1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
16 #define BPF_MAX_VAR_OFF (1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
20 #define BPF_MAX_VAR_SIZ (1 << 29)
21 /* size of tmp_str_buf in bpf_verifier.
22 * we need at least 306 bytes to fit full stack mask representation
23 * (in the "-8,-16,...,-512" form)
24 */
25 #define TMP_STR_BUF_LEN 320
26 /* Patch buffer size */
27 #define INSN_BUF_SIZE 32
28
29 /* Liveness marks, used for registers and spilled-regs (in stack slots).
30 * Read marks propagate upwards until they find a write mark; they record that
31 * "one of this state's descendants read this reg" (and therefore the reg is
32 * relevant for states_equal() checks).
33 * Write marks collect downwards and do not propagate; they record that "the
34 * straight-line code that reached this state (from its parent) wrote this reg"
35 * (and therefore that reads propagated from this state or its descendants
36 * should not propagate to its parent).
37 * A state with a write mark can receive read marks; it just won't propagate
38 * them to its parent, since the write mark is a property, not of the state,
39 * but of the link between it and its parent. See mark_reg_read() and
40 * mark_stack_slot_read() in kernel/bpf/verifier.c.
41 */
42 enum bpf_reg_liveness {
43 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
44 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
45 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
46 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
47 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
48 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
49 };
50
51 #define ITER_PREFIX "bpf_iter_"
52
53 enum bpf_iter_state {
54 BPF_ITER_STATE_INVALID, /* for non-first slot */
55 BPF_ITER_STATE_ACTIVE,
56 BPF_ITER_STATE_DRAINED,
57 };
58
59 struct bpf_reg_state {
60 /* Ordering of fields matters. See states_equal() */
61 enum bpf_reg_type type;
62 /*
63 * Fixed part of pointer offset, pointer types only.
64 * Or constant delta between "linked" scalars with the same ID.
65 */
66 s32 off;
67 union {
68 /* valid when type == PTR_TO_PACKET */
69 int range;
70
71 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
72 * PTR_TO_MAP_VALUE_OR_NULL
73 */
74 struct {
75 struct bpf_map *map_ptr;
76 /* To distinguish map lookups from outer map
77 * the map_uid is non-zero for registers
78 * pointing to inner maps.
79 */
80 u32 map_uid;
81 };
82
83 /* for PTR_TO_BTF_ID */
84 struct {
85 struct btf *btf;
86 u32 btf_id;
87 };
88
89 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
90 u32 mem_size;
91 u32 dynptr_id; /* for dynptr slices */
92 };
93
94 /* For dynptr stack slots */
95 struct {
96 enum bpf_dynptr_type type;
97 /* A dynptr is 16 bytes so it takes up 2 stack slots.
98 * We need to track which slot is the first slot
99 * to protect against cases where the user may try to
100 * pass in an address starting at the second slot of the
101 * dynptr.
102 */
103 bool first_slot;
104 } dynptr;
105
106 /* For bpf_iter stack slots */
107 struct {
108 /* BTF container and BTF type ID describing
109 * struct bpf_iter_<type> of an iterator state
110 */
111 struct btf *btf;
112 u32 btf_id;
113 /* packing following two fields to fit iter state into 16 bytes */
114 enum bpf_iter_state state:2;
115 int depth:30;
116 } iter;
117
118 /* Max size from any of the above. */
119 struct {
120 unsigned long raw1;
121 unsigned long raw2;
122 } raw;
123
124 u32 subprogno; /* for PTR_TO_FUNC */
125 };
126 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
127 * the actual value.
128 * For pointer types, this represents the variable part of the offset
129 * from the pointed-to object, and is shared with all bpf_reg_states
130 * with the same id as us.
131 */
132 struct tnum var_off;
133 /* Used to determine if any memory access using this register will
134 * result in a bad access.
135 * These refer to the same value as var_off, not necessarily the actual
136 * contents of the register.
