1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37
38 #include "acpica/accommon.h"
39 #include "internal.h"
40
41 /* Definitions for ACPI_DEBUG_PRINT() */
42 #define _COMPONENT ACPI_OS_SERVICES
43 ACPI_MODULE_NAME("osl");
44
45 struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49 };
50
51 #ifdef ENABLE_DEBUGGER
52 #include <linux/kdb.h>
53
54 /* stuff for debugger support */
55 int acpi_in_debugger;
56 EXPORT_SYMBOL(acpi_in_debugger);
57 #endif /*ENABLE_DEBUGGER */
58
59 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64 static acpi_osd_handler acpi_irq_handler;
65 static void *acpi_irq_context;
66 static struct workqueue_struct *kacpid_wq;
67 static struct workqueue_struct *kacpi_notify_wq;
68 static struct workqueue_struct *kacpi_hotplug_wq;
69 static bool acpi_os_initialized;
70 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71 bool acpi_permanent_mmap = false;
72
73 /*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77 struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86 };
87
88 static LIST_HEAD(acpi_ioremaps);
89 static DEFINE_MUTEX(acpi_ioremap_lock);
90 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)92 static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94 {
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107 }
108
acpi_reserve_resources(void)109 static int __init acpi_reserve_resources(void)
110 {
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140 }
141 fs_initcall_sync(acpi_reserve_resources);
142
acpi_os_printf(const char * fmt,...)143 void acpi_os_printf(const char *fmt, ...)
144 {
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149 }
150 EXPORT_SYMBOL(acpi_os_printf);
151
acpi_os_vprintf(const char * fmt,va_list args)152 void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153 {
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158 #ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167 #else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174 #endif
175 }
176
177 #ifdef CONFIG_KEXEC
178 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)179 static int __init setup_acpi_rsdp(char *arg)
180 {
181 return kstrtoul(arg, 16, &acpi_rsdp);
182 }
183 early_param("acpi_rsdp", setup_acpi_rsdp);
184 #endif
185
acpi_os_get_root_pointer(void)186 acpi_physical_address __init acpi_os_get_root_pointer(void)
187 {
188 acpi_physical_address pa;
189
190 #ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204 #endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220 }
221
222 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)224 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225 {
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234 }
235
236 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)238 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239 {
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247 }
248
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)249 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250 {
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262 }
263 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)267 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268 {
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277 }
278
279 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 /* ioremap will take care of cache attributes */
281 #define should_use_kmap(pfn) 0
282 #else
283 #define should_use_kmap(pfn) page_is_ram(pfn)
284 #endif
285
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)286 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287 {
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297 }
298
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)299 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300 {
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308 }
309
310 /**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323 void __iomem __ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)324 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325 {
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370 out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373 }
374 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)376 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377 {
378 return (void *)acpi_os_map_iomem(phys, size);
379 }
380 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
acpi_os_map_remove(struct work_struct * work)382 static void acpi_os_map_remove(struct work_struct *work)
383 {
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390 }
391
