1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
24 * Copyright (c) 2019 by Delphix. All rights reserved.
25 */
26
27 /*
28 * ARC buffer data (ABD).
29 *
30 * ABDs are an abstract data structure for the ARC which can use two
31 * different ways of storing the underlying data:
32 *
33 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
34 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
35 *
36 * +-------------------+
37 * | ABD (linear) |
38 * | abd_flags = ... |
39 * | abd_size = ... | +--------------------------------+
40 * | abd_buf ------------->| raw buffer of size abd_size |
41 * +-------------------+ +--------------------------------+
42 * no abd_chunks
43 *
44 * (b) Scattered buffer. In this case, the data in the ABD is split into
45 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
46 * to the chunks recorded in an array at the end of the ABD structure.
47 *
48 * +-------------------+
49 * | ABD (scattered) |
50 * | abd_flags = ... |
51 * | abd_size = ... |
52 * | abd_offset = 0 | +-----------+
53 * | abd_chunks[0] ----------------------------->| chunk 0 |
54 * | abd_chunks[1] ---------------------+ +-----------+
55 * | ... | | +-----------+
56 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
57 * +-------------------+ | +-----------+
58 * | ...
59 * | +-----------+
60 * +----------------->| chunk N-1 |
61 * +-----------+
62 *
63 * In addition to directly allocating a linear or scattered ABD, it is also
64 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
65 * within an existing ABD. In linear buffers this is simple (set abd_buf of
66 * the new ABD to the starting point within the original raw buffer), but
67 * scattered ABDs are a little more complex. The new ABD makes a copy of the
68 * relevant abd_chunks pointers (but not the underlying data). However, to
69 * provide arbitrary rather than only chunk-aligned starting offsets, it also
70 * tracks an abd_offset field which represents the starting point of the data
71 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
72 * creating an offset ABD marks the original ABD as the offset's parent, and the
73 * original ABD's abd_children refcount is incremented. This data allows us to
74 * ensure the root ABD isn't deleted before its children.
75 *
76 * Most consumers should never need to know what type of ABD they're using --
77 * the ABD public API ensures that it's possible to transparently switch from
78 * using a linear ABD to a scattered one when doing so would be beneficial.
79 *
80 * If you need to use the data within an ABD directly, if you know it's linear
81 * (because you allocated it) you can use abd_to_buf() to access the underlying
82 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
83 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
84 * functions to return any raw buffers that are no longer necessary when you're
85 * done using them.
86 *
87 * There are a variety of ABD APIs that implement basic buffer operations:
88 * compare, copy, read, write, and fill with zeroes. If you need a custom
89 * function which progressively accesses the whole ABD, use the abd_iterate_*
90 * functions.
91 *
92 * As an additional feature, linear and scatter ABD's can be stitched together
93 * by using the gang ABD type (abd_alloc_gang()). This allows for multiple ABDs
94 * to be viewed as a singular ABD.
95 *
96 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
97 * B_FALSE.
98 */
99
100 #include <sys/abd_impl.h>
101 #include <sys/param.h>
102 #include <sys/zio.h>
103 #include <sys/zfs_context.h>
104 #include <sys/zfs_znode.h>
105
106 /* see block comment above for description */
107 int zfs_abd_scatter_enabled = B_TRUE;
108
109 void
abd_verify(abd_t * abd)110 abd_verify(abd_t *abd)
111 {
112 #ifdef ZFS_DEBUG
113 if (abd_is_from_pages(abd)) {
114 ASSERT3U(abd->abd_size, <=, DMU_MAX_ACCESS);
115 } else {
116 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
117 }
118 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
119 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
120 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
121 ABD_FLAG_GANG_FREE | ABD_FLAG_ALLOCD | ABD_FLAG_FROM_PAGES));
122 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
123 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
124 if (abd_is_linear(abd)) {
125 ASSERT3U(abd->abd_size, >, 0);
126 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
127 } else if (abd_is_gang(abd)) {
128 uint_t child_sizes = 0;
129 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
130 cabd != NULL;
131 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
132 ASSERT(list_link_active(&cabd->abd_gang_link));
133 child_sizes += cabd->abd_size;
134 abd_verify(cabd);
135 }
136 ASSERT3U(abd->abd_size, ==, child_sizes);
137 } else {
138 ASSERT3U(abd->abd_size, >, 0);
139 abd_verify_scatter(abd);
140 }
141 #endif
142 }
143
144 void
abd_init_struct(abd_t * abd)145 abd_init_struct(abd_t *abd)
146 {
147 list_link_init(&abd->abd_gang_link);
148 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
149 abd->abd_flags = 0;
150 #ifdef ZFS_DEBUG
151 zfs_refcount_create(&abd->abd_children);
152 abd->abd_parent = NULL;
153 #endif
154 abd->abd_size = 0;
155 }
156
157 static void
abd_fini_struct(abd_t * abd)158 abd_fini_struct(abd_t *abd)
159 {
160 mutex_destroy(&abd->abd_mtx);
161 ASSERT(!list_link_active(&abd->abd_gang_link));
162 #ifdef ZFS_DEBUG
163 zfs_refcount_destroy(&abd->abd_children);
164 #endif
165 }
166
167 abd_t *
abd_alloc_struct(size_t size)168 abd_alloc_struct(size_t size)
169 {
170 abd_t *abd = abd_alloc_struct_impl(size);
171 abd_init_struct(abd);
172 abd->abd_flags |= ABD_FLAG_ALLOCD;
173 return (abd);
174 }
175
176 void
abd_free_struct(abd_t * abd)177 abd_free_struct(abd_t *abd)
178 {
179 abd_fini_struct(abd);
180 abd_free_struct_impl(abd);
181 }
182
183 /*
184 * Allocate an ABD, along with its own underlying data buffers. Use this if you
185 * don't care whether the ABD is linear or not.