137 */
138 s64 smin_value; /* minimum possible (s64)value */
139 s64 smax_value; /* maximum possible (s64)value */
140 u64 umin_value; /* minimum possible (u64)value */
141 u64 umax_value; /* maximum possible (u64)value */
142 s32 s32_min_value; /* minimum possible (s32)value */
143 s32 s32_max_value; /* maximum possible (s32)value */
144 u32 u32_min_value; /* minimum possible (u32)value */
145 u32 u32_max_value; /* maximum possible (u32)value */
146 /* For PTR_TO_PACKET, used to find other pointers with the same variable
147 * offset, so they can share range knowledge.
148 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
149 * came from, when one is tested for != NULL.
150 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
151 * for the purpose of tracking that it's freed.
152 * For PTR_TO_SOCKET this is used to share which pointers retain the
153 * same reference to the socket, to determine proper reference freeing.
154 * For stack slots that are dynptrs, this is used to track references to
155 * the dynptr to determine proper reference freeing.
156 * Similarly to dynptrs, we use ID to track "belonging" of a reference
157 * to a specific instance of bpf_iter.
158 */
159 /*
160 * Upper bit of ID is used to remember relationship between "linked"
161 * registers. Example:
162 * r1 = r2; both will have r1->id == r2->id == N
163 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10
164 */
165 #define BPF_ADD_CONST (1U << 31)
166 u32 id;
167 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
168 * from a pointer-cast helper, bpf_sk_fullsock() and
169 * bpf_tcp_sock().
170 *
171 * Consider the following where "sk" is a reference counted
172 * pointer returned from "sk = bpf_sk_lookup_tcp();":
173 *
174 * 1: sk = bpf_sk_lookup_tcp();
175 * 2: if (!sk) { return 0; }
176 * 3: fullsock = bpf_sk_fullsock(sk);
177 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
178 * 5: tp = bpf_tcp_sock(fullsock);
179 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
180 * 7: bpf_sk_release(sk);
181 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
182 *
183 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
184 * "tp" ptr should be invalidated also. In order to do that,
185 * the reg holding "fullsock" and "sk" need to remember
186 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
187 * such that the verifier can reset all regs which have
188 * ref_obj_id matching the sk_reg->id.
189 *
190 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
191 * sk_reg->id will stay as NULL-marking purpose only.
192 * After NULL-marking is done, sk_reg->id can be reset to 0.
193 *
194 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
195 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
196 *
197 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
198 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
199 * which is the same as sk_reg->ref_obj_id.
200 *
201 * From the verifier perspective, if sk, fullsock and tp
202 * are not NULL, they are the same ptr with different
203 * reg->type. In particular, bpf_sk_release(tp) is also
204 * allowed and has the same effect as bpf_sk_release(sk).
205 */
206 u32 ref_obj_id;
207 /* parentage chain for liveness checking */
208 struct bpf_reg_state *parent;
209 /* Inside the callee two registers can be both PTR_TO_STACK like
210 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
211 * while another to the caller's stack. To differentiate them 'frameno'
212 * is used which is an index in bpf_verifier_state->frame[] array
213 * pointing to bpf_func_state.
214 */
215 u32 frameno;
216 /* Tracks subreg definition. The stored value is the insn_idx of the
217 * writing insn. This is safe because subreg_def is used before any insn
218 * patching which only happens after main verification finished.
219 */
220 s32 subreg_def;
221 enum bpf_reg_liveness live;
222 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
223 bool precise;
224 };
225
226 enum bpf_stack_slot_type {
227 STACK_INVALID, /* nothing was stored in this stack slot */
228 STACK_SPILL, /* register spilled into stack */
229 STACK_MISC, /* BPF program wrote some data into this slot */
230 STACK_ZERO, /* BPF program wrote constant zero */
231 /* A dynptr is stored in this stack slot. The type of dynptr
232 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
233 */
234 STACK_DYNPTR,
235 STACK_ITER,
236 };
237
238 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
239
240 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \
241 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \
242 (1 << BPF_REG_5))
243
244 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern)
245 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE)
246
247 struct bpf_stack_state {
248 struct bpf_reg_state spilled_ptr;
249 u8 slot_type[BPF_REG_SIZE];
250 };
251
252 struct bpf_reference_state {
253 /* Each reference object has a type. Ensure REF_TYPE_PTR is zero to
254 * default to pointer reference on zero initialization of a state.
