1 /*-
2 * Copyright (c) 2000 Takanori Watanabe <takawata@jp.freebsd.org>
3 * Copyright (c) 2000 Mitsuru IWASAKI <iwasaki@jp.freebsd.org>
4 * Copyright (c) 2000, 2001 Michael Smith
5 * Copyright (c) 2000 BSDi
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 #include "opt_acpi.h"
32
33 #include <sys/param.h>
34 #include <sys/eventhandler.h>
35 #include <sys/kernel.h>
36 #include <sys/proc.h>
37 #include <sys/fcntl.h>
38 #include <sys/malloc.h>
39 #include <sys/module.h>
40 #include <sys/bus.h>
41 #include <sys/conf.h>
42 #include <sys/ioccom.h>
43 #include <sys/reboot.h>
44 #include <sys/sysctl.h>
45 #include <sys/ctype.h>
46 #include <sys/linker.h>
47 #include <sys/mount.h>
48 #include <sys/power.h>
49 #include <sys/sbuf.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/timetc.h>
53 #include <sys/uuid.h>
54
55 #if defined(__i386__) || defined(__amd64__)
56 #include <machine/clock.h>
57 #include <machine/pci_cfgreg.h>
58 #include <x86/cputypes.h>
59 #include <x86/x86_var.h>
60 #endif
61 #include <machine/resource.h>
62 #include <machine/bus.h>
63 #include <sys/rman.h>
64 #include <isa/isavar.h>
65 #include <isa/pnpvar.h>
66
67 #include <contrib/dev/acpica/include/acpi.h>
68 #include <contrib/dev/acpica/include/accommon.h>
69 #include <contrib/dev/acpica/include/acnamesp.h>
70
71 #include <dev/acpica/acpivar.h>
72 #include <dev/acpica/acpiio.h>
73
74 #include <dev/pci/pcivar.h>
75
76 #include <vm/vm_param.h>
77
78 static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
79
80 /* Hooks for the ACPI CA debugging infrastructure */
81 #define _COMPONENT ACPI_BUS
82 ACPI_MODULE_NAME("ACPI")
83
84 static d_open_t acpiopen;
85 static d_close_t acpiclose;
86 static d_ioctl_t acpiioctl;
87
88 static struct cdevsw acpi_cdevsw = {
89 .d_version = D_VERSION,
90 .d_open = acpiopen,
91 .d_close = acpiclose,
92 .d_ioctl = acpiioctl,
93 .d_name = "acpi",
94 };
95
96 struct acpi_interface {
97 ACPI_STRING *data;
98 int num;
99 };
100
101 static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
102
103 /* Global mutex for locking access to the ACPI subsystem. */
104 struct mtx acpi_mutex;
105 struct callout acpi_sleep_timer;
106
107 /* Bitmap of device quirks. */
108 int acpi_quirks;
109
110 /* Supported sleep states. */
111 static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT];
112
113 static void acpi_lookup(void *arg, const char *name, device_t *dev);
114 static int acpi_modevent(struct module *mod, int event, void *junk);
115
116 static device_probe_t acpi_probe;
117 static device_attach_t acpi_attach;
118 static device_suspend_t acpi_suspend;
119 static device_resume_t acpi_resume;
120 static device_shutdown_t acpi_shutdown;
121
122 static bus_add_child_t acpi_add_child;
123 static bus_print_child_t acpi_print_child;
124 static bus_probe_nomatch_t acpi_probe_nomatch;
125 static bus_driver_added_t acpi_driver_added;
126 static bus_child_deleted_t acpi_child_deleted;
127 static bus_read_ivar_t acpi_read_ivar;
128 static bus_write_ivar_t acpi_write_ivar;
129 static bus_get_resource_list_t acpi_get_rlist;
130 static bus_get_rman_t acpi_get_rman;
131 static bus_set_resource_t acpi_set_resource;
132 static bus_alloc_resource_t acpi_alloc_resource;
133 static bus_adjust_resource_t acpi_adjust_resource;
134 static bus_release_resource_t acpi_release_resource;
135 static bus_delete_resource_t acpi_delete_resource;
136 static bus_activate_resource_t acpi_activate_resource;
137 static bus_deactivate_resource_t acpi_deactivate_resource;
138 static bus_map_resource_t acpi_map_resource;
139 static bus_unmap_resource_t acpi_unmap_resource;
140 static bus_child_pnpinfo_t acpi_child_pnpinfo_method;
141 static bus_child_location_t acpi_child_location_method;
142 static bus_hint_device_unit_t acpi_hint_device_unit;
143 static bus_get_property_t acpi_bus_get_prop;
144 static bus_get_device_path_t acpi_get_device_path;
145
146 static acpi_id_probe_t acpi_device_id_probe;
147 static acpi_evaluate_object_t acpi_device_eval_obj;
148 static acpi_get_property_t acpi_device_get_prop;
149 static acpi_scan_children_t acpi_device_scan_children;
150
151 static isa_pnp_probe_t acpi_isa_pnp_probe;
152
153 static void acpi_reserve_resources(device_t dev);
154 static int acpi_sysres_alloc(device_t dev);
155 static uint32_t acpi_isa_get_logicalid(device_t dev);
156 static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
157 static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
158 void *context, void **retval);
159 static ACPI_STATUS acpi_find_dsd(struct acpi_device *ad);
160 static void acpi_platform_osc(device_t dev);
161 static void acpi_probe_children(device_t bus);
162 static void acpi_probe_order(ACPI_HANDLE handle, int *order);
163 static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
164 void *context, void **status);
165 static void acpi_sleep_enable(void *arg);
166 static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
167 static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state);
168 static void acpi_shutdown_final(void *arg, int howto);
169 static void acpi_enable_fixed_events(struct acpi_softc *sc);
170 static void acpi_resync_clock(struct acpi_softc *sc);
171 static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate);
172 static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate);
173 static int acpi_wake_prep_walk(int sstate);
174 static int acpi_wake_sysctl_walk(device_t dev);
175 static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
176 static void acpi_system_eventhandler_sleep(void *arg, int state);
177 static void acpi_system_eventhandler_wakeup(void *arg, int state);
178 static int acpi_sname2sstate(const char *sname);
179 static const char *acpi_sstate2sname(int sstate);
180 static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
181 static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
182 static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
183 static int acpi_pm_func(u_long cmd, void *arg, ...);
184 static void acpi_enable_pcie(void);
185 static void acpi_reset_interfaces(device_t dev);
186
187 static device_method_t acpi_methods[] = {
188 /* Device interface */
189 DEVMETHOD(device_probe, acpi_probe),
190 DEVMETHOD(device_attach, acpi_attach),
191 DEVMETHOD(device_shutdown, acpi_shutdown),
192 DEVMETHOD(device_detach, bus_generic_detach),
193 DEVMETHOD(device_suspend, acpi_suspend),
194 DEVMETHOD(device_resume, acpi_resume),
195
196 /* Bus interface */
197 DEVMETHOD(bus_add_child, acpi_add_child),
198 DEVMETHOD(bus_print_child, acpi_print_child),
199 DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch),
200 DEVMETHOD(bus_driver_added, acpi_driver_added),
201 DEVMETHOD(bus_child_deleted, acpi_child_deleted),
202 DEVMETHOD(bus_read_ivar, acpi_read_ivar),
203 DEVMETHOD(bus_write_ivar, acpi_write_ivar),
204 DEVMETHOD(bus_get_resource_list, acpi_get_rlist),
205 DEVMETHOD(bus_get_rman, acpi_get_rman),
206 DEVMETHOD(bus_set_resource, acpi_set_resource),
207 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
208 DEVMETHOD(bus_alloc_resource, acpi_alloc_resource),
209 DEVMETHOD(bus_adjust_resource, acpi_adjust_resource),
210 DEVMETHOD(bus_release_resource, acpi_release_resource),
211 DEVMETHOD(bus_delete_resource, acpi_delete_resource),
212 DEVMETHOD(bus_activate_resource, acpi_activate_resource),
213 DEVMETHOD(bus_deactivate_resource, acpi_deactivate_resource),
214 DEVMETHOD(bus_map_resource, acpi_map_resource),
215 DEVMETHOD(bus_unmap_resource, acpi_unmap_resource),
216 DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method),
217 DEVMETHOD(bus_child_location, acpi_child_location_method),
218 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
219 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
220 DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit),
221 DEVMETHOD(bus_get_cpus, acpi_get_cpus),
222 DEVMETHOD(bus_get_domain, acpi_get_domain),
223 DEVMETHOD(bus_get_property, acpi_bus_get_prop),
224 DEVMETHOD(bus_get_device_path, acpi_get_device_path),
225
226 /* ACPI bus */
227 DEVMETHOD(acpi_id_probe, acpi_device_id_probe),
228 DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj),
229 DEVMETHOD(acpi_get_property, acpi_device_get_prop),
230 DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep),
231 DEVMETHOD(acpi_scan_children, acpi_device_scan_children),
232
233 /* ISA emulation */
234 DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe),
235
236 DEVMETHOD_END
237 };
238
239 static driver_t acpi_driver = {
240 "acpi",
241 acpi_methods,
242 sizeof(struct acpi_softc),
243 };
244
245 EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_modevent, 0,
246 BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
247 MODULE_VERSION(acpi, 1);
248
249 ACPI_SERIAL_DECL(acpi, "ACPI root bus");
250
251 /* Local pools for managing system resources for ACPI child devices. */
252 static struct rman acpi_rman_io, acpi_rman_mem;
253
254 #define ACPI_MINIMUM_AWAKETIME 5
255
256 /* Holds the description of the acpi0 device. */
257 static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
258
259 SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
260 "ACPI debugging");
261 static char acpi_ca_version[12];
262 SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
263 acpi_ca_version, 0, "Version of Intel ACPI-CA");
264
265 /*
266 * Allow overriding _OSI methods.
267 */
268 static char acpi_install_interface[256];
269 TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
270 sizeof(acpi_install_interface));
271 static char acpi_remove_interface[256];
272 TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
273 sizeof(acpi_remove_interface));
274
275 /* Allow users to dump Debug objects without ACPI debugger. */
276 static int acpi_debug_objects;
277 TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
278 SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
279 CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
280 acpi_debug_objects_sysctl, "I",
281 "Enable Debug objects");
282
283 /* Allow the interpreter to ignore common mistakes in BIOS. */
284 static int acpi_interpreter_slack = 1;
285 TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
286 SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
287 &acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
288
289 /* Ignore register widths set by FADT and use default widths instead. */
290 static int acpi_ignore_reg_width = 1;
291 TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
292 SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
293 &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
294
295 /* Allow users to override quirks. */
296 TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
297
298 int acpi_susp_bounce;
299 SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
300 &acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
301
302 #if defined(__amd64__) || defined(__i386__)
303 int acpi_override_isa_irq_polarity;
304 #endif
305
306 /*
307 * ACPI standard UUID for Device Specific Data Package
308 * "Device Properties UUID for _DSD" Rev. 2.0
309 */
310 static const struct uuid acpi_dsd_uuid = {
311 0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91,
312 { 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 }
313 };
314
315 /*
316 * ACPI can only be loaded as a module by the loader; activating it after
317 * system bootstrap time is not useful, and can be fatal to the system.
318 * It also cannot be unloaded, since the entire system bus hierarchy hangs
319 * off it.
320 */
321 static int
acpi_modevent(struct module * mod,int event,void * junk)322 acpi_modevent(struct module *mod, int event, void *junk)
323 {
324 switch (event) {
325 case MOD_LOAD:
326 if (!cold) {
327 printf("The ACPI driver cannot be loaded after boot.\n");
328 return (EPERM);
329 }
330 break;
331 case MOD_UNLOAD:
332 if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
333 return (EBUSY);
334 break;
335 default:
336 break;
337 }
338 return (0);
339 }
340
341 /*
342 * Perform early initialization.
343 */
344 ACPI_STATUS
acpi_Startup(void)345 acpi_Startup(void)
346 {
347 static int started = 0;
348 ACPI_STATUS status;
349 int val;
350
351 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
352
353 /* Only run the startup code once. The MADT driver also calls this. */
354 if (started)
355 return_VALUE (AE_OK);
356 started = 1;
357
358 /*
359 * Initialize the ACPICA subsystem.
360 */
361 if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
362 printf("ACPI: Could not initialize Subsystem: %s\n",
363 AcpiFormatException(status));
364 return_VALUE (status);
365 }
366
367 /*
368 * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
369 * if more tables exist.
370 */
371 if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
372 printf("ACPI: Table initialisation failed: %s\n",
373 AcpiFormatException(status));
374 return_VALUE (status);
375 }
376
377 /* Set up any quirks we have for this system. */
378 if (acpi_quirks == ACPI_Q_OK)
379 acpi_table_quirks(&acpi_quirks);
380
381 /* If the user manually set the disabled hint to 0, force-enable ACPI. */
382 if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
383 acpi_quirks &= ~ACPI_Q_BROKEN;
384 if (acpi_quirks & ACPI_Q_BROKEN) {
385 printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n");
386 status = AE_SUPPORT;
387 }
388
389 return_VALUE (status);
390 }
391
392 /*
393 * Detect ACPI and perform early initialisation.
394 */
395 int
acpi_identify(void)396 acpi_identify(void)
397 {
398 ACPI_TABLE_RSDP *rsdp;
399 ACPI_TABLE_HEADER *rsdt;
400 ACPI_PHYSICAL_ADDRESS paddr;
401 struct sbuf sb;
402
403 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
404
405 if (!cold)
406 return (ENXIO);
407
408 /* Check that we haven't been disabled with a hint. */
409 if (resource_disabled("acpi", 0))
410 return (ENXIO);
411
412 /* Check for other PM systems. */
413 if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
414 power_pm_get_type() != POWER_PM_TYPE_ACPI) {
415 printf("ACPI identify failed, other PM system enabled.\n");
416 return (ENXIO);
417 }
418
419 /* Initialize root tables. */
420 if (ACPI_FAILURE(acpi_Startup())) {
421 printf("ACPI: Try disabling either ACPI or apic support.\n");
422 return (ENXIO);
423 }
424
425 if ((paddr = AcpiOsGetRootPointer()) == 0 ||
426 (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
427 return (ENXIO);
428 if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
429 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
430 else
431 paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
432 AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
433
434 if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
435 return (ENXIO);
436 sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
437 sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
438 sbuf_trim(&sb);
439 sbuf_putc(&sb, ' ');
440 sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
441 sbuf_trim(&sb);
442 sbuf_finish(&sb);
443 sbuf_delete(&sb);
444 AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
445
446 snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
447
448 return (0);
449 }
450
451 /*
452 * Fetch some descriptive data from ACPI to put in our attach message.
453 */
454 static int
acpi_probe(device_t dev)455 acpi_probe(device_t dev)
456 {
457
458 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
459
460 device_set_desc(dev, acpi_desc);
461
462 return_VALUE (BUS_PROBE_NOWILDCARD);
463 }
464
465 static int
acpi_attach(device_t dev)466 acpi_attach(device_t dev)
467 {
468 struct acpi_softc *sc;
469 ACPI_STATUS status;
470 int error, state;
471 UINT32 flags;
472 UINT8 TypeA, TypeB;
473 char *env;
474
475 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
476
477 sc = device_get_softc(dev);
478 sc->acpi_dev = dev;
479 callout_init(&sc->susp_force_to, 1);
480
481 error = ENXIO;
482
483 /* Initialize resource manager. */
484 acpi_rman_io.rm_type = RMAN_ARRAY;
485 acpi_rman_io.rm_start = 0;
486 acpi_rman_io.rm_end = 0xffff;
487 acpi_rman_io.rm_descr = "ACPI I/O ports";
488 if (rman_init(&acpi_rman_io) != 0)
489 panic("acpi rman_init IO ports failed");
490 acpi_rman_mem.rm_type = RMAN_ARRAY;
491 acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
492 if (rman_init(&acpi_rman_mem) != 0)
493 panic("acpi rman_init memory failed");
494
495 resource_list_init(&sc->sysres_rl);
496
497 /* Initialise the ACPI mutex */
498 mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
499
500 /*
501 * Set the globals from our tunables. This is needed because ACPI-CA
502 * uses UINT8 for some values and we have no tunable_byte.
503 */
504 AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
505 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
506 AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
507
508 #ifndef ACPI_DEBUG
509 /*
510 * Disable all debugging layers and levels.
511 */
512 AcpiDbgLayer = 0;
513 AcpiDbgLevel = 0;
514 #endif
515
516 /* Override OS interfaces if the user requested. */
517 acpi_reset_interfaces(dev);
518
519 /* Load ACPI name space. */
520 status = AcpiLoadTables();
521 if (ACPI_FAILURE(status)) {
522 device_printf(dev, "Could not load Namespace: %s\n",
523 AcpiFormatException(status));
524 goto out;
525 }
526
527 /* Handle MCFG table if present. */
528 acpi_enable_pcie();
529
530 /*
531 * Note that some systems (specifically, those with namespace evaluation
532 * issues that require the avoidance of parts of the namespace) must
533 * avoid running _INI and _STA on everything, as well as dodging the final
534 * object init pass.
535 *
536 * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
537 *
538 * XXX We should arrange for the object init pass after we have attached
539 * all our child devices, but on many systems it works here.
540 */
541 flags = 0;
542 if (testenv("debug.acpi.avoid"))
543 flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
544
545 /* Bring the hardware and basic handlers online. */
546 if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
547 device_printf(dev, "Could not enable ACPI: %s\n",
548 AcpiFormatException(status));
549 goto out;
550 }
551
552 /*
553 * Call the ECDT probe function to provide EC functionality before
554 * the namespace has been evaluated.
555 *
556 * XXX This happens before the sysresource devices have been probed and
557 * attached so its resources come from nexus0. In practice, this isn't
558 * a problem but should be addressed eventually.
559 */
560 acpi_ec_ecdt_probe(dev);
561
562 /* Bring device objects and regions online. */
563 if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
564 device_printf(dev, "Could not initialize ACPI objects: %s\n",
565 AcpiFormatException(status));
566 goto out;
567 }
568
569 /*
570 * Setup our sysctl tree.
571 *
572 * XXX: This doesn't check to make sure that none of these fail.
573 */
574 sysctl_ctx_init(&sc->acpi_sysctl_ctx);
575 sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
576 SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev),
577 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
578 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
579 OID_AUTO, "supported_sleep_state",
580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
581 0, 0, acpi_supported_sleep_state_sysctl, "A",
582 "List supported ACPI sleep states.");
583 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
584 OID_AUTO, "power_button_state",
585 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
586 &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A",
587 "Power button ACPI sleep state.");
588 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
589 OID_AUTO, "sleep_button_state",
590 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
591 &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A",
592 "Sleep button ACPI sleep state.");
593 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
594 OID_AUTO, "lid_switch_state",
595 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
596 &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A",
597 "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid.");
598 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
599 OID_AUTO, "standby_state",
600 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
601 &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", "");
602 SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
603 OID_AUTO, "suspend_state",
604 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
605 &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", "");
606 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
607 OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
608 "sleep delay in seconds");
609 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
610 OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode");
611 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
612 OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
613 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
614 OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
615 &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
616 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
617 OID_AUTO, "handle_reboot", CTLFLAG_RW,
618 &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
619
620 #if defined(__amd64__) || defined(__i386__)
621 /*
622 * Enable workaround for incorrect ISA IRQ polarity by default on
623 * systems with Intel CPUs.