186 */
187 abd_t *
abd_alloc(size_t size,boolean_t is_metadata)188 abd_alloc(size_t size, boolean_t is_metadata)
189 {
190 if (abd_size_alloc_linear(size))
191 return (abd_alloc_linear(size, is_metadata));
192
193 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
194
195 abd_t *abd = abd_alloc_struct(size);
196 abd->abd_flags |= ABD_FLAG_OWNER;
197 abd->abd_u.abd_scatter.abd_offset = 0;
198 abd_alloc_chunks(abd, size);
199
200 if (is_metadata) {
201 abd->abd_flags |= ABD_FLAG_META;
202 }
203 abd->abd_size = size;
204
205 abd_update_scatter_stats(abd, ABDSTAT_INCR);
206
207 return (abd);
208 }
209
210 /*
211 * Allocate an ABD that must be linear, along with its own underlying data
212 * buffer. Only use this when it would be very annoying to write your ABD
213 * consumer with a scattered ABD.
214 */
215 abd_t *
abd_alloc_linear(size_t size,boolean_t is_metadata)216 abd_alloc_linear(size_t size, boolean_t is_metadata)
217 {
218 abd_t *abd = abd_alloc_struct(0);
219
220 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
221
222 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
223 if (is_metadata) {
224 abd->abd_flags |= ABD_FLAG_META;
225 }
226 abd->abd_size = size;
227
228 if (is_metadata) {
229 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
230 } else {
231 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
232 }
233
234 abd_update_linear_stats(abd, ABDSTAT_INCR);
235
236 return (abd);
237 }
238
239 static void
abd_free_linear(abd_t * abd)240 abd_free_linear(abd_t *abd)
241 {
242 if (abd_is_linear_page(abd)) {
243 abd_free_linear_page(abd);
244 return;
245 }
246
247 if (abd->abd_flags & ABD_FLAG_META) {
248 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
249 } else {
250 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
251 }
252
253 abd_update_linear_stats(abd, ABDSTAT_DECR);
254 }
255
256 static void
abd_free_gang(abd_t * abd)257 abd_free_gang(abd_t *abd)
258 {
259 ASSERT(abd_is_gang(abd));
260 abd_t *cabd;
261
262 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
263 /*
264 * We must acquire the child ABDs mutex to ensure that if it
265 * is being added to another gang ABD we will set the link
266 * as inactive when removing it from this gang ABD and before
267 * adding it to the other gang ABD.
268 */
269 mutex_enter(&cabd->abd_mtx);
270 ASSERT(list_link_active(&cabd->abd_gang_link));
271 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
272 mutex_exit(&cabd->abd_mtx);
273 if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
274 abd_free(cabd);
275 }
276 list_destroy(&ABD_GANG(abd).abd_gang_chain);
277 }
278
279 static void
abd_free_scatter(abd_t * abd)280 abd_free_scatter(abd_t *abd)
281 {
282 abd_free_chunks(abd);
283 abd_update_scatter_stats(abd, ABDSTAT_DECR);
284 }
285
286 /*
287 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
288 * and abd_get_*(), including abd_get_offset_struct().
289 *
290 * If the ABD was created with abd_alloc_*(), the underlying data
291 * (scatterlist or linear buffer) will also be freed. (Subject to ownership
292 * changes via abd_*_ownership_of_buf().)
293 *
294 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
295 * also be freed.
296 */
297 void
abd_free(abd_t * abd)298 abd_free(abd_t *abd)
299 {
300 if (abd == NULL)
301 return;
302
303 abd_verify(abd);
304 #ifdef ZFS_DEBUG
305 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
306 #endif
307
308 if (abd_is_gang(abd)) {
309 abd_free_gang(abd);
310 } else if (abd_is_linear(abd)) {
311 if (abd->abd_flags & ABD_FLAG_OWNER)
312 abd_free_linear(abd);
313 } else {
314 if (abd->abd_flags & ABD_FLAG_OWNER)
315 abd_free_scatter(abd);
316 }
317
318 #ifdef ZFS_DEBUG
319 if (abd->abd_parent != NULL) {
320 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
321 abd->abd_size, abd);
322 }
323 #endif
324
325 abd_fini_struct(abd);
326 if (abd->abd_flags & ABD_FLAG_ALLOCD)
327 abd_free_struct_impl(abd);
328 }
329
330 /*
331 * Allocate an ABD of the same format (same metadata flag, same scatterize
332 * setting) as another ABD.
