xref: /linux/drivers/scsi/aacraid/commsup.c (revision 949ea6f3f4c016852406bfdd3374e2ba5d4c30a9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38 
39 #include "aacraid.h"
40 
41 /**
42  *	fib_map_alloc		-	allocate the fib objects
43  *	@dev: Adapter to allocate for
44  *
45  *	Allocate and map the shared PCI space for the FIB blocks used to
46  *	talk to the Adaptec firmware.
47  */
48 
fib_map_alloc(struct aac_dev * dev)49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 	dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
52 
53 	dprintk((KERN_INFO
54 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
55 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
56 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
57 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
58 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
59 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
60 		&dev->hw_fib_pa, GFP_KERNEL);
61 	if (dev->hw_fib_va == NULL)
62 		return -ENOMEM;
63 	return 0;
64 }
65 
66 /**
67  *	aac_fib_map_free		-	free the fib objects
68  *	@dev: Adapter to free
69  *
70  *	Free the PCI mappings and the memory allocated for FIB blocks
71  *	on this adapter.
72  */
73 
aac_fib_map_free(struct aac_dev * dev)74 void aac_fib_map_free(struct aac_dev *dev)
75 {
76 	size_t alloc_size;
77 	size_t fib_size;
78 	int num_fibs;
79 
80 	if(!dev->hw_fib_va || !dev->max_cmd_size)
81 		return;
82 
83 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
84 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
85 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
86 
87 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
88 			  dev->hw_fib_pa);
89 
90 	dev->hw_fib_va = NULL;
91 	dev->hw_fib_pa = 0;
92 }
93 
aac_fib_vector_assign(struct aac_dev * dev)94 void aac_fib_vector_assign(struct aac_dev *dev)
95 {
96 	u32 i = 0;
97 	u32 vector = 1;
98 	struct fib *fibptr = NULL;
99 
100 	for (i = 0, fibptr = &dev->fibs[i];
101 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
102 		i++, fibptr++) {
103 		if ((dev->max_msix == 1) ||
104 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
105 			- dev->vector_cap))) {
106 			fibptr->vector_no = 0;
107 		} else {
108 			fibptr->vector_no = vector;
109 			vector++;
110 			if (vector == dev->max_msix)
111 				vector = 1;
112 		}
113 	}
114 }
115 
116 /**
117  *	aac_fib_setup	-	setup the fibs
118  *	@dev: Adapter to set up
119  *
120  *	Allocate the PCI space for the fibs, map it and then initialise the
121  *	fib area, the unmapped fib data and also the free list
122  */
123 
aac_fib_setup(struct aac_dev * dev)124 int aac_fib_setup(struct aac_dev * dev)
125 {
126 	struct fib *fibptr;
127 	struct hw_fib *hw_fib;
128 	dma_addr_t hw_fib_pa;
129 	int i;
130 	u32 max_cmds;
131 
132 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
133 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
134 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
135 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
136 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
137 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
138 	}
139 	if (i<0)
140 		return -ENOMEM;
141 
142 	memset(dev->hw_fib_va, 0,
143 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
144 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
145 
146 	/* 32 byte alignment for PMC */
147 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
148 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
149 					(hw_fib_pa - dev->hw_fib_pa));
150 
151 	/* add Xport header */
152 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
153 		sizeof(struct aac_fib_xporthdr));
154 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
155 
156 	/*
157 	 *	Initialise the fibs
158 	 */
159 	for (i = 0, fibptr = &dev->fibs[i];
160 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
161 		i++, fibptr++)
162 	{
163 		fibptr->flags = 0;
164 		fibptr->size = sizeof(struct fib);
165 		fibptr->dev = dev;
166 		fibptr->hw_fib_va = hw_fib;
167 		fibptr->data = (void *) fibptr->hw_fib_va->data;
168 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
169 		init_completion(&fibptr->event_wait);
170 		spin_lock_init(&fibptr->event_lock);
171 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
172 		hw_fib->header.SenderSize =
173 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
174 		fibptr->hw_fib_pa = hw_fib_pa;
175 		fibptr->hw_sgl_pa = hw_fib_pa +
176 			offsetof(struct aac_hba_cmd_req, sge[2]);
177 		/*
178 		 * one element is for the ptr to the separate sg list,
179 		 * second element for 32 byte alignment
180 		 */
181 		fibptr->hw_error_pa = hw_fib_pa +
182 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
183 
184 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
185 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
186 		hw_fib_pa = hw_fib_pa +
187 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
188 	}
189 
190 	/*
191 	 *Assign vector numbers to fibs
192 	 */
193 	aac_fib_vector_assign(dev);
194 
195 	/*
196 	 *	Add the fib chain to the free list
197 	 */
198 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
199 	/*
200 	*	Set 8 fibs aside for management tools
201 	*/
202 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
203 	return 0;
204 }
205 
206 /**
207  *	aac_fib_alloc_tag-allocate a fib using tags
208  *	@dev: Adapter to allocate the fib for
209  *	@scmd: SCSI command
210  *
211  *	Allocate a fib from the adapter fib pool using tags
212  *	from the blk layer.
213  */
214 
aac_fib_alloc_tag(struct aac_dev * dev,struct scsi_cmnd * scmd)215 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
216 {
217 	struct fib *fibptr;
218 
219 	fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag];
220 	/*
221 	 *	Null out fields that depend on being zero at the start of
222 	 *	each I/O
223 	 */
224 	fibptr->hw_fib_va->header.XferState = 0;
225 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
226 	fibptr->callback_data = NULL;
227 	fibptr->callback = NULL;
228 	fibptr->flags = 0;
229 
230 	return fibptr;
231 }
232 
233 /**
234  *	aac_fib_alloc	-	allocate a fib
235  *	@dev: Adapter to allocate the fib for
236  *
237  *	Allocate a fib from the adapter fib pool. If the pool is empty we
238  *	return NULL.
239  */
240 
aac_fib_alloc(struct aac_dev * dev)241 struct fib *aac_fib_alloc(struct aac_dev *dev)
242 {
243 	struct fib * fibptr;
244 	unsigned long flags;
245 	spin_lock_irqsave(&dev->fib_lock, flags);
246 	fibptr = dev->free_fib;
247 	if(!fibptr){
248 		spin_unlock_irqrestore(&dev->fib_lock, flags);
249 		return fibptr;
250 	}
251 	dev->free_fib = fibptr->next;
252 	spin_unlock_irqrestore(&dev->fib_lock, flags);
253 	/*
254 	 *	Set the proper node type code and node byte size
255 	 */
256 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
257 	fibptr->size = sizeof(struct fib);
258 	/*
259 	 *	Null out fields that depend on being zero at the start of
260 	 *	each I/O
261 	 */
262 	fibptr->hw_fib_va->header.XferState = 0;
263 	fibptr->flags = 0;
264 	fibptr->callback = NULL;
265 	fibptr->callback_data = NULL;
266 
267 	return fibptr;
268 }
269 
270 /**
271  *	aac_fib_free	-	free a fib
272  *	@fibptr: fib to free up
273  *
274  *	Frees up a fib and places it on the appropriate queue
275  */
276 
aac_fib_free(struct fib * fibptr)277 void aac_fib_free(struct fib *fibptr)
278 {
279 	unsigned long flags;
280 
281 	if (fibptr->done == 2)
282 		return;
283 
284 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
285 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
286 		aac_config.fib_timeouts++;
287 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
288 		fibptr->hw_fib_va->header.XferState != 0) {
289 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
290 			 (void*)fibptr,
291 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
292 	}
293 	fibptr->next = fibptr->dev->free_fib;
294 	fibptr->dev->free_fib = fibptr;
295 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
296 }
297 
298 /**
299  *	aac_fib_init	-	initialise a fib
300  *	@fibptr: The fib to initialize
301  *
302  *	Set up the generic fib fields ready for use
303  */
304 
aac_fib_init(struct fib * fibptr)305 void aac_fib_init(struct fib *fibptr)
306 {
307 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
308 
309 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
310 	hw_fib->header.StructType = FIB_MAGIC;
311 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
312 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
313 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
314 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
315 }
316 
317 /**
318  *	fib_dealloc		-	deallocate a fib
319  *	@fibptr: fib to deallocate
320  *
321  *	Will deallocate and return to the free pool the FIB pointed to by the
322  *	caller.
323  */
324 
fib_dealloc(struct fib * fibptr)325 static void fib_dealloc(struct fib * fibptr)
326 {
327 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
328 	hw_fib->header.XferState = 0;
329 }
330 
331 /*
332  *	Commuication primitives define and support the queuing method we use to
333  *	support host to adapter commuication. All queue accesses happen through
334  *	these routines and are the only routines which have a knowledge of the
335  *	 how these queues are implemented.
336  */
337 
338 /**
339  *	aac_get_entry		-	get a queue entry
340  *	@dev: Adapter
341  *	@qid: Queue Number
342  *	@entry: Entry return
343  *	@index: Index return
344  *	@nonotify: notification control
345  *
346  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
347  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
348  *	returned.
349  */
350 
aac_get_entry(struct aac_dev * dev,u32 qid,struct aac_entry ** entry,u32 * index,unsigned long * nonotify)351 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
352 {
353 	struct aac_queue * q;
354 	unsigned long idx;
355 
356 	/*
357 	 *	All of the queues wrap when they reach the end, so we check
358 	 *	to see if they have reached the end and if they have we just
359 	 *	set the index back to zero. This is a wrap. You could or off
360 	 *	the high bits in all updates but this is a bit faster I think.