624 */
625 if (cpu_vendor_id == CPU_VENDOR_INTEL)
626 acpi_override_isa_irq_polarity = 1;
627 SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
628 OID_AUTO, "override_isa_irq_polarity", CTLFLAG_RDTUN,
629 &acpi_override_isa_irq_polarity, 0,
630 "Force active-hi polarity for edge-triggered ISA IRQs");
631 #endif
632
633 /*
634 * Default to 1 second before sleeping to give some machines time to
635 * stabilize.
636 */
637 sc->acpi_sleep_delay = 1;
638 if (bootverbose)
639 sc->acpi_verbose = 1;
640 if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
641 if (strcmp(env, "0") != 0)
642 sc->acpi_verbose = 1;
643 freeenv(env);
644 }
645
646 /* Only enable reboot by default if the FADT says it is available. */
647 if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
648 sc->acpi_handle_reboot = 1;
649
650 #if !ACPI_REDUCED_HARDWARE
651 /* Only enable S4BIOS by default if the FACS says it is available. */
652 if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
653 sc->acpi_s4bios = 1;
654 #endif
655
656 /* Probe all supported sleep states. */
657 acpi_sleep_states[ACPI_STATE_S0] = TRUE;
658 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
659 if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT,
660 __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) &&
661 ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB)))
662 acpi_sleep_states[state] = TRUE;
663
664 /*
665 * Dispatch the default sleep state to devices. The lid switch is set
666 * to UNKNOWN by default to avoid surprising users.
667 */
668 sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ?
669 ACPI_STATE_S5 : ACPI_STATE_UNKNOWN;
670 sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN;
671 sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ?
672 ACPI_STATE_S1 : ACPI_STATE_UNKNOWN;
673 sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ?
674 ACPI_STATE_S3 : ACPI_STATE_UNKNOWN;
675
676 /* Pick the first valid sleep state for the sleep button default. */
677 sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN;
678 for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++)
679 if (acpi_sleep_states[state]) {
680 sc->acpi_sleep_button_sx = state;
681 break;
682 }
683
684 acpi_enable_fixed_events(sc);
685
686 /*
687 * Scan the namespace and attach/initialise children.
688 */
689
690 /* Register our shutdown handler. */
691 EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
692 SHUTDOWN_PRI_LAST + 150);
693
694 /*
695 * Register our acpi event handlers.
696 * XXX should be configurable eg. via userland policy manager.
697 */
698 EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
699 sc, ACPI_EVENT_PRI_LAST);
700 EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
701 sc, ACPI_EVENT_PRI_LAST);
702
703 /* Flag our initial states. */
704 sc->acpi_enabled = TRUE;
705 sc->acpi_sstate = ACPI_STATE_S0;
706 sc->acpi_sleep_disabled = TRUE;
707
708 /* Create the control device */
709 sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664,
710 "acpi");
711 sc->acpi_dev_t->si_drv1 = sc;
712
713 if ((error = acpi_machdep_init(dev)))
714 goto out;
715
716 /* Register ACPI again to pass the correct argument of pm_func. */
717 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc);
718
719 acpi_platform_osc(dev);
720
721 if (!acpi_disabled("bus")) {
722 EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
723 acpi_probe_children(dev);
724 }
725
726 /* Update all GPEs and enable runtime GPEs. */
727 status = AcpiUpdateAllGpes();
728 if (ACPI_FAILURE(status))
729 device_printf(dev, "Could not update all GPEs: %s\n",
730 AcpiFormatException(status));
731
732 /* Allow sleep request after a while. */
733 callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
734 callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
735 acpi_sleep_enable, sc);
736
737 error = 0;
738
739 out:
740 return_VALUE (error);
741 }
742
743 static void
acpi_set_power_children(device_t dev,int state)744 acpi_set_power_children(device_t dev, int state)
745 {
746 device_t child;
747 device_t *devlist;
748 int dstate, i, numdevs;
749
750 if (device_get_children(dev, &devlist, &numdevs) != 0)
751 return;
752
753 /*
754 * Retrieve and set D-state for the sleep state if _SxD is present.
755 * Skip children who aren't attached since they are handled separately.
756 */
757 for (i = 0; i < numdevs; i++) {
758 child = devlist[i];
759 dstate = state;
760 if (device_is_attached(child) &&
761 acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
762 acpi_set_powerstate(child, dstate);
763 }
764 free(devlist, M_TEMP);
765 }
766
767 static int
acpi_suspend(device_t dev)768 acpi_suspend(device_t dev)
769 {
770 int error;
771
772 bus_topo_assert();
773
774 error = bus_generic_suspend(dev);
775 if (error == 0)
776 acpi_set_power_children(dev, ACPI_STATE_D3);
777
778 return (error);
779 }
780
781 static int
acpi_resume(device_t dev)782 acpi_resume(device_t dev)
783 {
784
785 bus_topo_assert();
786
787 acpi_set_power_children(dev, ACPI_STATE_D0);
788
789 return (bus_generic_resume(dev));
790 }
791
792 static int
acpi_shutdown(device_t dev)793 acpi_shutdown(device_t dev)
794 {
795
796 bus_topo_assert();
797
798 /* Allow children to shutdown first. */
799 bus_generic_shutdown(dev);
800
801 /*
802 * Enable any GPEs that are able to power-on the system (i.e., RTC).
803 * Also, disable any that are not valid for this state (most).
804 */
805 acpi_wake_prep_walk(ACPI_STATE_S5);
806
807 return (0);
808 }
809
810 /*
811 * Handle a new device being added
812 */
813 static device_t
acpi_add_child(device_t bus,u_int order,const char * name,int unit)814 acpi_add_child(device_t bus, u_int order, const char *name, int unit)
815 {
816 struct acpi_device *ad;
817 device_t child;
818
819 if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
820 return (NULL);
821
822 resource_list_init(&ad->ad_rl);
823
824 child = device_add_child_ordered(bus, order, name, unit);
825 if (child != NULL)
826 device_set_ivars(child, ad);
827 else
828 free(ad, M_ACPIDEV);
829 return (child);
830 }
831
832 static int
acpi_print_child(device_t bus,device_t child)833 acpi_print_child(device_t bus, device_t child)
834 {
835 struct acpi_device *adev = device_get_ivars(child);
836 struct resource_list *rl = &adev->ad_rl;
837 int retval = 0;
838
839 retval += bus_print_child_header(bus, child);
840 retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
841 retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
842 retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
843 retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd");
844 if (device_get_flags(child))
845 retval += printf(" flags %#x", device_get_flags(child));
846 retval += bus_print_child_domain(bus, child);
847 retval += bus_print_child_footer(bus, child);
848
849 return (retval);
850 }
851
852 /*
853 * If this device is an ACPI child but no one claimed it, attempt
854 * to power it off. We'll power it back up when a driver is added.
855 *
856 * XXX Disabled for now since many necessary devices (like fdc and
857 * ATA) don't claim the devices we created for them but still expect
858 * them to be powered up.
859 */
860 static void
acpi_probe_nomatch(device_t bus,device_t child)861 acpi_probe_nomatch(device_t bus, device_t child)
862 {
863 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
864 acpi_set_powerstate(child, ACPI_STATE_D3);
865 #endif
866 }
867
868 /*
869 * If a new driver has a chance to probe a child, first power it up.
870 *
871 * XXX Disabled for now (see acpi_probe_nomatch for details).
872 */
873 static void
acpi_driver_added(device_t dev,driver_t * driver)874 acpi_driver_added(device_t dev, driver_t *driver)
875 {
876 device_t child, *devlist;
877 int i, numdevs;
878
879 DEVICE_IDENTIFY(driver, dev);
880 if (device_get_children(dev, &devlist, &numdevs))
881 return;
882 for (i = 0; i < numdevs; i++) {
883 child = devlist[i];
884 if (device_get_state(child) == DS_NOTPRESENT) {
885 #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
886 acpi_set_powerstate(child, ACPI_STATE_D0);
887 if (device_probe_and_attach(child) != 0)
888 acpi_set_powerstate(child, ACPI_STATE_D3);
889 #else
890 device_probe_and_attach(child);
891 #endif
892 }
893 }
894 free(devlist, M_TEMP);
895 }
896
897 /* Location hint for devctl(8) */
898 static int
acpi_child_location_method(device_t cbdev,device_t child,struct sbuf * sb)899 acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb)
900 {
901 struct acpi_device *dinfo = device_get_ivars(child);
902 int pxm;
903
904 if (dinfo->ad_handle) {
905 sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle));
906 if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
907 sbuf_printf(sb, " _PXM=%d", pxm);
908 }
909 }
910 return (0);
911 }
912
913 /* PnP information for devctl(8) */
914 int
acpi_pnpinfo(ACPI_HANDLE handle,struct sbuf * sb)915 acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb)
916 {
917 ACPI_DEVICE_INFO *adinfo;
918
919 if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) {
920 sbuf_printf(sb, "unknown");
921 return (0);
922 }
923
924 sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s",
925 (adinfo->Valid & ACPI_VALID_HID) ?
926 adinfo->HardwareId.String : "none",
927 (adinfo->Valid & ACPI_VALID_UID) ?
928 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL,
929 ((adinfo->Valid & ACPI_VALID_CID) &&
930 adinfo->CompatibleIdList.Count > 0) ?
931 adinfo->CompatibleIdList.Ids[0].String : "none");
932 AcpiOsFree(adinfo);
933
934 return (0);
935 }
936
937 static int
acpi_child_pnpinfo_method(device_t cbdev,device_t child,struct sbuf * sb)938 acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb)
939 {
940 struct acpi_device *dinfo = device_get_ivars(child);
941
942 return (acpi_pnpinfo(dinfo->ad_handle, sb));
943 }
944
945 /*
946 * Note: the check for ACPI locator may be redundant. However, this routine is
947 * suitable for both busses whose only locator is ACPI and as a building block
948 * for busses that have multiple locators to cope with.
949 */
950 int
acpi_get_acpi_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)951 acpi_get_acpi_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb)
952 {
953 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) {
954 ACPI_HANDLE *handle = acpi_get_handle(child);
955
956 if (handle != NULL)
957 sbuf_printf(sb, "%s", acpi_name(handle));
958 return (0);
959 }
960
961 return (bus_generic_get_device_path(bus, child, locator, sb));
962 }
963
964 static int
acpi_get_device_path(device_t bus,device_t child,const char * locator,struct sbuf * sb)965 acpi_get_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb)
966 {
967 struct acpi_device *dinfo = device_get_ivars(child);
968
969 if (strcmp(locator, BUS_LOCATOR_ACPI) == 0)
970 return (acpi_get_acpi_device_path(bus, child, locator, sb));
971
972 if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
973 ACPI_DEVICE_INFO *adinfo;
974 if (!ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo)) &&
975 dinfo->ad_handle != 0 && (adinfo->Valid & ACPI_VALID_HID)) {
976 const char *hid = adinfo->HardwareId.String;
977 u_long uid = (adinfo->Valid & ACPI_VALID_UID) ?
978 strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL;
979 u_long hidval;
980
981 /*
982 * In UEFI Stanard Version 2.6, Section 9.6.1.6 Text
983 * Device Node Reference, there's an insanely long table
984 * 98. This implements the relevant bits from that
985 * table. Newer versions appear to have not required
986 * anything new. The EDK2 firmware presents both PciRoot
987 * and PcieRoot as PciRoot. Follow the EDK2 standard.
988 */
989 if (strncmp("PNP", hid, 3) != 0)
990 goto nomatch;
991 hidval = strtoul(hid + 3, NULL, 16);
992 switch (hidval) {
993 case 0x0301:
994 sbuf_printf(sb, "Keyboard(0x%lx)", uid);
995 break;
996 case 0x0401:
997 sbuf_printf(sb, "ParallelPort(0x%lx)", uid);
998 break;
999 case 0x0501:
1000 sbuf_printf(sb, "Serial(0x%lx)", uid);
1001 break;
1002 case 0x0604:
1003 sbuf_printf(sb, "Floppy(0x%lx)", uid);
1004 break;
1005 case 0x0a03:
1006 case 0x0a08:
1007 sbuf_printf(sb, "PciRoot(0x%lx)", uid);
1008 break;
1009 default: /* Everything else gets a generic encode */
1010 nomatch:
1011 sbuf_printf(sb, "Acpi(%s,0x%lx)", hid, uid);
1012 break;
1013 }
1014 }
1015 /* Not handled: AcpiAdr... unsure how to know it's one */
1016 }
1017
1018 /* For the rest, punt to the default handler */
1019 return (bus_generic_get_device_path(bus, child, locator, sb));
1020 }
1021
1022 /*
1023 * Handle device deletion.
1024 */
1025 static void
acpi_child_deleted(device_t dev,device_t child)1026 acpi_child_deleted(device_t dev, device_t child)
1027 {
1028 struct acpi_device *dinfo = device_get_ivars(child);
1029
1030 if (acpi_get_device(dinfo->ad_handle) == child)
1031 AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler);
1032 }
1033
1034 /*
1035 * Handle per-device ivars
1036 */
1037 static int
acpi_read_ivar(device_t dev,device_t child,int index,uintptr_t * result)1038 acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
1039 {
1040 struct acpi_device *ad;
1041
1042 if ((ad = device_get_ivars(child)) == NULL) {
1043 device_printf(child, "device has no ivars\n");
1044 return (ENOENT);
1045 }
1046
1047 /* ACPI and ISA compatibility ivars */
1048 switch(index) {
1049 case ACPI_IVAR_HANDLE:
1050 *(ACPI_HANDLE *)result = ad->ad_handle;
1051 break;
1052 case ACPI_IVAR_PRIVATE:
1053 *(void **)result = ad->ad_private;
1054 break;
1055 case ACPI_IVAR_FLAGS:
1056 *(int *)result = ad->ad_flags;
1057 break;
1058 case ISA_IVAR_VENDORID:
1059 case ISA_IVAR_SERIAL:
1060 case ISA_IVAR_COMPATID:
1061 *(int *)result = -1;
1062 break;
1063 case ISA_IVAR_LOGICALID:
1064 *(int *)result = acpi_isa_get_logicalid(child);
1065 break;
1066 case PCI_IVAR_CLASS:
1067 *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
1068 break;
1069 case PCI_IVAR_SUBCLASS:
1070 *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
1071 break;
1072 case PCI_IVAR_PROGIF:
1073 *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
1074 break;
1075 default:
1076 return (ENOENT);
1077 }
1078
1079 return (0);
1080 }
1081
1082 static int
acpi_write_ivar(device_t dev,device_t child,int index,uintptr_t value)1083 acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
1084 {
1085 struct acpi_device *ad;
1086
1087 if ((ad = device_get_ivars(child)) == NULL) {
1088 device_printf(child, "device has no ivars\n");
1089 return (ENOENT);
1090 }
1091
1092 switch(index) {
1093 case ACPI_IVAR_HANDLE:
1094 ad->ad_handle = (ACPI_HANDLE)value;
1095 break;
1096 case ACPI_IVAR_PRIVATE:
1097 ad->ad_private = (void *)value;
1098 break;
1099 case ACPI_IVAR_FLAGS:
1100 ad->ad_flags = (int)value;
1101 break;
1102 default:
1103 panic("bad ivar write request (%d)", index);
1104 return (ENOENT);
1105 }
1106
1107 return (0);
1108 }
1109
1110 /*
1111 * Handle child resource allocation/removal
1112 */
1113 static struct resource_list *
acpi_get_rlist(device_t dev,device_t child)1114 acpi_get_rlist(device_t dev, device_t child)
1115 {
1116 struct acpi_device *ad;
1117
1118 ad = device_get_ivars(child);
1119 return (&ad->ad_rl);
1120 }
1121
1122 static int
acpi_match_resource_hint(device_t dev,int type,long value)1123 acpi_match_resource_hint(device_t dev, int type, long value)
1124 {
1125 struct acpi_device *ad = device_get_ivars(dev);
1126 struct resource_list *rl = &ad->ad_rl;
1127 struct resource_list_entry *rle;
1128
1129 STAILQ_FOREACH(rle, rl, link) {
1130 if (rle->type != type)
1131 continue;
1132 if (rle->start <= value && rle->end >= value)
1133 return (1);
1134 }
1135 return (0);
1136 }
1137
1138 /*
1139 * Does this device match because the resources match?
1140 */
1141 static bool
acpi_hint_device_matches_resources(device_t child,const char * name,int unit)1142 acpi_hint_device_matches_resources(device_t child, const char *name,
1143 int unit)
1144 {
1145 long value;
1146 bool matches;
1147
1148 /*
1149 * Check for matching resources. We must have at least one match.
1150 * Since I/O and memory resources cannot be shared, if we get a
1151 * match on either of those, ignore any mismatches in IRQs or DRQs.
1152 *
1153 * XXX: We may want to revisit this to be more lenient and wire
1154 * as long as it gets one match.
1155 */
1156 matches = false;
1157 if (resource_long_value(name, unit, "port", &value) == 0) {
1158 /*
1159 * Floppy drive controllers are notorious for having a
1160 * wide variety of resources not all of which include the
1161 * first port that is specified by the hint (typically
1162 * 0x3f0) (see the comment above fdc_isa_alloc_resources()
1163 * in fdc_isa.c). However, they do all seem to include
1164 * port + 2 (e.g. 0x3f2) so for a floppy device, look for
1165 * 'value + 2' in the port resources instead of the hint
1166 * value.
1167 */
1168 if (strcmp(name, "fdc") == 0)
1169 value += 2;
1170 if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
1171 matches = true;
1172 else
1173 return false;
1174 }
1175 if (resource_long_value(name, unit, "maddr", &value) == 0) {
1176 if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
1177 matches = true;
1178 else
1179 return false;
1180 }
1181
1182 /*
1183 * If either the I/O address and/or the memory address matched, then
1184 * assumed this devices matches and that any mismatch in other resources
1185 * will be resolved by siltently ignoring those other resources. Otherwise
1186 * all further resources must match.
1187 */
1188 if (matches) {
1189 return (true);
1190 }
1191 if (resource_long_value(name, unit, "irq", &value) == 0) {
1192 if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
1193 matches = true;
1194 else
1195 return false;
1196 }
1197 if (resource_long_value(name, unit, "drq", &value) == 0) {
1198 if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
1199 matches = true;
1200 else
1201 return false;
1202 }
1203 return matches;
1204 }
1205
1206
1207 /*
1208 * Wire device unit numbers based on resource matches in hints.
1209 */
1210 static void
acpi_hint_device_unit(device_t acdev,device_t child,const char * name,int * unitp)1211 acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
1212 int *unitp)
1213 {
1214 device_location_cache_t *cache;
1215 const char *s;
1216 int line, unit;
1217 bool matches;
1218
1219 /*
1220 * Iterate over all the hints for the devices with the specified
1221 * name to see if one's resources are a subset of this device.
1222 */
1223 line = 0;
1224 cache = dev_wired_cache_init();
1225 while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
1226 /* Must have an "at" for acpi or isa. */
1227 resource_string_value(name, unit, "at", &s);
1228 matches = false;
1229 if (strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
1230 strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)
1231 matches = acpi_hint_device_matches_resources(child, name, unit);
1232 else
1233 matches = dev_wired_cache_match(cache, child, s);
1234
1235 if (matches) {
1236 /* We have a winner! */
1237 *unitp = unit;
1238 break;
1239 }
1240 }
1241 dev_wired_cache_fini(cache);
1242 }
1243
1244 /*
1245 * Fetch the NUMA domain for a device by mapping the value returned by
1246 * _PXM to a NUMA domain. If the device does not have a _PXM method,
1247 * -2 is returned. If any other error occurs, -1 is returned.
