xref: /freebsd/sys/dev/efidev/efirt.c (revision 07593d13fa2ad6fe4d962b7473c6020aef2a0414)
1 /*-
2  * Copyright (c) 2004 Marcel Moolenaar
3  * Copyright (c) 2001 Doug Rabson
4  * Copyright (c) 2016, 2018 The FreeBSD Foundation
5  * All rights reserved.
6  *
7  * Portions of this software were developed by Konstantin Belousov
8  * under sponsorship from the FreeBSD Foundation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_acpi.h"
34 
35 #include <sys/param.h>
36 #include <sys/efi.h>
37 #include <sys/eventhandler.h>
38 #include <sys/kernel.h>
39 #include <sys/linker.h>
40 #include <sys/lock.h>
41 #include <sys/malloc.h>
42 #include <sys/module.h>
43 #include <sys/msan.h>
44 #include <sys/mutex.h>
45 #include <sys/clock.h>
46 #include <sys/proc.h>
47 #include <sys/reboot.h>
48 #include <sys/rwlock.h>
49 #include <sys/sched.h>
50 #include <sys/sysctl.h>
51 #include <sys/systm.h>
52 #include <sys/uio.h>
53 #include <sys/vmmeter.h>
54 
55 #include <machine/fpu.h>
56 #include <machine/efi.h>
57 #include <machine/metadata.h>
58 #include <machine/vmparam.h>
59 
60 #include <vm/vm.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_map.h>
63 
64 #ifdef DEV_ACPI
65 #include <contrib/dev/acpica/include/acpi.h>
66 #endif
67 
68 #define EFI_TABLE_ALLOC_MAX 0x800000
69 
70 static struct efi_systbl *efi_systbl;
71 static eventhandler_tag efi_shutdown_tag;
72 /*
73  * The following pointers point to tables in the EFI runtime service data pages.
74  * Care should be taken to make sure that we've properly entered the EFI runtime
75  * environment (efi_enter()) before dereferencing them.
76  */
77 static struct efi_cfgtbl *efi_cfgtbl;
78 static struct efi_rt *efi_runtime;
79 
80 static int efi_status2err[25] = {
81 	0,		/* EFI_SUCCESS */
82 	ENOEXEC,	/* EFI_LOAD_ERROR */
83 	EINVAL,		/* EFI_INVALID_PARAMETER */
84 	ENOSYS,		/* EFI_UNSUPPORTED */
85 	EMSGSIZE, 	/* EFI_BAD_BUFFER_SIZE */
86 	EOVERFLOW,	/* EFI_BUFFER_TOO_SMALL */
87 	EBUSY,		/* EFI_NOT_READY */
88 	EIO,		/* EFI_DEVICE_ERROR */
89 	EROFS,		/* EFI_WRITE_PROTECTED */
90 	EAGAIN,		/* EFI_OUT_OF_RESOURCES */
91 	EIO,		/* EFI_VOLUME_CORRUPTED */
92 	ENOSPC,		/* EFI_VOLUME_FULL */
93 	ENXIO,		/* EFI_NO_MEDIA */
94 	ESTALE,		/* EFI_MEDIA_CHANGED */
95 	ENOENT,		/* EFI_NOT_FOUND */
96 	EACCES,		/* EFI_ACCESS_DENIED */
97 	ETIMEDOUT,	/* EFI_NO_RESPONSE */
98 	EADDRNOTAVAIL,	/* EFI_NO_MAPPING */
99 	ETIMEDOUT,	/* EFI_TIMEOUT */
100 	EDOOFUS,	/* EFI_NOT_STARTED */
101 	EALREADY,	/* EFI_ALREADY_STARTED */
102 	ECANCELED,	/* EFI_ABORTED */
103 	EPROTO,		/* EFI_ICMP_ERROR */
104 	EPROTO,		/* EFI_TFTP_ERROR */
105 	EPROTO		/* EFI_PROTOCOL_ERROR */
106 };
107 
108 enum efi_table_type {
109 	TYPE_ESRT = 0,
110 	TYPE_PROP
111 };
112 
113 static int efi_enter(void);
114 static void efi_leave(void);