361 	 */
362 
363 	q = &dev->queues->queue[qid];
364 
365 	idx = *index = le32_to_cpu(*(q->headers.producer));
366 	/* Interrupt Moderation, only interrupt for first two entries */
367 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
368 		if (--idx == 0) {
369 			if (qid == AdapNormCmdQueue)
370 				idx = ADAP_NORM_CMD_ENTRIES;
371 			else
372 				idx = ADAP_NORM_RESP_ENTRIES;
373 		}
374 		if (idx != le32_to_cpu(*(q->headers.consumer)))
375 			*nonotify = 1;
376 	}
377 
378 	if (qid == AdapNormCmdQueue) {
379 		if (*index >= ADAP_NORM_CMD_ENTRIES)
380 			*index = 0; /* Wrap to front of the Producer Queue. */
381 	} else {
382 		if (*index >= ADAP_NORM_RESP_ENTRIES)
383 			*index = 0; /* Wrap to front of the Producer Queue. */
384 	}
385 
386 	/* Queue is full */
387 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
388 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
389 				qid, atomic_read(&q->numpending));
390 		return 0;
391 	} else {
392 		*entry = q->base + *index;
393 		return 1;
394 	}
395 }
396 
397 /**
398  *	aac_queue_get		-	get the next free QE
399  *	@dev: Adapter
400  *	@index: Returned index
401  *	@qid: Queue number
402  *	@hw_fib: Fib to associate with the queue entry
403  *	@wait: Wait if queue full
404  *	@fibptr: Driver fib object to go with fib
405  *	@nonotify: Don't notify the adapter
406  *
407  *	Gets the next free QE off the requested priorty adapter command
408  *	queue and associates the Fib with the QE. The QE represented by
409  *	index is ready to insert on the queue when this routine returns
410  *	success.
411  */
412 
aac_queue_get(struct aac_dev * dev,u32 * index,u32 qid,struct hw_fib * hw_fib,int wait,struct fib * fibptr,unsigned long * nonotify)413 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
414 {
415 	struct aac_entry * entry = NULL;
416 	int map = 0;
417 
418 	if (qid == AdapNormCmdQueue) {
419 		/*  if no entries wait for some if caller wants to */
420 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
421 			printk(KERN_ERR "GetEntries failed\n");
422 		}
423 		/*
424 		 *	Setup queue entry with a command, status and fib mapped
425 		 */
426 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
427 		map = 1;
428 	} else {
429 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
430 			/* if no entries wait for some if caller wants to */
431 		}
432 		/*
433 		 *	Setup queue entry with command, status and fib mapped
434 		 */
435 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
436 		entry->addr = hw_fib->header.SenderFibAddress;
437 			/* Restore adapters pointer to the FIB */
438 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
439 		map = 0;
440 	}
441 	/*
442 	 *	If MapFib is true than we need to map the Fib and put pointers
443 	 *	in the queue entry.
444 	 */
445 	if (map)
446 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
447 	return 0;
448 }
449 
450 /*
451  *	Define the highest level of host to adapter communication routines.
452  *	These routines will support host to adapter FS commuication. These
453  *	routines have no knowledge of the commuication method used. This level
454  *	sends and receives FIBs. This level has no knowledge of how these FIBs
455  *	get passed back and forth.
456  */
457 
458 /**
459  *	aac_fib_send	-	send a fib to the adapter
460  *	@command: Command to send
461  *	@fibptr: The fib
462  *	@size: Size of fib data area
463  *	@priority: Priority of Fib
464  *	@wait: Async/sync select
465  *	@reply: True if a reply is wanted
466  *	@callback: Called with reply
467  *	@callback_data: Passed to callback
468  *
469  *	Sends the requested FIB to the adapter and optionally will wait for a
470  *	response FIB. If the caller does not wish to wait for a response than
471  *	an event to wait on must be supplied. This event will be set when a
472  *	response FIB is received from the adapter.
473  */
474 
aac_fib_send(u16 command,struct fib * fibptr,unsigned long size,int priority,int wait,int reply,fib_callback callback,void * callback_data)475 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
476 		int priority, int wait, int reply, fib_callback callback,
477 		void *callback_data)
478 {
479 	struct aac_dev * dev = fibptr->dev;
480 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
481 	unsigned long flags = 0;
482 	unsigned long mflags = 0;
483 	unsigned long sflags = 0;
484 
485 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
486 		return -EBUSY;
487 
488 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
489 		return -EINVAL;
490 
491 	/*
492 	 *	There are 5 cases with the wait and response requested flags.
493 	 *	The only invalid cases are if the caller requests to wait and
494 	 *	does not request a response and if the caller does not want a
495 	 *	response and the Fib is not allocated from pool. If a response
496 	 *	is not requested the Fib will just be deallocaed by the DPC
497 	 *	routine when the response comes back from the adapter. No
498 	 *	further processing will be done besides deleting the Fib. We
499 	 *	will have a debug mode where the adapter can notify the host
500 	 *	it had a problem and the host can log that fact.
501 	 */
502 	fibptr->flags = 0;
503 	if (wait && !reply) {
504 		return -EINVAL;
505 	} else if (!wait && reply) {
506 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
507 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
508 	} else if (!wait && !reply) {
509 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
510 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
511 	} else if (wait && reply) {
512 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
513 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
514 	}
515 	/*
516 	 *	Map the fib into 32bits by using the fib number
517 	 */
518 
519 	hw_fib->header.SenderFibAddress =
520 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
521 
522 	/* use the same shifted value for handle to be compatible
523 	 * with the new native hba command handle
524 	 */
525 	hw_fib->header.Handle =
526 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
527 
528 	/*
529 	 *	Set FIB state to indicate where it came from and if we want a
530 	 *	response from the adapter. Also load the command from the
531 	 *	caller.
532 	 *
533 	 *	Map the hw fib pointer as a 32bit value
534 	 */
535 	hw_fib->header.Command = cpu_to_le16(command);
536 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
537 	/*
538 	 *	Set the size of the Fib we want to send to the adapter
539 	 */
540 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
541 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
542 		return -EMSGSIZE;
543 	}
544 	/*
545 	 *	Get a queue entry connect the FIB to it and send an notify
546 	 *	the adapter a command is ready.
547 	 */
548 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
549 
550 	/*
551 	 *	Fill in the Callback and CallbackContext if we are not
552 	 *	going to wait.
553 	 */
554 	if (!wait) {
555 		fibptr->callback = callback;
556 		fibptr->callback_data = callback_data;
557 		fibptr->flags = FIB_CONTEXT_FLAG;
558 	}
559 
560 	fibptr->done = 0;
561 
562 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
563 
564 	dprintk((KERN_DEBUG "Fib contents:.\n"));
565 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
566 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
567 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
568 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
569 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
570 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
571 
572 	if (!dev->queues)
573 		return -EBUSY;
574 
575 	if (wait) {
576 
577 		spin_lock_irqsave(&dev->manage_lock, mflags);
578 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
579 			printk(KERN_INFO "No management Fibs Available:%d\n",
580 						dev->management_fib_count);
581 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
582 			return -EBUSY;
583 		}
584 		dev->management_fib_count++;
585 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
586 		spin_lock_irqsave(&fibptr->event_lock, flags);
587 	}
588 
589 	if (dev->sync_mode) {
590 		if (wait)
591 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
592 		spin_lock_irqsave(&dev->sync_lock, sflags);
593 		if (dev->sync_fib) {
594 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
595 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
596 		} else {
597 			dev->sync_fib = fibptr;
598 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
599 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
600 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
601 				NULL, NULL, NULL, NULL, NULL);
602 		}
603 		if (wait) {
604 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
605 			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
606 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
607 				return -EFAULT;
608 			}
609 			return 0;
610 		}
611 		return -EINPROGRESS;
612 	}
613 
614 	if (aac_adapter_deliver(fibptr) != 0) {
615 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
616 		if (wait) {
617 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
618 			spin_lock_irqsave(&dev->manage_lock, mflags);
619 			dev->management_fib_count--;
620 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
621 		}
622 		return -EBUSY;
623 	}
624 
625 
626 	/*
627 	 *	If the caller wanted us to wait for response wait now.
628 	 */
629 
630 	if (wait) {
631 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
632 		/* Only set for first known interruptable command */
633 		if (wait < 0) {
634 			/*
635 			 * *VERY* Dangerous to time out a command, the
636 			 * assumption is made that we have no hope of
637 			 * functioning because an interrupt routing or other
638 			 * hardware failure has occurred.
