1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * commsup.c
15 *
16 * Abstract: Contain all routines that are required for FSA host/adapter
17 * communication.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38
39 #include "aacraid.h"
40
41 /**
42 * fib_map_alloc - allocate the fib objects
43 * @dev: Adapter to allocate for
44 *
45 * Allocate and map the shared PCI space for the FIB blocks used to
46 * talk to the Adaptec firmware.
47 */
48
fib_map_alloc(struct aac_dev * dev)49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
52
53 dprintk((KERN_INFO
54 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
55 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
56 AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
57 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
58 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
59 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
60 &dev->hw_fib_pa, GFP_KERNEL);
61 if (dev->hw_fib_va == NULL)
62 return -ENOMEM;
63 return 0;
64 }
65
66 /**
67 * aac_fib_map_free - free the fib objects
68 * @dev: Adapter to free
69 *
70 * Free the PCI mappings and the memory allocated for FIB blocks
71 * on this adapter.
72 */
73
aac_fib_map_free(struct aac_dev * dev)74 void aac_fib_map_free(struct aac_dev *dev)
75 {
76 size_t alloc_size;
77 size_t fib_size;
78 int num_fibs;
79
80 if(!dev->hw_fib_va || !dev->max_cmd_size)
81 return;
82
83 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
84 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
85 alloc_size = fib_size * num_fibs + ALIGN32 - 1;
86
87 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
88 dev->hw_fib_pa);
89
90 dev->hw_fib_va = NULL;
91 dev->hw_fib_pa = 0;
92 }
93
aac_fib_vector_assign(struct aac_dev * dev)94 void aac_fib_vector_assign(struct aac_dev *dev)
95 {
96 u32 i = 0;
97 u32 vector = 1;
98 struct fib *fibptr = NULL;
99
100 for (i = 0, fibptr = &dev->fibs[i];
101 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
102 i++, fibptr++) {
103 if ((dev->max_msix == 1) ||
104 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
105 - dev->vector_cap))) {
106 fibptr->vector_no = 0;
107 } else {
108 fibptr->vector_no = vector;
109 vector++;
110 if (vector == dev->max_msix)
111 vector = 1;
112 }
113 }
114 }
115
116 /**
117 * aac_fib_setup - setup the fibs
118 * @dev: Adapter to set up
119 *
120 * Allocate the PCI space for the fibs, map it and then initialise the
121 * fib area, the unmapped fib data and also the free list
122 */
123
aac_fib_setup(struct aac_dev * dev)124 int aac_fib_setup(struct aac_dev * dev)
125 {
126 struct fib *fibptr;
127 struct hw_fib *hw_fib;
128 dma_addr_t hw_fib_pa;
129 int i;
130 u32 max_cmds;
131
132 while (((i = fib_map_alloc(dev)) == -ENOMEM)
133 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
134 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
135 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
136 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
137 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
138 }
139 if (i<0)
140 return -ENOMEM;
141
142 memset(dev->hw_fib_va, 0,
143 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
144 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
145
146 /* 32 byte alignment for PMC */
147 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
148 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
149 (hw_fib_pa - dev->hw_fib_pa));
150
151 /* add Xport header */
152 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
153 sizeof(struct aac_fib_xporthdr));
154 hw_fib_pa += sizeof(struct aac_fib_xporthdr);
155
156 /*
157 * Initialise the fibs
158 */
159 for (i = 0, fibptr = &dev->fibs[i];
160 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
161 i++, fibptr++)
162 {
163 fibptr->flags = 0;
164 fibptr->size = sizeof(struct fib);
165 fibptr->dev = dev;
166 fibptr->hw_fib_va = hw_fib;
167 fibptr->data = (void *) fibptr->hw_fib_va->data;
168 fibptr->next = fibptr+1; /* Forward chain the fibs */
169 init_completion(&fibptr->event_wait);
170 spin_lock_init(&fibptr->event_lock);
171 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
172 hw_fib->header.SenderSize =
173 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
174 fibptr->hw_fib_pa = hw_fib_pa;
175 fibptr->hw_sgl_pa = hw_fib_pa +
176 offsetof(struct aac_hba_cmd_req, sge[2]);
177 /*
178 * one element is for the ptr to the separate sg list,
179 * second element for 32 byte alignment
180 */
181 fibptr->hw_error_pa = hw_fib_pa +
182 offsetof(struct aac_native_hba, resp.resp_bytes[0]);
183
184 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
185 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
186 hw_fib_pa = hw_fib_pa +
187 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
188 }
189
190 /*
191 *Assign vector numbers to fibs
192 */
193 aac_fib_vector_assign(dev);
194
195 /*
196 * Add the fib chain to the free list
197 */
198 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
199 /*
200 * Set 8 fibs aside for management tools
201 */
202 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
203 return 0;
204 }
205
206 /**
207 * aac_fib_alloc_tag-allocate a fib using tags
208 * @dev: Adapter to allocate the fib for
209 * @scmd: SCSI command
210 *
211 * Allocate a fib from the adapter fib pool using tags
212 * from the blk layer.
213 */
214
aac_fib_alloc_tag(struct aac_dev * dev,struct scsi_cmnd * scmd)215 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
216 {
217 struct fib *fibptr;
218
219 fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag];
220 /*
221 * Null out fields that depend on being zero at the start of
222 * each I/O
223 */
224 fibptr->hw_fib_va->header.XferState = 0;
225 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
226 fibptr->callback_data = NULL;
227 fibptr->callback = NULL;
228 fibptr->flags = 0;
229
230 return fibptr;
231 }
232
233 /**
234 * aac_fib_alloc - allocate a fib
235 * @dev: Adapter to allocate the fib for
236 *
237 * Allocate a fib from the adapter fib pool. If the pool is empty we
238 * return NULL.
239 */
240
aac_fib_alloc(struct aac_dev * dev)241 struct fib *aac_fib_alloc(struct aac_dev *dev)
242 {
243 struct fib * fibptr;
244 unsigned long flags;
245 spin_lock_irqsave(&dev->fib_lock, flags);
246 fibptr = dev->free_fib;
247 if(!fibptr){
248 spin_unlock_irqrestore(&dev->fib_lock, flags);
249 return fibptr;
250 }
251 dev->free_fib = fibptr->next;
252 spin_unlock_irqrestore(&dev->fib_lock, flags);
253 /*
254 * Set the proper node type code and node byte size
255 */
256 fibptr->type = FSAFS_NTC_FIB_CONTEXT;
257 fibptr->size = sizeof(struct fib);
258 /*
259 * Null out fields that depend on being zero at the start of
260 * each I/O
261 */
262 fibptr->hw_fib_va->header.XferState = 0;
263 fibptr->flags = 0;
264 fibptr->callback = NULL;
265 fibptr->callback_data = NULL;
266
267 return fibptr;
268 }
269
270 /**
271 * aac_fib_free - free a fib
272 * @fibptr: fib to free up
273 *
274 * Frees up a fib and places it on the appropriate queue
275 */
276
aac_fib_free(struct fib * fibptr)277 void aac_fib_free(struct fib *fibptr)
278 {
279 unsigned long flags;
280
281 if (fibptr->done == 2)
282 return;
283
284 spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
285 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
286 aac_config.fib_timeouts++;
287 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
288 fibptr->hw_fib_va->header.XferState != 0) {
289 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
290 (void*)fibptr,
291 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
292 }
293 fibptr->next = fibptr->dev->free_fib;
294 fibptr->dev->free_fib = fibptr;
295 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
296 }
297
298 /**
299 * aac_fib_init - initialise a fib
300 * @fibptr: The fib to initialize
301 *
302 * Set up the generic fib fields ready for use
303 */
304
aac_fib_init(struct fib * fibptr)305 void aac_fib_init(struct fib *fibptr)
306 {
307 struct hw_fib *hw_fib = fibptr->hw_fib_va;
308
309 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
310 hw_fib->header.StructType = FIB_MAGIC;
311 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
312 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
313 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
314 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
315 }
316
317 /**
318 * fib_dealloc - deallocate a fib
319 * @fibptr: fib to deallocate
320 *
321 * Will deallocate and return to the free pool the FIB pointed to by the
322 * caller.
323 */
324
fib_dealloc(struct fib * fibptr)325 static void fib_dealloc(struct fib * fibptr)
326 {
327 struct hw_fib *hw_fib = fibptr->hw_fib_va;
328 hw_fib->header.XferState = 0;
329 }
330
331 /*
332 * Commuication primitives define and support the queuing method we use to
333 * support host to adapter commuication. All queue accesses happen through
334 * these routines and are the only routines which have a knowledge of the
335 * how these queues are implemented.
336 */
337
338 /**
339 * aac_get_entry - get a queue entry
340 * @dev: Adapter
341 * @qid: Queue Number
342 * @entry: Entry return
343 * @index: Index return
344 * @nonotify: notification control
345 *
346 * With a priority the routine returns a queue entry if the queue has free entries. If the queue
347 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
348 * returned.
349 */
350
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)351 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
352 {
353 struct aac_queue * q;
354 unsigned long idx;
355
356 /*
357 * All of the queues wrap when they reach the end, so we check
358 * to see if they have reached the end and if they have we just
359 * set the index back to zero. This is a wrap. You could or off
360 * the high bits in all updates but this is a bit faster I think.
