xref: /linux/drivers/acpi/osl.c (revision 06d07429858317ded2db7986113a9e0129cd599b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13 
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33 
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37 
38 #include "acpica/accommon.h"
39 #include "internal.h"
40 
41 /* Definitions for ACPI_DEBUG_PRINT() */
42 #define _COMPONENT		ACPI_OS_SERVICES
43 ACPI_MODULE_NAME("osl");
44 
45 struct acpi_os_dpc {
46 	acpi_osd_exec_callback function;
47 	void *context;
48 	struct work_struct work;
49 };
50 
51 #ifdef ENABLE_DEBUGGER
52 #include <linux/kdb.h>
53 
54 /* stuff for debugger support */
55 int acpi_in_debugger;
56 EXPORT_SYMBOL(acpi_in_debugger);
57 #endif				/*ENABLE_DEBUGGER */
58 
59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 				      u32 pm1b_ctrl);
61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 				      u32 val_b);
63 
64 static acpi_osd_handler acpi_irq_handler;
65 static void *acpi_irq_context;
66 static struct workqueue_struct *kacpid_wq;
67 static struct workqueue_struct *kacpi_notify_wq;
68 static struct workqueue_struct *kacpi_hotplug_wq;
69 static bool acpi_os_initialized;
70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71 bool acpi_permanent_mmap = false;
72 
73 /*
74  * This list of permanent mappings is for memory that may be accessed from
75  * interrupt context, where we can't do the ioremap().
76  */
77 struct acpi_ioremap {
78 	struct list_head list;
79 	void __iomem *virt;
80 	acpi_physical_address phys;
81 	acpi_size size;
82 	union {
83 		unsigned long refcount;
84 		struct rcu_work rwork;
85 	} track;
86 };
87 
88 static LIST_HEAD(acpi_ioremaps);
89 static DEFINE_MUTEX(acpi_ioremap_lock);
90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91 
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)92 static void __init acpi_request_region (struct acpi_generic_address *gas,
93 	unsigned int length, char *desc)
94 {
95 	u64 addr;
96 
97 	/* Handle possible alignment issues */
98 	memcpy(&addr, &gas->address, sizeof(addr));
99 	if (!addr || !length)
100 		return;
101 
102 	/* Resources are never freed */
103 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 		request_region(addr, length, desc);
105 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 		request_mem_region(addr, length, desc);
107 }
108 
acpi_reserve_resources(void)109 static int __init acpi_reserve_resources(void)
110 {
111 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 		"ACPI PM1a_EVT_BLK");
113 
114 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 		"ACPI PM1b_EVT_BLK");
116 
117 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 		"ACPI PM1a_CNT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 		"ACPI PM1b_CNT_BLK");
122 
123 	if (acpi_gbl_FADT.pm_timer_length == 4)
124 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125 
126 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 		"ACPI PM2_CNT_BLK");
128 
129 	/* Length of GPE blocks must be a non-negative multiple of 2 */
130 
131 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134 
135 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138 
139 	return 0;
140 }
141 fs_initcall_sync(acpi_reserve_resources);
142 
acpi_os_printf(const char * fmt,...)143 void acpi_os_printf(const char *fmt, ...)
144 {
145 	va_list args;
146 	va_start(args, fmt);
147 	acpi_os_vprintf(fmt, args);
148 	va_end(args);
149 }
150 EXPORT_SYMBOL(acpi_os_printf);
151 
acpi_os_vprintf(const char * fmt,va_list args)152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153 {
154 	static char buffer[512];
155 
156 	vsprintf(buffer, fmt, args);
157 
158 #ifdef ENABLE_DEBUGGER
159 	if (acpi_in_debugger) {
160 		kdb_printf("%s", buffer);
161 	} else {
162 		if (printk_get_level(buffer))
163 			printk("%s", buffer);
164 		else
165 			printk(KERN_CONT "%s", buffer);
166 	}
167 #else
168 	if (acpi_debugger_write_log(buffer) < 0) {
169 		if (printk_get_level(buffer))
170 			printk("%s", buffer);
171 		else
172 			printk(KERN_CONT "%s", buffer);
173 	}
174 #endif
175 }
176 
177 #ifdef CONFIG_KEXEC
178 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)179 static int __init setup_acpi_rsdp(char *arg)
180 {
181 	return kstrtoul(arg, 16, &acpi_rsdp);
182 }
183 early_param("acpi_rsdp", setup_acpi_rsdp);
184 #endif
185 
acpi_os_get_root_pointer(void)186 acpi_physical_address __init acpi_os_get_root_pointer(void)
187 {
188 	acpi_physical_address pa;
189 
190 #ifdef CONFIG_KEXEC
191 	/*
192 	 * We may have been provided with an RSDP on the command line,
193 	 * but if a malicious user has done so they may be pointing us
194 	 * at modified ACPI tables that could alter kernel behaviour -
195 	 * so, we check the lockdown status before making use of
196 	 * it. If we trust it then also stash it in an architecture
197 	 * specific location (if appropriate) so it can be carried
198 	 * over further kexec()s.
