1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23 /*
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Nexenta Systems, Inc.
28 * Copyright (c) 2025, Klara, Inc.
29 */
30
31 /* Portions Copyright 2007 Jeremy Teo */
32 /* Portions Copyright 2010 Robert Milkowski */
33
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <security/mac/mac_framework.h>
40 #include <sys/vfs.h>
41 #include <sys/endian.h>
42 #include <sys/vm.h>
43 #include <sys/vnode.h>
44 #include <sys/smr.h>
45 #include <sys/dirent.h>
46 #include <sys/file.h>
47 #include <sys/stat.h>
48 #include <sys/kmem.h>
49 #include <sys/taskq.h>
50 #include <sys/uio.h>
51 #include <sys/atomic.h>
52 #include <sys/namei.h>
53 #include <sys/mman.h>
54 #include <sys/cmn_err.h>
55 #include <sys/kdb.h>
56 #include <sys/sysproto.h>
57 #include <sys/errno.h>
58 #include <sys/unistd.h>
59 #include <sys/zfs_dir.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/dmu.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/dsl_dataset.h>
65 #include <sys/spa.h>
66 #include <sys/txg.h>
67 #include <sys/dbuf.h>
68 #include <sys/zap.h>
69 #include <sys/sa.h>
70 #include <sys/policy.h>
71 #include <sys/sunddi.h>
72 #include <sys/filio.h>
73 #include <sys/sid.h>
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_quota.h>
77 #include <sys/zfs_sa.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/zfs_project.h>
80 #include <sys/bio.h>
81 #include <sys/buf.h>
82 #include <sys/sched.h>
83 #include <sys/acl.h>
84 #include <sys/vmmeter.h>
85 #include <vm/vm_param.h>
86 #include <sys/zil.h>
87 #include <sys/zfs_vnops.h>
88 #include <sys/module.h>
89 #include <sys/sysent.h>
90 #include <sys/dmu_impl.h>
91 #include <sys/brt.h>
92 #include <sys/zfeature.h>
93
94 #include <vm/vm_object.h>
95
96 #include <sys/extattr.h>
97 #include <sys/priv.h>
98
99 #ifndef VN_OPEN_INVFS
100 #define VN_OPEN_INVFS 0x0
101 #endif
102
103 VFS_SMR_DECLARE;
104
105 #ifdef DEBUG_VFS_LOCKS
106 #define VNCHECKREF(vp) \
107 VNASSERT((vp)->v_holdcnt > 0 && (vp)->v_usecount > 0, vp, \
108 ("%s: wrong ref counts", __func__));
109 #else
110 #define VNCHECKREF(vp)
111 #endif
112
113 #if __FreeBSD_version >= 1400045
114 typedef uint64_t cookie_t;
115 #else
116 typedef ulong_t cookie_t;
117 #endif
118
119 static int zfs_check_attrname(const char *name);
120
121 /*
122 * Programming rules.
123 *
124 * Each vnode op performs some logical unit of work. To do this, the ZPL must
125 * properly lock its in-core state, create a DMU transaction, do the work,
126 * record this work in the intent log (ZIL), commit the DMU transaction,
127 * and wait for the intent log to commit if it is a synchronous operation.
128 * Moreover, the vnode ops must work in both normal and log replay context.
129 * The ordering of events is important to avoid deadlocks and references
130 * to freed memory. The example below illustrates the following Big Rules:
131 *
132 * (1) A check must be made in each zfs thread for a mounted file system.
133 * This is done avoiding races using zfs_enter(zfsvfs).
134 * A zfs_exit(zfsvfs) is needed before all returns. Any znodes
135 * must be checked with zfs_verify_zp(zp). Both of these macros
136 * can return EIO from the calling function.
137 *
138 * (2) VN_RELE() should always be the last thing except for zil_commit()
139 * (if necessary) and zfs_exit(). This is for 3 reasons:
140 * First, if it's the last reference, the vnode/znode
141 * can be freed, so the zp may point to freed memory. Second, the last
142 * reference will call zfs_zinactive(), which may induce a lot of work --
143 * pushing cached pages (which acquires range locks) and syncing out
144 * cached atime changes. Third, zfs_zinactive() may require a new tx,
145 * which could deadlock the system if you were already holding one.
146 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
147 *
148 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
149 * as they can span dmu_tx_assign() calls.
150 *
151 * (4) If ZPL locks are held, pass DMU_TX_NOWAIT as the second argument to
152 * dmu_tx_assign(). This is critical because we don't want to block
153 * while holding locks.
154 *
155 * If no ZPL locks are held (aside from zfs_enter()), use DMU_TX_WAIT.
156 * This reduces lock contention and CPU usage when we must wait (note
157 * that if throughput is constrained by the storage, nearly every
158 * transaction must wait).
159 *
160 * Note, in particular, that if a lock is sometimes acquired before
161 * the tx assigns, and sometimes after (e.g. z_lock), then failing
162 * to use a non-blocking assign can deadlock the system. The scenario:
163 *
164 * Thread A has grabbed a lock before calling dmu_tx_assign().
165 * Thread B is in an already-assigned tx, and blocks for this lock.
166 * Thread A calls dmu_tx_assign(DMU_TX_WAIT) and blocks in
167 * txg_wait_open() forever, because the previous txg can't quiesce
168 * until B's tx commits.
169 *
170 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is
171 * DMU_TX_NOWAIT, then drop all locks, call dmu_tx_wait(), and try
172 * again. On subsequent calls to dmu_tx_assign(), pass
173 * DMU_TX_NOTHROTTLE in addition to DMU_TX_NOWAIT, to indicate that
174 * this operation has already called dmu_tx_wait(). This will ensure
175 * that we don't retry forever, waiting a short bit each time.
176 *
177 * (5) If the operation succeeded, generate the intent log entry for it
178 * before dropping locks. This ensures that the ordering of events
179 * in the intent log matches the order in which they actually occurred.
180 * During ZIL replay the zfs_log_* functions will update the sequence
181 * number to indicate the zil transaction has replayed.
182 *
183 * (6) At the end of each vnode op, the DMU tx must always commit,
184 * regardless of whether there were any errors.
185 *
186 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
187 * to ensure that synchronous semantics are provided when necessary.
188 *
189 * In general, this is how things should be ordered in each vnode op:
190 *
191 * zfs_enter(zfsvfs); // exit if unmounted
192 * top:
193 * zfs_dirent_lookup(&dl, ...) // lock directory entry (may VN_HOLD())
194 * rw_enter(...); // grab any other locks you need
195 * tx = dmu_tx_create(...); // get DMU tx
196 * dmu_tx_hold_*(); // hold each object you might modify
197 * error = dmu_tx_assign(tx,
198 * (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
199 * if (error) {
200 * rw_exit(...); // drop locks
201 * zfs_dirent_unlock(dl); // unlock directory entry
202 * VN_RELE(...); // release held vnodes
203 * if (error == ERESTART) {
204 * waited = B_TRUE;
205 * dmu_tx_wait(tx);
206 * dmu_tx_abort(tx);
207 * goto top;
208 * }
209 * dmu_tx_abort(tx); // abort DMU tx
210 * zfs_exit(zfsvfs); // finished in zfs
211 * return (error); // really out of space
212 * }
213 * error = do_real_work(); // do whatever this VOP does
214 * if (error == 0)
215 * zfs_log_*(...); // on success, make ZIL entry
216 * dmu_tx_commit(tx); // commit DMU tx -- error or not
217 * rw_exit(...); // drop locks
218 * zfs_dirent_unlock(dl); // unlock directory entry
219 * VN_RELE(...); // release held vnodes
220 * zil_commit(zilog, foid); // synchronous when necessary
221 * zfs_exit(zfsvfs); // finished in zfs
222 * return (error); // done, report error
223 */
224 static int
zfs_open(vnode_t ** vpp,int flag,cred_t * cr)225 zfs_open(vnode_t **vpp, int flag, cred_t *cr)
226 {
227 (void) cr;
228 znode_t *zp = VTOZ(*vpp);
229 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
230 int error;
231
232 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
233 return (error);
234
235 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
236 ((flag & FAPPEND) == 0)) {
237 zfs_exit(zfsvfs, FTAG);
238 return (SET_ERROR(EPERM));
239 }
240
241 /*
242 * Keep a count of the synchronous opens in the znode. On first
243 * synchronous open we must convert all previous async transactions
244 * into sync to keep correct ordering.
245 */
246 if (flag & O_SYNC) {
247 if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
248 zil_async_to_sync(zfsvfs->z_log, zp->z_id);
249 }
250
251 zfs_exit(zfsvfs, FTAG);
252 return (0);
253 }
254
255 static int
zfs_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr)256 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr)
257 {
258 (void) offset, (void) cr;
259 znode_t *zp = VTOZ(vp);
260 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
261 int error;
262
263 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
264 return (error);
265
266 /* Decrement the synchronous opens in the znode */
267 if ((flag & O_SYNC) && (count == 1))
268 atomic_dec_32(&zp->z_sync_cnt);
269
270 zfs_exit(zfsvfs, FTAG);
271 return (0);
272 }
273
274 static int
zfs_ioctl_getxattr(vnode_t * vp,zfsxattr_t * fsx)275 zfs_ioctl_getxattr(vnode_t *vp, zfsxattr_t *fsx)
276 {
277 znode_t *zp = VTOZ(vp);
278
279 memset(fsx, 0, sizeof (*fsx));
280 fsx->fsx_xflags = (zp->z_pflags & ZFS_PROJINHERIT) ?
281 ZFS_PROJINHERIT_FL : 0;
282 fsx->fsx_projid = zp->z_projid;
283
284 return (0);
285 }
286
287 static int
zfs_ioctl_setflags(vnode_t * vp,uint32_t ioctl_flags,xvattr_t * xva)288 zfs_ioctl_setflags(vnode_t *vp, uint32_t ioctl_flags, xvattr_t *xva)
289 {
290 uint64_t zfs_flags = VTOZ(vp)->z_pflags;
291 xoptattr_t *xoap;
292
293 if (ioctl_flags & ~(ZFS_PROJINHERIT_FL))
294 return (SET_ERROR(EOPNOTSUPP));
295
296 xva_init(xva);
297 xoap = xva_getxoptattr(xva);
298
299 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \
300 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \
301 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \
302 XVA_SET_REQ(xva, (xflag)); \
303 (xfield) = ((ioctl_flags & (iflag)) != 0); \
304 } \
305 } while (0)
306
307 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
308 xoap->xoa_projinherit);
309
310 #undef FLAG_CHANGE
311
312 return (0);
313 }
314
315 static int
zfs_ioctl_setxattr(vnode_t * vp,zfsxattr_t * fsx,cred_t * cr)316 zfs_ioctl_setxattr(vnode_t *vp, zfsxattr_t *fsx, cred_t *cr)
317 {
318 znode_t *zp = VTOZ(vp);
319 xvattr_t xva;
320 xoptattr_t *xoap;
321 int err;
322
323 if (!zpl_is_valid_projid(fsx->fsx_projid))
324 return (SET_ERROR(EINVAL));
325
326 err = zfs_ioctl_setflags(vp, fsx->fsx_xflags, &xva);
327 if (err)
328 return (err);
329
330 xoap = xva_getxoptattr(&xva);
331 XVA_SET_REQ(&xva, XAT_PROJID);
332 xoap->xoa_projid = fsx->fsx_projid;
333
334 err = zfs_setattr(zp, (vattr_t *)&xva, 0, cr, NULL);
335
336 return (err);
337 }
338
339 static int
zfs_ioctl(vnode_t * vp,ulong_t com,intptr_t data,int flag,cred_t * cred,int * rvalp)340 zfs_ioctl(vnode_t *vp, ulong_t com, intptr_t data, int flag, cred_t *cred,
341 int *rvalp)
342 {
343 (void) flag, (void) cred, (void) rvalp;
344 loff_t off;
345 int error;
346
347 switch (com) {
348 case _FIOFFS:
349 {
350 return (0);
351
352 /*
353 * The following two ioctls are used by bfu. Faking out,
354 * necessary to avoid bfu errors.
355 */
356 }
357 case _FIOGDIO:
358 case _FIOSDIO:
359 {
360 return (0);
361 }
362
363 case F_SEEK_DATA:
364 case F_SEEK_HOLE:
365 {
366 off = *(offset_t *)data;
367 error = vn_lock(vp, LK_SHARED);
368 if (error)
369 return (error);
370 /* offset parameter is in/out */
371 error = zfs_holey(VTOZ(vp), com, &off);
372 VOP_UNLOCK(vp);
373 if (error)
374 return (error);
375 *(offset_t *)data = off;
376 return (0);
377 }
378 case ZFS_IOC_FSGETXATTR: {
379 zfsxattr_t *fsx = (zfsxattr_t *)data;
380 error = vn_lock(vp, LK_SHARED);
381 if (error)
382 return (error);
383 error = zfs_ioctl_getxattr(vp, fsx);
384 VOP_UNLOCK(vp);
385 return (error);
386 }
387 case ZFS_IOC_FSSETXATTR: {
388 zfsxattr_t *fsx = (zfsxattr_t *)data;
389 error = vn_lock(vp, LK_EXCLUSIVE);
390 if (error)
391 return (error);
392 vn_seqc_write_begin(vp);
393 error = zfs_ioctl_setxattr(vp, fsx, cred);
394 vn_seqc_write_end(vp);
395 VOP_UNLOCK(vp);
396 return (error);
397 }
398 case ZFS_IOC_REWRITE: {
399 zfs_rewrite_args_t *args = (zfs_rewrite_args_t *)data;
400 if ((flag & FWRITE) == 0)
401 return (SET_ERROR(EBADF));
402 error = vn_lock(vp, LK_SHARED);
403 if (error)
404 return (error);
405 error = zfs_rewrite(VTOZ(vp), args->off, args->len,
406 args->flags, args->arg);
407 VOP_UNLOCK(vp);
408 return (error);
409 }
410 }
411 return (SET_ERROR(ENOTTY));
412 }
413
414 static vm_page_t
page_busy(vnode_t * vp,int64_t start,int64_t off,int64_t nbytes)415 page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
416 {
417 vm_object_t obj;
418 vm_page_t pp;
419 int64_t end;
420
421 /*
422 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
423 * aligned boundaries, if the range is not aligned. As a result a
424 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
425 * It may happen that all DEV_BSIZE subranges are marked clean and thus
426 * the whole page would be considered clean despite have some
427 * dirty data.
428 * For this reason we should shrink the range to DEV_BSIZE aligned
429 * boundaries before calling vm_page_clear_dirty.
430 */
431 end = rounddown2(off + nbytes, DEV_BSIZE);
432 off = roundup2(off, DEV_BSIZE);
433 nbytes = end - off;
434
435 obj = vp->v_object;
436 vm_page_grab_valid_unlocked(&pp, obj, OFF_TO_IDX(start),
437 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_NORMAL |
438 VM_ALLOC_IGN_SBUSY);
439 if (pp != NULL) {
440 ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
441 vm_object_pip_add(obj, 1);
442 pmap_remove_write(pp);
443 if (nbytes != 0)
444 vm_page_clear_dirty(pp, off, nbytes);
445 }
446 return (pp);
447 }
448
449 static void
page_unbusy(vm_page_t pp)450 page_unbusy(vm_page_t pp)
451 {
452
453 vm_page_sunbusy(pp);
454 vm_object_pip_wakeup(pp->object);
455 }
456
457 static vm_page_t
page_hold(vnode_t * vp,int64_t start)458 page_hold(vnode_t *vp, int64_t start)
459 {
460 vm_object_t obj;
461 vm_page_t m;
462
463 obj = vp->v_object;
464 vm_page_grab_valid_unlocked(&m, obj, OFF_TO_IDX(start),
465 VM_ALLOC_NOCREAT | VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY |
466 VM_ALLOC_NOBUSY);
467 return (m);
468 }
469
470 static void
page_unhold(vm_page_t pp)471 page_unhold(vm_page_t pp)
472 {
473 vm_page_unwire(pp, PQ_ACTIVE);
474 }
475
476 /*
477 * When a file is memory mapped, we must keep the IO data synchronized
478 * between the DMU cache and the memory mapped pages. What this means:
479 *
480 * On Write: If we find a memory mapped page, we write to *both*
481 * the page and the dmu buffer.
482 */
483 void
update_pages(znode_t * zp,int64_t start,int len,objset_t * os)484 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
485 {
486 vm_object_t obj;
487 struct sf_buf *sf;
488 vnode_t *vp = ZTOV(zp);
489 caddr_t va;
490 int off;
491
492 ASSERT3P(vp->v_mount, !=, NULL);
493 obj = vp->v_object;
494 ASSERT3P(obj, !=, NULL);
495
496 off = start & PAGEOFFSET;
497 vm_object_pip_add(obj, 1);
498 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
499 vm_page_t pp;
500 int nbytes = imin(PAGESIZE - off, len);
501
502 if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
503 va = zfs_map_page(pp, &sf);
504 (void) dmu_read(os, zp->z_id, start + off, nbytes,
505 va + off, DMU_READ_PREFETCH);
506 zfs_unmap_page(sf);
507 page_unbusy(pp);
508 }
509 len -= nbytes;
510 off = 0;
511 }
512 vm_object_pip_wakeup(obj);
513 }
514
515 /*
516 * Read with UIO_NOCOPY flag means that sendfile(2) requests
517 * ZFS to populate a range of page cache pages with data.
518 *
519 * NOTE: this function could be optimized to pre-allocate
520 * all pages in advance, drain exclusive busy on all of them,
521 * map them into contiguous KVA region and populate them
522 * in one single dmu_read() call.
523 */
524 int
mappedread_sf(znode_t * zp,int nbytes,zfs_uio_t * uio)525 mappedread_sf(znode_t *zp, int nbytes, zfs_uio_t *uio)
526 {
527 vnode_t *vp = ZTOV(zp);
528 objset_t *os = zp->z_zfsvfs->z_os;
529 struct sf_buf *sf;
530 vm_object_t obj;
531 vm_page_t pp;
532 int64_t start;
533 caddr_t va;
534 int len = nbytes;
535 int error = 0;
536
537 ASSERT3U(zfs_uio_segflg(uio), ==, UIO_NOCOPY);
538 ASSERT3P(vp->v_mount, !=, NULL);
539 obj = vp->v_object;
540 ASSERT3P(obj, !=, NULL);
541 ASSERT0(zfs_uio_offset(uio) & PAGEOFFSET);
542
543 for (start = zfs_uio_offset(uio); len > 0; start += PAGESIZE) {
544 int bytes = MIN(PAGESIZE, len);
545
546 pp = vm_page_grab_unlocked(obj, OFF_TO_IDX(start),
547 VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
548 if (vm_page_none_valid(pp)) {
549 va = zfs_map_page(pp, &sf);
550 error = dmu_read(os, zp->z_id, start, bytes, va,
551 DMU_READ_PREFETCH);
552 if (bytes != PAGESIZE && error == 0)
553 memset(va + bytes, 0, PAGESIZE - bytes);
554 zfs_unmap_page(sf);
555 if (error == 0) {
556 vm_page_valid(pp);
557 vm_page_activate(pp);
558 vm_page_sunbusy(pp);
559 } else {
560 zfs_vmobject_wlock(obj);
561 if (!vm_page_wired(pp) && pp->valid == 0 &&
562 vm_page_busy_tryupgrade(pp))
563 vm_page_free(pp);
564 else {
565 vm_page_deactivate_noreuse(pp);
566 vm_page_sunbusy(pp);
567 }
568 zfs_vmobject_wunlock(obj);
569 }
570 } else {
571 ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
572 vm_page_sunbusy(pp);
573 }
574 if (error)
575 break;
576 zfs_uio_advance(uio, bytes);
577 len -= bytes;
578 }
579 return (error);
580 }
581
582 /*
583 * When a file is memory mapped, we must keep the IO data synchronized
584 * between the DMU cache and the memory mapped pages. What this means:
585 *
586 * On Read: We "read" preferentially from memory mapped pages,
587 * else we default from the dmu buffer.
588 *
589 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
590 * the file is memory mapped.
591 */
592 int
mappedread(znode_t * zp,int nbytes,zfs_uio_t * uio)593 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
594 {
595 vnode_t *vp = ZTOV(zp);
596 vm_object_t obj;
597 int64_t start;
598 int len = nbytes;
599 int off;
600 int error = 0;
601
602 ASSERT3P(vp->v_mount, !=, NULL);
603 obj = vp->v_object;
604 ASSERT3P(obj, !=, NULL);
605
606 start = zfs_uio_offset(uio);
607 off = start & PAGEOFFSET;
608 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
609 vm_page_t pp;
610 uint64_t bytes = MIN(PAGESIZE - off, len);
611
612 if ((pp = page_hold(vp, start))) {
613 struct sf_buf *sf;
614 caddr_t va;
615
616 va = zfs_map_page(pp, &sf);
617 error = vn_io_fault_uiomove(va + off, bytes,
618 GET_UIO_STRUCT(uio));
619 zfs_unmap_page(sf);
620 page_unhold(pp);
621 } else {
622 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
623 uio, bytes, DMU_READ_PREFETCH);
624 }
625 len -= bytes;
626 off = 0;
627 if (error)
628 break;
629 }
630 return (error);
631 }
632
633 int
zfs_write_simple(znode_t * zp,const void * data,size_t len,loff_t pos,size_t * presid)634 zfs_write_simple(znode_t *zp, const void *data, size_t len,
635 loff_t pos, size_t *presid)
636 {
637 int error = 0;
638 ssize_t resid;
639
640 error = vn_rdwr(UIO_WRITE, ZTOV(zp), __DECONST(void *, data), len, pos,
641 UIO_SYSSPACE, IO_SYNC, kcred, NOCRED, &resid, curthread);
642
643 if (error) {
644 return (SET_ERROR(error));
645 } else if (presid == NULL) {
646 if (resid != 0) {
647 error = SET_ERROR(EIO);
648 }
649 } else {
650 *presid = resid;
651 }
652 return (error);
653 }
654
655 void
zfs_zrele_async(znode_t * zp)656 zfs_zrele_async(znode_t *zp)
657 {
658 vnode_t *vp = ZTOV(zp);
659 objset_t *os = ITOZSB(vp)->z_os;
660
661 VN_RELE_ASYNC(vp, dsl_pool_zrele_taskq(dmu_objset_pool(os)));
662 }
663
664 static int
zfs_dd_callback(struct mount * mp,void * arg,int lkflags,struct vnode ** vpp)665 zfs_dd_callback(struct mount *mp, void *arg, int lkflags, struct vnode **vpp)
666 {
667 int error;
668
669 *vpp = arg;
670 error = vn_lock(*vpp, lkflags);
671 if (error != 0)
672 vrele(*vpp);
673 return (error);
674 }
675
676 static int
zfs_lookup_lock(vnode_t * dvp,vnode_t * vp,const char * name,int lkflags)677 zfs_lookup_lock(vnode_t *dvp, vnode_t *vp, const char *name, int lkflags)
678 {
679 znode_t *zdp = VTOZ(dvp);
680 zfsvfs_t *zfsvfs __unused = zdp->z_zfsvfs;
681 int error;
682 int ltype;
683
684 if (zfsvfs->z_replay == B_FALSE)
685 ASSERT_VOP_LOCKED(dvp, __func__);
686
687 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
688 ASSERT3P(dvp, ==, vp);
689 vref(dvp);
690 ltype = lkflags & LK_TYPE_MASK;
691 if (ltype != VOP_ISLOCKED(dvp)) {
692 if (ltype == LK_EXCLUSIVE)
693 vn_lock(dvp, LK_UPGRADE | LK_RETRY);
694 else /* if (ltype == LK_SHARED) */
695 vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
696
697 /*
698 * Relock for the "." case could leave us with
699 * reclaimed vnode.