361 */
362
363 q = &dev->queues->queue[qid];
364
365 idx = *index = le32_to_cpu(*(q->headers.producer));
366 /* Interrupt Moderation, only interrupt for first two entries */
367 if (idx != le32_to_cpu(*(q->headers.consumer))) {
368 if (--idx == 0) {
369 if (qid == AdapNormCmdQueue)
370 idx = ADAP_NORM_CMD_ENTRIES;
371 else
372 idx = ADAP_NORM_RESP_ENTRIES;
373 }
374 if (idx != le32_to_cpu(*(q->headers.consumer)))
375 *nonotify = 1;
376 }
377
378 if (qid == AdapNormCmdQueue) {
379 if (*index >= ADAP_NORM_CMD_ENTRIES)
380 *index = 0; /* Wrap to front of the Producer Queue. */
381 } else {
382 if (*index >= ADAP_NORM_RESP_ENTRIES)
383 *index = 0; /* Wrap to front of the Producer Queue. */
384 }
385
386 /* Queue is full */
387 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
388 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
389 qid, atomic_read(&q->numpending));
390 return 0;
391 } else {
392 *entry = q->base + *index;
393 return 1;
394 }
395 }
396
397 /**
398 * aac_queue_get - get the next free QE
399 * @dev: Adapter
400 * @index: Returned index
401 * @qid: Queue number
402 * @hw_fib: Fib to associate with the queue entry
403 * @wait: Wait if queue full
404 * @fibptr: Driver fib object to go with fib
405 * @nonotify: Don't notify the adapter
406 *
407 * Gets the next free QE off the requested priorty adapter command
408 * queue and associates the Fib with the QE. The QE represented by
409 * index is ready to insert on the queue when this routine returns
410 * success.
411 */
412
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)413 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
414 {
415 struct aac_entry * entry = NULL;
416 int map = 0;
417
418 if (qid == AdapNormCmdQueue) {
419 /* if no entries wait for some if caller wants to */
420 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
421 printk(KERN_ERR "GetEntries failed\n");
422 }
423 /*
424 * Setup queue entry with a command, status and fib mapped
425 */
426 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
427 map = 1;
428 } else {
429 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
430 /* if no entries wait for some if caller wants to */
431 }
432 /*
433 * Setup queue entry with command, status and fib mapped
434 */
435 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
436 entry->addr = hw_fib->header.SenderFibAddress;
437 /* Restore adapters pointer to the FIB */
438 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
439 map = 0;
440 }
441 /*
442 * If MapFib is true than we need to map the Fib and put pointers
443 * in the queue entry.
444 */
445 if (map)
446 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
447 return 0;
448 }
449
450 /*
451 * Define the highest level of host to adapter communication routines.
452 * These routines will support host to adapter FS commuication. These
453 * routines have no knowledge of the commuication method used. This level
454 * sends and receives FIBs. This level has no knowledge of how these FIBs
455 * get passed back and forth.
456 */
457
458 /**
459 * aac_fib_send - send a fib to the adapter
460 * @command: Command to send
461 * @fibptr: The fib
462 * @size: Size of fib data area
463 * @priority: Priority of Fib
464 * @wait: Async/sync select
465 * @reply: True if a reply is wanted
466 * @callback: Called with reply
467 * @callback_data: Passed to callback
468 *
469 * Sends the requested FIB to the adapter and optionally will wait for a
470 * response FIB. If the caller does not wish to wait for a response than
471 * an event to wait on must be supplied. This event will be set when a
472 * response FIB is received from the adapter.
473 */
474
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)475 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
476 int priority, int wait, int reply, fib_callback callback,
477 void *callback_data)
478 {
479 struct aac_dev * dev = fibptr->dev;
480 struct hw_fib * hw_fib = fibptr->hw_fib_va;
481 unsigned long flags = 0;
482 unsigned long mflags = 0;
483 unsigned long sflags = 0;
484
485 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
486 return -EBUSY;
487
488 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
489 return -EINVAL;
490
491 /*
492 * There are 5 cases with the wait and response requested flags.
493 * The only invalid cases are if the caller requests to wait and
494 * does not request a response and if the caller does not want a
495 * response and the Fib is not allocated from pool. If a response
496 * is not requested the Fib will just be deallocaed by the DPC
497 * routine when the response comes back from the adapter. No
498 * further processing will be done besides deleting the Fib. We
499 * will have a debug mode where the adapter can notify the host
500 * it had a problem and the host can log that fact.
501 */
502 fibptr->flags = 0;
503 if (wait && !reply) {
504 return -EINVAL;
505 } else if (!wait && reply) {
506 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
507 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
508 } else if (!wait && !reply) {
509 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
510 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
511 } else if (wait && reply) {
512 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
513 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
514 }
515 /*
516 * Map the fib into 32bits by using the fib number
517 */
518
519 hw_fib->header.SenderFibAddress =
520 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
521
522 /* use the same shifted value for handle to be compatible
523 * with the new native hba command handle
524 */
525 hw_fib->header.Handle =
526 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
527
528 /*
529 * Set FIB state to indicate where it came from and if we want a
530 * response from the adapter. Also load the command from the
531 * caller.
532 *
533 * Map the hw fib pointer as a 32bit value
534 */
535 hw_fib->header.Command = cpu_to_le16(command);
536 hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
537 /*
538 * Set the size of the Fib we want to send to the adapter
539 */
540 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
541 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
542 return -EMSGSIZE;
543 }
544 /*
545 * Get a queue entry connect the FIB to it and send an notify
546 * the adapter a command is ready.
547 */
548 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
549
550 /*
551 * Fill in the Callback and CallbackContext if we are not
552 * going to wait.
553 */
554 if (!wait) {
555 fibptr->callback = callback;
556 fibptr->callback_data = callback_data;
557 fibptr->flags = FIB_CONTEXT_FLAG;
558 }
559
560 fibptr->done = 0;
561
562 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
563
564 dprintk((KERN_DEBUG "Fib contents:.\n"));
565 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
566 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
567 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
568 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va));
569 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
570 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
571
572 if (!dev->queues)
573 return -EBUSY;
574
575 if (wait) {
576
577 spin_lock_irqsave(&dev->manage_lock, mflags);
578 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
579 printk(KERN_INFO "No management Fibs Available:%d\n",
580 dev->management_fib_count);
581 spin_unlock_irqrestore(&dev->manage_lock, mflags);
582 return -EBUSY;
583 }
584 dev->management_fib_count++;
585 spin_unlock_irqrestore(&dev->manage_lock, mflags);
586 spin_lock_irqsave(&fibptr->event_lock, flags);
587 }
588
589 if (dev->sync_mode) {
590 if (wait)
591 spin_unlock_irqrestore(&fibptr->event_lock, flags);
592 spin_lock_irqsave(&dev->sync_lock, sflags);
593 if (dev->sync_fib) {
594 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
595 spin_unlock_irqrestore(&dev->sync_lock, sflags);
596 } else {
597 dev->sync_fib = fibptr;
598 spin_unlock_irqrestore(&dev->sync_lock, sflags);
599 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
600 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
601 NULL, NULL, NULL, NULL, NULL);
602 }
603 if (wait) {
604 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
605 if (wait_for_completion_interruptible(&fibptr->event_wait)) {
606 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
607 return -EFAULT;
608 }
609 return 0;
610 }
611 return -EINPROGRESS;
612 }
613
614 if (aac_adapter_deliver(fibptr) != 0) {
615 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
616 if (wait) {
617 spin_unlock_irqrestore(&fibptr->event_lock, flags);
618 spin_lock_irqsave(&dev->manage_lock, mflags);
619 dev->management_fib_count--;
620 spin_unlock_irqrestore(&dev->manage_lock, mflags);
621 }
622 return -EBUSY;
623 }
624
625
626 /*
627 * If the caller wanted us to wait for response wait now.
628 */
629
630 if (wait) {
631 spin_unlock_irqrestore(&fibptr->event_lock, flags);
632 /* Only set for first known interruptable command */
633 if (wait < 0) {
634 /*
635 * *VERY* Dangerous to time out a command, the
636 * assumption is made that we have no hope of
637 * functioning because an interrupt routing or other
638 * hardware failure has occurred.