1248 */
1249 static int
acpi_parse_pxm(device_t dev)1250 acpi_parse_pxm(device_t dev)
1251 {
1252 #ifdef NUMA
1253 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1254 ACPI_HANDLE handle;
1255 ACPI_STATUS status;
1256 int pxm;
1257
1258 handle = acpi_get_handle(dev);
1259 if (handle == NULL)
1260 return (-2);
1261 status = acpi_GetInteger(handle, "_PXM", &pxm);
1262 if (ACPI_SUCCESS(status))
1263 return (acpi_map_pxm_to_vm_domainid(pxm));
1264 if (status == AE_NOT_FOUND)
1265 return (-2);
1266 #endif
1267 #endif
1268 return (-1);
1269 }
1270
1271 int
acpi_get_cpus(device_t dev,device_t child,enum cpu_sets op,size_t setsize,cpuset_t * cpuset)1272 acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
1273 cpuset_t *cpuset)
1274 {
1275 int d, error;
1276
1277 d = acpi_parse_pxm(child);
1278 if (d < 0)
1279 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1280
1281 switch (op) {
1282 case LOCAL_CPUS:
1283 if (setsize != sizeof(cpuset_t))
1284 return (EINVAL);
1285 *cpuset = cpuset_domain[d];
1286 return (0);
1287 case INTR_CPUS:
1288 error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
1289 if (error != 0)
1290 return (error);
1291 if (setsize != sizeof(cpuset_t))
1292 return (EINVAL);
1293 CPU_AND(cpuset, cpuset, &cpuset_domain[d]);
1294 return (0);
1295 default:
1296 return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1297 }
1298 }
1299
1300 /*
1301 * Fetch the NUMA domain for the given device 'dev'.
1302 *
1303 * If a device has a _PXM method, map that to a NUMA domain.
1304 * Otherwise, pass the request up to the parent.
1305 * If there's no matching domain or the domain cannot be
1306 * determined, return ENOENT.
1307 */
1308 int
acpi_get_domain(device_t dev,device_t child,int * domain)1309 acpi_get_domain(device_t dev, device_t child, int *domain)
1310 {
1311 int d;
1312
1313 d = acpi_parse_pxm(child);
1314 if (d >= 0) {
1315 *domain = d;
1316 return (0);
1317 }
1318 if (d == -1)
1319 return (ENOENT);
1320
1321 /* No _PXM node; go up a level */
1322 return (bus_generic_get_domain(dev, child, domain));
1323 }
1324
1325 static struct rman *
acpi_get_rman(device_t bus,int type,u_int flags)1326 acpi_get_rman(device_t bus, int type, u_int flags)
1327 {
1328 /* Only memory and IO resources are managed. */
1329 switch (type) {
1330 case SYS_RES_IOPORT:
1331 return (&acpi_rman_io);
1332 case SYS_RES_MEMORY:
1333 return (&acpi_rman_mem);
1334 default:
1335 return (NULL);
1336 }
1337 }
1338
1339 /*
1340 * Pre-allocate/manage all memory and IO resources. Since rman can't handle
1341 * duplicates, we merge any in the sysresource attach routine.
1342 */
1343 static int
acpi_sysres_alloc(device_t dev)1344 acpi_sysres_alloc(device_t dev)
1345 {
1346 struct acpi_softc *sc = device_get_softc(dev);
1347 struct resource *res;
1348 struct resource_list_entry *rle;
1349 struct rman *rm;
1350 device_t *children;
1351 int child_count, i;
1352
1353 /*
1354 * Probe/attach any sysresource devices. This would be unnecessary if we
1355 * had multi-pass probe/attach.
1356 */
1357 if (device_get_children(dev, &children, &child_count) != 0)
1358 return (ENXIO);
1359 for (i = 0; i < child_count; i++) {
1360 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1361 device_probe_and_attach(children[i]);
1362 }
1363 free(children, M_TEMP);
1364
1365 STAILQ_FOREACH(rle, &sc->sysres_rl, link) {
1366 if (rle->res != NULL) {
1367 device_printf(dev, "duplicate resource for %jx\n", rle->start);
1368 continue;
1369 }
1370
1371 /* Only memory and IO resources are valid here. */
1372 rm = acpi_get_rman(dev, rle->type, 0);
1373 if (rm == NULL)
1374 continue;
1375
1376 /* Pre-allocate resource and add to our rman pool. */
1377 res = bus_alloc_resource(dev, rle->type,
1378 &rle->rid, rle->start, rle->start + rle->count - 1, rle->count,
1379 RF_ACTIVE | RF_UNMAPPED);
1380 if (res != NULL) {
1381 rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1382 rle->res = res;
1383 } else if (bootverbose)
1384 device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
1385 rle->start, rle->count, rle->type);
1386 }
1387 return (0);
1388 }
1389
1390 /*
1391 * Reserve declared resources for active devices found during the
1392 * namespace scan once the boot-time attach of devices has completed.
1393 *
1394 * Ideally reserving firmware-assigned resources would work in a
1395 * depth-first traversal of the device namespace, but this is
1396 * complicated. In particular, not all resources are enumerated by
1397 * ACPI (e.g. PCI bridges and devices enumerate their resources via
1398 * other means). Some systems also enumerate devices via ACPI behind
1399 * PCI bridges but without a matching a PCI device_t enumerated via
1400 * PCI bus scanning, the device_t's end up as direct children of
1401 * acpi0. Doing this scan late is not ideal, but works for now.
1402 */
1403 static void
acpi_reserve_resources(device_t dev)1404 acpi_reserve_resources(device_t dev)
1405 {
1406 struct resource_list_entry *rle;
1407 struct resource_list *rl;
1408 struct acpi_device *ad;
1409 device_t *children;
1410 int child_count, i;
1411
1412 if (device_get_children(dev, &children, &child_count) != 0)
1413 return;
1414 for (i = 0; i < child_count; i++) {
1415 ad = device_get_ivars(children[i]);
1416 rl = &ad->ad_rl;
1417
1418 /* Don't reserve system resources. */
1419 if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1420 continue;
1421
1422 STAILQ_FOREACH(rle, rl, link) {
1423 /*
1424 * Don't reserve IRQ resources. There are many sticky things
1425 * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
1426 * when using legacy routing).
1427 */
1428 if (rle->type == SYS_RES_IRQ)
1429 continue;
1430
1431 /*
1432 * Don't reserve the resource if it is already allocated.
1433 * The acpi_ec(4) driver can allocate its resources early
1434 * if ECDT is present.
1435 */
1436 if (rle->res != NULL)
1437 continue;
1438
1439 /*
1440 * Try to reserve the resource from our parent. If this
1441 * fails because the resource is a system resource, just
1442 * let it be. The resource range is already reserved so
1443 * that other devices will not use it. If the driver
1444 * needs to allocate the resource, then
1445 * acpi_alloc_resource() will sub-alloc from the system
1446 * resource.
1447 */
1448 resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid,
1449 rle->start, rle->end, rle->count, 0);
1450 }
1451 }
1452 free(children, M_TEMP);
1453 }
1454
1455 static int
acpi_set_resource(device_t dev,device_t child,int type,int rid,rman_res_t start,rman_res_t count)1456 acpi_set_resource(device_t dev, device_t child, int type, int rid,
1457 rman_res_t start, rman_res_t count)
1458 {
1459 struct acpi_device *ad = device_get_ivars(child);
1460 struct resource_list *rl = &ad->ad_rl;
1461 rman_res_t end;
1462
1463 #ifdef INTRNG
1464 /* map with default for now */
1465 if (type == SYS_RES_IRQ)
1466 start = (rman_res_t)acpi_map_intr(child, (u_int)start,
1467 acpi_get_handle(child));
1468 #endif
1469
1470 /* If the resource is already allocated, fail. */
1471 if (resource_list_busy(rl, type, rid))
1472 return (EBUSY);
1473
1474 /* If the resource is already reserved, release it. */
1475 if (resource_list_reserved(rl, type, rid))
1476 resource_list_unreserve(rl, dev, child, type, rid);
1477
1478 /* Add the resource. */
1479 end = (start + count - 1);
1480 resource_list_add(rl, type, rid, start, end, count);
1481 return (0);
1482 }
1483
1484 static struct resource *
acpi_alloc_resource(device_t bus,device_t child,int type,int * rid,rman_res_t start,rman_res_t end,rman_res_t count,u_int flags)1485 acpi_alloc_resource(device_t bus, device_t child, int type, int *rid,
1486 rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
1487 {
1488 #ifndef INTRNG
1489 ACPI_RESOURCE ares;
1490 #endif
1491 struct acpi_device *ad;
1492 struct resource_list_entry *rle;
1493 struct resource_list *rl;
1494 struct resource *res;
1495 int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
1496
1497 /*
1498 * First attempt at allocating the resource. For direct children,
1499 * use resource_list_alloc() to handle reserved resources. For
1500 * other devices, pass the request up to our parent.
1501 */
1502 if (bus == device_get_parent(child)) {
1503 ad = device_get_ivars(child);
1504 rl = &ad->ad_rl;
1505
1506 /*
1507 * Simulate the behavior of the ISA bus for direct children
1508 * devices. That is, if a non-default range is specified for
1509 * a resource that doesn't exist, use bus_set_resource() to
1510 * add the resource before allocating it. Note that these
1511 * resources will not be reserved.
1512 */
1513 if (!isdefault && resource_list_find(rl, type, *rid) == NULL)
1514 resource_list_add(rl, type, *rid, start, end, count);
1515 res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
1516 flags);
1517 #ifndef INTRNG
1518 if (res != NULL && type == SYS_RES_IRQ) {
1519 /*
1520 * Since bus_config_intr() takes immediate effect, we cannot
1521 * configure the interrupt associated with a device when we
1522 * parse the resources but have to defer it until a driver
1523 * actually allocates the interrupt via bus_alloc_resource().
1524 *
1525 * XXX: Should we handle the lookup failing?
1526 */
1527 if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares)))
1528 acpi_config_intr(child, &ares);
1529 }
1530 #endif
1531
1532 /*
1533 * If this is an allocation of the "default" range for a given
1534 * RID, fetch the exact bounds for this resource from the
1535 * resource list entry to try to allocate the range from the
1536 * system resource regions.
1537 */
1538 if (res == NULL && isdefault) {
1539 rle = resource_list_find(rl, type, *rid);
1540 if (rle != NULL) {
1541 start = rle->start;
1542 end = rle->end;
1543 count = rle->count;
1544 }
1545 }
1546 } else
1547 res = bus_generic_alloc_resource(bus, child, type, rid,
1548 start, end, count, flags);
1549
1550 /*
1551 * If the first attempt failed and this is an allocation of a
1552 * specific range, try to satisfy the request via a suballocation
1553 * from our system resource regions.
1554 */
1555 if (res == NULL && start + count - 1 == end)
1556 res = bus_generic_rman_alloc_resource(bus, child, type, rid, start, end,
1557 count, flags);
1558 return (res);
1559 }
1560
1561 static bool
acpi_is_resource_managed(device_t bus,struct resource * r)1562 acpi_is_resource_managed(device_t bus, struct resource *r)
1563 {
1564 struct rman *rm;
1565
1566 rm = acpi_get_rman(bus, rman_get_type(r), rman_get_flags(r));
1567 if (rm == NULL)
1568 return (false);
1569 return (rman_is_region_manager(r, rm));
1570 }
1571
1572 static struct resource *
acpi_managed_resource(device_t bus,struct resource * r)1573 acpi_managed_resource(device_t bus, struct resource *r)
1574 {
1575 struct acpi_softc *sc = device_get_softc(bus);
1576 struct resource_list_entry *rle;
1577
1578 KASSERT(acpi_is_resource_managed(bus, r),
1579 ("resource %p is not suballocated", r));
1580
1581 STAILQ_FOREACH(rle, &sc->sysres_rl, link) {
1582 if (rle->type != rman_get_type(r) || rle->res == NULL)
1583 continue;
1584 if (rman_get_start(r) >= rman_get_start(rle->res) &&
1585 rman_get_end(r) <= rman_get_end(rle->res))
1586 return (rle->res);
1587 }
1588 return (NULL);
1589 }
1590
1591 static int
acpi_adjust_resource(device_t bus,device_t child,struct resource * r,rman_res_t start,rman_res_t end)1592 acpi_adjust_resource(device_t bus, device_t child, struct resource *r,
1593 rman_res_t start, rman_res_t end)
1594 {
1595
1596 if (acpi_is_resource_managed(bus, r))
1597 return (rman_adjust_resource(r, start, end));
1598 return (bus_generic_adjust_resource(bus, child, r, start, end));
1599 }
1600
1601 static int
acpi_release_resource(device_t bus,device_t child,struct resource * r)1602 acpi_release_resource(device_t bus, device_t child, struct resource *r)
1603 {
1604 /*
1605 * If this resource belongs to one of our internal managers,
1606 * deactivate it and release it to the local pool.
1607 */
1608 if (acpi_is_resource_managed(bus, r))
1609 return (bus_generic_rman_release_resource(bus, child, r));
1610
1611 return (bus_generic_rl_release_resource(bus, child, r));
1612 }
1613
1614 static void
acpi_delete_resource(device_t bus,device_t child,int type,int rid)1615 acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1616 {
1617 struct resource_list *rl;
1618
1619 rl = acpi_get_rlist(bus, child);
1620 if (resource_list_busy(rl, type, rid)) {
1621 device_printf(bus, "delete_resource: Resource still owned by child"
1622 " (type=%d, rid=%d)\n", type, rid);
1623 return;
1624 }
1625 if (resource_list_reserved(rl, type, rid))
1626 resource_list_unreserve(rl, bus, child, type, rid);
1627 resource_list_delete(rl, type, rid);
1628 }
1629
1630 static int
acpi_activate_resource(device_t bus,device_t child,struct resource * r)1631 acpi_activate_resource(device_t bus, device_t child, struct resource *r)
1632 {
1633 if (acpi_is_resource_managed(bus, r))
1634 return (bus_generic_rman_activate_resource(bus, child, r));
1635 return (bus_generic_activate_resource(bus, child, r));
1636 }
1637
1638 static int
acpi_deactivate_resource(device_t bus,device_t child,struct resource * r)1639 acpi_deactivate_resource(device_t bus, device_t child, struct resource *r)
1640 {
1641 if (acpi_is_resource_managed(bus, r))
1642 return (bus_generic_rman_deactivate_resource(bus, child, r));
1643 return (bus_generic_deactivate_resource(bus, child, r));
1644 }
1645
1646 static int
acpi_map_resource(device_t bus,device_t child,struct resource * r,struct resource_map_request * argsp,struct resource_map * map)1647 acpi_map_resource(device_t bus, device_t child, struct resource *r,
1648 struct resource_map_request *argsp, struct resource_map *map)
1649 {
1650 struct resource_map_request args;
1651 struct resource *sysres;
1652 rman_res_t length, start;
1653 int error;
1654
1655 if (!acpi_is_resource_managed(bus, r))
1656 return (bus_generic_map_resource(bus, child, r, argsp, map));
1657
1658 /* Resources must be active to be mapped. */
1659 if (!(rman_get_flags(r) & RF_ACTIVE))
1660 return (ENXIO);
1661
1662 resource_init_map_request(&args);
1663 error = resource_validate_map_request(r, argsp, &args, &start, &length);
1664 if (error)
1665 return (error);
1666
1667 sysres = acpi_managed_resource(bus, r);
1668 if (sysres == NULL)
1669 return (ENOENT);
1670
1671 args.offset = start - rman_get_start(sysres);
1672 args.length = length;
1673 return (bus_map_resource(bus, sysres, &args, map));
1674 }
1675
1676 static int
acpi_unmap_resource(device_t bus,device_t child,struct resource * r,struct resource_map * map)1677 acpi_unmap_resource(device_t bus, device_t child, struct resource *r,
1678 struct resource_map *map)
1679 {
1680 struct resource *sysres;
1681
1682 if (!acpi_is_resource_managed(bus, r))
1683 return (bus_generic_unmap_resource(bus, child, r, map));
1684
1685 sysres = acpi_managed_resource(bus, r);
1686 if (sysres == NULL)
1687 return (ENOENT);
1688 return (bus_unmap_resource(bus, sysres, map));
1689 }
1690
1691 /* Allocate an IO port or memory resource, given its GAS. */
1692 int
acpi_bus_alloc_gas(device_t dev,int * type,int * rid,ACPI_GENERIC_ADDRESS * gas,struct resource ** res,u_int flags)1693 acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas,
1694 struct resource **res, u_int flags)
1695 {
1696 int error, res_type;
1697
1698 error = ENOMEM;
1699 if (type == NULL || rid == NULL || gas == NULL || res == NULL)
1700 return (EINVAL);
1701
1702 /* We only support memory and IO spaces. */
1703 switch (gas->SpaceId) {
1704 case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1705 res_type = SYS_RES_MEMORY;
1706 break;
1707 case ACPI_ADR_SPACE_SYSTEM_IO:
1708 res_type = SYS_RES_IOPORT;
1709 break;
1710 default:
1711 return (EOPNOTSUPP);
1712 }
1713
1714 /*
1715 * If the register width is less than 8, assume the BIOS author means
1716 * it is a bit field and just allocate a byte.
1717 */
1718 if (gas->BitWidth && gas->BitWidth < 8)
1719 gas->BitWidth = 8;
1720
1721 /* Validate the address after we're sure we support the space. */
1722 if (gas->Address == 0 || gas->BitWidth == 0)
1723 return (EINVAL);
1724
1725 bus_set_resource(dev, res_type, *rid, gas->Address,
1726 gas->BitWidth / 8);
1727 *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1728 if (*res != NULL) {
1729 *type = res_type;
1730 error = 0;
1731 } else
1732 bus_delete_resource(dev, res_type, *rid);
1733
1734 return (error);
1735 }
1736
1737 /* Probe _HID and _CID for compatible ISA PNP ids. */
1738 static uint32_t
acpi_isa_get_logicalid(device_t dev)1739 acpi_isa_get_logicalid(device_t dev)
1740 {
1741 ACPI_DEVICE_INFO *devinfo;
1742 ACPI_HANDLE h;
1743 uint32_t pnpid;
1744
1745 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1746
1747 /* Fetch and validate the HID. */
1748 if ((h = acpi_get_handle(dev)) == NULL ||
1749 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1750 return_VALUE (0);
1751
1752 pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
1753 devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
1754 PNP_EISAID(devinfo->HardwareId.String) : 0;
1755 AcpiOsFree(devinfo);
1756
1757 return_VALUE (pnpid);
1758 }
1759
1760 static int
acpi_isa_get_compatid(device_t dev,uint32_t * cids,int count)1761 acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1762 {
1763 ACPI_DEVICE_INFO *devinfo;
1764 ACPI_PNP_DEVICE_ID *ids;
1765 ACPI_HANDLE h;
1766 uint32_t *pnpid;
1767 int i, valid;
1768
1769 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1770
1771 pnpid = cids;
1772
1773 /* Fetch and validate the CID */
1774 if ((h = acpi_get_handle(dev)) == NULL ||
1775 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1776 return_VALUE (0);
1777
1778 if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
1779 AcpiOsFree(devinfo);
1780 return_VALUE (0);
1781 }
1782
1783 if (devinfo->CompatibleIdList.Count < count)
1784 count = devinfo->CompatibleIdList.Count;
1785 ids = devinfo->CompatibleIdList.Ids;
1786 for (i = 0, valid = 0; i < count; i++)
1787 if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
1788 strncmp(ids[i].String, "PNP", 3) == 0) {
1789 *pnpid++ = PNP_EISAID(ids[i].String);
1790 valid++;
1791 }
1792 AcpiOsFree(devinfo);
1793
1794 return_VALUE (valid);
1795 }
1796
1797 static int
acpi_device_id_probe(device_t bus,device_t dev,char ** ids,char ** match)1798 acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match)
1799 {
1800 ACPI_HANDLE h;
1801 ACPI_OBJECT_TYPE t;
1802 int rv;
1803 int i;
1804
1805 h = acpi_get_handle(dev);
1806 if (ids == NULL || h == NULL)
1807 return (ENXIO);
1808 t = acpi_get_type(dev);
1809 if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
1810 return (ENXIO);
1811
1812 /* Try to match one of the array of IDs with a HID or CID. */
1813 for (i = 0; ids[i] != NULL; i++) {
1814 rv = acpi_MatchHid(h, ids[i]);
1815 if (rv == ACPI_MATCHHID_NOMATCH)
1816 continue;
1817
1818 if (match != NULL) {
1819 *match = ids[i];
1820 }
1821 return ((rv == ACPI_MATCHHID_HID)?