700 */
701 if (VN_IS_DOOMED(dvp)) {
702 vrele(dvp);
703 return (SET_ERROR(ENOENT));
704 }
705 }
706 return (0);
707 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
708 /*
709 * Note that in this case, dvp is the child vnode, and we
710 * are looking up the parent vnode - exactly reverse from
711 * normal operation. Unlocking dvp requires some rather
712 * tricky unlock/relock dance to prevent mp from being freed;
713 * use vn_vget_ino_gen() which takes care of all that.
714 *
715 * XXX Note that there is a time window when both vnodes are
716 * unlocked. It is possible, although highly unlikely, that
717 * during that window the parent-child relationship between
718 * the vnodes may change, for example, get reversed.
719 * In that case we would have a wrong lock order for the vnodes.
720 * All other filesystems seem to ignore this problem, so we
721 * do the same here.
722 * A potential solution could be implemented as follows:
723 * - using LK_NOWAIT when locking the second vnode and retrying
724 * if necessary
725 * - checking that the parent-child relationship still holds
726 * after locking both vnodes and retrying if it doesn't
727 */
728 error = vn_vget_ino_gen(dvp, zfs_dd_callback, vp, lkflags, &vp);
729 return (error);
730 } else {
731 error = vn_lock(vp, lkflags);
732 if (error != 0)
733 vrele(vp);
734 return (error);
735 }
736 }
737
738 /*
739 * Lookup an entry in a directory, or an extended attribute directory.
740 * If it exists, return a held vnode reference for it.
741 *
742 * IN: dvp - vnode of directory to search.
743 * nm - name of entry to lookup.
744 * pnp - full pathname to lookup [UNUSED].
745 * flags - LOOKUP_XATTR set if looking for an attribute.
746 * rdir - root directory vnode [UNUSED].
747 * cr - credentials of caller.
748 * ct - caller context
749 *
750 * OUT: vpp - vnode of located entry, NULL if not found.
751 *
752 * RETURN: 0 on success, error code on failure.
753 *
754 * Timestamps:
755 * NA
756 */
757 static int
zfs_lookup(vnode_t * dvp,const char * nm,vnode_t ** vpp,struct componentname * cnp,int nameiop,cred_t * cr,int flags,boolean_t cached)758 zfs_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp,
759 struct componentname *cnp, int nameiop, cred_t *cr, int flags,
760 boolean_t cached)
761 {
762 znode_t *zdp = VTOZ(dvp);
763 znode_t *zp;
764 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
765 seqc_t dvp_seqc;
766 int error = 0;
767
768 /*
769 * Fast path lookup, however we must skip DNLC lookup
770 * for case folding or normalizing lookups because the
771 * DNLC code only stores the passed in name. This means
772 * creating 'a' and removing 'A' on a case insensitive
773 * file system would work, but DNLC still thinks 'a'
774 * exists and won't let you create it again on the next
775 * pass through fast path.
776 */
777 if (!(flags & LOOKUP_XATTR)) {
778 if (dvp->v_type != VDIR) {
779 return (SET_ERROR(ENOTDIR));
780 } else if (zdp->z_sa_hdl == NULL) {
781 return (SET_ERROR(EIO));
782 }
783 }
784
785 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp,
786 const char *, nm);
787
788 if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
789 return (error);
790
791 dvp_seqc = vn_seqc_read_notmodify(dvp);
792
793 *vpp = NULL;
794
795 if (flags & LOOKUP_XATTR) {
796 /*
797 * If the xattr property is off, refuse the lookup request.
798 */
799 if (!(zfsvfs->z_flags & ZSB_XATTR)) {
800 zfs_exit(zfsvfs, FTAG);
801 return (SET_ERROR(EOPNOTSUPP));
802 }
803
804 /*
805 * We don't allow recursive attributes..
806 * Maybe someday we will.
807 */
808 if (zdp->z_pflags & ZFS_XATTR) {
809 zfs_exit(zfsvfs, FTAG);
810 return (SET_ERROR(EINVAL));
811 }
812
813 if ((error = zfs_get_xattrdir(VTOZ(dvp), &zp, cr, flags))) {
814 zfs_exit(zfsvfs, FTAG);
815 return (error);
816 }
817 *vpp = ZTOV(zp);
818
819 /*
820 * Do we have permission to get into attribute directory?
821 */
822 if (flags & LOOKUP_NAMED_ATTR)
823 error = zfs_zaccess(zp, ACE_EXECUTE, V_NAMEDATTR,
824 B_FALSE, cr, NULL);
825 else
826 error = zfs_zaccess(zp, ACE_EXECUTE, 0, B_FALSE, cr,
827 NULL);
828 if (error) {
829 vrele(ZTOV(zp));
830 }
831
832 zfs_exit(zfsvfs, FTAG);
833 return (error);
834 }
835
836 /*
837 * Check accessibility of directory if we're not coming in via
838 * VOP_CACHEDLOOKUP.
839 */
840 if (!cached) {
841 #ifdef NOEXECCHECK
842 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
843 cnp->cn_flags &= ~NOEXECCHECK;
844 } else
845 #endif
846 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
847 NULL))) {
848 zfs_exit(zfsvfs, FTAG);
849 return (error);
850 }
851 }
852
853 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
854 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
855 zfs_exit(zfsvfs, FTAG);
856 return (SET_ERROR(EILSEQ));
857 }
858
859
860 /*
861 * First handle the special cases.
862 */
863 if ((cnp->cn_flags & ISDOTDOT) != 0) {
864 /*
865 * If we are a snapshot mounted under .zfs, return
866 * the vp for the snapshot directory.
867 */
868 if (zdp->z_id == zfsvfs->z_root && zfsvfs->z_parent != zfsvfs) {
869 struct componentname cn;
870 vnode_t *zfsctl_vp;
871 int ltype;
872
873 zfs_exit(zfsvfs, FTAG);
874 ltype = VOP_ISLOCKED(dvp);
875 VOP_UNLOCK(dvp);
876 error = zfsctl_root(zfsvfs->z_parent, LK_SHARED,
877 &zfsctl_vp);
878 if (error == 0) {
879 cn.cn_nameptr = "snapshot";
880 cn.cn_namelen = strlen(cn.cn_nameptr);
881 cn.cn_nameiop = cnp->cn_nameiop;
882 cn.cn_flags = cnp->cn_flags & ~ISDOTDOT;
883 cn.cn_lkflags = cnp->cn_lkflags;
884 error = VOP_LOOKUP(zfsctl_vp, vpp, &cn);
885 vput(zfsctl_vp);
886 }
887 vn_lock(dvp, ltype | LK_RETRY);
888 return (error);
889 }
890 }
891 if (zfs_has_ctldir(zdp) && strcmp(nm, ZFS_CTLDIR_NAME) == 0) {
892 zfs_exit(zfsvfs, FTAG);
893 if (zfsvfs->z_show_ctldir == ZFS_SNAPDIR_DISABLED)
894 return (SET_ERROR(ENOENT));
895 if ((cnp->cn_flags & ISLASTCN) != 0 && nameiop != LOOKUP)
896 return (SET_ERROR(ENOTSUP));
897 error = zfsctl_root(zfsvfs, cnp->cn_lkflags, vpp);
898 return (error);
899 }
900
901 /*
902 * The loop is retry the lookup if the parent-child relationship
903 * changes during the dot-dot locking complexities.
904 */
905 for (;;) {
906 uint64_t parent;
907
908 error = zfs_dirlook(zdp, nm, &zp);
909 if (error == 0)
910 *vpp = ZTOV(zp);
911
912 zfs_exit(zfsvfs, FTAG);
913 if (error != 0)
914 break;
915
916 error = zfs_lookup_lock(dvp, *vpp, nm, cnp->cn_lkflags);
917 if (error != 0) {
918 /*
919 * If we've got a locking error, then the vnode
920 * got reclaimed because of a force unmount.
921 * We never enter doomed vnodes into the name cache.
922 */
923 *vpp = NULL;
924 return (error);
925 }
926
927 if ((cnp->cn_flags & ISDOTDOT) == 0)
928 break;
929
930 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) {
931 vput(ZTOV(zp));
932 *vpp = NULL;
933 return (error);
934 }
935 if (zdp->z_sa_hdl == NULL) {
936 error = SET_ERROR(EIO);
937 } else {
938 error = sa_lookup(zdp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
939 &parent, sizeof (parent));
940 }
941 if (error != 0) {
942 zfs_exit(zfsvfs, FTAG);
943 vput(ZTOV(zp));
944 break;
945 }
946 if (zp->z_id == parent) {
947 zfs_exit(zfsvfs, FTAG);
948 break;
949 }
950 vput(ZTOV(zp));
951 }
952
953 if (error != 0)
954 *vpp = NULL;
955
956 /* Translate errors and add SAVENAME when needed. */
957 if (cnp->cn_flags & ISLASTCN) {
958 switch (nameiop) {
959 case CREATE:
960 case RENAME:
961 if (error == ENOENT) {
962 error = EJUSTRETURN;
963 #if __FreeBSD_version < 1400068
964 cnp->cn_flags |= SAVENAME;
965 #endif
966 break;
967 }
968 zfs_fallthrough;
969 case DELETE:
970 #if __FreeBSD_version < 1400068
971 if (error == 0)
972 cnp->cn_flags |= SAVENAME;
973 #endif
974 break;
975 }
976 }
977
978 if ((cnp->cn_flags & ISDOTDOT) != 0) {
979 /*
980 * FIXME: zfs_lookup_lock relocks vnodes and does nothing to
981 * handle races. In particular different callers may end up
982 * with different vnodes and will try to add conflicting
983 * entries to the namecache.
984 *
985 * While finding different result may be acceptable in face
986 * of concurrent modification, adding conflicting entries
987 * trips over an assert in the namecache.
988 *
989 * Ultimately let an entry through once everything settles.
990 */
991 if (!vn_seqc_consistent(dvp, dvp_seqc)) {
992 cnp->cn_flags &= ~MAKEENTRY;
993 }
994 }
995
996 /* Insert name into cache (as non-existent) if appropriate. */
997 if (zfsvfs->z_use_namecache && !zfsvfs->z_replay &&
998 error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
999 cache_enter(dvp, NULL, cnp);
1000
1001 /* Insert name into cache if appropriate. */
1002 if (zfsvfs->z_use_namecache && !zfsvfs->z_replay &&
1003 error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1004 if (!(cnp->cn_flags & ISLASTCN) ||
1005 (nameiop != DELETE && nameiop != RENAME)) {
1006 cache_enter(dvp, *vpp, cnp);
1007 }
1008 }
1009
1010 return (error);
1011 }
1012
1013 static inline bool
is_nametoolong(zfsvfs_t * zfsvfs,const char * name)1014 is_nametoolong(zfsvfs_t *zfsvfs, const char *name)
1015 {
1016 size_t dlen = strlen(name);
1017 return ((!zfsvfs->z_longname && dlen >= ZAP_MAXNAMELEN) ||
1018 dlen >= ZAP_MAXNAMELEN_NEW);
1019 }
1020
1021 /*
1022 * Attempt to create a new entry in a directory. If the entry
1023 * already exists, truncate the file if permissible, else return
1024 * an error. Return the vp of the created or trunc'd file.
1025 *
1026 * IN: dvp - vnode of directory to put new file entry in.
1027 * name - name of new file entry.
1028 * vap - attributes of new file.
1029 * excl - flag indicating exclusive or non-exclusive mode.
1030 * mode - mode to open file with.
1031 * cr - credentials of caller.
1032 * flag - large file flag [UNUSED].
1033 * ct - caller context
1034 * vsecp - ACL to be set
1035 * mnt_ns - Unused on FreeBSD
1036 *
1037 * OUT: vpp - vnode of created or trunc'd entry.
1038 *
1039 * RETURN: 0 on success, error code on failure.
1040 *
1041 * Timestamps:
1042 * dvp - ctime|mtime updated if new entry created
1043 * vp - ctime|mtime always, atime if new
1044 */
1045 int
zfs_create(znode_t * dzp,const char * name,vattr_t * vap,int excl,int mode,znode_t ** zpp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)1046 zfs_create(znode_t *dzp, const char *name, vattr_t *vap, int excl, int mode,
1047 znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1048 {
1049 (void) excl, (void) mode, (void) flag;
1050 znode_t *zp;
1051 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1052 zilog_t *zilog;
1053 objset_t *os;
1054 dmu_tx_t *tx;
1055 int error;
1056 uid_t uid = crgetuid(cr);
1057 gid_t gid = crgetgid(cr);
1058 uint64_t projid = ZFS_DEFAULT_PROJID;
1059 zfs_acl_ids_t acl_ids;
1060 boolean_t fuid_dirtied;
1061 uint64_t txtype;
1062 #ifdef DEBUG_VFS_LOCKS
1063 vnode_t *dvp = ZTOV(dzp);
1064 #endif
1065
1066 if (is_nametoolong(zfsvfs, name))
1067 return (SET_ERROR(ENAMETOOLONG));
1068
1069 /*
1070 * If we have an ephemeral id, ACL, or XVATTR then
1071 * make sure file system is at proper version
1072 */
1073 if (zfsvfs->z_use_fuids == B_FALSE &&
1074 (vsecp || (vap->va_mask & AT_XVATTR) ||
1075 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1076 return (SET_ERROR(EINVAL));
1077
1078 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1079 return (error);
1080 os = zfsvfs->z_os;
1081 zilog = zfsvfs->z_log;
1082
1083 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1084 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1085 zfs_exit(zfsvfs, FTAG);
1086 return (SET_ERROR(EILSEQ));
1087 }
1088
1089 if (vap->va_mask & AT_XVATTR) {
1090 if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap,
1091 crgetuid(cr), cr, vap->va_type)) != 0) {
1092 zfs_exit(zfsvfs, FTAG);
1093 return (error);
1094 }
1095 }
1096
1097 *zpp = NULL;
1098
1099 if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1100 vap->va_mode &= ~S_ISVTX;
1101
1102 error = zfs_dirent_lookup(dzp, name, &zp, ZNEW);
1103 if (error) {
1104 zfs_exit(zfsvfs, FTAG);
1105 return (error);
1106 }
1107 ASSERT0P(zp);
1108
1109 /*
1110 * Create a new file object and update the directory
1111 * to reference it.
1112 */
1113 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
1114 goto out;
1115 }
1116
1117 /*
1118 * We only support the creation of regular files in
1119 * extended attribute directories.
1120 */
1121
1122 if ((dzp->z_pflags & ZFS_XATTR) &&
1123 (vap->va_type != VREG)) {
1124 error = SET_ERROR(EINVAL);
1125 goto out;
1126 }
1127
1128 if ((error = zfs_acl_ids_create(dzp, 0, vap,
1129 cr, vsecp, &acl_ids, NULL)) != 0)
1130 goto out;
1131
1132 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1133 projid = zfs_inherit_projid(dzp);
1134 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1135 zfs_acl_ids_free(&acl_ids);
1136 error = SET_ERROR(EDQUOT);
1137 goto out;
1138 }
1139
1140 getnewvnode_reserve();
1141
1142 tx = dmu_tx_create(os);
1143
1144 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1145 ZFS_SA_BASE_ATTR_SIZE);
1146
1147 fuid_dirtied = zfsvfs->z_fuid_dirty;
1148 if (fuid_dirtied)
1149 zfs_fuid_txhold(zfsvfs, tx);
1150 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1151 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1152 if (!zfsvfs->z_use_sa &&
1153 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1154 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1155 0, acl_ids.z_aclp->z_acl_bytes);
1156 }
1157 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1158 if (error) {
1159 zfs_acl_ids_free(&acl_ids);
1160 dmu_tx_abort(tx);
1161 getnewvnode_drop_reserve();
1162 zfs_exit(zfsvfs, FTAG);
1163 return (error);
1164 }
1165 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1166
1167 error = zfs_link_create(dzp, name, zp, tx, ZNEW);
1168 if (error != 0) {
1169 /*
1170 * Since, we failed to add the directory entry for it,
1171 * delete the newly created dnode.
1172 */
1173 zfs_znode_delete(zp, tx);
1174 VOP_UNLOCK(ZTOV(zp));
1175 zrele(zp);
1176 zfs_acl_ids_free(&acl_ids);
1177 dmu_tx_commit(tx);
1178 getnewvnode_drop_reserve();
1179 goto out;
1180 }
1181
1182 if (fuid_dirtied)
1183 zfs_fuid_sync(zfsvfs, tx);
1184
1185 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1186 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1187 vsecp, acl_ids.z_fuidp, vap);
1188 zfs_acl_ids_free(&acl_ids);
1189 dmu_tx_commit(tx);
1190
1191 getnewvnode_drop_reserve();
1192
1193 out:
1194 VNCHECKREF(dvp);
1195 if (error == 0) {
1196 *zpp = zp;
1197 }
1198
1199 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1200 error = zil_commit(zilog, 0);
1201
1202 zfs_exit(zfsvfs, FTAG);
1203 return (error);
1204 }
1205
1206 /*
1207 * Remove an entry from a directory.
1208 *
1209 * IN: dvp - vnode of directory to remove entry from.
1210 * name - name of entry to remove.
1211 * cr - credentials of caller.
1212 * ct - caller context
1213 * flags - case flags
1214 *
1215 * RETURN: 0 on success, error code on failure.
1216 *
1217 * Timestamps:
1218 * dvp - ctime|mtime
1219 * vp - ctime (if nlink > 0)
1220 */
1221 static int
zfs_remove_(vnode_t * dvp,vnode_t * vp,const char * name,cred_t * cr)1222 zfs_remove_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr)
1223 {
1224 znode_t *dzp = VTOZ(dvp);
1225 znode_t *zp;
1226 znode_t *xzp;
1227 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1228 zilog_t *zilog;
1229 uint64_t xattr_obj;
1230 uint64_t obj = 0;
1231 dmu_tx_t *tx;
1232 boolean_t unlinked;
1233 uint64_t txtype;
1234 int error;
1235
1236
1237 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1238 return (error);
1239 zp = VTOZ(vp);
1240 if ((error = zfs_verify_zp(zp)) != 0) {
1241 zfs_exit(zfsvfs, FTAG);
1242 return (error);
1243 }
1244 zilog = zfsvfs->z_log;
1245
1246 xattr_obj = 0;
1247 xzp = NULL;
1248
1249 if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) {
1250 goto out;
1251 }
1252
1253 /*
1254 * Need to use rmdir for removing directories.
1255 */
1256 if (vp->v_type == VDIR) {
1257 error = SET_ERROR(EPERM);
1258 goto out;
1259 }
1260
1261 vnevent_remove(vp, dvp, name, ct);
1262
1263 obj = zp->z_id;
1264
1265 /* are there any extended attributes? */
1266 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1267 &xattr_obj, sizeof (xattr_obj));
1268 if (error == 0 && xattr_obj) {
1269 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1270 ASSERT0(error);
1271 }
1272
1273 /*
1274 * We may delete the znode now, or we may put it in the unlinked set;
1275 * it depends on whether we're the last link, and on whether there are
1276 * other holds on the vnode. So we dmu_tx_hold() the right things to
1277 * allow for either case.
1278 */
1279 tx = dmu_tx_create(zfsvfs->z_os);
1280 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1281 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1282 zfs_sa_upgrade_txholds(tx, zp);
1283 zfs_sa_upgrade_txholds(tx, dzp);
1284
1285 if (xzp) {
1286 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1287 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1288 }
1289
1290 /* charge as an update -- would be nice not to charge at all */
1291 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1292
1293 /*
1294 * Mark this transaction as typically resulting in a net free of space
1295 */
1296 dmu_tx_mark_netfree(tx);
1297
1298 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1299 if (error) {
1300 dmu_tx_abort(tx);
1301 zfs_exit(zfsvfs, FTAG);
1302 return (error);
1303 }
1304
1305 /*
1306 * Remove the directory entry.
1307 */
1308 error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, &unlinked);
1309
1310 if (error) {
1311 dmu_tx_commit(tx);
1312 goto out;
1313 }
1314
1315 if (unlinked) {
1316 zfs_unlinked_add(zp, tx);
1317 vp->v_vflag |= VV_NOSYNC;
1318 }
1319 /* XXX check changes to linux vnops */
1320 txtype = TX_REMOVE;
1321 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1322
1323 dmu_tx_commit(tx);
1324 out:
1325
1326 if (xzp)
1327 vrele(ZTOV(xzp));
1328
1329 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1330 error = zil_commit(zilog, 0);
1331
1332 zfs_exit(zfsvfs, FTAG);
1333 return (error);
1334 }
1335
1336
1337 static int
zfs_lookup_internal(znode_t * dzp,const char * name,vnode_t ** vpp,struct componentname * cnp,int nameiop)1338 zfs_lookup_internal(znode_t *dzp, const char *name, vnode_t **vpp,
1339 struct componentname *cnp, int nameiop)
1340 {
1341 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1342 int error;
1343
1344 cnp->cn_nameptr = __DECONST(char *, name);
1345 cnp->cn_namelen = strlen(name);
1346 cnp->cn_nameiop = nameiop;
1347 cnp->cn_flags = ISLASTCN;
1348 #if __FreeBSD_version < 1400068
1349 cnp->cn_flags |= SAVENAME;
1350 #endif
1351 cnp->cn_lkflags = LK_EXCLUSIVE | LK_RETRY;
1352 cnp->cn_cred = kcred;
1353 #if __FreeBSD_version < 1400037
1354 cnp->cn_thread = curthread;
1355 #endif
1356
1357 if (zfsvfs->z_use_namecache && !zfsvfs->z_replay) {
1358 struct vop_lookup_args a;
1359
1360 a.a_gen.a_desc = &vop_lookup_desc;
1361 a.a_dvp = ZTOV(dzp);
1362 a.a_vpp = vpp;
1363 a.a_cnp = cnp;
1364 error = vfs_cache_lookup(&a);
1365 } else {
1366 error = zfs_lookup(ZTOV(dzp), name, vpp, cnp, nameiop, kcred, 0,
1367 B_FALSE);
1368 }
1369 #ifdef ZFS_DEBUG
1370 if (error) {
1371 printf("got error %d on name %s on op %d\n", error, name,
1372 nameiop);
1373 kdb_backtrace();
1374 }
1375 #endif
1376 return (error);
1377 }
1378
1379 int
zfs_remove(znode_t * dzp,const char * name,cred_t * cr,int flags)1380 zfs_remove(znode_t *dzp, const char *name, cred_t *cr, int flags)
1381 {
1382 vnode_t *vp;
1383 int error;
1384 struct componentname cn;
1385
1386 if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE)))
1387 return (error);
1388
1389 error = zfs_remove_(ZTOV(dzp), vp, name, cr);
1390 vput(vp);
1391 return (error);
1392 }
1393 /*
1394 * Create a new directory and insert it into dvp using the name
1395 * provided. Return a pointer to the inserted directory.