392 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)393 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394 {
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402 }
403
404 /**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)418 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419 {
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438 }
439 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441 /**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
acpi_os_unmap_memory(void * virt,acpi_size size)446 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447 {
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449 }
450 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
acpi_os_map_generic_address(struct acpi_generic_address * gas)452 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453 {
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465 }
466 EXPORT_SYMBOL(acpi_os_map_generic_address);
467
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)468 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469 {
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491 }
492 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494 #ifdef ACPI_FUTURE_USAGE
495 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)496 acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497 {
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504 }
505 #endif
506
507 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508 static bool acpi_rev_override;
509
acpi_rev_override_setup(char * str)510 int __init acpi_rev_override_setup(char *str)
511 {
512 acpi_rev_override = true;
513 return 1;
514 }
515 __setup("acpi_rev_override", acpi_rev_override_setup);
516 #else
517 #define acpi_rev_override false
518 #endif
519
520 #define ACPI_MAX_OVERRIDE_LEN 100
521
522 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)525 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527 {
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543 }
544
acpi_irq(int irq,void * dev_id)545 static irqreturn_t acpi_irq(int irq, void *dev_id)
546 {
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554 }
555
556 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559 {
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590 }
591
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602 }
603
604 /*
605 * Running in interpreter thread context, safe to sleep
606 */
607
acpi_os_sleep(u64 ms)608 void acpi_os_sleep(u64 ms)
609 {
610 msleep(ms);
611 }
612
acpi_os_stall(u32 us)613 void acpi_os_stall(u32 us)
614 {
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624 }
625
626 /*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
acpi_os_get_timer(void)635 u64 acpi_os_get_timer(void)
636 {
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639 }
640
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)641 acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642 {
643 u32 dummy;
644
645 if (value)
646 *value = 0;
647 else
648 value = &dummy;
649
650 if (width <= 8) {
651 *value = inb(port);
652 } else if (width <= 16) {
653 *value = inw(port);
654 } else if (width <= 32) {
655 *value = inl(port);
656 } else {
657 pr_debug("%s: Access width %d not supported\n", __func__, width);
658 return AE_BAD_PARAMETER;
659 }
660
661 return AE_OK;
662 }
663
664 EXPORT_SYMBOL(acpi_os_read_port);
665
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)666 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
667 {
668 if (width <= 8) {
669 outb(value, port);
670 } else if (width <= 16) {
671 outw(value, port);
672 } else if (width <= 32) {
673 outl(value, port);
674 } else {
675 pr_debug("%s: Access width %d not supported\n", __func__, width);
676 return AE_BAD_PARAMETER;
677 }
678
679 return AE_OK;
680 }
681
682 EXPORT_SYMBOL(acpi_os_write_port);
683
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)684 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685 {
686
687 switch (width) {
688 case 8:
689 *(u8 *) value = readb(virt_addr);
690 break;
691 case 16:
692 *(u16 *) value = readw(virt_addr);
693 break;
694 case 32:
695 *(u32 *) value = readl(virt_addr);
696 break;
697 case 64:
698 *(u64 *) value = readq(virt_addr);
699 break;
700 default:
701 return -EINVAL;
702 }
703
704 return 0;
705 }
706
707 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)708 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709 {
710 void __iomem *virt_addr;
711 unsigned int size = width / 8;
712 bool unmap = false;
713 u64 dummy;
714 int error;
715
716 rcu_read_lock();
717 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 if (!virt_addr) {
