xref: /freebsd/sys/contrib/openzfs/module/zfs/abd.c (revision 61145dc2b94f12f6a47344fb9aac702321880e43)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
24  * Copyright (c) 2019 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * ARC buffer data (ABD).
29  *
30  * ABDs are an abstract data structure for the ARC which can use two
31  * different ways of storing the underlying data:
32  *
33  * (a) Linear buffer. In this case, all the data in the ABD is stored in one
34  *     contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
35  *
36  *         +-------------------+
37  *         | ABD (linear)      |
38  *         |   abd_flags = ... |
39  *         |   abd_size = ...  |     +--------------------------------+
40  *         |   abd_buf ------------->| raw buffer of size abd_size    |
41  *         +-------------------+     +--------------------------------+
42  *              no abd_chunks
43  *
44  * (b) Scattered buffer. In this case, the data in the ABD is split into
45  *     equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
46  *     to the chunks recorded in an array at the end of the ABD structure.
47  *
48  *         +-------------------+
49  *         | ABD (scattered)   |
50  *         |   abd_flags = ... |
51  *         |   abd_size = ...  |
52  *         |   abd_offset = 0  |                           +-----------+
53  *         |   abd_chunks[0] ----------------------------->| chunk 0   |
54  *         |   abd_chunks[1] ---------------------+        +-----------+
55  *         |   ...             |                  |        +-----------+
56  *         |   abd_chunks[N-1] ---------+         +------->| chunk 1   |
57  *         +-------------------+        |                  +-----------+
58  *                                      |                      ...
59  *                                      |                  +-----------+
60  *                                      +----------------->| chunk N-1 |
61  *                                                         +-----------+
62  *
63  * In addition to directly allocating a linear or scattered ABD, it is also
64  * possible to create an ABD by requesting the "sub-ABD" starting at an offset
65  * within an existing ABD. In linear buffers this is simple (set abd_buf of
66  * the new ABD to the starting point within the original raw buffer), but
67  * scattered ABDs are a little more complex. The new ABD makes a copy of the
68  * relevant abd_chunks pointers (but not the underlying data). However, to
69  * provide arbitrary rather than only chunk-aligned starting offsets, it also
70  * tracks an abd_offset field which represents the starting point of the data
71  * within the first chunk in abd_chunks. For both linear and scattered ABDs,
72  * creating an offset ABD marks the original ABD as the offset's parent, and the
73  * original ABD's abd_children refcount is incremented. This data allows us to
74  * ensure the root ABD isn't deleted before its children.
75  *
76  * Most consumers should never need to know what type of ABD they're using --
77  * the ABD public API ensures that it's possible to transparently switch from
78  * using a linear ABD to a scattered one when doing so would be beneficial.
79  *
80  * If you need to use the data within an ABD directly, if you know it's linear
81  * (because you allocated it) you can use abd_to_buf() to access the underlying
82  * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
83  * which will allocate a raw buffer if necessary. Use the abd_return_buf*
84  * functions to return any raw buffers that are no longer necessary when you're
85  * done using them.
86  *
87  * There are a variety of ABD APIs that implement basic buffer operations:
88  * compare, copy, read, write, and fill with zeroes. If you need a custom
89  * function which progressively accesses the whole ABD, use the abd_iterate_*
90  * functions.
91  *
92  * As an additional feature, linear and scatter ABD's can be stitched together
93  * by using the gang ABD type (abd_alloc_gang()). This allows for multiple ABDs
94  * to be viewed as a singular ABD.
95  *
96  * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
97  * B_FALSE.
98  */
99 
100 #include <sys/abd_impl.h>
101 #include <sys/param.h>
102 #include <sys/zio.h>
103 #include <sys/zfs_context.h>
104 #include <sys/zfs_znode.h>
105 
106 /* see block comment above for description */
107 int zfs_abd_scatter_enabled = B_TRUE;
108 
109 void
abd_verify(abd_t * abd)110 abd_verify(abd_t *abd)
111 {
112 #ifdef ZFS_DEBUG
113 	if (abd_is_from_pages(abd)) {
114 		ASSERT3U(abd->abd_size, <=, DMU_MAX_ACCESS);
115 	} else {
116 		ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
117 	}
118 	ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
119 	    ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
120 	    ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
121 	    ABD_FLAG_GANG_FREE | ABD_FLAG_ALLOCD | ABD_FLAG_FROM_PAGES));
122 	IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
123 	IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
124 	if (abd_is_linear(abd)) {
125 		ASSERT3U(abd->abd_size, >, 0);
126 		ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
127 	} else if (abd_is_gang(abd)) {
128 		uint_t child_sizes = 0;
129 		for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
130 		    cabd != NULL;
131 		    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
132 			ASSERT(list_link_active(&cabd->abd_gang_link));
133 			child_sizes += cabd->abd_size;
134 			abd_verify(cabd);
135 		}
136 		ASSERT3U(abd->abd_size, ==, child_sizes);
137 	} else {
138 		ASSERT3U(abd->abd_size, >, 0);
139 		abd_verify_scatter(abd);
140 	}
141 #endif
142 }
143 
144 void
abd_init_struct(abd_t * abd)145 abd_init_struct(abd_t *abd)
146 {
147 	list_link_init(&abd->abd_gang_link);
148 	mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
149 	abd->abd_flags = 0;
150 #ifdef ZFS_DEBUG
151 	zfs_refcount_create(&abd->abd_children);
152 	abd->abd_parent = NULL;
153 #endif
154 	abd->abd_size = 0;
155 }
156 
157 static void
abd_fini_struct(abd_t * abd)158 abd_fini_struct(abd_t *abd)
159 {
160 	mutex_destroy(&abd->abd_mtx);
161 	ASSERT(!list_link_active(&abd->abd_gang_link));
162 #ifdef ZFS_DEBUG
163 	zfs_refcount_destroy(&abd->abd_children);
164 #endif
165 }
166 
167 abd_t *
abd_alloc_struct(size_t size)168 abd_alloc_struct(size_t size)
169 {
170 	abd_t *abd = abd_alloc_struct_impl(size);
171 	abd_init_struct(abd);
172 	abd->abd_flags |= ABD_FLAG_ALLOCD;
173 	return (abd);
174 }
175 
176 void
abd_free_struct(abd_t * abd)177 abd_free_struct(abd_t *abd)
178 {
179 	abd_fini_struct(abd);
180 	abd_free_struct_impl(abd);
181 }
182 
183 /*
184  * Allocate an ABD, along with its own underlying data buffers. Use this if you
185  * don't care whether the ABD is linear or not.