639 */
640 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
641 while (!try_wait_for_completion(&fibptr->event_wait)) {
642 int blink;
643 if (time_is_before_eq_jiffies(timeout)) {
644 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
645 atomic_dec(&q->numpending);
646 if (wait == -1) {
647 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
648 "Usually a result of a PCI interrupt routing problem;\n"
649 "update mother board BIOS or consider utilizing one of\n"
650 "the SAFE mode kernel options (acpi, apic etc)\n");
651 }
652 return -ETIMEDOUT;
653 }
654
655 if (unlikely(aac_pci_offline(dev)))
656 return -EFAULT;
657
658 if ((blink = aac_adapter_check_health(dev)) > 0) {
659 if (wait == -1) {
660 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
661 "Usually a result of a serious unrecoverable hardware problem\n",
662 blink);
663 }
664 return -EFAULT;
665 }
666 /*
667 * Allow other processes / CPUS to use core
668 */
669 schedule();
670 }
671 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
672 /* Do nothing ... satisfy
673 * wait_for_completion_interruptible must_check */
674 }
675
676 spin_lock_irqsave(&fibptr->event_lock, flags);
677 if (fibptr->done == 0) {
678 fibptr->done = 2; /* Tell interrupt we aborted */
679 spin_unlock_irqrestore(&fibptr->event_lock, flags);
680 return -ERESTARTSYS;
681 }
682 spin_unlock_irqrestore(&fibptr->event_lock, flags);
683 BUG_ON(fibptr->done == 0);
684
685 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
686 return -ETIMEDOUT;
687 return 0;
688 }
689 /*
690 * If the user does not want a response than return success otherwise
691 * return pending
692 */
693 if (reply)
694 return -EINPROGRESS;
695 else
696 return 0;
697 }
698
aac_hba_send(u8 command,struct fib * fibptr,fib_callback callback,void * callback_data)699 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
700 void *callback_data)
701 {
702 struct aac_dev *dev = fibptr->dev;
703 int wait;
704 unsigned long flags = 0;
705 unsigned long mflags = 0;
706 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
707 fibptr->hw_fib_va;
708
709 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
710 if (callback) {
711 wait = 0;
712 fibptr->callback = callback;
713 fibptr->callback_data = callback_data;
714 } else
715 wait = 1;
716
717
718 hbacmd->iu_type = command;
719
720 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
721 /* bit1 of request_id must be 0 */
722 hbacmd->request_id =
723 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
724 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
725 } else
726 return -EINVAL;
727
728
729 if (wait) {
730 spin_lock_irqsave(&dev->manage_lock, mflags);
731 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
732 spin_unlock_irqrestore(&dev->manage_lock, mflags);
733 return -EBUSY;
734 }
735 dev->management_fib_count++;
736 spin_unlock_irqrestore(&dev->manage_lock, mflags);
737 spin_lock_irqsave(&fibptr->event_lock, flags);
738 }
739
740 if (aac_adapter_deliver(fibptr) != 0) {
741 if (wait) {
742 spin_unlock_irqrestore(&fibptr->event_lock, flags);
743 spin_lock_irqsave(&dev->manage_lock, mflags);
744 dev->management_fib_count--;
745 spin_unlock_irqrestore(&dev->manage_lock, mflags);
746 }
747 return -EBUSY;
748 }
749 FIB_COUNTER_INCREMENT(aac_config.NativeSent);
750
751 if (wait) {
752
753 spin_unlock_irqrestore(&fibptr->event_lock, flags);
754
755 if (unlikely(aac_pci_offline(dev)))
756 return -EFAULT;
757
758 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
759 if (wait_for_completion_interruptible(&fibptr->event_wait))
760 fibptr->done = 2;
761 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
762
763 spin_lock_irqsave(&fibptr->event_lock, flags);
764 if ((fibptr->done == 0) || (fibptr->done == 2)) {
765 fibptr->done = 2; /* Tell interrupt we aborted */
766 spin_unlock_irqrestore(&fibptr->event_lock, flags);
767 return -ERESTARTSYS;
768 }
769 spin_unlock_irqrestore(&fibptr->event_lock, flags);
770 WARN_ON(fibptr->done == 0);
771
772 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
773 return -ETIMEDOUT;
774
775 return 0;
776 }
777
778 return -EINPROGRESS;
779 }
780
781 /**
782 * aac_consumer_get - get the top of the queue
783 * @dev: Adapter
784 * @q: Queue
785 * @entry: Return entry
786 *
787 * Will return a pointer to the entry on the top of the queue requested that
788 * we are a consumer of, and return the address of the queue entry. It does
789 * not change the state of the queue.
790 */
791
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)792 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
793 {
794 u32 index;
795 int status;
796 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
797 status = 0;
798 } else {
799 /*
800 * The consumer index must be wrapped if we have reached
801 * the end of the queue, else we just use the entry
802 * pointed to by the header index
803 */
804 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
805 index = 0;
806 else
807 index = le32_to_cpu(*q->headers.consumer);
808 *entry = q->base + index;
809 status = 1;
810 }
811 return(status);
812 }
813
814 /**
815 * aac_consumer_free - free consumer entry
816 * @dev: Adapter
817 * @q: Queue
818 * @qid: Queue ident
819 *
820 * Frees up the current top of the queue we are a consumer of. If the
821 * queue was full notify the producer that the queue is no longer full.
822 */
823
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)824 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
825 {
826 int wasfull = 0;
827 u32 notify;
828
829 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
830 wasfull = 1;
831
832 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
833 *q->headers.consumer = cpu_to_le32(1);
834 else
835 le32_add_cpu(q->headers.consumer, 1);
836
837 if (wasfull) {
838 switch (qid) {
839
840 case HostNormCmdQueue:
841 notify = HostNormCmdNotFull;
842 break;
843 case HostNormRespQueue:
844 notify = HostNormRespNotFull;
845 break;
846 default:
847 BUG();
848 return;
849 }
850 aac_adapter_notify(dev, notify);
851 }
852 }
853
854 /**
855 * aac_fib_adapter_complete - complete adapter issued fib
856 * @fibptr: fib to complete
857 * @size: size of fib
858 *
859 * Will do all necessary work to complete a FIB that was sent from
860 * the adapter.
861 */
862
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)863 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
864 {
865 struct hw_fib * hw_fib = fibptr->hw_fib_va;
866 struct aac_dev * dev = fibptr->dev;
867 struct aac_queue * q;
868 unsigned long nointr = 0;
869 unsigned long qflags;
870
871 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
872 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
873 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
874 kfree(hw_fib);
875 return 0;
876 }
877
878 if (hw_fib->header.XferState == 0) {
879 if (dev->comm_interface == AAC_COMM_MESSAGE)
880 kfree(hw_fib);
881 return 0;
882 }
883 /*
884 * If we plan to do anything check the structure type first.
885 */
886 if (hw_fib->header.StructType != FIB_MAGIC &&
887 hw_fib->header.StructType != FIB_MAGIC2 &&
888 hw_fib->header.StructType != FIB_MAGIC2_64) {
889 if (dev->comm_interface == AAC_COMM_MESSAGE)
890 kfree(hw_fib);
891 return -EINVAL;
892 }
893 /*
894 * This block handles the case where the adapter had sent us a
895 * command and we have finished processing the command. We
896 * call completeFib when we are done processing the command
897 * and want to send a response back to the adapter. This will
898 * send the completed cdb to the adapter.
899 */
900 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
901 if (dev->comm_interface == AAC_COMM_MESSAGE) {
902 kfree (hw_fib);
903 } else {
904 u32 index;
905 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
906 if (size) {
907 size += sizeof(struct aac_fibhdr);
908 if (size > le16_to_cpu(hw_fib->header.SenderSize))
909 return -EMSGSIZE;
910 hw_fib->header.Size = cpu_to_le16(size);
911 }
912 q = &dev->queues->queue[AdapNormRespQueue];
913 spin_lock_irqsave(q->lock, qflags);
914 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
915 *(q->headers.producer) = cpu_to_le32(index + 1);
916 spin_unlock_irqrestore(q->lock, qflags);
917 if (!(nointr & (int)aac_config.irq_mod))
918 aac_adapter_notify(dev, AdapNormRespQueue);
919 }
920 } else {
921 printk(KERN_WARNING "aac_fib_adapter_complete: "
922 "Unknown xferstate detected.\n");
923 BUG();
924 }
925 return 0;
926 }
927
928 /**
929 * aac_fib_complete - fib completion handler
930 * @fibptr: FIB to complete
931 *
932 * Will do all necessary work to complete a FIB.
933 */
934
aac_fib_complete(struct fib * fibptr)935 int aac_fib_complete(struct fib *fibptr)
936 {
937 struct hw_fib * hw_fib = fibptr->hw_fib_va;
938
939 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
940 fib_dealloc(fibptr);
941 return 0;
942 }
943
944 /*
945 * Check for a fib which has already been completed or with a
946 * status wait timeout
947 */
948
949 if (hw_fib->header.XferState == 0 || fibptr->done == 2)
950 return 0;
951 /*
952 * If we plan to do anything check the structure type first.
953 */
954
955 if (hw_fib->header.StructType != FIB_MAGIC &&
956 hw_fib->header.StructType != FIB_MAGIC2 &&
957 hw_fib->header.StructType != FIB_MAGIC2_64)
958 return -EINVAL;
959 /*
960 * This block completes a cdb which orginated on the host and we
961 * just need to deallocate the cdb or reinit it. At this point the
962 * command is complete that we had sent to the adapter and this
963 * cdb could be reused.