115 
116 int
efi_status_to_errno(efi_status status)117 efi_status_to_errno(efi_status status)
118 {
119 	u_long code;
120 
121 	code = status & 0x3ffffffffffffffful;
122 	return (code < nitems(efi_status2err) ? efi_status2err[code] : EDOOFUS);
123 }
124 
125 static struct mtx efi_lock;
126 static SYSCTL_NODE(_hw, OID_AUTO, efi, CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL,
127     "EFI");
128 static bool efi_poweroff = true;
129 SYSCTL_BOOL(_hw_efi, OID_AUTO, poweroff, CTLFLAG_RWTUN, &efi_poweroff, 0,
130     "If true, use EFI runtime services to power off in preference to ACPI");
131 
132 static bool
efi_is_in_map(struct efi_md * map,int ndesc,int descsz,vm_offset_t addr)133 efi_is_in_map(struct efi_md *map, int ndesc, int descsz, vm_offset_t addr)
134 {
135 	struct efi_md *p;
136 	int i;
137 
138 	for (i = 0, p = map; i < ndesc; i++, p = efi_next_descriptor(p,
139 	    descsz)) {
140 		if ((p->md_attr & EFI_MD_ATTR_RT) == 0)
141 			continue;
142 
143 		if (addr >= p->md_virt &&
144 		    addr < p->md_virt + p->md_pages * EFI_PAGE_SIZE)
145 			return (true);
146 	}
147 
148 	return (false);
149 }
150 
151 static void
efi_shutdown_final(void * dummy __unused,int howto)152 efi_shutdown_final(void *dummy __unused, int howto)
153 {
154 
155 	/*
156 	 * On some systems, ACPI S5 is missing or does not function properly.
157 	 * When present, shutdown via EFI Runtime Services instead, unless
158 	 * disabled.
159 	 */
160 	if ((howto & RB_POWEROFF) != 0 && efi_poweroff)
161 		(void)efi_reset_system(EFI_RESET_SHUTDOWN);
162 }
163 
164 static int
efi_init(void)165 efi_init(void)
166 {
167 	struct efi_map_header *efihdr;
168 	struct efi_md *map;
169 	struct efi_rt *rtdm;
170 	caddr_t kmdp;
171 	size_t efisz;
172 	int ndesc, rt_disabled;
173 
174 	rt_disabled = 0;
175 	TUNABLE_INT_FETCH("efi.rt.disabled", &rt_disabled);
176 	if (rt_disabled == 1)
177 		return (0);
178 	mtx_init(&efi_lock, "efi", NULL, MTX_DEF);
179 
180 	if (efi_systbl_phys == 0) {
181 		if (bootverbose)
182 			printf("EFI systbl not available\n");
183 		return (0);
184 	}
185 
186 	efi_systbl = (struct efi_systbl *)efi_phys_to_kva(efi_systbl_phys);
187 	if (efi_systbl == NULL || efi_systbl->st_hdr.th_sig != EFI_SYSTBL_SIG) {
188 		efi_systbl = NULL;
189 		if (bootverbose)
190 			printf("EFI systbl signature invalid\n");
191 		return (0);
192 	}
193 	efi_cfgtbl = (efi_systbl->st_cfgtbl == 0) ? NULL :
194 	    (struct efi_cfgtbl *)efi_systbl->st_cfgtbl;
195 	if (efi_cfgtbl == NULL) {
196 		if (bootverbose)
197 			printf("EFI config table is not present\n");
198 	}
199 
200 	kmdp = preload_search_by_type("elf kernel");
201 	if (kmdp == NULL)
202 		kmdp = preload_search_by_type("elf64 kernel");
203 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