1396 *
1397 * IN: dvp - vnode of directory to add subdir to.
1398 * dirname - name of new directory.
1399 * vap - attributes of new directory.
1400 * cr - credentials of caller.
1401 * ct - caller context
1402 * flags - case flags
1403 * vsecp - ACL to be set
1404 * mnt_ns - Unused on FreeBSD
1405 *
1406 * OUT: vpp - vnode of created directory.
1407 *
1408 * RETURN: 0 on success, error code on failure.
1409 *
1410 * Timestamps:
1411 * dvp - ctime|mtime updated
1412 * vp - ctime|mtime|atime updated
1413 */
1414 int
zfs_mkdir(znode_t * dzp,const char * dirname,vattr_t * vap,znode_t ** zpp,cred_t * cr,int flags,vsecattr_t * vsecp,zidmap_t * mnt_ns)1415 zfs_mkdir(znode_t *dzp, const char *dirname, vattr_t *vap, znode_t **zpp,
1416 cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1417 {
1418 (void) flags, (void) vsecp;
1419 znode_t *zp;
1420 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1421 zilog_t *zilog;
1422 uint64_t txtype;
1423 dmu_tx_t *tx;
1424 int error;
1425 uid_t uid = crgetuid(cr);
1426 gid_t gid = crgetgid(cr);
1427 zfs_acl_ids_t acl_ids;
1428 boolean_t fuid_dirtied;
1429
1430 ASSERT3U(vap->va_type, ==, VDIR);
1431
1432 if (is_nametoolong(zfsvfs, dirname))
1433 return (SET_ERROR(ENAMETOOLONG));
1434
1435 /*
1436 * If we have an ephemeral id, ACL, or XVATTR then
1437 * make sure file system is at proper version
1438 */
1439 if (zfsvfs->z_use_fuids == B_FALSE &&
1440 ((vap->va_mask & AT_XVATTR) ||
1441 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1442 return (SET_ERROR(EINVAL));
1443
1444 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1445 return (error);
1446 zilog = zfsvfs->z_log;
1447
1448 if (dzp->z_pflags & ZFS_XATTR) {
1449 zfs_exit(zfsvfs, FTAG);
1450 return (SET_ERROR(EINVAL));
1451 }
1452
1453 if (zfsvfs->z_utf8 && u8_validate(dirname,
1454 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1455 zfs_exit(zfsvfs, FTAG);
1456 return (SET_ERROR(EILSEQ));
1457 }
1458
1459 if (vap->va_mask & AT_XVATTR) {
1460 if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap,
1461 crgetuid(cr), cr, vap->va_type)) != 0) {
1462 zfs_exit(zfsvfs, FTAG);
1463 return (error);
1464 }
1465 }
1466
1467 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1468 NULL, &acl_ids, NULL)) != 0) {
1469 zfs_exit(zfsvfs, FTAG);
1470 return (error);
1471 }
1472
1473 /*
1474 * First make sure the new directory doesn't exist.
1475 *
1476 * Existence is checked first to make sure we don't return
1477 * EACCES instead of EEXIST which can cause some applications
1478 * to fail.
1479 */
1480 *zpp = NULL;
1481
1482 if ((error = zfs_dirent_lookup(dzp, dirname, &zp, ZNEW))) {
1483 zfs_acl_ids_free(&acl_ids);
1484 zfs_exit(zfsvfs, FTAG);
1485 return (error);
1486 }
1487 ASSERT0P(zp);
1488
1489 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1490 mnt_ns))) {
1491 zfs_acl_ids_free(&acl_ids);
1492 zfs_exit(zfsvfs, FTAG);
1493 return (error);
1494 }
1495
1496 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1497 zfs_acl_ids_free(&acl_ids);
1498 zfs_exit(zfsvfs, FTAG);
1499 return (SET_ERROR(EDQUOT));
1500 }
1501
1502 /*
1503 * Add a new entry to the directory.
1504 */
1505 getnewvnode_reserve();
1506 tx = dmu_tx_create(zfsvfs->z_os);
1507 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1508 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1509 fuid_dirtied = zfsvfs->z_fuid_dirty;
1510 if (fuid_dirtied)
1511 zfs_fuid_txhold(zfsvfs, tx);
1512 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1513 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1514 acl_ids.z_aclp->z_acl_bytes);
1515 }
1516
1517 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1518 ZFS_SA_BASE_ATTR_SIZE);
1519
1520 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1521 if (error) {
1522 zfs_acl_ids_free(&acl_ids);
1523 dmu_tx_abort(tx);
1524 getnewvnode_drop_reserve();
1525 zfs_exit(zfsvfs, FTAG);
1526 return (error);
1527 }
1528
1529 /*
1530 * Create new node.
1531 */
1532 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1533
1534 /*
1535 * Now put new name in parent dir.
1536 */
1537 error = zfs_link_create(dzp, dirname, zp, tx, ZNEW);
1538 if (error != 0) {
1539 zfs_znode_delete(zp, tx);
1540 VOP_UNLOCK(ZTOV(zp));
1541 zrele(zp);
1542 goto out;
1543 }
1544
1545 if (fuid_dirtied)
1546 zfs_fuid_sync(zfsvfs, tx);
1547
1548 *zpp = zp;
1549
1550 txtype = zfs_log_create_txtype(Z_DIR, NULL, vap);
1551 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, NULL,
1552 acl_ids.z_fuidp, vap);
1553
1554 out:
1555 zfs_acl_ids_free(&acl_ids);
1556
1557 dmu_tx_commit(tx);
1558
1559 getnewvnode_drop_reserve();
1560
1561 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1562 error = zil_commit(zilog, 0);
1563
1564 zfs_exit(zfsvfs, FTAG);
1565 return (error);
1566 }
1567
1568 /*
1569 * Remove a directory subdir entry. If the current working
1570 * directory is the same as the subdir to be removed, the
1571 * remove will fail.
1572 *
1573 * IN: dvp - vnode of directory to remove from.
1574 * name - name of directory to be removed.
1575 * cwd - vnode of current working directory.
1576 * cr - credentials of caller.
1577 * ct - caller context
1578 * flags - case flags
1579 *
1580 * RETURN: 0 on success, error code on failure.
1581 *
1582 * Timestamps:
1583 * dvp - ctime|mtime updated
1584 */
1585 static int
zfs_rmdir_(vnode_t * dvp,vnode_t * vp,const char * name,cred_t * cr)1586 zfs_rmdir_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr)
1587 {
1588 znode_t *dzp = VTOZ(dvp);
1589 znode_t *zp = VTOZ(vp);
1590 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1591 zilog_t *zilog;
1592 dmu_tx_t *tx;
1593 int error;
1594
1595 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1596 return (error);
1597 if ((error = zfs_verify_zp(zp)) != 0) {
1598 zfs_exit(zfsvfs, FTAG);
1599 return (error);
1600 }
1601 zilog = zfsvfs->z_log;
1602
1603
1604 if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) {
1605 goto out;
1606 }
1607
1608 if (vp->v_type != VDIR) {
1609 error = SET_ERROR(ENOTDIR);
1610 goto out;
1611 }
1612
1613 vnevent_rmdir(vp, dvp, name, ct);
1614
1615 tx = dmu_tx_create(zfsvfs->z_os);
1616 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1617 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1618 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1619 zfs_sa_upgrade_txholds(tx, zp);
1620 zfs_sa_upgrade_txholds(tx, dzp);
1621 dmu_tx_mark_netfree(tx);
1622 error = dmu_tx_assign(tx, DMU_TX_WAIT);
1623 if (error) {
1624 dmu_tx_abort(tx);
1625 zfs_exit(zfsvfs, FTAG);
1626 return (error);
1627 }
1628
1629 error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, NULL);
1630
1631 if (error == 0) {
1632 uint64_t txtype = TX_RMDIR;
1633 zfs_log_remove(zilog, tx, txtype, dzp, name,
1634 ZFS_NO_OBJECT, B_FALSE);
1635 }
1636
1637 dmu_tx_commit(tx);
1638
1639 if (zfsvfs->z_use_namecache)
1640 cache_vop_rmdir(dvp, vp);
1641 out:
1642 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1643 error = zil_commit(zilog, 0);
1644
1645 zfs_exit(zfsvfs, FTAG);
1646 return (error);
1647 }
1648
1649 int
zfs_rmdir(znode_t * dzp,const char * name,znode_t * cwd,cred_t * cr,int flags)1650 zfs_rmdir(znode_t *dzp, const char *name, znode_t *cwd, cred_t *cr, int flags)
1651 {
1652 struct componentname cn;
1653 vnode_t *vp;
1654 int error;
1655
1656 if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE)))
1657 return (error);
1658
1659 error = zfs_rmdir_(ZTOV(dzp), vp, name, cr);
1660 vput(vp);
1661 return (error);
1662 }
1663
1664 /*
1665 * Read as many directory entries as will fit into the provided
1666 * buffer from the given directory cursor position (specified in
1667 * the uio structure).
1668 *
1669 * IN: vp - vnode of directory to read.
1670 * uio - structure supplying read location, range info,
1671 * and return buffer.
1672 * cr - credentials of caller.
1673 * ct - caller context
1674 *
1675 * OUT: uio - updated offset and range, buffer filled.
1676 * eofp - set to true if end-of-file detected.
1677 * ncookies- number of entries in cookies
1678 * cookies - offsets to directory entries
1679 *
1680 * RETURN: 0 on success, error code on failure.
1681 *
1682 * Timestamps:
1683 * vp - atime updated
1684 *
1685 * Note that the low 4 bits of the cookie returned by zap is always zero.
1686 * This allows us to use the low range for "special" directory entries:
1687 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1688 * we use the offset 2 for the '.zfs' directory.
1689 */
1690 static int
zfs_readdir(vnode_t * vp,zfs_uio_t * uio,cred_t * cr,int * eofp,int * ncookies,cookie_t ** cookies)1691 zfs_readdir(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, int *eofp,
1692 int *ncookies, cookie_t **cookies)
1693 {
1694 znode_t *zp = VTOZ(vp);
1695 iovec_t *iovp;
1696 dirent64_t *odp;
1697 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1698 objset_t *os;
1699 caddr_t outbuf;
1700 size_t bufsize;
1701 zap_cursor_t zc;
1702 zap_attribute_t *zap;
1703 uint_t bytes_wanted;
1704 uint64_t offset; /* must be unsigned; checks for < 1 */
1705 uint64_t parent;
1706 int local_eof;
1707 int outcount;
1708 int error;
1709 uint8_t prefetch;
1710 uint8_t type;
1711 int ncooks;
1712 cookie_t *cooks = NULL;
1713
1714 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1715 return (error);
1716
1717 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1718 &parent, sizeof (parent))) != 0) {
1719 zfs_exit(zfsvfs, FTAG);
1720 return (error);
1721 }
1722
1723 /*
1724 * If we are not given an eof variable,
1725 * use a local one.
1726 */
1727 if (eofp == NULL)
1728 eofp = &local_eof;
1729
1730 /*
1731 * Check for valid iov_len.
1732 */
1733 if (GET_UIO_STRUCT(uio)->uio_iov->iov_len <= 0) {
1734 zfs_exit(zfsvfs, FTAG);
1735 return (SET_ERROR(EINVAL));
1736 }
1737
1738 /*
1739 * Quit if directory has been removed (posix)
1740 */
1741 if ((*eofp = (zp->z_unlinked != 0)) != 0) {
1742 zfs_exit(zfsvfs, FTAG);
1743 return (0);
1744 }
1745
1746 error = 0;
1747 os = zfsvfs->z_os;
1748 offset = zfs_uio_offset(uio);
1749 prefetch = zp->z_zn_prefetch;
1750 zap = zap_attribute_long_alloc();
1751
1752 /*
1753 * Initialize the iterator cursor.
1754 */
1755 if (offset <= 3) {
1756 /*
1757 * Start iteration from the beginning of the directory.
1758 */
1759 zap_cursor_init(&zc, os, zp->z_id);
1760 } else {
1761 /*
1762 * The offset is a serialized cursor.
1763 */
1764 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1765 }
1766
1767 /*
1768 * Get space to change directory entries into fs independent format.
1769 */
1770 iovp = GET_UIO_STRUCT(uio)->uio_iov;
1771 bytes_wanted = iovp->iov_len;
1772 if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1) {
1773 bufsize = bytes_wanted;
1774 outbuf = kmem_alloc(bufsize, KM_SLEEP);
1775 odp = (struct dirent64 *)outbuf;
1776 } else {
1777 bufsize = bytes_wanted;
1778 outbuf = NULL;
1779 odp = (struct dirent64 *)iovp->iov_base;
1780 }
1781
1782 if (ncookies != NULL) {
1783 /*
1784 * Minimum entry size is dirent size and 1 byte for a file name.
1785 */
1786 ncooks = zfs_uio_resid(uio) / (sizeof (struct dirent) -
1787 sizeof (((struct dirent *)NULL)->d_name) + 1);
1788 cooks = malloc(ncooks * sizeof (*cooks), M_TEMP, M_WAITOK);
1789 *cookies = cooks;
1790 *ncookies = ncooks;
1791 }
1792
1793 /*
1794 * Transform to file-system independent format
1795 */
1796 outcount = 0;
1797 while (outcount < bytes_wanted) {
1798 ino64_t objnum;
1799 ushort_t reclen;
1800 off64_t *next = NULL;
1801
1802 /*
1803 * Special case `.', `..', and `.zfs'.
1804 */
1805 if (offset == 0) {
1806 (void) strcpy(zap->za_name, ".");
1807 zap->za_normalization_conflict = 0;
1808 objnum = zp->z_id;
1809 type = DT_DIR;
1810 } else if (offset == 1) {
1811 (void) strcpy(zap->za_name, "..");
1812 zap->za_normalization_conflict = 0;
1813 objnum = parent;
1814 type = DT_DIR;
1815 } else if (offset == 2 && zfs_show_ctldir(zp)) {
1816 (void) strcpy(zap->za_name, ZFS_CTLDIR_NAME);
1817 zap->za_normalization_conflict = 0;
1818 objnum = ZFSCTL_INO_ROOT;
1819 type = DT_DIR;
1820 } else {
1821 /*
1822 * Grab next entry.
1823 */
1824 if ((error = zap_cursor_retrieve(&zc, zap))) {
1825 if ((*eofp = (error == ENOENT)) != 0)
1826 break;
1827 else
1828 goto update;
1829 }
1830
1831 if (zap->za_integer_length != 8 ||
1832 zap->za_num_integers != 1) {
1833 cmn_err(CE_WARN, "zap_readdir: bad directory "
1834 "entry, obj = %lld, offset = %lld\n",
1835 (u_longlong_t)zp->z_id,
1836 (u_longlong_t)offset);
1837 error = SET_ERROR(ENXIO);
1838 goto update;
1839 }
1840
1841 objnum = ZFS_DIRENT_OBJ(zap->za_first_integer);
1842 /*
1843 * MacOS X can extract the object type here such as:
1844 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1845 */
1846 type = ZFS_DIRENT_TYPE(zap->za_first_integer);
1847 }
1848
1849 reclen = DIRENT64_RECLEN(strlen(zap->za_name));
1850
1851 /*
1852 * Will this entry fit in the buffer?
1853 */
1854 if (outcount + reclen > bufsize) {
1855 /*
1856 * Did we manage to fit anything in the buffer?
1857 */
1858 if (!outcount) {
1859 error = SET_ERROR(EINVAL);
1860 goto update;
1861 }
1862 break;
1863 }
1864 /*
1865 * Add normal entry:
1866 */
1867 odp->d_ino = objnum;
1868 odp->d_reclen = reclen;
1869 odp->d_namlen = strlen(zap->za_name);
1870 /* NOTE: d_off is the offset for the *next* entry. */
1871 next = &odp->d_off;
1872 strlcpy(odp->d_name, zap->za_name, odp->d_namlen + 1);
1873 odp->d_type = type;
1874 dirent_terminate(odp);
1875 odp = (dirent64_t *)((intptr_t)odp + reclen);
1876
1877 outcount += reclen;
1878
1879 ASSERT3S(outcount, <=, bufsize);
1880
1881 if (prefetch)
1882 dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1883
1884 /*
1885 * Move to the next entry, fill in the previous offset.
1886 */
1887 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1888 zap_cursor_advance(&zc);
1889 offset = zap_cursor_serialize(&zc);
1890 } else {
1891 offset += 1;
1892 }
1893
1894 /* Fill the offset right after advancing the cursor. */
1895 if (next != NULL)
1896 *next = offset;
1897 if (cooks != NULL) {
1898 *cooks++ = offset;
1899 ncooks--;
1900 KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
1901 }
1902 }
1903 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1904
1905 /* Subtract unused cookies */
1906 if (ncookies != NULL)
1907 *ncookies -= ncooks;
1908
1909 if (zfs_uio_segflg(uio) == UIO_SYSSPACE && zfs_uio_iovcnt(uio) == 1) {
1910 iovp->iov_base += outcount;
1911 iovp->iov_len -= outcount;
1912 zfs_uio_resid(uio) -= outcount;
1913 } else if ((error =
1914 zfs_uiomove(outbuf, (long)outcount, UIO_READ, uio))) {
1915 /*
1916 * Reset the pointer.
1917 */
1918 offset = zfs_uio_offset(uio);
1919 }
1920
1921 update:
1922 zap_cursor_fini(&zc);
1923 zap_attribute_free(zap);
1924 if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1)
1925 kmem_free(outbuf, bufsize);
1926
1927 if (error == ENOENT)
1928 error = 0;
1929
1930 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
1931
1932 zfs_uio_setoffset(uio, offset);
1933 zfs_exit(zfsvfs, FTAG);
1934 if (error != 0 && cookies != NULL) {
1935 free(*cookies, M_TEMP);
1936 *cookies = NULL;
1937 *ncookies = 0;
1938 }
1939 return (error);
1940 }
1941
1942 /*
1943 * Get the requested file attributes and place them in the provided
1944 * vattr structure.
1945 *
1946 * IN: vp - vnode of file.
1947 * vap - va_mask identifies requested attributes.
1948 * If AT_XVATTR set, then optional attrs are requested
1949 * flags - ATTR_NOACLCHECK (CIFS server context)
1950 * cr - credentials of caller.
1951 *
1952 * OUT: vap - attribute values.
1953 *
1954 * RETURN: 0 (always succeeds).
1955 */
1956 static int
zfs_getattr(vnode_t * vp,vattr_t * vap,int flags,cred_t * cr)1957 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)
1958 {
1959 znode_t *zp = VTOZ(vp);
1960 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1961 int error = 0;
1962 uint32_t blksize;
1963 u_longlong_t nblocks;
1964 uint64_t mtime[2], ctime[2], crtime[2], rdev;
1965 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
1966 xoptattr_t *xoap = NULL;
1967 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1968 sa_bulk_attr_t bulk[4];
1969 int count = 0;
1970
1971 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1972 return (error);
1973
1974 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
1975
1976 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1977 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1978 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
1979 if (vp->v_type == VBLK || vp->v_type == VCHR)
1980 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
1981 &rdev, 8);
1982
1983 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
1984 zfs_exit(zfsvfs, FTAG);
1985 return (error);
1986 }
1987
1988 /*
1989 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
1990 * Also, if we are the owner don't bother, since owner should
1991 * always be allowed to read basic attributes of file.
1992 */
1993 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
1994 (vap->va_uid != crgetuid(cr))) {
1995 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
1996 skipaclchk, cr, NULL))) {
1997 zfs_exit(zfsvfs, FTAG);
1998 return (error);
1999 }
2000 }
2001
2002 /*
2003 * Return all attributes. It's cheaper to provide the answer
2004 * than to determine whether we were asked the question.
2005 */
2006
2007 vap->va_type = IFTOVT(zp->z_mode);
2008 vap->va_mode = zp->z_mode & ~S_IFMT;
2009 vn_fsid(vp, vap);
2010 vap->va_nodeid = zp->z_id;
2011 vap->va_nlink = zp->z_links;
2012 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp) &&
2013 zp->z_links < ZFS_LINK_MAX)
2014 vap->va_nlink++;
2015 vap->va_size = zp->z_size;
2016 if (vp->v_type == VBLK || vp->v_type == VCHR)
2017 vap->va_rdev = zfs_cmpldev(rdev);
2018 else
2019 vap->va_rdev = NODEV;
2020 vap->va_gen = zp->z_gen;
2021 vap->va_flags = 0; /* FreeBSD: Reset chflags(2) flags. */
2022 vap->va_filerev = zp->z_seq;
2023
2024 /*
2025 * Add in any requested optional attributes and the create time.
2026 * Also set the corresponding bits in the returned attribute bitmap.
2027 */
2028 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2029 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2030 xoap->xoa_archive =
2031 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2032 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2033 }
2034
2035 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2036 xoap->xoa_readonly =
2037 ((zp->z_pflags & ZFS_READONLY) != 0);
2038 XVA_SET_RTN(xvap, XAT_READONLY);
2039 }
2040
2041 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2042 xoap->xoa_system =
2043 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2044 XVA_SET_RTN(xvap, XAT_SYSTEM);
2045 }
2046
2047 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2048 xoap->xoa_hidden =
2049 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2050 XVA_SET_RTN(xvap, XAT_HIDDEN);
2051 }
2052
2053 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2054 xoap->xoa_nounlink =
2055 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2056 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2057 }
2058
2059 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2060 xoap->xoa_immutable =
2061 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2062 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2063 }
2064
2065 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2066 xoap->xoa_appendonly =
2067 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2068 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2069 }
2070
2071 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2072 xoap->xoa_nodump =
2073 ((zp->z_pflags & ZFS_NODUMP) != 0);
2074 XVA_SET_RTN(xvap, XAT_NODUMP);
2075 }
2076
2077 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2078 xoap->xoa_opaque =
2079 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2080 XVA_SET_RTN(xvap, XAT_OPAQUE);
2081 }
2082
2083 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2084 xoap->xoa_av_quarantined =
2085 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2086 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2087 }
2088
2089 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2090 xoap->xoa_av_modified =
2091 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2092 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2093 }
2094
2095 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2096 vp->v_type == VREG) {
2097 zfs_sa_get_scanstamp(zp, xvap);
2098 }
2099
2100 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2101 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2102 XVA_SET_RTN(xvap, XAT_REPARSE);
2103 }
2104 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2105 xoap->xoa_generation = zp->z_gen;
2106 XVA_SET_RTN(xvap, XAT_GEN);
2107 }
2108
2109 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2110 xoap->xoa_offline =
2111 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2112 XVA_SET_RTN(xvap, XAT_OFFLINE);
2113 }
2114
2115 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2116 xoap->xoa_sparse =
2117 ((zp->z_pflags & ZFS_SPARSE) != 0);
2118 XVA_SET_RTN(xvap, XAT_SPARSE);
2119 }
2120
2121 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2122 xoap->xoa_projinherit =
2123 ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2124 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2125 }
2126
2127 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2128 xoap->xoa_projid = zp->z_projid;
2129 XVA_SET_RTN(xvap, XAT_PROJID);
2130 }
2131 }
2132
2133 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2134 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2135 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2136 ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2137
2138
2139 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2140 vap->va_blksize = blksize;
2141 vap->va_bytes = nblocks << 9; /* nblocks * 512 */
2142
2143 if (zp->z_blksz == 0) {
2144 /*
2145 * Block size hasn't been set; suggest maximal I/O transfers.
