1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright 2013 Saso Kiselkov. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zil.h>
34 #include <sys/abd.h>
35 #include <zfs_fletcher.h>
36
37 /*
38 * Checksum vectors.
39 *
40 * In the SPA, everything is checksummed. We support checksum vectors
41 * for three distinct reasons:
42 *
43 * 1. Different kinds of data need different levels of protection.
44 * For SPA metadata, we always want a very strong checksum.
45 * For user data, we let users make the trade-off between speed
46 * and checksum strength.
47 *
48 * 2. Cryptographic hash and MAC algorithms are an area of active research.
49 * It is likely that in future hash functions will be at least as strong
50 * as current best-of-breed, and may be substantially faster as well.
51 * We want the ability to take advantage of these new hashes as soon as
52 * they become available.
53 *
54 * 3. If someone develops hardware that can compute a strong hash quickly,
55 * we want the ability to take advantage of that hardware.
56 *
57 * Of course, we don't want a checksum upgrade to invalidate existing
58 * data, so we store the checksum *function* in eight bits of the bp.
59 * This gives us room for up to 256 different checksum functions.
60 *
61 * When writing a block, we always checksum it with the latest-and-greatest
62 * checksum function of the appropriate strength. When reading a block,
63 * we compare the expected checksum against the actual checksum, which we
64 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
65 *
66 * SALTED CHECKSUMS
67 *
68 * To enable the use of less secure hash algorithms with dedup, we
69 * introduce the notion of salted checksums (MACs, really). A salted
70 * checksum is fed both a random 256-bit value (the salt) and the data
71 * to be checksummed. This salt is kept secret (stored on the pool, but
72 * never shown to the user). Thus even if an attacker knew of collision
73 * weaknesses in the hash algorithm, they won't be able to mount a known
74 * plaintext attack on the DDT, since the actual hash value cannot be
75 * known ahead of time. How the salt is used is algorithm-specific
76 * (some might simply prefix it to the data block, others might need to
77 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP
78 * object in the MOS (DMU_POOL_CHECKSUM_SALT).
79 *
80 * CONTEXT TEMPLATES
81 *
82 * Some hashing algorithms need to perform a substantial amount of
83 * initialization work (e.g. salted checksums above may need to pre-hash
84 * the salt) before being able to process data. Performing this
85 * redundant work for each block would be wasteful, so we instead allow
86 * a checksum algorithm to do the work once (the first time it's used)
87 * and then keep this pre-initialized context as a template inside the
88 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains
89 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
90 * construct and destruct the pre-initialized checksum context. The
91 * pre-initialized context is then reused during each checksum
92 * invocation and passed to the checksum function.
93 */
94
95 /*ARGSUSED*/
96 static void
abd_checksum_off(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)97 abd_checksum_off(abd_t *abd, uint64_t size,
98 const void *ctx_template, zio_cksum_t *zcp)
99 {
100 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