255 */
256 enum ref_state_type {
257 REF_TYPE_PTR = 0,
258 REF_TYPE_LOCK,
259 } type;
260 /* Track each reference created with a unique id, even if the same
261 * instruction creates the reference multiple times (eg, via CALL).
262 */
263 int id;
264 /* Instruction where the allocation of this reference occurred. This
265 * is used purely to inform the user of a reference leak.
266 */
267 int insn_idx;
268 /* Use to keep track of the source object of a lock, to ensure
269 * it matches on unlock.
270 */
271 void *ptr;
272 };
273
274 struct bpf_retval_range {
275 s32 minval;
276 s32 maxval;
277 };
278
279 /* state of the program:
280 * type of all registers and stack info
281 */
282 struct bpf_func_state {
283 struct bpf_reg_state regs[MAX_BPF_REG];
284 /* index of call instruction that called into this func */
285 int callsite;
286 /* stack frame number of this function state from pov of
287 * enclosing bpf_verifier_state.
288 * 0 = main function, 1 = first callee.
289 */
290 u32 frameno;
291 /* subprog number == index within subprog_info
292 * zero == main subprog
293 */
294 u32 subprogno;
295 /* Every bpf_timer_start will increment async_entry_cnt.
296 * It's used to distinguish:
297 * void foo(void) { for(;;); }
298 * void foo(void) { bpf_timer_set_callback(,foo); }
299 */
300 u32 async_entry_cnt;
301 struct bpf_retval_range callback_ret_range;
302 bool in_callback_fn;
303 bool in_async_callback_fn;
304 bool in_exception_callback_fn;
305 /* For callback calling functions that limit number of possible
306 * callback executions (e.g. bpf_loop) keeps track of current
307 * simulated iteration number.
308 * Value in frame N refers to number of times callback with frame
309 * N+1 was simulated, e.g. for the following call:
310 *
311 * bpf_loop(..., fn, ...); | suppose current frame is N
312 * | fn would be simulated in frame N+1
313 * | number of simulations is tracked in frame N
314 */
315 u32 callback_depth;
316
317 /* The following fields should be last. See copy_func_state() */
318 int acquired_refs;
319 int active_locks;
320 struct bpf_reference_state *refs;
321 /* The state of the stack. Each element of the array describes BPF_REG_SIZE
322 * (i.e. 8) bytes worth of stack memory.
323 * stack[0] represents bytes [*(r10-8)..*(r10-1)]
324 * stack[1] represents bytes [*(r10-16)..*(r10-9)]
325 * ...
326 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)]
327 */
328 struct bpf_stack_state *stack;
329 /* Size of the current stack, in bytes. The stack state is tracked below, in
330 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE.
331 */
332 int allocated_stack;
333 };
334
335 #define MAX_CALL_FRAMES 8
336
337 /* instruction history flags, used in bpf_insn_hist_entry.flags field */
338 enum {
339 /* instruction references stack slot through PTR_TO_STACK register;
340 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8)
341 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512,
342 * 8 bytes per slot, so slot index (spi) is [0, 63])
343 */
344 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */
345
346 INSN_F_SPI_MASK = 0x3f, /* 6 bits */
347 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */
348
349 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */
350 };
351
352 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES);
353 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8);
354
355 struct bpf_insn_hist_entry {
356 u32 idx;
357 /* insn idx can't be bigger than 1 million */
358 u32 prev_idx : 22;
359 /* special flags, e.g., whether insn is doing register stack spill/load */
360 u32 flags : 10;
361 /* additional registers that need precision tracking when this
362 * jump is backtracked, vector of six 10-bit records
363 */
364 u64 linked_regs;
365 };
366
367 /* Maximum number of register states that can exist at once */
368 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
369 struct bpf_verifier_state {
370 /* call stack tracking */
371 struct bpf_func_state *frame[MAX_CALL_FRAMES];
372 struct bpf_verifier_state *parent;
373 /*
374 * 'branches' field is the number of branches left to explore:
375 * 0 - all possible paths from this state reached bpf_exit or
376 * were safely pruned
377 * 1 - at least one path is being explored.