639 			 */
640 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
641 			while (!try_wait_for_completion(&fibptr->event_wait)) {
642 				int blink;
643 				if (time_is_before_eq_jiffies(timeout)) {
644 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
645 					atomic_dec(&q->numpending);
646 					if (wait == -1) {
647 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
648 						  "Usually a result of a PCI interrupt routing problem;\n"
649 						  "update mother board BIOS or consider utilizing one of\n"
650 						  "the SAFE mode kernel options (acpi, apic etc)\n");
651 					}
652 					return -ETIMEDOUT;
653 				}
654 
655 				if (unlikely(aac_pci_offline(dev)))
656 					return -EFAULT;
657 
658 				if ((blink = aac_adapter_check_health(dev)) > 0) {
659 					if (wait == -1) {
660 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
661 						  "Usually a result of a serious unrecoverable hardware problem\n",
662 						  blink);
663 					}
664 					return -EFAULT;
665 				}
666 				/*
667 				 * Allow other processes / CPUS to use core
668 				 */
669 				schedule();
670 			}
671 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
672 			/* Do nothing ... satisfy
673 			 * wait_for_completion_interruptible must_check */
674 		}
675 
676 		spin_lock_irqsave(&fibptr->event_lock, flags);
677 		if (fibptr->done == 0) {
678 			fibptr->done = 2; /* Tell interrupt we aborted */
679 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
680 			return -ERESTARTSYS;
681 		}
682 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
683 		BUG_ON(fibptr->done == 0);
684 
685 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
686 			return -ETIMEDOUT;
687 		return 0;
688 	}
689 	/*
690 	 *	If the user does not want a response than return success otherwise
691 	 *	return pending
692 	 */
693 	if (reply)
694 		return -EINPROGRESS;
695 	else
696 		return 0;
697 }
698 
aac_hba_send(u8 command,struct fib * fibptr,fib_callback callback,void * callback_data)699 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
700 		void *callback_data)
701 {
702 	struct aac_dev *dev = fibptr->dev;
703 	int wait;
704 	unsigned long flags = 0;
705 	unsigned long mflags = 0;
706 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
707 			fibptr->hw_fib_va;
708 
709 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
710 	if (callback) {
711 		wait = 0;
712 		fibptr->callback = callback;
713 		fibptr->callback_data = callback_data;
714 	} else
715 		wait = 1;
716 
717 
718 	hbacmd->iu_type = command;
719 
720 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
721 		/* bit1 of request_id must be 0 */
722 		hbacmd->request_id =
723 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
724 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
725 	} else
726 		return -EINVAL;
727 
728 
729 	if (wait) {
730 		spin_lock_irqsave(&dev->manage_lock, mflags);
731 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
732 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
733 			return -EBUSY;
734 		}
735 		dev->management_fib_count++;
736 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
737 		spin_lock_irqsave(&fibptr->event_lock, flags);
738 	}
739 
740 	if (aac_adapter_deliver(fibptr) != 0) {
741 		if (wait) {
742 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
743 			spin_lock_irqsave(&dev->manage_lock, mflags);
744 			dev->management_fib_count--;
745 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
746 		}
747 		return -EBUSY;
748 	}
749 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
750 
751 	if (wait) {
752 
753 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
754 
755 		if (unlikely(aac_pci_offline(dev)))
756 			return -EFAULT;
757 
758 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
759 		if (wait_for_completion_interruptible(&fibptr->event_wait))
760 			fibptr->done = 2;
761 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
762 
763 		spin_lock_irqsave(&fibptr->event_lock, flags);
764 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
765 			fibptr->done = 2; /* Tell interrupt we aborted */
766 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
767 			return -ERESTARTSYS;
768 		}
769 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
770 		WARN_ON(fibptr->done == 0);
771 
772 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
773 			return -ETIMEDOUT;
774 
775 		return 0;
776 	}
777 
778 	return -EINPROGRESS;
779 }
780 
781 /**
782  *	aac_consumer_get	-	get the top of the queue
783  *	@dev: Adapter
784  *	@q: Queue
785  *	@entry: Return entry
786  *
787  *	Will return a pointer to the entry on the top of the queue requested that
788  *	we are a consumer of, and return the address of the queue entry. It does
789  *	not change the state of the queue.
790  */
791 
aac_consumer_get(struct aac_dev * dev,struct aac_queue * q,struct aac_entry ** entry)792 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
793 {
794 	u32 index;
795 	int status;
796 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
797 		status = 0;
798 	} else {
799 		/*
800 		 *	The consumer index must be wrapped if we have reached
801 		 *	the end of the queue, else we just use the entry
802 		 *	pointed to by the header index
803 		 */
804 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
805 			index = 0;
806 		else
807 			index = le32_to_cpu(*q->headers.consumer);
808 		*entry = q->base + index;
809 		status = 1;
810 	}
811 	return(status);
812 }
813 
814 /**
815  *	aac_consumer_free	-	free consumer entry
816  *	@dev: Adapter
817  *	@q: Queue
818  *	@qid: Queue ident
819  *
820  *	Frees up the current top of the queue we are a consumer of. If the
821  *	queue was full notify the producer that the queue is no longer full.
822  */
823 
aac_consumer_free(struct aac_dev * dev,struct aac_queue * q,u32 qid)824 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
825 {
826 	int wasfull = 0;
827 	u32 notify;
828 
829 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
830 		wasfull = 1;
831 
832 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
833 		*q->headers.consumer = cpu_to_le32(1);
834 	else
835 		le32_add_cpu(q->headers.consumer, 1);
836 
837 	if (wasfull) {
838 		switch (qid) {
839 
840 		case HostNormCmdQueue:
841 			notify = HostNormCmdNotFull;
842 			break;
843 		case HostNormRespQueue:
844 			notify = HostNormRespNotFull;
845 			break;
846 		default:
847 			BUG();
848 			return;
849 		}
850 		aac_adapter_notify(dev, notify);
851 	}
852 }
853 
854 /**
855  *	aac_fib_adapter_complete	-	complete adapter issued fib
856  *	@fibptr: fib to complete
857  *	@size: size of fib
858  *
859  *	Will do all necessary work to complete a FIB that was sent from
860  *	the adapter.
861  */
862 
aac_fib_adapter_complete(struct fib * fibptr,unsigned short size)863 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
864 {
865 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
866 	struct aac_dev * dev = fibptr->dev;
867 	struct aac_queue * q;
868 	unsigned long nointr = 0;
869 	unsigned long qflags;
870 
871 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
872 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
873 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
874 		kfree(hw_fib);
875 		return 0;
876 	}
877 
878 	if (hw_fib->header.XferState == 0) {
879 		if (dev->comm_interface == AAC_COMM_MESSAGE)
880 			kfree(hw_fib);
881 		return 0;
882 	}
883 	/*
884 	 *	If we plan to do anything check the structure type first.
885 	 */
886 	if (hw_fib->header.StructType != FIB_MAGIC &&
887 	    hw_fib->header.StructType != FIB_MAGIC2 &&
888 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
889 		if (dev->comm_interface == AAC_COMM_MESSAGE)
890 			kfree(hw_fib);
891 		return -EINVAL;
892 	}
893 	/*
894 	 *	This block handles the case where the adapter had sent us a
895 	 *	command and we have finished processing the command. We
896 	 *	call completeFib when we are done processing the command
897 	 *	and want to send a response back to the adapter. This will
898 	 *	send the completed cdb to the adapter.
899 	 */
900 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
901 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
902 			kfree (hw_fib);
903 		} else {
904 			u32 index;
905 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
906 			if (size) {
907 				size += sizeof(struct aac_fibhdr);
908 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
909 					return -EMSGSIZE;
910 				hw_fib->header.Size = cpu_to_le16(size);
911 			}
912 			q = &dev->queues->queue[AdapNormRespQueue];
913 			spin_lock_irqsave(q->lock, qflags);
914 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
915 			*(q->headers.producer) = cpu_to_le32(index + 1);
916 			spin_unlock_irqrestore(q->lock, qflags);
917 			if (!(nointr & (int)aac_config.irq_mod))
918 				aac_adapter_notify(dev, AdapNormRespQueue);
919 		}
920 	} else {
921 		printk(KERN_WARNING "aac_fib_adapter_complete: "
922 			"Unknown xferstate detected.\n");
923 		BUG();
924 	}
925 	return 0;
926 }
927 
928 /**
929  *	aac_fib_complete	-	fib completion handler
930  *	@fibptr: FIB to complete
931  *
932  *	Will do all necessary work to complete a FIB.
933  */
934 
aac_fib_complete(struct fib * fibptr)935 int aac_fib_complete(struct fib *fibptr)
936 {
937 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
938 
939 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
940 		fib_dealloc(fibptr);
941 		return 0;
942 	}
943 
944 	/*
945 	 *	Check for a fib which has already been completed or with a
946 	 *	status wait timeout
947 	 */
948 
949 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
950 		return 0;
951 	/*
952 	 *	If we plan to do anything check the structure type first.
953 	 */
954 
955 	if (hw_fib->header.StructType != FIB_MAGIC &&
956 	    hw_fib->header.StructType != FIB_MAGIC2 &&
957 	    hw_fib->header.StructType != FIB_MAGIC2_64)
958 		return -EINVAL;
959 	/*
960 	 *	This block completes a cdb which orginated on the host and we
961 	 *	just need to deallocate the cdb or reinit it. At this point the
962 	 *	command is complete that we had sent to the adapter and this
963 	 *	cdb could be reused.