964 */
965
966 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
967 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
968 {
969 fib_dealloc(fibptr);
970 }
971 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
972 {
973 /*
974 * This handles the case when the host has aborted the I/O
975 * to the adapter because the adapter is not responding
976 */
977 fib_dealloc(fibptr);
978 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
979 fib_dealloc(fibptr);
980 } else {
981 BUG();
982 }
983 return 0;
984 }
985
986 /**
987 * aac_printf - handle printf from firmware
988 * @dev: Adapter
989 * @val: Message info
990 *
991 * Print a message passed to us by the controller firmware on the
992 * Adaptec board
993 */
994
aac_printf(struct aac_dev * dev,u32 val)995 void aac_printf(struct aac_dev *dev, u32 val)
996 {
997 char *cp = dev->printfbuf;
998 if (dev->printf_enabled)
999 {
1000 int length = val & 0xffff;
1001 int level = (val >> 16) & 0xffff;
1002
1003 /*
1004 * The size of the printfbuf is set in port.c
1005 * There is no variable or define for it
1006 */
1007 if (length > 255)
1008 length = 255;
1009 if (cp[length] != 0)
1010 cp[length] = 0;
1011 if (level == LOG_AAC_HIGH_ERROR)
1012 printk(KERN_WARNING "%s:%s", dev->name, cp);
1013 else
1014 printk(KERN_INFO "%s:%s", dev->name, cp);
1015 }
1016 memset(cp, 0, 256);
1017 }
1018
aac_aif_data(struct aac_aifcmd * aifcmd,uint32_t index)1019 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1020 {
1021 return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1022 }
1023
1024
aac_handle_aif_bu(struct aac_dev * dev,struct aac_aifcmd * aifcmd)1025 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1026 {
1027 switch (aac_aif_data(aifcmd, 1)) {
1028 case AifBuCacheDataLoss:
1029 if (aac_aif_data(aifcmd, 2))
1030 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1031 aac_aif_data(aifcmd, 2));
1032 else
1033 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1034 break;
1035 case AifBuCacheDataRecover:
1036 if (aac_aif_data(aifcmd, 2))
1037 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1038 aac_aif_data(aifcmd, 2));
1039 else
1040 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1041 break;
1042 }
1043 }
1044
1045 #define AIF_SNIFF_TIMEOUT (500*HZ)
1046 /**
1047 * aac_handle_aif - Handle a message from the firmware
1048 * @dev: Which adapter this fib is from
1049 * @fibptr: Pointer to fibptr from adapter
1050 *
1051 * This routine handles a driver notify fib from the adapter and
1052 * dispatches it to the appropriate routine for handling.
1053 */
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)1054 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1055 {
1056 struct hw_fib * hw_fib = fibptr->hw_fib_va;
1057 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1058 u32 channel, id, lun, container;
1059 struct scsi_device *device;
1060 enum {
1061 NOTHING,
1062 DELETE,
1063 ADD,
1064 CHANGE
1065 } device_config_needed = NOTHING;
1066
1067 /* Sniff for container changes */
1068
1069 if (!dev || !dev->fsa_dev)
1070 return;
1071 container = channel = id = lun = (u32)-1;
1072
1073 /*
1074 * We have set this up to try and minimize the number of
1075 * re-configures that take place. As a result of this when
1076 * certain AIF's come in we will set a flag waiting for another
1077 * type of AIF before setting the re-config flag.
1078 */
1079 switch (le32_to_cpu(aifcmd->command)) {
1080 case AifCmdDriverNotify:
1081 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1082 case AifRawDeviceRemove:
1083 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1084 if ((container >> 28)) {
1085 container = (u32)-1;
1086 break;
1087 }
1088 channel = (container >> 24) & 0xF;
1089 if (channel >= dev->maximum_num_channels) {
1090 container = (u32)-1;
1091 break;
1092 }
1093 id = container & 0xFFFF;
1094 if (id >= dev->maximum_num_physicals) {
1095 container = (u32)-1;
1096 break;
1097 }
1098 lun = (container >> 16) & 0xFF;
1099 container = (u32)-1;
1100 channel = aac_phys_to_logical(channel);
1101 device_config_needed = DELETE;
1102 break;
1103
1104 /*
1105 * Morph or Expand complete
1106 */
1107 case AifDenMorphComplete:
1108 case AifDenVolumeExtendComplete:
1109 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1110 if (container >= dev->maximum_num_containers)
1111 break;
1112
1113 /*
1114 * Find the scsi_device associated with the SCSI
1115 * address. Make sure we have the right array, and if
1116 * so set the flag to initiate a new re-config once we
1117 * see an AifEnConfigChange AIF come through.
1118 */
1119
1120 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1121 device = scsi_device_lookup(dev->scsi_host_ptr,
1122 CONTAINER_TO_CHANNEL(container),
1123 CONTAINER_TO_ID(container),
1124 CONTAINER_TO_LUN(container));
1125 if (device) {
1126 dev->fsa_dev[container].config_needed = CHANGE;
1127 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1128 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1129 scsi_device_put(device);
1130 }
1131 }
1132 }
1133
1134 /*
1135 * If we are waiting on something and this happens to be
1136 * that thing then set the re-configure flag.
1137 */
1138 if (container != (u32)-1) {
1139 if (container >= dev->maximum_num_containers)
1140 break;
1141 if ((dev->fsa_dev[container].config_waiting_on ==
1142 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1143 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1144 dev->fsa_dev[container].config_waiting_on = 0;
1145 } else for (container = 0;
1146 container < dev->maximum_num_containers; ++container) {
1147 if ((dev->fsa_dev[container].config_waiting_on ==
1148 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1149 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1150 dev->fsa_dev[container].config_waiting_on = 0;
1151 }
1152 break;
1153
1154 case AifCmdEventNotify:
1155 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1156 case AifEnBatteryEvent:
1157 dev->cache_protected =
1158 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1159 break;
1160 /*
1161 * Add an Array.
1162 */
1163 case AifEnAddContainer:
1164 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1165 if (container >= dev->maximum_num_containers)
1166 break;
1167 dev->fsa_dev[container].config_needed = ADD;
1168 dev->fsa_dev[container].config_waiting_on =
1169 AifEnConfigChange;
1170 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1171 break;
1172
1173 /*
1174 * Delete an Array.
1175 */
1176 case AifEnDeleteContainer:
1177 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1178 if (container >= dev->maximum_num_containers)
1179 break;
1180 dev->fsa_dev[container].config_needed = DELETE;
1181 dev->fsa_dev[container].config_waiting_on =
1182 AifEnConfigChange;
1183 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1184 break;
1185
1186 /*
1187 * Container change detected. If we currently are not
1188 * waiting on something else, setup to wait on a Config Change.
1189 */
1190 case AifEnContainerChange:
1191 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1192 if (container >= dev->maximum_num_containers)
1193 break;
1194 if (dev->fsa_dev[container].config_waiting_on &&
1195 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1196 break;
1197 dev->fsa_dev[container].config_needed = CHANGE;
1198 dev->fsa_dev[container].config_waiting_on =
1199 AifEnConfigChange;
1200 dev->fsa_dev[container].config_waiting_stamp = jiffies;
1201 break;
1202
1203 case AifEnConfigChange:
1204 break;
1205
1206 case AifEnAddJBOD:
1207 case AifEnDeleteJBOD:
1208 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1209 if ((container >> 28)) {
1210 container = (u32)-1;
1211 break;
1212 }
1213 channel = (container >> 24) & 0xF;
1214 if (channel >= dev->maximum_num_channels) {
1215 container = (u32)-1;
1216 break;
1217 }
1218 id = container & 0xFFFF;
1219 if (id >= dev->maximum_num_physicals) {
1220 container = (u32)-1;
1221 break;
1222 }
1223 lun = (container >> 16) & 0xFF;
1224 container = (u32)-1;
1225 channel = aac_phys_to_logical(channel);
1226 device_config_needed =
1227 (((__le32 *)aifcmd->data)[0] ==
1228 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1229 if (device_config_needed == ADD) {
1230 device = scsi_device_lookup(dev->scsi_host_ptr,
1231 channel,
1232 id,
1233 lun);
1234 if (device) {
1235 scsi_remove_device(device);
1236 scsi_device_put(device);
1237 }
1238 }
1239 break;
1240
1241 case AifEnEnclosureManagement:
1242 /*
1243 * If in JBOD mode, automatic exposure of new
1244 * physical target to be suppressed until configured.
1245 */
1246 if (dev->jbod)
1247 break;
1248 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1249 case EM_DRIVE_INSERTION:
1250 case EM_DRIVE_REMOVAL:
1251 case EM_SES_DRIVE_INSERTION:
1252 case EM_SES_DRIVE_REMOVAL:
1253 container = le32_to_cpu(
1254 ((__le32 *)aifcmd->data)[2]);
1255 if ((container >> 28)) {
1256 container = (u32)-1;
1257 break;
1258 }
1259 channel = (container >> 24) & 0xF;
1260 if (channel >= dev->maximum_num_channels) {
1261 container = (u32)-1;
1262 break;
1263 }
1264 id = container & 0xFFFF;
1265 lun = (container >> 16) & 0xFF;
1266 container = (u32)-1;
1267 if (id >= dev->maximum_num_physicals) {
1268 /* legacy dev_t ? */
1269 if ((0x2000 <= id) || lun || channel ||
1270 ((channel = (id >> 7) & 0x3F) >=
1271 dev->maximum_num_channels))
1272 break;
1273 lun = (id >> 4) & 7;
1274 id &= 0xF;
1275 }
1276 channel = aac_phys_to_logical(channel);
1277 device_config_needed =
1278 ((((__le32 *)aifcmd->data)[3]
1279 == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1280 (((__le32 *)aifcmd->data)[3]
1281 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1282 ADD : DELETE;
1283 break;
1284 }
1285 break;
1286 case AifBuManagerEvent:
1287 aac_handle_aif_bu(dev, aifcmd);
1288 break;
1289 }
1290
1291 /*
1292 * If we are waiting on something and this happens to be
1293 * that thing then set the re-configure flag.