199 	 */
200 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 		acpi_arch_set_root_pointer(acpi_rsdp);
202 		return acpi_rsdp;
203 	}
204 #endif
205 	pa = acpi_arch_get_root_pointer();
206 	if (pa)
207 		return pa;
208 
209 	if (efi_enabled(EFI_CONFIG_TABLES)) {
210 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 			return efi.acpi20;
212 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 			return efi.acpi;
214 		pr_err("System description tables not found\n");
215 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 		acpi_find_root_pointer(&pa);
217 	}
218 
219 	return pa;
220 }
221 
222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)224 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225 {
226 	struct acpi_ioremap *map;
227 
228 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 		if (map->phys <= phys &&
230 		    phys + size <= map->phys + map->size)
231 			return map;
232 
233 	return NULL;
234 }
235 
236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239 {
240 	struct acpi_ioremap *map;
241 
242 	map = acpi_map_lookup(phys, size);
243 	if (map)
244 		return map->virt + (phys - map->phys);
245 
246 	return NULL;
247 }
248 
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250 {
251 	struct acpi_ioremap *map;
252 	void __iomem *virt = NULL;
253 
254 	mutex_lock(&acpi_ioremap_lock);
255 	map = acpi_map_lookup(phys, size);
256 	if (map) {
257 		virt = map->virt + (phys - map->phys);
258 		map->track.refcount++;
259 	}
260 	mutex_unlock(&acpi_ioremap_lock);
261 	return virt;
262 }
263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264 
265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268 {
269 	struct acpi_ioremap *map;
270 
271 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 		if (map->virt <= virt &&
273 		    virt + size <= map->virt + map->size)
274 			return map;
275 
276 	return NULL;
277 }
278 
279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 /* ioremap will take care of cache attributes */
281 #define should_use_kmap(pfn)   0
282 #else
283 #define should_use_kmap(pfn)   page_is_ram(pfn)
284 #endif
285 
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287 {
288 	unsigned long pfn;
289 
290 	pfn = pg_off >> PAGE_SHIFT;
291 	if (should_use_kmap(pfn)) {
292 		if (pg_sz > PAGE_SIZE)
293 			return NULL;
294 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 	} else
296 		return acpi_os_ioremap(pg_off, pg_sz);
297 }
298 
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300 {
301 	unsigned long pfn;
302 
303 	pfn = pg_off >> PAGE_SHIFT;
304 	if (should_use_kmap(pfn))
305 		kunmap(pfn_to_page(pfn));
306 	else
307 		iounmap(vaddr);
308 }
309 
310 /**
311  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312  * @phys: Start of the physical address range to map.
313  * @size: Size of the physical address range to map.
314  *
315  * Look up the given physical address range in the list of existing ACPI memory
316  * mappings.  If found, get a reference to it and return a pointer to it (its
317  * virtual address).  If not found, map it, add it to that list and return a
318  * pointer to it.
319  *
320  * During early init (when acpi_permanent_mmap has not been set yet) this
321  * routine simply calls __acpi_map_table() to get the job done.
322  */
323 void __iomem __ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325 {
326 	struct acpi_ioremap *map;
327 	void __iomem *virt;
328 	acpi_physical_address pg_off;
329 	acpi_size pg_sz;
330 
331 	if (phys > ULONG_MAX) {
332 		pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 		return NULL;
334 	}
335 
336 	if (!acpi_permanent_mmap)
337 		return __acpi_map_table((unsigned long)phys, size);
338 
339 	mutex_lock(&acpi_ioremap_lock);
340 	/* Check if there's a suitable mapping already. */
341 	map = acpi_map_lookup(phys, size);
342 	if (map) {
343 		map->track.refcount++;
344 		goto out;
345 	}
346 
347 	map = kzalloc(sizeof(*map), GFP_KERNEL);
348 	if (!map) {
349 		mutex_unlock(&acpi_ioremap_lock);
350 		return NULL;
351 	}
352 
353 	pg_off = round_down(phys, PAGE_SIZE);
354 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 	virt = acpi_map(phys, size);
356 	if (!virt) {
357 		mutex_unlock(&acpi_ioremap_lock);
358 		kfree(map);
359 		return NULL;
360 	}
361 
362 	INIT_LIST_HEAD(&map->list);
363 	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 	map->phys = pg_off;
365 	map->size = pg_sz;
366 	map->track.refcount = 1;
367 
368 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
369 
370 out:
371 	mutex_unlock(&acpi_ioremap_lock);
372 	return map->virt + (phys - map->phys);
373 }
374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375 
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377 {
378 	return (void *)acpi_os_map_iomem(phys, size);
379 }
380 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381 
acpi_os_map_remove(struct work_struct * work)382 static void acpi_os_map_remove(struct work_struct *work)
383 {
384 	struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 						struct acpi_ioremap,
386 						track.rwork);
387 
388 	acpi_unmap(map->phys, map->virt);
389 	kfree(map);
390 }
391 
392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394 {
395 	if (--map->track.refcount)
396 		return;
397 
398 	list_del_rcu(&map->list);
399 
400 	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 	queue_rcu_work(system_wq, &map->track.rwork);
402 }
403 
404 /**
405  * acpi_os_unmap_iomem - Drop a memory mapping reference.
406  * @virt: Start of the address range to drop a reference to.
407  * @size: Size of the address range to drop a reference to.
408  *
409  * Look up the given virtual address range in the list of existing ACPI memory
410  * mappings, drop a reference to it and if there are no more active references
411  * to it, queue it up for later removal.
412  *
413  * During early init (when acpi_permanent_mmap has not been set yet) this
414  * routine simply calls __acpi_unmap_table() to get the job done.  Since
415  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416  * here.
417  */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419 {
420 	struct acpi_ioremap *map;
421 
422 	if (!acpi_permanent_mmap) {
423 		__acpi_unmap_table(virt, size);
424 		return;
425 	}
426 
427 	mutex_lock(&acpi_ioremap_lock);
428 
429 	map = acpi_map_lookup_virt(virt, size);
430 	if (!map) {
431 		mutex_unlock(&acpi_ioremap_lock);
432 		WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 		return;
434 	}
435 	acpi_os_drop_map_ref(map);
436 
437 	mutex_unlock(&acpi_ioremap_lock);
438 }
439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440 
441 /**
442  * acpi_os_unmap_memory - Drop a memory mapping reference.
443  * @virt: Start of the address range to drop a reference to.
444  * @size: Size of the address range to drop a reference to.