204 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
205 	if (efihdr == NULL) {
206 		if (bootverbose)
207 			printf("EFI map is not present\n");
208 		return (0);
209 	}
210 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
211 	map = (struct efi_md *)((uint8_t *)efihdr + efisz);
212 	if (efihdr->descriptor_size == 0)
213 		return (ENOMEM);
214 
215 	ndesc = efihdr->memory_size / efihdr->descriptor_size;
216 	if (!efi_create_1t1_map(map, ndesc, efihdr->descriptor_size)) {
217 		if (bootverbose)
218 			printf("EFI cannot create runtime map\n");
219 		return (ENOMEM);
220 	}
221 
222 	efi_runtime = (efi_systbl->st_rt == 0) ? NULL :
223 	    (struct efi_rt *)efi_systbl->st_rt;
224 	if (efi_runtime == NULL) {
225 		if (bootverbose)
226 			printf("EFI runtime services table is not present\n");
227 		efi_destroy_1t1_map();
228 		return (ENXIO);
229 	}
230 
231 #if defined(__aarch64__) || defined(__amd64__)
232 	/*
233 	 * Some UEFI implementations have multiple implementations of the
234 	 * RS->GetTime function. They switch from one we can only use early
235 	 * in the boot process to one valid as a RunTime service only when we
236 	 * call RS->SetVirtualAddressMap. As this is not always the case, e.g.
237 	 * with an old loader.efi, check if the RS->GetTime function is within
238 	 * the EFI map, and fail to attach if not.
239 	 */
240 	rtdm = (struct efi_rt *)efi_phys_to_kva((uintptr_t)efi_runtime);
241 	if (rtdm == NULL || !efi_is_in_map(map, ndesc, efihdr->descriptor_size,
242 	    (vm_offset_t)rtdm->rt_gettime)) {
243 		if (bootverbose)
244 			printf(
245 			 "EFI runtime services table has an invalid pointer\n");
246 		efi_runtime = NULL;
247 		efi_destroy_1t1_map();
248 		return (ENXIO);
249 	}
250 #endif
251 
252 	/*
253 	 * We use SHUTDOWN_PRI_LAST - 1 to trigger after IPMI, but before ACPI.
254 	 */
255 	efi_shutdown_tag = EVENTHANDLER_REGISTER(shutdown_final,
256 	    efi_shutdown_final, NULL, SHUTDOWN_PRI_LAST - 1);
257 
258 	return (0);
259 }
260 
261 static void
efi_uninit(void)262 efi_uninit(void)
263 {
264 
265 	/* Most likely disabled by tunable */
266 	if (efi_runtime == NULL)
267 		return;
268 	if (efi_shutdown_tag != NULL)
269 		EVENTHANDLER_DEREGISTER(shutdown_final, efi_shutdown_tag);
270 	efi_destroy_1t1_map();
271 
272 	efi_systbl = NULL;
273 	efi_cfgtbl = NULL;
274 	efi_runtime = NULL;
275 
276 	mtx_destroy(&efi_lock);
277 }
278 
279 static int
rt_ok(void)280 rt_ok(void)
281 {
282 
283 	if (efi_runtime == NULL)
284 		return (ENXIO);
285 	return (0);
286 }
287 
288 /*
289  * The fpu_kern_enter() call in allows firmware to use FPU, as
290  * mandated by the specification.  It also enters a critical section,
291  * giving us neccessary protection against context switches.