1822 BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY);
1823 }
1824 return (ENXIO);
1825 }
1826
1827 static ACPI_STATUS
acpi_device_eval_obj(device_t bus,device_t dev,ACPI_STRING pathname,ACPI_OBJECT_LIST * parameters,ACPI_BUFFER * ret)1828 acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1829 ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1830 {
1831 ACPI_HANDLE h;
1832
1833 if (dev == NULL)
1834 h = ACPI_ROOT_OBJECT;
1835 else if ((h = acpi_get_handle(dev)) == NULL)
1836 return (AE_BAD_PARAMETER);
1837 return (AcpiEvaluateObject(h, pathname, parameters, ret));
1838 }
1839
1840 static ACPI_STATUS
acpi_device_get_prop(device_t bus,device_t dev,ACPI_STRING propname,const ACPI_OBJECT ** value)1841 acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname,
1842 const ACPI_OBJECT **value)
1843 {
1844 const ACPI_OBJECT *pkg, *name, *val;
1845 struct acpi_device *ad;
1846 ACPI_STATUS status;
1847 int i;
1848
1849 ad = device_get_ivars(dev);
1850
1851 if (ad == NULL || propname == NULL)
1852 return (AE_BAD_PARAMETER);
1853 if (ad->dsd_pkg == NULL) {
1854 if (ad->dsd.Pointer == NULL) {
1855 status = acpi_find_dsd(ad);
1856 if (ACPI_FAILURE(status))
1857 return (status);
1858 } else {
1859 return (AE_NOT_FOUND);
1860 }
1861 }
1862
1863 for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) {
1864 pkg = &ad->dsd_pkg->Package.Elements[i];
1865 if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2)
1866 continue;
1867
1868 name = &pkg->Package.Elements[0];
1869 val = &pkg->Package.Elements[1];
1870 if (name->Type != ACPI_TYPE_STRING)
1871 continue;
1872 if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) {
1873 if (value != NULL)
1874 *value = val;
1875
1876 return (AE_OK);
1877 }
1878 }
1879
1880 return (AE_NOT_FOUND);
1881 }
1882
1883 static ACPI_STATUS
acpi_find_dsd(struct acpi_device * ad)1884 acpi_find_dsd(struct acpi_device *ad)
1885 {
1886 const ACPI_OBJECT *dsd, *guid, *pkg;
1887 ACPI_STATUS status;
1888
1889 ad->dsd.Length = ACPI_ALLOCATE_BUFFER;
1890 ad->dsd.Pointer = NULL;
1891 ad->dsd_pkg = NULL;
1892
1893 status = AcpiEvaluateObject(ad->ad_handle, "_DSD", NULL, &ad->dsd);
1894 if (ACPI_FAILURE(status))
1895 return (status);
1896
1897 dsd = ad->dsd.Pointer;
1898 guid = &dsd->Package.Elements[0];
1899 pkg = &dsd->Package.Elements[1];
1900
1901 if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE ||
1902 guid->Buffer.Length != sizeof(acpi_dsd_uuid))
1903 return (AE_NOT_FOUND);
1904 if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid,
1905 sizeof(acpi_dsd_uuid)) == 0) {
1906
1907 ad->dsd_pkg = pkg;
1908 return (AE_OK);
1909 }
1910
1911 return (AE_NOT_FOUND);
1912 }
1913
1914 static ssize_t
acpi_bus_get_prop_handle(const ACPI_OBJECT * hobj,void * propvalue,size_t size)1915 acpi_bus_get_prop_handle(const ACPI_OBJECT *hobj, void *propvalue, size_t size)
1916 {
1917 ACPI_OBJECT *pobj;
1918 ACPI_HANDLE h;
1919
1920 if (hobj->Type != ACPI_TYPE_PACKAGE)
1921 goto err;
1922 if (hobj->Package.Count != 1)
1923 goto err;
1924
1925 pobj = &hobj->Package.Elements[0];
1926 if (pobj == NULL)
1927 goto err;
1928 if (pobj->Type != ACPI_TYPE_LOCAL_REFERENCE)
1929 goto err;
1930
1931 h = acpi_GetReference(NULL, pobj);
1932 if (h == NULL)
1933 goto err;
1934
1935 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE))
1936 *(ACPI_HANDLE *)propvalue = h;
1937 return (sizeof(ACPI_HANDLE));
1938
1939 err:
1940 return (-1);
1941 }
1942
1943 static ssize_t
acpi_bus_get_prop(device_t bus,device_t child,const char * propname,void * propvalue,size_t size,device_property_type_t type)1944 acpi_bus_get_prop(device_t bus, device_t child, const char *propname,
1945 void *propvalue, size_t size, device_property_type_t type)
1946 {
1947 ACPI_STATUS status;
1948 const ACPI_OBJECT *obj;
1949
1950 status = acpi_device_get_prop(bus, child, __DECONST(char *, propname),
1951 &obj);
1952 if (ACPI_FAILURE(status))
1953 return (-1);
1954
1955 switch (type) {
1956 case DEVICE_PROP_ANY:
1957 case DEVICE_PROP_BUFFER:
1958 case DEVICE_PROP_UINT32:
1959 case DEVICE_PROP_UINT64:
1960 break;
1961 case DEVICE_PROP_HANDLE:
1962 return (acpi_bus_get_prop_handle(obj, propvalue, size));
1963 default:
1964 return (-1);
1965 }
1966
1967 switch (obj->Type) {
1968 case ACPI_TYPE_INTEGER:
1969 if (type == DEVICE_PROP_UINT32) {
1970 if (propvalue != NULL && size >= sizeof(uint32_t))
1971 *((uint32_t *)propvalue) = obj->Integer.Value;
1972 return (sizeof(uint32_t));
1973 }
1974 if (propvalue != NULL && size >= sizeof(uint64_t))
1975 *((uint64_t *) propvalue) = obj->Integer.Value;
1976 return (sizeof(uint64_t));
1977
1978 case ACPI_TYPE_STRING:
1979 if (type != DEVICE_PROP_ANY &&
1980 type != DEVICE_PROP_BUFFER)
1981 return (-1);
1982
1983 if (propvalue != NULL && size > 0)
1984 memcpy(propvalue, obj->String.Pointer,
1985 MIN(size, obj->String.Length));
1986 return (obj->String.Length);
1987
1988 case ACPI_TYPE_BUFFER:
1989 if (propvalue != NULL && size > 0)
1990 memcpy(propvalue, obj->Buffer.Pointer,
1991 MIN(size, obj->Buffer.Length));
1992 return (obj->Buffer.Length);
1993
1994 case ACPI_TYPE_PACKAGE:
1995 if (propvalue != NULL && size >= sizeof(ACPI_OBJECT *)) {
1996 *((ACPI_OBJECT **) propvalue) =
1997 __DECONST(ACPI_OBJECT *, obj);
1998 }
1999 return (sizeof(ACPI_OBJECT *));
2000
2001 case ACPI_TYPE_LOCAL_REFERENCE:
2002 if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) {
2003 ACPI_HANDLE h;
2004
2005 h = acpi_GetReference(NULL,
2006 __DECONST(ACPI_OBJECT *, obj));
2007 memcpy(propvalue, h, sizeof(ACPI_HANDLE));
2008 }
2009 return (sizeof(ACPI_HANDLE));
2010 default:
2011 return (0);
2012 }
2013 }
2014
2015 int
acpi_device_pwr_for_sleep(device_t bus,device_t dev,int * dstate)2016 acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
2017 {
2018 struct acpi_softc *sc;
2019 ACPI_HANDLE handle;
2020 ACPI_STATUS status;
2021 char sxd[8];
2022
2023 handle = acpi_get_handle(dev);
2024
2025 /*
2026 * XXX If we find these devices, don't try to power them down.
2027 * The serial and IRDA ports on my T23 hang the system when
2028 * set to D3 and it appears that such legacy devices may
2029 * need special handling in their drivers.
2030 */
2031 if (dstate == NULL || handle == NULL ||
2032 acpi_MatchHid(handle, "PNP0500") ||
2033 acpi_MatchHid(handle, "PNP0501") ||
2034 acpi_MatchHid(handle, "PNP0502") ||
2035 acpi_MatchHid(handle, "PNP0510") ||
2036 acpi_MatchHid(handle, "PNP0511"))
2037 return (ENXIO);
2038
2039 /*
2040 * Override next state with the value from _SxD, if present.
2041 * Note illegal _S0D is evaluated because some systems expect this.
2042 */
2043 sc = device_get_softc(bus);
2044 snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate);
2045 status = acpi_GetInteger(handle, sxd, dstate);
2046 if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
2047 device_printf(dev, "failed to get %s on %s: %s\n", sxd,
2048 acpi_name(handle), AcpiFormatException(status));
2049 return (ENXIO);
2050 }
2051
2052 return (0);
2053 }
2054
2055 /* Callback arg for our implementation of walking the namespace. */
2056 struct acpi_device_scan_ctx {
2057 acpi_scan_cb_t user_fn;
2058 void *arg;
2059 ACPI_HANDLE parent;
2060 };
2061
2062 static ACPI_STATUS
acpi_device_scan_cb(ACPI_HANDLE h,UINT32 level,void * arg,void ** retval)2063 acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
2064 {
2065 struct acpi_device_scan_ctx *ctx;
2066 device_t dev, old_dev;
2067 ACPI_STATUS status;
2068 ACPI_OBJECT_TYPE type;
2069
2070 /*
2071 * Skip this device if we think we'll have trouble with it or it is
2072 * the parent where the scan began.
2073 */
2074 ctx = (struct acpi_device_scan_ctx *)arg;
2075 if (acpi_avoid(h) || h == ctx->parent)
2076 return (AE_OK);
2077
2078 /* If this is not a valid device type (e.g., a method), skip it. */
2079 if (ACPI_FAILURE(AcpiGetType(h, &type)))
2080 return (AE_OK);
2081 if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
2082 type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
2083 return (AE_OK);
2084
2085 /*
2086 * Call the user function with the current device. If it is unchanged
2087 * afterwards, return. Otherwise, we update the handle to the new dev.
2088 */
2089 old_dev = acpi_get_device(h);
2090 dev = old_dev;
2091 status = ctx->user_fn(h, &dev, level, ctx->arg);
2092 if (ACPI_FAILURE(status) || old_dev == dev)
2093 return (status);
2094
2095 /* Remove the old child and its connection to the handle. */
2096 if (old_dev != NULL)
2097 device_delete_child(device_get_parent(old_dev), old_dev);
2098
2099 /* Recreate the handle association if the user created a device. */
2100 if (dev != NULL)
2101 AcpiAttachData(h, acpi_fake_objhandler, dev);
2102
2103 return (AE_OK);
2104 }
2105
2106 static ACPI_STATUS
acpi_device_scan_children(device_t bus,device_t dev,int max_depth,acpi_scan_cb_t user_fn,void * arg)2107 acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
2108 acpi_scan_cb_t user_fn, void *arg)
2109 {
2110 ACPI_HANDLE h;
2111 struct acpi_device_scan_ctx ctx;
2112
2113 if (acpi_disabled("children"))
2114 return (AE_OK);
2115
2116 if (dev == NULL)
2117 h = ACPI_ROOT_OBJECT;
2118 else if ((h = acpi_get_handle(dev)) == NULL)
2119 return (AE_BAD_PARAMETER);
2120 ctx.user_fn = user_fn;
2121 ctx.arg = arg;
2122 ctx.parent = h;
2123 return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
2124 acpi_device_scan_cb, NULL, &ctx, NULL));
2125 }
2126
2127 /*
2128 * Even though ACPI devices are not PCI, we use the PCI approach for setting
2129 * device power states since it's close enough to ACPI.
2130 */
2131 int
acpi_set_powerstate(device_t child,int state)2132 acpi_set_powerstate(device_t child, int state)
2133 {
2134 ACPI_HANDLE h;
2135 ACPI_STATUS status;
2136
2137 h = acpi_get_handle(child);
2138 if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
2139 return (EINVAL);
2140 if (h == NULL)
2141 return (0);
2142
2143 /* Ignore errors if the power methods aren't present. */
2144 status = acpi_pwr_switch_consumer(h, state);
2145 if (ACPI_SUCCESS(status)) {
2146 if (bootverbose)
2147 device_printf(child, "set ACPI power state D%d on %s\n",
2148 state, acpi_name(h));
2149 } else if (status != AE_NOT_FOUND)
2150 device_printf(child,
2151 "failed to set ACPI power state D%d on %s: %s\n", state,
2152 acpi_name(h), AcpiFormatException(status));
2153
2154 return (0);
2155 }
2156
2157 static int
acpi_isa_pnp_probe(device_t bus,device_t child,struct isa_pnp_id * ids)2158 acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
2159 {
2160 int result, cid_count, i;
2161 uint32_t lid, cids[8];
2162
2163 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2164
2165 /*
2166 * ISA-style drivers attached to ACPI may persist and
2167 * probe manually if we return ENOENT. We never want
2168 * that to happen, so don't ever return it.
2169 */
2170 result = ENXIO;
2171
2172 /* Scan the supplied IDs for a match */
2173 lid = acpi_isa_get_logicalid(child);
2174 cid_count = acpi_isa_get_compatid(child, cids, 8);
2175 while (ids && ids->ip_id) {
2176 if (lid == ids->ip_id) {
2177 result = 0;
2178 goto out;
2179 }
2180 for (i = 0; i < cid_count; i++) {
2181 if (cids[i] == ids->ip_id) {
2182 result = 0;
2183 goto out;
2184 }
2185 }
2186 ids++;
2187 }
2188
2189 out:
2190 if (result == 0 && ids->ip_desc)
2191 device_set_desc(child, ids->ip_desc);
2192
2193 return_VALUE (result);
2194 }
2195
2196 /*
2197 * Look for a MCFG table. If it is present, use the settings for
2198 * domain (segment) 0 to setup PCI config space access via the memory
2199 * map.
2200 *
2201 * On non-x86 architectures (arm64 for now), this will be done from the
2202 * PCI host bridge driver.
2203 */
2204 static void
acpi_enable_pcie(void)2205 acpi_enable_pcie(void)
2206 {
2207 #if defined(__i386__) || defined(__amd64__)
2208 ACPI_TABLE_HEADER *hdr;
2209 ACPI_MCFG_ALLOCATION *alloc, *end;
2210 ACPI_STATUS status;
2211
2212 status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
2213 if (ACPI_FAILURE(status))
2214 return;
2215
2216 end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
2217 alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
2218 while (alloc < end) {
2219 pcie_cfgregopen(alloc->Address, alloc->PciSegment,
2220 alloc->StartBusNumber, alloc->EndBusNumber);
2221 alloc++;
2222 }
2223 #endif
2224 }
2225
2226 static void
acpi_platform_osc(device_t dev)2227 acpi_platform_osc(device_t dev)
2228 {
2229 ACPI_HANDLE sb_handle;
2230 ACPI_STATUS status;
2231 uint32_t cap_set[2];
2232
2233 /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */
2234 static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = {
2235 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44,
2236 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48
2237 };
2238
2239 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
2240 return;
2241
2242 cap_set[1] = 0x10; /* APEI Support */
2243 status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1,
2244 nitems(cap_set), cap_set, cap_set, false);
2245 if (ACPI_FAILURE(status)) {
2246 if (status == AE_NOT_FOUND)
2247 return;
2248 device_printf(dev, "_OSC failed: %s\n",
2249 AcpiFormatException(status));
2250 return;
2251 }
2252 }
2253
2254 /*
2255 * Scan all of the ACPI namespace and attach child devices.
2256 *
2257 * We should only expect to find devices in the \_PR, \_TZ, \_SI, and
2258 * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
2259 * However, in violation of the spec, some systems place their PCI link
2260 * devices in \, so we have to walk the whole namespace. We check the
2261 * type of namespace nodes, so this should be ok.
2262 */
2263 static void
acpi_probe_children(device_t bus)2264 acpi_probe_children(device_t bus)
2265 {
2266
2267 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2268
2269 /*
2270 * Scan the namespace and insert placeholders for all the devices that
2271 * we find. We also probe/attach any early devices.
2272 *
2273 * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
2274 * we want to create nodes for all devices, not just those that are
2275 * currently present. (This assumes that we don't want to create/remove
2276 * devices as they appear, which might be smarter.)
2277 */
2278 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
2279 AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
2280 NULL, bus, NULL);
2281
2282 /* Pre-allocate resources for our rman from any sysresource devices. */
2283 acpi_sysres_alloc(bus);
2284
2285 /* Create any static children by calling device identify methods. */
2286 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
2287 bus_generic_probe(bus);
2288
2289 /* Probe/attach all children, created statically and from the namespace. */
2290 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n"));
2291 bus_generic_attach(bus);
2292
2293 /*
2294 * Reserve resources allocated to children but not yet allocated
2295 * by a driver.
2296 */
2297 acpi_reserve_resources(bus);
2298
2299 /* Attach wake sysctls. */
2300 acpi_wake_sysctl_walk(bus);
2301
2302 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
2303 return_VOID;
2304 }
2305
2306 /*
2307 * Determine the probe order for a given device.
2308 */
2309 static void
acpi_probe_order(ACPI_HANDLE handle,int * order)2310 acpi_probe_order(ACPI_HANDLE handle, int *order)
2311 {
2312 ACPI_OBJECT_TYPE type;
2313
2314 /*
2315 * 0. CPUs
2316 * 1. I/O port and memory system resource holders
2317 * 2. Clocks and timers (to handle early accesses)
2318 * 3. Embedded controllers (to handle early accesses)
2319 * 4. PCI Link Devices
2320 */
2321 AcpiGetType(handle, &type);
2322 if (type == ACPI_TYPE_PROCESSOR)
2323 *order = 0;
2324 else if (acpi_MatchHid(handle, "PNP0C01") ||
2325 acpi_MatchHid(handle, "PNP0C02"))
2326 *order = 1;
2327 else if (acpi_MatchHid(handle, "PNP0100") ||
2328 acpi_MatchHid(handle, "PNP0103") ||
2329 acpi_MatchHid(handle, "PNP0B00"))
2330 *order = 2;
2331 else if (acpi_MatchHid(handle, "PNP0C09"))
2332 *order = 3;
2333 else if (acpi_MatchHid(handle, "PNP0C0F"))
2334 *order = 4;
2335 }
2336
2337 /*
2338 * Evaluate a child device and determine whether we might attach a device to
2339 * it.