378 * This state hasn't reached bpf_exit
379 * 2 - at least two paths are being explored.
380 * This state is an immediate parent of two children.
381 * One is fallthrough branch with branches==1 and another
382 * state is pushed into stack (to be explored later) also with
383 * branches==1. The parent of this state has branches==1.
384 * The verifier state tree connected via 'parent' pointer looks like:
385 * 1
386 * 1
387 * 2 -> 1 (first 'if' pushed into stack)
388 * 1
389 * 2 -> 1 (second 'if' pushed into stack)
390 * 1
391 * 1
392 * 1 bpf_exit.
393 *
394 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
395 * and the verifier state tree will look:
396 * 1
397 * 1
398 * 2 -> 1 (first 'if' pushed into stack)
399 * 1
400 * 1 -> 1 (second 'if' pushed into stack)
401 * 0
402 * 0
403 * 0 bpf_exit.
404 * After pop_stack() the do_check() will resume at second 'if'.
405 *
406 * If is_state_visited() sees a state with branches > 0 it means
407 * there is a loop. If such state is exactly equal to the current state
408 * it's an infinite loop. Note states_equal() checks for states
409 * equivalency, so two states being 'states_equal' does not mean
410 * infinite loop. The exact comparison is provided by
411 * states_maybe_looping() function. It's a stronger pre-check and
412 * much faster than states_equal().
413 *
414 * This algorithm may not find all possible infinite loops or
415 * loop iteration count may be too high.
416 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
417 */
418 u32 branches;
419 u32 insn_idx;
420 u32 curframe;
421
422 bool speculative;
423 bool active_rcu_lock;
424 u32 active_preempt_lock;
425 /* If this state was ever pointed-to by other state's loop_entry field
426 * this flag would be set to true. Used to avoid freeing such states
427 * while they are still in use.
428 */
429 bool used_as_loop_entry;
430 bool in_sleepable;
431
432 /* first and last insn idx of this verifier state */
433 u32 first_insn_idx;
434 u32 last_insn_idx;
435 /* If this state is a part of states loop this field points to some
436 * parent of this state such that:
437 * - it is also a member of the same states loop;
438 * - DFS states traversal starting from initial state visits loop_entry
439 * state before this state.
440 * Used to compute topmost loop entry for state loops.
441 * State loops might appear because of open coded iterators logic.
442 * See get_loop_entry() for more information.
443 */
444 struct bpf_verifier_state *loop_entry;
445 /* Sub-range of env->insn_hist[] corresponding to this state's
446 * instruction history.
447 * Backtracking is using it to go from last to first.
448 * For most states instruction history is short, 0-3 instructions.
449 * For loops can go up to ~40.