719 rcu_read_unlock();
720 virt_addr = acpi_os_ioremap(phys_addr, size);
721 if (!virt_addr)
722 return AE_BAD_ADDRESS;
723 unmap = true;
724 }
725
726 if (!value)
727 value = &dummy;
728
729 error = acpi_os_read_iomem(virt_addr, value, width);
730 BUG_ON(error);
731
732 if (unmap)
733 iounmap(virt_addr);
734 else
735 rcu_read_unlock();
736
737 return AE_OK;
738 }
739
740 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)741 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742 {
743 void __iomem *virt_addr;
744 unsigned int size = width / 8;
745 bool unmap = false;
746
747 rcu_read_lock();
748 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 if (!virt_addr) {
750 rcu_read_unlock();
751 virt_addr = acpi_os_ioremap(phys_addr, size);
752 if (!virt_addr)
753 return AE_BAD_ADDRESS;
754 unmap = true;
755 }
756
757 switch (width) {
758 case 8:
759 writeb(value, virt_addr);
760 break;
761 case 16:
762 writew(value, virt_addr);
763 break;
764 case 32:
765 writel(value, virt_addr);
766 break;
767 case 64:
768 writeq(value, virt_addr);
769 break;
770 default:
771 BUG();
772 }
773
774 if (unmap)
775 iounmap(virt_addr);
776 else
777 rcu_read_unlock();
778
779 return AE_OK;
780 }
781
782 #ifdef CONFIG_PCI
783 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)784 acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
785 u64 *value, u32 width)
786 {
787 int result, size;
788 u32 value32;
789
790 if (!value)
791 return AE_BAD_PARAMETER;
792
793 switch (width) {
794 case 8:
795 size = 1;
796 break;
797 case 16:
798 size = 2;
799 break;
800 case 32:
801 size = 4;
802 break;
803 default:
804 return AE_ERROR;
805 }
806
807 result = raw_pci_read(pci_id->segment, pci_id->bus,
808 PCI_DEVFN(pci_id->device, pci_id->function),
809 reg, size, &value32);
810 *value = value32;
811
812 return (result ? AE_ERROR : AE_OK);
813 }
814
815 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)816 acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
817 u64 value, u32 width)
818 {
819 int result, size;
820
821 switch (width) {
822 case 8:
823 size = 1;
824 break;
825 case 16:
826 size = 2;
827 break;
828 case 32:
829 size = 4;
830 break;
831 default:
832 return AE_ERROR;
833 }
834
835 result = raw_pci_write(pci_id->segment, pci_id->bus,
836 PCI_DEVFN(pci_id->device, pci_id->function),
837 reg, size, value);
838
839 return (result ? AE_ERROR : AE_OK);
840 }
841 #endif
842
acpi_os_execute_deferred(struct work_struct * work)843 static void acpi_os_execute_deferred(struct work_struct *work)
844 {
845 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846
847 dpc->function(dpc->context);
848 kfree(dpc);
849 }
850
851 #ifdef CONFIG_ACPI_DEBUGGER
852 static struct acpi_debugger acpi_debugger;
853 static bool acpi_debugger_initialized;
854
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)855 int acpi_register_debugger(struct module *owner,
856 const struct acpi_debugger_ops *ops)
857 {
858 int ret = 0;
859
860 mutex_lock(&acpi_debugger.lock);
861 if (acpi_debugger.ops) {
862 ret = -EBUSY;
863 goto err_lock;
864 }
865
866 acpi_debugger.owner = owner;
867 acpi_debugger.ops = ops;
868
869 err_lock:
870 mutex_unlock(&acpi_debugger.lock);
871 return ret;
872 }
873 EXPORT_SYMBOL(acpi_register_debugger);
874
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)875 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876 {
877 mutex_lock(&acpi_debugger.lock);
878 if (ops == acpi_debugger.ops) {
879 acpi_debugger.ops = NULL;
880 acpi_debugger.owner = NULL;
881 }
882 mutex_unlock(&acpi_debugger.lock);
883 }
884 EXPORT_SYMBOL(acpi_unregister_debugger);
885
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)886 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887 {
888 int ret;
889 int (*func)(acpi_osd_exec_callback, void *);
890 struct module *owner;
891
892 if (!acpi_debugger_initialized)
893 return -ENODEV;
894 mutex_lock(&acpi_debugger.lock);
895 if (!acpi_debugger.ops) {
896 ret = -ENODEV;
897 goto err_lock;
898 }
899 if (!try_module_get(acpi_debugger.owner)) {
900 ret = -ENODEV;
901 goto err_lock;
902 }
903 func = acpi_debugger.ops->create_thread;
904 owner = acpi_debugger.owner;
905 mutex_unlock(&acpi_debugger.lock);
906
907 ret = func(function, context);
908
909 mutex_lock(&acpi_debugger.lock);
910 module_put(owner);
911 err_lock:
912 mutex_unlock(&acpi_debugger.lock);
913 return ret;
914 }
915
acpi_debugger_write_log(const char * msg)916 ssize_t acpi_debugger_write_log(const char *msg)
917 {
918 ssize_t ret;
919 ssize_t (*func)(const char *);
920 struct module *owner;