2146 */
2147 vap->va_blksize = zfsvfs->z_max_blksz;
2148 }
2149
2150 zfs_exit(zfsvfs, FTAG);
2151 return (0);
2152 }
2153
2154 /*
2155 * For the operation of changing file's user/group/project, we need to
2156 * handle not only the main object that is assigned to the file directly,
2157 * but also the ones that are used by the file via hidden xattr directory.
2158 *
2159 * Because the xattr directory may contains many EA entries, as to it may
2160 * be impossible to change all of them via the transaction of changing the
2161 * main object's user/group/project attributes. Then we have to change them
2162 * via other multiple independent transactions one by one. It may be not good
2163 * solution, but we have no better idea yet.
2164 */
2165 static int
zfs_setattr_dir(znode_t * dzp)2166 zfs_setattr_dir(znode_t *dzp)
2167 {
2168 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2169 objset_t *os = zfsvfs->z_os;
2170 zap_cursor_t zc;
2171 zap_attribute_t *zap;
2172 znode_t *zp = NULL;
2173 dmu_tx_t *tx = NULL;
2174 uint64_t uid, gid;
2175 sa_bulk_attr_t bulk[4];
2176 int count;
2177 int err;
2178
2179 zap = zap_attribute_alloc();
2180 zap_cursor_init(&zc, os, dzp->z_id);
2181 while ((err = zap_cursor_retrieve(&zc, zap)) == 0) {
2182 count = 0;
2183 if (zap->za_integer_length != 8 || zap->za_num_integers != 1) {
2184 err = ENXIO;
2185 break;
2186 }
2187
2188 err = zfs_dirent_lookup(dzp, zap->za_name, &zp, ZEXISTS);
2189 if (err == ENOENT)
2190 goto next;
2191 if (err)
2192 break;
2193
2194 if (zp->z_uid == dzp->z_uid &&
2195 zp->z_gid == dzp->z_gid &&
2196 zp->z_projid == dzp->z_projid)
2197 goto next;
2198
2199 tx = dmu_tx_create(os);
2200 if (!(zp->z_pflags & ZFS_PROJID))
2201 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2202 else
2203 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2204
2205 err = dmu_tx_assign(tx, DMU_TX_WAIT);
2206 if (err)
2207 break;
2208
2209 vn_seqc_write_begin(ZTOV(zp));
2210 mutex_enter(&dzp->z_lock);
2211
2212 if (zp->z_uid != dzp->z_uid) {
2213 uid = dzp->z_uid;
2214 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2215 &uid, sizeof (uid));
2216 zp->z_uid = uid;
2217 }
2218
2219 if (zp->z_gid != dzp->z_gid) {
2220 gid = dzp->z_gid;
2221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2222 &gid, sizeof (gid));
2223 zp->z_gid = gid;
2224 }
2225
2226 uint64_t projid = dzp->z_projid;
2227 if (zp->z_projid != projid) {
2228 if (!(zp->z_pflags & ZFS_PROJID)) {
2229 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2230 if (unlikely(err == EEXIST)) {
2231 err = 0;
2232 } else if (err != 0) {
2233 goto sa_add_projid_err;
2234 } else {
2235 projid = ZFS_INVALID_PROJID;
2236 }
2237 }
2238
2239 if (projid != ZFS_INVALID_PROJID) {
2240 zp->z_projid = projid;
2241 SA_ADD_BULK_ATTR(bulk, count,
2242 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2243 sizeof (zp->z_projid));
2244 }
2245 }
2246
2247 sa_add_projid_err:
2248 mutex_exit(&dzp->z_lock);
2249
2250 if (likely(count > 0)) {
2251 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2252 dmu_tx_commit(tx);
2253 } else if (projid == ZFS_INVALID_PROJID) {
2254 dmu_tx_commit(tx);
2255 } else {
2256 dmu_tx_abort(tx);
2257 }
2258 tx = NULL;
2259 vn_seqc_write_end(ZTOV(zp));
2260 if (err != 0 && err != ENOENT)
2261 break;
2262
2263 next:
2264 if (zp) {
2265 zrele(zp);
2266 zp = NULL;
2267 }
2268 zap_cursor_advance(&zc);
2269 }
2270
2271 if (tx)
2272 dmu_tx_abort(tx);
2273 if (zp) {
2274 zrele(zp);
2275 }
2276 zap_cursor_fini(&zc);
2277 zap_attribute_free(zap);
2278
2279 return (err == ENOENT ? 0 : err);
2280 }
2281
2282 /*
2283 * Set the file attributes to the values contained in the
2284 * vattr structure.
2285 *
2286 * IN: zp - znode of file to be modified.
2287 * vap - new attribute values.
2288 * If AT_XVATTR set, then optional attrs are being set
2289 * flags - ATTR_UTIME set if non-default time values provided.
2290 * - ATTR_NOACLCHECK (CIFS context only).
2291 * cr - credentials of caller.
2292 * mnt_ns - Unused on FreeBSD
2293 *
2294 * RETURN: 0 on success, error code on failure.
2295 *
2296 * Timestamps:
2297 * vp - ctime updated, mtime updated if size changed.
2298 */
2299 int
zfs_setattr(znode_t * zp,vattr_t * vap,int flags,cred_t * cr,zidmap_t * mnt_ns)2300 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
2301 {
2302 vnode_t *vp = ZTOV(zp);
2303 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2304 objset_t *os;
2305 zilog_t *zilog;
2306 dmu_tx_t *tx;
2307 vattr_t oldva;
2308 xvattr_t tmpxvattr;
2309 uint_t mask = vap->va_mask;
2310 uint_t saved_mask = 0;
2311 uint64_t saved_mode;
2312 int trim_mask = 0;
2313 uint64_t new_mode;
2314 uint64_t new_uid, new_gid;
2315 uint64_t xattr_obj;
2316 uint64_t mtime[2], ctime[2];
2317 uint64_t projid = ZFS_INVALID_PROJID;
2318 znode_t *attrzp;
2319 int need_policy = FALSE;
2320 int err, err2;
2321 zfs_fuid_info_t *fuidp = NULL;
2322 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2323 xoptattr_t *xoap;
2324 zfs_acl_t *aclp;
2325 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2326 boolean_t fuid_dirtied = B_FALSE;
2327 boolean_t handle_eadir = B_FALSE;
2328 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2329 int count = 0, xattr_count = 0;
2330
2331 if (mask == 0)
2332 return (0);
2333
2334 if (mask & AT_NOSET)
2335 return (SET_ERROR(EINVAL));
2336
2337 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
2338 return (err);
2339
2340 os = zfsvfs->z_os;
2341 zilog = zfsvfs->z_log;
2342
2343 /*
2344 * Make sure that if we have ephemeral uid/gid or xvattr specified
2345 * that file system is at proper version level
2346 */
2347
2348 if (zfsvfs->z_use_fuids == B_FALSE &&
2349 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2350 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2351 (mask & AT_XVATTR))) {
2352 zfs_exit(zfsvfs, FTAG);
2353 return (SET_ERROR(EINVAL));
2354 }
2355
2356 if (mask & AT_SIZE && vp->v_type == VDIR) {
2357 zfs_exit(zfsvfs, FTAG);
2358 return (SET_ERROR(EISDIR));
2359 }
2360
2361 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2362 zfs_exit(zfsvfs, FTAG);
2363 return (SET_ERROR(EINVAL));
2364 }
2365
2366 /*
2367 * If this is an xvattr_t, then get a pointer to the structure of
2368 * optional attributes. If this is NULL, then we have a vattr_t.
2369 */
2370 xoap = xva_getxoptattr(xvap);
2371
2372 xva_init(&tmpxvattr);
2373
2374 /*
2375 * Immutable files can only alter immutable bit and atime
2376 */
2377 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2378 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2379 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2380 zfs_exit(zfsvfs, FTAG);
2381 return (SET_ERROR(EPERM));
2382 }
2383
2384 /*
2385 * Note: ZFS_READONLY is handled in zfs_zaccess_common.
2386 */
2387
2388 /*
2389 * Verify timestamps doesn't overflow 32 bits.
2390 * ZFS can handle large timestamps, but 32bit syscalls can't
2391 * handle times greater than 2039. This check should be removed
2392 * once large timestamps are fully supported.
2393 */
2394 if (mask & (AT_ATIME | AT_MTIME)) {
2395 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2396 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2397 zfs_exit(zfsvfs, FTAG);
2398 return (SET_ERROR(EOVERFLOW));
2399 }
2400 }
2401 if (xoap != NULL && (mask & AT_XVATTR)) {
2402 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME) &&
2403 TIMESPEC_OVERFLOW(&vap->va_birthtime)) {
2404 zfs_exit(zfsvfs, FTAG);
2405 return (SET_ERROR(EOVERFLOW));
2406 }
2407
2408 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2409 if (!dmu_objset_projectquota_enabled(os) ||
2410 (!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode))) {
2411 zfs_exit(zfsvfs, FTAG);
2412 return (SET_ERROR(EOPNOTSUPP));
2413 }
2414
2415 projid = xoap->xoa_projid;
2416 if (unlikely(projid == ZFS_INVALID_PROJID)) {
2417 zfs_exit(zfsvfs, FTAG);
2418 return (SET_ERROR(EINVAL));
2419 }
2420
2421 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
2422 projid = ZFS_INVALID_PROJID;
2423 else
2424 need_policy = TRUE;
2425 }
2426
2427 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
2428 (xoap->xoa_projinherit !=
2429 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
2430 (!dmu_objset_projectquota_enabled(os) ||
2431 (!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode)))) {
2432 zfs_exit(zfsvfs, FTAG);
2433 return (SET_ERROR(EOPNOTSUPP));
2434 }
2435 }
2436
2437 attrzp = NULL;
2438 aclp = NULL;
2439
2440 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2441 zfs_exit(zfsvfs, FTAG);
2442 return (SET_ERROR(EROFS));
2443 }
2444
2445 /*
2446 * First validate permissions
2447 */
2448
2449 if (mask & AT_SIZE) {
2450 /*
2451 * XXX - Note, we are not providing any open
2452 * mode flags here (like FNDELAY), so we may
2453 * block if there are locks present... this
2454 * should be addressed in openat().
2455 */
2456 /* XXX - would it be OK to generate a log record here? */
2457 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2458 if (err) {
2459 zfs_exit(zfsvfs, FTAG);
2460 return (err);
2461 }
2462 }
2463
2464 if (mask & (AT_ATIME|AT_MTIME) ||
2465 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2466 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2467 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2468 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2469 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2470 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2471 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2472 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2473 skipaclchk, cr, mnt_ns);
2474 }
2475
2476 if (mask & (AT_UID|AT_GID)) {
2477 int idmask = (mask & (AT_UID|AT_GID));
2478 int take_owner;
2479 int take_group;
2480
2481 /*
2482 * NOTE: even if a new mode is being set,
2483 * we may clear S_ISUID/S_ISGID bits.
2484 */
2485
2486 if (!(mask & AT_MODE))
2487 vap->va_mode = zp->z_mode;
2488
2489 /*
2490 * Take ownership or chgrp to group we are a member of
2491 */
2492
2493 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2494 take_group = (mask & AT_GID) &&
2495 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2496
2497 /*
2498 * If both AT_UID and AT_GID are set then take_owner and
2499 * take_group must both be set in order to allow taking
2500 * ownership.
2501 *
2502 * Otherwise, send the check through secpolicy_vnode_setattr()
2503 *
2504 */
2505
2506 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2507 ((idmask == AT_UID) && take_owner) ||
2508 ((idmask == AT_GID) && take_group)) {
2509 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2510 skipaclchk, cr, mnt_ns) == 0) {
2511 /*
2512 * Remove setuid/setgid for non-privileged users
2513 */
2514 secpolicy_setid_clear(vap, vp, cr);
2515 trim_mask = (mask & (AT_UID|AT_GID));
2516 } else {
2517 need_policy = TRUE;
2518 }
2519 } else {
2520 need_policy = TRUE;
2521 }
2522 }
2523
2524 oldva.va_mode = zp->z_mode;
2525 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2526 if (mask & AT_XVATTR) {
2527 /*
2528 * Update xvattr mask to include only those attributes
2529 * that are actually changing.
2530 *
2531 * the bits will be restored prior to actually setting
2532 * the attributes so the caller thinks they were set.
2533 */
2534 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2535 if (xoap->xoa_appendonly !=
2536 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2537 need_policy = TRUE;
2538 } else {
2539 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2540 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2541 }
2542 }
2543
2544 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2545 if (xoap->xoa_projinherit !=
2546 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2547 need_policy = TRUE;
2548 } else {
2549 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2550 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT);
2551 }
2552 }
2553
2554 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2555 if (xoap->xoa_nounlink !=
2556 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2557 need_policy = TRUE;
2558 } else {
2559 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2560 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2561 }
2562 }
2563
2564 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2565 if (xoap->xoa_immutable !=
2566 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2567 need_policy = TRUE;
2568 } else {
2569 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2570 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2571 }
2572 }
2573
2574 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2575 if (xoap->xoa_nodump !=
2576 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2577 need_policy = TRUE;
2578 } else {
2579 XVA_CLR_REQ(xvap, XAT_NODUMP);
2580 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2581 }
2582 }
2583
2584 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2585 if (xoap->xoa_av_modified !=
2586 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2587 need_policy = TRUE;
2588 } else {
2589 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2590 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2591 }
2592 }
2593
2594 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2595 if ((vp->v_type != VREG &&
2596 xoap->xoa_av_quarantined) ||
2597 xoap->xoa_av_quarantined !=
2598 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2599 need_policy = TRUE;
2600 } else {
2601 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2602 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2603 }
2604 }
2605
2606 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2607 zfs_exit(zfsvfs, FTAG);
2608 return (SET_ERROR(EPERM));
2609 }
2610
2611 if (need_policy == FALSE &&
2612 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2613 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2614 need_policy = TRUE;
2615 }
2616 }
2617
2618 if (mask & AT_MODE) {
2619 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2620 mnt_ns) == 0) {
2621 err = secpolicy_setid_setsticky_clear(vp, vap,
2622 &oldva, cr);
2623 if (err) {
2624 zfs_exit(zfsvfs, FTAG);
2625 return (err);
2626 }
2627 trim_mask |= AT_MODE;
2628 } else {
2629 need_policy = TRUE;
2630 }
2631 }
2632
2633 if (need_policy) {
2634 /*
2635 * If trim_mask is set then take ownership
2636 * has been granted or write_acl is present and user
2637 * has the ability to modify mode. In that case remove
2638 * UID|GID and or MODE from mask so that
2639 * secpolicy_vnode_setattr() doesn't revoke it.
2640 */
2641
2642 if (trim_mask) {
2643 saved_mask = vap->va_mask;
2644 vap->va_mask &= ~trim_mask;
2645 if (trim_mask & AT_MODE) {
2646 /*
2647 * Save the mode, as secpolicy_vnode_setattr()
2648 * will overwrite it with ova.va_mode.
2649 */
2650 saved_mode = vap->va_mode;
2651 }
2652 }
2653 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2654 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2655 if (err) {
2656 zfs_exit(zfsvfs, FTAG);
2657 return (err);
2658 }
2659
2660 if (trim_mask) {
2661 vap->va_mask |= saved_mask;
2662 if (trim_mask & AT_MODE) {
2663 /*
2664 * Recover the mode after
2665 * secpolicy_vnode_setattr().
2666 */
2667 vap->va_mode = saved_mode;
2668 }
2669 }
2670 }
2671
2672 /*
2673 * secpolicy_vnode_setattr, or take ownership may have
2674 * changed va_mask
2675 */
2676 mask = vap->va_mask;
2677
2678 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) {
2679 handle_eadir = B_TRUE;
2680 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2681 &xattr_obj, sizeof (xattr_obj));
2682
2683 if (err == 0 && xattr_obj) {
2684 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2685 if (err == 0) {
2686 err = vn_lock(ZTOV(attrzp), LK_EXCLUSIVE);
2687 if (err != 0)
2688 vrele(ZTOV(attrzp));
2689 }
2690 if (err)
2691 goto out2;
2692 }
2693 if (mask & AT_UID) {
2694 new_uid = zfs_fuid_create(zfsvfs,
2695 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2696 if (new_uid != zp->z_uid &&
2697 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2698 new_uid)) {
2699 if (attrzp)
2700 vput(ZTOV(attrzp));
2701 err = SET_ERROR(EDQUOT);
2702 goto out2;
2703 }
2704 }
2705
2706 if (mask & AT_GID) {
2707 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2708 cr, ZFS_GROUP, &fuidp);
2709 if (new_gid != zp->z_gid &&
2710 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2711 new_gid)) {
2712 if (attrzp)
2713 vput(ZTOV(attrzp));
2714 err = SET_ERROR(EDQUOT);
2715 goto out2;
2716 }
2717 }
2718
2719 if (projid != ZFS_INVALID_PROJID &&
2720 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2721 if (attrzp)
2722 vput(ZTOV(attrzp));
2723 err = SET_ERROR(EDQUOT);
2724 goto out2;
2725 }
2726 }
2727 tx = dmu_tx_create(os);
2728
2729 if (mask & AT_MODE) {
2730 uint64_t pmode = zp->z_mode;
2731 uint64_t acl_obj;
2732 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2733
2734 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2735 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2736 err = SET_ERROR(EPERM);
2737 goto out;
2738 }
2739
2740 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2741 goto out;
2742
2743 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2744 /*
2745 * Are we upgrading ACL from old V0 format
2746 * to V1 format?
2747 */
2748 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2749 zfs_znode_acl_version(zp) ==
2750 ZFS_ACL_VERSION_INITIAL) {
2751 dmu_tx_hold_free(tx, acl_obj, 0,
2752 DMU_OBJECT_END);
2753 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2754 0, aclp->z_acl_bytes);
2755 } else {
2756 dmu_tx_hold_write(tx, acl_obj, 0,
2757 aclp->z_acl_bytes);
2758 }
2759 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2760 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2761 0, aclp->z_acl_bytes);
2762 }
2763 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2764 } else {
2765 if (((mask & AT_XVATTR) &&
2766 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2767 (projid != ZFS_INVALID_PROJID &&
2768 !(zp->z_pflags & ZFS_PROJID)))
2769 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2770 else
2771 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2772 }
2773
2774 if (attrzp) {
2775 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2776 }
2777
2778 fuid_dirtied = zfsvfs->z_fuid_dirty;
2779 if (fuid_dirtied)
2780 zfs_fuid_txhold(zfsvfs, tx);
2781
2782 zfs_sa_upgrade_txholds(tx, zp);
2783
2784 err = dmu_tx_assign(tx, DMU_TX_WAIT);
2785 if (err)
2786 goto out;
2787
2788 count = 0;
2789 /*
2790 * Set each attribute requested.
2791 * We group settings according to the locks they need to acquire.
2792 *
2793 * Note: you cannot set ctime directly, although it will be
2794 * updated as a side-effect of calling this function.
2795 */
2796
2797 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2798 /*
2799 * For the existed object that is upgraded from old system,
2800 * its on-disk layout has no slot for the project ID attribute.
2801 * But quota accounting logic needs to access related slots by
2802 * offset directly. So we need to adjust old objects' layout
2803 * to make the project ID to some unified and fixed offset.
2804 */
2805 if (attrzp)
2806 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2807 if (err == 0)
2808 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2809
2810 if (unlikely(err == EEXIST))
2811 err = 0;
2812 else if (err != 0)
2813 goto out;
2814 else
2815 projid = ZFS_INVALID_PROJID;
2816 }
2817
2818 if (mask & (AT_UID|AT_GID|AT_MODE))
2819 mutex_enter(&zp->z_acl_lock);
2820
2821 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2822 &zp->z_pflags, sizeof (zp->z_pflags));
2823
2824 if (attrzp) {
2825 if (mask & (AT_UID|AT_GID|AT_MODE))
2826 mutex_enter(&attrzp->z_acl_lock);
2827 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2828 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2829 sizeof (attrzp->z_pflags));
2830 if (projid != ZFS_INVALID_PROJID) {
2831 attrzp->z_projid = projid;
2832 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2833 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2834 sizeof (attrzp->z_projid));
2835 }
2836 }
2837
2838 if (mask & (AT_UID|AT_GID)) {
2839
2840 if (mask & AT_UID) {
2841 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2842 &new_uid, sizeof (new_uid));
2843 zp->z_uid = new_uid;
2844 if (attrzp) {
2845 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2846 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2847 sizeof (new_uid));
2848 attrzp->z_uid = new_uid;
2849 }
2850 }
2851
2852 if (mask & AT_GID) {
2853 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2854 NULL, &new_gid, sizeof (new_gid));
2855 zp->z_gid = new_gid;
2856 if (attrzp) {
2857 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2858 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2859 sizeof (new_gid));
2860 attrzp->z_gid = new_gid;
2861 }
2862 }
2863 if (!(mask & AT_MODE)) {
2864 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2865 NULL, &new_mode, sizeof (new_mode));
2866 new_mode = zp->z_mode;
2867 }
2868 err = zfs_acl_chown_setattr(zp);
2869 ASSERT0(err);
2870 if (attrzp) {
2871 vn_seqc_write_begin(ZTOV(attrzp));
2872 err = zfs_acl_chown_setattr(attrzp);
2873 vn_seqc_write_end(ZTOV(attrzp));
2874 ASSERT0(err);
2875 }
2876 }
2877
2878 if (mask & AT_MODE) {
2879 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2880 &new_mode, sizeof (new_mode));
2881 zp->z_mode = new_mode;
2882 ASSERT3P(aclp, !=, NULL);
2883 err = zfs_aclset_common(zp, aclp, cr, tx);
2884 ASSERT0(err);
2885 if (zp->z_acl_cached)
2886 zfs_acl_free(zp->z_acl_cached);
2887 zp->z_acl_cached = aclp;
2888 aclp = NULL;
2889 }
2890
2891
2892 if (mask & AT_ATIME) {
2893 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
2894 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2895 &zp->z_atime, sizeof (zp->z_atime));
2896 }
2897
2898 if (mask & AT_MTIME) {
2899 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2900 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2901 mtime, sizeof (mtime));
2902 }
2903
2904 if (projid != ZFS_INVALID_PROJID) {
2905 zp->z_projid = projid;
2906 SA_ADD_BULK_ATTR(bulk, count,
2907 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2908 sizeof (zp->z_projid));
2909 }
2910
2911 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
2912 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
2913 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
2914 NULL, mtime, sizeof (mtime));
2915 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2916 &ctime, sizeof (ctime));
2917 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
2918 } else if (mask != 0) {
2919 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2920 &ctime, sizeof (ctime));
2921 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime);
2922 if (attrzp) {
2923 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2924 SA_ZPL_CTIME(zfsvfs), NULL,
2925 &ctime, sizeof (ctime));
2926 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
2927 mtime, ctime);
2928 }
2929 }
2930
2931 /*
2932 * Do this after setting timestamps to prevent timestamp
2933 * update from toggling bit
2934 */
2935
2936 if (xoap && (mask & AT_XVATTR)) {
2937
2938 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME))
2939 xoap->xoa_createtime = vap->va_birthtime;
2940 /*
2941 * restore trimmed off masks
2942 * so that return masks can be set for caller.