450 */
451 u32 insn_hist_start;
452 u32 insn_hist_end;
453 u32 dfs_depth;
454 u32 callback_unroll_depth;
455 u32 may_goto_depth;
456 };
457
458 #define bpf_get_spilled_reg(slot, frame, mask) \
459 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
460 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \
461 ? &frame->stack[slot].spilled_ptr : NULL)
462
463 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
464 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \
465 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \
466 iter < frame->allocated_stack / BPF_REG_SIZE; \
467 iter++, reg = bpf_get_spilled_reg(iter, frame, mask))
468
469 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \
470 ({ \
471 struct bpf_verifier_state *___vstate = __vst; \
472 int ___i, ___j; \
473 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \
474 struct bpf_reg_state *___regs; \
475 __state = ___vstate->frame[___i]; \
476 ___regs = __state->regs; \
477 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \
478 __reg = &___regs[___j]; \
479 (void)(__expr); \
480 } \
481 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \
482 if (!__reg) \
483 continue; \
484 (void)(__expr); \
485 } \
486 } \
487 })
488
489 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
490 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
491 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr)
492
493 /* linked list of verifier states used to prune search */
494 struct bpf_verifier_state_list {
495 struct bpf_verifier_state state;
496 struct bpf_verifier_state_list *next;
497 int miss_cnt, hit_cnt;
498 };
499
500 struct bpf_loop_inline_state {
501 unsigned int initialized:1; /* set to true upon first entry */
502 unsigned int fit_for_inline:1; /* true if callback function is the same
503 * at each call and flags are always zero
504 */
505 u32 callback_subprogno; /* valid when fit_for_inline is true */
506 };
507
508 /* pointer and state for maps */
509 struct bpf_map_ptr_state {
510 struct bpf_map *map_ptr;
511 bool poison;
512 bool unpriv;
513 };
514
515 /* Possible states for alu_state member. */
516 #define BPF_ALU_SANITIZE_SRC (1U << 0)
517 #define BPF_ALU_SANITIZE_DST (1U << 1)
518 #define BPF_ALU_NEG_VALUE (1U << 2)
519 #define BPF_ALU_NON_POINTER (1U << 3)
520 #define BPF_ALU_IMMEDIATE (1U << 4)
521 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
522 BPF_ALU_SANITIZE_DST)
523
524 struct bpf_insn_aux_data {
525 union {
526 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
527 struct bpf_map_ptr_state map_ptr_state;
528 s32 call_imm; /* saved imm field of call insn */
529 u32 alu_limit; /* limit for add/sub register with pointer */
530 struct {
531 u32 map_index; /* index into used_maps[] */
532 u32 map_off; /* offset from value base address */
533 };
534 struct {
535 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
536 union {
537 struct {
538 struct btf *btf;
539 u32 btf_id; /* btf_id for struct typed var */
540 };
541 u32 mem_size; /* mem_size for non-struct typed var */
542 };
543 } btf_var;
544 /* if instruction is a call to bpf_loop this field tracks
545 * the state of the relevant registers to make decision about inlining
546 */
547 struct bpf_loop_inline_state loop_inline_state;
548 };
549 union {
550 /* remember the size of type passed to bpf_obj_new to rewrite R1 */
551 u64 obj_new_size;
552 /* remember the offset of node field within type to rewrite */
553 u64 insert_off;
554 };
555 struct btf_struct_meta *kptr_struct_meta;
556 u64 map_key_state; /* constant (32 bit) key tracking for maps */
557 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
558 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
559 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
560 bool zext_dst; /* this insn zero extends dst reg */
561 bool needs_zext; /* alu op needs to clear upper bits */
562 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
563 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
564 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */
565 u8 alu_state; /* used in combination with alu_limit */
566 /* true if STX or LDX instruction is a part of a spill/fill
567 * pattern for a bpf_fastcall call.
568 */
569 u8 fastcall_pattern:1;
570 /* for CALL instructions, a number of spill/fill pairs in the
571 * bpf_fastcall pattern.
572 */
573 u8 fastcall_spills_num:3;
574
575 /* below fields are initialized once */
576 unsigned int orig_idx; /* original instruction index */
577 bool jmp_point;
578 bool prune_point;
579 /* ensure we check state equivalence and save state checkpoint and
580 * this instruction, regardless of any heuristics
581 */
582 bool force_checkpoint;
583 /* true if instruction is a call to a helper function that
584 * accepts callback function as a parameter.
585 */
586 bool calls_callback;
587 };
588
589 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
590 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
591
592 #define BPF_VERIFIER_TMP_LOG_SIZE 1024
593
594 struct bpf_verifier_log {
595 /* Logical start and end positions of a "log window" of the verifier log.
596 * start_pos == 0 means we haven't truncated anything.
597 * Once truncation starts to happen, start_pos + len_total == end_pos,
598 * except during log reset situations, in which (end_pos - start_pos)
599 * might get smaller than len_total (see bpf_vlog_reset()).
600 * Generally, (end_pos - start_pos) gives number of useful data in
601 * user log buffer.