445  */
acpi_os_unmap_memory(void * virt,acpi_size size)446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447 {
448 	acpi_os_unmap_iomem((void __iomem *)virt, size);
449 }
450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451 
acpi_os_map_generic_address(struct acpi_generic_address * gas)452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453 {
454 	u64 addr;
455 
456 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 		return NULL;
458 
459 	/* Handle possible alignment issues */
460 	memcpy(&addr, &gas->address, sizeof(addr));
461 	if (!addr || !gas->bit_width)
462 		return NULL;
463 
464 	return acpi_os_map_iomem(addr, gas->bit_width / 8);
465 }
466 EXPORT_SYMBOL(acpi_os_map_generic_address);
467 
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469 {
470 	u64 addr;
471 	struct acpi_ioremap *map;
472 
473 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 		return;
475 
476 	/* Handle possible alignment issues */
477 	memcpy(&addr, &gas->address, sizeof(addr));
478 	if (!addr || !gas->bit_width)
479 		return;
480 
481 	mutex_lock(&acpi_ioremap_lock);
482 
483 	map = acpi_map_lookup(addr, gas->bit_width / 8);
484 	if (!map) {
485 		mutex_unlock(&acpi_ioremap_lock);
486 		return;
487 	}
488 	acpi_os_drop_map_ref(map);
489 
490 	mutex_unlock(&acpi_ioremap_lock);
491 }
492 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493 
494 #ifdef ACPI_FUTURE_USAGE
495 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497 {
498 	if (!phys || !virt)
499 		return AE_BAD_PARAMETER;
500 
501 	*phys = virt_to_phys(virt);
502 
503 	return AE_OK;
504 }
505 #endif
506 
507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508 static bool acpi_rev_override;
509 
acpi_rev_override_setup(char * str)510 int __init acpi_rev_override_setup(char *str)
511 {
512 	acpi_rev_override = true;
513 	return 1;
514 }
515 __setup("acpi_rev_override", acpi_rev_override_setup);
516 #else
517 #define acpi_rev_override	false
518 #endif
519 
520 #define ACPI_MAX_OVERRIDE_LEN 100
521 
522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523 
524 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 			    acpi_string *new_val)
527 {
528 	if (!init_val || !new_val)
529 		return AE_BAD_PARAMETER;
530 
531 	*new_val = NULL;
532 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 		pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 		*new_val = acpi_os_name;
535 	}
536 
537 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 		pr_info("Overriding _REV return value to 5\n");
539 		*new_val = (char *)5;
540 	}
541 
542 	return AE_OK;
543 }
544 
acpi_irq(int irq,void * dev_id)545 static irqreturn_t acpi_irq(int irq, void *dev_id)
546 {
547 	if ((*acpi_irq_handler)(acpi_irq_context)) {
548 		acpi_irq_handled++;
549 		return IRQ_HANDLED;
550 	} else {
551 		acpi_irq_not_handled++;
552 		return IRQ_NONE;
553 	}
554 }
555 
556 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 				  void *context)
559 {
560 	unsigned int irq;
561 
562 	acpi_irq_stats_init();
563 
564 	/*
565 	 * ACPI interrupts different from the SCI in our copy of the FADT are
566 	 * not supported.
567 	 */
568 	if (gsi != acpi_gbl_FADT.sci_interrupt)
569 		return AE_BAD_PARAMETER;
570 
571 	if (acpi_irq_handler)
572 		return AE_ALREADY_ACQUIRED;
573 
574 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 		pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 		return AE_OK;
577 	}
578 
579 	acpi_irq_handler = handler;
580 	acpi_irq_context = context;
581 	if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 			         "acpi", acpi_irq)) {
583 		pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 		acpi_irq_handler = NULL;
585 		return AE_NOT_ACQUIRED;
586 	}
587 	acpi_sci_irq = irq;
588 
589 	return AE_OK;
590 }
591 
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 		return AE_BAD_PARAMETER;
596 
597 	free_irq(acpi_sci_irq, acpi_irq);
598 	acpi_irq_handler = NULL;
599 	acpi_sci_irq = INVALID_ACPI_IRQ;
600 
601 	return AE_OK;
602 }
603 
604 /*
605  * Running in interpreter thread context, safe to sleep
606  */
607 
acpi_os_sleep(u64 ms)608 void acpi_os_sleep(u64 ms)
609 {
610 	msleep(ms);
611 }
612 
acpi_os_stall(u32 us)613 void acpi_os_stall(u32 us)
614 {
615 	while (us) {
616 		u32 delay = 1000;
617 
618 		if (delay > us)
619 			delay = us;
620 		udelay(delay);
621 		touch_nmi_watchdog();
622 		us -= delay;
623 	}
624 }
625 
626 /*
627  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628  * monotonically increasing timer with 100ns granularity. Do not use
629  * ktime_get() to implement this function because this function may get
630  * called after timekeeping has been suspended. Note: calling this function
631  * after timekeeping has been suspended may lead to unexpected results
632  * because when timekeeping is suspended the jiffies counter is not
633  * incremented. See also timekeeping_suspend().
634  */
acpi_os_get_timer(void)635 u64 acpi_os_get_timer(void)
636 {
637 	return (get_jiffies_64() - INITIAL_JIFFIES) *
638 		(ACPI_100NSEC_PER_SEC / HZ);
639 }
640 
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642 {
643 	u32 dummy;
644 
645 	if (value)
646 		*value = 0;
647 	else
648 		value = &dummy;
649 
650 	if (width <= 8) {
651 		*value = inb(port);
652 	} else if (width <= 16) {
653 		*value = inw(port);
654 	} else if (width <= 32) {
655 		*value = inl(port);
656 	} else {
657 		pr_debug("%s: Access width %d not supported\n", __func__, width);
658 		return AE_BAD_PARAMETER;
659 	}
660 
661 	return AE_OK;
662 }
663 
664 EXPORT_SYMBOL(acpi_os_read_port);
665 
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)666 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667 {
668 	if (width <= 8) {
669 		outb(value, port);
670 	} else if (width <= 16) {
671 		outw(value, port);