1294 */
1295 if (container != (u32)-1) {
1296 if (container >= dev->maximum_num_containers)
1297 break;
1298 if ((dev->fsa_dev[container].config_waiting_on ==
1299 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1300 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1301 dev->fsa_dev[container].config_waiting_on = 0;
1302 } else for (container = 0;
1303 container < dev->maximum_num_containers; ++container) {
1304 if ((dev->fsa_dev[container].config_waiting_on ==
1305 le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1306 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1307 dev->fsa_dev[container].config_waiting_on = 0;
1308 }
1309 break;
1310
1311 case AifCmdJobProgress:
1312 /*
1313 * These are job progress AIF's. When a Clear is being
1314 * done on a container it is initially created then hidden from
1315 * the OS. When the clear completes we don't get a config
1316 * change so we monitor the job status complete on a clear then
1317 * wait for a container change.
1318 */
1319
1320 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1321 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1322 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1323 for (container = 0;
1324 container < dev->maximum_num_containers;
1325 ++container) {
1326 /*
1327 * Stomp on all config sequencing for all
1328 * containers?
1329 */
1330 dev->fsa_dev[container].config_waiting_on =
1331 AifEnContainerChange;
1332 dev->fsa_dev[container].config_needed = ADD;
1333 dev->fsa_dev[container].config_waiting_stamp =
1334 jiffies;
1335 }
1336 }
1337 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1338 ((__le32 *)aifcmd->data)[6] == 0 &&
1339 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1340 for (container = 0;
1341 container < dev->maximum_num_containers;
1342 ++container) {
1343 /*
1344 * Stomp on all config sequencing for all
1345 * containers?
1346 */
1347 dev->fsa_dev[container].config_waiting_on =
1348 AifEnContainerChange;
1349 dev->fsa_dev[container].config_needed = DELETE;
1350 dev->fsa_dev[container].config_waiting_stamp =
1351 jiffies;
1352 }
1353 }
1354 break;
1355 }
1356
1357 container = 0;
1358 retry_next:
1359 if (device_config_needed == NOTHING) {
1360 for (; container < dev->maximum_num_containers; ++container) {
1361 if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1362 (dev->fsa_dev[container].config_needed != NOTHING) &&
1363 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1364 device_config_needed =
1365 dev->fsa_dev[container].config_needed;
1366 dev->fsa_dev[container].config_needed = NOTHING;
1367 channel = CONTAINER_TO_CHANNEL(container);
1368 id = CONTAINER_TO_ID(container);
1369 lun = CONTAINER_TO_LUN(container);
1370 break;
1371 }
1372 }
1373 }
1374 if (device_config_needed == NOTHING)
1375 return;
1376
1377 /*
1378 * If we decided that a re-configuration needs to be done,
1379 * schedule it here on the way out the door, please close the door
1380 * behind you.
1381 */
1382
1383 /*
1384 * Find the scsi_device associated with the SCSI address,
1385 * and mark it as changed, invalidating the cache. This deals
1386 * with changes to existing device IDs.
1387 */
1388
1389 if (!dev || !dev->scsi_host_ptr)
1390 return;
1391 /*
1392 * force reload of disk info via aac_probe_container
1393 */
1394 if ((channel == CONTAINER_CHANNEL) &&
1395 (device_config_needed != NOTHING)) {
1396 if (dev->fsa_dev[container].valid == 1)
1397 dev->fsa_dev[container].valid = 2;
1398 aac_probe_container(dev, container);
1399 }
1400 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1401 if (device) {
1402 switch (device_config_needed) {
1403 case DELETE:
1404 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1405 scsi_remove_device(device);
1406 #else
1407 if (scsi_device_online(device)) {
1408 scsi_device_set_state(device, SDEV_OFFLINE);
1409 sdev_printk(KERN_INFO, device,
1410 "Device offlined - %s\n",
1411 (channel == CONTAINER_CHANNEL) ?
1412 "array deleted" :
1413 "enclosure services event");
1414 }
1415 #endif
1416 break;
1417 case ADD:
1418 if (!scsi_device_online(device)) {
1419 sdev_printk(KERN_INFO, device,
1420 "Device online - %s\n",
1421 (channel == CONTAINER_CHANNEL) ?
1422 "array created" :
1423 "enclosure services event");
1424 scsi_device_set_state(device, SDEV_RUNNING);
1425 }
1426 fallthrough;
1427 case CHANGE:
1428 if ((channel == CONTAINER_CHANNEL)
1429 && (!dev->fsa_dev[container].valid)) {
1430 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1431 scsi_remove_device(device);
1432 #else
1433 if (!scsi_device_online(device))
1434 break;
1435 scsi_device_set_state(device, SDEV_OFFLINE);
1436 sdev_printk(KERN_INFO, device,
1437 "Device offlined - %s\n",
1438 "array failed");
1439 #endif
1440 break;
1441 }
1442 scsi_rescan_device(device);
1443 break;
1444
1445 default:
1446 break;
1447 }
1448 scsi_device_put(device);
1449 device_config_needed = NOTHING;
1450 }
1451 if (device_config_needed == ADD)
1452 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1453 if (channel == CONTAINER_CHANNEL) {
1454 container++;
1455 device_config_needed = NOTHING;
1456 goto retry_next;
1457 }
1458 }
1459
aac_schedule_bus_scan(struct aac_dev * aac)1460 static void aac_schedule_bus_scan(struct aac_dev *aac)
1461 {
1462 if (aac->sa_firmware)
1463 aac_schedule_safw_scan_worker(aac);
1464 else
1465 aac_schedule_src_reinit_aif_worker(aac);
1466 }
1467
_aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1468 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1469 {
1470 int index, quirks;
1471 int retval;
1472 struct Scsi_Host *host = aac->scsi_host_ptr;
1473 int jafo = 0;
1474 int bled;
1475 u64 dmamask;
1476 int num_of_fibs = 0;
1477
1478 /*
1479 * Assumptions:
1480 * - host is locked, unless called by the aacraid thread.
1481 * (a matter of convenience, due to legacy issues surrounding
1482 * eh_host_adapter_reset).
1483 * - in_reset is asserted, so no new i/o is getting to the
1484 * card.
1485 * - The card is dead, or will be very shortly ;-/ so no new
1486 * commands are completing in the interrupt service.
1487 */
1488 aac_adapter_disable_int(aac);
1489 if (aac->thread && aac->thread->pid != current->pid) {
1490 spin_unlock_irq(host->host_lock);
1491 kthread_stop(aac->thread);
1492 aac->thread = NULL;
1493 jafo = 1;
1494 }
1495
1496 /*
1497 * If a positive health, means in a known DEAD PANIC
1498 * state and the adapter could be reset to `try again'.
1499 */
1500 bled = forced ? 0 : aac_adapter_check_health(aac);
1501 retval = aac_adapter_restart(aac, bled, reset_type);
1502
1503 if (retval)
1504 goto out;
1505
1506 /*
1507 * Loop through the fibs, close the synchronous FIBS
1508 */
1509 retval = 1;
1510 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1511 for (index = 0; index < num_of_fibs; index++) {
1512
1513 struct fib *fib = &aac->fibs[index];
1514 __le32 XferState = fib->hw_fib_va->header.XferState;
1515 bool is_response_expected = false;
1516
1517 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1518 (XferState & cpu_to_le32(ResponseExpected)))
1519 is_response_expected = true;
1520
1521 if (is_response_expected
1522 || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1523 unsigned long flagv;
1524 spin_lock_irqsave(&fib->event_lock, flagv);
1525 complete(&fib->event_wait);
1526 spin_unlock_irqrestore(&fib->event_lock, flagv);
1527 schedule();
1528 retval = 0;
1529 }
1530 }
1531 /* Give some extra time for ioctls to complete. */
1532 if (retval == 0)
1533 ssleep(2);
1534 index = aac->cardtype;
1535
1536 /*
1537 * Re-initialize the adapter, first free resources, then carefully
1538 * apply the initialization sequence to come back again. Only risk
1539 * is a change in Firmware dropping cache, it is assumed the caller
1540 * will ensure that i/o is queisced and the card is flushed in that
1541 * case.