602 */
603 u64 start_pos;
604 u64 end_pos;
605 char __user *ubuf;
606 u32 level;
607 u32 len_total;
608 u32 len_max;
609 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
610 };
611
612 #define BPF_LOG_LEVEL1 1
613 #define BPF_LOG_LEVEL2 2
614 #define BPF_LOG_STATS 4
615 #define BPF_LOG_FIXED 8
616 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
617 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
618 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
619 #define BPF_LOG_MIN_ALIGNMENT 8U
620 #define BPF_LOG_ALIGNMENT 40U
621
bpf_verifier_log_needed(const struct bpf_verifier_log * log)622 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
623 {
624 return log && log->level;
625 }
626
627 #define BPF_MAX_SUBPROGS 256
628
629 struct bpf_subprog_arg_info {
630 enum bpf_arg_type arg_type;
631 union {
632 u32 mem_size;
633 u32 btf_id;
634 };
635 };
636
637 enum priv_stack_mode {
638 PRIV_STACK_UNKNOWN,
639 NO_PRIV_STACK,
640 PRIV_STACK_ADAPTIVE,
641 };
642
643 struct bpf_subprog_info {
644 /* 'start' has to be the first field otherwise find_subprog() won't work */
645 u32 start; /* insn idx of function entry point */
646 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
647 u16 stack_depth; /* max. stack depth used by this function */
648 u16 stack_extra;
649 /* offsets in range [stack_depth .. fastcall_stack_off)
650 * are used for bpf_fastcall spills and fills.
651 */
652 s16 fastcall_stack_off;
653 bool has_tail_call: 1;
654 bool tail_call_reachable: 1;
655 bool has_ld_abs: 1;
656 bool is_cb: 1;
657 bool is_async_cb: 1;
658 bool is_exception_cb: 1;
659 bool args_cached: 1;
660 /* true if bpf_fastcall stack region is used by functions that can't be inlined */
661 bool keep_fastcall_stack: 1;
662 bool changes_pkt_data: 1;
663
664 enum priv_stack_mode priv_stack_mode;
665 u8 arg_cnt;
666 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS];
667 };
668
669 struct bpf_verifier_env;
670
671 struct backtrack_state {
672 struct bpf_verifier_env *env;
673 u32 frame;
674 u32 reg_masks[MAX_CALL_FRAMES];
675 u64 stack_masks[MAX_CALL_FRAMES];
676 };
677
678 struct bpf_id_pair {
679 u32 old;
680 u32 cur;
681 };
682
683 struct bpf_idmap {
684 u32 tmp_id_gen;
685 struct bpf_id_pair map[BPF_ID_MAP_SIZE];
686 };
687
688 struct bpf_idset {
689 u32 count;
690 u32 ids[BPF_ID_MAP_SIZE];
691 };
692
693 /* single container for all structs
694 * one verifier_env per bpf_check() call
695 */
696 struct bpf_verifier_env {
697 u32 insn_idx;
698 u32 prev_insn_idx;
699 struct bpf_prog *prog; /* eBPF program being verified */
700 const struct bpf_verifier_ops *ops;
701 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */
702 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
703 int stack_size; /* number of states to be processed */
704 bool strict_alignment; /* perform strict pointer alignment checks */
705 bool test_state_freq; /* test verifier with different pruning frequency */
706 bool test_reg_invariants; /* fail verification on register invariants violations */
707 struct bpf_verifier_state *cur_state; /* current verifier state */
708 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
709 struct bpf_verifier_state_list *free_list;
710 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
711 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
712 u32 used_map_cnt; /* number of used maps */
713 u32 used_btf_cnt; /* number of used BTF objects */
714 u32 id_gen; /* used to generate unique reg IDs */
715 u32 hidden_subprog_cnt; /* number of hidden subprogs */
716 int exception_callback_subprog;
717 bool explore_alu_limits;
718 bool allow_ptr_leaks;
719 /* Allow access to uninitialized stack memory. Writes with fixed offset are
720 * always allowed, so this refers to reads (with fixed or variable offset),
721 * to writes with variable offset and to indirect (helper) accesses.