186  */
187 abd_t *
abd_alloc(size_t size,boolean_t is_metadata)188 abd_alloc(size_t size, boolean_t is_metadata)
189 {
190 	if (abd_size_alloc_linear(size))
191 		return (abd_alloc_linear(size, is_metadata));
192 
193 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
194 
195 	abd_t *abd = abd_alloc_struct(size);
196 	abd->abd_flags |= ABD_FLAG_OWNER;
197 	abd->abd_u.abd_scatter.abd_offset = 0;
198 	abd_alloc_chunks(abd, size);
199 
200 	if (is_metadata) {
201 		abd->abd_flags |= ABD_FLAG_META;
202 	}
203 	abd->abd_size = size;
204 
205 	abd_update_scatter_stats(abd, ABDSTAT_INCR);
206 
207 	return (abd);
208 }
209 
210 /*
211  * Allocate an ABD that must be linear, along with its own underlying data
212  * buffer. Only use this when it would be very annoying to write your ABD
213  * consumer with a scattered ABD.
214  */
215 abd_t *
abd_alloc_linear(size_t size,boolean_t is_metadata)216 abd_alloc_linear(size_t size, boolean_t is_metadata)
217 {
218 	abd_t *abd = abd_alloc_struct(0);
219 
220 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
221 
222 	abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
223 	if (is_metadata) {
224 		abd->abd_flags |= ABD_FLAG_META;
225 	}
226 	abd->abd_size = size;
227 
228 	if (is_metadata) {
229 		ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
230 	} else {
231 		ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
232 	}
233 
234 	abd_update_linear_stats(abd, ABDSTAT_INCR);
235 
236 	return (abd);
237 }
238 
239 static void
abd_free_linear(abd_t * abd)240 abd_free_linear(abd_t *abd)
241 {
242 	if (abd_is_linear_page(abd)) {
243 		abd_free_linear_page(abd);
244 		return;
245 	}
246 
247 	if (abd->abd_flags & ABD_FLAG_META) {
248 		zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
249 	} else {
250 		zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
251 	}
252 
253 	abd_update_linear_stats(abd, ABDSTAT_DECR);
254 }
255 
256 static void
abd_free_gang(abd_t * abd)257 abd_free_gang(abd_t *abd)
258 {
259 	ASSERT(abd_is_gang(abd));
260 	abd_t *cabd;
261 
262 	while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
263 		/*
264 		 * We must acquire the child ABDs mutex to ensure that if it
265 		 * is being added to another gang ABD we will set the link
266 		 * as inactive when removing it from this gang ABD and before
267 		 * adding it to the other gang ABD.
268 		 */
269 		mutex_enter(&cabd->abd_mtx);
270 		ASSERT(list_link_active(&cabd->abd_gang_link));
271 		list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
272 		mutex_exit(&cabd->abd_mtx);
273 		if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
274 			abd_free(cabd);
275 	}
276 	list_destroy(&ABD_GANG(abd).abd_gang_chain);
277 }
278 
279 static void
abd_free_scatter(abd_t * abd)280 abd_free_scatter(abd_t *abd)
281 {
282 	abd_free_chunks(abd);
283 	abd_update_scatter_stats(abd, ABDSTAT_DECR);
284 }
285 
286 /*
287  * Free an ABD.  Use with any kind of abd: those created with abd_alloc_*()
288  * and abd_get_*(), including abd_get_offset_struct().
289  *
290  * If the ABD was created with abd_alloc_*(), the underlying data
291  * (scatterlist or linear buffer) will also be freed.  (Subject to ownership
292  * changes via abd_*_ownership_of_buf().)
293  *
294  * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
295  * also be freed.