921
922 if (!acpi_debugger_initialized)
923 return -ENODEV;
924 mutex_lock(&acpi_debugger.lock);
925 if (!acpi_debugger.ops) {
926 ret = -ENODEV;
927 goto err_lock;
928 }
929 if (!try_module_get(acpi_debugger.owner)) {
930 ret = -ENODEV;
931 goto err_lock;
932 }
933 func = acpi_debugger.ops->write_log;
934 owner = acpi_debugger.owner;
935 mutex_unlock(&acpi_debugger.lock);
936
937 ret = func(msg);
938
939 mutex_lock(&acpi_debugger.lock);
940 module_put(owner);
941 err_lock:
942 mutex_unlock(&acpi_debugger.lock);
943 return ret;
944 }
945
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)946 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947 {
948 ssize_t ret;
949 ssize_t (*func)(char *, size_t);
950 struct module *owner;
951
952 if (!acpi_debugger_initialized)
953 return -ENODEV;
954 mutex_lock(&acpi_debugger.lock);
955 if (!acpi_debugger.ops) {
956 ret = -ENODEV;
957 goto err_lock;
958 }
959 if (!try_module_get(acpi_debugger.owner)) {
960 ret = -ENODEV;
961 goto err_lock;
962 }
963 func = acpi_debugger.ops->read_cmd;
964 owner = acpi_debugger.owner;
965 mutex_unlock(&acpi_debugger.lock);
966
967 ret = func(buffer, buffer_length);
968
969 mutex_lock(&acpi_debugger.lock);
970 module_put(owner);
971 err_lock:
972 mutex_unlock(&acpi_debugger.lock);
973 return ret;
974 }
975
acpi_debugger_wait_command_ready(void)976 int acpi_debugger_wait_command_ready(void)
977 {
978 int ret;
979 int (*func)(bool, char *, size_t);
980 struct module *owner;
981
982 if (!acpi_debugger_initialized)
983 return -ENODEV;
984 mutex_lock(&acpi_debugger.lock);
985 if (!acpi_debugger.ops) {
986 ret = -ENODEV;
987 goto err_lock;
988 }
989 if (!try_module_get(acpi_debugger.owner)) {
990 ret = -ENODEV;
991 goto err_lock;
992 }
993 func = acpi_debugger.ops->wait_command_ready;
994 owner = acpi_debugger.owner;
995 mutex_unlock(&acpi_debugger.lock);
996
997 ret = func(acpi_gbl_method_executing,
998 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999
1000 mutex_lock(&acpi_debugger.lock);
1001 module_put(owner);
1002 err_lock:
1003 mutex_unlock(&acpi_debugger.lock);
1004 return ret;
1005 }
1006
acpi_debugger_notify_command_complete(void)1007 int acpi_debugger_notify_command_complete(void)
1008 {
1009 int ret;
1010 int (*func)(void);
1011 struct module *owner;
1012
1013 if (!acpi_debugger_initialized)
1014 return -ENODEV;
1015 mutex_lock(&acpi_debugger.lock);
1016 if (!acpi_debugger.ops) {
1017 ret = -ENODEV;
1018 goto err_lock;
1019 }
1020 if (!try_module_get(acpi_debugger.owner)) {
1021 ret = -ENODEV;
1022 goto err_lock;
1023 }
1024 func = acpi_debugger.ops->notify_command_complete;
1025 owner = acpi_debugger.owner;
1026 mutex_unlock(&acpi_debugger.lock);
1027
1028 ret = func();
1029
1030 mutex_lock(&acpi_debugger.lock);
1031 module_put(owner);
1032 err_lock:
1033 mutex_unlock(&acpi_debugger.lock);
1034 return ret;
1035 }
1036
acpi_debugger_init(void)1037 int __init acpi_debugger_init(void)
1038 {
1039 mutex_init(&acpi_debugger.lock);
1040 acpi_debugger_initialized = true;
1041 return 0;
1042 }
1043 #endif
1044
1045 /*******************************************************************************
1046 *
1047 * FUNCTION: acpi_os_execute
1048 *
1049 * PARAMETERS: Type - Type of the callback
1050 * Function - Function to be executed
1051 * Context - Function parameters
1052 *
1053 * RETURN: Status
1054 *
1055 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056 * immediately executes function on a separate thread.
1057 *
1058 ******************************************************************************/
1059
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1060 acpi_status acpi_os_execute(acpi_execute_type type,
1061 acpi_osd_exec_callback function, void *context)
1062 {
1063 struct acpi_os_dpc *dpc;
1064 int ret;
1065
1066 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1067 "Scheduling function [%p(%p)] for deferred execution.\n",
1068 function, context));
1069
1070 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1071 ret = acpi_debugger_create_thread(function, context);
1072 if (ret) {
1073 pr_err("Kernel thread creation failed\n");
1074 return AE_ERROR;
1075 }
1076 return AE_OK;
1077 }
1078
1079 /*
1080 * Allocate/initialize DPC structure. Note that this memory will be
1081 * freed by the callee. The kernel handles the work_struct list in a
1082 * way that allows us to also free its memory inside the callee.
1083 * Because we may want to schedule several tasks with different
1084 * parameters we can't use the approach some kernel code uses of
1085 * having a static work_struct.