292  */
293 static int
efi_enter(void)294 efi_enter(void)
295 {
296 	struct thread *td;
297 	pmap_t curpmap;
298 	int error;
299 
300 	if (efi_runtime == NULL)
301 		return (ENXIO);
302 	td = curthread;
303 	curpmap = &td->td_proc->p_vmspace->vm_pmap;
304 	PMAP_LOCK(curpmap);
305 	mtx_lock(&efi_lock);
306 	fpu_kern_enter(td, NULL, FPU_KERN_NOCTX);
307 	error = efi_arch_enter();
308 	if (error != 0) {
309 		fpu_kern_leave(td, NULL);
310 		mtx_unlock(&efi_lock);
311 		PMAP_UNLOCK(curpmap);
312 	} else {
313 		MPASS((td->td_pflags & TDP_EFIRT) == 0);
314 		td->td_pflags |= TDP_EFIRT;
315 	}
316 	return (error);
317 }
318 
319 static void
efi_leave(void)320 efi_leave(void)
321 {
322 	struct thread *td;
323 	pmap_t curpmap;
324 
325 	td = curthread;
326 	MPASS((td->td_pflags & TDP_EFIRT) != 0);
327 	td->td_pflags &= ~TDP_EFIRT;
328 
329 	efi_arch_leave();
330 
331 	curpmap = &curproc->p_vmspace->vm_pmap;
332 	fpu_kern_leave(td, NULL);
333 	mtx_unlock(&efi_lock);
334 	PMAP_UNLOCK(curpmap);
335 }
336 
337 static int
get_table(struct uuid * uuid,void ** ptr)338 get_table(struct uuid *uuid, void **ptr)
339 {
340 	struct efi_cfgtbl *ct;
341 	u_long count;
342 	int error;
343 
344 	if (efi_cfgtbl == NULL || efi_systbl == NULL)
345 		return (ENXIO);
346 	error = efi_enter();
347 	if (error != 0)
348 		return (error);
349 	count = efi_systbl->st_entries;
350 	ct = efi_cfgtbl;
351 	while (count--) {
352 		if (!bcmp(&ct->ct_uuid, uuid, sizeof(*uuid))) {
353 			*ptr = ct->ct_data;
354 			efi_leave();
355 			return (0);
356 		}
357 		ct++;
358 	}
359 
360 	efi_leave();
361 	return (ENOENT);
362 }
363 
364 static int
get_table_length(enum efi_table_type type,size_t * table_len,void ** taddr)365 get_table_length(enum efi_table_type type, size_t *table_len, void **taddr)
366 {
367 	switch (type) {
368 	case TYPE_ESRT:
369 	{
370 		struct efi_esrt_table *esrt = NULL;
371 		struct uuid uuid = EFI_TABLE_ESRT;
372 		uint32_t fw_resource_count = 0;
373 		size_t len = sizeof(*esrt);
374 		int error;
375 		void *buf;
376 
377 		error = efi_get_table(&uuid, (void **)&esrt);
378 		if (error != 0)
379 			return (error);
380 
381 		buf = malloc(len, M_TEMP, M_WAITOK);
382 		error = physcopyout((vm_paddr_t)esrt, buf, len);
383 		if (error != 0) {
384 			free(buf, M_TEMP);
385 			return (error);
386 		}
387 
388 		/* Check ESRT version */
389 		if (((struct efi_esrt_table *)buf)->fw_resource_version !=
390 		    ESRT_FIRMWARE_RESOURCE_VERSION) {
391 			free(buf, M_TEMP);
392 			return (ENODEV);
393 		}
394 
395 		fw_resource_count = ((struct efi_esrt_table *)buf)->
396 		    fw_resource_count;
397 		if (fw_resource_count > EFI_TABLE_ALLOC_MAX /
398 		    sizeof(struct efi_esrt_entry_v1)) {
399 			free(buf, M_TEMP);
400 			return (ENOMEM);
401 		}
402 
403 		len += fw_resource_count * sizeof(struct efi_esrt_entry_v1);
404 		*table_len = len;
405 
406 		if (taddr != NULL)
407 			*taddr = esrt;
408 		free(buf, M_TEMP);
409 		return (0);
410 	}
411 	case TYPE_PROP:
412 	{
413 		struct uuid uuid = EFI_PROPERTIES_TABLE;
414 		struct efi_prop_table *prop;
415 		size_t len = sizeof(*prop);
416 		uint32_t prop_len;
417 		int error;
418 		void *buf;
419 
420 		error = efi_get_table(&uuid, (void **)&prop);
421 		if (error != 0)
422 			return (error);
423 
424 		buf = malloc(len, M_TEMP, M_WAITOK);
425 		error = physcopyout((vm_paddr_t)prop, buf, len);
426 		if (error != 0) {
427 			free(buf, M_TEMP);
428 			return (error);
429 		}
430 
431 		prop_len = ((struct efi_prop_table *)buf)->length;
432 		if (prop_len > EFI_TABLE_ALLOC_MAX) {
433 			free(buf, M_TEMP);
434 			return (ENOMEM);
435 		}
436 		*table_len = prop_len;
437 
438 		if (taddr != NULL)
439 			*taddr = prop;
440 		free(buf, M_TEMP);
441 		return (0);
442 	}
443 	}
444 	return (ENOENT);
445 }
446 
447 static int
copy_table(struct uuid * uuid,void ** buf,size_t buf_len,size_t * table_len)448 copy_table(struct uuid *uuid, void **buf, size_t buf_len, size_t *table_len)
449 {
450 	static const struct known_table {
451 		struct uuid uuid;
452 		enum efi_table_type type;
453 	} tables[] = {
454 		{ EFI_TABLE_ESRT,       TYPE_ESRT },
455 		{ EFI_PROPERTIES_TABLE, TYPE_PROP }
456 	};
457 	size_t table_idx;
458 	void *taddr;
459 	int rc;
460 
461 	for (table_idx = 0; table_idx < nitems(tables); table_idx++) {
462 		if (!bcmp(&tables[table_idx].uuid, uuid, sizeof(*uuid)))
463 			break;
464 	}
465 
466 	if (table_idx == nitems(tables))
467 		return (EINVAL);
468 
469 	rc = get_table_length(tables[table_idx].type, table_len, &taddr);
470 	if (rc != 0)
471 		return rc;
472 
473 	/* return table length to userspace */
474 	if (buf == NULL)
475 		return (0);
476 
477 	*buf = malloc(*table_len, M_TEMP, M_WAITOK);
478 	rc = physcopyout((vm_paddr_t)taddr, *buf, *table_len);
479 	return (rc);
480 }
481 
482 static int efi_rt_handle_faults = EFI_RT_HANDLE_FAULTS_DEFAULT;
483 SYSCTL_INT(_machdep, OID_AUTO, efi_rt_handle_faults, CTLFLAG_RWTUN,
484     &efi_rt_handle_faults, 0,
485     "Call EFI RT methods with fault handler wrapper around");
486 
487 static int
efi_rt_arch_call_nofault(struct efirt_callinfo * ec)488 efi_rt_arch_call_nofault(struct efirt_callinfo *ec)
489 {
490 
491 	switch (ec->ec_argcnt) {
492 	case 0:
493 		ec->ec_efi_status = ((register_t (*)(void))ec->ec_fptr)();
494 		break;
495 	case 1:
496 		ec->ec_efi_status = ((register_t (*)(register_t))ec->ec_fptr)
497 		    (ec->ec_arg1);
498 		break;
499 	case 2:
500 		ec->ec_efi_status = ((register_t (*)(register_t, register_t))
501 		    ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2);
502 		break;
503 	case 3:
504 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
505 		    register_t))ec->ec_fptr)(ec->ec_arg1, ec->ec_arg2,
506 		    ec->ec_arg3);
507 		break;
508 	case 4:
509 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
510 		    register_t, register_t))ec->ec_fptr)(ec->ec_arg1,
511 		    ec->ec_arg2, ec->ec_arg3, ec->ec_arg4);
512 		break;
513 	case 5:
514 		ec->ec_efi_status = ((register_t (*)(register_t, register_t,
515 		    register_t, register_t, register_t))ec->ec_fptr)(
516 		    ec->ec_arg1, ec->ec_arg2, ec->ec_arg3, ec->ec_arg4,
517 		    ec->ec_arg5);
518 		break;
519 	default:
520 		panic("efi_rt_arch_call: %d args", (int)ec->ec_argcnt);
521 	}
522 
523 	return (0);
524 }
525 
526 static int
efi_call(struct efirt_callinfo * ecp)527 efi_call(struct efirt_callinfo *ecp)
528 {
529 	int error;
530 
531 	error = efi_enter();
532 	if (error != 0)
533 		return (error);
534 	error = efi_rt_handle_faults ? efi_rt_arch_call(ecp) :
535 	    efi_rt_arch_call_nofault(ecp);
536 	efi_leave();
537 	if (error == 0)
538 		error = efi_status_to_errno(ecp->ec_efi_status);
539 	else if (bootverbose)
540 		printf("EFI %s call faulted, error %d\n", ecp->ec_name, error);
541 	return (error);
542 }
543 
544 #define	EFI_RT_METHOD_PA(method)				\
545     ((uintptr_t)((struct efi_rt *)efi_phys_to_kva((uintptr_t)	\
546     efi_runtime))->method)
547 
548 static int
efi_get_time_locked(struct efi_tm * tm,struct efi_tmcap * tmcap)549 efi_get_time_locked(struct efi_tm *tm, struct efi_tmcap *tmcap)
550 {
551 	struct efirt_callinfo ec;
552 	int error;
553 
554 	EFI_TIME_OWNED();
555 	if (efi_runtime == NULL)
556 		return (ENXIO);
557 	bzero(&ec, sizeof(ec));
558 	ec.ec_name = "rt_gettime";
559 	ec.ec_argcnt = 2;
560 	ec.ec_arg1 = (uintptr_t)tm;
561 	ec.ec_arg2 = (uintptr_t)tmcap;
562 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_gettime);
563 	error = efi_call(&ec);
564 	if (error == 0)
565 		kmsan_mark(tm, sizeof(*tm), KMSAN_STATE_INITED);
566 	return (error);
567 }
568 
569 static int
get_time(struct efi_tm * tm)570 get_time(struct efi_tm *tm)
571 {
572 	struct efi_tmcap dummy;
573 	int error;
574 
575 	if (efi_runtime == NULL)
576 		return (ENXIO);
577 	EFI_TIME_LOCK();
578 	/*
579 	 * UEFI spec states that the Capabilities argument to GetTime is
580 	 * optional, but some UEFI implementations choke when passed a NULL
581 	 * pointer. Pass a dummy efi_tmcap, even though we won't use it,
582 	 * to workaround such implementations.
583 	 */
584 	error = efi_get_time_locked(tm, &dummy);
585 	EFI_TIME_UNLOCK();
586 	return (error);
587 }
588 
589 static int
get_waketime(uint8_t * enabled,uint8_t * pending,struct efi_tm * tm)590 get_waketime(uint8_t *enabled, uint8_t *pending, struct efi_tm *tm)
591 {
592 	struct efirt_callinfo ec;
593 	int error;
594 #ifdef DEV_ACPI
595 	UINT32 acpiRtcEnabled;
596 #endif
597 
598 	if (efi_runtime == NULL)
599 		return (ENXIO);
600 
601 	EFI_TIME_LOCK();
602 	bzero(&ec, sizeof(ec));
603 	ec.ec_name = "rt_getwaketime";
604 	ec.ec_argcnt = 3;
605 	ec.ec_arg1 = (uintptr_t)enabled;
606 	ec.ec_arg2 = (uintptr_t)pending;
607 	ec.ec_arg3 = (uintptr_t)tm;
608 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_getwaketime);
609 	error = efi_call(&ec);
610 	EFI_TIME_UNLOCK();
611 
612 #ifdef DEV_ACPI
613 	if (error == 0) {
614 		error = AcpiReadBitRegister(ACPI_BITREG_RT_CLOCK_ENABLE,