101 }
102
103 /*ARGSUSED*/
104 void
abd_fletcher_2_native(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)105 abd_fletcher_2_native(abd_t *abd, uint64_t size,
106 const void *ctx_template, zio_cksum_t *zcp)
107 {
108 fletcher_init(zcp);
109 (void) abd_iterate_func(abd, 0, size,
110 fletcher_2_incremental_native, zcp);
111 }
112
113 /*ARGSUSED*/
114 void
abd_fletcher_2_byteswap(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)115 abd_fletcher_2_byteswap(abd_t *abd, uint64_t size,
116 const void *ctx_template, zio_cksum_t *zcp)
117 {
118 fletcher_init(zcp);
119 (void) abd_iterate_func(abd, 0, size,
120 fletcher_2_incremental_byteswap, zcp);
121 }
122
123 static inline void
abd_fletcher_4_impl(abd_t * abd,uint64_t size,zio_abd_checksum_data_t * acdp)124 abd_fletcher_4_impl(abd_t *abd, uint64_t size, zio_abd_checksum_data_t *acdp)
125 {
126 fletcher_4_abd_ops.acf_init(acdp);
127 abd_iterate_func(abd, 0, size, fletcher_4_abd_ops.acf_iter, acdp);
128 fletcher_4_abd_ops.acf_fini(acdp);
129 }
130
131 /*ARGSUSED*/
132 void
abd_fletcher_4_native(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)133 abd_fletcher_4_native(abd_t *abd, uint64_t size,
134 const void *ctx_template, zio_cksum_t *zcp)
135 {
136 fletcher_4_ctx_t ctx;
137
138 zio_abd_checksum_data_t acd = {
139 .acd_byteorder = ZIO_CHECKSUM_NATIVE,
140 .acd_zcp = zcp,
141 .acd_ctx = &ctx
142 };
143
144 abd_fletcher_4_impl(abd, size, &acd);
145
146 }
147
148 /*ARGSUSED*/
149 void
abd_fletcher_4_byteswap(abd_t * abd,uint64_t size,const void * ctx_template,zio_cksum_t * zcp)150 abd_fletcher_4_byteswap(abd_t *abd, uint64_t size,
151 const void *ctx_template, zio_cksum_t *zcp)
152 {
153 fletcher_4_ctx_t ctx;
154
155 zio_abd_checksum_data_t acd = {
156 .acd_byteorder = ZIO_CHECKSUM_BYTESWAP,
157 .acd_zcp = zcp,
158 .acd_ctx = &ctx
159 };
160
161 abd_fletcher_4_impl(abd, size, &acd);
162 }
163
164 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
165 {{NULL, NULL}, NULL, NULL, 0, "inherit"},
166 {{NULL, NULL}, NULL, NULL, 0, "on"},
167 {{abd_checksum_off, abd_checksum_off},
168 NULL, NULL, 0, "off"},
169 {{abd_checksum_SHA256, abd_checksum_SHA256},
170 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
171 "label"},
172 {{abd_checksum_SHA256, abd_checksum_SHA256},
173 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_EMBEDDED,
174 "gang_header"},
175 {{abd_fletcher_2_native, abd_fletcher_2_byteswap},
176 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog"},
177 {{abd_fletcher_2_native, abd_fletcher_2_byteswap},
178 NULL, NULL, 0, "fletcher2"},
179 {{abd_fletcher_4_native, abd_fletcher_4_byteswap},
180 NULL, NULL, ZCHECKSUM_FLAG_METADATA, "fletcher4"},
181 {{abd_checksum_SHA256, abd_checksum_SHA256},
182 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
183 ZCHECKSUM_FLAG_NOPWRITE, "sha256"},
184 {{abd_fletcher_4_native, abd_fletcher_4_byteswap},
185 NULL, NULL, ZCHECKSUM_FLAG_EMBEDDED, "zilog2"},
186 {{abd_checksum_off, abd_checksum_off},
187 NULL, NULL, 0, "noparity"},
188 {{abd_checksum_SHA512_native, abd_checksum_SHA512_byteswap},
189 NULL, NULL, ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
190 ZCHECKSUM_FLAG_NOPWRITE, "sha512"},
191 {{abd_checksum_skein_native, abd_checksum_skein_byteswap},
192 abd_checksum_skein_tmpl_init, abd_checksum_skein_tmpl_free,
193 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_DEDUP |