1086 */
1087
1088 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1089 if (!dpc)
1090 return AE_NO_MEMORY;
1091
1092 dpc->function = function;
1093 dpc->context = context;
1094 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1095
1096 /*
1097 * To prevent lockdep from complaining unnecessarily, make sure that
1098 * there is a different static lockdep key for each workqueue by using
1099 * INIT_WORK() for each of them separately.
1100 */
1101 switch (type) {
1102 case OSL_NOTIFY_HANDLER:
1103 ret = queue_work(kacpi_notify_wq, &dpc->work);
1104 break;
1105 case OSL_GPE_HANDLER:
1106 /*
1107 * On some machines, a software-initiated SMI causes corruption
1108 * unless the SMI runs on CPU 0. An SMI can be initiated by
1109 * any AML, but typically it's done in GPE-related methods that
1110 * are run via workqueues, so we can avoid the known corruption
1111 * cases by always queueing on CPU 0.
1112 */
1113 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1114 break;
1115 default:
1116 pr_err("Unsupported os_execute type %d.\n", type);
1117 goto err;
1118 }
1119 if (!ret) {
1120 pr_err("Unable to queue work\n");
1121 goto err;
1122 }
1123
1124 return AE_OK;
1125
1126 err:
1127 kfree(dpc);
1128 return AE_ERROR;
1129 }
1130 EXPORT_SYMBOL(acpi_os_execute);
1131
acpi_os_wait_events_complete(void)1132 void acpi_os_wait_events_complete(void)
1133 {
1134 /*
1135 * Make sure the GPE handler or the fixed event handler is not used
1136 * on another CPU after removal.
1137 */
1138 if (acpi_sci_irq_valid())
1139 synchronize_hardirq(acpi_sci_irq);
1140 flush_workqueue(kacpid_wq);
1141 flush_workqueue(kacpi_notify_wq);
1142 }
1143 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1144
1145 struct acpi_hp_work {
1146 struct work_struct work;
1147 struct acpi_device *adev;
1148 u32 src;
1149 };
1150
acpi_hotplug_work_fn(struct work_struct * work)1151 static void acpi_hotplug_work_fn(struct work_struct *work)
1152 {
1153 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1154
1155 acpi_os_wait_events_complete();
1156 acpi_device_hotplug(hpw->adev, hpw->src);
1157 kfree(hpw);
1158 }
1159
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1160 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1161 {
1162 struct acpi_hp_work *hpw;
1163
1164 acpi_handle_debug(adev->handle,
1165 "Scheduling hotplug event %u for deferred handling\n",
1166 src);
1167
1168 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1169 if (!hpw)
1170 return AE_NO_MEMORY;
1171
1172 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1173 hpw->adev = adev;
1174 hpw->src = src;
1175 /*
1176 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1177 * the hotplug code may call driver .remove() functions, which may
1178 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1179 * these workqueues.
1180 */
1181 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1182 kfree(hpw);
1183 return AE_ERROR;
1184 }
1185 return AE_OK;
1186 }
1187
acpi_queue_hotplug_work(struct work_struct * work)1188 bool acpi_queue_hotplug_work(struct work_struct *work)
1189 {
1190 return queue_work(kacpi_hotplug_wq, work);
1191 }
1192
1193 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1194 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1195 {
1196 struct semaphore *sem = NULL;
1197
1198 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1199 if (!sem)
1200 return AE_NO_MEMORY;
1201
1202 sema_init(sem, initial_units);
1203
1204 *handle = (acpi_handle *) sem;
1205
1206 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1207 *handle, initial_units));
1208
1209 return AE_OK;
1210 }
1211
1212 /*
1213 * TODO: A better way to delete semaphores? Linux doesn't have a
1214 * 'delete_semaphore()' function -- may result in an invalid
1215 * pointer dereference for non-synchronized consumers. Should
1216 * we at least check for blocked threads and signal/cancel them?
1217 */
1218
acpi_os_delete_semaphore(acpi_handle handle)1219 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1220 {
1221 struct semaphore *sem = (struct semaphore *)handle;
1222
1223 if (!sem)
1224 return AE_BAD_PARAMETER;
1225
1226 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1227
1228 BUG_ON(!list_empty(&sem->wait_list));
1229 kfree(sem);
1230 sem = NULL;
1231
1232 return AE_OK;
1233 }
1234
1235 /*
1236 * TODO: Support for units > 1?