333 */
334 abd_t *
abd_alloc_sametype(abd_t * sabd,size_t size)335 abd_alloc_sametype(abd_t *sabd, size_t size)
336 {
337 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
338 if (abd_is_linear(sabd) &&
339 !abd_is_linear_page(sabd)) {
340 return (abd_alloc_linear(size, is_metadata));
341 } else {
342 return (abd_alloc(size, is_metadata));
343 }
344 }
345
346 /*
347 * Create gang ABD that will be the head of a list of ABD's. This is used
348 * to "chain" scatter/gather lists together when constructing aggregated
349 * IO's. To free this abd, abd_free() must be called.
350 */
351 abd_t *
abd_alloc_gang(void)352 abd_alloc_gang(void)
353 {
354 abd_t *abd = abd_alloc_struct(0);
355 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
356 list_create(&ABD_GANG(abd).abd_gang_chain,
357 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
358 return (abd);
359 }
360
361 /*
362 * Add a child gang ABD to a parent gang ABDs chained list.
363 */
364 static void
abd_gang_add_gang(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)365 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
366 {
367 ASSERT(abd_is_gang(pabd));
368 ASSERT(abd_is_gang(cabd));
369
370 if (free_on_free) {
371 /*
372 * If the parent is responsible for freeing the child gang
373 * ABD we will just splice the child's children ABD list to
374 * the parent's list and immediately free the child gang ABD
375 * struct. The parent gang ABDs children from the child gang
376 * will retain all the free_on_free settings after being
377 * added to the parents list.
378 */
379 #ifdef ZFS_DEBUG
380 /*
381 * If cabd had abd_parent, we have to drop it here. We can't
382 * transfer it to pabd, nor we can clear abd_size leaving it.
383 */
384 if (cabd->abd_parent != NULL) {
385 (void) zfs_refcount_remove_many(
386 &cabd->abd_parent->abd_children,
387 cabd->abd_size, cabd);
388 cabd->abd_parent = NULL;
389 }
390 #endif
391 pabd->abd_size += cabd->abd_size;
392 cabd->abd_size = 0;
393 list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
394 &ABD_GANG(cabd).abd_gang_chain);
395 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
396 abd_verify(pabd);
397 abd_free(cabd);
398 } else {
399 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
400 child != NULL;
401 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
402 /*
403 * We always pass B_FALSE for free_on_free as it is the
404 * original child gang ABDs responsibility to determine
405 * if any of its child ABDs should be free'd on the call
406 * to abd_free().
407 */
408 abd_gang_add(pabd, child, B_FALSE);
409 }
410 abd_verify(pabd);
411 }
412 }
413
414 /*
415 * Add a child ABD to a gang ABD's chained list.
416 */
417 void
abd_gang_add(abd_t * pabd,abd_t * cabd,boolean_t free_on_free)418 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
419 {
420 ASSERT(abd_is_gang(pabd));
421 abd_t *child_abd = NULL;
422
423 /*
424 * If the child being added is a gang ABD, we will add the
425 * child's ABDs to the parent gang ABD. This allows us to account
426 * for the offset correctly in the parent gang ABD.
427 */
428 if (abd_is_gang(cabd)) {
429 ASSERT(!list_link_active(&cabd->abd_gang_link));
430 return (abd_gang_add_gang(pabd, cabd, free_on_free));
431 }
432 ASSERT(!abd_is_gang(cabd));
433
434 /*
435 * In order to verify that an ABD is not already part of
436 * another gang ABD, we must lock the child ABD's abd_mtx
437 * to check its abd_gang_link status. We unlock the abd_mtx
438 * only after it is has been added to a gang ABD, which
439 * will update the abd_gang_link's status. See comment below
440 * for how an ABD can be in multiple gang ABD's simultaneously.
441 */
442 mutex_enter(&cabd->abd_mtx);
443 if (list_link_active(&cabd->abd_gang_link)) {
444 /*
445 * If the child ABD is already part of another
446 * gang ABD then we must allocate a new
447 * ABD to use a separate link. We mark the newly
448 * allocated ABD with ABD_FLAG_GANG_FREE, before
449 * adding it to the gang ABD's list, to make the
450 * gang ABD aware that it is responsible to call
451 * abd_free(). We use abd_get_offset() in order
452 * to just allocate a new ABD but avoid copying the
453 * data over into the newly allocated ABD.
454 *
455 * An ABD may become part of multiple gang ABD's. For
456 * example, when writing ditto bocks, the same ABD
457 * is used to write 2 or 3 locations with 2 or 3
458 * zio_t's. Each of the zio's may be aggregated with
459 * different adjacent zio's. zio aggregation uses gang
460 * zio's, so the single ABD can become part of multiple
461 * gang zio's.