2943 */
2944
2945 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
2946 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2947 }
2948 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
2949 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2950 }
2951 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
2952 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2953 }
2954 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
2955 XVA_SET_REQ(xvap, XAT_NODUMP);
2956 }
2957 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
2958 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2959 }
2960 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
2961 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2962 }
2963 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) {
2964 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2965 }
2966
2967 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2968 ASSERT3S(vp->v_type, ==, VREG);
2969
2970 zfs_xvattr_set(zp, xvap, tx);
2971 }
2972
2973 if (fuid_dirtied)
2974 zfs_fuid_sync(zfsvfs, tx);
2975
2976 if (mask != 0)
2977 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2978
2979 if (mask & (AT_UID|AT_GID|AT_MODE))
2980 mutex_exit(&zp->z_acl_lock);
2981
2982 if (attrzp) {
2983 if (mask & (AT_UID|AT_GID|AT_MODE))
2984 mutex_exit(&attrzp->z_acl_lock);
2985 }
2986 out:
2987 if (err == 0 && attrzp) {
2988 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2989 xattr_count, tx);
2990 ASSERT0(err2);
2991 }
2992
2993 if (attrzp)
2994 vput(ZTOV(attrzp));
2995
2996 if (aclp)
2997 zfs_acl_free(aclp);
2998
2999 if (fuidp) {
3000 zfs_fuid_info_free(fuidp);
3001 fuidp = NULL;
3002 }
3003
3004 if (err) {
3005 dmu_tx_abort(tx);
3006 } else {
3007 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3008 dmu_tx_commit(tx);
3009 if (attrzp) {
3010 if (err2 == 0 && handle_eadir)
3011 err = zfs_setattr_dir(attrzp);
3012 }
3013 }
3014
3015 out2:
3016 if (err == 0 && os->os_sync == ZFS_SYNC_ALWAYS)
3017 err = zil_commit(zilog, 0);
3018
3019 zfs_exit(zfsvfs, FTAG);
3020 return (err);
3021 }
3022
3023 /*
3024 * Look up the directory entries corresponding to the source and target
3025 * directory/name pairs.
3026 */
3027 static int
zfs_rename_relock_lookup(znode_t * sdzp,const struct componentname * scnp,znode_t ** szpp,znode_t * tdzp,const struct componentname * tcnp,znode_t ** tzpp)3028 zfs_rename_relock_lookup(znode_t *sdzp, const struct componentname *scnp,
3029 znode_t **szpp, znode_t *tdzp, const struct componentname *tcnp,
3030 znode_t **tzpp)
3031 {
3032 zfsvfs_t *zfsvfs;
3033 znode_t *szp, *tzp;
3034 int error;
3035
3036 /*
3037 * Before using sdzp and tdzp we must ensure that they are live.
3038 * As a porting legacy from illumos we have two things to worry
3039 * about. One is typical for FreeBSD and it is that the vnode is
3040 * not reclaimed (doomed). The other is that the znode is live.
3041 * The current code can invalidate the znode without acquiring the
3042 * corresponding vnode lock if the object represented by the znode
3043 * and vnode is no longer valid after a rollback or receive operation.
3044 * z_teardown_lock hidden behind zfs_enter and zfs_exit is the lock
3045 * that protects the znodes from the invalidation.
3046 */
3047 zfsvfs = sdzp->z_zfsvfs;
3048 ASSERT3P(zfsvfs, ==, tdzp->z_zfsvfs);
3049 if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
3050 return (error);
3051 if ((error = zfs_verify_zp(tdzp)) != 0) {
3052 zfs_exit(zfsvfs, FTAG);
3053 return (error);
3054 }
3055
3056 /*
3057 * Re-resolve svp to be certain it still exists and fetch the
3058 * correct vnode.
3059 */
3060 error = zfs_dirent_lookup(sdzp, scnp->cn_nameptr, &szp, ZEXISTS);
3061 if (error != 0) {
3062 /* Source entry invalid or not there. */
3063 if ((scnp->cn_flags & ISDOTDOT) != 0 ||
3064 (scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.'))
3065 error = SET_ERROR(EINVAL);
3066 goto out;
3067 }
3068 *szpp = szp;
3069
3070 /*
3071 * Re-resolve tvp, if it disappeared we just carry on.
3072 */
3073 error = zfs_dirent_lookup(tdzp, tcnp->cn_nameptr, &tzp, 0);
3074 if (error != 0) {
3075 vrele(ZTOV(szp));
3076 if ((tcnp->cn_flags & ISDOTDOT) != 0)
3077 error = SET_ERROR(EINVAL);
3078 goto out;
3079 }
3080 *tzpp = tzp;
3081 out:
3082 zfs_exit(zfsvfs, FTAG);
3083 return (error);
3084 }
3085
3086 /*
3087 * We acquire all but fdvp locks using non-blocking acquisitions. If we
3088 * fail to acquire any lock in the path we will drop all held locks,
3089 * acquire the new lock in a blocking fashion, and then release it and
3090 * restart the rename. This acquire/release step ensures that we do not
3091 * spin on a lock waiting for release. On error release all vnode locks
3092 * and decrement references the way tmpfs_rename() would do.
3093 */
3094 static int
zfs_rename_relock(struct vnode * sdvp,struct vnode ** svpp,struct vnode * tdvp,struct vnode ** tvpp,const struct componentname * scnp,const struct componentname * tcnp)3095 zfs_rename_relock(struct vnode *sdvp, struct vnode **svpp,
3096 struct vnode *tdvp, struct vnode **tvpp,
3097 const struct componentname *scnp, const struct componentname *tcnp)
3098 {
3099 struct vnode *nvp, *svp, *tvp;
3100 znode_t *sdzp, *tdzp, *szp, *tzp;
3101 int error;
3102
3103 VOP_UNLOCK(tdvp);
3104 if (*tvpp != NULL && *tvpp != tdvp)
3105 VOP_UNLOCK(*tvpp);
3106
3107 relock:
3108 error = vn_lock(sdvp, LK_EXCLUSIVE);
3109 if (error)
3110 goto out;
3111 error = vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT);
3112 if (error != 0) {
3113 VOP_UNLOCK(sdvp);
3114 if (error != EBUSY)
3115 goto out;
3116 error = vn_lock(tdvp, LK_EXCLUSIVE);
3117 if (error)
3118 goto out;
3119 VOP_UNLOCK(tdvp);
3120 goto relock;
3121 }
3122 tdzp = VTOZ(tdvp);
3123 sdzp = VTOZ(sdvp);
3124
3125 error = zfs_rename_relock_lookup(sdzp, scnp, &szp, tdzp, tcnp, &tzp);
3126 if (error != 0) {
3127 VOP_UNLOCK(sdvp);
3128 VOP_UNLOCK(tdvp);
3129 goto out;
3130 }
3131 svp = ZTOV(szp);
3132 tvp = tzp != NULL ? ZTOV(tzp) : NULL;
3133
3134 /*
3135 * Now try acquire locks on svp and tvp.
3136 */
3137 nvp = svp;
3138 error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT);
3139 if (error != 0) {
3140 VOP_UNLOCK(sdvp);
3141 VOP_UNLOCK(tdvp);
3142 if (tvp != NULL)
3143 vrele(tvp);
3144 if (error != EBUSY) {
3145 vrele(nvp);
3146 goto out;
3147 }
3148 error = vn_lock(nvp, LK_EXCLUSIVE);
3149 if (error != 0) {
3150 vrele(nvp);
3151 goto out;
3152 }
3153 VOP_UNLOCK(nvp);
3154 /*
3155 * Concurrent rename race.
3156 * XXX ?
3157 */
3158 if (nvp == tdvp) {
3159 vrele(nvp);
3160 error = SET_ERROR(EINVAL);
3161 goto out;
3162 }
3163 vrele(*svpp);
3164 *svpp = nvp;
3165 goto relock;
3166 }
3167 vrele(*svpp);
3168 *svpp = nvp;
3169
3170 if (*tvpp != NULL)
3171 vrele(*tvpp);
3172 *tvpp = NULL;
3173 if (tvp != NULL) {
3174 nvp = tvp;
3175 error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT);
3176 if (error != 0) {
3177 VOP_UNLOCK(sdvp);
3178 VOP_UNLOCK(tdvp);
3179 VOP_UNLOCK(*svpp);
3180 if (error != EBUSY) {
3181 vrele(nvp);
3182 goto out;
3183 }
3184 error = vn_lock(nvp, LK_EXCLUSIVE);
3185 if (error != 0) {
3186 vrele(nvp);
3187 goto out;
3188 }
3189 vput(nvp);
3190 goto relock;
3191 }
3192 *tvpp = nvp;
3193 }
3194
3195 return (0);
3196
3197 out:
3198 return (error);
3199 }
3200
3201 /*
3202 * Note that we must use VRELE_ASYNC in this function as it walks
3203 * up the directory tree and vrele may need to acquire an exclusive
3204 * lock if a last reference to a vnode is dropped.
3205 */
3206 static int
zfs_rename_check(znode_t * szp,znode_t * sdzp,znode_t * tdzp)3207 zfs_rename_check(znode_t *szp, znode_t *sdzp, znode_t *tdzp)
3208 {
3209 zfsvfs_t *zfsvfs;
3210 znode_t *zp, *zp1;
3211 uint64_t parent;
3212 int error;
3213
3214 zfsvfs = tdzp->z_zfsvfs;
3215 if (tdzp == szp)
3216 return (SET_ERROR(EINVAL));
3217 if (tdzp == sdzp)
3218 return (0);
3219 if (tdzp->z_id == zfsvfs->z_root)
3220 return (0);
3221 zp = tdzp;
3222 for (;;) {
3223 ASSERT(!zp->z_unlinked);
3224 if ((error = sa_lookup(zp->z_sa_hdl,
3225 SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0)
3226 break;
3227
3228 if (parent == szp->z_id) {
3229 error = SET_ERROR(EINVAL);
3230 break;
3231 }
3232 if (parent == zfsvfs->z_root)
3233 break;
3234 if (parent == sdzp->z_id)
3235 break;
3236
3237 error = zfs_zget(zfsvfs, parent, &zp1);
3238 if (error != 0)
3239 break;
3240
3241 if (zp != tdzp)
3242 VN_RELE_ASYNC(ZTOV(zp),
3243 dsl_pool_zrele_taskq(
3244 dmu_objset_pool(zfsvfs->z_os)));
3245 zp = zp1;
3246 }
3247
3248 if (error == ENOTDIR)
3249 panic("checkpath: .. not a directory\n");
3250 if (zp != tdzp)
3251 VN_RELE_ASYNC(ZTOV(zp),
3252 dsl_pool_zrele_taskq(dmu_objset_pool(zfsvfs->z_os)));
3253 return (error);
3254 }
3255
3256 static int
3257 zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
3258 vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
3259 cred_t *cr);
3260
3261 /*
3262 * Move an entry from the provided source directory to the target
3263 * directory. Change the entry name as indicated.
3264 *
3265 * IN: sdvp - Source directory containing the "old entry".
3266 * scnp - Old entry name.
3267 * tdvp - Target directory to contain the "new entry".
3268 * tcnp - New entry name.
3269 * cr - credentials of caller.
3270 * INOUT: svpp - Source file
3271 * tvpp - Target file, may point to NULL initially
3272 *
3273 * RETURN: 0 on success, error code on failure.
3274 *
3275 * Timestamps:
3276 * sdvp,tdvp - ctime|mtime updated
3277 */
3278 static int
zfs_do_rename(vnode_t * sdvp,vnode_t ** svpp,struct componentname * scnp,vnode_t * tdvp,vnode_t ** tvpp,struct componentname * tcnp,cred_t * cr)3279 zfs_do_rename(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
3280 vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
3281 cred_t *cr)
3282 {
3283 int error;
3284
3285 ASSERT_VOP_ELOCKED(tdvp, __func__);
3286 if (*tvpp != NULL)
3287 ASSERT_VOP_ELOCKED(*tvpp, __func__);
3288
3289 /* Reject renames across filesystems. */
3290 if ((*svpp)->v_mount != tdvp->v_mount ||
3291 ((*tvpp) != NULL && (*svpp)->v_mount != (*tvpp)->v_mount)) {
3292 error = SET_ERROR(EXDEV);
3293 goto out;
3294 }
3295
3296 if (zfsctl_is_node(tdvp)) {
3297 error = SET_ERROR(EXDEV);
3298 goto out;
3299 }
3300
3301 /*
3302 * Lock all four vnodes to ensure safety and semantics of renaming.
3303 */
3304 error = zfs_rename_relock(sdvp, svpp, tdvp, tvpp, scnp, tcnp);
3305 if (error != 0) {
3306 /* no vnodes are locked in the case of error here */
3307 return (error);
3308 }
3309
3310 error = zfs_do_rename_impl(sdvp, svpp, scnp, tdvp, tvpp, tcnp, cr);
3311 VOP_UNLOCK(sdvp);
3312 VOP_UNLOCK(*svpp);
3313 out:
3314 if (*tvpp != NULL)
3315 VOP_UNLOCK(*tvpp);
3316 if (tdvp != *tvpp)
3317 VOP_UNLOCK(tdvp);
3318
3319 return (error);
3320 }
3321
3322 static int
zfs_do_rename_impl(vnode_t * sdvp,vnode_t ** svpp,struct componentname * scnp,vnode_t * tdvp,vnode_t ** tvpp,struct componentname * tcnp,cred_t * cr)3323 zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp,
3324 vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp,
3325 cred_t *cr)
3326 {
3327 dmu_tx_t *tx;
3328 zfsvfs_t *zfsvfs;
3329 zilog_t *zilog;
3330 znode_t *tdzp, *sdzp, *tzp, *szp;
3331 const char *snm = scnp->cn_nameptr;
3332 const char *tnm = tcnp->cn_nameptr;
3333 int error;
3334
3335 tdzp = VTOZ(tdvp);
3336 sdzp = VTOZ(sdvp);
3337 zfsvfs = tdzp->z_zfsvfs;
3338
3339 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3340 return (error);
3341 if ((error = zfs_verify_zp(sdzp)) != 0) {
3342 zfs_exit(zfsvfs, FTAG);
3343 return (error);
3344 }
3345 zilog = zfsvfs->z_log;
3346
3347 if (zfsvfs->z_utf8 && u8_validate(tnm,
3348 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3349 error = SET_ERROR(EILSEQ);
3350 goto out;
3351 }
3352
3353 /* If source and target are the same file, there is nothing to do. */
3354 if ((*svpp) == (*tvpp)) {
3355 error = 0;
3356 goto out;
3357 }
3358
3359 if (((*svpp)->v_type == VDIR && (*svpp)->v_mountedhere != NULL) ||
3360 ((*tvpp) != NULL && (*tvpp)->v_type == VDIR &&
3361 (*tvpp)->v_mountedhere != NULL)) {
3362 error = SET_ERROR(EXDEV);
3363 goto out;
3364 }
3365
3366 szp = VTOZ(*svpp);
3367 if ((error = zfs_verify_zp(szp)) != 0) {
3368 zfs_exit(zfsvfs, FTAG);
3369 return (error);
3370 }
3371 tzp = *tvpp == NULL ? NULL : VTOZ(*tvpp);
3372 if (tzp != NULL) {
3373 if ((error = zfs_verify_zp(tzp)) != 0) {
3374 zfs_exit(zfsvfs, FTAG);
3375 return (error);
3376 }
3377 }
3378
3379 /*
3380 * This is to prevent the creation of links into attribute space
3381 * by renaming a linked file into/outof an attribute directory.
3382 * See the comment in zfs_link() for why this is considered bad.
3383 */
3384 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3385 error = SET_ERROR(EINVAL);
3386 goto out;
3387 }
3388
3389 /*
3390 * If we are using project inheritance, means if the directory has
3391 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3392 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3393 * such case, we only allow renames into our tree when the project
3394 * IDs are the same.
3395 */
3396 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3397 tdzp->z_projid != szp->z_projid) {
3398 error = SET_ERROR(EXDEV);
3399 goto out;
3400 }
3401
3402 /*
3403 * Must have write access at the source to remove the old entry
3404 * and write access at the target to create the new entry.
3405 * Note that if target and source are the same, this can be
3406 * done in a single check.
3407 */
3408 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, NULL)))
3409 goto out;
3410
3411 if ((*svpp)->v_type == VDIR) {
3412 /*
3413 * Avoid ".", "..", and aliases of "." for obvious reasons.
3414 */
3415 if ((scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.') ||
3416 sdzp == szp ||
3417 (scnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) {
3418 error = EINVAL;
3419 goto out;
3420 }
3421
3422 /*
3423 * Check to make sure rename is valid.
3424 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3425 */
3426 if ((error = zfs_rename_check(szp, sdzp, tdzp)))
3427 goto out;
3428 }
3429
3430 /*
3431 * Does target exist?
3432 */
3433 if (tzp) {
3434 /*
3435 * Source and target must be the same type.
3436 */
3437 if ((*svpp)->v_type == VDIR) {
3438 if ((*tvpp)->v_type != VDIR) {
3439 error = SET_ERROR(ENOTDIR);
3440 goto out;
3441 } else {
3442 cache_purge(tdvp);
3443 if (sdvp != tdvp)
3444 cache_purge(sdvp);
3445 }
3446 } else {
3447 if ((*tvpp)->v_type == VDIR) {
3448 error = SET_ERROR(EISDIR);
3449 goto out;
3450 }
3451 }
3452 }
3453
3454 vn_seqc_write_begin(*svpp);
3455 vn_seqc_write_begin(sdvp);
3456 if (*tvpp != NULL)
3457 vn_seqc_write_begin(*tvpp);
3458 if (tdvp != *tvpp)
3459 vn_seqc_write_begin(tdvp);
3460
3461 vnevent_rename_src(*svpp, sdvp, scnp->cn_nameptr, ct);
3462 if (tzp)
3463 vnevent_rename_dest(*tvpp, tdvp, tnm, ct);
3464
3465 /*
3466 * notify the target directory if it is not the same
3467 * as source directory.
3468 */
3469 if (tdvp != sdvp) {
3470 vnevent_rename_dest_dir(tdvp, ct);
3471 }
3472
3473 tx = dmu_tx_create(zfsvfs->z_os);
3474 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3475 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3476 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3477 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3478 if (sdzp != tdzp) {
3479 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3480 zfs_sa_upgrade_txholds(tx, tdzp);
3481 }
3482 if (tzp) {
3483 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3484 zfs_sa_upgrade_txholds(tx, tzp);
3485 }
3486
3487 zfs_sa_upgrade_txholds(tx, szp);
3488 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3489 error = dmu_tx_assign(tx, DMU_TX_WAIT);
3490 if (error) {
3491 dmu_tx_abort(tx);
3492 goto out_seq;
3493 }
3494
3495 if (tzp) /* Attempt to remove the existing target */
3496 error = zfs_link_destroy(tdzp, tnm, tzp, tx, 0, NULL);
3497
3498 if (error == 0) {
3499 error = zfs_link_create(tdzp, tnm, szp, tx, ZRENAMING);
3500 if (error == 0) {
3501 szp->z_pflags |= ZFS_AV_MODIFIED;
3502
3503 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3504 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3505 ASSERT0(error);
3506
3507 error = zfs_link_destroy(sdzp, snm, szp, tx, ZRENAMING,
3508 NULL);
3509 if (error == 0) {
3510 zfs_log_rename(zilog, tx, TX_RENAME, sdzp,
3511 snm, tdzp, tnm, szp);
3512 } else {
3513 /*
3514 * At this point, we have successfully created
3515 * the target name, but have failed to remove
3516 * the source name. Since the create was done
3517 * with the ZRENAMING flag, there are
3518 * complications; for one, the link count is
3519 * wrong. The easiest way to deal with this
3520 * is to remove the newly created target, and
3521 * return the original error. This must
3522 * succeed; fortunately, it is very unlikely to
3523 * fail, since we just created it.
3524 */
3525 VERIFY0(zfs_link_destroy(tdzp, tnm, szp, tx,
3526 ZRENAMING, NULL));
3527 }
3528 }
3529 if (error == 0) {
3530 cache_vop_rename(sdvp, *svpp, tdvp, *tvpp, scnp, tcnp);
3531 }
3532 }
3533
3534 dmu_tx_commit(tx);
3535
3536 out_seq:
3537 vn_seqc_write_end(*svpp);
3538 vn_seqc_write_end(sdvp);
3539 if (*tvpp != NULL)
3540 vn_seqc_write_end(*tvpp);
3541 if (tdvp != *tvpp)
3542 vn_seqc_write_end(tdvp);
3543
3544 out:
3545 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3546 error = zil_commit(zilog, 0);
3547 zfs_exit(zfsvfs, FTAG);
3548
3549 return (error);
3550 }
3551
3552 int
zfs_rename(znode_t * sdzp,const char * sname,znode_t * tdzp,const char * tname,cred_t * cr,int flags,uint64_t rflags,vattr_t * wo_vap,zidmap_t * mnt_ns)3553 zfs_rename(znode_t *sdzp, const char *sname, znode_t *tdzp, const char *tname,
3554 cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
3555 {
3556 struct componentname scn, tcn;
3557 vnode_t *sdvp, *tdvp;
3558 vnode_t *svp, *tvp;
3559 int error;
3560 svp = tvp = NULL;
3561
3562 if (is_nametoolong(tdzp->z_zfsvfs, tname))
3563 return (SET_ERROR(ENAMETOOLONG));
3564
3565 if (rflags != 0 || wo_vap != NULL)
3566 return (SET_ERROR(EINVAL));
3567
3568 sdvp = ZTOV(sdzp);
3569 tdvp = ZTOV(tdzp);
3570 error = zfs_lookup_internal(sdzp, sname, &svp, &scn, DELETE);
3571 if (sdzp->z_zfsvfs->z_replay == B_FALSE)
3572 VOP_UNLOCK(sdvp);
3573 if (error != 0)
3574 goto fail;
3575 VOP_UNLOCK(svp);
3576
3577 vn_lock(tdvp, LK_EXCLUSIVE | LK_RETRY);
3578 error = zfs_lookup_internal(tdzp, tname, &tvp, &tcn, RENAME);
3579 if (error == EJUSTRETURN)
3580 tvp = NULL;
3581 else if (error != 0) {
3582 VOP_UNLOCK(tdvp);
3583 goto fail;
3584 }
3585
3586 error = zfs_do_rename(sdvp, &svp, &scn, tdvp, &tvp, &tcn, cr);
3587 fail:
3588 if (svp != NULL)
3589 vrele(svp);
3590 if (tvp != NULL)
3591 vrele(tvp);
3592
3593 return (error);
3594 }
3595
3596 /*
3597 * Insert the indicated symbolic reference entry into the directory.