296  */
297 void
abd_free(abd_t * abd)298 abd_free(abd_t *abd)
299 {
300 	if (abd == NULL)
301 		return;
302 
303 	abd_verify(abd);
304 #ifdef ZFS_DEBUG
305 	IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
306 #endif
307 
308 	if (abd_is_gang(abd)) {
309 		abd_free_gang(abd);
310 	} else if (abd_is_linear(abd)) {
311 		if (abd->abd_flags & ABD_FLAG_OWNER)
312 			abd_free_linear(abd);
313 	} else {
314 		if (abd->abd_flags & ABD_FLAG_OWNER)
315 			abd_free_scatter(abd);
316 	}
317 
318 #ifdef ZFS_DEBUG
319 	if (abd->abd_parent != NULL) {
320 		(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
321 		    abd->abd_size, abd);
322 	}
323 #endif
324 
325 	abd_fini_struct(abd);
326 	if (abd->abd_flags & ABD_FLAG_ALLOCD)
327 		abd_free_struct_impl(abd);
328 }
329 
330 /*
331  * Allocate an ABD of the same format (same metadata flag, same scatterize
332  * setting) as another ABD.
333  */
334 abd_t *
abd_alloc_sametype(abd_t * sabd,size_t size)335 abd_alloc_sametype(abd_t *sabd, size_t size)
336 {
337 	boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
338 	if (abd_is_linear(sabd) &&
339 	    !abd_is_linear_page(sabd)) {
340 		return (abd_alloc_linear(size, is_metadata));
341 	} else {
342 		return (abd_alloc(size, is_metadata));
343 	}
344 }
345 
346 /*
347  * Create gang ABD that will be the head of a list of ABD's. This is used
348  * to "chain" scatter/gather lists together when constructing aggregated
349  * IO's. To free this abd, abd_free() must be called.
350  */
351 abd_t *
abd_alloc_gang(void)352 abd_alloc_gang(void)
353 {
354 	abd_t *abd = abd_alloc_struct(0);
355 	abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
356 	list_create(&ABD_GANG(abd).abd_gang_chain,
357 	    sizeof (abd_t), offsetof(abd_t, abd_gang_link));
358 	return (abd);
359 }
360 
361 /*
362  * Add a child gang ABD to a parent gang ABDs chained list.
363  */
364 static void
abd_gang_add_gang(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)365 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
366 {
367 	ASSERT(abd_is_gang(pabd));
368 	ASSERT(abd_is_gang(cabd));
369 
370 	if (free_on_free) {
371 		/*
372 		 * If the parent is responsible for freeing the child gang
373 		 * ABD we will just splice the child's children ABD list to
374 		 * the parent's list and immediately free the child gang ABD
375 		 * struct. The parent gang ABDs children from the child gang
376 		 * will retain all the free_on_free settings after being
377 		 * added to the parents list.
378 		 */
379 #ifdef ZFS_DEBUG
380 		/*
381 		 * If cabd had abd_parent, we have to drop it here.  We can't
382 		 * transfer it to pabd, nor we can clear abd_size leaving it.
383 		 */
384 		if (cabd->abd_parent != NULL) {
385 			(void) zfs_refcount_remove_many(
386 			    &cabd->abd_parent->abd_children,
387 			    cabd->abd_size, cabd);
388 			cabd->abd_parent = NULL;
389 		}
390 #endif
391 		pabd->abd_size += cabd->abd_size;
392 		cabd->abd_size = 0;
393 		list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
394 		    &ABD_GANG(cabd).abd_gang_chain);
395 		ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
396 		abd_verify(pabd);
397 		abd_free(cabd);
398 	} else {
399 		for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
400 		    child != NULL;
401 		    child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
402 			/*
403 			 * We always pass B_FALSE for free_on_free as it is the
404 			 * original child gang ABDs responsibility to determine
405 			 * if any of its child ABDs should be free'd on the call
406 			 * to abd_free().
407 			 */
408 			abd_gang_add(pabd, child, B_FALSE);
409 		}
410 		abd_verify(pabd);
411 	}
412 }
413 
414 /*
415  * Add a child ABD to a gang ABD's chained list.
416  */
417 void
abd_gang_add(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)418 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
419 {
420 	ASSERT(abd_is_gang(pabd));
421 	abd_t *child_abd = NULL;
422 
423 	/*
424 	 * If the child being added is a gang ABD, we will add the
425 	 * child's ABDs to the parent gang ABD. This allows us to account
426 	 * for the offset correctly in the parent gang ABD.
427 	 */
428 	if (abd_is_gang(cabd)) {
429 		ASSERT(!list_link_active(&cabd->abd_gang_link));
430 		return (abd_gang_add_gang(pabd, cabd, free_on_free));
431 	}
432 	ASSERT(!abd_is_gang(cabd));
433 
434 	/*
435 	 * In order to verify that an ABD is not already part of
436 	 * another gang ABD, we must lock the child ABD's abd_mtx
437 	 * to check its abd_gang_link status. We unlock the abd_mtx
438 	 * only after it is has been added to a gang ABD, which
439 	 * will update the abd_gang_link's status. See comment below
440 	 * for how an ABD can be in multiple gang ABD's simultaneously.
441 	 */
442 	mutex_enter(&cabd->abd_mtx);
443 	if (list_link_active(&cabd->abd_gang_link)) {
444 		/*
445 		 * If the child ABD is already part of another
446 		 * gang ABD then we must allocate a new
447 		 * ABD to use a separate link. We mark the newly
448 		 * allocated ABD with ABD_FLAG_GANG_FREE, before
449 		 * adding it to the gang ABD's list, to make the
450 		 * gang ABD aware that it is responsible to call
451 		 * abd_free(). We use abd_get_offset() in order
452 		 * to just allocate a new ABD but avoid copying the
453 		 * data over into the newly allocated ABD.