672 	} else if (width <= 32) {
673 		outl(value, port);
674 	} else {
675 		pr_debug("%s: Access width %d not supported\n", __func__, width);
676 		return AE_BAD_PARAMETER;
677 	}
678 
679 	return AE_OK;
680 }
681 
682 EXPORT_SYMBOL(acpi_os_write_port);
683 
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)684 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685 {
686 
687 	switch (width) {
688 	case 8:
689 		*(u8 *) value = readb(virt_addr);
690 		break;
691 	case 16:
692 		*(u16 *) value = readw(virt_addr);
693 		break;
694 	case 32:
695 		*(u32 *) value = readl(virt_addr);
696 		break;
697 	case 64:
698 		*(u64 *) value = readq(virt_addr);
699 		break;
700 	default:
701 		return -EINVAL;
702 	}
703 
704 	return 0;
705 }
706 
707 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)708 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709 {
710 	void __iomem *virt_addr;
711 	unsigned int size = width / 8;
712 	bool unmap = false;
713 	u64 dummy;
714 	int error;
715 
716 	rcu_read_lock();
717 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 	if (!virt_addr) {
719 		rcu_read_unlock();
720 		virt_addr = acpi_os_ioremap(phys_addr, size);
721 		if (!virt_addr)
722 			return AE_BAD_ADDRESS;
723 		unmap = true;
724 	}
725 
726 	if (!value)
727 		value = &dummy;
728 
729 	error = acpi_os_read_iomem(virt_addr, value, width);
730 	BUG_ON(error);
731 
732 	if (unmap)
733 		iounmap(virt_addr);
734 	else
735 		rcu_read_unlock();
736 
737 	return AE_OK;
738 }
739 
740 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)741 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742 {
743 	void __iomem *virt_addr;
744 	unsigned int size = width / 8;
745 	bool unmap = false;
746 
747 	rcu_read_lock();
748 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 	if (!virt_addr) {
750 		rcu_read_unlock();
751 		virt_addr = acpi_os_ioremap(phys_addr, size);
752 		if (!virt_addr)
753 			return AE_BAD_ADDRESS;
754 		unmap = true;
755 	}
756 
757 	switch (width) {
758 	case 8:
759 		writeb(value, virt_addr);
760 		break;
761 	case 16:
762 		writew(value, virt_addr);
763 		break;
764 	case 32:
765 		writel(value, virt_addr);
766 		break;
767 	case 64:
768 		writeq(value, virt_addr);
769 		break;
770 	default:
771 		BUG();
772 	}
773 
774 	if (unmap)
775 		iounmap(virt_addr);
776 	else
777 		rcu_read_unlock();
778 
779 	return AE_OK;
780 }
781 
782 #ifdef CONFIG_PCI
783 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)784 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785 			       u64 *value, u32 width)
786 {
787 	int result, size;
788 	u32 value32;
789 
790 	if (!value)
791 		return AE_BAD_PARAMETER;
792 
793 	switch (width) {
794 	case 8:
795 		size = 1;
796 		break;
797 	case 16:
798 		size = 2;
799 		break;
800 	case 32:
801 		size = 4;
802 		break;
803 	default:
804 		return AE_ERROR;
805 	}
806 
807 	result = raw_pci_read(pci_id->segment, pci_id->bus,
808 				PCI_DEVFN(pci_id->device, pci_id->function),
809 				reg, size, &value32);
810 	*value = value32;
811 
812 	return (result ? AE_ERROR : AE_OK);
813 }
814 
815 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)816 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 				u64 value, u32 width)
818 {
819 	int result, size;
820 
821 	switch (width) {
822 	case 8:
823 		size = 1;
824 		break;
825 	case 16:
826 		size = 2;
827 		break;
828 	case 32:
829 		size = 4;
830 		break;
831 	default:
832 		return AE_ERROR;
833 	}
834 
835 	result = raw_pci_write(pci_id->segment, pci_id->bus,
836 				PCI_DEVFN(pci_id->device, pci_id->function),
837 				reg, size, value);
838 
839 	return (result ? AE_ERROR : AE_OK);
840 }
841 #endif
842 
acpi_os_execute_deferred(struct work_struct * work)843 static void acpi_os_execute_deferred(struct work_struct *work)
844 {
845 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846 
847 	dpc->function(dpc->context);
848 	kfree(dpc);
849 }
850 
851 #ifdef CONFIG_ACPI_DEBUGGER
852 static struct acpi_debugger acpi_debugger;
853 static bool acpi_debugger_initialized;
854 
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)855 int acpi_register_debugger(struct module *owner,
856 			   const struct acpi_debugger_ops *ops)
857 {
858 	int ret = 0;
859 
860 	mutex_lock(&acpi_debugger.lock);
861 	if (acpi_debugger.ops) {
862 		ret = -EBUSY;
863 		goto err_lock;
864 	}
865 
866 	acpi_debugger.owner = owner;
867 	acpi_debugger.ops = ops;
868 
869 err_lock:
870 	mutex_unlock(&acpi_debugger.lock);
871 	return ret;
872 }
873 EXPORT_SYMBOL(acpi_register_debugger);
874 
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)875 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876 {
877 	mutex_lock(&acpi_debugger.lock);
878 	if (ops == acpi_debugger.ops) {
879 		acpi_debugger.ops = NULL;
880 		acpi_debugger.owner = NULL;
881 	}
882 	mutex_unlock(&acpi_debugger.lock);
883 }
884 EXPORT_SYMBOL(acpi_unregister_debugger);
885 
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)886 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887 {
888 	int ret;
889 	int (*func)(acpi_osd_exec_callback, void *);
890 	struct module *owner;
891 
892 	if (!acpi_debugger_initialized)
893 		return -ENODEV;
894 	mutex_lock(&acpi_debugger.lock);
895 	if (!acpi_debugger.ops) {
896 		ret = -ENODEV;
897 		goto err_lock;
898 	}
899 	if (!try_module_get(acpi_debugger.owner)) {
900 		ret = -ENODEV;
901 		goto err_lock;
902 	}
903 	func = acpi_debugger.ops->create_thread;
904 	owner = acpi_debugger.owner;
905 	mutex_unlock(&acpi_debugger.lock);
906 
907 	ret = func(function, context);
908 
909 	mutex_lock(&acpi_debugger.lock);
910 	module_put(owner);
911 err_lock:
912 	mutex_unlock(&acpi_debugger.lock);
913 	return ret;
914 }
915 
acpi_debugger_write_log(const char * msg)916 ssize_t acpi_debugger_write_log(const char *msg)
917 {
918 	ssize_t ret;