615 		    &acpiRtcEnabled);
616 		if (ACPI_SUCCESS(error)) {
617 			*enabled = *enabled && acpiRtcEnabled;
618 		} else
619 			error = EIO;
620 	}
621 #endif
622 
623 	return (error);
624 }
625 
626 static int
set_waketime(uint8_t enable,struct efi_tm * tm)627 set_waketime(uint8_t enable, struct efi_tm *tm)
628 {
629 	struct efirt_callinfo ec;
630 	int error;
631 
632 	if (efi_runtime == NULL)
633 		return (ENXIO);
634 
635 	EFI_TIME_LOCK();
636 	bzero(&ec, sizeof(ec));
637 	ec.ec_name = "rt_setwaketime";
638 	ec.ec_argcnt = 2;
639 	ec.ec_arg1 = (uintptr_t)enable;
640 	ec.ec_arg2 = (uintptr_t)tm;
641 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_setwaketime);
642 	error = efi_call(&ec);
643 	EFI_TIME_UNLOCK();
644 
645 #ifdef DEV_ACPI
646 	if (error == 0) {
647 		error = AcpiWriteBitRegister(ACPI_BITREG_RT_CLOCK_ENABLE,
648 		    (enable != 0) ? 1 : 0);
649 		if (ACPI_FAILURE(error))
650 			error = EIO;
651 	}
652 #endif
653 
654 	return (error);
655 }
656 
657 static int
get_time_capabilities(struct efi_tmcap * tmcap)658 get_time_capabilities(struct efi_tmcap *tmcap)
659 {
660 	struct efi_tm dummy;
661 	int error;
662 
663 	if (efi_runtime == NULL)
664 		return (ENXIO);
665 	EFI_TIME_LOCK();
666 	error = efi_get_time_locked(&dummy, tmcap);
667 	EFI_TIME_UNLOCK();
668 	return (error);
669 }
670 
671 static int
reset_system(enum efi_reset type)672 reset_system(enum efi_reset type)
673 {
674 	struct efirt_callinfo ec;
675 
676 	switch (type) {
677 	case EFI_RESET_COLD:
678 	case EFI_RESET_WARM:
679 	case EFI_RESET_SHUTDOWN:
680 		break;
681 	default:
682 		return (EINVAL);
683 	}
684 	if (efi_runtime == NULL)
685 		return (ENXIO);
686 	bzero(&ec, sizeof(ec));
687 	ec.ec_name = "rt_reset";
688 	ec.ec_argcnt = 4;
689 	ec.ec_arg1 = (uintptr_t)type;
690 	ec.ec_arg2 = (uintptr_t)0;
691 	ec.ec_arg3 = (uintptr_t)0;
692 	ec.ec_arg4 = (uintptr_t)NULL;
693 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_reset);
694 	return (efi_call(&ec));
695 }
696 
697 static int
efi_set_time_locked(struct efi_tm * tm)698 efi_set_time_locked(struct efi_tm *tm)
699 {
700 	struct efirt_callinfo ec;
701 
702 	EFI_TIME_OWNED();
703 	if (efi_runtime == NULL)
704 		return (ENXIO);
705 	bzero(&ec, sizeof(ec));
706 	ec.ec_name = "rt_settime";
707 	ec.ec_argcnt = 1;
708 	ec.ec_arg1 = (uintptr_t)tm;
709 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_settime);
710 	return (efi_call(&ec));
711 }
712 
713 static int
set_time(struct efi_tm * tm)714 set_time(struct efi_tm *tm)
715 {
716 	int error;
717 
718 	if (efi_runtime == NULL)
719 		return (ENXIO);
720 	EFI_TIME_LOCK();
721 	error = efi_set_time_locked(tm);
722 	EFI_TIME_UNLOCK();
723 	return (error);
724 }
725 
726 static int
var_get(efi_char * name,struct uuid * vendor,uint32_t * attrib,size_t * datasize,void * data)727 var_get(efi_char *name, struct uuid *vendor, uint32_t *attrib,
728     size_t *datasize, void *data)
729 {
730 	struct efirt_callinfo ec;
731 	int error;
732 