454 		 *
455 		 * An ABD may become part of multiple gang ABD's. For
456 		 * example, when writing ditto bocks, the same ABD
457 		 * is used to write 2 or 3 locations with 2 or 3
458 		 * zio_t's. Each of the zio's may be aggregated with
459 		 * different adjacent zio's. zio aggregation uses gang
460 		 * zio's, so the single ABD can become part of multiple
461 		 * gang zio's.
462 		 *
463 		 * The ASSERT below is to make sure that if
464 		 * free_on_free is passed as B_TRUE, the ABD can
465 		 * not be in multiple gang ABD's. The gang ABD
466 		 * can not be responsible for cleaning up the child
467 		 * ABD memory allocation if the ABD can be in
468 		 * multiple gang ABD's at one time.
469 		 */
470 		ASSERT3B(free_on_free, ==, B_FALSE);
471 		child_abd = abd_get_offset(cabd, 0);
472 		child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
473 	} else {
474 		child_abd = cabd;
475 		if (free_on_free)
476 			child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
477 	}
478 	ASSERT3P(child_abd, !=, NULL);
479 
480 	list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
481 	mutex_exit(&cabd->abd_mtx);
482 	pabd->abd_size += child_abd->abd_size;
483 }
484 
485 /*
486  * Locate the ABD for the supplied offset in the gang ABD.
487  * Return a new offset relative to the returned ABD.
488  */
489 abd_t *
abd_gang_get_offset(abd_t * abd,size_t * off)490 abd_gang_get_offset(abd_t *abd, size_t *off)
491 {
492 	abd_t *cabd;
493 
494 	ASSERT(abd_is_gang(abd));
495 	ASSERT3U(*off, <, abd->abd_size);
496 	for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
497 	    cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
498 		if (*off >= cabd->abd_size)
499 			*off -= cabd->abd_size;
500 		else
501 			return (cabd);
502 	}
503 	VERIFY3P(cabd, !=, NULL);
504 	return (cabd);
505 }
506 
507 /*
508  * Allocate a new ABD, using the provided struct (if non-NULL, and if
509  * circumstances allow - otherwise allocate the struct).  The returned ABD will
510  * point to offset off of sabd. It shares the underlying buffer data with sabd.
511  * Use abd_free() to free.  sabd must not be freed while any derived ABDs exist.
512  */
513 static abd_t *
abd_get_offset_impl(abd_t * abd,abd_t * sabd,size_t off,size_t size)514 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
515 {
516 	abd_verify(sabd);
517 	ASSERT3U(off + size, <=, sabd->abd_size);
518 
519 	if (abd_is_linear(sabd)) {
520 		if (abd == NULL)
521 			abd = abd_alloc_struct(0);
522 		/*
523 		 * Even if this buf is filesystem metadata, we only track that
524 		 * if we own the underlying data buffer, which is not true in
525 		 * this case. Therefore, we don't ever use ABD_FLAG_META here.
526 		 */
527 		abd->abd_flags |= ABD_FLAG_LINEAR;
528 
529 		/*
530 		 * User pages from Direct I/O requests may be in a single page
531 		 * (ABD_FLAG_LINEAR_PAGE), and we must make sure to still flag
532 		 * that here for abd. This is required because we have to be
533 		 * careful when borrowing the buffer from the ABD because we
534 		 * can not place user pages under write protection on Linux.
535 		 * See the comments in abd_os.c for abd_borrow_buf(),
536 		 * abd_borrow_buf_copy(), abd_return_buf() and
537 		 * abd_return_buf_copy().
538 		 */
539 		if (abd_is_from_pages(sabd)) {
540 			abd->abd_flags |= ABD_FLAG_FROM_PAGES |
541 			    ABD_FLAG_LINEAR_PAGE;
542 		}
543 
544 		ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
545 	} else if (abd_is_gang(sabd)) {
546 		size_t left = size;
547 		if (abd == NULL) {
548 			abd = abd_alloc_gang();
549 		} else {
550 			abd->abd_flags |= ABD_FLAG_GANG;
551 			list_create(&ABD_GANG(abd).abd_gang_chain,
552 			    sizeof (abd_t), offsetof(abd_t, abd_gang_link));
553 		}
554 
555 		abd->abd_flags &= ~ABD_FLAG_OWNER;
556 		for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
557 		    cabd != NULL && left > 0;
558 		    cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
559 			int csize = MIN(left, cabd->abd_size - off);
560 
561 			abd_t *nabd = abd_get_offset_size(cabd, off, csize);
562 			abd_gang_add(abd, nabd, B_TRUE);
563 			left -= csize;
564 			off = 0;
565 		}
566 		ASSERT3U(left, ==, 0);
567 	} else {
568 		abd = abd_get_offset_scatter(abd, sabd, off, size);
569 	}
570 
571 	ASSERT3P(abd, !=, NULL);
572 	abd->abd_size = size;
573 #ifdef ZFS_DEBUG
574 	abd->abd_parent = sabd;
575 	(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
576 #endif
577 	return (abd);
578 }
579 
580 /*
581  * Like abd_get_offset_size(), but memory for the abd_t is provided by the
582  * caller.  Using this routine can improve performance by avoiding the cost
583  * of allocating memory for the abd_t struct, and updating the abd stats.
584  * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
585  * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
586  * be allocated.  Therefore callers should be careful to use the returned
587  * abd_t*.