3598 *
3599 * IN: dvp - Directory to contain new symbolic link.
3600 * link - Name for new symlink entry.
3601 * vap - Attributes of new entry.
3602 * cr - credentials of caller.
3603 * ct - caller context
3604 * flags - case flags
3605 * mnt_ns - Unused on FreeBSD
3606 *
3607 * RETURN: 0 on success, error code on failure.
3608 *
3609 * Timestamps:
3610 * dvp - ctime|mtime updated
3611 */
3612 int
zfs_symlink(znode_t * dzp,const char * name,vattr_t * vap,const char * link,znode_t ** zpp,cred_t * cr,int flags,zidmap_t * mnt_ns)3613 zfs_symlink(znode_t *dzp, const char *name, vattr_t *vap,
3614 const char *link, znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3615 {
3616 (void) flags;
3617 znode_t *zp;
3618 dmu_tx_t *tx;
3619 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3620 zilog_t *zilog;
3621 uint64_t len = strlen(link);
3622 int error;
3623 zfs_acl_ids_t acl_ids;
3624 boolean_t fuid_dirtied;
3625 uint64_t txtype = TX_SYMLINK;
3626
3627 ASSERT3S(vap->va_type, ==, VLNK);
3628
3629 if (is_nametoolong(zfsvfs, name))
3630 return (SET_ERROR(ENAMETOOLONG));
3631
3632 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3633 return (error);
3634 zilog = zfsvfs->z_log;
3635
3636 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3637 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3638 zfs_exit(zfsvfs, FTAG);
3639 return (SET_ERROR(EILSEQ));
3640 }
3641
3642 if (len > MAXPATHLEN) {
3643 zfs_exit(zfsvfs, FTAG);
3644 return (SET_ERROR(ENAMETOOLONG));
3645 }
3646
3647 if ((error = zfs_acl_ids_create(dzp, 0,
3648 vap, cr, NULL, &acl_ids, NULL)) != 0) {
3649 zfs_exit(zfsvfs, FTAG);
3650 return (error);
3651 }
3652
3653 /*
3654 * Attempt to lock directory; fail if entry already exists.
3655 */
3656 error = zfs_dirent_lookup(dzp, name, &zp, ZNEW);
3657 if (error) {
3658 zfs_acl_ids_free(&acl_ids);
3659 zfs_exit(zfsvfs, FTAG);
3660 return (error);
3661 }
3662
3663 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3664 zfs_acl_ids_free(&acl_ids);
3665 zfs_exit(zfsvfs, FTAG);
3666 return (error);
3667 }
3668
3669 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3670 zfs_acl_ids_free(&acl_ids);
3671 zfs_exit(zfsvfs, FTAG);
3672 return (SET_ERROR(EDQUOT));
3673 }
3674
3675 getnewvnode_reserve();
3676 tx = dmu_tx_create(zfsvfs->z_os);
3677 fuid_dirtied = zfsvfs->z_fuid_dirty;
3678 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3679 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3680 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3681 ZFS_SA_BASE_ATTR_SIZE + len);
3682 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3683 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3684 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3685 acl_ids.z_aclp->z_acl_bytes);
3686 }
3687 if (fuid_dirtied)
3688 zfs_fuid_txhold(zfsvfs, tx);
3689 error = dmu_tx_assign(tx, DMU_TX_WAIT);
3690 if (error) {
3691 zfs_acl_ids_free(&acl_ids);
3692 dmu_tx_abort(tx);
3693 getnewvnode_drop_reserve();
3694 zfs_exit(zfsvfs, FTAG);
3695 return (error);
3696 }
3697
3698 /*
3699 * Create a new object for the symlink.
3700 * for version 4 ZPL datasets the symlink will be an SA attribute
3701 */
3702 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3703
3704 if (fuid_dirtied)
3705 zfs_fuid_sync(zfsvfs, tx);
3706
3707 if (zp->z_is_sa)
3708 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3709 __DECONST(void *, link), len, tx);
3710 else
3711 zfs_sa_symlink(zp, __DECONST(char *, link), len, tx);
3712
3713 zp->z_size = len;
3714 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3715 &zp->z_size, sizeof (zp->z_size), tx);
3716 /*
3717 * Insert the new object into the directory.
3718 */
3719 error = zfs_link_create(dzp, name, zp, tx, ZNEW);
3720 if (error != 0) {
3721 zfs_znode_delete(zp, tx);
3722 VOP_UNLOCK(ZTOV(zp));
3723 zrele(zp);
3724 } else {
3725 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3726 }
3727
3728 zfs_acl_ids_free(&acl_ids);
3729
3730 dmu_tx_commit(tx);
3731
3732 getnewvnode_drop_reserve();
3733
3734 if (error == 0) {
3735 *zpp = zp;
3736
3737 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3738 error = zil_commit(zilog, 0);
3739 }
3740
3741 zfs_exit(zfsvfs, FTAG);
3742 return (error);
3743 }
3744
3745 /*
3746 * Return, in the buffer contained in the provided uio structure,
3747 * the symbolic path referred to by vp.
3748 *
3749 * IN: vp - vnode of symbolic link.
3750 * uio - structure to contain the link path.
3751 * cr - credentials of caller.
3752 * ct - caller context
3753 *
3754 * OUT: uio - structure containing the link path.
3755 *
3756 * RETURN: 0 on success, error code on failure.
3757 *
3758 * Timestamps:
3759 * vp - atime updated
3760 */
3761 static int
zfs_readlink(vnode_t * vp,zfs_uio_t * uio,cred_t * cr,caller_context_t * ct)3762 zfs_readlink(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, caller_context_t *ct)
3763 {
3764 (void) cr, (void) ct;
3765 znode_t *zp = VTOZ(vp);
3766 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3767 int error;
3768
3769 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3770 return (error);
3771
3772 if (zp->z_is_sa)
3773 error = sa_lookup_uio(zp->z_sa_hdl,
3774 SA_ZPL_SYMLINK(zfsvfs), uio);
3775 else
3776 error = zfs_sa_readlink(zp, uio);
3777
3778 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3779
3780 zfs_exit(zfsvfs, FTAG);
3781 return (error);
3782 }
3783
3784 /*
3785 * Insert a new entry into directory tdvp referencing svp.
3786 *
3787 * IN: tdvp - Directory to contain new entry.
3788 * svp - vnode of new entry.
3789 * name - name of new entry.
3790 * cr - credentials of caller.
3791 *
3792 * RETURN: 0 on success, error code on failure.
3793 *
3794 * Timestamps:
3795 * tdvp - ctime|mtime updated
3796 * svp - ctime updated
3797 */
3798 int
zfs_link(znode_t * tdzp,znode_t * szp,const char * name,cred_t * cr,int flags)3799 zfs_link(znode_t *tdzp, znode_t *szp, const char *name, cred_t *cr,
3800 int flags)
3801 {
3802 (void) flags;
3803 znode_t *tzp;
3804 zfsvfs_t *zfsvfs = tdzp->z_zfsvfs;
3805 zilog_t *zilog;
3806 dmu_tx_t *tx;
3807 int error;
3808 uint64_t parent;
3809 uid_t owner;
3810
3811 ASSERT3S(ZTOV(tdzp)->v_type, ==, VDIR);
3812
3813 if (is_nametoolong(zfsvfs, name))
3814 return (SET_ERROR(ENAMETOOLONG));
3815
3816 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3817 return (error);
3818 zilog = zfsvfs->z_log;
3819
3820 /*
3821 * POSIX dictates that we return EPERM here.
3822 * Better choices include ENOTSUP or EISDIR.
3823 */
3824 if (ZTOV(szp)->v_type == VDIR) {
3825 zfs_exit(zfsvfs, FTAG);
3826 return (SET_ERROR(EPERM));
3827 }
3828
3829 if ((error = zfs_verify_zp(szp)) != 0) {
3830 zfs_exit(zfsvfs, FTAG);
3831 return (error);
3832 }
3833
3834 /*
3835 * If we are using project inheritance, means if the directory has
3836 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3837 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3838 * such case, we only allow hard link creation in our tree when the
3839 * project IDs are the same.
3840 */
3841 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3842 tdzp->z_projid != szp->z_projid) {
3843 zfs_exit(zfsvfs, FTAG);
3844 return (SET_ERROR(EXDEV));
3845 }
3846
3847 if (szp->z_pflags & (ZFS_APPENDONLY |
3848 ZFS_IMMUTABLE | ZFS_READONLY)) {
3849 zfs_exit(zfsvfs, FTAG);
3850 return (SET_ERROR(EPERM));
3851 }
3852
3853 /* Prevent links to .zfs/shares files */
3854
3855 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3856 &parent, sizeof (uint64_t))) != 0) {
3857 zfs_exit(zfsvfs, FTAG);
3858 return (error);
3859 }
3860 if (parent == zfsvfs->z_shares_dir) {
3861 zfs_exit(zfsvfs, FTAG);
3862 return (SET_ERROR(EPERM));
3863 }
3864
3865 if (zfsvfs->z_utf8 && u8_validate(name,
3866 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3867 zfs_exit(zfsvfs, FTAG);
3868 return (SET_ERROR(EILSEQ));
3869 }
3870
3871 /*
3872 * We do not support links between attributes and non-attributes
3873 * because of the potential security risk of creating links
3874 * into "normal" file space in order to circumvent restrictions
3875 * imposed in attribute space.
3876 */
3877 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3878 zfs_exit(zfsvfs, FTAG);
3879 return (SET_ERROR(EINVAL));
3880 }
3881
3882
3883 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3884 if (owner != crgetuid(cr) && secpolicy_basic_link(ZTOV(szp), cr) != 0) {
3885 zfs_exit(zfsvfs, FTAG);
3886 return (SET_ERROR(EPERM));
3887 }
3888
3889 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr, NULL))) {
3890 zfs_exit(zfsvfs, FTAG);
3891 return (error);
3892 }
3893
3894 /*
3895 * Attempt to lock directory; fail if entry already exists.
3896 */
3897 error = zfs_dirent_lookup(tdzp, name, &tzp, ZNEW);
3898 if (error) {
3899 zfs_exit(zfsvfs, FTAG);
3900 return (error);
3901 }
3902
3903 tx = dmu_tx_create(zfsvfs->z_os);
3904 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3905 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3906 zfs_sa_upgrade_txholds(tx, szp);
3907 zfs_sa_upgrade_txholds(tx, tdzp);
3908 error = dmu_tx_assign(tx, DMU_TX_WAIT);
3909 if (error) {
3910 dmu_tx_abort(tx);
3911 zfs_exit(zfsvfs, FTAG);
3912 return (error);
3913 }
3914
3915 error = zfs_link_create(tdzp, name, szp, tx, 0);
3916
3917 if (error == 0) {
3918 uint64_t txtype = TX_LINK;
3919 zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3920 }
3921
3922 dmu_tx_commit(tx);
3923
3924 if (error == 0) {
3925 vnevent_link(ZTOV(szp), ct);
3926 }
3927
3928 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3929 error = zil_commit(zilog, 0);
3930
3931 zfs_exit(zfsvfs, FTAG);
3932 return (error);
3933 }
3934
3935 /*
3936 * Free or allocate space in a file. Currently, this function only
3937 * supports the `F_FREESP' command. However, this command is somewhat
3938 * misnamed, as its functionality includes the ability to allocate as
3939 * well as free space.
3940 *
3941 * IN: ip - inode of file to free data in.
3942 * cmd - action to take (only F_FREESP supported).
3943 * bfp - section of file to free/alloc.
3944 * flag - current file open mode flags.
3945 * offset - current file offset.
3946 * cr - credentials of caller.
3947 *
3948 * RETURN: 0 on success, error code on failure.
3949 *
3950 * Timestamps:
3951 * ip - ctime|mtime updated
3952 */
3953 int
zfs_space(znode_t * zp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr)3954 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
3955 offset_t offset, cred_t *cr)
3956 {
3957 (void) offset;
3958 zfsvfs_t *zfsvfs = ZTOZSB(zp);
3959 uint64_t off, len;
3960 int error;
3961
3962 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3963 return (error);
3964
3965 if (cmd != F_FREESP) {
3966 zfs_exit(zfsvfs, FTAG);
3967 return (SET_ERROR(EINVAL));
3968 }
3969
3970 /*
3971 * Callers might not be able to detect properly that we are read-only,
3972 * so check it explicitly here.
3973 */
3974 if (zfs_is_readonly(zfsvfs)) {
3975 zfs_exit(zfsvfs, FTAG);
3976 return (SET_ERROR(EROFS));
3977 }
3978
3979 if (bfp->l_len < 0) {
3980 zfs_exit(zfsvfs, FTAG);
3981 return (SET_ERROR(EINVAL));
3982 }
3983
3984 /*
3985 * Permissions aren't checked on Solaris because on this OS
3986 * zfs_space() can only be called with an opened file handle.
3987 * On Linux we can get here through truncate_range() which
3988 * operates directly on inodes, so we need to check access rights.
3989 */
3990 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr, NULL))) {
3991 zfs_exit(zfsvfs, FTAG);
3992 return (error);
3993 }
3994
3995 off = bfp->l_start;
3996 len = bfp->l_len; /* 0 means from off to end of file */
3997
3998 error = zfs_freesp(zp, off, len, flag, TRUE);
3999
4000 zfs_exit(zfsvfs, FTAG);
4001 return (error);
4002 }
4003
4004 static void
zfs_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4005 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4006 {
4007 (void) cr, (void) ct;
4008 znode_t *zp = VTOZ(vp);
4009 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4010 int error;
4011
4012 ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs);
4013 if (zp->z_sa_hdl == NULL) {
4014 /*
4015 * The fs has been unmounted, or we did a
4016 * suspend/resume and this file no longer exists.
4017 */
4018 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
4019 vrecycle(vp);
4020 return;
4021 }
4022
4023 if (zp->z_unlinked) {
4024 /*
4025 * Fast path to recycle a vnode of a removed file.
4026 */
4027 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
4028 vrecycle(vp);
4029 return;
4030 }
4031
4032 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4033 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4034
4035 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4036 zfs_sa_upgrade_txholds(tx, zp);
4037 error = dmu_tx_assign(tx, DMU_TX_WAIT);
4038 if (error) {
4039 dmu_tx_abort(tx);
4040 } else {
4041 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4042 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4043 zp->z_atime_dirty = 0;
4044 dmu_tx_commit(tx);
4045 }
4046 }
4047 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
4048 }
4049
4050
4051 _Static_assert(sizeof (struct zfid_short) <= sizeof (struct fid),
4052 "struct zfid_short bigger than struct fid");
4053 _Static_assert(sizeof (struct zfid_long) <= sizeof (struct fid),
4054 "struct zfid_long bigger than struct fid");
4055
4056 static int
zfs_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4057 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4058 {
4059 (void) ct;
4060 znode_t *zp = VTOZ(vp);
4061 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4062 uint32_t gen;
4063 uint64_t gen64;
4064 uint64_t object = zp->z_id;
4065 zfid_short_t *zfid;
4066 int size, i, error;
4067
4068 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4069 return (error);
4070
4071 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4072 &gen64, sizeof (uint64_t))) != 0) {
4073 zfs_exit(zfsvfs, FTAG);
4074 return (error);
4075 }
4076
4077 gen = (uint32_t)gen64;
4078
4079 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4080 fidp->fid_len = size;
4081
4082 zfid = (zfid_short_t *)fidp;
4083
4084 zfid->zf_len = size;
4085
4086 for (i = 0; i < sizeof (zfid->zf_object); i++)
4087 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4088
4089 /* Must have a non-zero generation number to distinguish from .zfs */
4090 if (gen == 0)
4091 gen = 1;
4092 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4093 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4094
4095 if (size == LONG_FID_LEN) {
4096 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4097 zfid_long_t *zlfid;
4098
4099 zlfid = (zfid_long_t *)fidp;
4100
4101 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4102 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4103
4104 /* XXX - this should be the generation number for the objset */
4105 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4106 zlfid->zf_setgen[i] = 0;
4107 }
4108
4109 zfs_exit(zfsvfs, FTAG);
4110 return (0);
4111 }
4112
4113 static int
zfs_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4114 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4115 caller_context_t *ct)
4116 {
4117 znode_t *zp;
4118 zfsvfs_t *zfsvfs;
4119 int error;
4120
4121 switch (cmd) {
4122 case _PC_LINK_MAX:
4123 *valp = MIN(LONG_MAX, ZFS_LINK_MAX);
4124 return (0);
4125
4126 case _PC_FILESIZEBITS:
4127 *valp = 64;
4128 return (0);
4129 case _PC_MIN_HOLE_SIZE:
4130 *valp = (int)SPA_MINBLOCKSIZE;
4131 return (0);
4132 case _PC_ACL_EXTENDED:
4133 #if 0 /* POSIX ACLs are not implemented for ZFS on FreeBSD yet. */
4134 zp = VTOZ(vp);
4135 zfsvfs = zp->z_zfsvfs;
4136 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4137 return (error);
4138 *valp = zfsvfs->z_acl_type == ZFSACLTYPE_POSIX ? 1 : 0;
4139 zfs_exit(zfsvfs, FTAG);
4140 #else
4141 *valp = 0;
4142 #endif
4143 return (0);
4144
4145 case _PC_ACL_NFS4:
4146 zp = VTOZ(vp);
4147 zfsvfs = zp->z_zfsvfs;
4148 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4149 return (error);
4150 *valp = zfsvfs->z_acl_type == ZFS_ACLTYPE_NFSV4 ? 1 : 0;
4151 zfs_exit(zfsvfs, FTAG);
4152 return (0);
4153
4154 case _PC_ACL_PATH_MAX:
4155 *valp = ACL_MAX_ENTRIES;
4156 return (0);
4157
4158 default:
4159 return (EOPNOTSUPP);
4160 }
4161 }
4162
4163 static int
zfs_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead)4164 zfs_getpages(struct vnode *vp, vm_page_t *ma, int count, int *rbehind,
4165 int *rahead)
4166 {
4167 znode_t *zp = VTOZ(vp);
4168 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4169 zfs_locked_range_t *lr;
4170 vm_object_t object;
4171 off_t start, end, obj_size;
4172 uint_t blksz;
4173 int pgsin_b, pgsin_a;
4174 int error;
4175
4176 if (zfs_enter_verify_zp(zfsvfs, zp, FTAG) != 0)
4177 return (zfs_vm_pagerret_error);
4178
4179 object = ma[0]->object;
4180 start = IDX_TO_OFF(ma[0]->pindex);
4181 end = IDX_TO_OFF(ma[count - 1]->pindex + 1);
4182
4183 /*
4184 * Lock a range covering all required and optional pages.
4185 * Note that we need to handle the case of the block size growing.
4186 */
4187 for (;;) {
4188 uint64_t len;
4189
4190 blksz = zp->z_blksz;
4191 len = roundup(end, blksz) - rounddown(start, blksz);
4192
4193 lr = zfs_rangelock_tryenter(&zp->z_rangelock,
4194 rounddown(start, blksz), len, RL_READER);
4195 if (lr == NULL) {
4196 /*
4197 * Avoid a deadlock with update_pages(). We need to
4198 * hold the range lock when copying from the DMU, so
4199 * give up the busy lock to allow update_pages() to
4200 * proceed. We might need to allocate new pages, which
4201 * isn't quite right since this allocation isn't subject
4202 * to the page fault handler's OOM logic, but this is
4203 * the best we can do for now.
4204 */
4205 for (int i = 0; i < count; i++)
4206 vm_page_xunbusy(ma[i]);
4207
4208 lr = zfs_rangelock_enter(&zp->z_rangelock,
4209 rounddown(start, blksz), len, RL_READER);
4210
4211 zfs_vmobject_wlock(object);
4212 (void) vm_page_grab_pages(object, OFF_TO_IDX(start),
4213 VM_ALLOC_NORMAL | VM_ALLOC_WAITOK | VM_ALLOC_ZERO,
4214 ma, count);
4215 zfs_vmobject_wunlock(object);
4216 }
4217 if (blksz == zp->z_blksz)
4218 break;
4219 zfs_rangelock_exit(lr);
4220 }
4221
4222 zfs_vmobject_wlock(object);
4223 obj_size = object->un_pager.vnp.vnp_size;
4224 zfs_vmobject_wunlock(object);
4225 if (IDX_TO_OFF(ma[count - 1]->pindex) >= obj_size) {
4226 zfs_rangelock_exit(lr);
4227 zfs_exit(zfsvfs, FTAG);
4228 return (zfs_vm_pagerret_bad);
4229 }
4230
4231 pgsin_b = 0;
4232 if (rbehind != NULL) {
4233 pgsin_b = OFF_TO_IDX(start - rounddown(start, blksz));
4234 pgsin_b = MIN(*rbehind, pgsin_b);
4235 }
4236
4237 pgsin_a = 0;
4238 if (rahead != NULL) {
4239 pgsin_a = OFF_TO_IDX(roundup(end, blksz) - end);
4240 if (end + IDX_TO_OFF(pgsin_a) >= obj_size)
4241 pgsin_a = OFF_TO_IDX(round_page(obj_size) - end);
4242 pgsin_a = MIN(*rahead, pgsin_a);
4243 }
4244
4245 /*
4246 * NB: we need to pass the exact byte size of the data that we expect
4247 * to read after accounting for the file size. This is required because
4248 * ZFS will panic if we request DMU to read beyond the end of the last
4249 * allocated block.
4250 */
4251 for (int i = 0; i < count; i++) {
4252 int dummypgsin, count1, j, last_size;
4253
4254 if (vm_page_any_valid(ma[i])) {
4255 ASSERT(vm_page_all_valid(ma[i]));
4256 continue;
4257 }
4258 for (j = i + 1; j < count; j++) {
4259 if (vm_page_any_valid(ma[j])) {
4260 ASSERT(vm_page_all_valid(ma[j]));
4261 break;
4262 }
4263 }
4264 count1 = j - i;
4265 dummypgsin = 0;
4266 last_size = j == count ?