919 	ssize_t (*func)(const char *);
920 	struct module *owner;
921 
922 	if (!acpi_debugger_initialized)
923 		return -ENODEV;
924 	mutex_lock(&acpi_debugger.lock);
925 	if (!acpi_debugger.ops) {
926 		ret = -ENODEV;
927 		goto err_lock;
928 	}
929 	if (!try_module_get(acpi_debugger.owner)) {
930 		ret = -ENODEV;
931 		goto err_lock;
932 	}
933 	func = acpi_debugger.ops->write_log;
934 	owner = acpi_debugger.owner;
935 	mutex_unlock(&acpi_debugger.lock);
936 
937 	ret = func(msg);
938 
939 	mutex_lock(&acpi_debugger.lock);
940 	module_put(owner);
941 err_lock:
942 	mutex_unlock(&acpi_debugger.lock);
943 	return ret;
944 }
945 
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)946 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947 {
948 	ssize_t ret;
949 	ssize_t (*func)(char *, size_t);
950 	struct module *owner;
951 
952 	if (!acpi_debugger_initialized)
953 		return -ENODEV;
954 	mutex_lock(&acpi_debugger.lock);
955 	if (!acpi_debugger.ops) {
956 		ret = -ENODEV;
957 		goto err_lock;
958 	}
959 	if (!try_module_get(acpi_debugger.owner)) {
960 		ret = -ENODEV;
961 		goto err_lock;
962 	}
963 	func = acpi_debugger.ops->read_cmd;
964 	owner = acpi_debugger.owner;
965 	mutex_unlock(&acpi_debugger.lock);
966 
967 	ret = func(buffer, buffer_length);
968 
969 	mutex_lock(&acpi_debugger.lock);
970 	module_put(owner);
971 err_lock:
972 	mutex_unlock(&acpi_debugger.lock);
973 	return ret;
974 }
975 
acpi_debugger_wait_command_ready(void)976 int acpi_debugger_wait_command_ready(void)
977 {
978 	int ret;
979 	int (*func)(bool, char *, size_t);
980 	struct module *owner;
981 
982 	if (!acpi_debugger_initialized)
983 		return -ENODEV;
984 	mutex_lock(&acpi_debugger.lock);
985 	if (!acpi_debugger.ops) {
986 		ret = -ENODEV;
987 		goto err_lock;
988 	}
989 	if (!try_module_get(acpi_debugger.owner)) {
990 		ret = -ENODEV;
991 		goto err_lock;
992 	}
993 	func = acpi_debugger.ops->wait_command_ready;
994 	owner = acpi_debugger.owner;
995 	mutex_unlock(&acpi_debugger.lock);
996 
997 	ret = func(acpi_gbl_method_executing,
998 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999 
1000 	mutex_lock(&acpi_debugger.lock);
1001 	module_put(owner);
1002 err_lock:
1003 	mutex_unlock(&acpi_debugger.lock);
1004 	return ret;
1005 }
1006 
acpi_debugger_notify_command_complete(void)1007 int acpi_debugger_notify_command_complete(void)
1008 {
1009 	int ret;
1010 	int (*func)(void);
1011 	struct module *owner;
1012 
1013 	if (!acpi_debugger_initialized)
1014 		return -ENODEV;
1015 	mutex_lock(&acpi_debugger.lock);
1016 	if (!acpi_debugger.ops) {
1017 		ret = -ENODEV;
1018 		goto err_lock;
1019 	}
1020 	if (!try_module_get(acpi_debugger.owner)) {
1021 		ret = -ENODEV;
1022 		goto err_lock;
1023 	}
1024 	func = acpi_debugger.ops->notify_command_complete;
1025 	owner = acpi_debugger.owner;
1026 	mutex_unlock(&acpi_debugger.lock);
1027 
1028 	ret = func();
1029 
1030 	mutex_lock(&acpi_debugger.lock);
1031 	module_put(owner);
1032 err_lock:
1033 	mutex_unlock(&acpi_debugger.lock);
1034 	return ret;
1035 }
1036 
acpi_debugger_init(void)1037 int __init acpi_debugger_init(void)
1038 {
1039 	mutex_init(&acpi_debugger.lock);
1040 	acpi_debugger_initialized = true;
1041 	return 0;
1042 }
1043 #endif
1044 
1045 /*******************************************************************************
1046  *
1047  * FUNCTION:    acpi_os_execute
1048  *
1049  * PARAMETERS:  Type               - Type of the callback
1050  *              Function           - Function to be executed
1051  *              Context            - Function parameters
1052  *
1053  * RETURN:      Status
1054  *
1055  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056  *              immediately executes function on a separate thread.
1057  *
1058  ******************************************************************************/
1059 
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1060 acpi_status acpi_os_execute(acpi_execute_type type,
1061 			    acpi_osd_exec_callback function, void *context)
1062 {
1063 	struct acpi_os_dpc *dpc;
1064 	int ret;
1065 
1066 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1068 			  function, context));
1069 
1070 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071 		ret = acpi_debugger_create_thread(function, context);
1072 		if (ret) {
1073 			pr_err("Kernel thread creation failed\n");
1074 			return AE_ERROR;
1075 		}
1076 		return AE_OK;
1077 	}
1078 
1079 	/*
1080 	 * Allocate/initialize DPC structure.  Note that this memory will be
1081 	 * freed by the callee.  The kernel handles the work_struct list  in a
1082 	 * way that allows us to also free its memory inside the callee.
1083 	 * Because we may want to schedule several tasks with different
1084 	 * parameters we can't use the approach some kernel code uses of
1085 	 * having a static work_struct.
1086 	 */
1087 
1088 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089 	if (!dpc)
1090 		return AE_NO_MEMORY;
1091 
1092 	dpc->function = function;
1093 	dpc->context = context;
1094 	INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095 
1096 	/*
1097 	 * To prevent lockdep from complaining unnecessarily, make sure that
1098 	 * there is a different static lockdep key for each workqueue by using
1099 	 * INIT_WORK() for each of them separately.
1100 	 */
1101 	switch (type) {
1102 	case OSL_NOTIFY_HANDLER:
1103 		ret = queue_work(kacpi_notify_wq, &dpc->work);
1104 		break;
1105 	case OSL_GPE_HANDLER:
1106 		/*
1107 		 * On some machines, a software-initiated SMI causes corruption
1108 		 * unless the SMI runs on CPU 0.  An SMI can be initiated by
1109 		 * any AML, but typically it's done in GPE-related methods that
1110 		 * are run via workqueues, so we can avoid the known corruption
1111 		 * cases by always queueing on CPU 0.