462 *
463 * The ASSERT below is to make sure that if
464 * free_on_free is passed as B_TRUE, the ABD can
465 * not be in multiple gang ABD's. The gang ABD
466 * can not be responsible for cleaning up the child
467 * ABD memory allocation if the ABD can be in
468 * multiple gang ABD's at one time.
469 */
470 ASSERT3B(free_on_free, ==, B_FALSE);
471 child_abd = abd_get_offset(cabd, 0);
472 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
473 } else {
474 child_abd = cabd;
475 if (free_on_free)
476 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
477 }
478 ASSERT3P(child_abd, !=, NULL);
479
480 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
481 mutex_exit(&cabd->abd_mtx);
482 pabd->abd_size += child_abd->abd_size;
483 }
484
485 /*
486 * Locate the ABD for the supplied offset in the gang ABD.
487 * Return a new offset relative to the returned ABD.
488 */
489 abd_t *
abd_gang_get_offset(abd_t * abd,size_t * off)490 abd_gang_get_offset(abd_t *abd, size_t *off)
491 {
492 abd_t *cabd;
493
494 ASSERT(abd_is_gang(abd));
495 ASSERT3U(*off, <, abd->abd_size);
496 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
497 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
498 if (*off >= cabd->abd_size)
499 *off -= cabd->abd_size;
500 else
501 return (cabd);
502 }
503 VERIFY3P(cabd, !=, NULL);
504 return (cabd);
505 }
506
507 /*
508 * Allocate a new ABD, using the provided struct (if non-NULL, and if
509 * circumstances allow - otherwise allocate the struct). The returned ABD will
510 * point to offset off of sabd. It shares the underlying buffer data with sabd.
511 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
512 */
513 static abd_t *
abd_get_offset_impl(abd_t * abd,abd_t * sabd,size_t off,size_t size)514 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
515 {
516 abd_verify(sabd);
517 ASSERT3U(off + size, <=, sabd->abd_size);
518
519 if (abd_is_linear(sabd)) {
520 if (abd == NULL)
521 abd = abd_alloc_struct(0);
522 /*
523 * Even if this buf is filesystem metadata, we only track that
524 * if we own the underlying data buffer, which is not true in
525 * this case. Therefore, we don't ever use ABD_FLAG_META here.
526 */
527 abd->abd_flags |= ABD_FLAG_LINEAR;
528
529 /*
530 * User pages from Direct I/O requests may be in a single page
531 * (ABD_FLAG_LINEAR_PAGE), and we must make sure to still flag
532 * that here for abd. This is required because we have to be
533 * careful when borrowing the buffer from the ABD because we
534 * can not place user pages under write protection on Linux.
535 * See the comments in abd_os.c for abd_borrow_buf(),
536 * abd_borrow_buf_copy(), abd_return_buf() and
537 * abd_return_buf_copy().
538 */
539 if (abd_is_from_pages(sabd)) {
540 abd->abd_flags |= ABD_FLAG_FROM_PAGES |
541 ABD_FLAG_LINEAR_PAGE;
542 }
543
544 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
545 } else if (abd_is_gang(sabd)) {
546 size_t left = size;
547 if (abd == NULL) {
548 abd = abd_alloc_gang();
549 } else {
550 abd->abd_flags |= ABD_FLAG_GANG;
551 list_create(&ABD_GANG(abd).abd_gang_chain,
552 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
553 }
554
555 abd->abd_flags &= ~ABD_FLAG_OWNER;
556 for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
557 cabd != NULL && left > 0;
558 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
559 int csize = MIN(left, cabd->abd_size - off);
560
561 abd_t *nabd = abd_get_offset_size(cabd, off, csize);
562 abd_gang_add(abd, nabd, B_TRUE);
563 left -= csize;
564 off = 0;
565 }
566 ASSERT3U(left, ==, 0);
567 } else {
568 abd = abd_get_offset_scatter(abd, sabd, off, size);
569 }
570
571 ASSERT3P(abd, !=, NULL);
572 abd->abd_size = size;
573 #ifdef ZFS_DEBUG
574 abd->abd_parent = sabd;
575 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
576 #endif
577 return (abd);
578 }
579
580 /*
581 * Like abd_get_offset_size(), but memory for the abd_t is provided by the
582 * caller. Using this routine can improve performance by avoiding the cost
583 * of allocating memory for the abd_t struct, and updating the abd stats.
584 * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
585 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
586 * be allocated. Therefore callers should be careful to use the returned
587 * abd_t*.