588  */
589 abd_t *
abd_get_offset_struct(abd_t * abd,abd_t * sabd,size_t off,size_t size)590 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
591 {
592 	abd_t *result;
593 	abd_init_struct(abd);
594 	result = abd_get_offset_impl(abd, sabd, off, size);
595 	if (result != abd)
596 		abd_fini_struct(abd);
597 	return (result);
598 }
599 
600 abd_t *
abd_get_offset(abd_t * sabd,size_t off)601 abd_get_offset(abd_t *sabd, size_t off)
602 {
603 	size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
604 	VERIFY3U(size, >, 0);
605 	return (abd_get_offset_impl(NULL, sabd, off, size));
606 }
607 
608 abd_t *
abd_get_offset_size(abd_t * sabd,size_t off,size_t size)609 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
610 {
611 	ASSERT3U(off + size, <=, sabd->abd_size);
612 	return (abd_get_offset_impl(NULL, sabd, off, size));
613 }
614 
615 /*
616  * Return a size scatter ABD containing only zeros.
617  */
618 abd_t *
abd_get_zeros(size_t size)619 abd_get_zeros(size_t size)
620 {
621 	ASSERT3P(abd_zero_scatter, !=, NULL);
622 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
623 	return (abd_get_offset_size(abd_zero_scatter, 0, size));
624 }
625 
626 /*
627  * Create a linear ABD for an existing buf.
628  */
629 static abd_t *
abd_get_from_buf_impl(abd_t * abd,void * buf,size_t size)630 abd_get_from_buf_impl(abd_t *abd, void *buf, size_t size)
631 {
632 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
633 
634 	/*
635 	 * Even if this buf is filesystem metadata, we only track that if we
636 	 * own the underlying data buffer, which is not true in this case.
637 	 * Therefore, we don't ever use ABD_FLAG_META here.
638 	 */
639 	abd->abd_flags |= ABD_FLAG_LINEAR;
640 	abd->abd_size = size;
641 
642 	ABD_LINEAR_BUF(abd) = buf;
643 
644 	return (abd);
645 }
646 
647 abd_t *
abd_get_from_buf(void * buf,size_t size)648 abd_get_from_buf(void *buf, size_t size)
649 {
650 	abd_t *abd = abd_alloc_struct(0);
651 	return (abd_get_from_buf_impl(abd, buf, size));
652 }
653 
654 abd_t *
abd_get_from_buf_struct(abd_t * abd,void * buf,size_t size)655 abd_get_from_buf_struct(abd_t *abd, void *buf, size_t size)
656 {
657 	abd_init_struct(abd);
658 	return (abd_get_from_buf_impl(abd, buf, size));
659 }
660 
661 /*
662  * Get the raw buffer associated with a linear ABD.
663  */
664 void *
abd_to_buf(abd_t * abd)665 abd_to_buf(abd_t *abd)
666 {
667 	ASSERT(abd_is_linear(abd));
668 	abd_verify(abd);
669 	return (ABD_LINEAR_BUF(abd));
670 }
671 
672 void
abd_release_ownership_of_buf(abd_t * abd)673 abd_release_ownership_of_buf(abd_t *abd)
674 {
675 	ASSERT(abd_is_linear(abd));
676 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
677 
678 	/*
679 	 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
680 	 * Since that flag does not survive the
681 	 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
682 	 * abd_take_ownership_of_buf() sequence, we don't allow releasing
683 	 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
684 	 */
685 	ASSERT(!abd_is_linear_page(abd));
686 
687 	abd_verify(abd);
688 
689 	abd->abd_flags &= ~ABD_FLAG_OWNER;
690 	/* Disable this flag since we no longer own the data buffer */
691 	abd->abd_flags &= ~ABD_FLAG_META;
692 
693 	abd_update_linear_stats(abd, ABDSTAT_DECR);
694 }
695 
696 
697 /*
698  * Give this ABD ownership of the buffer that it's storing. Can only be used on
699  * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
700  * with abd_alloc_linear() which subsequently released ownership of their buf
701  * with abd_release_ownership_of_buf().
702  */
703 void
abd_take_ownership_of_buf(abd_t * abd,boolean_t is_metadata)704 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
705 {
706 	ASSERT(abd_is_linear(abd));
707 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
708 	abd_verify(abd);
709 
710 	abd->abd_flags |= ABD_FLAG_OWNER;
711 	if (is_metadata) {
712 		abd->abd_flags |= ABD_FLAG_META;
713 	}
714 
715 	abd_update_linear_stats(abd, ABDSTAT_INCR);
716 }
717 
718 /*
719  * Initializes an abd_iter based on whether the abd is a gang ABD
720  * or just a single ABD.
721  */
722 static inline abd_t *
abd_init_abd_iter(abd_t * abd,struct abd_iter * aiter,size_t off)723 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
724 {
725 	abd_t *cabd = NULL;
726 
727 	if (abd_is_gang(abd)) {
728 		cabd = abd_gang_get_offset(abd, &off);
729 		if (cabd) {
730 			abd_iter_init(aiter, cabd);
731 			abd_iter_advance(aiter, off);
732 		}
733 	} else {
734 		abd_iter_init(aiter, abd);
735 		abd_iter_advance(aiter, off);
736 	}
737 	return (cabd);
738 }
739 
740 /*
741  * Advances an abd_iter. We have to be careful with gang ABD as
742  * advancing could mean that we are at the end of a particular ABD and
743  * must grab the ABD in the gang ABD's list.