194 ZCHECKSUM_FLAG_SALTED | ZCHECKSUM_FLAG_NOPWRITE, "skein"},
195 {{abd_checksum_edonr_native, abd_checksum_edonr_byteswap},
196 abd_checksum_edonr_tmpl_init, abd_checksum_edonr_tmpl_free,
197 ZCHECKSUM_FLAG_METADATA | ZCHECKSUM_FLAG_SALTED |
198 ZCHECKSUM_FLAG_NOPWRITE, "edonr"},
199 };
200
201 /*
202 * The flag corresponding to the "verify" in dedup=[checksum,]verify
203 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
204 */
205 spa_feature_t
zio_checksum_to_feature(enum zio_checksum cksum)206 zio_checksum_to_feature(enum zio_checksum cksum)
207 {
208 VERIFY((cksum & ~ZIO_CHECKSUM_MASK) == 0);
209
210 switch (cksum) {
211 case ZIO_CHECKSUM_SHA512:
212 return (SPA_FEATURE_SHA512);
213 case ZIO_CHECKSUM_SKEIN:
214 return (SPA_FEATURE_SKEIN);
215 case ZIO_CHECKSUM_EDONR:
216 return (SPA_FEATURE_EDONR);
217 }
218 return (SPA_FEATURE_NONE);
219 }
220
221 enum zio_checksum
zio_checksum_select(enum zio_checksum child,enum zio_checksum parent)222 zio_checksum_select(enum zio_checksum child, enum zio_checksum parent)
223 {
224 ASSERT(child < ZIO_CHECKSUM_FUNCTIONS);
225 ASSERT(parent < ZIO_CHECKSUM_FUNCTIONS);
226 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
227
228 if (child == ZIO_CHECKSUM_INHERIT)
229 return (parent);
230
231 if (child == ZIO_CHECKSUM_ON)
232 return (ZIO_CHECKSUM_ON_VALUE);
233
234 return (child);
235 }
236
237 enum zio_checksum
zio_checksum_dedup_select(spa_t * spa,enum zio_checksum child,enum zio_checksum parent)238 zio_checksum_dedup_select(spa_t *spa, enum zio_checksum child,
239 enum zio_checksum parent)
240 {
241 ASSERT((child & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
242 ASSERT((parent & ZIO_CHECKSUM_MASK) < ZIO_CHECKSUM_FUNCTIONS);
243 ASSERT(parent != ZIO_CHECKSUM_INHERIT && parent != ZIO_CHECKSUM_ON);
244
245 if (child == ZIO_CHECKSUM_INHERIT)
246 return (parent);
247
248 if (child == ZIO_CHECKSUM_ON)
249 return (spa_dedup_checksum(spa));
250
251 if (child == (ZIO_CHECKSUM_ON | ZIO_CHECKSUM_VERIFY))
252 return (spa_dedup_checksum(spa) | ZIO_CHECKSUM_VERIFY);
253
254 ASSERT((zio_checksum_table[child & ZIO_CHECKSUM_MASK].ci_flags &
255 ZCHECKSUM_FLAG_DEDUP) ||
256 (child & ZIO_CHECKSUM_VERIFY) || child == ZIO_CHECKSUM_OFF);
257
258 return (child);
259 }
260
261 /*
262 * Set the external verifier for a gang block based on <vdev, offset, txg>,
263 * a tuple which is guaranteed to be unique for the life of the pool.
264 */
265 static void
zio_checksum_gang_verifier(zio_cksum_t * zcp,const blkptr_t * bp)266 zio_checksum_gang_verifier(zio_cksum_t *zcp, const blkptr_t *bp)
267 {
268 const dva_t *dva = BP_IDENTITY(bp);
269 uint64_t txg = BP_PHYSICAL_BIRTH(bp);
270
271 ASSERT(BP_IS_GANG(bp));
272
273 ZIO_SET_CHECKSUM(zcp, DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva), txg, 0);
274 }
275
276 /*
277 * Set the external verifier for a label block based on its offset.
278 * The vdev is implicit, and the txg is unknowable at pool open time --
279 * hence the logic in vdev_uberblock_load() to find the most recent copy.
280 */
281 static void
zio_checksum_label_verifier(zio_cksum_t * zcp,uint64_t offset)282 zio_checksum_label_verifier(zio_cksum_t *zcp, uint64_t offset)
283 {
284 ZIO_SET_CHECKSUM(zcp, offset, 0, 0, 0);
285 }
286
287 /*
288 * Calls the template init function of a checksum which supports context
289 * templates and installs the template into the spa_t.
