
884 
885     // Replace the conditional branch with an unconditional one.
886     BranchInst::Create(Dest, Term->getIterator());
887     Term->eraseFromParent();
888 
889     DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
890   };
891 
892   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
893                       bool IsLatch) -> std::optional<bool> {
894     if (CompletelyUnroll) {
895       if (PreserveOnlyFirst) {
896         if (i == 0)
897           return std::nullopt;
898         return j == 0;
899       }
900       // Complete (but possibly inexact) unrolling
901       if (j == 0)
902         return true;
903       if (Info.TripCount && j != Info.TripCount)
904         return false;
905       return std::nullopt;
906     }
907 
908     if (ULO.Runtime) {
909       // If runtime unrolling inserts a prologue, information about non-latch
910       // exits may be stale.
911       if (IsLatch && j != 0)
912         return false;
913       return std::nullopt;
914     }
915 
916     if (j != Info.BreakoutTrip &&
917         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
918       // If we know the trip count or a multiple of it, we can safely use an
919       // unconditional branch for some iterations.
920       return false;
921     }
922     return std::nullopt;
923   };
924 
925   // Fold branches for iterations where we know that they will exit or not
926   // exit.
927   for (auto &Pair : ExitInfos) {
928     ExitInfo &Info = Pair.second;
929     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
930       // The branch destination.
931       unsigned j = (i + 1) % e;
932       bool IsLatch = Pair.first == LatchBlock;
933       std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
934       if (!KnownWillExit) {
935         if (!Info.FirstExitingBlock)
936           Info.FirstExitingBlock = Info.ExitingBlocks[i];
937         continue;
938       }
939 
940       // We don't fold known-exiting branches for non-latch exits here,
941       // because this ensures that both all loop blocks and all exit blocks
942       // remain reachable in the CFG.
943       // TODO: We could fold these branches, but it would require much more
944       // sophisticated updates to LoopInfo.
945       if (*KnownWillExit && !IsLatch) {
946         if (!Info.FirstExitingBlock)
947           Info.FirstExitingBlock = Info.ExitingBlocks[i];
948         continue;
949       }
950 
951       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
952     }
953   }
954 
955   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
956   DomTreeUpdater *DTUToUse = &DTU;
957   if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
958     // Manually update the DT if there's a single exiting node. In that case
959     // there's a single exit node and it is sufficient to update the nodes
960     // immediately dominated by the original exiting block. They will become
961     // dominated by the first exiting block that leaves the loop after
962     // unrolling. Note that the CFG inside the loop does not change, so there's
963     // no need to update the DT inside the unrolled loop.
964     DTUToUse = nullptr;
965     auto &[OriginalExit, Info] = *ExitInfos.begin();
966     if (!Info.FirstExitingBlock)
967       Info.FirstExitingBlock = Info.ExitingBlocks.back();
968     for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
969       if (L->contains(C->getBlock()))
970         continue;
971       C->setIDom(DT->getNode(Info.FirstExitingBlock));
972     }
973   } else {
974     DTU.applyUpdates(DTUpdates);
975   }
976 
977   // When completely unrolling, the last latch becomes unreachable.
978   if (!LatchIsExiting && CompletelyUnroll) {
979     // There is no need to update the DT here, because there must be a unique
980     // latch. Hence if the latch is not exiting it must directly branch back to
981     // the original loop header and does not dominate any nodes.
982     assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
983     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
984   }
985 
986   // Merge adjacent basic blocks, if possible.
987   for (BasicBlock *Latch : Latches) {
988     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
989     assert((Term ||
990             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
991            "Need a branch as terminator, except when fully unrolling with "
992            "unconditional latch");
993     if (Term && Term->isUnconditional()) {
994       BasicBlock *Dest = Term->getSuccessor(0);
995       BasicBlock *Fold = Dest->getUniquePredecessor();
996       if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
997                                     /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
998                                     /*PredecessorWithTwoSuccessors=*/false,
999                                     DTUToUse ? nullptr : DT)) {
1000         // Dest has been folded into Fold. Update our worklists accordingly.