744  */
745 static inline abd_t *
abd_advance_abd_iter(abd_t * abd,abd_t * cabd,struct abd_iter * aiter,size_t len)746 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
747     size_t len)
748 {
749 	abd_iter_advance(aiter, len);
750 	if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
751 		ASSERT3P(cabd, !=, NULL);
752 		cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
753 		if (cabd) {
754 			abd_iter_init(aiter, cabd);
755 			abd_iter_advance(aiter, 0);
756 		}
757 	}
758 	return (cabd);
759 }
760 
761 int
abd_iterate_func(abd_t * abd,size_t off,size_t size,abd_iter_func_t * func,void * private)762 abd_iterate_func(abd_t *abd, size_t off, size_t size,
763     abd_iter_func_t *func, void *private)
764 {
765 	struct abd_iter aiter;
766 	int ret = 0;
767 
768 	if (size == 0)
769 		return (0);
770 
771 	abd_verify(abd);
772 	ASSERT3U(off + size, <=, abd->abd_size);
773 
774 	abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
775 
776 	while (size > 0) {
777 		IMPLY(abd_is_gang(abd), c_abd != NULL);
778 
779 		abd_iter_map(&aiter);
780 
781 		size_t len = MIN(aiter.iter_mapsize, size);
782 		ASSERT3U(len, >, 0);
783 
784 		ret = func(aiter.iter_mapaddr, len, private);
785 
786 		abd_iter_unmap(&aiter);
787 
788 		if (ret != 0)
789 			break;
790 
791 		size -= len;
792 		c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
793 	}
794 
795 	return (ret);
796 }
797 
798 #if defined(__linux__) && defined(_KERNEL)
799 int
abd_iterate_page_func(abd_t * abd,size_t off,size_t size,abd_iter_page_func_t * func,void * private)800 abd_iterate_page_func(abd_t *abd, size_t off, size_t size,
801     abd_iter_page_func_t *func, void *private)
802 {
803 	struct abd_iter aiter;
804 	int ret = 0;
805 
806 	if (size == 0)
807 		return (0);
808 
809 	abd_verify(abd);
810 	ASSERT3U(off + size, <=, abd->abd_size);
811 
812 	abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
813 
814 	while (size > 0) {
815 		IMPLY(abd_is_gang(abd), c_abd != NULL);
816 
817 		abd_iter_page(&aiter);
818 
819 		size_t len = MIN(aiter.iter_page_dsize, size);
820 		ASSERT3U(len, >, 0);
821 
822 		ret = func(aiter.iter_page, aiter.iter_page_doff,
823 		    len, private);
824 
825 		aiter.iter_page = NULL;
826 		aiter.iter_page_doff = 0;
827 		aiter.iter_page_dsize = 0;
828 
829 		if (ret != 0)
830 			break;
831 
832 		size -= len;
833 		c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
834 	}
835 
836 	return (ret);
837 }
838 #endif
839 
840 struct buf_arg {
841 	void *arg_buf;
842 };
843 
844 static int
abd_copy_to_buf_off_cb(void * buf,size_t size,void * private)845 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
846 {
847 	struct buf_arg *ba_ptr = private;
848 
849 	(void) memcpy(ba_ptr->arg_buf, buf, size);
850 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
851 
852 	return (0);
853 }
854 
855 /*
856  * Copy abd to buf. (off is the offset in abd.)
857  */
858 void
abd_copy_to_buf_off(void * buf,abd_t * abd,size_t off,size_t size)859 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
860 {
861 	struct buf_arg ba_ptr = { buf };
862 
863 	(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
864 	    &ba_ptr);
865 }
866 
867 static int
abd_cmp_buf_off_cb(void * buf,size_t size,void * private)868 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
869 {
870 	int ret;
871 	struct buf_arg *ba_ptr = private;
872 
873 	ret = memcmp(buf, ba_ptr->arg_buf, size);
874 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
875 
876 	return (ret);
877 }
878 
879 /*
880  * Compare the contents of abd to buf. (off is the offset in abd.)
881  */
882 int
abd_cmp_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)883 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
884 {
885 	struct buf_arg ba_ptr = { (void *) buf };
886 
887 	return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
888 }
889 
890 static int
abd_copy_from_buf_off_cb(void * buf,size_t size,void * private)891 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
892 {
893 	struct buf_arg *ba_ptr = private;
894 
895 	(void) memcpy(buf, ba_ptr->arg_buf, size);
896 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
897 
898 	return (0);
899 }
900 
901 /*
902  * Copy from buf to abd. (off is the offset in abd.)
903  */
904 void
abd_copy_from_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)905 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
906 {
907 	struct buf_arg ba_ptr = { (void *) buf };
908 
909 	(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
910 	    &ba_ptr);
911 }
912 
913 static int
abd_zero_off_cb(void * buf,size_t size,void * private)914 abd_zero_off_cb(void *buf, size_t size, void *private)
915 {
916 	(void) private;
917 	(void) memset(buf, 0, size);
918 	return (0);
919 }
920 
921 /*
922  * Zero out the abd from a particular offset to the end.