290 */
291 static void
zio_checksum_template_init(enum zio_checksum checksum,spa_t * spa)292 zio_checksum_template_init(enum zio_checksum checksum, spa_t *spa)
293 {
294 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
295
296 if (ci->ci_tmpl_init == NULL)
297 return;
298 if (spa->spa_cksum_tmpls[checksum] != NULL)
299 return;
300
301 VERIFY(ci->ci_tmpl_free != NULL);
302 mutex_enter(&spa->spa_cksum_tmpls_lock);
303 if (spa->spa_cksum_tmpls[checksum] == NULL) {
304 spa->spa_cksum_tmpls[checksum] =
305 ci->ci_tmpl_init(&spa->spa_cksum_salt);
306 VERIFY(spa->spa_cksum_tmpls[checksum] != NULL);
307 }
308 mutex_exit(&spa->spa_cksum_tmpls_lock);
309 }
310
311 /* convenience function to update a checksum to accomodate an encryption MAC */
312 static void
zio_checksum_handle_crypt(zio_cksum_t * cksum,zio_cksum_t * saved,boolean_t xor)313 zio_checksum_handle_crypt(zio_cksum_t *cksum, zio_cksum_t *saved, boolean_t xor)
314 {
315 /*
316 * Weak checksums do not have their entropy spread evenly
317 * across the bits of the checksum. Therefore, when truncating
318 * a weak checksum we XOR the first 2 words with the last 2 so
319 * that we don't "lose" any entropy unnecessarily.
320 */
321 if (xor) {
322 cksum->zc_word[0] ^= cksum->zc_word[2];
323 cksum->zc_word[1] ^= cksum->zc_word[3];
324 }
325
326 cksum->zc_word[2] = saved->zc_word[2];
327 cksum->zc_word[3] = saved->zc_word[3];
328 }
329
330 /*
331 * Generate the checksum.
332 */
333 void
zio_checksum_compute(zio_t * zio,enum zio_checksum checksum,abd_t * abd,uint64_t size)334 zio_checksum_compute(zio_t *zio, enum zio_checksum checksum,
335 abd_t *abd, uint64_t size)
336 {
337 static const uint64_t zec_magic = ZEC_MAGIC;
338 blkptr_t *bp = zio->io_bp;
339 uint64_t offset = zio->io_offset;
340 zio_checksum_info_t *ci;
341 zio_cksum_t cksum, saved;
342 spa_t *spa = zio->io_spa;
343 boolean_t insecure;
344
345 ASSERT((uint_t)checksum < ZIO_CHECKSUM_FUNCTIONS);
346 ci = &zio_checksum_table[checksum];
347 ASSERT(ci->ci_func[0] != NULL);
348 insecure = (ci->ci_flags & ZCHECKSUM_FLAG_DEDUP) == 0;
349
350 zio_checksum_template_init(checksum, spa);
351
352 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
353 zio_eck_t eck;
354 size_t eck_offset;
355
356 bzero(&saved, sizeof (zio_cksum_t));
357
358 if (checksum == ZIO_CHECKSUM_ZILOG2) {
359 zil_chain_t zilc;
360 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
361
362 size = P2ROUNDUP_TYPED(zilc.zc_nused, ZIL_MIN_BLKSZ,
363 uint64_t);
364 eck = zilc.zc_eck;
365 eck_offset = offsetof(zil_chain_t, zc_eck);
366 } else {
367 eck_offset = size - sizeof (zio_eck_t);
368 abd_copy_to_buf_off(&eck, abd, eck_offset,
369 sizeof (zio_eck_t));
370 }
371
372 if (checksum == ZIO_CHECKSUM_GANG_HEADER) {
373 zio_checksum_gang_verifier(&eck.zec_cksum, bp);
374 } else if (checksum == ZIO_CHECKSUM_LABEL) {
375 zio_checksum_label_verifier(&eck.zec_cksum, offset);
376 } else {
377 saved = eck.zec_cksum;
378 eck.zec_cksum = bp->blk_cksum;
379 }
380
381 abd_copy_from_buf_off(abd, &zec_magic,
382 eck_offset + offsetof(zio_eck_t, zec_magic),
383 sizeof (zec_magic));
384 abd_copy_from_buf_off(abd, &eck.zec_cksum,
385 eck_offset + offsetof(zio_eck_t, zec_cksum),
386 sizeof (zio_cksum_t));
387
388 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
389 &cksum);
390 if (bp != NULL && BP_USES_CRYPT(bp) &&
