1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2022 Analog Devices, Inc.
4 * Author: Cosmin Tanislav <cosmin.tanislav@analog.com>
5 */
6
7 #include <linux/bitfield.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/property.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/spi/spi.h>
23 #include <linux/units.h>
24
25 #include <asm/div64.h>
26 #include <linux/unaligned.h>
27
28 #include <linux/iio/buffer.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/kfifo_buf.h>
31 #include <linux/iio/sysfs.h>
32
33 #define AD4130_NAME "ad4130"
34
35 #define AD4130_COMMS_READ_MASK BIT(6)
36
37 #define AD4130_STATUS_REG 0x00
38
39 #define AD4130_ADC_CONTROL_REG 0x01
40 #define AD4130_ADC_CONTROL_BIPOLAR_MASK BIT(14)
41 #define AD4130_ADC_CONTROL_INT_REF_VAL_MASK BIT(13)
42 #define AD4130_INT_REF_2_5V 2500000
43 #define AD4130_INT_REF_1_25V 1250000
44 #define AD4130_ADC_CONTROL_CSB_EN_MASK BIT(9)
45 #define AD4130_ADC_CONTROL_INT_REF_EN_MASK BIT(8)
46 #define AD4130_ADC_CONTROL_MODE_MASK GENMASK(5, 2)
47 #define AD4130_ADC_CONTROL_MCLK_SEL_MASK GENMASK(1, 0)
48 #define AD4130_MCLK_FREQ_76_8KHZ 76800
49 #define AD4130_MCLK_FREQ_153_6KHZ 153600
50
51 #define AD4130_DATA_REG 0x02
52
53 #define AD4130_IO_CONTROL_REG 0x03
54 #define AD4130_IO_CONTROL_INT_PIN_SEL_MASK GENMASK(9, 8)
55 #define AD4130_IO_CONTROL_GPIO_DATA_MASK GENMASK(7, 4)
56 #define AD4130_IO_CONTROL_GPIO_CTRL_MASK GENMASK(3, 0)
57
58 #define AD4130_VBIAS_REG 0x04
59
60 #define AD4130_ID_REG 0x05
61
62 #define AD4130_ERROR_REG 0x06
63
64 #define AD4130_ERROR_EN_REG 0x07
65
66 #define AD4130_MCLK_COUNT_REG 0x08
67
68 #define AD4130_CHANNEL_X_REG(x) (0x09 + (x))
69 #define AD4130_CHANNEL_EN_MASK BIT(23)
70 #define AD4130_CHANNEL_SETUP_MASK GENMASK(22, 20)
71 #define AD4130_CHANNEL_AINP_MASK GENMASK(17, 13)
72 #define AD4130_CHANNEL_AINM_MASK GENMASK(12, 8)
73 #define AD4130_CHANNEL_IOUT1_MASK GENMASK(7, 4)
74 #define AD4130_CHANNEL_IOUT2_MASK GENMASK(3, 0)
75
76 #define AD4130_CONFIG_X_REG(x) (0x19 + (x))
77 #define AD4130_CONFIG_IOUT1_VAL_MASK GENMASK(15, 13)
78 #define AD4130_CONFIG_IOUT2_VAL_MASK GENMASK(12, 10)
79 #define AD4130_CONFIG_BURNOUT_MASK GENMASK(9, 8)
80 #define AD4130_CONFIG_REF_BUFP_MASK BIT(7)
81 #define AD4130_CONFIG_REF_BUFM_MASK BIT(6)
82 #define AD4130_CONFIG_REF_SEL_MASK GENMASK(5, 4)
83 #define AD4130_CONFIG_PGA_MASK GENMASK(3, 1)
84
85 #define AD4130_FILTER_X_REG(x) (0x21 + (x))
86 #define AD4130_FILTER_MODE_MASK GENMASK(15, 12)
87 #define AD4130_FILTER_SELECT_MASK GENMASK(10, 0)
88 #define AD4130_FILTER_SELECT_MIN 1
89
90 #define AD4130_OFFSET_X_REG(x) (0x29 + (x))
91
92 #define AD4130_GAIN_X_REG(x) (0x31 + (x))
93
94 #define AD4130_MISC_REG 0x39
95
96 #define AD4130_FIFO_CONTROL_REG 0x3a
97 #define AD4130_FIFO_CONTROL_HEADER_MASK BIT(18)
98 #define AD4130_FIFO_CONTROL_MODE_MASK GENMASK(17, 16)
99 #define AD4130_FIFO_CONTROL_WM_INT_EN_MASK BIT(9)
100 #define AD4130_FIFO_CONTROL_WM_MASK GENMASK(7, 0)
101 #define AD4130_WATERMARK_256 0
102
103 #define AD4130_FIFO_STATUS_REG 0x3b
104
105 #define AD4130_FIFO_THRESHOLD_REG 0x3c
106
107 #define AD4130_FIFO_DATA_REG 0x3d
108 #define AD4130_FIFO_SIZE 256
109 #define AD4130_FIFO_MAX_SAMPLE_SIZE 3
110
111 #define AD4130_MAX_ANALOG_PINS 16
112 #define AD4130_MAX_CHANNELS 16
113 #define AD4130_MAX_DIFF_INPUTS 30
114 #define AD4130_MAX_GPIOS 4
115 #define AD4130_MAX_ODR 2400
116 #define AD4130_MAX_PGA 8
117 #define AD4130_MAX_SETUPS 8
118
119 #define AD4130_AIN2_P1 0x2
120 #define AD4130_AIN3_P2 0x3
121
122 #define AD4130_RESET_BUF_SIZE 8
123 #define AD4130_RESET_SLEEP_US (160 * MICRO / AD4130_MCLK_FREQ_76_8KHZ)
124
125 #define AD4130_INVALID_SLOT -1
126
127 static const unsigned int ad4130_reg_size[] = {
128 [AD4130_STATUS_REG] = 1,
129 [AD4130_ADC_CONTROL_REG] = 2,
130 [AD4130_DATA_REG] = 3,
131 [AD4130_IO_CONTROL_REG] = 2,
132 [AD4130_VBIAS_REG] = 2,
133 [AD4130_ID_REG] = 1,
134 [AD4130_ERROR_REG] = 2,
135 [AD4130_ERROR_EN_REG] = 2,
136 [AD4130_MCLK_COUNT_REG] = 1,
137 [AD4130_CHANNEL_X_REG(0) ... AD4130_CHANNEL_X_REG(AD4130_MAX_CHANNELS - 1)] = 3,
138 [AD4130_CONFIG_X_REG(0) ... AD4130_CONFIG_X_REG(AD4130_MAX_SETUPS - 1)] = 2,
139 [AD4130_FILTER_X_REG(0) ... AD4130_FILTER_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
140 [AD4130_OFFSET_X_REG(0) ... AD4130_OFFSET_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
141 [AD4130_GAIN_X_REG(0) ... AD4130_GAIN_X_REG(AD4130_MAX_SETUPS - 1)] = 3,
142 [AD4130_MISC_REG] = 2,
143 [AD4130_FIFO_CONTROL_REG] = 3,
144 [AD4130_FIFO_STATUS_REG] = 1,
145 [AD4130_FIFO_THRESHOLD_REG] = 3,
146 [AD4130_FIFO_DATA_REG] = 3,
147 };
148
149 enum ad4130_int_ref_val {
150 AD4130_INT_REF_VAL_2_5V,
151 AD4130_INT_REF_VAL_1_25V,
152 };
153
154 enum ad4130_mclk_sel {
155 AD4130_MCLK_76_8KHZ,
156 AD4130_MCLK_76_8KHZ_OUT,
157 AD4130_MCLK_76_8KHZ_EXT,
158 AD4130_MCLK_153_6KHZ_EXT,
159 };
160
161 enum ad4130_int_pin_sel {
162 AD4130_INT_PIN_INT,
163 AD4130_INT_PIN_CLK,
164 AD4130_INT_PIN_P2,
165 AD4130_INT_PIN_DOUT,
166 };
167
168 enum ad4130_iout {
169 AD4130_IOUT_OFF,
170 AD4130_IOUT_10000NA,
171 AD4130_IOUT_20000NA,
172 AD4130_IOUT_50000NA,
173 AD4130_IOUT_100000NA,
174 AD4130_IOUT_150000NA,
175 AD4130_IOUT_200000NA,
176 AD4130_IOUT_100NA,
177 AD4130_IOUT_MAX
178 };
179
180 enum ad4130_burnout {
181 AD4130_BURNOUT_OFF,
182 AD4130_BURNOUT_500NA,
183 AD4130_BURNOUT_2000NA,
184 AD4130_BURNOUT_4000NA,
185 AD4130_BURNOUT_MAX
186 };
187
188 enum ad4130_ref_sel {
189 AD4130_REF_REFIN1,
190 AD4130_REF_REFIN2,
191 AD4130_REF_REFOUT_AVSS,
192 AD4130_REF_AVDD_AVSS,
193 AD4130_REF_SEL_MAX
194 };
195
196 enum ad4130_fifo_mode {
197 AD4130_FIFO_MODE_DISABLED = 0b00,
198 AD4130_FIFO_MODE_WM = 0b01,
199 };
200
201 enum ad4130_mode {
202 AD4130_MODE_CONTINUOUS = 0b0000,
203 AD4130_MODE_IDLE = 0b0100,
204 };
205
206 enum ad4130_filter_mode {
207 AD4130_FILTER_SINC4,
208 AD4130_FILTER_SINC4_SINC1,
209 AD4130_FILTER_SINC3,
210 AD4130_FILTER_SINC3_REJ60,
211 AD4130_FILTER_SINC3_SINC1,
212 AD4130_FILTER_SINC3_PF1,
213 AD4130_FILTER_SINC3_PF2,
214 AD4130_FILTER_SINC3_PF3,
215 AD4130_FILTER_SINC3_PF4,
216 };
217
218 enum ad4130_pin_function {
219 AD4130_PIN_FN_NONE,
220 AD4130_PIN_FN_SPECIAL = BIT(0),
221 AD4130_PIN_FN_DIFF = BIT(1),
222 AD4130_PIN_FN_EXCITATION = BIT(2),
223 AD4130_PIN_FN_VBIAS = BIT(3),
224 };
225
226 struct ad4130_setup_info {
227 unsigned int iout0_val;
228 unsigned int iout1_val;
229 unsigned int burnout;
230 unsigned int pga;
231 unsigned int fs;
232 u32 ref_sel;
233 enum ad4130_filter_mode filter_mode;
234 bool ref_bufp;
235 bool ref_bufm;
236 };
237
238 struct ad4130_slot_info {
239 struct ad4130_setup_info setup;
240 unsigned int enabled_channels;
241 unsigned int channels;
242 };
243
244 struct ad4130_chan_info {
245 struct ad4130_setup_info setup;
246 u32 iout0;
247 u32 iout1;
248 int slot;
249 bool enabled;
250 bool initialized;
251 };
252
253 struct ad4130_filter_config {
254 enum ad4130_filter_mode filter_mode;
255 unsigned int odr_div;
256 unsigned int fs_max;
257 enum iio_available_type samp_freq_avail_type;
258 int samp_freq_avail_len;
259 int samp_freq_avail[3][2];
260 };
261
262 struct ad4130_state {
263 struct regmap *regmap;
264 struct spi_device *spi;
265 struct clk *mclk;
266 struct regulator_bulk_data regulators[4];
267 u32 irq_trigger;
268 u32 inv_irq_trigger;
269
270 /*
271 * Synchronize access to members the of driver state, and ensure
272 * atomicity of consecutive regmap operations.