1001         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
1002         llvm::erase(UnrolledLoopBlocks, Dest);
1003       }
1004     }
1005   }
1006 
1007   if (DTUToUse) {
1008     // Apply updates to the DomTree.
1009     DT = &DTU.getDomTree();
1010   }
1011   assert(!UnrollVerifyDomtree ||
1012          DT->verify(DominatorTree::VerificationLevel::Fast));
1013 
1014   // At this point, the code is well formed.  We now simplify the unrolled loop,
1015   // doing constant propagation and dead code elimination as we go.
1016   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
1017                           TTI, AA);
1018 
1019   NumCompletelyUnrolled += CompletelyUnroll;
1020   ++NumUnrolled;
1021 
1022   Loop *OuterL = L->getParentLoop();
1023   // Update LoopInfo if the loop is completely removed.
1024   if (CompletelyUnroll) {
1025     LI->erase(L);
1026     // We shouldn't try to use `L` anymore.
1027     L = nullptr;
1028   } else if (OriginalTripCount) {
1029     // Update the trip count. Note that the remainder has already logic
1030     // computing it in `UnrollRuntimeLoopRemainder`.
1031     setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
1032                               EstimatedLoopInvocationWeight);
1033   }
1034 
1035   // LoopInfo should not be valid, confirm that.
1036   if (UnrollVerifyLoopInfo)
1037     LI->verify(*DT);
1038 
1039   // After complete unrolling most of the blocks should be contained in OuterL.
1040   // However, some of them might happen to be out of OuterL (e.g. if they
1041   // precede a loop exit). In this case we might need to insert PHI nodes in
1042   // order to preserve LCSSA form.
1043   // We don't need to check this if we already know that we need to fix LCSSA
1044   // form.
1045   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
1046   // it should be possible to fix it in-place.
1047   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
1048     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
1049 
1050   // Make sure that loop-simplify form is preserved. We want to simplify
1051   // at least one layer outside of the loop that was unrolled so that any
1052   // changes to the parent loop exposed by the unrolling are considered.
1053   if (OuterL) {
1054     // OuterL includes all loops for which we can break loop-simplify, so
1055     // it's sufficient to simplify only it (it'll recursively simplify inner
1056     // loops too).
1057     if (NeedToFixLCSSA) {
1058       // LCSSA must be performed on the outermost affected loop. The unrolled
1059       // loop's last loop latch is guaranteed to be in the outermost loop
1060       // after LoopInfo's been updated by LoopInfo::erase.
1061       Loop *LatchLoop = LI->getLoopFor(Latches.back());
1062       Loop *FixLCSSALoop = OuterL;
1063       if (!FixLCSSALoop->contains(LatchLoop))
1064         while (FixLCSSALoop->getParentLoop() != LatchLoop)
1065           FixLCSSALoop = FixLCSSALoop->getParentLoop();
1066 
1067       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
1068     } else if (PreserveLCSSA) {
1069       assert(OuterL->isLCSSAForm(*DT) &&
1070              "Loops should be in LCSSA form after loop-unroll.");
1071     }
1072 
1073     // TODO: That potentially might be compile-time expensive. We should try
1074     // to fix the loop-simplified form incrementally.
1075     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
1076   } else {
1077     // Simplify loops for which we might've broken loop-simplify form.
1078     for (Loop *SubLoop : LoopsToSimplify)
1079       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
1080   }
1081 
1082   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
1083                           : LoopUnrollResult::PartiallyUnrolled;
1084 }
1085 
1086 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
1087 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
1088 /// such metadata node exists, then nullptr is returned.
GetUnrollMetadata(MDNode * LoopID,StringRef Name)1089 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
1090   // First operand should refer to the loop id itself.
1091   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1092   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1093 
1094   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
1095     MDNode *MD = dyn_cast<MDNode>(MDO);
1096     if (!MD)
1097       continue;
1098 
1099     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1100     if (!S)
1101       continue;
1102 
1103     if (Name == S->getString())
1104       return MD;
1105   }
1106   return nullptr;
1107 }
1108