2340 */
2341 static ACPI_STATUS
acpi_probe_child(ACPI_HANDLE handle,UINT32 level,void * context,void ** status)2342 acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2343 {
2344 ACPI_DEVICE_INFO *devinfo;
2345 struct acpi_device *ad;
2346 struct acpi_prw_data prw;
2347 ACPI_OBJECT_TYPE type;
2348 ACPI_HANDLE h;
2349 device_t bus, child;
2350 char *handle_str;
2351 int order;
2352
2353 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2354
2355 if (acpi_disabled("children"))
2356 return_ACPI_STATUS (AE_OK);
2357
2358 /* Skip this device if we think we'll have trouble with it. */
2359 if (acpi_avoid(handle))
2360 return_ACPI_STATUS (AE_OK);
2361
2362 bus = (device_t)context;
2363 if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
2364 handle_str = acpi_name(handle);
2365 switch (type) {
2366 case ACPI_TYPE_DEVICE:
2367 /*
2368 * Since we scan from \, be sure to skip system scope objects.
2369 * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
2370 * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run
2371 * during the initialization and \_TZ_ is to support Notify() on it.
2372 */
2373 if (strcmp(handle_str, "\\_SB_") == 0 ||
2374 strcmp(handle_str, "\\_TZ_") == 0)
2375 break;
2376 if (acpi_parse_prw(handle, &prw) == 0)
2377 AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
2378
2379 /*
2380 * Ignore devices that do not have a _HID or _CID. They should
2381 * be discovered by other buses (e.g. the PCI bus driver).
2382 */
2383 if (!acpi_has_hid(handle))
2384 break;
2385 /* FALLTHROUGH */
2386 case ACPI_TYPE_PROCESSOR:
2387 case ACPI_TYPE_THERMAL:
2388 case ACPI_TYPE_POWER:
2389 /*
2390 * Create a placeholder device for this node. Sort the
2391 * placeholder so that the probe/attach passes will run
2392 * breadth-first. Orders less than ACPI_DEV_BASE_ORDER
2393 * are reserved for special objects (i.e., system
2394 * resources).
2395 */
2396 ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
2397 order = level * 10 + ACPI_DEV_BASE_ORDER;
2398 acpi_probe_order(handle, &order);
2399 child = BUS_ADD_CHILD(bus, order, NULL, DEVICE_UNIT_ANY);
2400 if (child == NULL)
2401 break;
2402
2403 /* Associate the handle with the device_t and vice versa. */
2404 acpi_set_handle(child, handle);
2405 AcpiAttachData(handle, acpi_fake_objhandler, child);
2406
2407 /*
2408 * Check that the device is present. If it's not present,
2409 * leave it disabled (so that we have a device_t attached to
2410 * the handle, but we don't probe it).
2411 *
2412 * XXX PCI link devices sometimes report "present" but not
2413 * "functional" (i.e. if disabled). Go ahead and probe them
2414 * anyway since we may enable them later.
2415 */
2416 if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
2417 /* Never disable PCI link devices. */
2418 if (acpi_MatchHid(handle, "PNP0C0F"))
2419 break;
2420
2421 /*
2422 * RTC Device should be enabled for CMOS register space
2423 * unless FADT indicate it is not present.
2424 * (checked in RTC probe routine.)
2425 */
2426 if (acpi_MatchHid(handle, "PNP0B00"))
2427 break;
2428
2429 /*
2430 * Docking stations should remain enabled since the system
2431 * may be undocked at boot.
2432 */
2433 if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
2434 break;
2435
2436 device_disable(child);
2437 break;
2438 }
2439
2440 /*
2441 * Get the device's resource settings and attach them.
2442 * Note that if the device has _PRS but no _CRS, we need
2443 * to decide when it's appropriate to try to configure the
2444 * device. Ignore the return value here; it's OK for the
2445 * device not to have any resources.
2446 */
2447 acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
2448
2449 ad = device_get_ivars(child);
2450 ad->ad_cls_class = 0xffffff;
2451 if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
2452 if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
2453 devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
2454 ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
2455 NULL, 16);
2456 }
2457 AcpiOsFree(devinfo);
2458 }
2459 break;
2460 }
2461 }
2462
2463 return_ACPI_STATUS (AE_OK);
2464 }
2465
2466 /*
2467 * AcpiAttachData() requires an object handler but never uses it. This is a
2468 * placeholder object handler so we can store a device_t in an ACPI_HANDLE.
2469 */
2470 void
acpi_fake_objhandler(ACPI_HANDLE h,void * data)2471 acpi_fake_objhandler(ACPI_HANDLE h, void *data)
2472 {
2473 }
2474
2475 static void
acpi_shutdown_final(void * arg,int howto)2476 acpi_shutdown_final(void *arg, int howto)
2477 {
2478 struct acpi_softc *sc = (struct acpi_softc *)arg;
2479 register_t intr;
2480 ACPI_STATUS status;
2481
2482 /*
2483 * XXX Shutdown code should only run on the BSP (cpuid 0).
2484 * Some chipsets do not power off the system correctly if called from
2485 * an AP.
2486 */
2487 if ((howto & RB_POWEROFF) != 0) {
2488 status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
2489 if (ACPI_FAILURE(status)) {
2490 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2491 AcpiFormatException(status));
2492 return;
2493 }
2494 device_printf(sc->acpi_dev, "Powering system off\n");
2495 intr = intr_disable();
2496 status = AcpiEnterSleepState(ACPI_STATE_S5);
2497 if (ACPI_FAILURE(status)) {
2498 intr_restore(intr);
2499 device_printf(sc->acpi_dev, "power-off failed - %s\n",
2500 AcpiFormatException(status));
2501 } else {
2502 DELAY(1000000);
2503 intr_restore(intr);
2504 device_printf(sc->acpi_dev, "power-off failed - timeout\n");
2505 }
2506 } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
2507 /* Reboot using the reset register. */
2508 status = AcpiReset();
2509 if (ACPI_SUCCESS(status)) {
2510 DELAY(1000000);
2511 device_printf(sc->acpi_dev, "reset failed - timeout\n");
2512 } else if (status != AE_NOT_EXIST)
2513 device_printf(sc->acpi_dev, "reset failed - %s\n",
2514 AcpiFormatException(status));
2515 } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) {
2516 /*
2517 * Only disable ACPI if the user requested. On some systems, writing
2518 * the disable value to SMI_CMD hangs the system.
2519 */
2520 device_printf(sc->acpi_dev, "Shutting down\n");
2521 AcpiTerminate();
2522 }
2523 }
2524
2525 static void
acpi_enable_fixed_events(struct acpi_softc * sc)2526 acpi_enable_fixed_events(struct acpi_softc *sc)
2527 {
2528 static int first_time = 1;
2529
2530 /* Enable and clear fixed events and install handlers. */
2531 if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
2532 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
2533 AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
2534 acpi_event_power_button_sleep, sc);
2535 if (first_time)
2536 device_printf(sc->acpi_dev, "Power Button (fixed)\n");
2537 }
2538 if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
2539 AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
2540 AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
2541 acpi_event_sleep_button_sleep, sc);
2542 if (first_time)
2543 device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
2544 }
2545
2546 first_time = 0;
2547 }
2548
2549 /*
2550 * Returns true if the device is actually present and should
2551 * be attached to. This requires the present, enabled, UI-visible
2552 * and diagnostics-passed bits to be set.
2553 */
2554 BOOLEAN
acpi_DeviceIsPresent(device_t dev)2555 acpi_DeviceIsPresent(device_t dev)
2556 {
2557 ACPI_HANDLE h;
2558 UINT32 s;
2559 ACPI_STATUS status;
2560
2561 h = acpi_get_handle(dev);
2562 if (h == NULL)
2563 return (FALSE);
2564
2565 #ifdef ACPI_EARLY_EPYC_WAR
2566 /*
2567 * Certain Treadripper boards always returns 0 for FreeBSD because it
2568 * only returns non-zero for the OS string "Windows 2015". Otherwise it
2569 * will return zero. Force them to always be treated as present.
2570 * Beata versions were worse: they always returned 0.
2571 */
2572 if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010"))
2573 return (TRUE);
2574 #endif
2575
2576 status = acpi_GetInteger(h, "_STA", &s);
2577
2578 /*
2579 * If no _STA method or if it failed, then assume that
2580 * the device is present.
2581 */
2582 if (ACPI_FAILURE(status))
2583 return (TRUE);
2584
2585 return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
2586 }
2587
2588 /*
2589 * Returns true if the battery is actually present and inserted.
2590 */
2591 BOOLEAN
acpi_BatteryIsPresent(device_t dev)2592 acpi_BatteryIsPresent(device_t dev)
2593 {
2594 ACPI_HANDLE h;
2595 UINT32 s;
2596 ACPI_STATUS status;
2597
2598 h = acpi_get_handle(dev);
2599 if (h == NULL)
2600 return (FALSE);
2601 status = acpi_GetInteger(h, "_STA", &s);
2602
2603 /*
2604 * If no _STA method or if it failed, then assume that
2605 * the device is present.
2606 */
2607 if (ACPI_FAILURE(status))
2608 return (TRUE);
2609
2610 return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
2611 }
2612
2613 /*
2614 * Returns true if a device has at least one valid device ID.
2615 */
2616 BOOLEAN
acpi_has_hid(ACPI_HANDLE h)2617 acpi_has_hid(ACPI_HANDLE h)
2618 {
2619 ACPI_DEVICE_INFO *devinfo;
2620 BOOLEAN ret;
2621
2622 if (h == NULL ||
2623 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2624 return (FALSE);
2625
2626 ret = FALSE;
2627 if ((devinfo->Valid & ACPI_VALID_HID) != 0)
2628 ret = TRUE;
2629 else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2630 if (devinfo->CompatibleIdList.Count > 0)
2631 ret = TRUE;
2632
2633 AcpiOsFree(devinfo);
2634 return (ret);
2635 }
2636
2637 /*
2638 * Match a HID string against a handle
2639 * returns ACPI_MATCHHID_HID if _HID match
2640 * ACPI_MATCHHID_CID if _CID match and not _HID match.
2641 * ACPI_MATCHHID_NOMATCH=0 if no match.
2642 */
2643 int
acpi_MatchHid(ACPI_HANDLE h,const char * hid)2644 acpi_MatchHid(ACPI_HANDLE h, const char *hid)
2645 {
2646 ACPI_DEVICE_INFO *devinfo;
2647 BOOLEAN ret;
2648 int i;
2649
2650 if (hid == NULL || h == NULL ||
2651 ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2652 return (ACPI_MATCHHID_NOMATCH);
2653
2654 ret = ACPI_MATCHHID_NOMATCH;
2655 if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
2656 strcmp(hid, devinfo->HardwareId.String) == 0)
2657 ret = ACPI_MATCHHID_HID;
2658 else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2659 for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
2660 if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
2661 ret = ACPI_MATCHHID_CID;
2662 break;
2663 }
2664 }
2665
2666 AcpiOsFree(devinfo);
2667 return (ret);
2668 }
2669
2670 /*
2671 * Return the handle of a named object within our scope, ie. that of (parent)
2672 * or one if its parents.
2673 */
2674 ACPI_STATUS
acpi_GetHandleInScope(ACPI_HANDLE parent,char * path,ACPI_HANDLE * result)2675 acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
2676 {
2677 ACPI_HANDLE r;
2678 ACPI_STATUS status;
2679
2680 /* Walk back up the tree to the root */
2681 for (;;) {
2682 status = AcpiGetHandle(parent, path, &r);
2683 if (ACPI_SUCCESS(status)) {
2684 *result = r;
2685 return (AE_OK);
2686 }
2687 /* XXX Return error here? */
2688 if (status != AE_NOT_FOUND)
2689 return (AE_OK);
2690 if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
2691 return (AE_NOT_FOUND);
2692 parent = r;
2693 }
2694 }
2695
2696 ACPI_STATUS
acpi_GetProperty(device_t dev,ACPI_STRING propname,const ACPI_OBJECT ** value)2697 acpi_GetProperty(device_t dev, ACPI_STRING propname,
2698 const ACPI_OBJECT **value)
2699 {
2700 device_t bus = device_get_parent(dev);
2701
2702 return (ACPI_GET_PROPERTY(bus, dev, propname, value));
2703 }
2704
2705 /*
2706 * Allocate a buffer with a preset data size.
2707 */
2708 ACPI_BUFFER *
acpi_AllocBuffer(int size)2709 acpi_AllocBuffer(int size)
2710 {
2711 ACPI_BUFFER *buf;
2712
2713 if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2714 return (NULL);
2715 buf->Length = size;
2716 buf->Pointer = (void *)(buf + 1);
2717 return (buf);
2718 }
2719
2720 ACPI_STATUS
acpi_SetInteger(ACPI_HANDLE handle,char * path,UINT32 number)2721 acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2722 {
2723 ACPI_OBJECT arg1;
2724 ACPI_OBJECT_LIST args;
2725
2726 arg1.Type = ACPI_TYPE_INTEGER;
2727 arg1.Integer.Value = number;
2728 args.Count = 1;
2729 args.Pointer = &arg1;
2730
2731 return (AcpiEvaluateObject(handle, path, &args, NULL));
2732 }
2733
2734 /*
2735 * Evaluate a path that should return an integer.
2736 */
2737 ACPI_STATUS
acpi_GetInteger(ACPI_HANDLE handle,char * path,UINT32 * number)2738 acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2739 {
2740 ACPI_STATUS status;
2741 ACPI_BUFFER buf;
2742 ACPI_OBJECT param;
2743
2744 if (handle == NULL)
2745 handle = ACPI_ROOT_OBJECT;
2746
2747 /*
2748 * Assume that what we've been pointed at is an Integer object, or
2749 * a method that will return an Integer.
2750 */
2751 buf.Pointer = ¶m;
2752 buf.Length = sizeof(param);
2753 status = AcpiEvaluateObject(handle, path, NULL, &buf);
2754 if (ACPI_SUCCESS(status)) {
2755 if (param.Type == ACPI_TYPE_INTEGER)
2756 *number = param.Integer.Value;
2757 else
2758 status = AE_TYPE;
2759 }
2760
2761 /*
2762 * In some applications, a method that's expected to return an Integer
2763 * may instead return a Buffer (probably to simplify some internal
2764 * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer,
2765 * convert it into an Integer as best we can.
2766 *
2767 * This is a hack.
2768 */
2769 if (status == AE_BUFFER_OVERFLOW) {
2770 if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2771 status = AE_NO_MEMORY;
2772 } else {
2773 status = AcpiEvaluateObject(handle, path, NULL, &buf);
2774 if (ACPI_SUCCESS(status))
2775 status = acpi_ConvertBufferToInteger(&buf, number);
2776 AcpiOsFree(buf.Pointer);
2777 }
2778 }
2779 return (status);
2780 }
2781
2782 ACPI_STATUS
acpi_ConvertBufferToInteger(ACPI_BUFFER * bufp,UINT32 * number)2783 acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2784 {
2785 ACPI_OBJECT *p;
2786 UINT8 *val;
2787 int i;
2788
2789 p = (ACPI_OBJECT *)bufp->Pointer;
2790 if (p->Type == ACPI_TYPE_INTEGER) {
2791 *number = p->Integer.Value;
2792 return (AE_OK);
2793 }
2794 if (p->Type != ACPI_TYPE_BUFFER)
2795 return (AE_TYPE);
2796 if (p->Buffer.Length > sizeof(int))
2797 return (AE_BAD_DATA);
2798
2799 *number = 0;
2800 val = p->Buffer.Pointer;
2801 for (i = 0; i < p->Buffer.Length; i++)
2802 *number += val[i] << (i * 8);
2803 return (AE_OK);
2804 }
2805
2806 /*
2807 * Iterate over the elements of an a package object, calling the supplied
2808 * function for each element.
2809 *
2810 * XXX possible enhancement might be to abort traversal on error.
2811 */
2812 ACPI_STATUS
acpi_ForeachPackageObject(ACPI_OBJECT * pkg,void (* func)(ACPI_OBJECT * comp,void * arg),void * arg)2813 acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2814 void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2815 {
2816 ACPI_OBJECT *comp;
2817 int i;
2818
2819 if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2820 return (AE_BAD_PARAMETER);
2821
2822 /* Iterate over components */
2823 i = 0;
2824 comp = pkg->Package.Elements;
2825 for (; i < pkg->Package.Count; i++, comp++)
2826 func(comp, arg);
2827
2828 return (AE_OK);
2829 }
2830
2831 /*
2832 * Find the (index)th resource object in a set.
2833 */
2834 ACPI_STATUS
acpi_FindIndexedResource(ACPI_BUFFER * buf,int index,ACPI_RESOURCE ** resp)2835 acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2836 {
2837 ACPI_RESOURCE *rp;
2838 int i;
2839
2840 rp = (ACPI_RESOURCE *)buf->Pointer;
2841 i = index;
2842 while (i-- > 0) {
2843 /* Range check */
2844 if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2845 return (AE_BAD_PARAMETER);
2846
2847 /* Check for terminator */
2848 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2849 return (AE_NOT_FOUND);
2850 rp = ACPI_NEXT_RESOURCE(rp);
2851 }
2852 if (resp != NULL)
2853 *resp = rp;
2854
2855 return (AE_OK);
2856 }
2857
2858 /*
2859 * Append an ACPI_RESOURCE to an ACPI_BUFFER.
2860 *
2861 * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2862 * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
2863 * backing block. If the ACPI_RESOURCE is NULL, return an empty set of
2864 * resources.
2865 */
2866 #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
2867
2868 ACPI_STATUS
acpi_AppendBufferResource(ACPI_BUFFER * buf,ACPI_RESOURCE * res)2869 acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2870 {
2871 ACPI_RESOURCE *rp;
2872 void *newp;
2873
2874 /* Initialise the buffer if necessary. */
2875 if (buf->Pointer == NULL) {
2876 buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2877 if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2878 return (AE_NO_MEMORY);
2879 rp = (ACPI_RESOURCE *)buf->Pointer;
2880 rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2881 rp->Length = ACPI_RS_SIZE_MIN;
2882 }
2883 if (res == NULL)
2884 return (AE_OK);
2885
2886 /*
2887 * Scan the current buffer looking for the terminator.
2888 * This will either find the terminator or hit the end
2889 * of the buffer and return an error.
2890 */
2891 rp = (ACPI_RESOURCE *)buf->Pointer;
2892 for (;;) {
2893 /* Range check, don't go outside the buffer */
2894 if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2895 return (AE_BAD_PARAMETER);
2896 if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2897 break;
2898 rp = ACPI_NEXT_RESOURCE(rp);
2899 }
2900
2901 /*
2902 * Check the size of the buffer and expand if required.
2903 *
2904 * Required size is:
2905 * size of existing resources before terminator +
2906 * size of new resource and header +
2907 * size of terminator.
2908 *
2909 * Note that this loop should really only run once, unless
2910 * for some reason we are stuffing a *really* huge resource.