1542 */
1543 aac_free_irq(aac);
1544 aac_fib_map_free(aac);
1545 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1546 aac->comm_phys);
1547 aac_adapter_ioremap(aac, 0);
1548 aac->comm_addr = NULL;
1549 aac->comm_phys = 0;
1550 kfree(aac->queues);
1551 aac->queues = NULL;
1552 kfree(aac->fsa_dev);
1553 aac->fsa_dev = NULL;
1554
1555 dmamask = DMA_BIT_MASK(32);
1556 quirks = aac_get_driver_ident(index)->quirks;
1557 if (quirks & AAC_QUIRK_31BIT)
1558 retval = dma_set_mask(&aac->pdev->dev, dmamask);
1559 else if (!(quirks & AAC_QUIRK_SRC))
1560 retval = dma_set_mask(&aac->pdev->dev, dmamask);
1561 else
1562 retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1563
1564 if (quirks & AAC_QUIRK_31BIT && !retval) {
1565 dmamask = DMA_BIT_MASK(31);
1566 retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1567 }
1568
1569 if (retval)
1570 goto out;
1571
1572 if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1573 goto out;
1574
1575 if (jafo) {
1576 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1577 aac->name);
1578 if (IS_ERR(aac->thread)) {
1579 retval = PTR_ERR(aac->thread);
1580 aac->thread = NULL;
1581 goto out;
1582 }
1583 }
1584 (void)aac_get_adapter_info(aac);
1585 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1586 host->sg_tablesize = 34;
1587 host->max_sectors = (host->sg_tablesize * 8) + 112;
1588 }
1589 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1590 host->sg_tablesize = 17;
1591 host->max_sectors = (host->sg_tablesize * 8) + 112;
1592 }
1593 aac_get_config_status(aac, 1);
1594 aac_get_containers(aac);
1595 /*
1596 * This is where the assumption that the Adapter is quiesced
1597 * is important.
1598 */
1599 scsi_host_complete_all_commands(host, DID_RESET);
1600
1601 retval = 0;
1602 out:
1603 aac->in_reset = 0;
1604
1605 /*
1606 * Issue bus rescan to catch any configuration that might have
1607 * occurred
1608 */
1609 if (!retval && !is_kdump_kernel()) {
1610 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1611 aac_schedule_bus_scan(aac);
1612 }
1613
1614 if (jafo) {
1615 spin_lock_irq(host->host_lock);
1616 }
1617 return retval;
1618 }
1619
aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1620 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1621 {
1622 unsigned long flagv = 0;
1623 int retval, unblock_retval;
1624 struct Scsi_Host *host = aac->scsi_host_ptr;
1625 int bled;
1626
1627 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1628 return -EBUSY;
1629
1630 if (aac->in_reset) {
1631 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1632 return -EBUSY;
1633 }
1634 aac->in_reset = 1;
1635 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1636
1637 /*
1638 * Wait for all commands to complete to this specific
1639 * target (block maximum 60 seconds). Although not necessary,
1640 * it does make us a good storage citizen.
1641 */
1642 scsi_host_block(host);
1643
1644 /* Quiesce build, flush cache, write through mode */
1645 if (forced < 2)
1646 aac_send_shutdown(aac);
1647 spin_lock_irqsave(host->host_lock, flagv);
1648 bled = forced ? forced :
1649 (aac_check_reset != 0 && aac_check_reset != 1);
1650 retval = _aac_reset_adapter(aac, bled, reset_type);
1651 spin_unlock_irqrestore(host->host_lock, flagv);
1652
1653 unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1654 if (!retval)
1655 retval = unblock_retval;
1656 if ((forced < 2) && (retval == -ENODEV)) {
1657 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1658 struct fib * fibctx = aac_fib_alloc(aac);
1659 if (fibctx) {
1660 struct aac_pause *cmd;
1661 int status;
1662
1663 aac_fib_init(fibctx);
1664
1665 cmd = (struct aac_pause *) fib_data(fibctx);
1666
1667 cmd->command = cpu_to_le32(VM_ContainerConfig);
1668 cmd->type = cpu_to_le32(CT_PAUSE_IO);
1669 cmd->timeout = cpu_to_le32(1);
1670 cmd->min = cpu_to_le32(1);
1671 cmd->noRescan = cpu_to_le32(1);
1672 cmd->count = cpu_to_le32(0);
1673
1674 status = aac_fib_send(ContainerCommand,
1675 fibctx,
1676 sizeof(struct aac_pause),
1677 FsaNormal,
1678 -2 /* Timeout silently */, 1,
1679 NULL, NULL);
1680
1681 if (status >= 0)
1682 aac_fib_complete(fibctx);
1683 /* FIB should be freed only after getting
1684 * the response from the F/W */
1685 if (status != -ERESTARTSYS)
1686 aac_fib_free(fibctx);
1687 }
1688 }
1689
1690 return retval;
1691 }
1692
is_safw_raid_volume(struct aac_dev * aac,int bus,int target)1693 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1694 {
1695 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1696 }
1697
aac_lookup_safw_scsi_device(struct aac_dev * dev,int bus,int target)1698 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1699 int bus,
1700 int target)
1701 {
1702 if (bus != CONTAINER_CHANNEL)
1703 bus = aac_phys_to_logical(bus);
1704
1705 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1706 }
1707
aac_add_safw_device(struct aac_dev * dev,int bus,int target)1708 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1709 {
1710 if (bus != CONTAINER_CHANNEL)
1711 bus = aac_phys_to_logical(bus);
1712
1713 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1714 }
1715
aac_put_safw_scsi_device(struct scsi_device * sdev)1716 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1717 {
1718 if (sdev)
1719 scsi_device_put(sdev);
1720 }
1721
aac_remove_safw_device(struct aac_dev * dev,int bus,int target)1722 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1723 {
1724 struct scsi_device *sdev;
1725
1726 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1727 scsi_remove_device(sdev);
1728 aac_put_safw_scsi_device(sdev);
1729 }
1730
aac_is_safw_scan_count_equal(struct aac_dev * dev,int bus,int target)1731 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1732 int bus, int target)
1733 {
1734 return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1735 }
1736
aac_is_safw_target_valid(struct aac_dev * dev,int bus,int target)1737 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1738 {
1739 if (is_safw_raid_volume(dev, bus, target))
1740 return dev->fsa_dev[target].valid;
1741 else
1742 return aac_is_safw_scan_count_equal(dev, bus, target);
1743 }
1744
aac_is_safw_device_exposed(struct aac_dev * dev,int bus,int target)1745 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1746 {
1747 int is_exposed = 0;
1748 struct scsi_device *sdev;
1749
1750 sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1751 if (sdev)
1752 is_exposed = 1;
1753 aac_put_safw_scsi_device(sdev);
1754
1755 return is_exposed;
1756 }
1757
aac_update_safw_host_devices(struct aac_dev * dev)1758 static int aac_update_safw_host_devices(struct aac_dev *dev)
1759 {
1760 int i;
1761 int bus;
1762 int target;
1763 int is_exposed = 0;
1764 int rcode = 0;
1765
1766 rcode = aac_setup_safw_adapter(dev);
1767 if (unlikely(rcode < 0)) {
1768 goto out;
1769 }
1770
1771 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1772
1773 bus = get_bus_number(i);
1774 target = get_target_number(i);
1775
1776 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1777
1778 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1779 aac_add_safw_device(dev, bus, target);
1780 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1781 is_exposed)
1782 aac_remove_safw_device(dev, bus, target);
1783 }
1784 out:
1785 return rcode;
1786 }
1787
aac_scan_safw_host(struct aac_dev * dev)1788 static int aac_scan_safw_host(struct aac_dev *dev)
1789 {
1790 int rcode = 0;
1791
1792 rcode = aac_update_safw_host_devices(dev);
1793 if (rcode)
1794 aac_schedule_safw_scan_worker(dev);
1795
1796 return rcode;
1797 }
1798
aac_scan_host(struct aac_dev * dev)1799 int aac_scan_host(struct aac_dev *dev)
1800 {
1801 int rcode = 0;
1802
1803 mutex_lock(&dev->scan_mutex);
1804 if (dev->sa_firmware)
1805 rcode = aac_scan_safw_host(dev);
1806 else
1807 scsi_scan_host(dev->scsi_host_ptr);
1808 mutex_unlock(&dev->scan_mutex);
1809
1810 return rcode;
1811 }
1812
aac_src_reinit_aif_worker(struct work_struct * work)1813 void aac_src_reinit_aif_worker(struct work_struct *work)
1814 {
1815 struct aac_dev *dev = container_of(to_delayed_work(work),
1816 struct aac_dev, src_reinit_aif_worker);
1817
1818 wait_event(dev->scsi_host_ptr->host_wait,
1819 !scsi_host_in_recovery(dev->scsi_host_ptr));
1820 aac_reinit_aif(dev, dev->cardtype);
1821 }
1822
1823 /**
1824 * aac_handle_sa_aif - Handle a message from the firmware
1825 * @dev: Which adapter this fib is from
1826 * @fibptr: Pointer to fibptr from adapter
1827 *
1828 * This routine handles a driver notify fib from the adapter and
1829 * dispatches it to the appropriate routine for handling.
1830 */
aac_handle_sa_aif(struct aac_dev * dev,struct fib * fibptr)1831 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1832 {
1833 int i;
1834 u32 events = 0;
1835
1836 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1837 events = SA_AIF_HOTPLUG;
1838 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1839 events = SA_AIF_HARDWARE;
1840 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1841 events = SA_AIF_PDEV_CHANGE;
1842 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1843 events = SA_AIF_LDEV_CHANGE;
1844 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1845 events = SA_AIF_BPSTAT_CHANGE;
1846 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1847 events = SA_AIF_BPCFG_CHANGE;
1848
1849 switch (events) {
1850 case SA_AIF_HOTPLUG:
1851 case SA_AIF_HARDWARE:
1852 case SA_AIF_PDEV_CHANGE:
1853 case SA_AIF_LDEV_CHANGE:
1854 case SA_AIF_BPCFG_CHANGE:
1855
1856 aac_scan_host(dev);
1857
1858 break;
1859
1860 case SA_AIF_BPSTAT_CHANGE:
1861 /* currently do nothing */
1862 break;
1863 }
1864
1865 for (i = 1; i <= 10; ++i) {
1866 events = src_readl(dev, MUnit.IDR);
1867 if (events & (1<<23)) {
1868 pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1869 i, 10);
1870 ssleep(1);
1871 }
1872 }
1873 }
1874
get_fib_count(struct aac_dev * dev)1875 static int get_fib_count(struct aac_dev *dev)
1876 {
1877 unsigned int num = 0;
1878 struct list_head *entry;
1879 unsigned long flagv;
1880
1881 /*
1882 * Warning: no sleep allowed while
1883 * holding spinlock. We take the estimate
1884 * and pre-allocate a set of fibs outside the
1885 * lock.