1237 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1238 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1239 {
1240 acpi_status status = AE_OK;
1241 struct semaphore *sem = (struct semaphore *)handle;
1242 long jiffies;
1243 int ret = 0;
1244
1245 if (!acpi_os_initialized)
1246 return AE_OK;
1247
1248 if (!sem || (units < 1))
1249 return AE_BAD_PARAMETER;
1250
1251 if (units > 1)
1252 return AE_SUPPORT;
1253
1254 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1255 handle, units, timeout));
1256
1257 if (timeout == ACPI_WAIT_FOREVER)
1258 jiffies = MAX_SCHEDULE_TIMEOUT;
1259 else
1260 jiffies = msecs_to_jiffies(timeout);
1261
1262 ret = down_timeout(sem, jiffies);
1263 if (ret)
1264 status = AE_TIME;
1265
1266 if (ACPI_FAILURE(status)) {
1267 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1268 "Failed to acquire semaphore[%p|%d|%d], %s",
1269 handle, units, timeout,
1270 acpi_format_exception(status)));
1271 } else {
1272 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1273 "Acquired semaphore[%p|%d|%d]", handle,
1274 units, timeout));
1275 }
1276
1277 return status;
1278 }
1279
1280 /*
1281 * TODO: Support for units > 1?
1282 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1283 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1284 {
1285 struct semaphore *sem = (struct semaphore *)handle;
1286
1287 if (!acpi_os_initialized)
1288 return AE_OK;
1289
1290 if (!sem || (units < 1))
1291 return AE_BAD_PARAMETER;
1292
1293 if (units > 1)
1294 return AE_SUPPORT;
1295
1296 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1297 units));
1298
1299 up(sem);
1300
1301 return AE_OK;
1302 }
1303
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1304 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1305 {
1306 #ifdef ENABLE_DEBUGGER
1307 if (acpi_in_debugger) {
1308 u32 chars;
1309
1310 kdb_read(buffer, buffer_length);
1311
1312 /* remove the CR kdb includes */
1313 chars = strlen(buffer) - 1;
1314 buffer[chars] = '\0';
1315 }
1316 #else
1317 int ret;
1318
1319 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1320 if (ret < 0)
1321 return AE_ERROR;
1322 if (bytes_read)
1323 *bytes_read = ret;
1324 #endif
1325
1326 return AE_OK;
1327 }
1328 EXPORT_SYMBOL(acpi_os_get_line);
1329
acpi_os_wait_command_ready(void)1330 acpi_status acpi_os_wait_command_ready(void)
1331 {
1332 int ret;
1333
1334 ret = acpi_debugger_wait_command_ready();
1335 if (ret < 0)
1336 return AE_ERROR;
1337 return AE_OK;
1338 }
1339
acpi_os_notify_command_complete(void)1340 acpi_status acpi_os_notify_command_complete(void)
1341 {
1342 int ret;
1343
1344 ret = acpi_debugger_notify_command_complete();
1345 if (ret < 0)
1346 return AE_ERROR;
1347 return AE_OK;
1348 }
1349
acpi_os_signal(u32 function,void * info)1350 acpi_status acpi_os_signal(u32 function, void *info)
1351 {
1352 switch (function) {
1353 case ACPI_SIGNAL_FATAL:
1354 pr_err("Fatal opcode executed\n");
1355 break;
1356 case ACPI_SIGNAL_BREAKPOINT:
1357 /*
1358 * AML Breakpoint
1359 * ACPI spec. says to treat it as a NOP unless
1360 * you are debugging. So if/when we integrate
1361 * AML debugger into the kernel debugger its
1362 * hook will go here. But until then it is
1363 * not useful to print anything on breakpoints.
1364 */
1365 break;
1366 default:
1367 break;
1368 }
1369
1370 return AE_OK;
1371 }
1372
acpi_os_name_setup(char * str)1373 static int __init acpi_os_name_setup(char *str)
1374 {
1375 char *p = acpi_os_name;
1376 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1377
1378 if (!str || !*str)
1379 return 0;
1380
1381 for (; count-- && *str; str++) {
1382 if (isalnum(*str) || *str == ' ' || *str == ':')
1383 *p++ = *str;
1384 else if (*str == '\'' || *str == '"')
1385 continue;
1386 else
1387 break;
1388 }
1389 *p = 0;
1390
1391 return 1;
1392
1393 }
1394
1395 __setup("acpi_os_name=", acpi_os_name_setup);
1396
1397 /*
1398 * Disable the auto-serialization of named objects creation methods.