733 	if (efi_runtime == NULL)
734 		return (ENXIO);
735 	bzero(&ec, sizeof(ec));
736 	ec.ec_argcnt = 5;
737 	ec.ec_name = "rt_getvar";
738 	ec.ec_arg1 = (uintptr_t)name;
739 	ec.ec_arg2 = (uintptr_t)vendor;
740 	ec.ec_arg3 = (uintptr_t)attrib;
741 	ec.ec_arg4 = (uintptr_t)datasize;
742 	ec.ec_arg5 = (uintptr_t)data;
743 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_getvar);
744 	error = efi_call(&ec);
745 	if (error == 0)
746 		kmsan_mark(data, *datasize, KMSAN_STATE_INITED);
747 	return (error);
748 }
749 
750 static int
var_nextname(size_t * namesize,efi_char * name,struct uuid * vendor)751 var_nextname(size_t *namesize, efi_char *name, struct uuid *vendor)
752 {
753 	struct efirt_callinfo ec;
754 	int error;
755 
756 	if (efi_runtime == NULL)
757 		return (ENXIO);
758 	bzero(&ec, sizeof(ec));
759 	ec.ec_argcnt = 3;
760 	ec.ec_name = "rt_scanvar";
761 	ec.ec_arg1 = (uintptr_t)namesize;
762 	ec.ec_arg2 = (uintptr_t)name;
763 	ec.ec_arg3 = (uintptr_t)vendor;
764 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_scanvar);
765 	error = efi_call(&ec);
766 	if (error == 0)
767 		kmsan_mark(name, *namesize, KMSAN_STATE_INITED);
768 	return (error);
769 }
770 
771 static int
var_set(efi_char * name,struct uuid * vendor,uint32_t attrib,size_t datasize,void * data)772 var_set(efi_char *name, struct uuid *vendor, uint32_t attrib,
773     size_t datasize, void *data)
774 {
775 	struct efirt_callinfo ec;
776 
777 	if (efi_runtime == NULL)
778 		return (ENXIO);
779 	bzero(&ec, sizeof(ec));
780 	ec.ec_argcnt = 5;
781 	ec.ec_name = "rt_setvar";
782 	ec.ec_arg1 = (uintptr_t)name;
783 	ec.ec_arg2 = (uintptr_t)vendor;
784 	ec.ec_arg3 = (uintptr_t)attrib;
785 	ec.ec_arg4 = (uintptr_t)datasize;
786 	ec.ec_arg5 = (uintptr_t)data;
787 	ec.ec_fptr = EFI_RT_METHOD_PA(rt_setvar);
788 	return (efi_call(&ec));
789 }
790 
791 const static struct efi_ops efi_ops = {
792 	.rt_ok = rt_ok,
793 	.get_table = get_table,
794 	.copy_table = copy_table,
795 	.get_time = get_time,
796 	.get_time_capabilities = get_time_capabilities,
797 	.reset_system = reset_system,
798 	.set_time = set_time,
799 	.get_waketime = get_waketime,
800 	.set_waketime = set_waketime,
801 	.var_get = var_get,
802 	.var_nextname = var_nextname,
803 	.var_set = var_set,
804 };
805 const struct efi_ops *active_efi_ops = &efi_ops;
806 
807 static int
efirt_modevents(module_t m,int event,void * arg __unused)808 efirt_modevents(module_t m, int event, void *arg __unused)
809 {
810 
811 	switch (event) {
812 	case MOD_LOAD:
813 		return (efi_init());
814 
815 	case MOD_UNLOAD:
816 		efi_uninit();
817 		return (0);
818 
819 	case MOD_SHUTDOWN:
820 		return (0);
821 
822 	default:
823 		return (EOPNOTSUPP);
824 	}
825 }
826 
827 static moduledata_t efirt_moddata = {
828 	.name = "efirt",
829 	.evhand = efirt_modevents,
830 	.priv = NULL,
831 };
832 /* After fpuinitstate, before efidev */
833 DECLARE_MODULE(efirt, efirt_moddata, SI_SUB_DRIVERS, SI_ORDER_SECOND);
834 MODULE_VERSION(efirt, 1);
835