391 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
392 zio_checksum_handle_crypt(&cksum, &saved, insecure);
393
394 abd_copy_from_buf_off(abd, &cksum,
395 eck_offset + offsetof(zio_eck_t, zec_cksum),
396 sizeof (zio_cksum_t));
397 } else {
398 saved = bp->blk_cksum;
399 ci->ci_func[0](abd, size, spa->spa_cksum_tmpls[checksum],
400 &cksum);
401 if (BP_USES_CRYPT(bp) && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
402 zio_checksum_handle_crypt(&cksum, &saved, insecure);
403 bp->blk_cksum = cksum;
404 }
405 }
406
407 int
zio_checksum_error_impl(spa_t * spa,const blkptr_t * bp,enum zio_checksum checksum,abd_t * abd,uint64_t size,uint64_t offset,zio_bad_cksum_t * info)408 zio_checksum_error_impl(spa_t *spa, const blkptr_t *bp,
409 enum zio_checksum checksum, abd_t *abd, uint64_t size,
410 uint64_t offset, zio_bad_cksum_t *info)
411 {
412 zio_checksum_info_t *ci;
413 zio_cksum_t actual_cksum, expected_cksum;
414 zio_eck_t eck;
415 int byteswap;
416
417 if (checksum >= ZIO_CHECKSUM_FUNCTIONS)
418 return (SET_ERROR(EINVAL));
419
420 ci = &zio_checksum_table[checksum];
421
422 if (ci->ci_func[0] == NULL)
423 return (SET_ERROR(EINVAL));
424
425 zio_checksum_template_init(checksum, spa);
426
427 if (ci->ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
428 zio_cksum_t verifier;
429 size_t eck_offset;
430
431 if (checksum == ZIO_CHECKSUM_ZILOG2) {
432 zil_chain_t zilc;
433 uint64_t nused;
434
435 abd_copy_to_buf(&zilc, abd, sizeof (zil_chain_t));
436
437 eck = zilc.zc_eck;
438 eck_offset = offsetof(zil_chain_t, zc_eck) +
439 offsetof(zio_eck_t, zec_cksum);
440
441 if (eck.zec_magic == ZEC_MAGIC) {
442 nused = zilc.zc_nused;
443 } else if (eck.zec_magic == BSWAP_64(ZEC_MAGIC)) {
444 nused = BSWAP_64(zilc.zc_nused);
445 } else {
446 return (SET_ERROR(ECKSUM));
447 }
448
449 if (nused > size) {
450 return (SET_ERROR(ECKSUM));
451 }
452
453 size = P2ROUNDUP_TYPED(nused, ZIL_MIN_BLKSZ, uint64_t);
454 } else {
455 eck_offset = size - sizeof (zio_eck_t);
456 abd_copy_to_buf_off(&eck, abd, eck_offset,
457 sizeof (zio_eck_t));
458 eck_offset += offsetof(zio_eck_t, zec_cksum);
459 }
460
461 if (checksum == ZIO_CHECKSUM_GANG_HEADER)
462 zio_checksum_gang_verifier(&verifier, bp);
463 else if (checksum == ZIO_CHECKSUM_LABEL)
464 zio_checksum_label_verifier(&verifier, offset);
465 else
466 verifier = bp->blk_cksum;
467
468 byteswap = (eck.zec_magic == BSWAP_64(ZEC_MAGIC));
469
470 if (byteswap)
471 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
472
473 expected_cksum = eck.zec_cksum;
474
475 abd_copy_from_buf_off(abd, &verifier, eck_offset,
476 sizeof (zio_cksum_t));
477
478 ci->ci_func[byteswap](abd, size,
479 spa->spa_cksum_tmpls[checksum], &actual_cksum);
480
481 abd_copy_from_buf_off(abd, &expected_cksum, eck_offset,
482 sizeof (zio_cksum_t));
483
484 if (byteswap) {
485 byteswap_uint64_array(&expected_cksum,
486 sizeof (zio_cksum_t));
487 }
488 } else {
489 byteswap = BP_SHOULD_BYTESWAP(bp);
490 expected_cksum = bp->blk_cksum;
491 ci->ci_func[byteswap](abd, size,
492 spa->spa_cksum_tmpls[checksum], &actual_cksum);
493 }
494
495 /*
496 * MAC checksums are a special case since half of this checksum will
497 * actually be the encryption MAC. This will be verified by the
498 * decryption process, so we just check the truncated checksum now.