273 */
274 struct mutex lock;
275 struct completion completion;
276
277 struct iio_chan_spec chans[AD4130_MAX_CHANNELS];
278 struct ad4130_chan_info chans_info[AD4130_MAX_CHANNELS];
279 struct ad4130_slot_info slots_info[AD4130_MAX_SETUPS];
280 enum ad4130_pin_function pins_fn[AD4130_MAX_ANALOG_PINS];
281 u32 vbias_pins[AD4130_MAX_ANALOG_PINS];
282 u32 num_vbias_pins;
283 int scale_tbls[AD4130_REF_SEL_MAX][AD4130_MAX_PGA][2];
284 struct gpio_chip gc;
285 struct clk_hw int_clk_hw;
286
287 u32 int_pin_sel;
288 u32 int_ref_uv;
289 u32 mclk_sel;
290 bool int_ref_en;
291 bool bipolar;
292
293 unsigned int num_enabled_channels;
294 unsigned int effective_watermark;
295 unsigned int watermark;
296
297 struct spi_message fifo_msg;
298 struct spi_transfer fifo_xfer[2];
299
300 /*
301 * DMA (thus cache coherency maintenance) requires any transfer
302 * buffers to live in their own cache lines. As the use of these
303 * buffers is synchronous, all of the buffers used for DMA in this
304 * driver may share a cache line.
305 */
306 u8 reset_buf[AD4130_RESET_BUF_SIZE] __aligned(IIO_DMA_MINALIGN);
307 u8 reg_write_tx_buf[4];
308 u8 reg_read_tx_buf[1];
309 u8 reg_read_rx_buf[3];
310 u8 fifo_tx_buf[2];
311 u8 fifo_rx_buf[AD4130_FIFO_SIZE *
312 AD4130_FIFO_MAX_SAMPLE_SIZE];
313 };
314
315 static const char * const ad4130_int_pin_names[] = {
316 [AD4130_INT_PIN_INT] = "int",
317 [AD4130_INT_PIN_CLK] = "clk",
318 [AD4130_INT_PIN_P2] = "p2",
319 [AD4130_INT_PIN_DOUT] = "dout",
320 };
321
322 static const unsigned int ad4130_iout_current_na_tbl[AD4130_IOUT_MAX] = {
323 [AD4130_IOUT_OFF] = 0,
324 [AD4130_IOUT_100NA] = 100,
325 [AD4130_IOUT_10000NA] = 10000,
326 [AD4130_IOUT_20000NA] = 20000,
327 [AD4130_IOUT_50000NA] = 50000,
328 [AD4130_IOUT_100000NA] = 100000,
329 [AD4130_IOUT_150000NA] = 150000,
330 [AD4130_IOUT_200000NA] = 200000,
331 };
332
333 static const unsigned int ad4130_burnout_current_na_tbl[AD4130_BURNOUT_MAX] = {
334 [AD4130_BURNOUT_OFF] = 0,
335 [AD4130_BURNOUT_500NA] = 500,
336 [AD4130_BURNOUT_2000NA] = 2000,
337 [AD4130_BURNOUT_4000NA] = 4000,
338 };
339
340 #define AD4130_VARIABLE_ODR_CONFIG(_filter_mode, _odr_div, _fs_max) \
341 { \
342 .filter_mode = (_filter_mode), \
343 .odr_div = (_odr_div), \
344 .fs_max = (_fs_max), \
345 .samp_freq_avail_type = IIO_AVAIL_RANGE, \
346 .samp_freq_avail = { \
347 { AD4130_MAX_ODR, (_odr_div) * (_fs_max) }, \
348 { AD4130_MAX_ODR, (_odr_div) * (_fs_max) }, \
349 { AD4130_MAX_ODR, (_odr_div) }, \
350 }, \
351 }
352
353 #define AD4130_FIXED_ODR_CONFIG(_filter_mode, _odr_div) \
354 { \
355 .filter_mode = (_filter_mode), \
356 .odr_div = (_odr_div), \
357 .fs_max = AD4130_FILTER_SELECT_MIN, \
358 .samp_freq_avail_type = IIO_AVAIL_LIST, \
359 .samp_freq_avail_len = 1, \
360 .samp_freq_avail = { \
361 { AD4130_MAX_ODR, (_odr_div) }, \
362 }, \
363 }
364
365 static const struct ad4130_filter_config ad4130_filter_configs[] = {
366 AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4, 1, 10),
367 AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC4_SINC1, 11, 10),
368 AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3, 1, 2047),
369 AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_REJ60, 1, 2047),
370 AD4130_VARIABLE_ODR_CONFIG(AD4130_FILTER_SINC3_SINC1, 10, 2047),
371 AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF1, 92),
372 AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF2, 100),
373 AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF3, 124),
374 AD4130_FIXED_ODR_CONFIG(AD4130_FILTER_SINC3_PF4, 148),
375 };
376
377 static const char * const ad4130_filter_modes_str[] = {
378 [AD4130_FILTER_SINC4] = "sinc4",
379 [AD4130_FILTER_SINC4_SINC1] = "sinc4+sinc1",
380 [AD4130_FILTER_SINC3] = "sinc3",
381 [AD4130_FILTER_SINC3_REJ60] = "sinc3+rej60",
382 [AD4130_FILTER_SINC3_SINC1] = "sinc3+sinc1",
383 [AD4130_FILTER_SINC3_PF1] = "sinc3+pf1",
384 [AD4130_FILTER_SINC3_PF2] = "sinc3+pf2",
385 [AD4130_FILTER_SINC3_PF3] = "sinc3+pf3",
386 [AD4130_FILTER_SINC3_PF4] = "sinc3+pf4",
387 };
388
ad4130_get_reg_size(struct ad4130_state * st,unsigned int reg,unsigned int * size)389 static int ad4130_get_reg_size(struct ad4130_state *st, unsigned int reg,
390 unsigned int *size)
391 {
392 if (reg >= ARRAY_SIZE(ad4130_reg_size))
393 return -EINVAL;
394
395 *size = ad4130_reg_size[reg];
396
397 return 0;
398 }
399
ad4130_data_reg_size(struct ad4130_state * st)400 static unsigned int ad4130_data_reg_size(struct ad4130_state *st)
401 {
402 unsigned int data_reg_size;
403 int ret;
404
405 ret = ad4130_get_reg_size(st, AD4130_DATA_REG, &data_reg_size);
406 if (ret)
407 return 0;
408
409 return data_reg_size;
410 }
411
ad4130_resolution(struct ad4130_state * st)412 static unsigned int ad4130_resolution(struct ad4130_state *st)
413 {
414 return ad4130_data_reg_size(st) * BITS_PER_BYTE;
415 }
416
ad4130_reg_write(void * context,unsigned int reg,unsigned int val)417 static int ad4130_reg_write(void *context, unsigned int reg, unsigned int val)
418 {
419 struct ad4130_state *st = context;
420 unsigned int size;
421 int ret;
422
423 ret = ad4130_get_reg_size(st, reg, &size);
424 if (ret)
425 return ret;
426
427 st->reg_write_tx_buf[0] = reg;
428
429 switch (size) {
430 case 3:
431 put_unaligned_be24(val, &st->reg_write_tx_buf[1]);
432 break;
433 case 2:
434 put_unaligned_be16(val, &st->reg_write_tx_buf[1]);
435 break;
436 case 1:
437 st->reg_write_tx_buf[1] = val;
438 break;
439 default:
440 return -EINVAL;
441 }
442
443 return spi_write(st->spi, st->reg_write_tx_buf, size + 1);
444 }
445
ad4130_reg_read(void * context,unsigned int reg,unsigned int * val)446 static int ad4130_reg_read(void *context, unsigned int reg, unsigned int *val)
447 {
448 struct ad4130_state *st = context;
449 struct spi_transfer t[] = {
450 {
451 .tx_buf = st->reg_read_tx_buf,
452 .len = sizeof(st->reg_read_tx_buf),
453 },
454 {
455 .rx_buf = st->reg_read_rx_buf,
456 },
457 };
458 unsigned int size;
459 int ret;
460
461 ret = ad4130_get_reg_size(st, reg, &size);
462 if (ret)
463 return ret;
464
465 st->reg_read_tx_buf[0] = AD4130_COMMS_READ_MASK | reg;
466 t[1].len = size;
467
468 ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
469 if (ret)
470 return ret;
471
472 switch (size) {
473 case 3:
474 *val = get_unaligned_be24(st->reg_read_rx_buf);
475 break;
476 case 2:
477 *val = get_unaligned_be16(st->reg_read_rx_buf);
478 break;
479 case 1:
480 *val = st->reg_read_rx_buf[0];
481 break;
482 default:
483 return -EINVAL;
484 }
485
486 return 0;
487 }
488
489 static const struct regmap_config ad4130_regmap_config = {
490 .reg_read = ad4130_reg_read,
491 .reg_write = ad4130_reg_write,
492 };
493
ad4130_gpio_init_valid_mask(struct gpio_chip * gc,unsigned long * valid_mask,unsigned int ngpios)494 static int ad4130_gpio_init_valid_mask(struct gpio_chip *gc,
495 unsigned long *valid_mask,
496 unsigned int ngpios)
497 {
498 struct ad4130_state *st = gpiochip_get_data(gc);
499 unsigned int i;
500
501 /*
502 * Output-only GPIO functionality is available on pins AIN2 through
503 * AIN5. If these pins are used for anything else, do not expose them.