2911 */
2912 while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
2913 res->Length + ACPI_RS_SIZE_NO_DATA +
2914 ACPI_RS_SIZE_MIN) >= buf->Length) {
2915 if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
2916 return (AE_NO_MEMORY);
2917 bcopy(buf->Pointer, newp, buf->Length);
2918 rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
2919 ((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
2920 AcpiOsFree(buf->Pointer);
2921 buf->Pointer = newp;
2922 buf->Length += buf->Length;
2923 }
2924
2925 /* Insert the new resource. */
2926 bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
2927
2928 /* And add the terminator. */
2929 rp = ACPI_NEXT_RESOURCE(rp);
2930 rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
2931 rp->Length = ACPI_RS_SIZE_MIN;
2932
2933 return (AE_OK);
2934 }
2935
2936 UINT64
acpi_DSMQuery(ACPI_HANDLE h,const uint8_t * uuid,int revision)2937 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision)
2938 {
2939 /*
2940 * ACPI spec 9.1.1 defines this.
2941 *
2942 * "Arg2: Function Index Represents a specific function whose meaning is
2943 * specific to the UUID and Revision ID. Function indices should start
2944 * with 1. Function number zero is a query function (see the special
2945 * return code defined below)."
2946 */
2947 ACPI_BUFFER buf;
2948 ACPI_OBJECT *obj;
2949 UINT64 ret = 0;
2950 int i;
2951
2952 if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) {
2953 ACPI_INFO(("Failed to enumerate DSM functions\n"));
2954 return (0);
2955 }
2956
2957 obj = (ACPI_OBJECT *)buf.Pointer;
2958 KASSERT(obj, ("Object not allowed to be NULL\n"));
2959
2960 /*
2961 * From ACPI 6.2 spec 9.1.1:
2962 * If Function Index = 0, a Buffer containing a function index bitfield.
2963 * Otherwise, the return value and type depends on the UUID and revision
2964 * ID (see below).
2965 */
2966 switch (obj->Type) {
2967 case ACPI_TYPE_BUFFER:
2968 for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++)
2969 ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8));
2970 break;
2971 case ACPI_TYPE_INTEGER:
2972 ACPI_BIOS_WARNING((AE_INFO,
2973 "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n"));
2974 ret = obj->Integer.Value;
2975 break;
2976 default:
2977 ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type));
2978 };
2979
2980 AcpiOsFree(obj);
2981 return ret;
2982 }
2983
2984 /*
2985 * DSM may return multiple types depending on the function. It is therefore
2986 * unsafe to use the typed evaluation. It is highly recommended that the caller
2987 * check the type of the returned object.
2988 */
2989 ACPI_STATUS
acpi_EvaluateDSM(ACPI_HANDLE handle,const uint8_t * uuid,int revision,UINT64 function,ACPI_OBJECT * package,ACPI_BUFFER * out_buf)2990 acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
2991 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf)
2992 {
2993 return (acpi_EvaluateDSMTyped(handle, uuid, revision, function,
2994 package, out_buf, ACPI_TYPE_ANY));
2995 }
2996
2997 ACPI_STATUS
acpi_EvaluateDSMTyped(ACPI_HANDLE handle,const uint8_t * uuid,int revision,UINT64 function,ACPI_OBJECT * package,ACPI_BUFFER * out_buf,ACPI_OBJECT_TYPE type)2998 acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
2999 UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf,
3000 ACPI_OBJECT_TYPE type)
3001 {
3002 ACPI_OBJECT arg[4];
3003 ACPI_OBJECT_LIST arglist;
3004 ACPI_BUFFER buf;
3005 ACPI_STATUS status;
3006
3007 if (out_buf == NULL)
3008 return (AE_NO_MEMORY);
3009
3010 arg[0].Type = ACPI_TYPE_BUFFER;
3011 arg[0].Buffer.Length = ACPI_UUID_LENGTH;
3012 arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid);
3013 arg[1].Type = ACPI_TYPE_INTEGER;
3014 arg[1].Integer.Value = revision;
3015 arg[2].Type = ACPI_TYPE_INTEGER;
3016 arg[2].Integer.Value = function;
3017 if (package) {
3018 arg[3] = *package;
3019 } else {
3020 arg[3].Type = ACPI_TYPE_PACKAGE;
3021 arg[3].Package.Count = 0;
3022 arg[3].Package.Elements = NULL;
3023 }
3024
3025 arglist.Pointer = arg;
3026 arglist.Count = 4;
3027 buf.Pointer = NULL;
3028 buf.Length = ACPI_ALLOCATE_BUFFER;
3029 status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type);
3030 if (ACPI_FAILURE(status))
3031 return (status);
3032
3033 KASSERT(ACPI_SUCCESS(status), ("Unexpected status"));
3034
3035 *out_buf = buf;
3036 return (status);
3037 }
3038
3039 ACPI_STATUS
acpi_EvaluateOSC(ACPI_HANDLE handle,uint8_t * uuid,int revision,int count,uint32_t * caps_in,uint32_t * caps_out,bool query)3040 acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
3041 uint32_t *caps_in, uint32_t *caps_out, bool query)
3042 {
3043 ACPI_OBJECT arg[4], *ret;
3044 ACPI_OBJECT_LIST arglist;
3045 ACPI_BUFFER buf;
3046 ACPI_STATUS status;
3047
3048 arglist.Pointer = arg;
3049 arglist.Count = 4;
3050 arg[0].Type = ACPI_TYPE_BUFFER;
3051 arg[0].Buffer.Length = ACPI_UUID_LENGTH;
3052 arg[0].Buffer.Pointer = uuid;
3053 arg[1].Type = ACPI_TYPE_INTEGER;
3054 arg[1].Integer.Value = revision;
3055 arg[2].Type = ACPI_TYPE_INTEGER;
3056 arg[2].Integer.Value = count;
3057 arg[3].Type = ACPI_TYPE_BUFFER;
3058 arg[3].Buffer.Length = count * sizeof(*caps_in);
3059 arg[3].Buffer.Pointer = (uint8_t *)caps_in;
3060 caps_in[0] = query ? 1 : 0;
3061 buf.Pointer = NULL;
3062 buf.Length = ACPI_ALLOCATE_BUFFER;
3063 status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
3064 ACPI_TYPE_BUFFER);
3065 if (ACPI_FAILURE(status))
3066 return (status);
3067 if (caps_out != NULL) {
3068 ret = buf.Pointer;
3069 if (ret->Buffer.Length != count * sizeof(*caps_out)) {
3070 AcpiOsFree(buf.Pointer);
3071 return (AE_BUFFER_OVERFLOW);
3072 }
3073 bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
3074 }
3075 AcpiOsFree(buf.Pointer);
3076 return (status);
3077 }
3078
3079 /*
3080 * Set interrupt model.
3081 */
3082 ACPI_STATUS
acpi_SetIntrModel(int model)3083 acpi_SetIntrModel(int model)
3084 {
3085
3086 return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
3087 }
3088
3089 /*
3090 * Walk subtables of a table and call a callback routine for each
3091 * subtable. The caller should provide the first subtable and a
3092 * pointer to the end of the table. This can be used to walk tables
3093 * such as MADT and SRAT that use subtable entries.
3094 */
3095 void
acpi_walk_subtables(void * first,void * end,acpi_subtable_handler * handler,void * arg)3096 acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
3097 void *arg)
3098 {
3099 ACPI_SUBTABLE_HEADER *entry;
3100
3101 for (entry = first; (void *)entry < end; ) {
3102 /* Avoid an infinite loop if we hit a bogus entry. */
3103 if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
3104 return;
3105
3106 handler(entry, arg);
3107 entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
3108 }
3109 }
3110
3111 /*
3112 * DEPRECATED. This interface has serious deficiencies and will be
3113 * removed.
3114 *
3115 * Immediately enter the sleep state. In the old model, acpiconf(8) ran
3116 * rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
3117 */
3118 ACPI_STATUS
acpi_SetSleepState(struct acpi_softc * sc,int state)3119 acpi_SetSleepState(struct acpi_softc *sc, int state)
3120 {
3121 static int once;
3122
3123 if (!once) {
3124 device_printf(sc->acpi_dev,
3125 "warning: acpi_SetSleepState() deprecated, need to update your software\n");
3126 once = 1;
3127 }
3128 return (acpi_EnterSleepState(sc, state));
3129 }
3130
3131 #if defined(__amd64__) || defined(__i386__)
3132 static void
acpi_sleep_force_task(void * context)3133 acpi_sleep_force_task(void *context)
3134 {
3135 struct acpi_softc *sc = (struct acpi_softc *)context;
3136
3137 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
3138 device_printf(sc->acpi_dev, "force sleep state S%d failed\n",
3139 sc->acpi_next_sstate);
3140 }
3141
3142 static void
acpi_sleep_force(void * arg)3143 acpi_sleep_force(void *arg)
3144 {
3145 struct acpi_softc *sc = (struct acpi_softc *)arg;
3146
3147 device_printf(sc->acpi_dev,
3148 "suspend request timed out, forcing sleep now\n");
3149 /*
3150 * XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
3151 * Suspend from acpi_task thread instead.
3152 */
3153 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3154 acpi_sleep_force_task, sc)))
3155 device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
3156 }
3157 #endif
3158
3159 /*
3160 * Request that the system enter the given suspend state. All /dev/apm
3161 * devices and devd(8) will be notified. Userland then has a chance to
3162 * save state and acknowledge the request. The system sleeps once all
3163 * acks are in.
3164 */
3165 int
acpi_ReqSleepState(struct acpi_softc * sc,int state)3166 acpi_ReqSleepState(struct acpi_softc *sc, int state)
3167 {
3168 #if defined(__amd64__) || defined(__i386__)
3169 struct apm_clone_data *clone;
3170 ACPI_STATUS status;
3171
3172 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
3173 return (EINVAL);
3174 if (!acpi_sleep_states[state])
3175 return (EOPNOTSUPP);
3176
3177 /*
3178 * If a reboot/shutdown/suspend request is already in progress or
3179 * suspend is blocked due to an upcoming shutdown, just return.
3180 */
3181 if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) {
3182 return (0);
3183 }
3184
3185 /* Wait until sleep is enabled. */
3186 while (sc->acpi_sleep_disabled) {
3187 AcpiOsSleep(1000);
3188 }
3189
3190 ACPI_LOCK(acpi);
3191
3192 sc->acpi_next_sstate = state;
3193
3194 /* S5 (soft-off) should be entered directly with no waiting. */
3195 if (state == ACPI_STATE_S5) {
3196 ACPI_UNLOCK(acpi);
3197 status = acpi_EnterSleepState(sc, state);
3198 return (ACPI_SUCCESS(status) ? 0 : ENXIO);
3199 }
3200
3201 /* Record the pending state and notify all apm devices. */
3202 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
3203 clone->notify_status = APM_EV_NONE;
3204 if ((clone->flags & ACPI_EVF_DEVD) == 0) {
3205 selwakeuppri(&clone->sel_read, PZERO);
3206 KNOTE_LOCKED(&clone->sel_read.si_note, 0);
3207 }
3208 }
3209
3210 /* If devd(8) is not running, immediately enter the sleep state. */
3211 if (!devctl_process_running()) {
3212 ACPI_UNLOCK(acpi);
3213 status = acpi_EnterSleepState(sc, state);
3214 return (ACPI_SUCCESS(status) ? 0 : ENXIO);
3215 }
3216
3217 /*
3218 * Set a timeout to fire if userland doesn't ack the suspend request
3219 * in time. This way we still eventually go to sleep if we were
3220 * overheating or running low on battery, even if userland is hung.
3221 * We cancel this timeout once all userland acks are in or the
3222 * suspend request is aborted.
3223 */
3224 callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
3225 ACPI_UNLOCK(acpi);
3226
3227 /* Now notify devd(8) also. */
3228 acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state);
3229
3230 return (0);
3231 #else
3232 /* This platform does not support acpi suspend/resume. */
3233 return (EOPNOTSUPP);
3234 #endif
3235 }
3236
3237 /*
3238 * Acknowledge (or reject) a pending sleep state. The caller has
3239 * prepared for suspend and is now ready for it to proceed. If the
3240 * error argument is non-zero, it indicates suspend should be cancelled
3241 * and gives an errno value describing why. Once all votes are in,
3242 * we suspend the system.
3243 */
3244 int
acpi_AckSleepState(struct apm_clone_data * clone,int error)3245 acpi_AckSleepState(struct apm_clone_data *clone, int error)
3246 {
3247 #if defined(__amd64__) || defined(__i386__)
3248 struct acpi_softc *sc;
3249 int ret, sleeping;
3250
3251 /* If no pending sleep state, return an error. */
3252 ACPI_LOCK(acpi);
3253 sc = clone->acpi_sc;
3254 if (sc->acpi_next_sstate == 0) {
3255 ACPI_UNLOCK(acpi);
3256 return (ENXIO);
3257 }
3258
3259 /* Caller wants to abort suspend process. */
3260 if (error) {
3261 sc->acpi_next_sstate = 0;
3262 callout_stop(&sc->susp_force_to);
3263 device_printf(sc->acpi_dev,
3264 "listener on %s cancelled the pending suspend\n",
3265 devtoname(clone->cdev));
3266 ACPI_UNLOCK(acpi);
3267 return (0);
3268 }
3269
3270 /*
3271 * Mark this device as acking the suspend request. Then, walk through
3272 * all devices, seeing if they agree yet. We only count devices that
3273 * are writable since read-only devices couldn't ack the request.
3274 */
3275 sleeping = TRUE;
3276 clone->notify_status = APM_EV_ACKED;
3277 STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
3278 if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
3279 clone->notify_status != APM_EV_ACKED) {
3280 sleeping = FALSE;
3281 break;
3282 }
3283 }
3284
3285 /* If all devices have voted "yes", we will suspend now. */
3286 if (sleeping)
3287 callout_stop(&sc->susp_force_to);
3288 ACPI_UNLOCK(acpi);
3289 ret = 0;
3290 if (sleeping) {
3291 if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate)))
3292 ret = ENODEV;
3293 }
3294 return (ret);
3295 #else
3296 /* This platform does not support acpi suspend/resume. */
3297 return (EOPNOTSUPP);
3298 #endif
3299 }
3300
3301 static void
acpi_sleep_enable(void * arg)3302 acpi_sleep_enable(void *arg)
3303 {
3304 struct acpi_softc *sc = (struct acpi_softc *)arg;
3305
3306 ACPI_LOCK_ASSERT(acpi);
3307
3308 /* Reschedule if the system is not fully up and running. */
3309 if (!AcpiGbl_SystemAwakeAndRunning) {
3310 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3311 return;
3312 }
3313
3314 sc->acpi_sleep_disabled = FALSE;
3315 }
3316
3317 static ACPI_STATUS
acpi_sleep_disable(struct acpi_softc * sc)3318 acpi_sleep_disable(struct acpi_softc *sc)
3319 {
3320 ACPI_STATUS status;
3321
3322 /* Fail if the system is not fully up and running. */
3323 if (!AcpiGbl_SystemAwakeAndRunning)
3324 return (AE_ERROR);
3325
3326 ACPI_LOCK(acpi);
3327 status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
3328 sc->acpi_sleep_disabled = TRUE;
3329 ACPI_UNLOCK(acpi);
3330
3331 return (status);
3332 }
3333
3334 enum acpi_sleep_state {
3335 ACPI_SS_NONE,
3336 ACPI_SS_GPE_SET,
3337 ACPI_SS_DEV_SUSPEND,
3338 ACPI_SS_SLP_PREP,
3339 ACPI_SS_SLEPT,
3340 };
3341
3342 /*
3343 * Enter the desired system sleep state.
3344 *
3345 * Currently we support S1-S5 but S4 is only S4BIOS
3346 */
3347 static ACPI_STATUS
acpi_EnterSleepState(struct acpi_softc * sc,int state)3348 acpi_EnterSleepState(struct acpi_softc *sc, int state)
3349 {
3350 register_t intr;
3351 ACPI_STATUS status;
3352 ACPI_EVENT_STATUS power_button_status;
3353 enum acpi_sleep_state slp_state;
3354 int sleep_result;
3355
3356 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3357
3358 if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX)
3359 return_ACPI_STATUS (AE_BAD_PARAMETER);
3360 if (!acpi_sleep_states[state]) {
3361 device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n",
3362 state);
3363 return (AE_SUPPORT);
3364 }
3365
3366 /* Re-entry once we're suspending is not allowed. */
3367 status = acpi_sleep_disable(sc);
3368 if (ACPI_FAILURE(status)) {
3369 device_printf(sc->acpi_dev,
3370 "suspend request ignored (not ready yet)\n");
3371 return (status);
3372 }
3373
3374 if (state == ACPI_STATE_S5) {
3375 /*
3376 * Shut down cleanly and power off. This will call us back through the
3377 * shutdown handlers.
3378 */
3379 shutdown_nice(RB_POWEROFF);
3380 return_ACPI_STATUS (AE_OK);
3381 }
3382
3383 EVENTHANDLER_INVOKE(power_suspend_early);
3384 stop_all_proc();
3385 suspend_all_fs();
3386 EVENTHANDLER_INVOKE(power_suspend);
3387
3388 #ifdef EARLY_AP_STARTUP
3389 MPASS(mp_ncpus == 1 || smp_started);
3390 thread_lock(curthread);
3391 sched_bind(curthread, 0);
3392 thread_unlock(curthread);
3393 #else
3394 if (smp_started) {
3395 thread_lock(curthread);
3396 sched_bind(curthread, 0);
3397 thread_unlock(curthread);
3398 }
3399 #endif
3400
3401 /*
3402 * Be sure to hold Giant across DEVICE_SUSPEND/RESUME
3403 */
3404 bus_topo_lock();
3405
3406 slp_state = ACPI_SS_NONE;
3407
3408 sc->acpi_sstate = state;
3409
3410 /* Enable any GPEs as appropriate and requested by the user. */
3411 acpi_wake_prep_walk(state);
3412 slp_state = ACPI_SS_GPE_SET;
3413
3414 /*
3415 * Inform all devices that we are going to sleep. If at least one
3416 * device fails, DEVICE_SUSPEND() automatically resumes the tree.
3417 *
3418 * XXX Note that a better two-pass approach with a 'veto' pass
3419 * followed by a "real thing" pass would be better, but the current
3420 * bus interface does not provide for this.
3421 */
3422 if (DEVICE_SUSPEND(root_bus) != 0) {
3423 device_printf(sc->acpi_dev, "device_suspend failed\n");
3424 goto backout;
3425 }
3426 slp_state = ACPI_SS_DEV_SUSPEND;
3427
3428 status = AcpiEnterSleepStatePrep(state);
3429 if (ACPI_FAILURE(status)) {
3430 device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
3431 AcpiFormatException(status));
3432 goto backout;
3433 }
3434 slp_state = ACPI_SS_SLP_PREP;
3435
3436 if (sc->acpi_sleep_delay > 0)
3437 DELAY(sc->acpi_sleep_delay * 1000000);
3438
3439 suspendclock();
3440 intr = intr_disable();
3441 if (state != ACPI_STATE_S1) {
3442 sleep_result = acpi_sleep_machdep(sc, state);
3443 acpi_wakeup_machdep(sc, state, sleep_result, 0);
3444
3445 /*
3446 * XXX According to ACPI specification SCI_EN bit should be restored
3447 * by ACPI platform (BIOS, firmware) to its pre-sleep state.
3448 * Unfortunately some BIOSes fail to do that and that leads to
3449 * unexpected and serious consequences during wake up like a system
3450 * getting stuck in SMI handlers.
3451 * This hack is picked up from Linux, which claims that it follows
3452 * Windows behavior.
3453 */
3454 if (sleep_result == 1 && state != ACPI_STATE_S4)
3455 AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
3456
3457 if (sleep_result == 1 && state == ACPI_STATE_S3) {
3458 /*
3459 * Prevent mis-interpretation of the wakeup by power button
3460 * as a request for power off.