1112 		 */
1113 		ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114 		break;
1115 	default:
1116 		pr_err("Unsupported os_execute type %d.\n", type);
1117 		goto err;
1118 	}
1119 	if (!ret) {
1120 		pr_err("Unable to queue work\n");
1121 		goto err;
1122 	}
1123 
1124 	return AE_OK;
1125 
1126 err:
1127 	kfree(dpc);
1128 	return AE_ERROR;
1129 }
1130 EXPORT_SYMBOL(acpi_os_execute);
1131 
acpi_os_wait_events_complete(void)1132 void acpi_os_wait_events_complete(void)
1133 {
1134 	/*
1135 	 * Make sure the GPE handler or the fixed event handler is not used
1136 	 * on another CPU after removal.
1137 	 */
1138 	if (acpi_sci_irq_valid())
1139 		synchronize_hardirq(acpi_sci_irq);
1140 	flush_workqueue(kacpid_wq);
1141 	flush_workqueue(kacpi_notify_wq);
1142 }
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144 
1145 struct acpi_hp_work {
1146 	struct work_struct work;
1147 	struct acpi_device *adev;
1148 	u32 src;
1149 };
1150 
acpi_hotplug_work_fn(struct work_struct * work)1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1152 {
1153 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154 
1155 	acpi_os_wait_events_complete();
1156 	acpi_device_hotplug(hpw->adev, hpw->src);
1157 	kfree(hpw);
1158 }
1159 
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161 {
1162 	struct acpi_hp_work *hpw;
1163 
1164 	acpi_handle_debug(adev->handle,
1165 			  "Scheduling hotplug event %u for deferred handling\n",
1166 			   src);
1167 
1168 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 	if (!hpw)
1170 		return AE_NO_MEMORY;
1171 
1172 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 	hpw->adev = adev;
1174 	hpw->src = src;
1175 	/*
1176 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 	 * the hotplug code may call driver .remove() functions, which may
1178 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 	 * these workqueues.
1180 	 */
1181 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 		kfree(hpw);
1183 		return AE_ERROR;
1184 	}
1185 	return AE_OK;
1186 }
1187 
acpi_queue_hotplug_work(struct work_struct * work)1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1189 {
1190 	return queue_work(kacpi_hotplug_wq, work);
1191 }
1192 
1193 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195 {
1196 	struct semaphore *sem = NULL;
1197 
1198 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 	if (!sem)
1200 		return AE_NO_MEMORY;
1201 
1202 	sema_init(sem, initial_units);
1203 
1204 	*handle = (acpi_handle *) sem;
1205 
1206 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 			  *handle, initial_units));
1208 
1209 	return AE_OK;
1210 }
1211 
1212 /*
1213  * TODO: A better way to delete semaphores?  Linux doesn't have a
1214  * 'delete_semaphore()' function -- may result in an invalid
1215  * pointer dereference for non-synchronized consumers.	Should
1216  * we at least check for blocked threads and signal/cancel them?
1217  */
1218 
acpi_os_delete_semaphore(acpi_handle handle)1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220 {
1221 	struct semaphore *sem = (struct semaphore *)handle;
1222 
1223 	if (!sem)
1224 		return AE_BAD_PARAMETER;
1225 
1226 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227 
1228 	BUG_ON(!list_empty(&sem->wait_list));
1229 	kfree(sem);
1230 	sem = NULL;
1231 
1232 	return AE_OK;
1233 }
1234 
1235 /*
1236  * TODO: Support for units > 1?
1237  */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239 {
1240 	acpi_status status = AE_OK;
1241 	struct semaphore *sem = (struct semaphore *)handle;
1242 	long jiffies;
1243 	int ret = 0;
1244 
1245 	if (!acpi_os_initialized)
1246 		return AE_OK;
1247 
1248 	if (!sem || (units < 1))
1249 		return AE_BAD_PARAMETER;
1250 
1251 	if (units > 1)
1252 		return AE_SUPPORT;
1253 
1254 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 			  handle, units, timeout));
1256 
1257 	if (timeout == ACPI_WAIT_FOREVER)
1258 		jiffies = MAX_SCHEDULE_TIMEOUT;
1259 	else
1260 		jiffies = msecs_to_jiffies(timeout);
1261 
1262 	ret = down_timeout(sem, jiffies);
1263 	if (ret)
1264 		status = AE_TIME;
1265 
1266 	if (ACPI_FAILURE(status)) {
1267 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1269 				  handle, units, timeout,
1270 				  acpi_format_exception(status)));
1271 	} else {
1272 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 				  "Acquired semaphore[%p|%d|%d]", handle,
1274 				  units, timeout));
1275 	}
1276 
1277 	return status;
1278 }
1279 
1280 /*
1281  * TODO: Support for units > 1?
1282  */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284 {
1285 	struct semaphore *sem = (struct semaphore *)handle;
1286 
1287 	if (!acpi_os_initialized)
1288 		return AE_OK;
1289 
1290 	if (!sem || (units < 1))
1291 		return AE_BAD_PARAMETER;
1292 
1293 	if (units > 1)
1294 		return AE_SUPPORT;
1295 
1296 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 			  units));
1298 
1299 	up(sem);
1300 
1301 	return AE_OK;
1302 }
1303 
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305 {
1306 #ifdef ENABLE_DEBUGGER
1307 	if (acpi_in_debugger) {
1308 		u32 chars;
1309 
1310 		kdb_read(buffer, buffer_length);
1311 
1312 		/* remove the CR kdb includes */
1313 		chars = strlen(buffer) - 1;
1314 		buffer[chars] = '\0';
1315 	}
1316 #else
1317 	int ret;
1318 
1319 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 	if (ret < 0)
1321 		return AE_ERROR;
1322 	if (bytes_read)
1323 		*bytes_read = ret;
1324 #endif
1325 
1326 	return AE_OK;
1327 }
1328 EXPORT_SYMBOL(acpi_os_get_line);
1329 
acpi_os_wait_command_ready(void)1330 acpi_status acpi_os_wait_command_ready(void)
1331 {
1332 	int ret;
1333 
1334 	ret = acpi_debugger_wait_command_ready();
1335 	if (ret < 0)
1336 		return AE_ERROR;
1337 	return AE_OK;
1338 }
1339 
acpi_os_notify_command_complete(void)1340 acpi_status acpi_os_notify_command_complete(void)
1341 {
1342 	int ret;
1343 
1344 	ret = acpi_debugger_notify_command_complete();
1345 	if (ret < 0)
1346 		return AE_ERROR;
1347 	return AE_OK;
1348 }
1349 
acpi_os_signal(u32 function,void * info)1350 acpi_status acpi_os_signal(u32 function, void *info)
1351 {
1352 	switch (function) {
1353 	case ACPI_SIGNAL_FATAL:
1354 		pr_err("Fatal opcode executed\n");
1355 		break;
1356 	case ACPI_SIGNAL_BREAKPOINT:
1357 		/*
1358 		 * AML Breakpoint
1359 		 * ACPI spec. says to treat it as a NOP unless
1360 		 * you are debugging.  So if/when we integrate
1361 		 * AML debugger into the kernel debugger its
1362 		 * hook will go here.  But until then it is
1363 		 * not useful to print anything on breakpoints.