504 */
505 for (i = 0; i < ngpios; i++) {
506 unsigned int pin = i + AD4130_AIN2_P1;
507 bool valid = st->pins_fn[pin] == AD4130_PIN_FN_NONE;
508
509 __assign_bit(i, valid_mask, valid);
510 }
511
512 return 0;
513 }
514
ad4130_gpio_get_direction(struct gpio_chip * gc,unsigned int offset)515 static int ad4130_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
516 {
517 return GPIO_LINE_DIRECTION_OUT;
518 }
519
ad4130_gpio_set(struct gpio_chip * gc,unsigned int offset,int value)520 static void ad4130_gpio_set(struct gpio_chip *gc, unsigned int offset,
521 int value)
522 {
523 struct ad4130_state *st = gpiochip_get_data(gc);
524 unsigned int mask = FIELD_PREP(AD4130_IO_CONTROL_GPIO_DATA_MASK,
525 BIT(offset));
526
527 regmap_update_bits(st->regmap, AD4130_IO_CONTROL_REG, mask,
528 value ? mask : 0);
529 }
530
ad4130_set_mode(struct ad4130_state * st,enum ad4130_mode mode)531 static int ad4130_set_mode(struct ad4130_state *st, enum ad4130_mode mode)
532 {
533 return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
534 AD4130_ADC_CONTROL_MODE_MASK,
535 FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, mode));
536 }
537
ad4130_set_watermark_interrupt_en(struct ad4130_state * st,bool en)538 static int ad4130_set_watermark_interrupt_en(struct ad4130_state *st, bool en)
539 {
540 return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
541 AD4130_FIFO_CONTROL_WM_INT_EN_MASK,
542 FIELD_PREP(AD4130_FIFO_CONTROL_WM_INT_EN_MASK, en));
543 }
544
ad4130_watermark_reg_val(unsigned int val)545 static unsigned int ad4130_watermark_reg_val(unsigned int val)
546 {
547 if (val == AD4130_FIFO_SIZE)
548 val = AD4130_WATERMARK_256;
549
550 return val;
551 }
552
ad4130_set_fifo_mode(struct ad4130_state * st,enum ad4130_fifo_mode mode)553 static int ad4130_set_fifo_mode(struct ad4130_state *st,
554 enum ad4130_fifo_mode mode)
555 {
556 return regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
557 AD4130_FIFO_CONTROL_MODE_MASK,
558 FIELD_PREP(AD4130_FIFO_CONTROL_MODE_MASK, mode));
559 }
560
ad4130_push_fifo_data(struct iio_dev * indio_dev)561 static void ad4130_push_fifo_data(struct iio_dev *indio_dev)
562 {
563 struct ad4130_state *st = iio_priv(indio_dev);
564 unsigned int data_reg_size = ad4130_data_reg_size(st);
565 unsigned int transfer_len = st->effective_watermark * data_reg_size;
566 unsigned int set_size = st->num_enabled_channels * data_reg_size;
567 unsigned int i;
568 int ret;
569
570 st->fifo_tx_buf[1] = ad4130_watermark_reg_val(st->effective_watermark);
571 st->fifo_xfer[1].len = transfer_len;
572
573 ret = spi_sync(st->spi, &st->fifo_msg);
574 if (ret)
575 return;
576
577 for (i = 0; i < transfer_len; i += set_size)
578 iio_push_to_buffers(indio_dev, &st->fifo_rx_buf[i]);
579 }
580
ad4130_irq_handler(int irq,void * private)581 static irqreturn_t ad4130_irq_handler(int irq, void *private)
582 {
583 struct iio_dev *indio_dev = private;
584 struct ad4130_state *st = iio_priv(indio_dev);
585
586 if (iio_buffer_enabled(indio_dev))
587 ad4130_push_fifo_data(indio_dev);
588 else
589 complete(&st->completion);
590
591 return IRQ_HANDLED;
592 }
593
ad4130_find_slot(struct ad4130_state * st,struct ad4130_setup_info * target_setup_info,unsigned int * slot,bool * overwrite)594 static int ad4130_find_slot(struct ad4130_state *st,
595 struct ad4130_setup_info *target_setup_info,
596 unsigned int *slot, bool *overwrite)
597 {
598 unsigned int i;
599
600 *slot = AD4130_INVALID_SLOT;
601 *overwrite = false;
602
603 for (i = 0; i < AD4130_MAX_SETUPS; i++) {
604 struct ad4130_slot_info *slot_info = &st->slots_info[i];
605
606 /* Immediately accept a matching setup info. */
607 if (!memcmp(target_setup_info, &slot_info->setup,
608 sizeof(*target_setup_info))) {
609 *slot = i;
610 return 0;
611 }
612
613 /* Ignore all setups which are used by enabled channels. */
614 if (slot_info->enabled_channels)
615 continue;
616
617 /* Find the least used slot. */
618 if (*slot == AD4130_INVALID_SLOT ||
619 slot_info->channels < st->slots_info[*slot].channels)
620 *slot = i;
621 }
622
623 if (*slot == AD4130_INVALID_SLOT)
624 return -EINVAL;
625
626 *overwrite = true;
627
628 return 0;
629 }
630
ad4130_unlink_channel(struct ad4130_state * st,unsigned int channel)631 static void ad4130_unlink_channel(struct ad4130_state *st, unsigned int channel)
632 {
633 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
634 struct ad4130_slot_info *slot_info = &st->slots_info[chan_info->slot];
635
636 chan_info->slot = AD4130_INVALID_SLOT;
637 slot_info->channels--;
638 }
639
ad4130_unlink_slot(struct ad4130_state * st,unsigned int slot)640 static int ad4130_unlink_slot(struct ad4130_state *st, unsigned int slot)
641 {
642 unsigned int i;
643
644 for (i = 0; i < AD4130_MAX_CHANNELS; i++) {
645 struct ad4130_chan_info *chan_info = &st->chans_info[i];
646
647 if (!chan_info->initialized || chan_info->slot != slot)
648 continue;
649
650 ad4130_unlink_channel(st, i);
651 }
652
653 return 0;
654 }
655
ad4130_link_channel_slot(struct ad4130_state * st,unsigned int channel,unsigned int slot)656 static int ad4130_link_channel_slot(struct ad4130_state *st,
657 unsigned int channel, unsigned int slot)
658 {
659 struct ad4130_slot_info *slot_info = &st->slots_info[slot];
660 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
661 int ret;
662
663 ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
664 AD4130_CHANNEL_SETUP_MASK,
665 FIELD_PREP(AD4130_CHANNEL_SETUP_MASK, slot));
666 if (ret)
667 return ret;
668
669 chan_info->slot = slot;
670 slot_info->channels++;
671
672 return 0;
673 }
674
ad4130_write_slot_setup(struct ad4130_state * st,unsigned int slot,struct ad4130_setup_info * setup_info)675 static int ad4130_write_slot_setup(struct ad4130_state *st,
676 unsigned int slot,
677 struct ad4130_setup_info *setup_info)
678 {
679 unsigned int val;
680 int ret;
681
682 val = FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout0_val) |
683 FIELD_PREP(AD4130_CONFIG_IOUT1_VAL_MASK, setup_info->iout1_val) |
684 FIELD_PREP(AD4130_CONFIG_BURNOUT_MASK, setup_info->burnout) |
685 FIELD_PREP(AD4130_CONFIG_REF_BUFP_MASK, setup_info->ref_bufp) |
686 FIELD_PREP(AD4130_CONFIG_REF_BUFM_MASK, setup_info->ref_bufm) |
687 FIELD_PREP(AD4130_CONFIG_REF_SEL_MASK, setup_info->ref_sel) |
688 FIELD_PREP(AD4130_CONFIG_PGA_MASK, setup_info->pga);
689
690 ret = regmap_write(st->regmap, AD4130_CONFIG_X_REG(slot), val);
691 if (ret)
692 return ret;
693
694 val = FIELD_PREP(AD4130_FILTER_MODE_MASK, setup_info->filter_mode) |
695 FIELD_PREP(AD4130_FILTER_SELECT_MASK, setup_info->fs);
696
697 ret = regmap_write(st->regmap, AD4130_FILTER_X_REG(slot), val);
698 if (ret)
699 return ret;
700
701 memcpy(&st->slots_info[slot].setup, setup_info, sizeof(*setup_info));
702
703 return 0;
704 }
705
ad4130_write_channel_setup(struct ad4130_state * st,unsigned int channel,bool on_enable)706 static int ad4130_write_channel_setup(struct ad4130_state *st,
707 unsigned int channel, bool on_enable)
708 {
709 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
710 struct ad4130_setup_info *setup_info = &chan_info->setup;
711 bool overwrite;
712 int slot;
713 int ret;
714
715 /*
716 * The following cases need to be handled.
717 *
718 * 1. Enabled and linked channel with setup changes:
719 * - Find a slot. If not possible, return error.
720 * - Unlink channel from current slot.
721 * - If the slot has channels linked to it, unlink all channels, and
722 * write the new setup to it.
723 * - Link channel to new slot.
724 *
725 * 2. Soon to be enabled and unlinked channel:
726 * - Find a slot. If not possible, return error.
727 * - If the slot has channels linked to it, unlink all channels, and
728 * write the new setup to it.
729 * - Link channel to the slot.
730 *
731 * 3. Disabled and linked channel with setup changes:
732 * - Unlink channel from current slot.
733 *
734 * 4. Soon to be enabled and linked channel:
735 * 5. Disabled and unlinked channel with setup changes:
736 * - Do nothing.
737 */
738
739 /* Case 4 */
740 if (on_enable && chan_info->slot != AD4130_INVALID_SLOT)
741 return 0;
742
743 if (!on_enable && !chan_info->enabled) {
744 if (chan_info->slot != AD4130_INVALID_SLOT)
745 /* Case 3 */
746 ad4130_unlink_channel(st, channel);
747
748 /* Cases 3 & 5 */
749 return 0;
750 }
751
752 /* Cases 1 & 2 */
753 ret = ad4130_find_slot(st, setup_info, &slot, &overwrite);
754 if (ret)
755 return ret;
756
757 if (chan_info->slot != AD4130_INVALID_SLOT)
758 /* Case 1 */
759 ad4130_unlink_channel(st, channel);
760
761 if (overwrite) {
762 ret = ad4130_unlink_slot(st, slot);
763 if (ret)
764 return ret;
765
766 ret = ad4130_write_slot_setup(st, slot, setup_info);
767 if (ret)
768 return ret;
769 }
770
771 return ad4130_link_channel_slot(st, channel, slot);
772 }
773
ad4130_set_channel_enable(struct ad4130_state * st,unsigned int channel,bool status)774 static int ad4130_set_channel_enable(struct ad4130_state *st,
775 unsigned int channel, bool status)
776 {
777 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
778 struct ad4130_slot_info *slot_info;
779 int ret;
780
781 if (chan_info->enabled == status)
782 return 0;
783
784 if (status) {
785 ret = ad4130_write_channel_setup(st, channel, true);
786 if (ret)
787 return ret;
788 }
789
790 slot_info = &st->slots_info[chan_info->slot];
791
792 ret = regmap_update_bits(st->regmap, AD4130_CHANNEL_X_REG(channel),
793 AD4130_CHANNEL_EN_MASK,
794 FIELD_PREP(AD4130_CHANNEL_EN_MASK, status));
795 if (ret)
796 return ret;
797
798 slot_info->enabled_channels += status ? 1 : -1;
799 chan_info->enabled = status;
800
801 return 0;
802 }
803
804 /*
805 * Table 58. FILTER_MODE_n bits and Filter Types of the datasheet describes
806 * the relation between filter mode, ODR and FS.