923  */
924 void
abd_zero_off(abd_t * abd,size_t off,size_t size)925 abd_zero_off(abd_t *abd, size_t off, size_t size)
926 {
927 	(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
928 }
929 
930 /*
931  * Iterate over two ABDs and call func incrementally on the two ABDs' data in
932  * equal-sized chunks (passed to func as raw buffers). func could be called many
933  * times during this iteration.
934  */
935 int
abd_iterate_func2(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size,abd_iter_func2_t * func,void * private)936 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
937     size_t size, abd_iter_func2_t *func, void *private)
938 {
939 	int ret = 0;
940 	struct abd_iter daiter, saiter;
941 	abd_t *c_dabd, *c_sabd;
942 
943 	if (size == 0)
944 		return (0);
945 
946 	abd_verify(dabd);
947 	abd_verify(sabd);
948 
949 	ASSERT3U(doff + size, <=, dabd->abd_size);
950 	ASSERT3U(soff + size, <=, sabd->abd_size);
951 
952 	c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
953 	c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
954 
955 	while (size > 0) {
956 		IMPLY(abd_is_gang(dabd), c_dabd != NULL);
957 		IMPLY(abd_is_gang(sabd), c_sabd != NULL);
958 
959 		abd_iter_map(&daiter);
960 		abd_iter_map(&saiter);
961 
962 		size_t dlen = MIN(daiter.iter_mapsize, size);
963 		size_t slen = MIN(saiter.iter_mapsize, size);
964 		size_t len = MIN(dlen, slen);
965 		ASSERT(dlen > 0 || slen > 0);
966 
967 		ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
968 		    private);
969 
970 		abd_iter_unmap(&saiter);
971 		abd_iter_unmap(&daiter);
972 
973 		if (ret != 0)
974 			break;
975 
976 		size -= len;
977 		c_dabd =
978 		    abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
979 		c_sabd =
980 		    abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
981 	}
982 
983 	return (ret);
984 }
985 
986 static int
abd_copy_off_cb(void * dbuf,void * sbuf,size_t size,void * private)987 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
988 {
989 	(void) private;
990 	(void) memcpy(dbuf, sbuf, size);
991 	return (0);
992 }
993 
994 /*
995  * Copy from sabd to dabd starting from soff and doff.
996  */
997 void
abd_copy_off(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size)998 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
999 {
1000 	(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
1001 	    abd_copy_off_cb, NULL);
1002 }
1003 
1004 static int
abd_cmp_cb(void * bufa,void * bufb,size_t size,void * private)1005 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
1006 {
1007 	(void) private;
1008 	return (memcmp(bufa, bufb, size));
1009 }
1010 
1011 /*
1012  * Compares the contents of two ABDs.
1013  */
1014 int
abd_cmp(abd_t * dabd,abd_t * sabd)1015 abd_cmp(abd_t *dabd, abd_t *sabd)
1016 {
1017 	ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1018 	return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1019 	    abd_cmp_cb, NULL));
1020 }
1021 
1022 /*
1023  * Check if ABD content is all-zeroes.
1024  */
1025 static int
abd_cmp_zero_off_cb(void * data,size_t len,void * private)1026 abd_cmp_zero_off_cb(void *data, size_t len, void *private)
1027 {
1028 	(void) private;
1029 
1030 	/* This function can only check whole uint64s. Enforce that. */
1031 	ASSERT0(P2PHASE(len, 8));
1032 
1033 	uint64_t *end = (uint64_t *)((char *)data + len);
1034 	for (uint64_t *word = (uint64_t *)data; word < end; word++)
1035 		if (*word != 0)
1036 			return (1);
1037 
1038 	return (0);
1039 }
1040 
1041 int
abd_cmp_zero_off(abd_t * abd,size_t off,size_t size)1042 abd_cmp_zero_off(abd_t *abd, size_t off, size_t size)
1043 {
1044 	return (abd_iterate_func(abd, off, size, abd_cmp_zero_off_cb, NULL));
1045 }
1046 
1047 /*
1048  * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1049  *
1050  * @cabds          parity ABDs, must have equal size
1051  * @dabd           data ABD. Can be NULL (in this case @dsize = 0)
1052  * @func_raidz_gen should be implemented so that its behaviour
1053  *                 is the same when taking linear and when taking scatter
1054  */
1055 void
abd_raidz_gen_iterate(abd_t ** cabds,abd_t * dabd,size_t off,size_t csize,size_t dsize,const unsigned parity,void (* func_raidz_gen)(void **,const void *,size_t,size_t))1056 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off,
1057     size_t csize, size_t dsize, const unsigned parity,
1058     void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1059 {
1060 	int i;
1061 	size_t len, dlen;
1062 	struct abd_iter caiters[3];
1063 	struct abd_iter daiter;
1064 	void *caddrs[3], *daddr;
1065 	unsigned long flags __maybe_unused = 0;
1066 	abd_t *c_cabds[3];
1067 	abd_t *c_dabd = NULL;
1068 
1069 	ASSERT3U(parity, <=, 3);
1070 	for (i = 0; i < parity; i++) {
1071 		abd_verify(cabds[i]);
1072 		ASSERT3U(off + csize, <=, cabds[i]->abd_size);
1073 		c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off);
1074 	}
1075 
1076 	if (dsize > 0) {
1077 		ASSERT(dabd);
1078 		abd_verify(dabd);
1079 		ASSERT3U(off + dsize, <=, dabd->abd_size);
1080 		c_dabd = abd_init_abd_iter(dabd, &daiter, off);
1081 	}
1082 
1083 	abd_enter_critical(flags);
1084 	while (csize > 0) {
1085 		len = csize;
1086 		for (i = 0; i < parity; i++) {
1087 			IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1088 			abd_iter_map(&caiters[i]);
1089 			caddrs[i] = caiters[i].iter_mapaddr;
1090 			len = MIN(caiters[i].iter_mapsize, len);
1091 		}
1092 
1093 		if (dsize > 0) {
1094 			IMPLY(abd_is_gang(dabd), c_dabd != NULL);
1095 			abd_iter_map(&daiter);
1096 			daddr = daiter.iter_mapaddr;
1097 			len = MIN(daiter.iter_mapsize, len);
1098 			dlen = len;
1099 		} else {
1100 			daddr = NULL;
1101 			dlen = 0;
1102 		}
1103 
1104 		/* must be progressive */
1105 		ASSERT3U(len, >, 0);
1106 		/*
1107 		 * The iterated function likely will not do well if each
1108 		 * segment except the last one is not multiple of 512 (raidz).