499 * Objset blocks use embedded MACs so we don't truncate the checksum
500 * for them.
501 */
502 if (bp != NULL && BP_USES_CRYPT(bp) &&
503 BP_GET_TYPE(bp) != DMU_OT_OBJSET) {
504 if (!(ci->ci_flags & ZCHECKSUM_FLAG_DEDUP)) {
505 actual_cksum.zc_word[0] ^= actual_cksum.zc_word[2];
506 actual_cksum.zc_word[1] ^= actual_cksum.zc_word[3];
507 }
508
509 actual_cksum.zc_word[2] = 0;
510 actual_cksum.zc_word[3] = 0;
511 expected_cksum.zc_word[2] = 0;
512 expected_cksum.zc_word[3] = 0;
513 }
514
515 if (info != NULL) {
516 info->zbc_expected = expected_cksum;
517 info->zbc_actual = actual_cksum;
518 info->zbc_checksum_name = ci->ci_name;
519 info->zbc_byteswapped = byteswap;
520 info->zbc_injected = 0;
521 info->zbc_has_cksum = 1;
522 }
523 if (!ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
524 return (SET_ERROR(ECKSUM));
525
526 return (0);
527 }
528
529 int
zio_checksum_error(zio_t * zio,zio_bad_cksum_t * info)530 zio_checksum_error(zio_t *zio, zio_bad_cksum_t *info)
531 {
532 blkptr_t *bp = zio->io_bp;
533 uint_t checksum = (bp == NULL ? zio->io_prop.zp_checksum :
534 (BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
535 int error;
536 uint64_t size = (bp == NULL ? zio->io_size :
537 (BP_IS_GANG(bp) ? SPA_GANGBLOCKSIZE : BP_GET_PSIZE(bp)));
538 uint64_t offset = zio->io_offset;
539 abd_t *data = zio->io_abd;
540 spa_t *spa = zio->io_spa;
541
542 error = zio_checksum_error_impl(spa, bp, checksum, data, size,
543 offset, info);
544
545 if (zio_injection_enabled && error == 0 && zio->io_error == 0) {
546 error = zio_handle_fault_injection(zio, ECKSUM);
547 if (error != 0)
548 info->zbc_injected = 1;
549 }
550
551 return (error);
552 }
553
554 /*
555 * Called by a spa_t that's about to be deallocated. This steps through
556 * all of the checksum context templates and deallocates any that were
557 * initialized using the algorithm-specific template init function.
558 */
559 void
zio_checksum_templates_free(spa_t * spa)560 zio_checksum_templates_free(spa_t *spa)
561 {
562 for (enum zio_checksum checksum = 0;
563 checksum < ZIO_CHECKSUM_FUNCTIONS; checksum++) {
564 if (spa->spa_cksum_tmpls[checksum] != NULL) {
565 zio_checksum_info_t *ci = &zio_checksum_table[checksum];
566
567 VERIFY(ci->ci_tmpl_free != NULL);
568 ci->ci_tmpl_free(spa->spa_cksum_tmpls[checksum]);
569 spa->spa_cksum_tmpls[checksum] = NULL;
570 }
571 }
572 }
573