722 */
723 bool allow_uninit_stack;
724 bool bpf_capable;
725 bool bypass_spec_v1;
726 bool bypass_spec_v4;
727 bool seen_direct_write;
728 bool seen_exception;
729 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
730 const struct bpf_line_info *prev_linfo;
731 struct bpf_verifier_log log;
732 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */
733 union {
734 struct bpf_idmap idmap_scratch;
735 struct bpf_idset idset_scratch;
736 };
737 struct {
738 int *insn_state;
739 int *insn_stack;
740 int cur_stack;
741 } cfg;
742 struct backtrack_state bt;
743 struct bpf_insn_hist_entry *insn_hist;
744 struct bpf_insn_hist_entry *cur_hist_ent;
745 u32 insn_hist_cap;
746 u32 pass_cnt; /* number of times do_check() was called */
747 u32 subprog_cnt;
748 /* number of instructions analyzed by the verifier */
749 u32 prev_insn_processed, insn_processed;
750 /* number of jmps, calls, exits analyzed so far */
751 u32 prev_jmps_processed, jmps_processed;
752 /* total verification time */
753 u64 verification_time;
754 /* maximum number of verifier states kept in 'branching' instructions */
755 u32 max_states_per_insn;
756 /* total number of allocated verifier states */
757 u32 total_states;
758 /* some states are freed during program analysis.
759 * this is peak number of states. this number dominates kernel
760 * memory consumption during verification
761 */
762 u32 peak_states;
763 /* longest register parentage chain walked for liveness marking */
764 u32 longest_mark_read_walk;
765 bpfptr_t fd_array;
766
767 /* bit mask to keep track of whether a register has been accessed
768 * since the last time the function state was printed
769 */
770 u32 scratched_regs;
771 /* Same as scratched_regs but for stack slots */
772 u64 scratched_stack_slots;
773 u64 prev_log_pos, prev_insn_print_pos;
774 /* buffer used to temporary hold constants as scalar registers */
775 struct bpf_reg_state fake_reg[2];
776 /* buffer used to generate temporary string representations,
777 * e.g., in reg_type_str() to generate reg_type string
778 */
779 char tmp_str_buf[TMP_STR_BUF_LEN];
780 struct bpf_insn insn_buf[INSN_BUF_SIZE];
781 struct bpf_insn epilogue_buf[INSN_BUF_SIZE];
782 };
783
subprog_aux(struct bpf_verifier_env * env,int subprog)784 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog)
785 {
786 return &env->prog->aux->func_info_aux[subprog];
787 }
788
subprog_info(struct bpf_verifier_env * env,int subprog)789 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog)
790 {
791 return &env->subprog_info[subprog];
792 }
793
794 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
795 const char *fmt, va_list args);
796 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
797 const char *fmt, ...);
798 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
799 const char *fmt, ...);
800 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
801 char __user *log_buf, u32 log_size);
802 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
803 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
804
805 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
806 u32 insn_off,
807 const char *prefix_fmt, ...);
808
cur_func(struct bpf_verifier_env * env)809 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
810 {
811 struct bpf_verifier_state *cur = env->cur_state;
812
813 return cur->frame[cur->curframe];
814 }
815
cur_regs(struct bpf_verifier_env * env)816 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
817 {
818 return cur_func(env)->regs;
819 }
820
821 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
822 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
823 int insn_idx, int prev_insn_idx);
824 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
825 void
826 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
827 struct bpf_insn *insn);
828 void
829 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
830
831 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)832 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
833 struct btf *btf, u32 btf_id)
834 {
835 if (tgt_prog)
836 return ((u64)tgt_prog->aux->id << 32) | btf_id;
837 else
838 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
839 }
840
841 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)842 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
843 {
844 if (obj_id)
845 *obj_id = key >> 32;
846 if (btf_id)
847 *btf_id = key & 0x7FFFFFFF;
848 }
849
850 int bpf_check_attach_target(struct bpf_verifier_log *log,
851 const struct bpf_prog *prog,
852 const struct bpf_prog *tgt_prog,
853 u32 btf_id,
854 struct bpf_attach_target_info *tgt_info);
855 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
856
857 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
858
859 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
860
861 /* extract base type from bpf_{arg, return, reg}_type. */
base_type(u32 type)862 static inline u32 base_type(u32 type)
863 {
864 return type & BPF_BASE_TYPE_MASK;
865 }
866
867 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
type_flag(u32 type)868 static inline u32 type_flag(u32 type)
869 {
870 return type & ~BPF_BASE_TYPE_MASK;
871 }
872
873 /* only use after check_attach_btf_id() */
resolve_prog_type(const struct bpf_prog * prog)874 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
875 {
876 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ?