1109 		 */
1110 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1111 
1112 		func_raidz_gen(caddrs, daddr, len, dlen);
1113 
1114 		for (i = parity-1; i >= 0; i--) {
1115 			abd_iter_unmap(&caiters[i]);
1116 			c_cabds[i] =
1117 			    abd_advance_abd_iter(cabds[i], c_cabds[i],
1118 			    &caiters[i], len);
1119 		}
1120 
1121 		if (dsize > 0) {
1122 			abd_iter_unmap(&daiter);
1123 			c_dabd =
1124 			    abd_advance_abd_iter(dabd, c_dabd, &daiter,
1125 			    dlen);
1126 			dsize -= dlen;
1127 		}
1128 
1129 		csize -= len;
1130 	}
1131 	abd_exit_critical(flags);
1132 }
1133 
1134 /*
1135  * Iterate over code ABDs and data reconstruction target ABDs and call
1136  * @func_raidz_rec. Function maps at most 6 pages atomically.
1137  *
1138  * @cabds           parity ABDs, must have equal size
1139  * @tabds           rec target ABDs, at most 3
1140  * @tsize           size of data target columns
1141  * @func_raidz_rec  expects syndrome data in target columns. Function
1142  *                  reconstructs data and overwrites target columns.
1143  */
1144 void
abd_raidz_rec_iterate(abd_t ** cabds,abd_t ** tabds,size_t tsize,const unsigned parity,void (* func_raidz_rec)(void ** t,const size_t tsize,void ** c,const unsigned * mul),const unsigned * mul)1145 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1146     size_t tsize, const unsigned parity,
1147     void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1148     const unsigned *mul),
1149     const unsigned *mul)
1150 {
1151 	int i;
1152 	size_t len;
1153 	struct abd_iter citers[3];
1154 	struct abd_iter xiters[3];
1155 	void *caddrs[3], *xaddrs[3];
1156 	unsigned long flags __maybe_unused = 0;
1157 	abd_t *c_cabds[3];
1158 	abd_t *c_tabds[3];
1159 
1160 	ASSERT3U(parity, <=, 3);
1161 
1162 	for (i = 0; i < parity; i++) {
1163 		abd_verify(cabds[i]);
1164 		abd_verify(tabds[i]);
1165 		ASSERT3U(tsize, <=, cabds[i]->abd_size);
1166 		ASSERT3U(tsize, <=, tabds[i]->abd_size);
1167 		c_cabds[i] =
1168 		    abd_init_abd_iter(cabds[i], &citers[i], 0);
1169 		c_tabds[i] =
1170 		    abd_init_abd_iter(tabds[i], &xiters[i], 0);
1171 	}
1172 
1173 	abd_enter_critical(flags);
1174 	while (tsize > 0) {
1175 		len = tsize;
1176 		for (i = 0; i < parity; i++) {
1177 			IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1178 			IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL);
1179 			abd_iter_map(&citers[i]);
1180 			abd_iter_map(&xiters[i]);
1181 			caddrs[i] = citers[i].iter_mapaddr;
1182 			xaddrs[i] = xiters[i].iter_mapaddr;
1183 			len = MIN(citers[i].iter_mapsize, len);
1184 			len = MIN(xiters[i].iter_mapsize, len);
1185 		}
1186 
1187 		/* must be progressive */
1188 		ASSERT3S(len, >, 0);
1189 		/*
1190 		 * The iterated function likely will not do well if each
1191 		 * segment except the last one is not multiple of 512 (raidz).
1192 		 */
1193 		ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1194 
1195 		func_raidz_rec(xaddrs, len, caddrs, mul);
1196 
1197 		for (i = parity-1; i >= 0; i--) {
1198 			abd_iter_unmap(&xiters[i]);
1199 			abd_iter_unmap(&citers[i]);
1200 			c_tabds[i] =
1201 			    abd_advance_abd_iter(tabds[i], c_tabds[i],
1202 			    &xiters[i], len);
1203 			c_cabds[i] =
1204 			    abd_advance_abd_iter(cabds[i], c_cabds[i],
1205 			    &citers[i], len);
1206 		}
1207 
1208 		tsize -= len;
1209 		ASSERT3S(tsize, >=, 0);
1210 	}
1211 	abd_exit_critical(flags);
1212 }
1213