588 */
589 abd_t *
abd_get_offset_struct(abd_t * abd,abd_t * sabd,size_t off,size_t size)590 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
591 {
592 abd_t *result;
593 abd_init_struct(abd);
594 result = abd_get_offset_impl(abd, sabd, off, size);
595 if (result != abd)
596 abd_fini_struct(abd);
597 return (result);
598 }
599
600 abd_t *
abd_get_offset(abd_t * sabd,size_t off)601 abd_get_offset(abd_t *sabd, size_t off)
602 {
603 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
604 VERIFY3U(size, >, 0);
605 return (abd_get_offset_impl(NULL, sabd, off, size));
606 }
607
608 abd_t *
abd_get_offset_size(abd_t * sabd,size_t off,size_t size)609 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
610 {
611 ASSERT3U(off + size, <=, sabd->abd_size);
612 return (abd_get_offset_impl(NULL, sabd, off, size));
613 }
614
615 /*
616 * Return a size scatter ABD containing only zeros.
617 */
618 abd_t *
abd_get_zeros(size_t size)619 abd_get_zeros(size_t size)
620 {
621 ASSERT3P(abd_zero_scatter, !=, NULL);
622 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
623 return (abd_get_offset_size(abd_zero_scatter, 0, size));
624 }
625
626 /*
627 * Create a linear ABD for an existing buf.
628 */
629 static abd_t *
abd_get_from_buf_impl(abd_t * abd,void * buf,size_t size)630 abd_get_from_buf_impl(abd_t *abd, void *buf, size_t size)
631 {
632 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
633
634 /*
635 * Even if this buf is filesystem metadata, we only track that if we
636 * own the underlying data buffer, which is not true in this case.
637 * Therefore, we don't ever use ABD_FLAG_META here.
638 */
639 abd->abd_flags |= ABD_FLAG_LINEAR;
640 abd->abd_size = size;
641
642 ABD_LINEAR_BUF(abd) = buf;
643
644 return (abd);
645 }
646
647 abd_t *
abd_get_from_buf(void * buf,size_t size)648 abd_get_from_buf(void *buf, size_t size)
649 {
650 abd_t *abd = abd_alloc_struct(0);
651 return (abd_get_from_buf_impl(abd, buf, size));
652 }
653
654 abd_t *
abd_get_from_buf_struct(abd_t * abd,void * buf,size_t size)655 abd_get_from_buf_struct(abd_t *abd, void *buf, size_t size)
656 {
657 abd_init_struct(abd);
658 return (abd_get_from_buf_impl(abd, buf, size));
659 }
660
661 /*
662 * Get the raw buffer associated with a linear ABD.
663 */
664 void *
abd_to_buf(abd_t * abd)665 abd_to_buf(abd_t *abd)
666 {
667 ASSERT(abd_is_linear(abd));
668 abd_verify(abd);
669 return (ABD_LINEAR_BUF(abd));
670 }
671
672 void
abd_release_ownership_of_buf(abd_t * abd)673 abd_release_ownership_of_buf(abd_t *abd)
674 {
675 ASSERT(abd_is_linear(abd));
676 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
677
678 /*
679 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
680 * Since that flag does not survive the
681 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
682 * abd_take_ownership_of_buf() sequence, we don't allow releasing
683 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
684 */
685 ASSERT(!abd_is_linear_page(abd));
686
687 abd_verify(abd);
688
689 abd->abd_flags &= ~ABD_FLAG_OWNER;
690 /* Disable this flag since we no longer own the data buffer */
691 abd->abd_flags &= ~ABD_FLAG_META;
692
693 abd_update_linear_stats(abd, ABDSTAT_DECR);
694 }
695
696
697 /*
698 * Give this ABD ownership of the buffer that it's storing. Can only be used on
699 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
700 * with abd_alloc_linear() which subsequently released ownership of their buf
701 * with abd_release_ownership_of_buf().
702 */
703 void
abd_take_ownership_of_buf(abd_t * abd,boolean_t is_metadata)704 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
705 {
706 ASSERT(abd_is_linear(abd));
707 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
708 abd_verify(abd);
709
710 abd->abd_flags |= ABD_FLAG_OWNER;
711 if (is_metadata) {
712 abd->abd_flags |= ABD_FLAG_META;
713 }
714
715 abd_update_linear_stats(abd, ABDSTAT_INCR);
716 }
717
718 /*
719 * Initializes an abd_iter based on whether the abd is a gang ABD
720 * or just a single ABD.
721 */
722 static inline abd_t *
abd_init_abd_iter(abd_t * abd,struct abd_iter * aiter,size_t off)723 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
724 {
725 abd_t *cabd = NULL;
726
727 if (abd_is_gang(abd)) {
728 cabd = abd_gang_get_offset(abd, &off);
729 if (cabd) {
730 abd_iter_init(aiter, cabd);
731 abd_iter_advance(aiter, off);
732 }
733 } else {
734 abd_iter_init(aiter, abd);
735 abd_iter_advance(aiter, off);
736 }
737 return (cabd);
738 }
739
740 /*
741 * Advances an abd_iter. We have to be careful with gang ABD as
742 * advancing could mean that we are at the end of a particular ABD and
743 * must grab the ABD in the gang ABD's list.