964 	 */
965 
966 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
967 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
968 	{
969 		fib_dealloc(fibptr);
970 	}
971 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
972 	{
973 		/*
974 		 *	This handles the case when the host has aborted the I/O
975 		 *	to the adapter because the adapter is not responding
976 		 */
977 		fib_dealloc(fibptr);
978 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
979 		fib_dealloc(fibptr);
980 	} else {
981 		BUG();
982 	}
983 	return 0;
984 }
985 
986 /**
987  *	aac_printf	-	handle printf from firmware
988  *	@dev: Adapter
989  *	@val: Message info
990  *
991  *	Print a message passed to us by the controller firmware on the
992  *	Adaptec board
993  */
994 
aac_printf(struct aac_dev * dev,u32 val)995 void aac_printf(struct aac_dev *dev, u32 val)
996 {
997 	char *cp = dev->printfbuf;
998 	if (dev->printf_enabled)
999 	{
1000 		int length = val & 0xffff;
1001 		int level = (val >> 16) & 0xffff;
1002 
1003 		/*
1004 		 *	The size of the printfbuf is set in port.c
1005 		 *	There is no variable or define for it
1006 		 */
1007 		if (length > 255)
1008 			length = 255;
1009 		if (cp[length] != 0)
1010 			cp[length] = 0;
1011 		if (level == LOG_AAC_HIGH_ERROR)
1012 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1013 		else
1014 			printk(KERN_INFO "%s:%s", dev->name, cp);
1015 	}
1016 	memset(cp, 0, 256);
1017 }
1018 
aac_aif_data(struct aac_aifcmd * aifcmd,uint32_t index)1019 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1020 {
1021 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1022 }
1023 
1024 
aac_handle_aif_bu(struct aac_dev * dev,struct aac_aifcmd * aifcmd)1025 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1026 {
1027 	switch (aac_aif_data(aifcmd, 1)) {
1028 	case AifBuCacheDataLoss:
1029 		if (aac_aif_data(aifcmd, 2))
1030 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1031 			aac_aif_data(aifcmd, 2));
1032 		else
1033 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1034 		break;
1035 	case AifBuCacheDataRecover:
1036 		if (aac_aif_data(aifcmd, 2))
1037 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1038 			aac_aif_data(aifcmd, 2));
1039 		else
1040 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1041 		break;
1042 	}
1043 }
1044 
1045 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1046 /**
1047  *	aac_handle_aif		-	Handle a message from the firmware
1048  *	@dev: Which adapter this fib is from
1049  *	@fibptr: Pointer to fibptr from adapter
1050  *
1051  *	This routine handles a driver notify fib from the adapter and
1052  *	dispatches it to the appropriate routine for handling.
1053  */
aac_handle_aif(struct aac_dev * dev,struct fib * fibptr)1054 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1055 {
1056 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1057 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1058 	u32 channel, id, lun, container;
1059 	struct scsi_device *device;
1060 	enum {
1061 		NOTHING,
1062 		DELETE,
1063 		ADD,
1064 		CHANGE
1065 	} device_config_needed = NOTHING;
1066 
1067 	/* Sniff for container changes */
1068 
1069 	if (!dev || !dev->fsa_dev)
1070 		return;
1071 	container = channel = id = lun = (u32)-1;
1072 
1073 	/*
1074 	 *	We have set this up to try and minimize the number of
1075 	 * re-configures that take place. As a result of this when
1076 	 * certain AIF's come in we will set a flag waiting for another
1077 	 * type of AIF before setting the re-config flag.
1078 	 */
1079 	switch (le32_to_cpu(aifcmd->command)) {
1080 	case AifCmdDriverNotify:
1081 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1082 		case AifRawDeviceRemove:
1083 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1084 			if ((container >> 28)) {
1085 				container = (u32)-1;
1086 				break;
1087 			}
1088 			channel = (container >> 24) & 0xF;
1089 			if (channel >= dev->maximum_num_channels) {
1090 				container = (u32)-1;
1091 				break;
1092 			}
1093 			id = container & 0xFFFF;
1094 			if (id >= dev->maximum_num_physicals) {
1095 				container = (u32)-1;
1096 				break;
1097 			}
1098 			lun = (container >> 16) & 0xFF;
1099 			container = (u32)-1;
1100 			channel = aac_phys_to_logical(channel);
1101 			device_config_needed = DELETE;
1102 			break;
1103 
1104 		/*
1105 		 *	Morph or Expand complete
1106 		 */
1107 		case AifDenMorphComplete:
1108 		case AifDenVolumeExtendComplete:
1109 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1110 			if (container >= dev->maximum_num_containers)
1111 				break;
1112 
1113 			/*
1114 			 *	Find the scsi_device associated with the SCSI
1115 			 * address. Make sure we have the right array, and if
1116 			 * so set the flag to initiate a new re-config once we
1117 			 * see an AifEnConfigChange AIF come through.
1118 			 */
1119 
1120 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1121 				device = scsi_device_lookup(dev->scsi_host_ptr,
1122 					CONTAINER_TO_CHANNEL(container),
1123 					CONTAINER_TO_ID(container),
1124 					CONTAINER_TO_LUN(container));
1125 				if (device) {
1126 					dev->fsa_dev[container].config_needed = CHANGE;
1127 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1128 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1129 					scsi_device_put(device);
1130 				}
1131 			}
1132 		}
1133 
1134 		/*
1135 		 *	If we are waiting on something and this happens to be
1136 		 * that thing then set the re-configure flag.
1137 		 */
1138 		if (container != (u32)-1) {
1139 			if (container >= dev->maximum_num_containers)
1140 				break;
1141 			if ((dev->fsa_dev[container].config_waiting_on ==
1142 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1143 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1144 				dev->fsa_dev[container].config_waiting_on = 0;
1145 		} else for (container = 0;
1146 		    container < dev->maximum_num_containers; ++container) {
1147 			if ((dev->fsa_dev[container].config_waiting_on ==
1148 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1149 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1150 				dev->fsa_dev[container].config_waiting_on = 0;
1151 		}
1152 		break;
1153 
1154 	case AifCmdEventNotify:
1155 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1156 		case AifEnBatteryEvent:
1157 			dev->cache_protected =
1158 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1159 			break;
1160 		/*
1161 		 *	Add an Array.
1162 		 */
1163 		case AifEnAddContainer:
1164 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1165 			if (container >= dev->maximum_num_containers)
1166 				break;
1167 			dev->fsa_dev[container].config_needed = ADD;
1168 			dev->fsa_dev[container].config_waiting_on =
1169 				AifEnConfigChange;
1170 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1171 			break;
1172 
1173 		/*
1174 		 *	Delete an Array.
1175 		 */
1176 		case AifEnDeleteContainer:
1177 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1178 			if (container >= dev->maximum_num_containers)
1179 				break;
1180 			dev->fsa_dev[container].config_needed = DELETE;
1181 			dev->fsa_dev[container].config_waiting_on =
1182 				AifEnConfigChange;
1183 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1184 			break;
1185 
1186 		/*
1187 		 *	Container change detected. If we currently are not
1188 		 * waiting on something else, setup to wait on a Config Change.
1189 		 */
1190 		case AifEnContainerChange:
1191 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1192 			if (container >= dev->maximum_num_containers)
1193 				break;
1194 			if (dev->fsa_dev[container].config_waiting_on &&
1195 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1196 				break;
1197 			dev->fsa_dev[container].config_needed = CHANGE;
1198 			dev->fsa_dev[container].config_waiting_on =
1199 				AifEnConfigChange;
1200 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1201 			break;
1202 
1203 		case AifEnConfigChange:
1204 			break;
1205 
1206 		case AifEnAddJBOD:
1207 		case AifEnDeleteJBOD:
1208 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1209 			if ((container >> 28)) {
1210 				container = (u32)-1;
1211 				break;
1212 			}
1213 			channel = (container >> 24) & 0xF;
1214 			if (channel >= dev->maximum_num_channels) {
1215 				container = (u32)-1;
1216 				break;
1217 			}
1218 			id = container & 0xFFFF;
1219 			if (id >= dev->maximum_num_physicals) {
1220 				container = (u32)-1;
1221 				break;
1222 			}
1223 			lun = (container >> 16) & 0xFF;
1224 			container = (u32)-1;
1225 			channel = aac_phys_to_logical(channel);
1226 			device_config_needed =
1227 			  (((__le32 *)aifcmd->data)[0] ==
1228 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1229 			if (device_config_needed == ADD) {
1230 				device = scsi_device_lookup(dev->scsi_host_ptr,
1231 					channel,
1232 					id,
1233 					lun);
1234 				if (device) {
1235 					scsi_remove_device(device);
1236 					scsi_device_put(device);
1237 				}
1238 			}
1239 			break;
1240 
1241 		case AifEnEnclosureManagement:
1242 			/*
1243 			 * If in JBOD mode, automatic exposure of new
1244 			 * physical target to be suppressed until configured.
1245 			 */
1246 			if (dev->jbod)
1247 				break;
1248 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1249 			case EM_DRIVE_INSERTION:
1250 			case EM_DRIVE_REMOVAL:
1251 			case EM_SES_DRIVE_INSERTION:
1252 			case EM_SES_DRIVE_REMOVAL:
1253 				container = le32_to_cpu(
1254 					((__le32 *)aifcmd->data)[2]);
1255 				if ((container >> 28)) {
1256 					container = (u32)-1;
1257 					break;
1258 				}
1259 				channel = (container >> 24) & 0xF;
1260 				if (channel >= dev->maximum_num_channels) {
1261 					container = (u32)-1;
1262 					break;
1263 				}
1264 				id = container & 0xFFFF;
1265 				lun = (container >> 16) & 0xFF;
1266 				container = (u32)-1;
1267 				if (id >= dev->maximum_num_physicals) {
1268 					/* legacy dev_t ? */
1269 					if ((0x2000 <= id) || lun || channel ||
1270 					  ((channel = (id >> 7) & 0x3F) >=
1271 					  dev->maximum_num_channels))
1272 						break;
1273 					lun = (id >> 4) & 7;
1274 					id &= 0xF;
1275 				}
1276 				channel = aac_phys_to_logical(channel);
1277 				device_config_needed =
1278 				  ((((__le32 *)aifcmd->data)[3]
1279 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1280 				    (((__le32 *)aifcmd->data)[3]
1281 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1282 				  ADD : DELETE;
1283 				break;
1284 			}
1285 			break;
1286 		case AifBuManagerEvent:
1287 			aac_handle_aif_bu(dev, aifcmd);
1288 			break;
1289 		}
1290 
1291 		/*
1292 		 *	If we are waiting on something and this happens to be
1293 		 * that thing then set the re-configure flag.