807 *
808 * Notice that the max ODR of each filter mode is not necessarily the
809 * absolute max ODR supported by the chip.
810 *
811 * The ODR divider is not explicitly specified, but it can be deduced based
812 * on the ODR range of each filter mode.
813 *
814 * For example, for Sinc4+Sinc1, max ODR is 218.18. That means that the
815 * absolute max ODR is divided by 11 to achieve the max ODR of this filter
816 * mode.
817 *
818 * The formulas for converting between ODR and FS for a specific filter
819 * mode can be deduced from the same table.
820 *
821 * Notice that FS = 1 actually means max ODR, and that ODR decreases by
822 * (maximum ODR / maximum FS) for each increment of FS.
823 *
824 * odr = MAX_ODR / odr_div * (1 - (fs - 1) / fs_max) <=>
825 * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
826 * odr = MAX_ODR * (1 - (fs - 1) / fs_max) / odr_div <=>
827 * odr = MAX_ODR * (fs_max - fs + 1) / (fs_max * odr_div)
828 * (used in ad4130_fs_to_freq)
829 *
830 * For the opposite formula, FS can be extracted from the last one.
831 *
832 * MAX_ODR * (fs_max - fs + 1) = fs_max * odr_div * odr <=>
833 * fs_max - fs + 1 = fs_max * odr_div * odr / MAX_ODR <=>
834 * fs = 1 + fs_max - fs_max * odr_div * odr / MAX_ODR
835 * (used in ad4130_fs_to_freq)
836 */
837
ad4130_freq_to_fs(enum ad4130_filter_mode filter_mode,int val,int val2,unsigned int * fs)838 static void ad4130_freq_to_fs(enum ad4130_filter_mode filter_mode,
839 int val, int val2, unsigned int *fs)
840 {
841 const struct ad4130_filter_config *filter_config =
842 &ad4130_filter_configs[filter_mode];
843 u64 dividend, divisor;
844 int temp;
845
846 dividend = filter_config->fs_max * filter_config->odr_div *
847 ((u64)val * NANO + val2);
848 divisor = (u64)AD4130_MAX_ODR * NANO;
849
850 temp = AD4130_FILTER_SELECT_MIN + filter_config->fs_max -
851 DIV64_U64_ROUND_CLOSEST(dividend, divisor);
852
853 if (temp < AD4130_FILTER_SELECT_MIN)
854 temp = AD4130_FILTER_SELECT_MIN;
855 else if (temp > filter_config->fs_max)
856 temp = filter_config->fs_max;
857
858 *fs = temp;
859 }
860
ad4130_fs_to_freq(enum ad4130_filter_mode filter_mode,unsigned int fs,int * val,int * val2)861 static void ad4130_fs_to_freq(enum ad4130_filter_mode filter_mode,
862 unsigned int fs, int *val, int *val2)
863 {
864 const struct ad4130_filter_config *filter_config =
865 &ad4130_filter_configs[filter_mode];
866 unsigned int dividend, divisor;
867 u64 temp;
868
869 dividend = (filter_config->fs_max - fs + AD4130_FILTER_SELECT_MIN) *
870 AD4130_MAX_ODR;
871 divisor = filter_config->fs_max * filter_config->odr_div;
872
873 temp = div_u64((u64)dividend * NANO, divisor);
874 *val = div_u64_rem(temp, NANO, val2);
875 }
876
ad4130_set_filter_mode(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,unsigned int val)877 static int ad4130_set_filter_mode(struct iio_dev *indio_dev,
878 const struct iio_chan_spec *chan,
879 unsigned int val)
880 {
881 struct ad4130_state *st = iio_priv(indio_dev);
882 unsigned int channel = chan->scan_index;
883 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
884 struct ad4130_setup_info *setup_info = &chan_info->setup;
885 enum ad4130_filter_mode old_filter_mode;
886 int freq_val, freq_val2;
887 unsigned int old_fs;
888 int ret = 0;
889
890 guard(mutex)(&st->lock);
891 if (setup_info->filter_mode == val)
892 return 0;
893
894 old_fs = setup_info->fs;
895 old_filter_mode = setup_info->filter_mode;
896
897 /*
898 * When switching between filter modes, try to match the ODR as
899 * close as possible. To do this, convert the current FS into ODR
900 * using the old filter mode, then convert it back into FS using
901 * the new filter mode.
902 */
903 ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
904 &freq_val, &freq_val2);
905
906 ad4130_freq_to_fs(val, freq_val, freq_val2, &setup_info->fs);
907
908 setup_info->filter_mode = val;
909
910 ret = ad4130_write_channel_setup(st, channel, false);
911 if (ret) {
912 setup_info->fs = old_fs;
913 setup_info->filter_mode = old_filter_mode;
914 return ret;
915 }
916
917 return 0;
918 }
919
ad4130_get_filter_mode(struct iio_dev * indio_dev,const struct iio_chan_spec * chan)920 static int ad4130_get_filter_mode(struct iio_dev *indio_dev,
921 const struct iio_chan_spec *chan)
922 {
923 struct ad4130_state *st = iio_priv(indio_dev);
924 unsigned int channel = chan->scan_index;
925 struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
926 enum ad4130_filter_mode filter_mode;
927
928 guard(mutex)(&st->lock);
929 filter_mode = setup_info->filter_mode;
930
931 return filter_mode;
932 }
933
934 static const struct iio_enum ad4130_filter_mode_enum = {
935 .items = ad4130_filter_modes_str,
936 .num_items = ARRAY_SIZE(ad4130_filter_modes_str),
937 .set = ad4130_set_filter_mode,
938 .get = ad4130_get_filter_mode,
939 };
940
941 static const struct iio_chan_spec_ext_info ad4130_filter_mode_ext_info[] = {
942 IIO_ENUM("filter_mode", IIO_SEPARATE, &ad4130_filter_mode_enum),
943 IIO_ENUM_AVAILABLE("filter_mode", IIO_SHARED_BY_TYPE,
944 &ad4130_filter_mode_enum),
945 { }
946 };
947
948 static const struct iio_chan_spec ad4130_channel_template = {
949 .type = IIO_VOLTAGE,
950 .indexed = 1,
951 .differential = 1,
952 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
953 BIT(IIO_CHAN_INFO_SCALE) |
954 BIT(IIO_CHAN_INFO_OFFSET) |
955 BIT(IIO_CHAN_INFO_SAMP_FREQ),
956 .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE) |
957 BIT(IIO_CHAN_INFO_SAMP_FREQ),
958 .ext_info = ad4130_filter_mode_ext_info,
959 .scan_type = {
960 .sign = 'u',
961 .endianness = IIO_BE,
962 },
963 };
964
ad4130_set_channel_pga(struct ad4130_state * st,unsigned int channel,int val,int val2)965 static int ad4130_set_channel_pga(struct ad4130_state *st, unsigned int channel,
966 int val, int val2)
967 {
968 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
969 struct ad4130_setup_info *setup_info = &chan_info->setup;
970 unsigned int pga, old_pga;
971 int ret;
972
973 for (pga = 0; pga < AD4130_MAX_PGA; pga++)
974 if (val == st->scale_tbls[setup_info->ref_sel][pga][0] &&
975 val2 == st->scale_tbls[setup_info->ref_sel][pga][1])
976 break;
977
978 if (pga == AD4130_MAX_PGA)
979 return -EINVAL;
980
981 guard(mutex)(&st->lock);
982 if (pga == setup_info->pga)
983 return 0;
984
985 old_pga = setup_info->pga;
986 setup_info->pga = pga;
987
988 ret = ad4130_write_channel_setup(st, channel, false);
989 if (ret) {
990 setup_info->pga = old_pga;
991 return ret;
992 }
993
994 return 0;
995 }
996
ad4130_set_channel_freq(struct ad4130_state * st,unsigned int channel,int val,int val2)997 static int ad4130_set_channel_freq(struct ad4130_state *st,
998 unsigned int channel, int val, int val2)
999 {
1000 struct ad4130_chan_info *chan_info = &st->chans_info[channel];
1001 struct ad4130_setup_info *setup_info = &chan_info->setup;
1002 unsigned int fs, old_fs;
1003 int ret;
1004
1005 guard(mutex)(&st->lock);
1006 old_fs = setup_info->fs;
1007
1008 ad4130_freq_to_fs(setup_info->filter_mode, val, val2, &fs);
1009
1010 if (fs == setup_info->fs)
1011 return 0;
1012
1013 setup_info->fs = fs;
1014
1015 ret = ad4130_write_channel_setup(st, channel, false);
1016 if (ret) {
1017 setup_info->fs = old_fs;
1018 return ret;
1019 }
1020
1021 return 0;
1022 }
1023
_ad4130_read_sample(struct iio_dev * indio_dev,unsigned int channel,int * val)1024 static int _ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
1025 int *val)
1026 {
1027 struct ad4130_state *st = iio_priv(indio_dev);
1028 int ret;
1029
1030 ret = ad4130_set_channel_enable(st, channel, true);
1031 if (ret)
1032 return ret;
1033
1034 reinit_completion(&st->completion);
1035
1036 ret = ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
1037 if (ret)
1038 return ret;
1039