744 */
745 static inline abd_t *
abd_advance_abd_iter(abd_t * abd,abd_t * cabd,struct abd_iter * aiter,size_t len)746 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
747 size_t len)
748 {
749 abd_iter_advance(aiter, len);
750 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
751 ASSERT3P(cabd, !=, NULL);
752 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
753 if (cabd) {
754 abd_iter_init(aiter, cabd);
755 abd_iter_advance(aiter, 0);
756 }
757 }
758 return (cabd);
759 }
760
761 int
abd_iterate_func(abd_t * abd,size_t off,size_t size,abd_iter_func_t * func,void * private)762 abd_iterate_func(abd_t *abd, size_t off, size_t size,
763 abd_iter_func_t *func, void *private)
764 {
765 struct abd_iter aiter;
766 int ret = 0;
767
768 if (size == 0)
769 return (0);
770
771 abd_verify(abd);
772 ASSERT3U(off + size, <=, abd->abd_size);
773
774 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
775
776 while (size > 0) {
777 IMPLY(abd_is_gang(abd), c_abd != NULL);
778
779 abd_iter_map(&aiter);
780
781 size_t len = MIN(aiter.iter_mapsize, size);
782 ASSERT3U(len, >, 0);
783
784 ret = func(aiter.iter_mapaddr, len, private);
785
786 abd_iter_unmap(&aiter);
787
788 if (ret != 0)
789 break;
790
791 size -= len;
792 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
793 }
794
795 return (ret);
796 }
797
798 #if defined(__linux__) && defined(_KERNEL)
799 int
abd_iterate_page_func(abd_t * abd,size_t off,size_t size,abd_iter_page_func_t * func,void * private)800 abd_iterate_page_func(abd_t *abd, size_t off, size_t size,
801 abd_iter_page_func_t *func, void *private)
802 {
803 struct abd_iter aiter;
804 int ret = 0;
805
806 if (size == 0)
807 return (0);
808
809 abd_verify(abd);
810 ASSERT3U(off + size, <=, abd->abd_size);
811
812 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
813
814 while (size > 0) {
815 IMPLY(abd_is_gang(abd), c_abd != NULL);
816
817 abd_iter_page(&aiter);
818
819 size_t len = MIN(aiter.iter_page_dsize, size);
820 ASSERT3U(len, >, 0);
821
822 ret = func(aiter.iter_page, aiter.iter_page_doff,
823 len, private);
824
825 aiter.iter_page = NULL;
826 aiter.iter_page_doff = 0;
827 aiter.iter_page_dsize = 0;
828
829 if (ret != 0)
830 break;
831
832 size -= len;
833 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
834 }
835
836 return (ret);
837 }
838 #endif
839
840 struct buf_arg {
841 void *arg_buf;
842 };
843
844 static int
abd_copy_to_buf_off_cb(void * buf,size_t size,void * private)845 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
846 {
847 struct buf_arg *ba_ptr = private;
848
849 (void) memcpy(ba_ptr->arg_buf, buf, size);
850 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
851
852 return (0);
853 }
854
855 /*
856 * Copy abd to buf. (off is the offset in abd.)
857 */
858 void
abd_copy_to_buf_off(void * buf,abd_t * abd,size_t off,size_t size)859 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
860 {
861 struct buf_arg ba_ptr = { buf };
862
863 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
864 &ba_ptr);
865 }
866
867 static int
abd_cmp_buf_off_cb(void * buf,size_t size,void * private)868 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
869 {
870 int ret;
871 struct buf_arg *ba_ptr = private;
872
873 ret = memcmp(buf, ba_ptr->arg_buf, size);
874 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
875
876 return (ret);
877 }
878
879 /*
880 * Compare the contents of abd to buf. (off is the offset in abd.)
881 */
882 int
abd_cmp_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)883 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
884 {
885 struct buf_arg ba_ptr = { (void *) buf };
886
887 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
888 }
889
890 static int
abd_copy_from_buf_off_cb(void * buf,size_t size,void * private)891 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
892 {
893 struct buf_arg *ba_ptr = private;
894
895 (void) memcpy(buf, ba_ptr->arg_buf, size);
896 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
897
898 return (0);
899 }
900
901 /*
902 * Copy from buf to abd. (off is the offset in abd.)
903 */
904 void
abd_copy_from_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)905 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
906 {
907 struct buf_arg ba_ptr = { (void *) buf };
908
909 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
910 &ba_ptr);
911 }
912
913 static int
abd_zero_off_cb(void * buf,size_t size,void * private)914 abd_zero_off_cb(void *buf, size_t size, void *private)
915 {
916 (void) private;
917 (void) memset(buf, 0, size);
918 return (0);
919 }
920
921 /*
922 * Zero out the abd from a particular offset to the end.
923 */
924 void
abd_zero_off(abd_t * abd,size_t off,size_t size)925 abd_zero_off(abd_t *abd, size_t off, size_t size)
926 {
927 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
928 }
929
930 /*
931 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
932 * equal-sized chunks (passed to func as raw buffers). func could be called many
933 * times during this iteration.