3461 * Ideally we should post an appropriate wakeup event,
3462 * perhaps using acpi_event_power_button_wake or alike.
3463 *
3464 * Clearing of power button status after wakeup is mandated
3465 * by ACPI specification in section "Fixed Power Button".
3466 *
3467 * XXX As of ACPICA 20121114 AcpiGetEventStatus provides
3468 * status as 0/1 corressponding to inactive/active despite
3469 * its type being ACPI_EVENT_STATUS. In other words,
3470 * we should not test for ACPI_EVENT_FLAG_SET for time being.
3471 */
3472 if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
3473 &power_button_status)) && power_button_status != 0) {
3474 AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
3475 device_printf(sc->acpi_dev,
3476 "cleared fixed power button status\n");
3477 }
3478 }
3479
3480 intr_restore(intr);
3481
3482 /* call acpi_wakeup_machdep() again with interrupt enabled */
3483 acpi_wakeup_machdep(sc, state, sleep_result, 1);
3484
3485 AcpiLeaveSleepStatePrep(state);
3486
3487 if (sleep_result == -1)
3488 goto backout;
3489
3490 /* Re-enable ACPI hardware on wakeup from sleep state 4. */
3491 if (state == ACPI_STATE_S4)
3492 AcpiEnable();
3493 } else {
3494 status = AcpiEnterSleepState(state);
3495 intr_restore(intr);
3496 AcpiLeaveSleepStatePrep(state);
3497 if (ACPI_FAILURE(status)) {
3498 device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
3499 AcpiFormatException(status));
3500 goto backout;
3501 }
3502 }
3503 slp_state = ACPI_SS_SLEPT;
3504
3505 /*
3506 * Back out state according to how far along we got in the suspend
3507 * process. This handles both the error and success cases.
3508 */
3509 backout:
3510 if (slp_state >= ACPI_SS_SLP_PREP)
3511 resumeclock();
3512 if (slp_state >= ACPI_SS_GPE_SET) {
3513 acpi_wake_prep_walk(state);
3514 sc->acpi_sstate = ACPI_STATE_S0;
3515 }
3516 if (slp_state >= ACPI_SS_DEV_SUSPEND)
3517 DEVICE_RESUME(root_bus);
3518 if (slp_state >= ACPI_SS_SLP_PREP)
3519 AcpiLeaveSleepState(state);
3520 if (slp_state >= ACPI_SS_SLEPT) {
3521 #if defined(__i386__) || defined(__amd64__)
3522 /* NB: we are still using ACPI timecounter at this point. */
3523 resume_TSC();
3524 #endif
3525 acpi_resync_clock(sc);
3526 acpi_enable_fixed_events(sc);
3527 }
3528 sc->acpi_next_sstate = 0;
3529
3530 bus_topo_unlock();
3531
3532 #ifdef EARLY_AP_STARTUP
3533 thread_lock(curthread);
3534 sched_unbind(curthread);
3535 thread_unlock(curthread);
3536 #else
3537 if (smp_started) {
3538 thread_lock(curthread);
3539 sched_unbind(curthread);
3540 thread_unlock(curthread);
3541 }
3542 #endif
3543
3544 resume_all_fs();
3545 resume_all_proc();
3546
3547 EVENTHANDLER_INVOKE(power_resume);
3548
3549 /* Allow another sleep request after a while. */
3550 callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3551
3552 /* Run /etc/rc.resume after we are back. */
3553 if (devctl_process_running())
3554 acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state);
3555
3556 return_ACPI_STATUS (status);
3557 }
3558
3559 static void
acpi_resync_clock(struct acpi_softc * sc)3560 acpi_resync_clock(struct acpi_softc *sc)
3561 {
3562
3563 /*
3564 * Warm up timecounter again and reset system clock.
3565 */
3566 (void)timecounter->tc_get_timecount(timecounter);
3567 inittodr(time_second + sc->acpi_sleep_delay);
3568 }
3569
3570 /* Enable or disable the device's wake GPE. */
3571 int
acpi_wake_set_enable(device_t dev,int enable)3572 acpi_wake_set_enable(device_t dev, int enable)
3573 {
3574 struct acpi_prw_data prw;
3575 ACPI_STATUS status;
3576 int flags;
3577
3578 /* Make sure the device supports waking the system and get the GPE. */
3579 if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
3580 return (ENXIO);
3581
3582 flags = acpi_get_flags(dev);
3583 if (enable) {
3584 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3585 ACPI_GPE_ENABLE);
3586 if (ACPI_FAILURE(status)) {
3587 device_printf(dev, "enable wake failed\n");
3588 return (ENXIO);
3589 }
3590 acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
3591 } else {
3592 status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3593 ACPI_GPE_DISABLE);
3594 if (ACPI_FAILURE(status)) {
3595 device_printf(dev, "disable wake failed\n");
3596 return (ENXIO);
3597 }
3598 acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
3599 }
3600
3601 return (0);
3602 }
3603
3604 static int
acpi_wake_sleep_prep(ACPI_HANDLE handle,int sstate)3605 acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate)
3606 {
3607 struct acpi_prw_data prw;
3608 device_t dev;
3609
3610 /* Check that this is a wake-capable device and get its GPE. */
3611 if (acpi_parse_prw(handle, &prw) != 0)
3612 return (ENXIO);
3613 dev = acpi_get_device(handle);
3614
3615 /*
3616 * The destination sleep state must be less than (i.e., higher power)
3617 * or equal to the value specified by _PRW. If this GPE cannot be
3618 * enabled for the next sleep state, then disable it. If it can and
3619 * the user requested it be enabled, turn on any required power resources
3620 * and set _PSW.
3621 */
3622 if (sstate > prw.lowest_wake) {
3623 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
3624 if (bootverbose)
3625 device_printf(dev, "wake_prep disabled wake for %s (S%d)\n",
3626 acpi_name(handle), sstate);
3627 } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
3628 acpi_pwr_wake_enable(handle, 1);
3629 acpi_SetInteger(handle, "_PSW", 1);
3630 if (bootverbose)
3631 device_printf(dev, "wake_prep enabled for %s (S%d)\n",
3632 acpi_name(handle), sstate);
3633 }
3634
3635 return (0);
3636 }
3637
3638 static int
acpi_wake_run_prep(ACPI_HANDLE handle,int sstate)3639 acpi_wake_run_prep(ACPI_HANDLE handle, int sstate)
3640 {
3641 struct acpi_prw_data prw;
3642 device_t dev;
3643
3644 /*
3645 * Check that this is a wake-capable device and get its GPE. Return
3646 * now if the user didn't enable this device for wake.
3647 */
3648 if (acpi_parse_prw(handle, &prw) != 0)
3649 return (ENXIO);
3650 dev = acpi_get_device(handle);
3651 if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
3652 return (0);
3653
3654 /*
3655 * If this GPE couldn't be enabled for the previous sleep state, it was
3656 * disabled before going to sleep so re-enable it. If it was enabled,
3657 * clear _PSW and turn off any power resources it used.
3658 */
3659 if (sstate > prw.lowest_wake) {
3660 AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
3661 if (bootverbose)
3662 device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
3663 } else {
3664 acpi_SetInteger(handle, "_PSW", 0);
3665 acpi_pwr_wake_enable(handle, 0);
3666 if (bootverbose)
3667 device_printf(dev, "run_prep cleaned up for %s\n",
3668 acpi_name(handle));
3669 }
3670
3671 return (0);
3672 }
3673
3674 static ACPI_STATUS
acpi_wake_prep(ACPI_HANDLE handle,UINT32 level,void * context,void ** status)3675 acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
3676 {
3677 int sstate;
3678
3679 /* If suspending, run the sleep prep function, otherwise wake. */
3680 sstate = *(int *)context;
3681 if (AcpiGbl_SystemAwakeAndRunning)
3682 acpi_wake_sleep_prep(handle, sstate);
3683 else
3684 acpi_wake_run_prep(handle, sstate);
3685 return (AE_OK);
3686 }
3687
3688 /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
3689 static int
acpi_wake_prep_walk(int sstate)3690 acpi_wake_prep_walk(int sstate)
3691 {
3692 ACPI_HANDLE sb_handle;
3693
3694 if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
3695 AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
3696 acpi_wake_prep, NULL, &sstate, NULL);
3697 return (0);
3698 }
3699
3700 /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
3701 static int
acpi_wake_sysctl_walk(device_t dev)3702 acpi_wake_sysctl_walk(device_t dev)
3703 {
3704 int error, i, numdevs;
3705 device_t *devlist;
3706 device_t child;
3707 ACPI_STATUS status;
3708
3709 error = device_get_children(dev, &devlist, &numdevs);
3710 if (error != 0 || numdevs == 0) {
3711 if (numdevs == 0)
3712 free(devlist, M_TEMP);
3713 return (error);
3714 }
3715 for (i = 0; i < numdevs; i++) {
3716 child = devlist[i];
3717 acpi_wake_sysctl_walk(child);
3718 if (!device_is_attached(child))
3719 continue;
3720 status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
3721 if (ACPI_SUCCESS(status)) {
3722 SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
3723 SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
3724 "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0,
3725 acpi_wake_set_sysctl, "I", "Device set to wake the system");
3726 }
3727 }
3728 free(devlist, M_TEMP);
3729
3730 return (0);
3731 }
3732
3733 /* Enable or disable wake from userland. */
3734 static int
acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)3735 acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
3736 {
3737 int enable, error;
3738 device_t dev;
3739
3740 dev = (device_t)arg1;
3741 enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
3742
3743 error = sysctl_handle_int(oidp, &enable, 0, req);
3744 if (error != 0 || req->newptr == NULL)
3745 return (error);
3746 if (enable != 0 && enable != 1)
3747 return (EINVAL);
3748
3749 return (acpi_wake_set_enable(dev, enable));
3750 }
3751
3752 /* Parse a device's _PRW into a structure. */
3753 int
acpi_parse_prw(ACPI_HANDLE h,struct acpi_prw_data * prw)3754 acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
3755 {
3756 ACPI_STATUS status;
3757 ACPI_BUFFER prw_buffer;
3758 ACPI_OBJECT *res, *res2;
3759 int error, i, power_count;
3760
3761 if (h == NULL || prw == NULL)
3762 return (EINVAL);
3763
3764 /*
3765 * The _PRW object (7.2.9) is only required for devices that have the
3766 * ability to wake the system from a sleeping state.
3767 */
3768 error = EINVAL;
3769 prw_buffer.Pointer = NULL;
3770 prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
3771 status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
3772 if (ACPI_FAILURE(status))
3773 return (ENOENT);
3774 res = (ACPI_OBJECT *)prw_buffer.Pointer;
3775 if (res == NULL)
3776 return (ENOENT);
3777 if (!ACPI_PKG_VALID(res, 2))
3778 goto out;
3779
3780 /*
3781 * Element 1 of the _PRW object:
3782 * The lowest power system sleeping state that can be entered while still
3783 * providing wake functionality. The sleeping state being entered must
3784 * be less than (i.e., higher power) or equal to this value.
3785 */
3786 if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
3787 goto out;
3788
3789 /*
3790 * Element 0 of the _PRW object:
3791 */
3792 switch (res->Package.Elements[0].Type) {
3793 case ACPI_TYPE_INTEGER:
3794 /*
3795 * If the data type of this package element is numeric, then this
3796 * _PRW package element is the bit index in the GPEx_EN, in the
3797 * GPE blocks described in the FADT, of the enable bit that is
3798 * enabled for the wake event.
3799 */
3800 prw->gpe_handle = NULL;
3801 prw->gpe_bit = res->Package.Elements[0].Integer.Value;
3802 error = 0;
3803 break;
3804 case ACPI_TYPE_PACKAGE:
3805 /*
3806 * If the data type of this package element is a package, then this
3807 * _PRW package element is itself a package containing two
3808 * elements. The first is an object reference to the GPE Block
3809 * device that contains the GPE that will be triggered by the wake
3810 * event. The second element is numeric and it contains the bit
3811 * index in the GPEx_EN, in the GPE Block referenced by the
3812 * first element in the package, of the enable bit that is enabled for
3813 * the wake event.
3814 *
3815 * For example, if this field is a package then it is of the form:
3816 * Package() {\_SB.PCI0.ISA.GPE, 2}
3817 */
3818 res2 = &res->Package.Elements[0];
3819 if (!ACPI_PKG_VALID(res2, 2))
3820 goto out;
3821 prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
3822 if (prw->gpe_handle == NULL)
3823 goto out;
3824 if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
3825 goto out;
3826 error = 0;
3827 break;
3828 default:
3829 goto out;
3830 }
3831
3832 /* Elements 2 to N of the _PRW object are power resources. */
3833 power_count = res->Package.Count - 2;
3834 if (power_count > ACPI_PRW_MAX_POWERRES) {
3835 printf("ACPI device %s has too many power resources\n", acpi_name(h));
3836 power_count = 0;
3837 }
3838 prw->power_res_count = power_count;
3839 for (i = 0; i < power_count; i++)
3840 prw->power_res[i] = res->Package.Elements[i];
3841
3842 out:
3843 if (prw_buffer.Pointer != NULL)
3844 AcpiOsFree(prw_buffer.Pointer);
3845 return (error);
3846 }
3847
3848 /*
3849 * ACPI Event Handlers
3850 */
3851
3852 /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
3853
3854 static void
acpi_system_eventhandler_sleep(void * arg,int state)3855 acpi_system_eventhandler_sleep(void *arg, int state)
3856 {
3857 struct acpi_softc *sc = (struct acpi_softc *)arg;
3858 int ret;
3859
3860 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3861
3862 /* Check if button action is disabled or unknown. */
3863 if (state == ACPI_STATE_UNKNOWN)
3864 return;
3865
3866 /* Request that the system prepare to enter the given suspend state. */
3867 ret = acpi_ReqSleepState(sc, state);
3868 if (ret != 0)
3869 device_printf(sc->acpi_dev,
3870 "request to enter state S%d failed (err %d)\n", state, ret);
3871
3872 return_VOID;
3873 }
3874
3875 static void
acpi_system_eventhandler_wakeup(void * arg,int state)3876 acpi_system_eventhandler_wakeup(void *arg, int state)
3877 {
3878
3879 ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state);
3880
3881 /* Currently, nothing to do for wakeup. */
3882
3883 return_VOID;
3884 }
3885
3886 /*
3887 * ACPICA Event Handlers (FixedEvent, also called from button notify handler)
3888 */
3889 static void
acpi_invoke_sleep_eventhandler(void * context)3890 acpi_invoke_sleep_eventhandler(void *context)
3891 {
3892
3893 EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context);
3894 }
3895
3896 static void
acpi_invoke_wake_eventhandler(void * context)3897 acpi_invoke_wake_eventhandler(void *context)
3898 {
3899
3900 EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context);
3901 }
3902
3903 UINT32
acpi_event_power_button_sleep(void * context)3904 acpi_event_power_button_sleep(void *context)
3905 {
3906 #if defined(__amd64__) || defined(__i386__)
3907 struct acpi_softc *sc = (struct acpi_softc *)context;
3908 #else
3909 (void)context;
3910 #endif
3911
3912 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3913
3914 #if defined(__amd64__) || defined(__i386__)
3915 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3916 acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx)))
3917 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3918 #else
3919 shutdown_nice(RB_POWEROFF);
3920 #endif
3921
3922 return_VALUE (ACPI_INTERRUPT_HANDLED);
3923 }
3924
3925 UINT32
acpi_event_power_button_wake(void * context)3926 acpi_event_power_button_wake(void *context)
3927 {
3928 struct acpi_softc *sc = (struct acpi_softc *)context;
3929
3930 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3931
3932 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3933 acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx)))
3934 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3935 return_VALUE (ACPI_INTERRUPT_HANDLED);
3936 }
3937
3938 UINT32
acpi_event_sleep_button_sleep(void * context)3939 acpi_event_sleep_button_sleep(void *context)
3940 {
3941 struct acpi_softc *sc = (struct acpi_softc *)context;
3942
3943 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3944
3945 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3946 acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx)))
3947 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3948 return_VALUE (ACPI_INTERRUPT_HANDLED);
3949 }
3950
3951 UINT32
acpi_event_sleep_button_wake(void * context)3952 acpi_event_sleep_button_wake(void *context)
3953 {
3954 struct acpi_softc *sc = (struct acpi_softc *)context;
3955
3956 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
3957
3958 if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3959 acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx)))
3960 return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
3961 return_VALUE (ACPI_INTERRUPT_HANDLED);
3962 }
3963
3964 /*
3965 * XXX This static buffer is suboptimal. There is no locking so only
3966 * use this for single-threaded callers.
3967 */
3968 char *
acpi_name(ACPI_HANDLE handle)3969 acpi_name(ACPI_HANDLE handle)
3970 {
3971 ACPI_BUFFER buf;
3972 static char data[256];
3973
3974 buf.Length = sizeof(data);
3975 buf.Pointer = data;
3976
3977 if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
3978 return (data);
3979 return ("(unknown)");
3980 }
3981
3982 /*
3983 * Debugging/bug-avoidance. Avoid trying to fetch info on various
3984 * parts of the namespace.
3985 */
3986 int
acpi_avoid(ACPI_HANDLE handle)3987 acpi_avoid(ACPI_HANDLE handle)
3988 {
3989 char *cp, *env, *np;
3990 int len;
3991
3992 np = acpi_name(handle);
3993 if (*np == '\\')
3994 np++;
3995 if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
3996 return (0);
3997
3998 /* Scan the avoid list checking for a match */
3999 cp = env;
4000 for (;;) {
4001 while (*cp != 0 && isspace(*cp))
4002 cp++;
4003 if (*cp == 0)
4004 break;
4005 len = 0;
4006 while (cp[len] != 0 && !isspace(cp[len]))
4007 len++;
4008 if (!strncmp(cp, np, len)) {
4009 freeenv(env);
4010 return(1);
4011 }
4012 cp += len;
4013 }
4014 freeenv(env);
4015
4016 return (0);
4017 }
4018
4019 /*
4020 * Debugging/bug-avoidance. Disable ACPI subsystem components.
4021 */
4022 int
acpi_disabled(char * subsys)4023 acpi_disabled(char *subsys)
4024 {
4025 char *cp, *env;
4026 int len;
4027
4028 if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
4029 return (0);
4030 if (strcmp(env, "all") == 0) {
4031 freeenv(env);
4032 return (1);
4033 }
4034
4035 /* Scan the disable list, checking for a match. */
4036 cp = env;
4037 for (;;) {
4038 while (*cp != '\0' && isspace(*cp))
4039 cp++;
4040 if (*cp == '\0')
4041 break;
4042 len = 0;
4043 while (cp[len] != '\0' && !isspace(cp[len]))
4044 len++;
4045 if (strncmp(cp, subsys, len) == 0) {
4046 freeenv(env);
4047 return (1);
4048 }
4049 cp += len;
4050 }
4051 freeenv(env);
4052
4053 return (0);
4054 }
4055
4056 static void
acpi_lookup(void * arg,const char * name,device_t * dev)4057 acpi_lookup(void *arg, const char *name, device_t *dev)
4058 {
4059 ACPI_HANDLE handle;
4060
4061 if (*dev != NULL)
4062 return;
4063
4064 /*
4065 * Allow any handle name that is specified as an absolute path and
4066 * starts with '\'. We could restrict this to \_SB and friends,
4067 * but see acpi_probe_children() for notes on why we scan the entire
4068 * namespace for devices.