1040 ret = wait_for_completion_timeout(&st->completion,
1041 msecs_to_jiffies(1000));
1042 if (!ret)
1043 return -ETIMEDOUT;
1044
1045 ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
1046 if (ret)
1047 return ret;
1048
1049 ret = regmap_read(st->regmap, AD4130_DATA_REG, val);
1050 if (ret)
1051 return ret;
1052
1053 ret = ad4130_set_channel_enable(st, channel, false);
1054 if (ret)
1055 return ret;
1056
1057 return IIO_VAL_INT;
1058 }
1059
ad4130_read_sample(struct iio_dev * indio_dev,unsigned int channel,int * val)1060 static int ad4130_read_sample(struct iio_dev *indio_dev, unsigned int channel,
1061 int *val)
1062 {
1063 iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
1064 struct ad4130_state *st = iio_priv(indio_dev);
1065
1066 guard(mutex)(&st->lock);
1067 return _ad4130_read_sample(indio_dev, channel, val);
1068 }
1069 unreachable();
1070 }
1071
ad4130_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)1072 static int ad4130_read_raw(struct iio_dev *indio_dev,
1073 struct iio_chan_spec const *chan,
1074 int *val, int *val2, long info)
1075 {
1076 struct ad4130_state *st = iio_priv(indio_dev);
1077 unsigned int channel = chan->scan_index;
1078 struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
1079
1080 switch (info) {
1081 case IIO_CHAN_INFO_RAW:
1082 return ad4130_read_sample(indio_dev, channel, val);
1083 case IIO_CHAN_INFO_SCALE: {
1084 guard(mutex)(&st->lock);
1085 *val = st->scale_tbls[setup_info->ref_sel][setup_info->pga][0];
1086 *val2 = st->scale_tbls[setup_info->ref_sel][setup_info->pga][1];
1087
1088 return IIO_VAL_INT_PLUS_NANO;
1089 }
1090 case IIO_CHAN_INFO_OFFSET:
1091 *val = st->bipolar ? -BIT(chan->scan_type.realbits - 1) : 0;
1092
1093 return IIO_VAL_INT;
1094 case IIO_CHAN_INFO_SAMP_FREQ: {
1095 guard(mutex)(&st->lock);
1096 ad4130_fs_to_freq(setup_info->filter_mode, setup_info->fs,
1097 val, val2);
1098
1099 return IIO_VAL_INT_PLUS_NANO;
1100 }
1101 default:
1102 return -EINVAL;
1103 }
1104 }
1105
ad4130_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long info)1106 static int ad4130_read_avail(struct iio_dev *indio_dev,
1107 struct iio_chan_spec const *chan,
1108 const int **vals, int *type, int *length,
1109 long info)
1110 {
1111 struct ad4130_state *st = iio_priv(indio_dev);
1112 unsigned int channel = chan->scan_index;
1113 struct ad4130_setup_info *setup_info = &st->chans_info[channel].setup;
1114 const struct ad4130_filter_config *filter_config;
1115
1116 switch (info) {
1117 case IIO_CHAN_INFO_SCALE:
1118 *vals = (int *)st->scale_tbls[setup_info->ref_sel];
1119 *length = ARRAY_SIZE(st->scale_tbls[setup_info->ref_sel]) * 2;
1120
1121 *type = IIO_VAL_INT_PLUS_NANO;
1122
1123 return IIO_AVAIL_LIST;
1124 case IIO_CHAN_INFO_SAMP_FREQ:
1125 scoped_guard(mutex, &st->lock) {
1126 filter_config = &ad4130_filter_configs[setup_info->filter_mode];
1127 }
1128
1129 *vals = (int *)filter_config->samp_freq_avail;
1130 *length = filter_config->samp_freq_avail_len * 2;
1131 *type = IIO_VAL_FRACTIONAL;
1132
1133 return filter_config->samp_freq_avail_type;
1134 default:
1135 return -EINVAL;
1136 }
1137 }
1138
ad4130_write_raw_get_fmt(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,long info)1139 static int ad4130_write_raw_get_fmt(struct iio_dev *indio_dev,
1140 struct iio_chan_spec const *chan,
1141 long info)
1142 {
1143 switch (info) {
1144 case IIO_CHAN_INFO_SCALE:
1145 case IIO_CHAN_INFO_SAMP_FREQ:
1146 return IIO_VAL_INT_PLUS_NANO;
1147 default:
1148 return -EINVAL;
1149 }
1150 }
1151
ad4130_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)1152 static int ad4130_write_raw(struct iio_dev *indio_dev,
1153 struct iio_chan_spec const *chan,
1154 int val, int val2, long info)
1155 {
1156 struct ad4130_state *st = iio_priv(indio_dev);
1157 unsigned int channel = chan->scan_index;
1158
1159 switch (info) {
1160 case IIO_CHAN_INFO_SCALE:
1161 return ad4130_set_channel_pga(st, channel, val, val2);
1162 case IIO_CHAN_INFO_SAMP_FREQ:
1163 return ad4130_set_channel_freq(st, channel, val, val2);
1164 default:
1165 return -EINVAL;
1166 }
1167 }
1168
ad4130_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)1169 static int ad4130_reg_access(struct iio_dev *indio_dev, unsigned int reg,
1170 unsigned int writeval, unsigned int *readval)
1171 {
1172 struct ad4130_state *st = iio_priv(indio_dev);
1173
1174 if (readval)
1175 return regmap_read(st->regmap, reg, readval);
1176
1177 return regmap_write(st->regmap, reg, writeval);
1178 }
1179
ad4130_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * scan_mask)1180 static int ad4130_update_scan_mode(struct iio_dev *indio_dev,
1181 const unsigned long *scan_mask)
1182 {
1183 struct ad4130_state *st = iio_priv(indio_dev);
1184 unsigned int channel;
1185 unsigned int val = 0;
1186 int ret;
1187
1188 guard(mutex)(&st->lock);
1189
1190 for_each_set_bit(channel, scan_mask, indio_dev->num_channels) {
1191 ret = ad4130_set_channel_enable(st, channel, true);
1192 if (ret)
1193 return ret;
1194
1195 val++;
1196 }
1197
1198 st->num_enabled_channels = val;
1199
1200 return 0;
1201 }
1202
ad4130_set_fifo_watermark(struct iio_dev * indio_dev,unsigned int val)1203 static int ad4130_set_fifo_watermark(struct iio_dev *indio_dev, unsigned int val)
1204 {
1205 struct ad4130_state *st = iio_priv(indio_dev);
1206 unsigned int eff;
1207 int ret;
1208
1209 if (val > AD4130_FIFO_SIZE)
1210 return -EINVAL;
1211
1212 eff = val * st->num_enabled_channels;
1213 if (eff > AD4130_FIFO_SIZE)
1214 /*
1215 * Always set watermark to a multiple of the number of
1216 * enabled channels to avoid making the FIFO unaligned.
1217 */
1218 eff = rounddown(AD4130_FIFO_SIZE, st->num_enabled_channels);
1219
1220 guard(mutex)(&st->lock);
1221
1222 ret = regmap_update_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
1223 AD4130_FIFO_CONTROL_WM_MASK,
1224 FIELD_PREP(AD4130_FIFO_CONTROL_WM_MASK,
1225 ad4130_watermark_reg_val(eff)));
1226 if (ret)
1227 return ret;
1228
1229 st->effective_watermark = eff;
1230 st->watermark = val;
1231
1232 return 0;
1233 }
1234
1235 static const struct iio_info ad4130_info = {
1236 .read_raw = ad4130_read_raw,
1237 .read_avail = ad4130_read_avail,
1238 .write_raw_get_fmt = ad4130_write_raw_get_fmt,
1239 .write_raw = ad4130_write_raw,
1240 .update_scan_mode = ad4130_update_scan_mode,
1241 .hwfifo_set_watermark = ad4130_set_fifo_watermark,
1242 .debugfs_reg_access = ad4130_reg_access,
1243 };
1244
ad4130_buffer_postenable(struct iio_dev * indio_dev)1245 static int ad4130_buffer_postenable(struct iio_dev *indio_dev)
1246 {
1247 struct ad4130_state *st = iio_priv(indio_dev);
1248 int ret;
1249
1250 guard(mutex)(&st->lock);
1251
1252 ret = ad4130_set_watermark_interrupt_en(st, true);
1253 if (ret)
1254 return ret;
1255
1256 ret = irq_set_irq_type(st->spi->irq, st->inv_irq_trigger);
1257 if (ret)
1258 return ret;
1259
1260 ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_WM);
1261 if (ret)
1262 return ret;
1263
1264 return ad4130_set_mode(st, AD4130_MODE_CONTINUOUS);
1265 }
1266
ad4130_buffer_predisable(struct iio_dev * indio_dev)1267 static int ad4130_buffer_predisable(struct iio_dev *indio_dev)
1268 {
1269 struct ad4130_state *st = iio_priv(indio_dev);
1270 unsigned int i;
1271 int ret;
1272
1273 guard(mutex)(&st->lock);
1274
1275 ret = ad4130_set_mode(st, AD4130_MODE_IDLE);
1276 if (ret)
1277 return ret;
1278
1279 ret = irq_set_irq_type(st->spi->irq, st->irq_trigger);
1280 if (ret)
1281 return ret;
1282
1283 ret = ad4130_set_fifo_mode(st, AD4130_FIFO_MODE_DISABLED);
1284 if (ret)
1285 return ret;
1286
1287 ret = ad4130_set_watermark_interrupt_en(st, false);
1288 if (ret)
1289 return ret;
1290
1291 /*
1292 * update_scan_mode() is not called in the disable path, disable all
1293 * channels here.