1294 		 */
1295 		if (container != (u32)-1) {
1296 			if (container >= dev->maximum_num_containers)
1297 				break;
1298 			if ((dev->fsa_dev[container].config_waiting_on ==
1299 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1300 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1301 				dev->fsa_dev[container].config_waiting_on = 0;
1302 		} else for (container = 0;
1303 		    container < dev->maximum_num_containers; ++container) {
1304 			if ((dev->fsa_dev[container].config_waiting_on ==
1305 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1306 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1307 				dev->fsa_dev[container].config_waiting_on = 0;
1308 		}
1309 		break;
1310 
1311 	case AifCmdJobProgress:
1312 		/*
1313 		 *	These are job progress AIF's. When a Clear is being
1314 		 * done on a container it is initially created then hidden from
1315 		 * the OS. When the clear completes we don't get a config
1316 		 * change so we monitor the job status complete on a clear then
1317 		 * wait for a container change.
1318 		 */
1319 
1320 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1321 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1322 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1323 			for (container = 0;
1324 			    container < dev->maximum_num_containers;
1325 			    ++container) {
1326 				/*
1327 				 * Stomp on all config sequencing for all
1328 				 * containers?
1329 				 */
1330 				dev->fsa_dev[container].config_waiting_on =
1331 					AifEnContainerChange;
1332 				dev->fsa_dev[container].config_needed = ADD;
1333 				dev->fsa_dev[container].config_waiting_stamp =
1334 					jiffies;
1335 			}
1336 		}
1337 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1338 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1339 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1340 			for (container = 0;
1341 			    container < dev->maximum_num_containers;
1342 			    ++container) {
1343 				/*
1344 				 * Stomp on all config sequencing for all
1345 				 * containers?
1346 				 */
1347 				dev->fsa_dev[container].config_waiting_on =
1348 					AifEnContainerChange;
1349 				dev->fsa_dev[container].config_needed = DELETE;
1350 				dev->fsa_dev[container].config_waiting_stamp =
1351 					jiffies;
1352 			}
1353 		}
1354 		break;
1355 	}
1356 
1357 	container = 0;
1358 retry_next:
1359 	if (device_config_needed == NOTHING) {
1360 		for (; container < dev->maximum_num_containers; ++container) {
1361 			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1362 			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1363 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1364 				device_config_needed =
1365 					dev->fsa_dev[container].config_needed;
1366 				dev->fsa_dev[container].config_needed = NOTHING;
1367 				channel = CONTAINER_TO_CHANNEL(container);
1368 				id = CONTAINER_TO_ID(container);
1369 				lun = CONTAINER_TO_LUN(container);
1370 				break;
1371 			}
1372 		}
1373 	}
1374 	if (device_config_needed == NOTHING)
1375 		return;
1376 
1377 	/*
1378 	 *	If we decided that a re-configuration needs to be done,
1379 	 * schedule it here on the way out the door, please close the door
1380 	 * behind you.
1381 	 */
1382 
1383 	/*
1384 	 *	Find the scsi_device associated with the SCSI address,
1385 	 * and mark it as changed, invalidating the cache. This deals
1386 	 * with changes to existing device IDs.
1387 	 */
1388 
1389 	if (!dev || !dev->scsi_host_ptr)
1390 		return;
1391 	/*
1392 	 * force reload of disk info via aac_probe_container
1393 	 */
1394 	if ((channel == CONTAINER_CHANNEL) &&
1395 	  (device_config_needed != NOTHING)) {
1396 		if (dev->fsa_dev[container].valid == 1)
1397 			dev->fsa_dev[container].valid = 2;
1398 		aac_probe_container(dev, container);
1399 	}
1400 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1401 	if (device) {
1402 		switch (device_config_needed) {
1403 		case DELETE:
1404 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1405 			scsi_remove_device(device);
1406 #else
1407 			if (scsi_device_online(device)) {
1408 				scsi_device_set_state(device, SDEV_OFFLINE);
1409 				sdev_printk(KERN_INFO, device,
1410 					"Device offlined - %s\n",
1411 					(channel == CONTAINER_CHANNEL) ?
1412 						"array deleted" :
1413 						"enclosure services event");
1414 			}
1415 #endif
1416 			break;
1417 		case ADD:
1418 			if (!scsi_device_online(device)) {
1419 				sdev_printk(KERN_INFO, device,
1420 					"Device online - %s\n",
1421 					(channel == CONTAINER_CHANNEL) ?
1422 						"array created" :
1423 						"enclosure services event");
1424 				scsi_device_set_state(device, SDEV_RUNNING);
1425 			}
1426 			fallthrough;
1427 		case CHANGE:
1428 			if ((channel == CONTAINER_CHANNEL)
1429 			 && (!dev->fsa_dev[container].valid)) {
1430 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1431 				scsi_remove_device(device);
1432 #else
1433 				if (!scsi_device_online(device))
1434 					break;
1435 				scsi_device_set_state(device, SDEV_OFFLINE);
1436 				sdev_printk(KERN_INFO, device,
1437 					"Device offlined - %s\n",
1438 					"array failed");
1439 #endif
1440 				break;
1441 			}
1442 			scsi_rescan_device(device);
1443 			break;
1444 
1445 		default:
1446 			break;
1447 		}
1448 		scsi_device_put(device);
1449 		device_config_needed = NOTHING;
1450 	}
1451 	if (device_config_needed == ADD)
1452 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1453 	if (channel == CONTAINER_CHANNEL) {
1454 		container++;
1455 		device_config_needed = NOTHING;
1456 		goto retry_next;
1457 	}
1458 }
1459 
aac_schedule_bus_scan(struct aac_dev * aac)1460 static void aac_schedule_bus_scan(struct aac_dev *aac)
1461 {
1462 	if (aac->sa_firmware)
1463 		aac_schedule_safw_scan_worker(aac);
1464 	else
1465 		aac_schedule_src_reinit_aif_worker(aac);
1466 }
1467 
_aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1468 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1469 {
1470 	int index, quirks;
1471 	int retval;
1472 	struct Scsi_Host *host = aac->scsi_host_ptr;
1473 	int jafo = 0;
1474 	int bled;
1475 	u64 dmamask;
1476 	int num_of_fibs = 0;
1477 
1478 	/*
1479 	 * Assumptions:
1480 	 *	- host is locked, unless called by the aacraid thread.
1481 	 *	  (a matter of convenience, due to legacy issues surrounding
1482 	 *	  eh_host_adapter_reset).
1483 	 *	- in_reset is asserted, so no new i/o is getting to the
1484 	 *	  card.
1485 	 *	- The card is dead, or will be very shortly ;-/ so no new
1486 	 *	  commands are completing in the interrupt service.
1487 	 */
1488 	aac_adapter_disable_int(aac);
1489 	if (aac->thread && aac->thread->pid != current->pid) {
1490 		spin_unlock_irq(host->host_lock);
1491 		kthread_stop(aac->thread);
1492 		aac->thread = NULL;
1493 		jafo = 1;
1494 	}
1495 
1496 	/*
1497 	 *	If a positive health, means in a known DEAD PANIC
1498 	 * state and the adapter could be reset to `try again'.
1499 	 */
1500 	bled = forced ? 0 : aac_adapter_check_health(aac);
1501 	retval = aac_adapter_restart(aac, bled, reset_type);
1502 
1503 	if (retval)
1504 		goto out;
1505 
1506 	/*
1507 	 *	Loop through the fibs, close the synchronous FIBS
1508 	 */
1509 	retval = 1;
1510 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1511 	for (index = 0; index <  num_of_fibs; index++) {
1512 
1513 		struct fib *fib = &aac->fibs[index];
1514 		__le32 XferState = fib->hw_fib_va->header.XferState;
1515 		bool is_response_expected = false;
1516 
1517 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1518 		   (XferState & cpu_to_le32(ResponseExpected)))
1519 			is_response_expected = true;
1520 
1521 		if (is_response_expected
1522 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1523 			unsigned long flagv;
1524 			spin_lock_irqsave(&fib->event_lock, flagv);
1525 			complete(&fib->event_wait);
1526 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1527 			schedule();
1528 			retval = 0;
1529 		}
1530 	}
1531 	/* Give some extra time for ioctls to complete. */
1532 	if (retval == 0)
1533 		ssleep(2);
1534 	index = aac->cardtype;
1535 
1536 	/*
1537 	 * Re-initialize the adapter, first free resources, then carefully
1538 	 * apply the initialization sequence to come back again. Only risk
1539 	 * is a change in Firmware dropping cache, it is assumed the caller
1540 	 * will ensure that i/o is queisced and the card is flushed in that
1541 	 * case.
1542 	 */
1543 	aac_free_irq(aac);
1544 	aac_fib_map_free(aac);
1545 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1546 			  aac->comm_phys);
1547 	aac_adapter_ioremap(aac, 0);
1548 	aac->comm_addr = NULL;
1549 	aac->comm_phys = 0;
1550 	kfree(aac->queues);
1551 	aac->queues = NULL;
1552 	kfree(aac->fsa_dev);
1553 	aac->fsa_dev = NULL;
1554 
1555 	dmamask = DMA_BIT_MASK(32);
1556 	quirks = aac_get_driver_ident(index)->quirks;
1557 	if (quirks & AAC_QUIRK_31BIT)
1558 		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1559 	else if (!(quirks & AAC_QUIRK_SRC))
1560 		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1561 	else
1562 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1563 
1564 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1565 		dmamask = DMA_BIT_MASK(31);
1566 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1567 	}
1568 
1569 	if (retval)
1570 		goto out;
1571 
1572 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1573 		goto out;
1574 
1575 	if (jafo) {
1576 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1577 					  aac->name);
1578 		if (IS_ERR(aac->thread)) {
1579 			retval = PTR_ERR(aac->thread);
1580 			aac->thread = NULL;
1581 			goto out;
1582 		}
1583 	}
1584 	(void)aac_get_adapter_info(aac);
1585 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1586 		host->sg_tablesize = 34;
1587 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1588 	}
1589 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1590 		host->sg_tablesize = 17;
1591 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1592 	}
1593 	aac_get_config_status(aac, 1);
1594 	aac_get_containers(aac);
1595 	/*
1596 	 * This is where the assumption that the Adapter is quiesced
1597 	 * is important.