1886 */
1887 num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
1888 / sizeof(struct hw_fib); /* some extra */
1889 spin_lock_irqsave(&dev->fib_lock, flagv);
1890 entry = dev->fib_list.next;
1891 while (entry != &dev->fib_list) {
1892 entry = entry->next;
1893 ++num;
1894 }
1895 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1896
1897 return num;
1898 }
1899
fillup_pools(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,unsigned int num)1900 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
1901 struct fib **fib_pool,
1902 unsigned int num)
1903 {
1904 struct hw_fib **hw_fib_p;
1905 struct fib **fib_p;
1906
1907 hw_fib_p = hw_fib_pool;
1908 fib_p = fib_pool;
1909 while (hw_fib_p < &hw_fib_pool[num]) {
1910 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
1911 if (!(*(hw_fib_p++))) {
1912 --hw_fib_p;
1913 break;
1914 }
1915
1916 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
1917 if (!(*(fib_p++))) {
1918 kfree(*(--hw_fib_p));
1919 break;
1920 }
1921 }
1922
1923 /*
1924 * Get the actual number of allocated fibs
1925 */
1926 num = hw_fib_p - hw_fib_pool;
1927 return num;
1928 }
1929
wakeup_fibctx_threads(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,struct fib * fib,struct hw_fib * hw_fib,unsigned int num)1930 static void wakeup_fibctx_threads(struct aac_dev *dev,
1931 struct hw_fib **hw_fib_pool,
1932 struct fib **fib_pool,
1933 struct fib *fib,
1934 struct hw_fib *hw_fib,
1935 unsigned int num)
1936 {
1937 unsigned long flagv;
1938 struct list_head *entry;
1939 struct hw_fib **hw_fib_p;
1940 struct fib **fib_p;
1941 u32 time_now, time_last;
1942 struct hw_fib *hw_newfib;
1943 struct fib *newfib;
1944 struct aac_fib_context *fibctx;
1945
1946 time_now = jiffies/HZ;
1947 spin_lock_irqsave(&dev->fib_lock, flagv);
1948 entry = dev->fib_list.next;
1949 /*
1950 * For each Context that is on the
1951 * fibctxList, make a copy of the
1952 * fib, and then set the event to wake up the
1953 * thread that is waiting for it.
1954 */
1955
1956 hw_fib_p = hw_fib_pool;
1957 fib_p = fib_pool;
1958 while (entry != &dev->fib_list) {
1959 /*
1960 * Extract the fibctx
1961 */
1962 fibctx = list_entry(entry, struct aac_fib_context,
1963 next);
1964 /*
1965 * Check if the queue is getting
1966 * backlogged
1967 */
1968 if (fibctx->count > 20) {
1969 /*
1970 * It's *not* jiffies folks,
1971 * but jiffies / HZ so do not
1972 * panic ...
1973 */
1974 time_last = fibctx->jiffies;
1975 /*
1976 * Has it been > 2 minutes
1977 * since the last read off
1978 * the queue?
1979 */
1980 if ((time_now - time_last) > aif_timeout) {
1981 entry = entry->next;
1982 aac_close_fib_context(dev, fibctx);
1983 continue;
1984 }
1985 }
1986 /*
1987 * Warning: no sleep allowed while
1988 * holding spinlock
1989 */
1990 if (hw_fib_p >= &hw_fib_pool[num]) {
1991 pr_warn("aifd: didn't allocate NewFib\n");
1992 entry = entry->next;
1993 continue;
1994 }
1995
1996 hw_newfib = *hw_fib_p;
1997 *(hw_fib_p++) = NULL;
1998 newfib = *fib_p;
1999 *(fib_p++) = NULL;
2000 /*
2001 * Make the copy of the FIB
2002 */
2003 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2004 memcpy(newfib, fib, sizeof(struct fib));
2005 newfib->hw_fib_va = hw_newfib;
2006 /*
2007 * Put the FIB onto the
2008 * fibctx's fibs
2009 */
2010 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2011 fibctx->count++;
2012 /*
2013 * Set the event to wake up the
2014 * thread that is waiting.
2015 */
2016 complete(&fibctx->completion);
2017
2018 entry = entry->next;
2019 }
2020 /*
2021 * Set the status of this FIB
2022 */
2023 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2024 aac_fib_adapter_complete(fib, sizeof(u32));
2025 spin_unlock_irqrestore(&dev->fib_lock, flagv);
2026
2027 }
2028
aac_process_events(struct aac_dev * dev)2029 static void aac_process_events(struct aac_dev *dev)
2030 {
2031 struct hw_fib *hw_fib;
2032 struct fib *fib;
2033 unsigned long flags;
2034 spinlock_t *t_lock;
2035
2036 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2037 spin_lock_irqsave(t_lock, flags);
2038
2039 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2040 struct list_head *entry;
2041 struct aac_aifcmd *aifcmd;
2042 unsigned int num;
2043 struct hw_fib **hw_fib_pool, **hw_fib_p;
2044 struct fib **fib_pool, **fib_p;
2045
2046 set_current_state(TASK_RUNNING);
2047
2048 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2049 list_del(entry);
2050
2051 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2052 spin_unlock_irqrestore(t_lock, flags);
2053
2054 fib = list_entry(entry, struct fib, fiblink);
2055 hw_fib = fib->hw_fib_va;
2056 if (dev->sa_firmware) {
2057 /* Thor AIF */
2058 aac_handle_sa_aif(dev, fib);
2059 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2060 goto free_fib;
2061 }
2062 /*
2063 * We will process the FIB here or pass it to a
2064 * worker thread that is TBD. We Really can't
2065 * do anything at this point since we don't have
2066 * anything defined for this thread to do.
2067 */
2068 memset(fib, 0, sizeof(struct fib));
2069 fib->type = FSAFS_NTC_FIB_CONTEXT;
2070 fib->size = sizeof(struct fib);
2071 fib->hw_fib_va = hw_fib;
2072 fib->data = hw_fib->data;
2073 fib->dev = dev;
2074 /*
2075 * We only handle AifRequest fibs from the adapter.