1294 */
1295 for (i = 0; i < indio_dev->num_channels; i++) {
1296 ret = ad4130_set_channel_enable(st, i, false);
1297 if (ret)
1298 return ret;
1299 }
1300
1301 return 0;
1302 }
1303
1304 static const struct iio_buffer_setup_ops ad4130_buffer_ops = {
1305 .postenable = ad4130_buffer_postenable,
1306 .predisable = ad4130_buffer_predisable,
1307 };
1308
hwfifo_watermark_show(struct device * dev,struct device_attribute * attr,char * buf)1309 static ssize_t hwfifo_watermark_show(struct device *dev,
1310 struct device_attribute *attr, char *buf)
1311 {
1312 struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
1313 unsigned int val;
1314
1315 guard(mutex)(&st->lock);
1316 val = st->watermark;
1317
1318 return sysfs_emit(buf, "%d\n", val);
1319 }
1320
hwfifo_enabled_show(struct device * dev,struct device_attribute * attr,char * buf)1321 static ssize_t hwfifo_enabled_show(struct device *dev,
1322 struct device_attribute *attr, char *buf)
1323 {
1324 struct ad4130_state *st = iio_priv(dev_to_iio_dev(dev));
1325 unsigned int val;
1326 int ret;
1327
1328 ret = regmap_read(st->regmap, AD4130_FIFO_CONTROL_REG, &val);
1329 if (ret)
1330 return ret;
1331
1332 val = FIELD_GET(AD4130_FIFO_CONTROL_MODE_MASK, val);
1333
1334 return sysfs_emit(buf, "%d\n", val != AD4130_FIFO_MODE_DISABLED);
1335 }
1336
hwfifo_watermark_min_show(struct device * dev,struct device_attribute * attr,char * buf)1337 static ssize_t hwfifo_watermark_min_show(struct device *dev,
1338 struct device_attribute *attr,
1339 char *buf)
1340 {
1341 return sysfs_emit(buf, "%s\n", "1");
1342 }
1343
hwfifo_watermark_max_show(struct device * dev,struct device_attribute * attr,char * buf)1344 static ssize_t hwfifo_watermark_max_show(struct device *dev,
1345 struct device_attribute *attr,
1346 char *buf)
1347 {
1348 return sysfs_emit(buf, "%s\n", __stringify(AD4130_FIFO_SIZE));
1349 }
1350
1351 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0);
1352 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
1353 static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0);
1354 static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0);
1355
1356 static const struct iio_dev_attr *ad4130_fifo_attributes[] = {
1357 &iio_dev_attr_hwfifo_watermark_min,
1358 &iio_dev_attr_hwfifo_watermark_max,
1359 &iio_dev_attr_hwfifo_watermark,
1360 &iio_dev_attr_hwfifo_enabled,
1361 NULL
1362 };
1363
_ad4130_find_table_index(const unsigned int * tbl,size_t len,unsigned int val)1364 static int _ad4130_find_table_index(const unsigned int *tbl, size_t len,
1365 unsigned int val)
1366 {
1367 unsigned int i;
1368
1369 for (i = 0; i < len; i++)
1370 if (tbl[i] == val)
1371 return i;
1372
1373 return -EINVAL;
1374 }
1375
1376 #define ad4130_find_table_index(table, val) \
1377 _ad4130_find_table_index(table, ARRAY_SIZE(table), val)
1378
ad4130_get_ref_voltage(struct ad4130_state * st,enum ad4130_ref_sel ref_sel)1379 static int ad4130_get_ref_voltage(struct ad4130_state *st,
1380 enum ad4130_ref_sel ref_sel)
1381 {
1382 switch (ref_sel) {
1383 case AD4130_REF_REFIN1:
1384 return regulator_get_voltage(st->regulators[2].consumer);
1385 case AD4130_REF_REFIN2:
1386 return regulator_get_voltage(st->regulators[3].consumer);
1387 case AD4130_REF_AVDD_AVSS:
1388 return regulator_get_voltage(st->regulators[0].consumer);
1389 case AD4130_REF_REFOUT_AVSS:
1390 return st->int_ref_uv;
1391 default:
1392 return -EINVAL;
1393 }
1394 }
1395
ad4130_parse_fw_setup(struct ad4130_state * st,struct fwnode_handle * child,struct ad4130_setup_info * setup_info)1396 static int ad4130_parse_fw_setup(struct ad4130_state *st,
1397 struct fwnode_handle *child,
1398 struct ad4130_setup_info *setup_info)
1399 {
1400 struct device *dev = &st->spi->dev;
1401 u32 tmp;
1402 int ret;
1403
1404 tmp = 0;
1405 fwnode_property_read_u32(child, "adi,excitation-current-0-nanoamp", &tmp);
1406 ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
1407 if (ret < 0)
1408 return dev_err_probe(dev, ret,
1409 "Invalid excitation current %unA\n", tmp);
1410 setup_info->iout0_val = ret;
1411
1412 tmp = 0;
1413 fwnode_property_read_u32(child, "adi,excitation-current-1-nanoamp", &tmp);
1414 ret = ad4130_find_table_index(ad4130_iout_current_na_tbl, tmp);
1415 if (ret < 0)
1416 return dev_err_probe(dev, ret,
1417 "Invalid excitation current %unA\n", tmp);
1418 setup_info->iout1_val = ret;
1419
1420 tmp = 0;
1421 fwnode_property_read_u32(child, "adi,burnout-current-nanoamp", &tmp);
1422 ret = ad4130_find_table_index(ad4130_burnout_current_na_tbl, tmp);
1423 if (ret < 0)
1424 return dev_err_probe(dev, ret,
1425 "Invalid burnout current %unA\n", tmp);
1426 setup_info->burnout = ret;
1427
1428 setup_info->ref_bufp = fwnode_property_read_bool(child, "adi,buffered-positive");
1429 setup_info->ref_bufm = fwnode_property_read_bool(child, "adi,buffered-negative");
1430
1431 setup_info->ref_sel = AD4130_REF_REFIN1;
1432 fwnode_property_read_u32(child, "adi,reference-select",
1433 &setup_info->ref_sel);
1434 if (setup_info->ref_sel >= AD4130_REF_SEL_MAX)
1435 return dev_err_probe(dev, -EINVAL,
1436 "Invalid reference selected %u\n",
1437 setup_info->ref_sel);
1438
1439 if (setup_info->ref_sel == AD4130_REF_REFOUT_AVSS)
1440 st->int_ref_en = true;
1441
1442 ret = ad4130_get_ref_voltage(st, setup_info->ref_sel);
1443 if (ret < 0)
1444 return dev_err_probe(dev, ret, "Cannot use reference %u\n",
1445 setup_info->ref_sel);
1446
1447 return 0;
1448 }
1449
ad4130_validate_diff_channel(struct ad4130_state * st,u32 pin)1450 static int ad4130_validate_diff_channel(struct ad4130_state *st, u32 pin)
1451 {
1452 struct device *dev = &st->spi->dev;
1453
1454 if (pin >= AD4130_MAX_DIFF_INPUTS)
1455 return dev_err_probe(dev, -EINVAL,
1456 "Invalid differential channel %u\n", pin);
1457
1458 if (pin >= AD4130_MAX_ANALOG_PINS)
1459 return 0;
1460
1461 if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1462 return dev_err_probe(dev, -EINVAL,
1463 "Pin %u already used with fn %u\n", pin,
1464 st->pins_fn[pin]);
1465
1466 st->pins_fn[pin] |= AD4130_PIN_FN_DIFF;
1467
1468 return 0;
1469 }
1470
ad4130_validate_diff_channels(struct ad4130_state * st,u32 * pins,unsigned int len)1471 static int ad4130_validate_diff_channels(struct ad4130_state *st,
1472 u32 *pins, unsigned int len)
1473 {
1474 unsigned int i;
1475 int ret;
1476
1477 for (i = 0; i < len; i++) {
1478 ret = ad4130_validate_diff_channel(st, pins[i]);
1479 if (ret)
1480 return ret;
1481 }
1482
1483 return 0;
1484 }
1485
ad4130_validate_excitation_pin(struct ad4130_state * st,u32 pin)1486 static int ad4130_validate_excitation_pin(struct ad4130_state *st, u32 pin)
1487 {
1488 struct device *dev = &st->spi->dev;
1489
1490 if (pin >= AD4130_MAX_ANALOG_PINS)
1491 return dev_err_probe(dev, -EINVAL,
1492 "Invalid excitation pin %u\n", pin);
1493
1494 if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1495 return dev_err_probe(dev, -EINVAL,
1496 "Pin %u already used with fn %u\n", pin,
1497 st->pins_fn[pin]);
1498
1499 st->pins_fn[pin] |= AD4130_PIN_FN_EXCITATION;
1500
1501 return 0;
1502 }
1503
ad4130_validate_vbias_pin(struct ad4130_state * st,u32 pin)1504 static int ad4130_validate_vbias_pin(struct ad4130_state *st, u32 pin)
1505 {
1506 struct device *dev = &st->spi->dev;
1507
1508 if (pin >= AD4130_MAX_ANALOG_PINS)
1509 return dev_err_probe(dev, -EINVAL, "Invalid vbias pin %u\n",
1510 pin);
1511
1512 if (st->pins_fn[pin] == AD4130_PIN_FN_SPECIAL)
1513 return dev_err_probe(dev, -EINVAL,
1514 "Pin %u already used with fn %u\n", pin,
1515 st->pins_fn[pin]);
1516
1517 st->pins_fn[pin] |= AD4130_PIN_FN_VBIAS;
1518
1519 return 0;
1520 }
1521
ad4130_validate_vbias_pins(struct ad4130_state * st,u32 * pins,unsigned int len)1522 static int ad4130_validate_vbias_pins(struct ad4130_state *st,
1523 u32 *pins, unsigned int len)
1524 {
1525 unsigned int i;
1526 int ret;
1527
1528 for (i = 0; i < st->num_vbias_pins; i++) {
1529 ret = ad4130_validate_vbias_pin(st, pins[i]);
1530 if (ret)
1531 return ret;
1532 }
1533
1534 return 0;
1535 }
1536
ad4130_parse_fw_channel(struct iio_dev * indio_dev,struct fwnode_handle * child)1537 static int ad4130_parse_fw_channel(struct iio_dev *indio_dev,
1538 struct fwnode_handle *child)
1539 {
1540 struct ad4130_state *st = iio_priv(indio_dev);
1541 unsigned int resolution = ad4130_resolution(st);
1542 unsigned int index = indio_dev->num_channels++;
1543 struct device *dev = &st->spi->dev;
1544 struct ad4130_chan_info *chan_info;
1545 struct iio_chan_spec *chan;
1546 u32 pins[2];
1547 int ret;
1548
1549 if (index >= AD4130_MAX_CHANNELS)
1550 return dev_err_probe(dev, -EINVAL, "Too many channels\n");
1551
1552 chan = &st->chans[index];
1553 chan_info = &st->chans_info[index];
1554
1555 *chan = ad4130_channel_template;
1556 chan->scan_type.realbits = resolution;
1557 chan->scan_type.storagebits = resolution;
1558 chan->scan_index = index;
1559
1560 chan_info->slot = AD4130_INVALID_SLOT;
1561 chan_info->setup.fs = AD4130_FILTER_SELECT_MIN;
1562 chan_info->initialized = true;
1563
1564 ret = fwnode_property_read_u32_array(child, "diff-channels", pins,
1565 ARRAY_SIZE(pins));
1566 if (ret)
1567 return ret;