1598 	 */
1599 	scsi_host_complete_all_commands(host, DID_RESET);
1600 
1601 	retval = 0;
1602 out:
1603 	aac->in_reset = 0;
1604 
1605 	/*
1606 	 * Issue bus rescan to catch any configuration that might have
1607 	 * occurred
1608 	 */
1609 	if (!retval && !is_kdump_kernel()) {
1610 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1611 		aac_schedule_bus_scan(aac);
1612 	}
1613 
1614 	if (jafo) {
1615 		spin_lock_irq(host->host_lock);
1616 	}
1617 	return retval;
1618 }
1619 
aac_reset_adapter(struct aac_dev * aac,int forced,u8 reset_type)1620 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1621 {
1622 	unsigned long flagv = 0;
1623 	int retval, unblock_retval;
1624 	struct Scsi_Host *host = aac->scsi_host_ptr;
1625 	int bled;
1626 
1627 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1628 		return -EBUSY;
1629 
1630 	if (aac->in_reset) {
1631 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1632 		return -EBUSY;
1633 	}
1634 	aac->in_reset = 1;
1635 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1636 
1637 	/*
1638 	 * Wait for all commands to complete to this specific
1639 	 * target (block maximum 60 seconds). Although not necessary,
1640 	 * it does make us a good storage citizen.
1641 	 */
1642 	scsi_host_block(host);
1643 
1644 	/* Quiesce build, flush cache, write through mode */
1645 	if (forced < 2)
1646 		aac_send_shutdown(aac);
1647 	spin_lock_irqsave(host->host_lock, flagv);
1648 	bled = forced ? forced :
1649 			(aac_check_reset != 0 && aac_check_reset != 1);
1650 	retval = _aac_reset_adapter(aac, bled, reset_type);
1651 	spin_unlock_irqrestore(host->host_lock, flagv);
1652 
1653 	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1654 	if (!retval)
1655 		retval = unblock_retval;
1656 	if ((forced < 2) && (retval == -ENODEV)) {
1657 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1658 		struct fib * fibctx = aac_fib_alloc(aac);
1659 		if (fibctx) {
1660 			struct aac_pause *cmd;
1661 			int status;
1662 
1663 			aac_fib_init(fibctx);
1664 
1665 			cmd = (struct aac_pause *) fib_data(fibctx);
1666 
1667 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1668 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1669 			cmd->timeout = cpu_to_le32(1);
1670 			cmd->min = cpu_to_le32(1);
1671 			cmd->noRescan = cpu_to_le32(1);
1672 			cmd->count = cpu_to_le32(0);
1673 
1674 			status = aac_fib_send(ContainerCommand,
1675 			  fibctx,
1676 			  sizeof(struct aac_pause),
1677 			  FsaNormal,
1678 			  -2 /* Timeout silently */, 1,
1679 			  NULL, NULL);
1680 
1681 			if (status >= 0)
1682 				aac_fib_complete(fibctx);
1683 			/* FIB should be freed only after getting
1684 			 * the response from the F/W */
1685 			if (status != -ERESTARTSYS)
1686 				aac_fib_free(fibctx);
1687 		}
1688 	}
1689 
1690 	return retval;
1691 }
1692 
is_safw_raid_volume(struct aac_dev * aac,int bus,int target)1693 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1694 {
1695 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1696 }
1697 
aac_lookup_safw_scsi_device(struct aac_dev * dev,int bus,int target)1698 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1699 								int bus,
1700 								int target)
1701 {
1702 	if (bus != CONTAINER_CHANNEL)
1703 		bus = aac_phys_to_logical(bus);
1704 
1705 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1706 }
1707 
aac_add_safw_device(struct aac_dev * dev,int bus,int target)1708 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1709 {
1710 	if (bus != CONTAINER_CHANNEL)
1711 		bus = aac_phys_to_logical(bus);
1712 
1713 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1714 }
1715 
aac_put_safw_scsi_device(struct scsi_device * sdev)1716 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1717 {
1718 	if (sdev)
1719 		scsi_device_put(sdev);
1720 }
1721 
aac_remove_safw_device(struct aac_dev * dev,int bus,int target)1722 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1723 {
1724 	struct scsi_device *sdev;
1725 
1726 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1727 	scsi_remove_device(sdev);
1728 	aac_put_safw_scsi_device(sdev);
1729 }
1730 
aac_is_safw_scan_count_equal(struct aac_dev * dev,int bus,int target)1731 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1732 	int bus, int target)
1733 {
1734 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1735 }
1736 
aac_is_safw_target_valid(struct aac_dev * dev,int bus,int target)1737 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1738 {
1739 	if (is_safw_raid_volume(dev, bus, target))
1740 		return dev->fsa_dev[target].valid;
1741 	else
1742 		return aac_is_safw_scan_count_equal(dev, bus, target);
1743 }
1744 
aac_is_safw_device_exposed(struct aac_dev * dev,int bus,int target)1745 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1746 {
1747 	int is_exposed = 0;
1748 	struct scsi_device *sdev;
1749 
1750 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1751 	if (sdev)
1752 		is_exposed = 1;
1753 	aac_put_safw_scsi_device(sdev);
1754 
1755 	return is_exposed;
1756 }
1757 
aac_update_safw_host_devices(struct aac_dev * dev)1758 static int aac_update_safw_host_devices(struct aac_dev *dev)
1759 {
1760 	int i;
1761 	int bus;
1762 	int target;
1763 	int is_exposed = 0;
1764 	int rcode = 0;
1765 
1766 	rcode = aac_setup_safw_adapter(dev);
1767 	if (unlikely(rcode < 0)) {
1768 		goto out;
1769 	}
1770 
1771 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1772 
1773 		bus = get_bus_number(i);
1774 		target = get_target_number(i);
1775 
1776 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1777 
1778 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1779 			aac_add_safw_device(dev, bus, target);
1780 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1781 								is_exposed)
1782 			aac_remove_safw_device(dev, bus, target);
1783 	}
1784 out:
1785 	return rcode;
1786 }
1787 
aac_scan_safw_host(struct aac_dev * dev)1788 static int aac_scan_safw_host(struct aac_dev *dev)
1789 {
1790 	int rcode = 0;
1791 
1792 	rcode = aac_update_safw_host_devices(dev);
1793 	if (rcode)
1794 		aac_schedule_safw_scan_worker(dev);
1795 
1796 	return rcode;
1797 }
1798 
aac_scan_host(struct aac_dev * dev)1799 int aac_scan_host(struct aac_dev *dev)
1800 {
1801 	int rcode = 0;
1802 
1803 	mutex_lock(&dev->scan_mutex);
1804 	if (dev->sa_firmware)
1805 		rcode = aac_scan_safw_host(dev);
1806 	else
1807 		scsi_scan_host(dev->scsi_host_ptr);
1808 	mutex_unlock(&dev->scan_mutex);
1809 
1810 	return rcode;
1811 }
1812 
aac_src_reinit_aif_worker(struct work_struct * work)1813 void aac_src_reinit_aif_worker(struct work_struct *work)
1814 {
1815 	struct aac_dev *dev = container_of(to_delayed_work(work),
1816 				struct aac_dev, src_reinit_aif_worker);
1817 
1818 	wait_event(dev->scsi_host_ptr->host_wait,
1819 			!scsi_host_in_recovery(dev->scsi_host_ptr));
1820 	aac_reinit_aif(dev, dev->cardtype);
1821 }
1822 
1823 /**
1824  *	aac_handle_sa_aif -	Handle a message from the firmware
1825  *	@dev: Which adapter this fib is from
1826  *	@fibptr: Pointer to fibptr from adapter
1827  *
1828  *	This routine handles a driver notify fib from the adapter and
1829  *	dispatches it to the appropriate routine for handling.
1830  */
aac_handle_sa_aif(struct aac_dev * dev,struct fib * fibptr)1831 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1832 {
1833 	int i;
1834 	u32 events = 0;
1835 
1836 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1837 		events = SA_AIF_HOTPLUG;
1838 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1839 		events = SA_AIF_HARDWARE;
1840 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1841 		events = SA_AIF_PDEV_CHANGE;
1842 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1843 		events = SA_AIF_LDEV_CHANGE;
1844 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1845 		events = SA_AIF_BPSTAT_CHANGE;
1846 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1847 		events = SA_AIF_BPCFG_CHANGE;
1848 
1849 	switch (events) {
1850 	case SA_AIF_HOTPLUG:
1851 	case SA_AIF_HARDWARE:
1852 	case SA_AIF_PDEV_CHANGE:
1853 	case SA_AIF_LDEV_CHANGE:
1854 	case SA_AIF_BPCFG_CHANGE:
1855 
1856 		aac_scan_host(dev);
1857 
1858 		break;
1859 
1860 	case SA_AIF_BPSTAT_CHANGE:
1861 		/* currently do nothing */
1862 		break;
1863 	}
1864 
1865 	for (i = 1; i <= 10; ++i) {
1866 		events = src_readl(dev, MUnit.IDR);
1867 		if (events & (1<<23)) {
1868 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1869 				i, 10);
1870 			ssleep(1);
1871 		}
1872 	}
1873 }
1874 
get_fib_count(struct aac_dev * dev)1875 static int get_fib_count(struct aac_dev *dev)
1876 {
1877 	unsigned int num = 0;
1878 	struct list_head *entry;
1879 	unsigned long flagv;
1880 
1881 	/*
1882 	 * Warning: no sleep allowed while
1883 	 * holding spinlock. We take the estimate
1884 	 * and pre-allocate a set of fibs outside the
1885 	 * lock.