877 prog->aux->saved_dst_prog_type : prog->type;
878 }
879
bpf_prog_check_recur(const struct bpf_prog * prog)880 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
881 {
882 switch (resolve_prog_type(prog)) {
883 case BPF_PROG_TYPE_TRACING:
884 return prog->expected_attach_type != BPF_TRACE_ITER;
885 case BPF_PROG_TYPE_STRUCT_OPS:
886 return prog->aux->jits_use_priv_stack;
887 case BPF_PROG_TYPE_LSM:
888 return false;
889 default:
890 return true;
891 }
892 }
893
894 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF)
895
bpf_type_has_unsafe_modifiers(u32 type)896 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
897 {
898 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
899 }
900
type_is_ptr_alloc_obj(u32 type)901 static inline bool type_is_ptr_alloc_obj(u32 type)
902 {
903 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
904 }
905
type_is_non_owning_ref(u32 type)906 static inline bool type_is_non_owning_ref(u32 type)
907 {
908 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
909 }
910
type_is_pkt_pointer(enum bpf_reg_type type)911 static inline bool type_is_pkt_pointer(enum bpf_reg_type type)
912 {
913 type = base_type(type);
914 return type == PTR_TO_PACKET ||
915 type == PTR_TO_PACKET_META;
916 }
917
type_is_sk_pointer(enum bpf_reg_type type)918 static inline bool type_is_sk_pointer(enum bpf_reg_type type)
919 {
920 return type == PTR_TO_SOCKET ||
921 type == PTR_TO_SOCK_COMMON ||
922 type == PTR_TO_TCP_SOCK ||
923 type == PTR_TO_XDP_SOCK;
924 }
925
type_may_be_null(u32 type)926 static inline bool type_may_be_null(u32 type)
927 {
928 return type & PTR_MAYBE_NULL;
929 }
930
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)931 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
932 {
933 env->scratched_regs |= 1U << regno;
934 }
935
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)936 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
937 {
938 env->scratched_stack_slots |= 1ULL << spi;
939 }
940
reg_scratched(const struct bpf_verifier_env * env,u32 regno)941 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
942 {
943 return (env->scratched_regs >> regno) & 1;
944 }
945
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)946 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
947 {
948 return (env->scratched_stack_slots >> regno) & 1;
949 }
950
verifier_state_scratched(const struct bpf_verifier_env * env)951 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env)
952 {
953 return env->scratched_regs || env->scratched_stack_slots;
954 }
955
mark_verifier_state_clean(struct bpf_verifier_env * env)956 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env)
957 {
958 env->scratched_regs = 0U;
959 env->scratched_stack_slots = 0ULL;
960 }
961
962 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)963 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env)
964 {
965 env->scratched_regs = ~0U;
966 env->scratched_stack_slots = ~0ULL;
967 }
968
bpf_stack_narrow_access_ok(int off,int fill_size,int spill_size)969 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size)
970 {
971 #ifdef __BIG_ENDIAN
972 off -= spill_size - fill_size;
973 #endif
974
975 return !(off % BPF_REG_SIZE);
976 }
977
978 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type);
979 const char *dynptr_type_str(enum bpf_dynptr_type type);
980 const char *iter_type_str(const struct btf *btf, u32 btf_id);
981 const char *iter_state_str(enum bpf_iter_state state);
982
983 void print_verifier_state(struct bpf_verifier_env *env,
984 const struct bpf_func_state *state, bool print_all);
985 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state);
986
987 #endif /* _LINUX_BPF_VERIFIER_H */
988