1568
1569 ret = ad4130_validate_diff_channels(st, pins, ARRAY_SIZE(pins));
1570 if (ret)
1571 return ret;
1572
1573 chan->channel = pins[0];
1574 chan->channel2 = pins[1];
1575
1576 ret = ad4130_parse_fw_setup(st, child, &chan_info->setup);
1577 if (ret)
1578 return ret;
1579
1580 fwnode_property_read_u32(child, "adi,excitation-pin-0",
1581 &chan_info->iout0);
1582 if (chan_info->setup.iout0_val != AD4130_IOUT_OFF) {
1583 ret = ad4130_validate_excitation_pin(st, chan_info->iout0);
1584 if (ret)
1585 return ret;
1586 }
1587
1588 fwnode_property_read_u32(child, "adi,excitation-pin-1",
1589 &chan_info->iout1);
1590 if (chan_info->setup.iout1_val != AD4130_IOUT_OFF) {
1591 ret = ad4130_validate_excitation_pin(st, chan_info->iout1);
1592 if (ret)
1593 return ret;
1594 }
1595
1596 return 0;
1597 }
1598
ad4130_parse_fw_children(struct iio_dev * indio_dev)1599 static int ad4130_parse_fw_children(struct iio_dev *indio_dev)
1600 {
1601 struct ad4130_state *st = iio_priv(indio_dev);
1602 struct device *dev = &st->spi->dev;
1603 int ret;
1604
1605 indio_dev->channels = st->chans;
1606
1607 device_for_each_child_node_scoped(dev, child) {
1608 ret = ad4130_parse_fw_channel(indio_dev, child);
1609 if (ret)
1610 return ret;
1611 }
1612
1613 return 0;
1614 }
1615
ad4310_parse_fw(struct iio_dev * indio_dev)1616 static int ad4310_parse_fw(struct iio_dev *indio_dev)
1617 {
1618 struct ad4130_state *st = iio_priv(indio_dev);
1619 struct device *dev = &st->spi->dev;
1620 u32 ext_clk_freq = AD4130_MCLK_FREQ_76_8KHZ;
1621 unsigned int i;
1622 int avdd_uv;
1623 int irq;
1624 int ret;
1625
1626 st->mclk = devm_clk_get_optional(dev, "mclk");
1627 if (IS_ERR(st->mclk))
1628 return dev_err_probe(dev, PTR_ERR(st->mclk),
1629 "Failed to get mclk\n");
1630
1631 st->int_pin_sel = AD4130_INT_PIN_INT;
1632
1633 for (i = 0; i < ARRAY_SIZE(ad4130_int_pin_names); i++) {
1634 irq = fwnode_irq_get_byname(dev_fwnode(dev),
1635 ad4130_int_pin_names[i]);
1636 if (irq > 0) {
1637 st->int_pin_sel = i;
1638 break;
1639 }
1640 }
1641
1642 if (st->int_pin_sel == AD4130_INT_PIN_DOUT)
1643 return dev_err_probe(dev, -EINVAL,
1644 "Cannot use DOUT as interrupt pin\n");
1645
1646 if (st->int_pin_sel == AD4130_INT_PIN_P2)
1647 st->pins_fn[AD4130_AIN3_P2] = AD4130_PIN_FN_SPECIAL;
1648
1649 device_property_read_u32(dev, "adi,ext-clk-freq-hz", &ext_clk_freq);
1650 if (ext_clk_freq != AD4130_MCLK_FREQ_153_6KHZ &&
1651 ext_clk_freq != AD4130_MCLK_FREQ_76_8KHZ)
1652 return dev_err_probe(dev, -EINVAL,
1653 "Invalid external clock frequency %u\n",
1654 ext_clk_freq);
1655
1656 if (st->mclk && ext_clk_freq == AD4130_MCLK_FREQ_153_6KHZ)
1657 st->mclk_sel = AD4130_MCLK_153_6KHZ_EXT;
1658 else if (st->mclk)
1659 st->mclk_sel = AD4130_MCLK_76_8KHZ_EXT;
1660 else
1661 st->mclk_sel = AD4130_MCLK_76_8KHZ;
1662
1663 if (st->int_pin_sel == AD4130_INT_PIN_CLK &&
1664 st->mclk_sel != AD4130_MCLK_76_8KHZ)
1665 return dev_err_probe(dev, -EINVAL,
1666 "Invalid clock %u for interrupt pin %u\n",
1667 st->mclk_sel, st->int_pin_sel);
1668
1669 st->int_ref_uv = AD4130_INT_REF_2_5V;
1670
1671 /*
1672 * When the AVDD supply is set to below 2.5V the internal reference of
1673 * 1.25V should be selected.
1674 * See datasheet page 37, section ADC REFERENCE.
1675 */
1676 avdd_uv = regulator_get_voltage(st->regulators[0].consumer);
1677 if (avdd_uv > 0 && avdd_uv < AD4130_INT_REF_2_5V)
1678 st->int_ref_uv = AD4130_INT_REF_1_25V;
1679
1680 st->bipolar = device_property_read_bool(dev, "adi,bipolar");
1681
1682 ret = device_property_count_u32(dev, "adi,vbias-pins");
1683 if (ret > 0) {
1684 if (ret > AD4130_MAX_ANALOG_PINS)
1685 return dev_err_probe(dev, -EINVAL,
1686 "Too many vbias pins %u\n", ret);
1687
1688 st->num_vbias_pins = ret;
1689
1690 ret = device_property_read_u32_array(dev, "adi,vbias-pins",
1691 st->vbias_pins,
1692 st->num_vbias_pins);
1693 if (ret)
1694 return dev_err_probe(dev, ret,
1695 "Failed to read vbias pins\n");
1696
1697 ret = ad4130_validate_vbias_pins(st, st->vbias_pins,
1698 st->num_vbias_pins);
1699 if (ret)
1700 return ret;
1701 }
1702
1703 ret = ad4130_parse_fw_children(indio_dev);
1704 if (ret)
1705 return ret;
1706
1707 return 0;
1708 }
1709
ad4130_fill_scale_tbls(struct ad4130_state * st)1710 static void ad4130_fill_scale_tbls(struct ad4130_state *st)
1711 {
1712 unsigned int pow = ad4130_resolution(st) - st->bipolar;
1713 unsigned int i, j;
1714
1715 for (i = 0; i < AD4130_REF_SEL_MAX; i++) {
1716 int ret;
1717 u64 nv;
1718
1719 ret = ad4130_get_ref_voltage(st, i);
1720 if (ret < 0)
1721 continue;
1722
1723 nv = (u64)ret * NANO;
1724
1725 for (j = 0; j < AD4130_MAX_PGA; j++)
1726 st->scale_tbls[i][j][1] = div_u64(nv >> (pow + j), MILLI);
1727 }
1728 }
1729
ad4130_clk_disable_unprepare(void * clk)1730 static void ad4130_clk_disable_unprepare(void *clk)
1731 {
1732 clk_disable_unprepare(clk);
1733 }
1734
ad4130_set_mclk_sel(struct ad4130_state * st,enum ad4130_mclk_sel mclk_sel)1735 static int ad4130_set_mclk_sel(struct ad4130_state *st,
1736 enum ad4130_mclk_sel mclk_sel)
1737 {
1738 return regmap_update_bits(st->regmap, AD4130_ADC_CONTROL_REG,
1739 AD4130_ADC_CONTROL_MCLK_SEL_MASK,
1740 FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK,
1741 mclk_sel));
1742 }
1743
ad4130_int_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1744 static unsigned long ad4130_int_clk_recalc_rate(struct clk_hw *hw,
1745 unsigned long parent_rate)
1746 {
1747 return AD4130_MCLK_FREQ_76_8KHZ;
1748 }
1749
ad4130_int_clk_is_enabled(struct clk_hw * hw)1750 static int ad4130_int_clk_is_enabled(struct clk_hw *hw)
1751 {
1752 struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1753
1754 return st->mclk_sel == AD4130_MCLK_76_8KHZ_OUT;
1755 }
1756
ad4130_int_clk_prepare(struct clk_hw * hw)1757 static int ad4130_int_clk_prepare(struct clk_hw *hw)
1758 {
1759 struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1760 int ret;
1761
1762 ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ_OUT);
1763 if (ret)
1764 return ret;
1765
1766 st->mclk_sel = AD4130_MCLK_76_8KHZ_OUT;
1767
1768 return 0;
1769 }
1770
ad4130_int_clk_unprepare(struct clk_hw * hw)1771 static void ad4130_int_clk_unprepare(struct clk_hw *hw)
1772 {
1773 struct ad4130_state *st = container_of(hw, struct ad4130_state, int_clk_hw);
1774 int ret;
1775
1776 ret = ad4130_set_mclk_sel(st, AD4130_MCLK_76_8KHZ);
1777 if (ret)
1778 return;
1779
1780 st->mclk_sel = AD4130_MCLK_76_8KHZ;
1781 }
1782
1783 static const struct clk_ops ad4130_int_clk_ops = {
1784 .recalc_rate = ad4130_int_clk_recalc_rate,
1785 .is_enabled = ad4130_int_clk_is_enabled,
1786 .prepare = ad4130_int_clk_prepare,
1787 .unprepare = ad4130_int_clk_unprepare,
1788 };
1789
ad4130_setup_int_clk(struct ad4130_state * st)1790 static int ad4130_setup_int_clk(struct ad4130_state *st)
1791 {
1792 struct device *dev = &st->spi->dev;
1793 struct device_node *of_node = dev_of_node(dev);
1794 struct clk_init_data init = {};
1795 const char *clk_name;
1796 int ret;
1797
1798 if (st->int_pin_sel == AD4130_INT_PIN_CLK ||
1799 st->mclk_sel != AD4130_MCLK_76_8KHZ)
1800 return 0;
1801
1802 if (!of_node)
1803 return 0;
1804
1805 clk_name = of_node->name;
1806 of_property_read_string(of_node, "clock-output-names", &clk_name);
1807
1808 init.name = clk_name;
1809 init.ops = &ad4130_int_clk_ops;
1810
1811 st->int_clk_hw.init = &init;
1812 ret = devm_clk_hw_register(dev, &st->int_clk_hw);
1813 if (ret)
1814 return ret;
1815
1816 return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
1817 &st->int_clk_hw);
1818 }
1819
ad4130_setup(struct iio_dev * indio_dev)1820 static int ad4130_setup(struct iio_dev *indio_dev)
1821 {
1822 struct ad4130_state *st = iio_priv(indio_dev);
1823 struct device *dev = &st->spi->dev;
1824 unsigned int int_ref_val;
1825 unsigned long rate = AD4130_MCLK_FREQ_76_8KHZ;
1826 unsigned int val;
1827 unsigned int i;
1828 int ret;
1829
1830 if (st->mclk_sel == AD4130_MCLK_153_6KHZ_EXT)
1831 rate = AD4130_MCLK_FREQ_153_6KHZ;
1832
1833 ret = clk_set_rate(st->mclk, rate);
1834 if (ret)
1835 return ret;
1836
1837 ret = clk_prepare_enable(st->mclk);
1838 if (ret)
1839 return ret;
1840
1841 ret = devm_add_action_or_reset(dev, ad4130_clk_disable_unprepare,
1842 st->mclk);
1843 if (ret)
1844 return ret;
1845
1846 if (st->int_ref_uv == AD4130_INT_REF_2_5V)
1847 int_ref_val = AD4130_INT_REF_VAL_2_5V;
1848 else
1849 int_ref_val = AD4130_INT_REF_VAL_1_25V;
1850
1851 /* Switch to SPI 4-wire mode. */
1852 val = FIELD_PREP(AD4130_ADC_CONTROL_CSB_EN_MASK, 1);
1853 val |= FIELD_PREP(AD4130_ADC_CONTROL_BIPOLAR_MASK, st->bipolar);
1854 val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_EN_MASK, st->int_ref_en);
1855 val |= FIELD_PREP(AD4130_ADC_CONTROL_MODE_MASK, AD4130_MODE_IDLE);
1856 val |= FIELD_PREP(AD4130_ADC_CONTROL_MCLK_SEL_MASK, st->mclk_sel);
1857 val |= FIELD_PREP(AD4130_ADC_CONTROL_INT_REF_VAL_MASK, int_ref_val);
1858
1859 ret = regmap_write(st->regmap, AD4130_ADC_CONTROL_REG, val);
1860 if (ret)
1861 return ret;
1862
1863 /*
1864 * Configure unused GPIOs for output. If configured, the interrupt
1865 * function of P2 takes priority over the GPIO out function.