4267 MIN(end, obj_size) - (end - PAGE_SIZE) : PAGE_SIZE;
4268 error = dmu_read_pages(zfsvfs->z_os, zp->z_id, &ma[i], count1,
4269 i == 0 ? &pgsin_b : &dummypgsin,
4270 j == count ? &pgsin_a : &dummypgsin,
4271 last_size);
4272 if (error != 0)
4273 break;
4274 i += count1 - 1;
4275 }
4276
4277 zfs_rangelock_exit(lr);
4278 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4279
4280 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, count*PAGE_SIZE);
4281
4282 zfs_exit(zfsvfs, FTAG);
4283
4284 if (error != 0)
4285 return (zfs_vm_pagerret_error);
4286
4287 VM_CNT_INC(v_vnodein);
4288 VM_CNT_ADD(v_vnodepgsin, count + pgsin_b + pgsin_a);
4289 if (rbehind != NULL)
4290 *rbehind = pgsin_b;
4291 if (rahead != NULL)
4292 *rahead = pgsin_a;
4293 return (zfs_vm_pagerret_ok);
4294 }
4295
4296 #ifndef _SYS_SYSPROTO_H_
4297 struct vop_getpages_args {
4298 struct vnode *a_vp;
4299 vm_page_t *a_m;
4300 int a_count;
4301 int *a_rbehind;
4302 int *a_rahead;
4303 };
4304 #endif
4305
4306 static int
zfs_freebsd_getpages(struct vop_getpages_args * ap)4307 zfs_freebsd_getpages(struct vop_getpages_args *ap)
4308 {
4309
4310 return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind,
4311 ap->a_rahead));
4312 }
4313
4314 typedef struct {
4315 uint_t pca_npages;
4316 vm_page_t pca_pages[];
4317 } putpage_commit_arg_t;
4318
4319 static void
zfs_putpage_commit_cb(void * arg,int err)4320 zfs_putpage_commit_cb(void *arg, int err)
4321 {
4322 putpage_commit_arg_t *pca = arg;
4323 vm_object_t object = pca->pca_pages[0]->object;
4324
4325 zfs_vmobject_wlock(object);
4326
4327 for (uint_t i = 0; i < pca->pca_npages; i++) {
4328 vm_page_t pp = pca->pca_pages[i];
4329
4330 if (err == 0) {
4331 /*
4332 * Writeback succeeded, so undirty the page. If it
4333 * fails, we leave it in the same state it was. That's
4334 * most likely dirty, so it will get tried again some
4335 * other time.
4336 */
4337 vm_page_undirty(pp);
4338 }
4339
4340 vm_page_sunbusy(pp);
4341 }
4342
4343 vm_object_pip_wakeupn(object, pca->pca_npages);
4344
4345 zfs_vmobject_wunlock(object);
4346
4347 kmem_free(pca,
4348 offsetof(putpage_commit_arg_t, pca_pages[pca->pca_npages]));
4349 }
4350
4351 static int
zfs_putpages(struct vnode * vp,vm_page_t * ma,size_t len,int flags,int * rtvals)4352 zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
4353 int *rtvals)
4354 {
4355 znode_t *zp = VTOZ(vp);
4356 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4357 zfs_locked_range_t *lr;
4358 dmu_tx_t *tx;
4359 struct sf_buf *sf;
4360 vm_object_t object;
4361 vm_page_t m;
4362 caddr_t va;
4363 size_t tocopy;
4364 size_t lo_len;
4365 vm_ooffset_t lo_off;
4366 vm_ooffset_t off;
4367 uint_t blksz;
4368 int ncount;
4369 int pcount;
4370 int err;
4371 int i;
4372
4373 object = vp->v_object;
4374 KASSERT(ma[0]->object == object, ("mismatching object"));
4375 KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
4376
4377 pcount = btoc(len);
4378 ncount = pcount;
4379 for (i = 0; i < pcount; i++)
4380 rtvals[i] = zfs_vm_pagerret_error;
4381
4382 if (zfs_enter_verify_zp(zfsvfs, zp, FTAG) != 0)
4383 return (zfs_vm_pagerret_error);
4384
4385 off = IDX_TO_OFF(ma[0]->pindex);
4386 blksz = zp->z_blksz;
4387 lo_off = rounddown(off, blksz);
4388 lo_len = roundup(len + (off - lo_off), blksz);
4389 lr = zfs_rangelock_enter(&zp->z_rangelock, lo_off, lo_len, RL_WRITER);
4390
4391 zfs_vmobject_wlock(object);
4392 if (len + off > object->un_pager.vnp.vnp_size) {
4393 if (object->un_pager.vnp.vnp_size > off) {
4394 int pgoff;
4395
4396 len = object->un_pager.vnp.vnp_size - off;
4397 ncount = btoc(len);
4398 if ((pgoff = (int)len & PAGE_MASK) != 0) {
4399 /*
4400 * If the object is locked and the following
4401 * conditions hold, then the page's dirty
4402 * field cannot be concurrently changed by a
4403 * pmap operation.
4404 */
4405 m = ma[ncount - 1];
4406 vm_page_assert_sbusied(m);
4407 KASSERT(!pmap_page_is_write_mapped(m),
4408 ("zfs_putpages: page %p is not read-only",
4409 m));
4410 vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
4411 pgoff);
4412 }
4413 } else {
4414 len = 0;
4415 ncount = 0;
4416 }
4417 if (ncount < pcount) {
4418 for (i = ncount; i < pcount; i++) {
4419 rtvals[i] = zfs_vm_pagerret_bad;
4420 }
4421 }
4422 }
4423 zfs_vmobject_wunlock(object);
4424
4425 boolean_t commit = (flags & (zfs_vm_pagerput_sync |
4426 zfs_vm_pagerput_inval)) != 0 ||
4427 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS;
4428
4429 if (ncount == 0)
4430 goto out;
4431
4432 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) ||
4433 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid) ||
4434 (zp->z_projid != ZFS_DEFAULT_PROJID &&
4435 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
4436 zp->z_projid))) {
4437 goto out;
4438 }
4439
4440 tx = dmu_tx_create(zfsvfs->z_os);
4441 dmu_tx_hold_write(tx, zp->z_id, off, len);
4442
4443 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4444 zfs_sa_upgrade_txholds(tx, zp);
4445 err = dmu_tx_assign(tx, DMU_TX_WAIT);
4446 if (err != 0) {
4447 dmu_tx_abort(tx);
4448 goto out;
4449 }
4450
4451 if (zp->z_blksz < PAGE_SIZE) {
4452 vm_ooffset_t woff = off;
4453 size_t wlen = len;
4454 for (i = 0; wlen > 0; woff += tocopy, wlen -= tocopy, i++) {
4455 tocopy = MIN(PAGE_SIZE, wlen);
4456 va = zfs_map_page(ma[i], &sf);
4457 dmu_write(zfsvfs->z_os, zp->z_id, woff, tocopy, va, tx);
4458 zfs_unmap_page(sf);
4459 }
4460 } else {
4461 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
4462 }
4463
4464 if (err == 0) {
4465 uint64_t mtime[2], ctime[2];
4466 sa_bulk_attr_t bulk[3];
4467 int count = 0;
4468
4469 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4470 &mtime, 16);
4471 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4472 &ctime, 16);
4473 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4474 &zp->z_pflags, 8);
4475 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
4476 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
4477 ASSERT0(err);
4478
4479 if (commit) {
4480 /*
4481 * Caller requested that we commit immediately. We set
4482 * a callback on the log entry, to be called once its
4483 * on disk after the call to zil_commit() below. The
4484 * pages will be undirtied and unbusied there.
4485 */
4486 putpage_commit_arg_t *pca = kmem_alloc(
4487 offsetof(putpage_commit_arg_t, pca_pages[ncount]),
4488 KM_SLEEP);
4489 pca->pca_npages = ncount;
4490 memcpy(pca->pca_pages, ma, sizeof (vm_page_t) * ncount);
4491
4492 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len,
4493 B_TRUE, B_FALSE, zfs_putpage_commit_cb, pca);
4494
4495 for (i = 0; i < ncount; i++)
4496 rtvals[i] = zfs_vm_pagerret_pend;
4497 } else {
4498 /*
4499 * Caller just wants the page written back somewhere,
4500 * but doesn't need it committed yet. We've already
4501 * written it back to the DMU, so we just need to put
4502 * it on the async log, then undirty the page and
4503 * return.
4504 *
4505 * We cannot use a callback here, because it would keep
4506 * the page busy (locked) until it is eventually
4507 * written down at txg sync.
4508 */
4509 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len,
4510 B_FALSE, B_FALSE, NULL, NULL);
4511
4512 zfs_vmobject_wlock(object);
4513 for (i = 0; i < ncount; i++) {
4514 rtvals[i] = zfs_vm_pagerret_ok;
4515 vm_page_undirty(ma[i]);
4516 }
4517 zfs_vmobject_wunlock(object);
4518 }
4519
4520 VM_CNT_INC(v_vnodeout);
4521 VM_CNT_ADD(v_vnodepgsout, ncount);
4522 }
4523 dmu_tx_commit(tx);
4524
4525 out:
4526 zfs_rangelock_exit(lr);
4527 if (commit) {
4528 err = zil_commit(zfsvfs->z_log, zp->z_id);
4529 if (err != 0) {
4530 zfs_exit(zfsvfs, FTAG);
4531 return (err);
4532 }
4533 }
4534
4535 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, len);
4536
4537 zfs_exit(zfsvfs, FTAG);
4538 return (rtvals[0]);
4539 }
4540
4541 #ifndef _SYS_SYSPROTO_H_
4542 struct vop_putpages_args {
4543 struct vnode *a_vp;
4544 vm_page_t *a_m;
4545 int a_count;
4546 int a_sync;
4547 int *a_rtvals;
4548 };
4549 #endif
4550
4551 static int
zfs_freebsd_putpages(struct vop_putpages_args * ap)4552 zfs_freebsd_putpages(struct vop_putpages_args *ap)
4553 {
4554
4555 return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
4556 ap->a_rtvals));
4557 }
4558
4559 #ifndef _SYS_SYSPROTO_H_
4560 struct vop_bmap_args {
4561 struct vnode *a_vp;
4562 daddr_t a_bn;
4563 struct bufobj **a_bop;
4564 daddr_t *a_bnp;
4565 int *a_runp;
4566 int *a_runb;
4567 };
4568 #endif
4569
4570 static int
zfs_freebsd_bmap(struct vop_bmap_args * ap)4571 zfs_freebsd_bmap(struct vop_bmap_args *ap)
4572 {
4573
4574 if (ap->a_bop != NULL)
4575 *ap->a_bop = &ap->a_vp->v_bufobj;
4576 if (ap->a_bnp != NULL)
4577 *ap->a_bnp = ap->a_bn;
4578 if (ap->a_runp != NULL)
4579 *ap->a_runp = 0;
4580 if (ap->a_runb != NULL)
4581 *ap->a_runb = 0;
4582
4583 return (0);
4584 }
4585
4586 #ifndef _SYS_SYSPROTO_H_
4587 struct vop_open_args {
4588 struct vnode *a_vp;
4589 int a_mode;
4590 struct ucred *a_cred;
4591 struct thread *a_td;
4592 };
4593 #endif
4594
4595 static int
zfs_freebsd_open(struct vop_open_args * ap)4596 zfs_freebsd_open(struct vop_open_args *ap)
4597 {
4598 vnode_t *vp = ap->a_vp;
4599 znode_t *zp = VTOZ(vp);
4600 int error;
4601
4602 error = zfs_open(&vp, ap->a_mode, ap->a_cred);
4603 if (error == 0)
4604 vnode_create_vobject(vp, zp->z_size, ap->a_td);
4605 return (error);
4606 }
4607
4608 #ifndef _SYS_SYSPROTO_H_
4609 struct vop_close_args {
4610 struct vnode *a_vp;
4611 int a_fflag;
4612 struct ucred *a_cred;
4613 struct thread *a_td;
4614 };
4615 #endif
4616
4617 static int
zfs_freebsd_close(struct vop_close_args * ap)4618 zfs_freebsd_close(struct vop_close_args *ap)
4619 {
4620
4621 return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred));
4622 }
4623
4624 #ifndef _SYS_SYSPROTO_H_
4625 struct vop_ioctl_args {
4626 struct vnode *a_vp;
4627 ulong_t a_command;
4628 caddr_t a_data;
4629 int a_fflag;
4630 struct ucred *cred;
4631 struct thread *td;
4632 };
4633 #endif
4634
4635 static int
zfs_freebsd_ioctl(struct vop_ioctl_args * ap)4636 zfs_freebsd_ioctl(struct vop_ioctl_args *ap)
4637 {
4638
4639 return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
4640 ap->a_fflag, ap->a_cred, NULL));
4641 }
4642
4643 static int
ioflags(int ioflags)4644 ioflags(int ioflags)
4645 {
4646 int flags = 0;
4647
4648 if (ioflags & IO_APPEND)
4649 flags |= O_APPEND;
4650 if (ioflags & IO_NDELAY)
4651 flags |= O_NONBLOCK;
4652 if (ioflags & IO_DIRECT)
4653 flags |= O_DIRECT;
4654 if (ioflags & IO_SYNC)
4655 flags |= O_SYNC;
4656
4657 return (flags);
4658 }
4659
4660 #ifndef _SYS_SYSPROTO_H_
4661 struct vop_read_args {
4662 struct vnode *a_vp;
4663 struct uio *a_uio;
4664 int a_ioflag;
4665 struct ucred *a_cred;
4666 };
4667 #endif
4668
4669 static int
zfs_freebsd_read(struct vop_read_args * ap)4670 zfs_freebsd_read(struct vop_read_args *ap)
4671 {
4672 zfs_uio_t uio;
4673 int error = 0;
4674 zfs_uio_init(&uio, ap->a_uio);
4675 error = zfs_read(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag),
4676 ap->a_cred);
4677 /*
4678 * XXX We occasionally get an EFAULT for Direct I/O reads on
4679 * FreeBSD 13. This still needs to be resolved. The EFAULT comes
4680 * from:
4681 * zfs_uio_get__dio_pages_alloc() ->
4682 * zfs_uio_get_dio_pages_impl() ->
4683 * zfs_uio_iov_step() ->
4684 * zfs_uio_get_user_pages().
4685 * We return EFAULT from zfs_uio_iov_step(). When a Direct I/O
4686 * read fails to map in the user pages (returning EFAULT) the
4687 * Direct I/O request is broken up into two separate IO requests
4688 * and issued separately using Direct I/O.
4689 */
4690 #ifdef ZFS_DEBUG
4691 if (error == EFAULT && uio.uio_extflg & UIO_DIRECT) {
4692 #if 0
4693 printf("%s(%d): Direct I/O read returning EFAULT "
4694 "uio = %p, zfs_uio_offset(uio) = %lu "
4695 "zfs_uio_resid(uio) = %lu\n",
4696 __FUNCTION__, __LINE__, &uio, zfs_uio_offset(&uio),
4697 zfs_uio_resid(&uio));
4698 #endif
4699 }
4700
4701 #endif
4702 return (error);
4703 }
4704
4705 #ifndef _SYS_SYSPROTO_H_
4706 struct vop_write_args {
4707 struct vnode *a_vp;
4708 struct uio *a_uio;
4709 int a_ioflag;
4710 struct ucred *a_cred;
4711 };
4712 #endif
4713
4714 static int
zfs_freebsd_write(struct vop_write_args * ap)4715 zfs_freebsd_write(struct vop_write_args *ap)
4716 {
4717 zfs_uio_t uio;
4718 zfs_uio_init(&uio, ap->a_uio);
4719 return (zfs_write(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag),
4720 ap->a_cred));
4721 }
4722
4723 /*
4724 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
4725 * the comment above cache_fplookup for details.
4726 */
4727 static int
zfs_freebsd_fplookup_vexec(struct vop_fplookup_vexec_args * v)4728 zfs_freebsd_fplookup_vexec(struct vop_fplookup_vexec_args *v)
4729 {
4730 vnode_t *vp;
4731 znode_t *zp;
4732 uint64_t pflags;
4733
4734 vp = v->a_vp;
4735 zp = VTOZ_SMR(vp);
4736 if (__predict_false(zp == NULL))
4737 return (EAGAIN);
4738 pflags = atomic_load_64(&zp->z_pflags);
4739 if (pflags & ZFS_AV_QUARANTINED)
4740 return (EAGAIN);
4741 if (pflags & ZFS_XATTR)
4742 return (EAGAIN);
4743 if ((pflags & ZFS_NO_EXECS_DENIED) == 0)
4744 return (EAGAIN);
4745 return (0);
4746 }
4747
4748 static int
zfs_freebsd_fplookup_symlink(struct vop_fplookup_symlink_args * v)4749 zfs_freebsd_fplookup_symlink(struct vop_fplookup_symlink_args *v)
4750 {
4751 vnode_t *vp;
4752 znode_t *zp;
4753 char *target;
4754
4755 vp = v->a_vp;
4756 zp = VTOZ_SMR(vp);
4757 if (__predict_false(zp == NULL)) {
4758 return (EAGAIN);
4759 }
4760
4761 target = atomic_load_consume_ptr(&zp->z_cached_symlink);
4762 if (target == NULL) {
4763 return (EAGAIN);
4764 }
4765 return (cache_symlink_resolve(v->a_fpl, target, strlen(target)));
4766 }
4767
4768 #ifndef _SYS_SYSPROTO_H_
4769 struct vop_access_args {
4770 struct vnode *a_vp;
4771 accmode_t a_accmode;
4772 struct ucred *a_cred;
4773 struct thread *a_td;
4774 };
4775 #endif
4776
4777 static int
zfs_freebsd_access(struct vop_access_args * ap)4778 zfs_freebsd_access(struct vop_access_args *ap)
4779 {
4780 vnode_t *vp = ap->a_vp;
4781 znode_t *zp = VTOZ(vp);
4782 accmode_t accmode;
4783 int error = 0;
4784
4785
4786 if (ap->a_accmode == VEXEC) {
4787 if (zfs_fastaccesschk_execute(zp, ap->a_cred) == 0)
4788 return (0);
4789 }
4790
4791 /*
4792 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
4793 */
4794 accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
4795 if (accmode != 0) {
4796 #if __FreeBSD_version >= 1500040
4797 /* For named attributes, do the checks. */
4798 if ((vn_irflag_read(vp) & VIRF_NAMEDATTR) != 0)
4799 error = zfs_access(zp, accmode, V_NAMEDATTR,
4800 ap->a_cred);
4801 else
4802 #endif
4803 error = zfs_access(zp, accmode, 0, ap->a_cred);
4804 }
4805
4806 /*
4807 * VADMIN has to be handled by vaccess().
4808 */
4809 if (error == 0) {
4810 accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
4811 if (accmode != 0) {
4812 error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
4813 zp->z_gid, accmode, ap->a_cred);
4814 }
4815 }
4816
4817 /*
4818 * For VEXEC, ensure that at least one execute bit is set for
4819 * non-directories.
4820 */
4821 if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
4822 (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
4823 error = EACCES;
4824 }
4825
4826 return (error);
4827 }
4828
4829 #ifndef _SYS_SYSPROTO_H_
4830 struct vop_lookup_args {
4831 struct vnode *a_dvp;
4832 struct vnode **a_vpp;
4833 struct componentname *a_cnp;
4834 };
4835 #endif
4836
4837 #if __FreeBSD_version >= 1500040
4838 static int
zfs_lookup_nameddir(struct vnode * dvp,struct componentname * cnp,struct vnode ** vpp)4839 zfs_lookup_nameddir(struct vnode *dvp, struct componentname *cnp,
4840 struct vnode **vpp)
4841 {
4842 struct vnode *xvp;
4843 int error, flags;
4844
4845 *vpp = NULL;
4846 flags = LOOKUP_XATTR | LOOKUP_NAMED_ATTR;
4847 if ((cnp->cn_flags & CREATENAMED) != 0)
4848 flags |= CREATE_XATTR_DIR;
4849 error = zfs_lookup(dvp, NULL, &xvp, NULL, 0, cnp->cn_cred, flags,
4850 B_FALSE);
4851 if (error == 0) {
4852 if ((cnp->cn_flags & LOCKLEAF) != 0)
4853 error = vn_lock(xvp, cnp->cn_lkflags);
4854 if (error == 0) {
4855 vn_irflag_set_cond(xvp, VIRF_NAMEDDIR);
4856 *vpp = xvp;
4857 } else {
4858 vrele(xvp);
4859 }
4860 }
4861 return (error);
4862 }
4863
4864 static ssize_t
zfs_readdir_named(struct vnode * vp,char * buf,ssize_t blen,off_t * offp,int * eofflagp,struct ucred * cred,struct thread * td)4865 zfs_readdir_named(struct vnode *vp, char *buf, ssize_t blen, off_t *offp,
4866 int *eofflagp, struct ucred *cred, struct thread *td)
4867 {
4868 struct uio io;
4869 struct iovec iv;
4870 zfs_uio_t uio;
4871 int error;
4872
4873 io.uio_offset = *offp;
4874 io.uio_segflg = UIO_SYSSPACE;
4875 io.uio_rw = UIO_READ;
4876 io.uio_td = td;
4877 iv.iov_base = buf;
4878 iv.iov_len = blen;
4879 io.uio_iov = &iv;
4880 io.uio_iovcnt = 1;
4881 io.uio_resid = blen;
4882 zfs_uio_init(&uio, &io);
4883 error = zfs_readdir(vp, &uio, cred, eofflagp, NULL, NULL);
4884 if (error != 0)
4885 return (-1);
4886 *offp = io.uio_offset;
4887 return (blen - io.uio_resid);
4888 }
4889
4890 static bool
zfs_has_namedattr(struct vnode * vp,struct ucred * cred)4891 zfs_has_namedattr(struct vnode *vp, struct ucred *cred)
4892 {
4893 struct componentname cn;
4894 struct vnode *xvp;
4895 struct dirent *dp;
4896 off_t offs;
4897 ssize_t rsize;
4898 char *buf, *cp, *endcp;
4899 int eofflag, error;
4900 bool ret;
4901
4902 MNT_ILOCK(vp->v_mount);
4903 if ((vp->v_mount->mnt_flag & MNT_NAMEDATTR) == 0) {
4904 MNT_IUNLOCK(vp->v_mount);
4905 return (false);
4906 }
4907 MNT_IUNLOCK(vp->v_mount);
4908
4909 /* Now see if a named attribute directory exists. */
4910 cn.cn_flags = LOCKLEAF;
4911 cn.cn_lkflags = LK_SHARED;
4912 cn.cn_cred = cred;
4913 error = zfs_lookup_nameddir(vp, &cn, &xvp);
4914 if (error != 0)
4915 return (false);
4916
4917 /* It exists, so see if there is any entry other than "." and "..". */
4918 buf = malloc(DEV_BSIZE, M_TEMP, M_WAITOK);
4919 ret = false;
4920 offs = 0;
4921 do {
4922 rsize = zfs_readdir_named(xvp, buf, DEV_BSIZE, &offs, &eofflag,
4923 cred, curthread);
4924 if (rsize <= 0)
4925 break;
4926 cp = buf;
4927 endcp = &buf[rsize];
4928 while (cp < endcp) {
4929 dp = (struct dirent *)cp;
4930 if (dp->d_fileno != 0 && (dp->d_type == DT_REG ||
4931 dp->d_type == DT_UNKNOWN) &&
4932 !ZFS_XA_NS_PREFIX_FORBIDDEN(dp->d_name) &&
4933 ((dp->d_namlen == 1 && dp->d_name[0] != '.') ||
4934 (dp->d_namlen == 2 && (dp->d_name[0] != '.' ||
4935 dp->d_name[1] != '.')) || dp->d_namlen > 2)) {
4936 ret = true;
4937 break;
4938 }
4939 cp += dp->d_reclen;
4940 }
4941 } while (!ret && rsize > 0 && eofflag == 0);
4942 vput(xvp);
4943 free(buf, M_TEMP);
4944 return (ret);
4945 }
4946
4947 static int
zfs_freebsd_lookup(struct vop_lookup_args * ap,boolean_t cached)4948 zfs_freebsd_lookup(struct vop_lookup_args *ap, boolean_t cached)
4949 {
4950 struct componentname *cnp = ap->a_cnp;
4951 char nm[NAME_MAX + 1];
4952 int error;
4953 struct vnode **vpp = ap->a_vpp, *dvp = ap->a_dvp, *xvp;
4954 bool is_nameddir, needs_nameddir, opennamed = false;
4955
4956 /*
4957 * These variables are used to handle the named attribute cases:
4958 * opennamed - Is true when this is a call from open with O_NAMEDATTR
4959 * specified and it is the last component.