4069 *
4070 * XXX: The pathname argument to AcpiGetHandle() should be fixed to
4071 * be const.
4072 */
4073 if (name[0] != '\\')
4074 return;
4075 if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
4076 &handle)))
4077 return;
4078 *dev = acpi_get_device(handle);
4079 }
4080
4081 /*
4082 * Control interface.
4083 *
4084 * We multiplex ioctls for all participating ACPI devices here. Individual
4085 * drivers wanting to be accessible via /dev/acpi should use the
4086 * register/deregister interface to make their handlers visible.
4087 */
4088 struct acpi_ioctl_hook
4089 {
4090 TAILQ_ENTRY(acpi_ioctl_hook) link;
4091 u_long cmd;
4092 acpi_ioctl_fn fn;
4093 void *arg;
4094 };
4095
4096 static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks;
4097 static int acpi_ioctl_hooks_initted;
4098
4099 int
acpi_register_ioctl(u_long cmd,acpi_ioctl_fn fn,void * arg)4100 acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
4101 {
4102 struct acpi_ioctl_hook *hp;
4103
4104 if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL)
4105 return (ENOMEM);
4106 hp->cmd = cmd;
4107 hp->fn = fn;
4108 hp->arg = arg;
4109
4110 ACPI_LOCK(acpi);
4111 if (acpi_ioctl_hooks_initted == 0) {
4112 TAILQ_INIT(&acpi_ioctl_hooks);
4113 acpi_ioctl_hooks_initted = 1;
4114 }
4115 TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
4116 ACPI_UNLOCK(acpi);
4117
4118 return (0);
4119 }
4120
4121 void
acpi_deregister_ioctl(u_long cmd,acpi_ioctl_fn fn)4122 acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
4123 {
4124 struct acpi_ioctl_hook *hp;
4125
4126 ACPI_LOCK(acpi);
4127 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
4128 if (hp->cmd == cmd && hp->fn == fn)
4129 break;
4130
4131 if (hp != NULL) {
4132 TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
4133 free(hp, M_ACPIDEV);
4134 }
4135 ACPI_UNLOCK(acpi);
4136 }
4137
4138 static int
acpiopen(struct cdev * dev,int flag,int fmt,struct thread * td)4139 acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
4140 {
4141 return (0);
4142 }
4143
4144 static int
acpiclose(struct cdev * dev,int flag,int fmt,struct thread * td)4145 acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
4146 {
4147 return (0);
4148 }
4149
4150 static int
acpiioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)4151 acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
4152 {
4153 struct acpi_softc *sc;
4154 struct acpi_ioctl_hook *hp;
4155 int error, state;
4156
4157 error = 0;
4158 hp = NULL;
4159 sc = dev->si_drv1;
4160
4161 /*
4162 * Scan the list of registered ioctls, looking for handlers.
4163 */
4164 ACPI_LOCK(acpi);
4165 if (acpi_ioctl_hooks_initted)
4166 TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
4167 if (hp->cmd == cmd)
4168 break;
4169 }
4170 ACPI_UNLOCK(acpi);
4171 if (hp)
4172 return (hp->fn(cmd, addr, hp->arg));
4173
4174 /*
4175 * Core ioctls are not permitted for non-writable user.
4176 * Currently, other ioctls just fetch information.
4177 * Not changing system behavior.
4178 */
4179 if ((flag & FWRITE) == 0)
4180 return (EPERM);
4181
4182 /* Core system ioctls. */
4183 switch (cmd) {
4184 case ACPIIO_REQSLPSTATE:
4185 state = *(int *)addr;
4186 if (state != ACPI_STATE_S5)
4187 return (acpi_ReqSleepState(sc, state));
4188 device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
4189 error = EOPNOTSUPP;
4190 break;
4191 case ACPIIO_ACKSLPSTATE:
4192 error = *(int *)addr;
4193 error = acpi_AckSleepState(sc->acpi_clone, error);
4194 break;
4195 case ACPIIO_SETSLPSTATE: /* DEPRECATED */
4196 state = *(int *)addr;
4197 if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX)
4198 return (EINVAL);
4199 if (!acpi_sleep_states[state])
4200 return (EOPNOTSUPP);
4201 if (ACPI_FAILURE(acpi_SetSleepState(sc, state)))
4202 error = ENXIO;
4203 break;
4204 default:
4205 error = ENXIO;
4206 break;
4207 }
4208
4209 return (error);
4210 }
4211
4212 static int
acpi_sname2sstate(const char * sname)4213 acpi_sname2sstate(const char *sname)
4214 {
4215 int sstate;
4216
4217 if (toupper(sname[0]) == 'S') {
4218 sstate = sname[1] - '0';
4219 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
4220 sname[2] == '\0')
4221 return (sstate);
4222 } else if (strcasecmp(sname, "NONE") == 0)
4223 return (ACPI_STATE_UNKNOWN);
4224 return (-1);
4225 }
4226
4227 static const char *
acpi_sstate2sname(int sstate)4228 acpi_sstate2sname(int sstate)
4229 {
4230 static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" };
4231
4232 if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5)
4233 return (snames[sstate]);
4234 else if (sstate == ACPI_STATE_UNKNOWN)
4235 return ("NONE");
4236 return (NULL);
4237 }
4238
4239 static int
acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)4240 acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
4241 {
4242 int error;
4243 struct sbuf sb;
4244 UINT8 state;
4245
4246 sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4247 for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
4248 if (acpi_sleep_states[state])
4249 sbuf_printf(&sb, "%s ", acpi_sstate2sname(state));
4250 sbuf_trim(&sb);
4251 sbuf_finish(&sb);
4252 error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4253 sbuf_delete(&sb);
4254 return (error);
4255 }
4256
4257 static int
acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)4258 acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
4259 {
4260 char sleep_state[10];
4261 int error, new_state, old_state;
4262
4263 old_state = *(int *)oidp->oid_arg1;
4264 strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state));
4265 error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
4266 if (error == 0 && req->newptr != NULL) {
4267 new_state = acpi_sname2sstate(sleep_state);
4268 if (new_state < ACPI_STATE_S1)
4269 return (EINVAL);
4270 if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state])
4271 return (EOPNOTSUPP);
4272 if (new_state != old_state)
4273 *(int *)oidp->oid_arg1 = new_state;
4274 }
4275 return (error);
4276 }
4277
4278 /* Inform devctl(4) when we receive a Notify. */
4279 void
acpi_UserNotify(const char * subsystem,ACPI_HANDLE h,uint8_t notify)4280 acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
4281 {
4282 char notify_buf[16];
4283 ACPI_BUFFER handle_buf;
4284 ACPI_STATUS status;
4285
4286 if (subsystem == NULL)
4287 return;
4288
4289 handle_buf.Pointer = NULL;
4290 handle_buf.Length = ACPI_ALLOCATE_BUFFER;
4291 status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
4292 if (ACPI_FAILURE(status))
4293 return;
4294 snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
4295 devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
4296 AcpiOsFree(handle_buf.Pointer);
4297 }
4298
4299 #ifdef ACPI_DEBUG
4300 /*
4301 * Support for parsing debug options from the kernel environment.
4302 *
4303 * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
4304 * by specifying the names of the bits in the debug.acpi.layer and
4305 * debug.acpi.level environment variables. Bits may be unset by
4306 * prefixing the bit name with !.
4307 */
4308 struct debugtag
4309 {
4310 char *name;
4311 UINT32 value;
4312 };
4313
4314 static struct debugtag dbg_layer[] = {
4315 {"ACPI_UTILITIES", ACPI_UTILITIES},
4316 {"ACPI_HARDWARE", ACPI_HARDWARE},
4317 {"ACPI_EVENTS", ACPI_EVENTS},
4318 {"ACPI_TABLES", ACPI_TABLES},
4319 {"ACPI_NAMESPACE", ACPI_NAMESPACE},
4320 {"ACPI_PARSER", ACPI_PARSER},
4321 {"ACPI_DISPATCHER", ACPI_DISPATCHER},
4322 {"ACPI_EXECUTER", ACPI_EXECUTER},
4323 {"ACPI_RESOURCES", ACPI_RESOURCES},
4324 {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER},
4325 {"ACPI_OS_SERVICES", ACPI_OS_SERVICES},
4326 {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER},
4327 {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS},
4328
4329 {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER},
4330 {"ACPI_BATTERY", ACPI_BATTERY},
4331 {"ACPI_BUS", ACPI_BUS},
4332 {"ACPI_BUTTON", ACPI_BUTTON},
4333 {"ACPI_EC", ACPI_EC},
4334 {"ACPI_FAN", ACPI_FAN},
4335 {"ACPI_POWERRES", ACPI_POWERRES},
4336 {"ACPI_PROCESSOR", ACPI_PROCESSOR},
4337 {"ACPI_THERMAL", ACPI_THERMAL},
4338 {"ACPI_TIMER", ACPI_TIMER},
4339 {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS},
4340 {NULL, 0}
4341 };
4342
4343 static struct debugtag dbg_level[] = {
4344 {"ACPI_LV_INIT", ACPI_LV_INIT},
4345 {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT},
4346 {"ACPI_LV_INFO", ACPI_LV_INFO},
4347 {"ACPI_LV_REPAIR", ACPI_LV_REPAIR},
4348 {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS},
4349
4350 /* Trace verbosity level 1 [Standard Trace Level] */
4351 {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES},
4352 {"ACPI_LV_PARSE", ACPI_LV_PARSE},
4353 {"ACPI_LV_LOAD", ACPI_LV_LOAD},
4354 {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH},
4355 {"ACPI_LV_EXEC", ACPI_LV_EXEC},
4356 {"ACPI_LV_NAMES", ACPI_LV_NAMES},
4357 {"ACPI_LV_OPREGION", ACPI_LV_OPREGION},
4358 {"ACPI_LV_BFIELD", ACPI_LV_BFIELD},
4359 {"ACPI_LV_TABLES", ACPI_LV_TABLES},
4360 {"ACPI_LV_VALUES", ACPI_LV_VALUES},
4361 {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS},
4362 {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES},
4363 {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS},
4364 {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE},
4365 {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1},
4366
4367 /* Trace verbosity level 2 [Function tracing and memory allocation] */
4368 {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS},
4369 {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS},
4370 {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS},
4371 {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2},
4372 {"ACPI_LV_ALL", ACPI_LV_ALL},
4373
4374 /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
4375 {"ACPI_LV_MUTEX", ACPI_LV_MUTEX},
4376 {"ACPI_LV_THREADS", ACPI_LV_THREADS},
4377 {"ACPI_LV_IO", ACPI_LV_IO},
4378 {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS},
4379 {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3},
4380
4381 /* Exceptionally verbose output -- also used in the global "DebugLevel" */
4382 {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE},
4383 {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO},
4384 {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES},
4385 {"ACPI_LV_EVENTS", ACPI_LV_EVENTS},
4386 {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE},
4387 {NULL, 0}
4388 };
4389
4390 static void
acpi_parse_debug(char * cp,struct debugtag * tag,UINT32 * flag)4391 acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
4392 {
4393 char *ep;
4394 int i, l;
4395 int set;
4396
4397 while (*cp) {
4398 if (isspace(*cp)) {
4399 cp++;
4400 continue;
4401 }
4402 ep = cp;
4403 while (*ep && !isspace(*ep))
4404 ep++;
4405 if (*cp == '!') {
4406 set = 0;
4407 cp++;
4408 if (cp == ep)
4409 continue;
4410 } else {
4411 set = 1;
4412 }
4413 l = ep - cp;
4414 for (i = 0; tag[i].name != NULL; i++) {
4415 if (!strncmp(cp, tag[i].name, l)) {
4416 if (set)
4417 *flag |= tag[i].value;
4418 else
4419 *flag &= ~tag[i].value;
4420 }
4421 }
4422 cp = ep;
4423 }
4424 }
4425
4426 static void
acpi_set_debugging(void * junk)4427 acpi_set_debugging(void *junk)
4428 {
4429 char *layer, *level;
4430
4431 if (cold) {
4432 AcpiDbgLayer = 0;
4433 AcpiDbgLevel = 0;
4434 }
4435
4436 layer = kern_getenv("debug.acpi.layer");
4437 level = kern_getenv("debug.acpi.level");
4438 if (layer == NULL && level == NULL)
4439 return;
4440
4441 printf("ACPI set debug");
4442 if (layer != NULL) {
4443 if (strcmp("NONE", layer) != 0)
4444 printf(" layer '%s'", layer);
4445 acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
4446 freeenv(layer);
4447 }
4448 if (level != NULL) {
4449 if (strcmp("NONE", level) != 0)
4450 printf(" level '%s'", level);
4451 acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
4452 freeenv(level);
4453 }
4454 printf("\n");
4455 }
4456
4457 SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
4458 NULL);
4459
4460 static int
acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)4461 acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
4462 {
4463 int error, *dbg;
4464 struct debugtag *tag;
4465 struct sbuf sb;
4466 char temp[128];
4467
4468 if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
4469 return (ENOMEM);
4470 if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
4471 tag = &dbg_layer[0];
4472 dbg = &AcpiDbgLayer;
4473 } else {
4474 tag = &dbg_level[0];
4475 dbg = &AcpiDbgLevel;
4476 }
4477
4478 /* Get old values if this is a get request. */
4479 ACPI_SERIAL_BEGIN(acpi);
4480 if (*dbg == 0) {
4481 sbuf_cpy(&sb, "NONE");
4482 } else if (req->newptr == NULL) {
4483 for (; tag->name != NULL; tag++) {
4484 if ((*dbg & tag->value) == tag->value)
4485 sbuf_printf(&sb, "%s ", tag->name);
4486 }
4487 }
4488 sbuf_trim(&sb);
4489 sbuf_finish(&sb);
4490 strlcpy(temp, sbuf_data(&sb), sizeof(temp));
4491 sbuf_delete(&sb);
4492
4493 error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
4494
4495 /* Check for error or no change */
4496 if (error == 0 && req->newptr != NULL) {
4497 *dbg = 0;
4498 kern_setenv((char *)oidp->oid_arg1, temp);
4499 acpi_set_debugging(NULL);
4500 }
4501 ACPI_SERIAL_END(acpi);
4502
4503 return (error);
4504 }
4505
4506 SYSCTL_PROC(_debug_acpi, OID_AUTO, layer,
4507 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.layer", 0,
4508 acpi_debug_sysctl, "A",
4509 "");
4510 SYSCTL_PROC(_debug_acpi, OID_AUTO, level,
4511 CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.level", 0,
4512 acpi_debug_sysctl, "A",
4513 "");
4514 #endif /* ACPI_DEBUG */
4515
4516 static int
acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)4517 acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
4518 {
4519 int error;
4520 int old;
4521
4522 old = acpi_debug_objects;
4523 error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
4524 if (error != 0 || req->newptr == NULL)
4525 return (error);
4526 if (old == acpi_debug_objects || (old && acpi_debug_objects))
4527 return (0);
4528
4529 ACPI_SERIAL_BEGIN(acpi);
4530 AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
4531 ACPI_SERIAL_END(acpi);
4532
4533 return (0);
4534 }
4535
4536 static int
acpi_parse_interfaces(char * str,struct acpi_interface * iface)4537 acpi_parse_interfaces(char *str, struct acpi_interface *iface)
4538 {
4539 char *p;
4540 size_t len;
4541 int i, j;
4542
4543 p = str;
4544 while (isspace(*p) || *p == ',')
4545 p++;
4546 len = strlen(p);
4547 if (len == 0)
4548 return (0);
4549 p = strdup(p, M_TEMP);
4550 for (i = 0; i < len; i++)
4551 if (p[i] == ',')
4552 p[i] = '\0';
4553 i = j = 0;
4554 while (i < len)
4555 if (isspace(p[i]) || p[i] == '\0')
4556 i++;
4557 else {
4558 i += strlen(p + i) + 1;
4559 j++;
4560 }
4561 if (j == 0) {
4562 free(p, M_TEMP);
4563 return (0);
4564 }
4565 iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
4566 iface->num = j;
4567 i = j = 0;
4568 while (i < len)
4569 if (isspace(p[i]) || p[i] == '\0')
4570 i++;
4571 else {
4572 iface->data[j] = p + i;
4573 i += strlen(p + i) + 1;
4574 j++;
4575 }
4576
4577 return (j);
4578 }
4579
4580 static void
acpi_free_interfaces(struct acpi_interface * iface)4581 acpi_free_interfaces(struct acpi_interface *iface)
4582 {
4583
4584 free(iface->data[0], M_TEMP);
4585 free(iface->data, M_TEMP);
4586 }
4587
4588 static void
acpi_reset_interfaces(device_t dev)4589 acpi_reset_interfaces(device_t dev)
4590 {
4591 struct acpi_interface list;
4592 ACPI_STATUS status;
4593 int i;
4594
4595 if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
4596 for (i = 0; i < list.num; i++) {
4597 status = AcpiInstallInterface(list.data[i]);
4598 if (ACPI_FAILURE(status))
4599 device_printf(dev,
4600 "failed to install _OSI(\"%s\"): %s\n",
4601 list.data[i], AcpiFormatException(status));
4602 else if (bootverbose)
4603 device_printf(dev, "installed _OSI(\"%s\")\n",
4604 list.data[i]);
4605 }
4606 acpi_free_interfaces(&list);
4607 }
4608 if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
4609 for (i = 0; i < list.num; i++) {
4610 status = AcpiRemoveInterface(list.data[i]);
4611 if (ACPI_FAILURE(status))
4612 device_printf(dev,
4613 "failed to remove _OSI(\"%s\"): %s\n",
4614 list.data[i], AcpiFormatException(status));
4615 else if (bootverbose)
4616 device_printf(dev, "removed _OSI(\"%s\")\n",
4617 list.data[i]);
4618 }
4619 acpi_free_interfaces(&list);
4620 }
4621 }
4622
4623 static int
acpi_pm_func(u_long cmd,void * arg,...)4624 acpi_pm_func(u_long cmd, void *arg, ...)
4625 {
4626 int state, acpi_state;
4627 int error;
4628 struct acpi_softc *sc;
4629 va_list ap;
4630
4631 error = 0;
4632 switch (cmd) {
4633 case POWER_CMD_SUSPEND:
4634 sc = (struct acpi_softc *)arg;
4635 if (sc == NULL) {
4636 error = EINVAL;
4637 goto out;
4638 }
4639
4640 va_start(ap, arg);
4641 state = va_arg(ap, int);
4642 va_end(ap);
4643
4644 switch (state) {
4645 case POWER_SLEEP_STATE_STANDBY:
4646 acpi_state = sc->acpi_standby_sx;
4647 break;
4648 case POWER_SLEEP_STATE_SUSPEND:
4649 acpi_state = sc->acpi_suspend_sx;
4650 break;
4651 case POWER_SLEEP_STATE_HIBERNATE:
4652 acpi_state = ACPI_STATE_S4;
4653 break;
4654 default:
4655 error = EINVAL;
4656 goto out;
4657 }
4658
4659 if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state)))
4660 error = ENXIO;
4661 break;
4662 default:
4663 error = EINVAL;
4664 goto out;
4665 }
4666
4667 out:
4668 return (error);
4669 }
4670
4671 static void
acpi_pm_register(void * arg)4672 acpi_pm_register(void *arg)
4673 {
4674 if (!cold || resource_disabled("acpi", 0))
4675 return;
4676
4677 power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL);
4678 }
4679
4680 SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);
4681