1399 *
1400 * This feature is enabled by default. It marks the AML control methods
1401 * that contain the opcodes to create named objects as "Serialized".
1402 */
acpi_no_auto_serialize_setup(char * str)1403 static int __init acpi_no_auto_serialize_setup(char *str)
1404 {
1405 acpi_gbl_auto_serialize_methods = FALSE;
1406 pr_info("Auto-serialization disabled\n");
1407
1408 return 1;
1409 }
1410
1411 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1412
1413 /* Check of resource interference between native drivers and ACPI
1414 * OperationRegions (SystemIO and System Memory only).
1415 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1416 * in arbitrary AML code and can interfere with legacy drivers.
1417 * acpi_enforce_resources= can be set to:
1418 *
1419 * - strict (default) (2)
1420 * -> further driver trying to access the resources will not load
1421 * - lax (1)
1422 * -> further driver trying to access the resources will load, but you
1423 * get a system message that something might go wrong...
1424 *
1425 * - no (0)
1426 * -> ACPI Operation Region resources will not be registered
1427 *
1428 */
1429 #define ENFORCE_RESOURCES_STRICT 2
1430 #define ENFORCE_RESOURCES_LAX 1
1431 #define ENFORCE_RESOURCES_NO 0
1432
1433 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1434
acpi_enforce_resources_setup(char * str)1435 static int __init acpi_enforce_resources_setup(char *str)
1436 {
1437 if (str == NULL || *str == '\0')
1438 return 0;
1439
1440 if (!strcmp("strict", str))
1441 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1442 else if (!strcmp("lax", str))
1443 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1444 else if (!strcmp("no", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1446
1447 return 1;
1448 }
1449
1450 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1451
1452 /* Check for resource conflicts between ACPI OperationRegions and native
1453 * drivers */
acpi_check_resource_conflict(const struct resource * res)1454 int acpi_check_resource_conflict(const struct resource *res)
1455 {
1456 acpi_adr_space_type space_id;
1457
1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1459 return 0;
1460
1461 if (res->flags & IORESOURCE_IO)
1462 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1463 else if (res->flags & IORESOURCE_MEM)
1464 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1465 else
1466 return 0;
1467
1468 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1469 return 0;
1470
1471 pr_info("Resource conflict; ACPI support missing from driver?\n");
1472
1473 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1474 return -EBUSY;
1475
1476 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1478
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(acpi_check_resource_conflict);
1482
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1483 int acpi_check_region(resource_size_t start, resource_size_t n,
1484 const char *name)
1485 {
1486 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1487
1488 return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491
1492 /*
1493 * Let drivers know whether the resource checks are effective
1494 */
acpi_resources_are_enforced(void)1495 int acpi_resources_are_enforced(void)
1496 {
1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498 }
1499 EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501 /*
1502 * Deallocate the memory for a spinlock.
1503 */
acpi_os_delete_lock(acpi_spinlock handle)1504 void acpi_os_delete_lock(acpi_spinlock handle)
1505 {
1506 ACPI_FREE(handle);
1507 }
1508
1509 /*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
acpi_os_acquire_lock(acpi_spinlock lockp)1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 __acquires(lockp)
1517 {
1518 spin_lock(lockp);
1519 return 0;
1520 }
1521
1522 /*
1523 * Release a spinlock. See above.