934 */
935 int
abd_iterate_func2(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size,abd_iter_func2_t * func,void * private)936 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
937 size_t size, abd_iter_func2_t *func, void *private)
938 {
939 int ret = 0;
940 struct abd_iter daiter, saiter;
941 abd_t *c_dabd, *c_sabd;
942
943 if (size == 0)
944 return (0);
945
946 abd_verify(dabd);
947 abd_verify(sabd);
948
949 ASSERT3U(doff + size, <=, dabd->abd_size);
950 ASSERT3U(soff + size, <=, sabd->abd_size);
951
952 c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
953 c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
954
955 while (size > 0) {
956 IMPLY(abd_is_gang(dabd), c_dabd != NULL);
957 IMPLY(abd_is_gang(sabd), c_sabd != NULL);
958
959 abd_iter_map(&daiter);
960 abd_iter_map(&saiter);
961
962 size_t dlen = MIN(daiter.iter_mapsize, size);
963 size_t slen = MIN(saiter.iter_mapsize, size);
964 size_t len = MIN(dlen, slen);
965 ASSERT(dlen > 0 || slen > 0);
966
967 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
968 private);
969
970 abd_iter_unmap(&saiter);
971 abd_iter_unmap(&daiter);
972
973 if (ret != 0)
974 break;
975
976 size -= len;
977 c_dabd =
978 abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
979 c_sabd =
980 abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
981 }
982
983 return (ret);
984 }
985
986 static int
abd_copy_off_cb(void * dbuf,void * sbuf,size_t size,void * private)987 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
988 {
989 (void) private;
990 (void) memcpy(dbuf, sbuf, size);
991 return (0);
992 }
993
994 /*
995 * Copy from sabd to dabd starting from soff and doff.
996 */
997 void
abd_copy_off(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size)998 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
999 {
1000 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
1001 abd_copy_off_cb, NULL);
1002 }
1003
1004 static int
abd_cmp_cb(void * bufa,void * bufb,size_t size,void * private)1005 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
1006 {
1007 (void) private;
1008 return (memcmp(bufa, bufb, size));
1009 }
1010
1011 /*
1012 * Compares the contents of two ABDs.
1013 */
1014 int
abd_cmp(abd_t * dabd,abd_t * sabd)1015 abd_cmp(abd_t *dabd, abd_t *sabd)
1016 {
1017 ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1018 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1019 abd_cmp_cb, NULL));
1020 }
1021
1022 /*
1023 * Check if ABD content is all-zeroes.
1024 */
1025 static int
abd_cmp_zero_off_cb(void * data,size_t len,void * private)1026 abd_cmp_zero_off_cb(void *data, size_t len, void *private)
1027 {
1028 (void) private;
1029
1030 /* This function can only check whole uint64s. Enforce that. */
1031 ASSERT0(P2PHASE(len, 8));
1032
1033 uint64_t *end = (uint64_t *)((char *)data + len);
1034 for (uint64_t *word = (uint64_t *)data; word < end; word++)
1035 if (*word != 0)
1036 return (1);
1037
1038 return (0);
1039 }
1040
1041 int
abd_cmp_zero_off(abd_t * abd,size_t off,size_t size)1042 abd_cmp_zero_off(abd_t *abd, size_t off, size_t size)
1043 {
1044 return (abd_iterate_func(abd, off, size, abd_cmp_zero_off_cb, NULL));
1045 }
1046
1047 /*
1048 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1049 *
1050 * @cabds parity ABDs, must have equal size
1051 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1052 * @func_raidz_gen should be implemented so that its behaviour
1053 * is the same when taking linear and when taking scatter
1054 */
1055 void
abd_raidz_gen_iterate(abd_t ** cabds,abd_t * dabd,size_t off,size_t csize,size_t dsize,const unsigned parity,void (* func_raidz_gen)(void **,const void *,size_t,size_t))1056 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off,
1057 size_t csize, size_t dsize, const unsigned parity,
1058 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1059 {
1060 int i;
1061 size_t len, dlen;
1062 struct abd_iter caiters[3];
1063 struct abd_iter daiter;
1064 void *caddrs[3], *daddr;
1065 unsigned long flags __maybe_unused = 0;
1066 abd_t *c_cabds[3];
1067 abd_t *c_dabd = NULL;
1068
1069 ASSERT3U(parity, <=, 3);
1070 for (i = 0; i < parity; i++) {
1071 abd_verify(cabds[i]);
1072 ASSERT3U(off + csize, <=, cabds[i]->abd_size);
1073 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off);
1074 }
1075
1076 if (dsize > 0) {
1077 ASSERT(dabd);
1078 abd_verify(dabd);
1079 ASSERT3U(off + dsize, <=, dabd->abd_size);
1080 c_dabd = abd_init_abd_iter(dabd, &daiter, off);
1081 }
1082
1083 abd_enter_critical(flags);
1084 while (csize > 0) {
1085 len = csize;
1086 for (i = 0; i < parity; i++) {
1087 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1088 abd_iter_map(&caiters[i]);
1089 caddrs[i] = caiters[i].iter_mapaddr;
1090 len = MIN(caiters[i].iter_mapsize, len);
1091 }
1092
1093 if (dsize > 0) {
1094 IMPLY(abd_is_gang(dabd), c_dabd != NULL);
1095 abd_iter_map(&daiter);
1096 daddr = daiter.iter_mapaddr;
1097 len = MIN(daiter.iter_mapsize, len);
1098 dlen = len;
1099 } else {
1100 daddr = NULL;
1101 dlen = 0;
1102 }
1103
1104 /* must be progressive */
1105 ASSERT3U(len, >, 0);
1106 /*
1107 * The iterated function likely will not do well if each
1108 * segment except the last one is not multiple of 512 (raidz).