2076 */
2077
2078 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2079 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2080 /* Handle Driver Notify Events */
2081 aac_handle_aif(dev, fib);
2082 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2083 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2084 goto free_fib;
2085 }
2086 /*
2087 * The u32 here is important and intended. We are using
2088 * 32bit wrapping time to fit the adapter field
2089 */
2090
2091 /* Sniff events */
2092 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2093 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2094 aac_handle_aif(dev, fib);
2095 }
2096
2097 /*
2098 * get number of fibs to process
2099 */
2100 num = get_fib_count(dev);
2101 if (!num)
2102 goto free_fib;
2103
2104 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2105 GFP_KERNEL);
2106 if (!hw_fib_pool)
2107 goto free_fib;
2108
2109 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2110 if (!fib_pool)
2111 goto free_hw_fib_pool;
2112
2113 /*
2114 * Fill up fib pointer pools with actual fibs
2115 * and hw_fibs
2116 */
2117 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2118 if (!num)
2119 goto free_mem;
2120
2121 /*
2122 * wakeup the thread that is waiting for
2123 * the response from fw (ioctl)
2124 */
2125 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2126 fib, hw_fib, num);
2127
2128 free_mem:
2129 /* Free up the remaining resources */
2130 hw_fib_p = hw_fib_pool;
2131 fib_p = fib_pool;
2132 while (hw_fib_p < &hw_fib_pool[num]) {
2133 kfree(*hw_fib_p);
2134 kfree(*fib_p);
2135 ++fib_p;
2136 ++hw_fib_p;
2137 }
2138 kfree(fib_pool);
2139 free_hw_fib_pool:
2140 kfree(hw_fib_pool);
2141 free_fib:
2142 kfree(fib);
2143 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2144 spin_lock_irqsave(t_lock, flags);
2145 }
2146 /*
2147 * There are no more AIF's
2148 */
2149 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2150 spin_unlock_irqrestore(t_lock, flags);
2151 }
2152
aac_send_wellness_command(struct aac_dev * dev,char * wellness_str,u32 datasize)2153 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2154 u32 datasize)
2155 {
2156 struct aac_srb *srbcmd;
2157 struct sgmap64 *sg64;
2158 dma_addr_t addr;
2159 char *dma_buf;
2160 struct fib *fibptr;
2161 int ret = -ENOMEM;
2162 u32 vbus, vid;
2163
2164 fibptr = aac_fib_alloc(dev);
2165 if (!fibptr)
2166 goto out;
2167
2168 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2169 GFP_KERNEL);
2170 if (!dma_buf)
2171 goto fib_free_out;
2172
2173 aac_fib_init(fibptr);
2174
2175 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2176 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2177
2178 srbcmd = (struct aac_srb *)fib_data(fibptr);
2179
2180 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2181 srbcmd->channel = cpu_to_le32(vbus);
2182 srbcmd->id = cpu_to_le32(vid);
2183 srbcmd->lun = 0;
2184 srbcmd->flags = cpu_to_le32(SRB_DataOut);
2185 srbcmd->timeout = cpu_to_le32(10);
2186 srbcmd->retry_limit = 0;
2187 srbcmd->cdb_size = cpu_to_le32(12);
2188 srbcmd->count = cpu_to_le32(datasize);
2189
2190 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2191 srbcmd->cdb[0] = BMIC_OUT;
2192 srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2193 memcpy(dma_buf, (char *)wellness_str, datasize);
2194
2195 sg64 = (struct sgmap64 *)&srbcmd->sg;
2196 sg64->count = cpu_to_le32(1);
2197 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2198 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2199 sg64->sg[0].count = cpu_to_le32(datasize);
2200
2201 ret = aac_fib_send(ScsiPortCommand64, fibptr,
2202 sizeof(struct aac_srb) + sizeof(struct sgentry),
2203 FsaNormal, 1, 1, NULL, NULL);
2204
2205 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2206
2207 /*
2208 * Do not set XferState to zero unless
2209 * receives a response from F/W
2210 */
2211 if (ret >= 0)
2212 aac_fib_complete(fibptr);
2213
2214 /*
2215 * FIB should be freed only after
2216 * getting the response from the F/W
2217 */
2218 if (ret != -ERESTARTSYS)
2219 goto fib_free_out;
2220
2221 out:
2222 return ret;
2223 fib_free_out:
2224 aac_fib_free(fibptr);
2225 goto out;
2226 }
2227
aac_send_safw_hostttime(struct aac_dev * dev,struct timespec64 * now)2228 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2229 {
2230 struct tm cur_tm;
2231 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2232 u32 datasize = sizeof(wellness_str);
2233 time64_t local_time;
2234 int ret = -ENODEV;
2235
2236 if (!dev->sa_firmware)
2237 goto out;
2238
2239 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2240 time64_to_tm(local_time, 0, &cur_tm);
2241 cur_tm.tm_mon += 1;
2242 cur_tm.tm_year += 1900;
2243 wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2244 wellness_str[9] = bin2bcd(cur_tm.tm_min);
2245 wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2246 wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2247 wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2248 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2249 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2250
2251 ret = aac_send_wellness_command(dev, wellness_str, datasize);
2252
2253 out:
2254 return ret;
2255 }
2256
aac_send_hosttime(struct aac_dev * dev,struct timespec64 * now)2257 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2258 {
2259 int ret = -ENOMEM;
2260 struct fib *fibptr;
2261 __le32 *info;
2262
2263 fibptr = aac_fib_alloc(dev);
2264 if (!fibptr)
2265 goto out;
2266
2267 aac_fib_init(fibptr);
2268 info = (__le32 *)fib_data(fibptr);
2269 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2270 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2271 1, 1, NULL, NULL);
2272
2273 /*
2274 * Do not set XferState to zero unless
2275 * receives a response from F/W
2276 */
2277 if (ret >= 0)
2278 aac_fib_complete(fibptr);
2279
2280 /*
2281 * FIB should be freed only after
2282 * getting the response from the F/W
2283 */
2284 if (ret != -ERESTARTSYS)
2285 aac_fib_free(fibptr);
2286
2287 out:
2288 return ret;
2289 }
2290
2291 /**
2292 * aac_command_thread - command processing thread
2293 * @data: Adapter to monitor
2294 *
2295 * Waits on the commandready event in it's queue. When the event gets set
2296 * it will pull FIBs off it's queue. It will continue to pull FIBs off
2297 * until the queue is empty. When the queue is empty it will wait for
2298 * more FIBs.
2299 */
2300
aac_command_thread(void * data)2301 int aac_command_thread(void *data)
2302 {
2303 struct aac_dev *dev = data;
2304 DECLARE_WAITQUEUE(wait, current);
2305 unsigned long next_jiffies = jiffies + HZ;
2306 unsigned long next_check_jiffies = next_jiffies;
2307 long difference = HZ;
2308
2309 /*
2310 * We can only have one thread per adapter for AIF's.
2311 */
2312 if (dev->aif_thread)
2313 return -EINVAL;
2314
2315 /*
2316 * Let the DPC know it has a place to send the AIF's to.
2317 */
2318 dev->aif_thread = 1;
2319 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2320 set_current_state(TASK_INTERRUPTIBLE);
2321 dprintk ((KERN_INFO "aac_command_thread start\n"));
2322 while (1) {
2323
2324 aac_process_events(dev);
2325
2326 /*
2327 * Background activity
2328 */
2329 if ((time_before(next_check_jiffies,next_jiffies))
2330 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2331 next_check_jiffies = next_jiffies;
2332 if (aac_adapter_check_health(dev) == 0) {
2333 difference = ((long)(unsigned)check_interval)
2334 * HZ;
2335 next_check_jiffies = jiffies + difference;
2336 } else if (!dev->queues)
2337 break;
2338 }
2339 if (!time_before(next_check_jiffies,next_jiffies)
2340 && ((difference = next_jiffies - jiffies) <= 0)) {
2341 struct timespec64 now;
2342 int ret;
2343
2344 /* Don't even try to talk to adapter if its sick */
2345 ret = aac_adapter_check_health(dev);
2346 if (ret || !dev->queues)
2347 break;
2348 next_check_jiffies = jiffies
2349 + ((long)(unsigned)check_interval)
2350 * HZ;
2351 ktime_get_real_ts64(&now);
2352
2353 /* Synchronize our watches */
2354 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2355 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2356 difference = HZ + HZ / 2 -
2357 now.tv_nsec / (NSEC_PER_SEC / HZ);
2358 else {
2359 if (now.tv_nsec > NSEC_PER_SEC / 2)
2360 ++now.tv_sec;
2361
2362 if (dev->sa_firmware)
2363 ret =
2364 aac_send_safw_hostttime(dev, &now);
2365 else
2366 ret = aac_send_hosttime(dev, &now);
2367
2368 difference = (long)(unsigned)update_interval*HZ;
2369 }
2370 next_jiffies = jiffies + difference;
2371 if (time_before(next_check_jiffies,next_jiffies))
2372 difference = next_check_jiffies - jiffies;
2373 }
2374 if (difference <= 0)
2375 difference = 1;
2376 set_current_state(TASK_INTERRUPTIBLE);
2377
2378 if (kthread_should_stop())
2379 break;
2380
2381 /*
2382 * we probably want usleep_range() here instead of the
2383 * jiffies computation
2384 */
2385 schedule_timeout(difference);
2386
2387 if (kthread_should_stop())
2388 break;
2389 }
2390 if (dev->queues)
2391 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2392 dev->aif_thread = 0;
2393 return 0;
2394 }
2395
aac_acquire_irq(struct aac_dev * dev)2396 int aac_acquire_irq(struct aac_dev *dev)
2397 {
2398 int i;
2399 int j;
2400 int ret = 0;
2401
2402 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2403 for (i = 0; i < dev->max_msix; i++) {
2404 dev->aac_msix[i].vector_no = i;
2405 dev->aac_msix[i].dev = dev;
2406 if (request_irq(pci_irq_vector(dev->pdev, i),
2407 dev->a_ops.adapter_intr,
2408 0, "aacraid", &(dev->aac_msix[i]))) {
2409 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2410 dev->name, dev->id, i);
2411 for (j = 0 ; j < i ; j++)
2412 free_irq(pci_irq_vector(dev->pdev, j),
2413 &(dev->aac_msix[j]));
2414 pci_disable_msix(dev->pdev);
2415 ret = -1;
2416 }
2417 }
2418 } else {
2419 dev->aac_msix[0].vector_no = 0;
2420 dev->aac_msix[0].dev = dev;
2421
2422 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2423 IRQF_SHARED, "aacraid",
2424 &(dev->aac_msix[0])) < 0) {
2425 if (dev->msi)
2426 pci_disable_msi(dev->pdev);
2427 printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2428 dev->name, dev->id);
2429 ret = -1;
2430 }
2431 }
2432 return ret;
2433 }
2434
aac_free_irq(struct aac_dev * dev)2435 void aac_free_irq(struct aac_dev *dev)
2436 {
2437 int i;
2438
2439 if (aac_is_src(dev)) {
2440 if (dev->max_msix > 1) {
2441 for (i = 0; i < dev->max_msix; i++)
2442 free_irq(pci_irq_vector(dev->pdev, i),
2443 &(dev->aac_msix[i]));
2444 } else {
2445 free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2446 }
2447 } else {
2448 free_irq(dev->pdev->irq, dev);
2449 }
2450 if (dev->msi)
2451 pci_disable_msi(dev->pdev);
2452 else if (dev->max_msix > 1)
2453 pci_disable_msix(dev->pdev);
2454 }
2455