1886 	 */
1887 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
1888 			/ sizeof(struct hw_fib); /* some extra */
1889 	spin_lock_irqsave(&dev->fib_lock, flagv);
1890 	entry = dev->fib_list.next;
1891 	while (entry != &dev->fib_list) {
1892 		entry = entry->next;
1893 		++num;
1894 	}
1895 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
1896 
1897 	return num;
1898 }
1899 
fillup_pools(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,unsigned int num)1900 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
1901 						struct fib **fib_pool,
1902 						unsigned int num)
1903 {
1904 	struct hw_fib **hw_fib_p;
1905 	struct fib **fib_p;
1906 
1907 	hw_fib_p = hw_fib_pool;
1908 	fib_p = fib_pool;
1909 	while (hw_fib_p < &hw_fib_pool[num]) {
1910 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
1911 		if (!(*(hw_fib_p++))) {
1912 			--hw_fib_p;
1913 			break;
1914 		}
1915 
1916 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
1917 		if (!(*(fib_p++))) {
1918 			kfree(*(--hw_fib_p));
1919 			break;
1920 		}
1921 	}
1922 
1923 	/*
1924 	 * Get the actual number of allocated fibs
1925 	 */
1926 	num = hw_fib_p - hw_fib_pool;
1927 	return num;
1928 }
1929 
wakeup_fibctx_threads(struct aac_dev * dev,struct hw_fib ** hw_fib_pool,struct fib ** fib_pool,struct fib * fib,struct hw_fib * hw_fib,unsigned int num)1930 static void wakeup_fibctx_threads(struct aac_dev *dev,
1931 						struct hw_fib **hw_fib_pool,
1932 						struct fib **fib_pool,
1933 						struct fib *fib,
1934 						struct hw_fib *hw_fib,
1935 						unsigned int num)
1936 {
1937 	unsigned long flagv;
1938 	struct list_head *entry;
1939 	struct hw_fib **hw_fib_p;
1940 	struct fib **fib_p;
1941 	u32 time_now, time_last;
1942 	struct hw_fib *hw_newfib;
1943 	struct fib *newfib;
1944 	struct aac_fib_context *fibctx;
1945 
1946 	time_now = jiffies/HZ;
1947 	spin_lock_irqsave(&dev->fib_lock, flagv);
1948 	entry = dev->fib_list.next;
1949 	/*
1950 	 * For each Context that is on the
1951 	 * fibctxList, make a copy of the
1952 	 * fib, and then set the event to wake up the
1953 	 * thread that is waiting for it.
1954 	 */
1955 
1956 	hw_fib_p = hw_fib_pool;
1957 	fib_p = fib_pool;
1958 	while (entry != &dev->fib_list) {
1959 		/*
1960 		 * Extract the fibctx
1961 		 */
1962 		fibctx = list_entry(entry, struct aac_fib_context,
1963 				next);
1964 		/*
1965 		 * Check if the queue is getting
1966 		 * backlogged
1967 		 */
1968 		if (fibctx->count > 20) {
1969 			/*
1970 			 * It's *not* jiffies folks,
1971 			 * but jiffies / HZ so do not
1972 			 * panic ...
1973 			 */
1974 			time_last = fibctx->jiffies;
1975 			/*
1976 			 * Has it been > 2 minutes
1977 			 * since the last read off
1978 			 * the queue?
1979 			 */
1980 			if ((time_now - time_last) > aif_timeout) {
1981 				entry = entry->next;
1982 				aac_close_fib_context(dev, fibctx);
1983 				continue;
1984 			}
1985 		}
1986 		/*
1987 		 * Warning: no sleep allowed while
1988 		 * holding spinlock
1989 		 */
1990 		if (hw_fib_p >= &hw_fib_pool[num]) {
1991 			pr_warn("aifd: didn't allocate NewFib\n");
1992 			entry = entry->next;
1993 			continue;
1994 		}
1995 
1996 		hw_newfib = *hw_fib_p;
1997 		*(hw_fib_p++) = NULL;
1998 		newfib = *fib_p;
1999 		*(fib_p++) = NULL;
2000 		/*
2001 		 * Make the copy of the FIB
2002 		 */
2003 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2004 		memcpy(newfib, fib, sizeof(struct fib));
2005 		newfib->hw_fib_va = hw_newfib;
2006 		/*
2007 		 * Put the FIB onto the
2008 		 * fibctx's fibs
2009 		 */
2010 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2011 		fibctx->count++;
2012 		/*
2013 		 * Set the event to wake up the
2014 		 * thread that is waiting.
2015 		 */
2016 		complete(&fibctx->completion);
2017 
2018 		entry = entry->next;
2019 	}
2020 	/*
2021 	 *	Set the status of this FIB
2022 	 */
2023 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2024 	aac_fib_adapter_complete(fib, sizeof(u32));
2025 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2026 
2027 }
2028 
aac_process_events(struct aac_dev * dev)2029 static void aac_process_events(struct aac_dev *dev)
2030 {
2031 	struct hw_fib *hw_fib;
2032 	struct fib *fib;
2033 	unsigned long flags;
2034 	spinlock_t *t_lock;
2035 
2036 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2037 	spin_lock_irqsave(t_lock, flags);
2038 
2039 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2040 		struct list_head *entry;
2041 		struct aac_aifcmd *aifcmd;
2042 		unsigned int  num;
2043 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2044 		struct fib **fib_pool, **fib_p;
2045 
2046 		set_current_state(TASK_RUNNING);
2047 
2048 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2049 		list_del(entry);
2050 
2051 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2052 		spin_unlock_irqrestore(t_lock, flags);
2053 
2054 		fib = list_entry(entry, struct fib, fiblink);
2055 		hw_fib = fib->hw_fib_va;
2056 		if (dev->sa_firmware) {
2057 			/* Thor AIF */
2058 			aac_handle_sa_aif(dev, fib);
2059 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2060 			goto free_fib;
2061 		}
2062 		/*
2063 		 *	We will process the FIB here or pass it to a
2064 		 *	worker thread that is TBD. We Really can't
2065 		 *	do anything at this point since we don't have
2066 		 *	anything defined for this thread to do.
2067 		 */
2068 		memset(fib, 0, sizeof(struct fib));
2069 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2070 		fib->size = sizeof(struct fib);
2071 		fib->hw_fib_va = hw_fib;
2072 		fib->data = hw_fib->data;
2073 		fib->dev = dev;
2074 		/*
2075 		 *	We only handle AifRequest fibs from the adapter.