1109 */
1110 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1111
1112 func_raidz_gen(caddrs, daddr, len, dlen);
1113
1114 for (i = parity-1; i >= 0; i--) {
1115 abd_iter_unmap(&caiters[i]);
1116 c_cabds[i] =
1117 abd_advance_abd_iter(cabds[i], c_cabds[i],
1118 &caiters[i], len);
1119 }
1120
1121 if (dsize > 0) {
1122 abd_iter_unmap(&daiter);
1123 c_dabd =
1124 abd_advance_abd_iter(dabd, c_dabd, &daiter,
1125 dlen);
1126 dsize -= dlen;
1127 }
1128
1129 csize -= len;
1130 }
1131 abd_exit_critical(flags);
1132 }
1133
1134 /*
1135 * Iterate over code ABDs and data reconstruction target ABDs and call
1136 * @func_raidz_rec. Function maps at most 6 pages atomically.
1137 *
1138 * @cabds parity ABDs, must have equal size
1139 * @tabds rec target ABDs, at most 3
1140 * @tsize size of data target columns
1141 * @func_raidz_rec expects syndrome data in target columns. Function
1142 * reconstructs data and overwrites target columns.
1143 */
1144 void
abd_raidz_rec_iterate(abd_t ** cabds,abd_t ** tabds,size_t tsize,const unsigned parity,void (* func_raidz_rec)(void ** t,const size_t tsize,void ** c,const unsigned * mul),const unsigned * mul)1145 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1146 size_t tsize, const unsigned parity,
1147 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1148 const unsigned *mul),
1149 const unsigned *mul)
1150 {
1151 int i;
1152 size_t len;
1153 struct abd_iter citers[3];
1154 struct abd_iter xiters[3];
1155 void *caddrs[3], *xaddrs[3];
1156 unsigned long flags __maybe_unused = 0;
1157 abd_t *c_cabds[3];
1158 abd_t *c_tabds[3];
1159
1160 ASSERT3U(parity, <=, 3);
1161
1162 for (i = 0; i < parity; i++) {
1163 abd_verify(cabds[i]);
1164 abd_verify(tabds[i]);
1165 ASSERT3U(tsize, <=, cabds[i]->abd_size);
1166 ASSERT3U(tsize, <=, tabds[i]->abd_size);
1167 c_cabds[i] =
1168 abd_init_abd_iter(cabds[i], &citers[i], 0);
1169 c_tabds[i] =
1170 abd_init_abd_iter(tabds[i], &xiters[i], 0);
1171 }
1172
1173 abd_enter_critical(flags);
1174 while (tsize > 0) {
1175 len = tsize;
1176 for (i = 0; i < parity; i++) {
1177 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1178 IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL);
1179 abd_iter_map(&citers[i]);
1180 abd_iter_map(&xiters[i]);
1181 caddrs[i] = citers[i].iter_mapaddr;
1182 xaddrs[i] = xiters[i].iter_mapaddr;
1183 len = MIN(citers[i].iter_mapsize, len);
1184 len = MIN(xiters[i].iter_mapsize, len);
1185 }
1186
1187 /* must be progressive */
1188 ASSERT3S(len, >, 0);
1189 /*
1190 * The iterated function likely will not do well if each
1191 * segment except the last one is not multiple of 512 (raidz).
1192 */
1193 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1194
1195 func_raidz_rec(xaddrs, len, caddrs, mul);
1196
1197 for (i = parity-1; i >= 0; i--) {
1198 abd_iter_unmap(&xiters[i]);
1199 abd_iter_unmap(&citers[i]);
1200 c_tabds[i] =
1201 abd_advance_abd_iter(tabds[i], c_tabds[i],
1202 &xiters[i], len);
1203 c_cabds[i] =
1204 abd_advance_abd_iter(cabds[i], c_cabds[i],
1205 &citers[i], len);
1206 }
1207
1208 tsize -= len;
1209 ASSERT3S(tsize, >=, 0);
1210 }
1211 abd_exit_critical(flags);
1212 }
1213