1364 		 */
1365 		break;
1366 	default:
1367 		break;
1368 	}
1369 
1370 	return AE_OK;
1371 }
1372 
acpi_os_name_setup(char * str)1373 static int __init acpi_os_name_setup(char *str)
1374 {
1375 	char *p = acpi_os_name;
1376 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377 
1378 	if (!str || !*str)
1379 		return 0;
1380 
1381 	for (; count-- && *str; str++) {
1382 		if (isalnum(*str) || *str == ' ' || *str == ':')
1383 			*p++ = *str;
1384 		else if (*str == '\'' || *str == '"')
1385 			continue;
1386 		else
1387 			break;
1388 	}
1389 	*p = 0;
1390 
1391 	return 1;
1392 
1393 }
1394 
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1396 
1397 /*
1398  * Disable the auto-serialization of named objects creation methods.
1399  *
1400  * This feature is enabled by default.  It marks the AML control methods
1401  * that contain the opcodes to create named objects as "Serialized".
1402  */
acpi_no_auto_serialize_setup(char * str)1403 static int __init acpi_no_auto_serialize_setup(char *str)
1404 {
1405 	acpi_gbl_auto_serialize_methods = FALSE;
1406 	pr_info("Auto-serialization disabled\n");
1407 
1408 	return 1;
1409 }
1410 
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412 
1413 /* Check of resource interference between native drivers and ACPI
1414  * OperationRegions (SystemIO and System Memory only).
1415  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416  * in arbitrary AML code and can interfere with legacy drivers.
1417  * acpi_enforce_resources= can be set to:
1418  *
1419  *   - strict (default) (2)
1420  *     -> further driver trying to access the resources will not load
1421  *   - lax              (1)
1422  *     -> further driver trying to access the resources will load, but you
1423  *     get a system message that something might go wrong...
1424  *
1425  *   - no               (0)
1426  *     -> ACPI Operation Region resources will not be registered
1427  *
1428  */
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX    1
1431 #define ENFORCE_RESOURCES_NO     0
1432 
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434 
acpi_enforce_resources_setup(char * str)1435 static int __init acpi_enforce_resources_setup(char *str)
1436 {
1437 	if (str == NULL || *str == '\0')
1438 		return 0;
1439 
1440 	if (!strcmp("strict", str))
1441 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 	else if (!strcmp("lax", str))
1443 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 	else if (!strcmp("no", str))
1445 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446 
1447 	return 1;
1448 }
1449 
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451 
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453  * drivers */
acpi_check_resource_conflict(const struct resource * res)1454 int acpi_check_resource_conflict(const struct resource *res)
1455 {
1456 	acpi_adr_space_type space_id;
1457 
1458 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459 		return 0;
1460 
1461 	if (res->flags & IORESOURCE_IO)
1462 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 	else if (res->flags & IORESOURCE_MEM)
1464 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465 	else
1466 		return 0;
1467 
1468 	if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469 		return 0;
1470 
1471 	pr_info("Resource conflict; ACPI support missing from driver?\n");
1472 
1473 	if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474 		return -EBUSY;
1475 
1476 	if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 		pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478 
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(acpi_check_resource_conflict);
1482 
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1483 int acpi_check_region(resource_size_t start, resource_size_t n,
1484 		      const char *name)
1485 {
1486 	struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487 
1488 	return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491 
1492 /*
1493  * Let drivers know whether the resource checks are effective
1494  */
acpi_resources_are_enforced(void)1495 int acpi_resources_are_enforced(void)
1496 {
1497 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498 }
1499 EXPORT_SYMBOL(acpi_resources_are_enforced);
1500 
1501 /*
1502  * Deallocate the memory for a spinlock.
1503  */
acpi_os_delete_lock(acpi_spinlock handle)1504 void acpi_os_delete_lock(acpi_spinlock handle)
1505 {
1506 	ACPI_FREE(handle);
1507 }
1508 
1509 /*
1510  * Acquire a spinlock.
1511  *
1512  * handle is a pointer to the spinlock_t.
1513  */
1514 
acpi_os_acquire_lock(acpi_spinlock lockp)1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 	__acquires(lockp)
1517 {
1518 	spin_lock(lockp);
1519 	return 0;
1520 }
1521 
1522 /*
1523  * Release a spinlock. See above.
1524  */
1525 
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags not_used)1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527 	__releases(lockp)
1528 {
1529 	spin_unlock(lockp);
1530 }
1531 
1532 #ifndef ACPI_USE_LOCAL_CACHE
1533 
1534 /*******************************************************************************
1535  *
1536  * FUNCTION:    acpi_os_create_cache
1537  *
1538  * PARAMETERS:  name      - Ascii name for the cache
1539  *              size      - Size of each cached object
1540  *              depth     - Maximum depth of the cache (in objects) <ignored>
1541  *              cache     - Where the new cache object is returned
1542  *
1543  * RETURN:      status
1544  *
1545  * DESCRIPTION: Create a cache object
1546  *
1547  ******************************************************************************/
1548 
1549 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1550 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551 {
1552 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 	if (*cache == NULL)
1554 		return AE_ERROR;
1555 	else
1556 		return AE_OK;
1557 }
1558 
1559 /*******************************************************************************
1560  *
1561  * FUNCTION:    acpi_os_purge_cache
1562  *
1563  * PARAMETERS:  Cache           - Handle to cache object
1564  *
1565  * RETURN:      Status
1566  *
1567  * DESCRIPTION: Free all objects within the requested cache.