1524 */
1525
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags not_used)1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1527 __releases(lockp)
1528 {
1529 spin_unlock(lockp);
1530 }
1531
1532 #ifndef ACPI_USE_LOCAL_CACHE
1533
1534 /*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1550 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1551 {
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557 }
1558
1559 /*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
acpi_os_purge_cache(acpi_cache_t * cache)1571 acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1572 {
1573 kmem_cache_shrink(cache);
1574 return AE_OK;
1575 }
1576
1577 /*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
acpi_os_delete_cache(acpi_cache_t * cache)1590 acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1591 {
1592 kmem_cache_destroy(cache);
1593 return AE_OK;
1594 }
1595
1596 /*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
acpi_os_release_object(acpi_cache_t * cache,void * object)1610 acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1611 {
1612 kmem_cache_free(cache, object);
1613 return AE_OK;
1614 }
1615 #endif
1616
acpi_no_static_ssdt_setup(char * s)1617 static int __init acpi_no_static_ssdt_setup(char *s)
1618 {
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("Static SSDT installation disabled\n");
1621
1622 return 0;
1623 }
1624
1625 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
acpi_disable_return_repair(char * s)1627 static int __init acpi_disable_return_repair(char *s)
1628 {
1629 pr_notice("Predefined validation mechanism disabled\n");
1630 acpi_gbl_disable_auto_repair = TRUE;
1631
1632 return 1;
1633 }
1634
1635 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
acpi_os_initialize(void)1637 acpi_status __init acpi_os_initialize(void)
1638 {
1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641
1642 acpi_gbl_xgpe0_block_logical_address =
1643 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1644 acpi_gbl_xgpe1_block_logical_address =
1645 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1646
1647 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1648 /*
1649 * Use acpi_os_map_generic_address to pre-map the reset
1650 * register if it's in system memory.
1651 */
1652 void *rv;
1653
1654 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1655 pr_debug("%s: Reset register mapping %s\n", __func__,
1656 rv ? "successful" : "failed");
1657 }
1658 acpi_os_initialized = true;
1659
1660 return AE_OK;
1661 }
1662
acpi_os_initialize1(void)1663 acpi_status __init acpi_os_initialize1(void)
1664 {
1665 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1666 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1667 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1668 BUG_ON(!kacpid_wq);
1669 BUG_ON(!kacpi_notify_wq);
1670 BUG_ON(!kacpi_hotplug_wq);
1671 acpi_osi_init();
1672 return AE_OK;
1673 }
1674
acpi_os_terminate(void)1675 acpi_status acpi_os_terminate(void)
1676 {
1677 if (acpi_irq_handler) {
1678 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1679 acpi_irq_handler);
1680 }
1681
1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1684 acpi_gbl_xgpe0_block_logical_address = 0UL;
1685 acpi_gbl_xgpe1_block_logical_address = 0UL;
1686
1687 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1688 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1689
1690 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1691 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1692
1693 destroy_workqueue(kacpid_wq);
1694 destroy_workqueue(kacpi_notify_wq);
1695 destroy_workqueue(kacpi_hotplug_wq);
1696
1697 return AE_OK;
1698 }
1699
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1700 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1701 u32 pm1b_control)
1702 {
1703 int rc = 0;
1704
1705 if (__acpi_os_prepare_sleep)
1706 rc = __acpi_os_prepare_sleep(sleep_state,
1707 pm1a_control, pm1b_control);
1708 if (rc < 0)
1709 return AE_ERROR;
1710 else if (rc > 0)
1711 return AE_CTRL_TERMINATE;
1712
1713 return AE_OK;
1714 }
1715
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1716 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1717 u32 pm1a_ctrl, u32 pm1b_ctrl))
1718 {
1719 __acpi_os_prepare_sleep = func;
1720 }
1721
1722 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1723 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1724 u32 val_b)
1725 {
1726 int rc = 0;
1727
1728 if (__acpi_os_prepare_extended_sleep)
1729 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1730 val_a, val_b);
1731 if (rc < 0)
1732 return AE_ERROR;
1733 else if (rc > 0)
1734 return AE_CTRL_TERMINATE;
1735
1736 return AE_OK;
1737 }
1738 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1739 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1740 u32 val_b)
1741 {
1742 return AE_OK;
1743 }
1744 #endif
1745
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1746 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1747 u32 val_a, u32 val_b))
1748 {
1749 __acpi_os_prepare_extended_sleep = func;
1750 }
1751
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1752 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1753 u32 reg_a_value, u32 reg_b_value)
1754 {
1755 acpi_status status;
1756
1757 if (acpi_gbl_reduced_hardware)
1758 status = acpi_os_prepare_extended_sleep(sleep_state,
1759 reg_a_value,
1760 reg_b_value);
1761 else
1762 status = acpi_os_prepare_sleep(sleep_state,
1763 reg_a_value, reg_b_value);
1764 return status;
1765 }
1766