1866 */
1867 val = 0;
1868 for (i = 0; i < AD4130_MAX_GPIOS; i++)
1869 if (st->pins_fn[i + AD4130_AIN2_P1] == AD4130_PIN_FN_NONE)
1870 val |= FIELD_PREP(AD4130_IO_CONTROL_GPIO_CTRL_MASK, BIT(i));
1871
1872 val |= FIELD_PREP(AD4130_IO_CONTROL_INT_PIN_SEL_MASK, st->int_pin_sel);
1873
1874 ret = regmap_write(st->regmap, AD4130_IO_CONTROL_REG, val);
1875 if (ret)
1876 return ret;
1877
1878 val = 0;
1879 for (i = 0; i < st->num_vbias_pins; i++)
1880 val |= BIT(st->vbias_pins[i]);
1881
1882 ret = regmap_write(st->regmap, AD4130_VBIAS_REG, val);
1883 if (ret)
1884 return ret;
1885
1886 ret = regmap_clear_bits(st->regmap, AD4130_FIFO_CONTROL_REG,
1887 AD4130_FIFO_CONTROL_HEADER_MASK);
1888 if (ret)
1889 return ret;
1890
1891 /* FIFO watermark interrupt starts out as enabled, disable it. */
1892 ret = ad4130_set_watermark_interrupt_en(st, false);
1893 if (ret)
1894 return ret;
1895
1896 /* Setup channels. */
1897 for (i = 0; i < indio_dev->num_channels; i++) {
1898 struct ad4130_chan_info *chan_info = &st->chans_info[i];
1899 struct iio_chan_spec *chan = &st->chans[i];
1900 unsigned int val;
1901
1902 val = FIELD_PREP(AD4130_CHANNEL_AINP_MASK, chan->channel) |
1903 FIELD_PREP(AD4130_CHANNEL_AINM_MASK, chan->channel2) |
1904 FIELD_PREP(AD4130_CHANNEL_IOUT1_MASK, chan_info->iout0) |
1905 FIELD_PREP(AD4130_CHANNEL_IOUT2_MASK, chan_info->iout1);
1906
1907 ret = regmap_write(st->regmap, AD4130_CHANNEL_X_REG(i), val);
1908 if (ret)
1909 return ret;
1910 }
1911
1912 return 0;
1913 }
1914
ad4130_soft_reset(struct ad4130_state * st)1915 static int ad4130_soft_reset(struct ad4130_state *st)
1916 {
1917 int ret;
1918
1919 ret = spi_write(st->spi, st->reset_buf, sizeof(st->reset_buf));
1920 if (ret)
1921 return ret;
1922
1923 fsleep(AD4130_RESET_SLEEP_US);
1924
1925 return 0;
1926 }
1927
ad4130_disable_regulators(void * data)1928 static void ad4130_disable_regulators(void *data)
1929 {
1930 struct ad4130_state *st = data;
1931
1932 regulator_bulk_disable(ARRAY_SIZE(st->regulators), st->regulators);
1933 }
1934
ad4130_probe(struct spi_device * spi)1935 static int ad4130_probe(struct spi_device *spi)
1936 {
1937 struct device *dev = &spi->dev;
1938 struct iio_dev *indio_dev;
1939 struct ad4130_state *st;
1940 int ret;
1941
1942 indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
1943 if (!indio_dev)
1944 return -ENOMEM;
1945
1946 st = iio_priv(indio_dev);
1947
1948 memset(st->reset_buf, 0xff, sizeof(st->reset_buf));
1949 init_completion(&st->completion);
1950 mutex_init(&st->lock);
1951 st->spi = spi;
1952
1953 /*
1954 * Xfer: [ XFR1 ] [ XFR2 ]
1955 * Master: 0x7D N ......................
1956 * Slave: ...... DATA1 DATA2 ... DATAN
1957 */
1958 st->fifo_tx_buf[0] = AD4130_COMMS_READ_MASK | AD4130_FIFO_DATA_REG;
1959 st->fifo_xfer[0].tx_buf = st->fifo_tx_buf;
1960 st->fifo_xfer[0].len = sizeof(st->fifo_tx_buf);
1961 st->fifo_xfer[1].rx_buf = st->fifo_rx_buf;
1962 spi_message_init_with_transfers(&st->fifo_msg, st->fifo_xfer,
1963 ARRAY_SIZE(st->fifo_xfer));
1964
1965 indio_dev->name = AD4130_NAME;
1966 indio_dev->modes = INDIO_DIRECT_MODE;
1967 indio_dev->info = &ad4130_info;
1968
1969 st->regmap = devm_regmap_init(dev, NULL, st, &ad4130_regmap_config);
1970 if (IS_ERR(st->regmap))
1971 return PTR_ERR(st->regmap);
1972
1973 st->regulators[0].supply = "avdd";
1974 st->regulators[1].supply = "iovdd";
1975 st->regulators[2].supply = "refin1";
1976 st->regulators[3].supply = "refin2";
1977
1978 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(st->regulators),
1979 st->regulators);
1980 if (ret)
1981 return dev_err_probe(dev, ret, "Failed to get regulators\n");
1982
1983 ret = regulator_bulk_enable(ARRAY_SIZE(st->regulators), st->regulators);
1984 if (ret)
1985 return dev_err_probe(dev, ret, "Failed to enable regulators\n");
1986
1987 ret = devm_add_action_or_reset(dev, ad4130_disable_regulators, st);
1988 if (ret)
1989 return dev_err_probe(dev, ret,
1990 "Failed to add regulators disable action\n");
1991
1992 ret = ad4130_soft_reset(st);
1993 if (ret)
1994 return ret;
1995
1996 ret = ad4310_parse_fw(indio_dev);
1997 if (ret)
1998 return ret;
1999
2000 ret = ad4130_setup(indio_dev);
2001 if (ret)
2002 return ret;
2003
2004 ret = ad4130_setup_int_clk(st);
2005 if (ret)
2006 return ret;
2007
2008 ad4130_fill_scale_tbls(st);
2009
2010 st->gc.owner = THIS_MODULE;
2011 st->gc.label = AD4130_NAME;
2012 st->gc.base = -1;
2013 st->gc.ngpio = AD4130_MAX_GPIOS;
2014 st->gc.parent = dev;
2015 st->gc.can_sleep = true;
2016 st->gc.init_valid_mask = ad4130_gpio_init_valid_mask;
2017 st->gc.get_direction = ad4130_gpio_get_direction;
2018 st->gc.set = ad4130_gpio_set;
2019
2020 ret = devm_gpiochip_add_data(dev, &st->gc, st);
2021 if (ret)
2022 return ret;
2023
2024 ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev,
2025 &ad4130_buffer_ops,
2026 ad4130_fifo_attributes);
2027 if (ret)
2028 return ret;
2029
2030 ret = devm_request_threaded_irq(dev, spi->irq, NULL,
2031 ad4130_irq_handler, IRQF_ONESHOT,
2032 indio_dev->name, indio_dev);
2033 if (ret)
2034 return dev_err_probe(dev, ret, "Failed to request irq\n");
2035
2036 /*
2037 * When the chip enters FIFO mode, IRQ polarity is inverted.
2038 * When the chip exits FIFO mode, IRQ polarity returns to normal.
2039 * See datasheet pages: 65, FIFO Watermark Interrupt section,
2040 * and 71, Bit Descriptions for STATUS Register, RDYB.
2041 * Cache the normal and inverted IRQ triggers to set them when
2042 * entering and exiting FIFO mode.
2043 */
2044 st->irq_trigger = irq_get_trigger_type(spi->irq);
2045 if (st->irq_trigger & IRQF_TRIGGER_RISING)
2046 st->inv_irq_trigger = IRQF_TRIGGER_FALLING;
2047 else if (st->irq_trigger & IRQF_TRIGGER_FALLING)
2048 st->inv_irq_trigger = IRQF_TRIGGER_RISING;
2049 else
2050 return dev_err_probe(dev, -EINVAL, "Invalid irq flags: %u\n",
2051 st->irq_trigger);
2052
2053 return devm_iio_device_register(dev, indio_dev);
2054 }
2055
2056 static const struct of_device_id ad4130_of_match[] = {
2057 {
2058 .compatible = "adi,ad4130",
2059 },
2060 { }
2061 };
2062 MODULE_DEVICE_TABLE(of, ad4130_of_match);
2063
2064 static struct spi_driver ad4130_driver = {
2065 .driver = {
2066 .name = AD4130_NAME,
2067 .of_match_table = ad4130_of_match,
2068 },
2069 .probe = ad4130_probe,
2070 };
2071 module_spi_driver(ad4130_driver);
2072
2073 MODULE_AUTHOR("Cosmin Tanislav <cosmin.tanislav@analog.com>");
2074 MODULE_DESCRIPTION("Analog Devices AD4130 SPI driver");
2075 MODULE_LICENSE("GPL");
2076