1568  *
1569  ******************************************************************************/
1570 
acpi_os_purge_cache(acpi_cache_t * cache)1571 acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572 {
1573 	kmem_cache_shrink(cache);
1574 	return AE_OK;
1575 }
1576 
1577 /*******************************************************************************
1578  *
1579  * FUNCTION:    acpi_os_delete_cache
1580  *
1581  * PARAMETERS:  Cache           - Handle to cache object
1582  *
1583  * RETURN:      Status
1584  *
1585  * DESCRIPTION: Free all objects within the requested cache and delete the
1586  *              cache object.
1587  *
1588  ******************************************************************************/
1589 
acpi_os_delete_cache(acpi_cache_t * cache)1590 acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591 {
1592 	kmem_cache_destroy(cache);
1593 	return AE_OK;
1594 }
1595 
1596 /*******************************************************************************
1597  *
1598  * FUNCTION:    acpi_os_release_object
1599  *
1600  * PARAMETERS:  Cache       - Handle to cache object
1601  *              Object      - The object to be released
1602  *
1603  * RETURN:      None
1604  *
1605  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1606  *              the object is deleted.
1607  *
1608  ******************************************************************************/
1609 
acpi_os_release_object(acpi_cache_t * cache,void * object)1610 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611 {
1612 	kmem_cache_free(cache, object);
1613 	return AE_OK;
1614 }
1615 #endif
1616 
acpi_no_static_ssdt_setup(char * s)1617 static int __init acpi_no_static_ssdt_setup(char *s)
1618 {
1619 	acpi_gbl_disable_ssdt_table_install = TRUE;
1620 	pr_info("Static SSDT installation disabled\n");
1621 
1622 	return 0;
1623 }
1624 
1625 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626 
acpi_disable_return_repair(char * s)1627 static int __init acpi_disable_return_repair(char *s)
1628 {
1629 	pr_notice("Predefined validation mechanism disabled\n");
1630 	acpi_gbl_disable_auto_repair = TRUE;
1631 
1632 	return 1;
1633 }
1634 
1635 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1636 
acpi_os_initialize(void)1637 acpi_status __init acpi_os_initialize(void)
1638 {
1639 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641 
1642 	acpi_gbl_xgpe0_block_logical_address =
1643 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644 	acpi_gbl_xgpe1_block_logical_address =
1645 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646 
1647 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648 		/*
1649 		 * Use acpi_os_map_generic_address to pre-map the reset
1650 		 * register if it's in system memory.
1651 		 */
1652 		void *rv;
1653 
1654 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655 		pr_debug("%s: Reset register mapping %s\n", __func__,
1656 			 rv ? "successful" : "failed");
1657 	}
1658 	acpi_os_initialized = true;
1659 
1660 	return AE_OK;
1661 }
1662 
acpi_os_initialize1(void)1663 acpi_status __init acpi_os_initialize1(void)
1664 {
1665 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668 	BUG_ON(!kacpid_wq);
1669 	BUG_ON(!kacpi_notify_wq);
1670 	BUG_ON(!kacpi_hotplug_wq);
1671 	acpi_osi_init();
1672 	return AE_OK;
1673 }
1674 
acpi_os_terminate(void)1675 acpi_status acpi_os_terminate(void)
1676 {
1677 	if (acpi_irq_handler) {
1678 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679 						 acpi_irq_handler);
1680 	}
1681 
1682 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684 	acpi_gbl_xgpe0_block_logical_address = 0UL;
1685 	acpi_gbl_xgpe1_block_logical_address = 0UL;
1686 
1687 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689 
1690 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692 
1693 	destroy_workqueue(kacpid_wq);
1694 	destroy_workqueue(kacpi_notify_wq);
1695 	destroy_workqueue(kacpi_hotplug_wq);
1696 
1697 	return AE_OK;
1698 }
1699 
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1700 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701 				  u32 pm1b_control)
1702 {
1703 	int rc = 0;
1704 
1705 	if (__acpi_os_prepare_sleep)
1706 		rc = __acpi_os_prepare_sleep(sleep_state,
1707 					     pm1a_control, pm1b_control);
1708 	if (rc < 0)
1709 		return AE_ERROR;
1710 	else if (rc > 0)
1711 		return AE_CTRL_TERMINATE;
1712 
1713 	return AE_OK;
1714 }
1715 
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1716 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1718 {
1719 	__acpi_os_prepare_sleep = func;
1720 }
1721 
1722 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1723 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724 				  u32 val_b)
1725 {
1726 	int rc = 0;
1727 
1728 	if (__acpi_os_prepare_extended_sleep)
1729 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730 					     val_a, val_b);
1731 	if (rc < 0)
1732 		return AE_ERROR;
1733 	else if (rc > 0)
1734 		return AE_CTRL_TERMINATE;
1735 
1736 	return AE_OK;
1737 }
1738 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1739 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740 				  u32 val_b)
1741 {
1742 	return AE_OK;
1743 }
1744 #endif
1745 
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1746 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747 			       u32 val_a, u32 val_b))
1748 {
1749 	__acpi_os_prepare_extended_sleep = func;
1750 }
1751 
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1752 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753 				u32 reg_a_value, u32 reg_b_value)
1754 {
1755 	acpi_status status;
1756 
1757 	if (acpi_gbl_reduced_hardware)
1758 		status = acpi_os_prepare_extended_sleep(sleep_state,
1759 							reg_a_value,
1760 							reg_b_value);
1761 	else
1762 		status = acpi_os_prepare_sleep(sleep_state,
1763 					       reg_a_value, reg_b_value);
1764 	return status;
1765 }
1766