2076 		 */
2077 
2078 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2079 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2080 			/* Handle Driver Notify Events */
2081 			aac_handle_aif(dev, fib);
2082 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2083 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2084 			goto free_fib;
2085 		}
2086 		/*
2087 		 * The u32 here is important and intended. We are using
2088 		 * 32bit wrapping time to fit the adapter field
2089 		 */
2090 
2091 		/* Sniff events */
2092 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2093 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2094 			aac_handle_aif(dev, fib);
2095 		}
2096 
2097 		/*
2098 		 * get number of fibs to process
2099 		 */
2100 		num = get_fib_count(dev);
2101 		if (!num)
2102 			goto free_fib;
2103 
2104 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2105 						GFP_KERNEL);
2106 		if (!hw_fib_pool)
2107 			goto free_fib;
2108 
2109 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2110 		if (!fib_pool)
2111 			goto free_hw_fib_pool;
2112 
2113 		/*
2114 		 * Fill up fib pointer pools with actual fibs
2115 		 * and hw_fibs
2116 		 */
2117 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2118 		if (!num)
2119 			goto free_mem;
2120 
2121 		/*
2122 		 * wakeup the thread that is waiting for
2123 		 * the response from fw (ioctl)
2124 		 */
2125 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2126 							    fib, hw_fib, num);
2127 
2128 free_mem:
2129 		/* Free up the remaining resources */
2130 		hw_fib_p = hw_fib_pool;
2131 		fib_p = fib_pool;
2132 		while (hw_fib_p < &hw_fib_pool[num]) {
2133 			kfree(*hw_fib_p);
2134 			kfree(*fib_p);
2135 			++fib_p;
2136 			++hw_fib_p;
2137 		}
2138 		kfree(fib_pool);
2139 free_hw_fib_pool:
2140 		kfree(hw_fib_pool);
2141 free_fib:
2142 		kfree(fib);
2143 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2144 		spin_lock_irqsave(t_lock, flags);
2145 	}
2146 	/*
2147 	 *	There are no more AIF's
2148 	 */
2149 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2150 	spin_unlock_irqrestore(t_lock, flags);
2151 }
2152 
aac_send_wellness_command(struct aac_dev * dev,char * wellness_str,u32 datasize)2153 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2154 							u32 datasize)
2155 {
2156 	struct aac_srb *srbcmd;
2157 	struct sgmap64 *sg64;
2158 	dma_addr_t addr;
2159 	char *dma_buf;
2160 	struct fib *fibptr;
2161 	int ret = -ENOMEM;
2162 	u32 vbus, vid;
2163 
2164 	fibptr = aac_fib_alloc(dev);
2165 	if (!fibptr)
2166 		goto out;
2167 
2168 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2169 				     GFP_KERNEL);
2170 	if (!dma_buf)
2171 		goto fib_free_out;
2172 
2173 	aac_fib_init(fibptr);
2174 
2175 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2176 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2177 
2178 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2179 
2180 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2181 	srbcmd->channel = cpu_to_le32(vbus);
2182 	srbcmd->id = cpu_to_le32(vid);
2183 	srbcmd->lun = 0;
2184 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2185 	srbcmd->timeout = cpu_to_le32(10);
2186 	srbcmd->retry_limit = 0;
2187 	srbcmd->cdb_size = cpu_to_le32(12);
2188 	srbcmd->count = cpu_to_le32(datasize);
2189 
2190 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2191 	srbcmd->cdb[0] = BMIC_OUT;
2192 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2193 	memcpy(dma_buf, (char *)wellness_str, datasize);
2194 
2195 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2196 	sg64->count = cpu_to_le32(1);
2197 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2198 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2199 	sg64->sg[0].count = cpu_to_le32(datasize);
2200 
2201 	ret = aac_fib_send(ScsiPortCommand64, fibptr,
2202 			   sizeof(struct aac_srb) + sizeof(struct sgentry),
2203 			   FsaNormal, 1, 1, NULL, NULL);
2204 
2205 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2206 
2207 	/*
2208 	 * Do not set XferState to zero unless
2209 	 * receives a response from F/W
2210 	 */
2211 	if (ret >= 0)
2212 		aac_fib_complete(fibptr);
2213 
2214 	/*
2215 	 * FIB should be freed only after
2216 	 * getting the response from the F/W
2217 	 */
2218 	if (ret != -ERESTARTSYS)
2219 		goto fib_free_out;
2220 
2221 out:
2222 	return ret;
2223 fib_free_out:
2224 	aac_fib_free(fibptr);
2225 	goto out;
2226 }
2227 
aac_send_safw_hostttime(struct aac_dev * dev,struct timespec64 * now)2228 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2229 {
2230 	struct tm cur_tm;
2231 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2232 	u32 datasize = sizeof(wellness_str);
2233 	time64_t local_time;
2234 	int ret = -ENODEV;
2235 
2236 	if (!dev->sa_firmware)
2237 		goto out;
2238 
2239 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2240 	time64_to_tm(local_time, 0, &cur_tm);
2241 	cur_tm.tm_mon += 1;
2242 	cur_tm.tm_year += 1900;
2243 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2244 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2245 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2246 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2247 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2248 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2249 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2250 
2251 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2252 
2253 out:
2254 	return ret;
2255 }
2256 
aac_send_hosttime(struct aac_dev * dev,struct timespec64 * now)2257 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2258 {
2259 	int ret = -ENOMEM;
2260 	struct fib *fibptr;
2261 	__le32 *info;
2262 
2263 	fibptr = aac_fib_alloc(dev);
2264 	if (!fibptr)
2265 		goto out;
2266 
2267 	aac_fib_init(fibptr);
2268 	info = (__le32 *)fib_data(fibptr);
2269 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2270 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2271 					1, 1, NULL, NULL);
2272 
2273 	/*
2274 	 * Do not set XferState to zero unless
2275 	 * receives a response from F/W
2276 	 */
2277 	if (ret >= 0)
2278 		aac_fib_complete(fibptr);
2279 
2280 	/*
2281 	 * FIB should be freed only after
2282 	 * getting the response from the F/W
2283 	 */
2284 	if (ret != -ERESTARTSYS)
2285 		aac_fib_free(fibptr);
2286 
2287 out:
2288 	return ret;
2289 }
2290 
2291 /**
2292  *	aac_command_thread	-	command processing thread
2293  *	@data: Adapter to monitor
2294  *
2295  *	Waits on the commandready event in it's queue. When the event gets set
2296  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2297  *	until the queue is empty. When the queue is empty it will wait for
2298  *	more FIBs.
2299  */
2300 
aac_command_thread(void * data)2301 int aac_command_thread(void *data)
2302 {
2303 	struct aac_dev *dev = data;
2304 	DECLARE_WAITQUEUE(wait, current);
2305 	unsigned long next_jiffies = jiffies + HZ;
2306 	unsigned long next_check_jiffies = next_jiffies;
2307 	long difference = HZ;
2308 
2309 	/*
2310 	 *	We can only have one thread per adapter for AIF's.
2311 	 */
2312 	if (dev->aif_thread)
2313 		return -EINVAL;
2314 
2315 	/*
2316 	 *	Let the DPC know it has a place to send the AIF's to.
2317 	 */
2318 	dev->aif_thread = 1;
2319 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2320 	set_current_state(TASK_INTERRUPTIBLE);
2321 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2322 	while (1) {
2323 
2324 		aac_process_events(dev);
2325 
2326 		/*
2327 		 *	Background activity
2328 		 */
2329 		if ((time_before(next_check_jiffies,next_jiffies))
2330 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2331 			next_check_jiffies = next_jiffies;
2332 			if (aac_adapter_check_health(dev) == 0) {
2333 				difference = ((long)(unsigned)check_interval)
2334 					   * HZ;
2335 				next_check_jiffies = jiffies + difference;
2336 			} else if (!dev->queues)
2337 				break;
2338 		}
2339 		if (!time_before(next_check_jiffies,next_jiffies)
2340 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2341 			struct timespec64 now;
2342 			int ret;
2343 
2344 			/* Don't even try to talk to adapter if its sick */
2345 			ret = aac_adapter_check_health(dev);
2346 			if (ret || !dev->queues)
2347 				break;
2348 			next_check_jiffies = jiffies
2349 					   + ((long)(unsigned)check_interval)
2350 					   * HZ;
2351 			ktime_get_real_ts64(&now);
2352 
2353 			/* Synchronize our watches */
2354 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2355 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2356 				difference = HZ + HZ / 2 -
2357 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2358 			else {
2359 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2360 					++now.tv_sec;
2361 
2362 				if (dev->sa_firmware)
2363 					ret =
2364 					aac_send_safw_hostttime(dev, &now);
2365 				else
2366 					ret = aac_send_hosttime(dev, &now);
2367 
2368 				difference = (long)(unsigned)update_interval*HZ;
2369 			}
2370 			next_jiffies = jiffies + difference;
2371 			if (time_before(next_check_jiffies,next_jiffies))
2372 				difference = next_check_jiffies - jiffies;
2373 		}
2374 		if (difference <= 0)
2375 			difference = 1;
2376 		set_current_state(TASK_INTERRUPTIBLE);
2377 
2378 		if (kthread_should_stop())
2379 			break;
2380 
2381 		/*
2382 		 * we probably want usleep_range() here instead of the
2383 		 * jiffies computation
2384 		 */
2385 		schedule_timeout(difference);
2386 
2387 		if (kthread_should_stop())
2388 			break;
2389 	}
2390 	if (dev->queues)
2391 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2392 	dev->aif_thread = 0;
2393 	return 0;
2394 }
2395 
aac_acquire_irq(struct aac_dev * dev)2396 int aac_acquire_irq(struct aac_dev *dev)
2397 {
2398 	int i;
2399 	int j;
2400 	int ret = 0;
2401 
2402 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2403 		for (i = 0; i < dev->max_msix; i++) {
2404 			dev->aac_msix[i].vector_no = i;
2405 			dev->aac_msix[i].dev = dev;
2406 			if (request_irq(pci_irq_vector(dev->pdev, i),
2407 					dev->a_ops.adapter_intr,
2408 					0, "aacraid", &(dev->aac_msix[i]))) {
2409 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2410 						dev->name, dev->id, i);
2411 				for (j = 0 ; j < i ; j++)
2412 					free_irq(pci_irq_vector(dev->pdev, j),
2413 						 &(dev->aac_msix[j]));
2414 				pci_disable_msix(dev->pdev);
2415 				ret = -1;
2416 			}
2417 		}
2418 	} else {
2419 		dev->aac_msix[0].vector_no = 0;
2420 		dev->aac_msix[0].dev = dev;
2421 
2422 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2423 			IRQF_SHARED, "aacraid",
2424 			&(dev->aac_msix[0])) < 0) {
2425 			if (dev->msi)
2426 				pci_disable_msi(dev->pdev);
2427 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2428 					dev->name, dev->id);
2429 			ret = -1;
2430 		}
2431 	}
2432 	return ret;
2433 }
2434 
aac_free_irq(struct aac_dev * dev)2435 void aac_free_irq(struct aac_dev *dev)
2436 {
2437 	int i;
2438 
2439 	if (aac_is_src(dev)) {
2440 		if (dev->max_msix > 1) {
2441 			for (i = 0; i < dev->max_msix; i++)
2442 				free_irq(pci_irq_vector(dev->pdev, i),
2443 					 &(dev->aac_msix[i]));
2444 		} else {
2445 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2446 		}
2447 	} else {
2448 		free_irq(dev->pdev->irq, dev);
2449 	}
2450 	if (dev->msi)
2451 		pci_disable_msi(dev->pdev);
2452 	else if (dev->max_msix > 1)
2453 		pci_disable_msix(dev->pdev);
2454 }
2455