4960 * is_nameddir - Is true when the directory is a named attribute dir.
4961 * needs_nameddir - Is set when the lookup needs to look for/create
4962 * a named attribute directory. It is only set when is_nameddir
4963 * is_nameddir is false and opennamed is true.
4964 * xvp - Is the directory that the lookup needs to be done in.
4965 * Usually dvp, unless needs_nameddir is true where it is the
4966 * result of the first non-named directory lookup.
4967 * Note that name caching must be disabled for named attribute
4968 * handling.
4969 */
4970 needs_nameddir = false;
4971 xvp = dvp;
4972 opennamed = (cnp->cn_flags & (OPENNAMED | ISLASTCN)) ==
4973 (OPENNAMED | ISLASTCN);
4974 is_nameddir = (vn_irflag_read(dvp) & VIRF_NAMEDDIR) != 0;
4975 if (is_nameddir && (cnp->cn_flags & ISLASTCN) == 0)
4976 return (ENOATTR);
4977 if (opennamed && !is_nameddir && (cnp->cn_flags & ISDOTDOT) != 0)
4978 return (ENOATTR);
4979 if (opennamed || is_nameddir)
4980 cnp->cn_flags &= ~MAKEENTRY;
4981 if (opennamed && !is_nameddir)
4982 needs_nameddir = true;
4983 ASSERT3U(cnp->cn_namelen, <, sizeof (nm));
4984 error = 0;
4985 *vpp = NULL;
4986 if (needs_nameddir) {
4987 if (VOP_ISLOCKED(dvp) != LK_EXCLUSIVE)
4988 vn_lock(dvp, LK_UPGRADE | LK_RETRY);
4989 error = zfs_lookup_nameddir(dvp, cnp, &xvp);
4990 if (error == 0)
4991 is_nameddir = true;
4992 }
4993 if (error == 0) {
4994 if (!needs_nameddir || cnp->cn_namelen != 1 ||
4995 *cnp->cn_nameptr != '.') {
4996 strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1,
4997 sizeof (nm)));
4998 error = zfs_lookup(xvp, nm, vpp, cnp, cnp->cn_nameiop,
4999 cnp->cn_cred, 0, cached);
5000 if (is_nameddir && error == 0 &&
5001 (cnp->cn_namelen != 1 || *cnp->cn_nameptr != '.') &&
5002 (cnp->cn_flags & ISDOTDOT) == 0) {
5003 if ((*vpp)->v_type == VDIR)
5004 vn_irflag_set_cond(*vpp, VIRF_NAMEDDIR);
5005 else
5006 vn_irflag_set_cond(*vpp,
5007 VIRF_NAMEDATTR);
5008 }
5009 if (needs_nameddir && xvp != *vpp)
5010 vput(xvp);
5011 } else {
5012 /*
5013 * Lookup of "." when a named attribute dir is needed.
5014 */
5015 *vpp = xvp;
5016 }
5017 }
5018 return (error);
5019 }
5020 #else
5021 static int
zfs_freebsd_lookup(struct vop_lookup_args * ap,boolean_t cached)5022 zfs_freebsd_lookup(struct vop_lookup_args *ap, boolean_t cached)
5023 {
5024 struct componentname *cnp = ap->a_cnp;
5025 char nm[NAME_MAX + 1];
5026
5027 ASSERT3U(cnp->cn_namelen, <, sizeof (nm));
5028 strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof (nm)));
5029
5030 return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
5031 cnp->cn_cred, 0, cached));
5032 }
5033 #endif
5034
5035 static int
zfs_freebsd_cachedlookup(struct vop_cachedlookup_args * ap)5036 zfs_freebsd_cachedlookup(struct vop_cachedlookup_args *ap)
5037 {
5038
5039 return (zfs_freebsd_lookup((struct vop_lookup_args *)ap, B_TRUE));
5040 }
5041
5042 #ifndef _SYS_SYSPROTO_H_
5043 struct vop_lookup_args {
5044 struct vnode *a_dvp;
5045 struct vnode **a_vpp;
5046 struct componentname *a_cnp;
5047 };
5048 #endif
5049
5050 static int
zfs_cache_lookup(struct vop_lookup_args * ap)5051 zfs_cache_lookup(struct vop_lookup_args *ap)
5052 {
5053 zfsvfs_t *zfsvfs;
5054
5055 zfsvfs = ap->a_dvp->v_mount->mnt_data;
5056 #if __FreeBSD_version >= 1500040
5057 if (zfsvfs->z_use_namecache && (ap->a_cnp->cn_flags & OPENNAMED) == 0)
5058 #else
5059 if (zfsvfs->z_use_namecache)
5060 #endif
5061 return (vfs_cache_lookup(ap));
5062 else
5063 return (zfs_freebsd_lookup(ap, B_FALSE));
5064 }
5065
5066 #ifndef _SYS_SYSPROTO_H_
5067 struct vop_create_args {
5068 struct vnode *a_dvp;
5069 struct vnode **a_vpp;
5070 struct componentname *a_cnp;
5071 struct vattr *a_vap;
5072 };
5073 #endif
5074
5075 static int
zfs_freebsd_create(struct vop_create_args * ap)5076 zfs_freebsd_create(struct vop_create_args *ap)
5077 {
5078 zfsvfs_t *zfsvfs;
5079 struct componentname *cnp = ap->a_cnp;
5080 vattr_t *vap = ap->a_vap;
5081 znode_t *zp = NULL;
5082 int rc, mode;
5083 struct vnode *dvp = ap->a_dvp;
5084 #if __FreeBSD_version >= 1500040
5085 struct vnode *xvp;
5086 bool is_nameddir;
5087 #endif
5088
5089 #if __FreeBSD_version < 1400068
5090 ASSERT(cnp->cn_flags & SAVENAME);
5091 #endif
5092
5093 vattr_init_mask(vap);
5094 mode = vap->va_mode & ALLPERMS;
5095 zfsvfs = ap->a_dvp->v_mount->mnt_data;
5096 *ap->a_vpp = NULL;
5097
5098 rc = 0;
5099 #if __FreeBSD_version >= 1500040
5100 xvp = NULL;
5101 is_nameddir = (vn_irflag_read(dvp) & VIRF_NAMEDDIR) != 0;
5102 if (!is_nameddir && (cnp->cn_flags & OPENNAMED) != 0) {
5103 /* Needs a named attribute directory. */
5104 rc = zfs_lookup_nameddir(dvp, cnp, &xvp);
5105 if (rc == 0) {
5106 dvp = xvp;
5107 is_nameddir = true;
5108 }
5109 }
5110 if (is_nameddir && rc == 0)
5111 rc = zfs_check_attrname(cnp->cn_nameptr);
5112 #endif
5113
5114 if (rc == 0)
5115 rc = zfs_create(VTOZ(dvp), cnp->cn_nameptr, vap, 0, mode,
5116 &zp, cnp->cn_cred, 0 /* flag */, NULL /* vsecattr */, NULL);
5117 #if __FreeBSD_version >= 1500040
5118 if (xvp != NULL)
5119 vput(xvp);
5120 #endif
5121 if (rc == 0) {
5122 *ap->a_vpp = ZTOV(zp);
5123 #if __FreeBSD_version >= 1500040
5124 if (is_nameddir)
5125 vn_irflag_set_cond(*ap->a_vpp, VIRF_NAMEDATTR);
5126 #endif
5127 }
5128 if (zfsvfs->z_use_namecache &&
5129 rc == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
5130 cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
5131
5132 return (rc);
5133 }
5134
5135 #ifndef _SYS_SYSPROTO_H_
5136 struct vop_remove_args {
5137 struct vnode *a_dvp;
5138 struct vnode *a_vp;
5139 struct componentname *a_cnp;
5140 };
5141 #endif
5142
5143 static int
zfs_freebsd_remove(struct vop_remove_args * ap)5144 zfs_freebsd_remove(struct vop_remove_args *ap)
5145 {
5146 int error = 0;
5147
5148 #if __FreeBSD_version < 1400068
5149 ASSERT(ap->a_cnp->cn_flags & SAVENAME);
5150 #endif
5151
5152 #if __FreeBSD_version >= 1500040
5153 if ((vn_irflag_read(ap->a_dvp) & VIRF_NAMEDDIR) != 0)
5154 error = zfs_check_attrname(ap->a_cnp->cn_nameptr);
5155 #endif
5156
5157 if (error == 0)
5158 error = zfs_remove_(ap->a_dvp, ap->a_vp, ap->a_cnp->cn_nameptr,
5159 ap->a_cnp->cn_cred);
5160 return (error);
5161 }
5162
5163 #ifndef _SYS_SYSPROTO_H_
5164 struct vop_mkdir_args {
5165 struct vnode *a_dvp;
5166 struct vnode **a_vpp;
5167 struct componentname *a_cnp;
5168 struct vattr *a_vap;
5169 };
5170 #endif
5171
5172 static int
zfs_freebsd_mkdir(struct vop_mkdir_args * ap)5173 zfs_freebsd_mkdir(struct vop_mkdir_args *ap)
5174 {
5175 vattr_t *vap = ap->a_vap;
5176 znode_t *zp = NULL;
5177 int rc;
5178
5179 #if __FreeBSD_version < 1400068
5180 ASSERT(ap->a_cnp->cn_flags & SAVENAME);
5181 #endif
5182
5183 vattr_init_mask(vap);
5184 *ap->a_vpp = NULL;
5185
5186 rc = zfs_mkdir(VTOZ(ap->a_dvp), ap->a_cnp->cn_nameptr, vap, &zp,
5187 ap->a_cnp->cn_cred, 0, NULL, NULL);
5188
5189 if (rc == 0)
5190 *ap->a_vpp = ZTOV(zp);
5191 return (rc);
5192 }
5193
5194 #ifndef _SYS_SYSPROTO_H_
5195 struct vop_rmdir_args {
5196 struct vnode *a_dvp;
5197 struct vnode *a_vp;
5198 struct componentname *a_cnp;
5199 };
5200 #endif
5201
5202 static int
zfs_freebsd_rmdir(struct vop_rmdir_args * ap)5203 zfs_freebsd_rmdir(struct vop_rmdir_args *ap)
5204 {
5205 struct componentname *cnp = ap->a_cnp;
5206
5207 #if __FreeBSD_version < 1400068
5208 ASSERT(cnp->cn_flags & SAVENAME);
5209 #endif
5210
5211 return (zfs_rmdir_(ap->a_dvp, ap->a_vp, cnp->cn_nameptr, cnp->cn_cred));
5212 }
5213
5214 #ifndef _SYS_SYSPROTO_H_
5215 struct vop_readdir_args {
5216 struct vnode *a_vp;
5217 struct uio *a_uio;
5218 struct ucred *a_cred;
5219 int *a_eofflag;
5220 int *a_ncookies;
5221 cookie_t **a_cookies;
5222 };
5223 #endif
5224
5225 static int
zfs_freebsd_readdir(struct vop_readdir_args * ap)5226 zfs_freebsd_readdir(struct vop_readdir_args *ap)
5227 {
5228 zfs_uio_t uio;
5229 zfs_uio_init(&uio, ap->a_uio);
5230 return (zfs_readdir(ap->a_vp, &uio, ap->a_cred, ap->a_eofflag,
5231 ap->a_ncookies, ap->a_cookies));
5232 }
5233
5234 #ifndef _SYS_SYSPROTO_H_
5235 struct vop_fsync_args {
5236 struct vnode *a_vp;
5237 int a_waitfor;
5238 struct thread *a_td;
5239 };
5240 #endif
5241
5242 static int
zfs_freebsd_fsync(struct vop_fsync_args * ap)5243 zfs_freebsd_fsync(struct vop_fsync_args *ap)
5244 {
5245 vnode_t *vp = ap->a_vp;
5246 int err = 0;
5247
5248 /*
5249 * Push any dirty mmap()'d data out to the DMU and ZIL, ready for
5250 * zil_commit() to be called in zfs_fsync().
5251 */
5252 if (vm_object_mightbedirty(vp->v_object)) {
5253 zfs_vmobject_wlock(vp->v_object);
5254 if (!vm_object_page_clean(vp->v_object, 0, 0, 0))
5255 err = SET_ERROR(EIO);
5256 zfs_vmobject_wunlock(vp->v_object);
5257 if (err) {
5258 /*
5259 * Unclear what state things are in. zfs_putpages()
5260 * will ensure the pages remain dirty if they haven't
5261 * been written down to the DMU, but because there may
5262 * be nothing logged, we can't assume that zfs_sync()
5263 * -> zil_commit() will give us a useful error. It's
5264 * safest if we just error out here.
5265 */
5266 return (err);
5267 }
5268 }
5269
5270 return (zfs_fsync(VTOZ(vp), 0, ap->a_td->td_ucred));
5271 }
5272
5273 #ifndef _SYS_SYSPROTO_H_
5274 struct vop_getattr_args {
5275 struct vnode *a_vp;
5276 struct vattr *a_vap;
5277 struct ucred *a_cred;
5278 };
5279 #endif
5280
5281 static int
zfs_freebsd_getattr(struct vop_getattr_args * ap)5282 zfs_freebsd_getattr(struct vop_getattr_args *ap)
5283 {
5284 vattr_t *vap = ap->a_vap;
5285 xvattr_t xvap;
5286 ulong_t fflags = 0;
5287 int error;
5288
5289 xva_init(&xvap);
5290 xvap.xva_vattr = *vap;
5291 xvap.xva_vattr.va_mask |= AT_XVATTR;
5292
5293 /* Convert chflags into ZFS-type flags. */
5294 /* XXX: what about SF_SETTABLE?. */
5295 XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
5296 XVA_SET_REQ(&xvap, XAT_APPENDONLY);
5297 XVA_SET_REQ(&xvap, XAT_NOUNLINK);
5298 XVA_SET_REQ(&xvap, XAT_NODUMP);
5299 XVA_SET_REQ(&xvap, XAT_READONLY);
5300 XVA_SET_REQ(&xvap, XAT_ARCHIVE);
5301 XVA_SET_REQ(&xvap, XAT_SYSTEM);
5302 XVA_SET_REQ(&xvap, XAT_HIDDEN);
5303 XVA_SET_REQ(&xvap, XAT_REPARSE);
5304 XVA_SET_REQ(&xvap, XAT_OFFLINE);
5305 XVA_SET_REQ(&xvap, XAT_SPARSE);
5306
5307 error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred);
5308 if (error != 0)
5309 return (error);
5310
5311 /* Convert ZFS xattr into chflags. */
5312 #define FLAG_CHECK(fflag, xflag, xfield) do { \
5313 if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0) \
5314 fflags |= (fflag); \
5315 } while (0)
5316 FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
5317 xvap.xva_xoptattrs.xoa_immutable);
5318 FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
5319 xvap.xva_xoptattrs.xoa_appendonly);
5320 FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
5321 xvap.xva_xoptattrs.xoa_nounlink);
5322 FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
5323 xvap.xva_xoptattrs.xoa_archive);
5324 FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
5325 xvap.xva_xoptattrs.xoa_nodump);
5326 FLAG_CHECK(UF_READONLY, XAT_READONLY,
5327 xvap.xva_xoptattrs.xoa_readonly);
5328 FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
5329 xvap.xva_xoptattrs.xoa_system);
5330 FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
5331 xvap.xva_xoptattrs.xoa_hidden);
5332 FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
5333 xvap.xva_xoptattrs.xoa_reparse);
5334 FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
5335 xvap.xva_xoptattrs.xoa_offline);
5336 FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
5337 xvap.xva_xoptattrs.xoa_sparse);
5338
5339 #undef FLAG_CHECK
5340 *vap = xvap.xva_vattr;
5341 vap->va_flags = fflags;
5342
5343 #if __FreeBSD_version >= 1500040
5344 if ((vn_irflag_read(ap->a_vp) & (VIRF_NAMEDDIR | VIRF_NAMEDATTR)) != 0)
5345 vap->va_bsdflags |= SFBSD_NAMEDATTR;
5346 #endif
5347 return (0);
5348 }
5349
5350 #ifndef _SYS_SYSPROTO_H_
5351 struct vop_setattr_args {
5352 struct vnode *a_vp;
5353 struct vattr *a_vap;
5354 struct ucred *a_cred;
5355 };
5356 #endif
5357
5358 static int
zfs_freebsd_setattr(struct vop_setattr_args * ap)5359 zfs_freebsd_setattr(struct vop_setattr_args *ap)
5360 {
5361 vnode_t *vp = ap->a_vp;
5362 vattr_t *vap = ap->a_vap;
5363 cred_t *cred = ap->a_cred;
5364 xvattr_t xvap;
5365 ulong_t fflags;
5366 uint64_t zflags;
5367
5368 vattr_init_mask(vap);
5369 vap->va_mask &= ~AT_NOSET;
5370
5371 xva_init(&xvap);
5372 xvap.xva_vattr = *vap;
5373
5374 zflags = VTOZ(vp)->z_pflags;
5375
5376 if (vap->va_flags != VNOVAL) {
5377 zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
5378 int error;
5379
5380 if (zfsvfs->z_use_fuids == B_FALSE)
5381 return (EOPNOTSUPP);
5382
5383 fflags = vap->va_flags;
5384 /*
5385 * XXX KDM
5386 * We need to figure out whether it makes sense to allow
5387 * UF_REPARSE through, since we don't really have other
5388 * facilities to handle reparse points and zfs_setattr()
5389 * doesn't currently allow setting that attribute anyway.
5390 */
5391 if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
5392 UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
5393 UF_OFFLINE|UF_SPARSE)) != 0)
5394 return (EOPNOTSUPP);
5395 /*
5396 * Unprivileged processes are not permitted to unset system
5397 * flags, or modify flags if any system flags are set.
5398 * Privileged non-jail processes may not modify system flags
5399 * if securelevel > 0 and any existing system flags are set.
5400 * Privileged jail processes behave like privileged non-jail
5401 * processes if the PR_ALLOW_CHFLAGS permission bit is set;
5402 * otherwise, they behave like unprivileged processes.
5403 */
5404 if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
5405 priv_check_cred(cred, PRIV_VFS_SYSFLAGS) == 0) {
5406 if (zflags &
5407 (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
5408 error = securelevel_gt(cred, 0);
5409 if (error != 0)
5410 return (error);
5411 }
5412 } else {
5413 /*
5414 * Callers may only modify the file flags on
5415 * objects they have VADMIN rights for.
5416 */
5417 if ((error = VOP_ACCESS(vp, VADMIN, cred,
5418 curthread)) != 0)
5419 return (error);
5420 if (zflags &
5421 (ZFS_IMMUTABLE | ZFS_APPENDONLY |
5422 ZFS_NOUNLINK)) {
5423 return (EPERM);
5424 }
5425 if (fflags &
5426 (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
5427 return (EPERM);
5428 }
5429 }
5430
5431 #define FLAG_CHANGE(fflag, zflag, xflag, xfield) do { \
5432 if (((fflags & (fflag)) && !(zflags & (zflag))) || \
5433 ((zflags & (zflag)) && !(fflags & (fflag)))) { \
5434 XVA_SET_REQ(&xvap, (xflag)); \
5435 (xfield) = ((fflags & (fflag)) != 0); \
5436 } \
5437 } while (0)
5438 /* Convert chflags into ZFS-type flags. */
5439 /* XXX: what about SF_SETTABLE?. */
5440 FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
5441 xvap.xva_xoptattrs.xoa_immutable);
5442 FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
5443 xvap.xva_xoptattrs.xoa_appendonly);
5444 FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
5445 xvap.xva_xoptattrs.xoa_nounlink);
5446 FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
5447 xvap.xva_xoptattrs.xoa_archive);
5448 FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
5449 xvap.xva_xoptattrs.xoa_nodump);
5450 FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
5451 xvap.xva_xoptattrs.xoa_readonly);
5452 FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
5453 xvap.xva_xoptattrs.xoa_system);
5454 FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
5455 xvap.xva_xoptattrs.xoa_hidden);
5456 FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
5457 xvap.xva_xoptattrs.xoa_reparse);
5458 FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
5459 xvap.xva_xoptattrs.xoa_offline);
5460 FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
5461 xvap.xva_xoptattrs.xoa_sparse);
5462 #undef FLAG_CHANGE
5463 }
5464 if (vap->va_birthtime.tv_sec != VNOVAL) {
5465 xvap.xva_vattr.va_mask |= AT_XVATTR;
5466 XVA_SET_REQ(&xvap, XAT_CREATETIME);
5467 }
5468 return (zfs_setattr(VTOZ(vp), (vattr_t *)&xvap, 0, cred, NULL));
5469 }
5470
5471 #ifndef _SYS_SYSPROTO_H_
5472 struct vop_rename_args {
5473 struct vnode *a_fdvp;
5474 struct vnode *a_fvp;
5475 struct componentname *a_fcnp;
5476 struct vnode *a_tdvp;
5477 struct vnode *a_tvp;
5478 struct componentname *a_tcnp;
5479 };
5480 #endif
5481
5482 static int
zfs_freebsd_rename(struct vop_rename_args * ap)5483 zfs_freebsd_rename(struct vop_rename_args *ap)
5484 {
5485 vnode_t *fdvp = ap->a_fdvp;
5486 vnode_t *fvp = ap->a_fvp;
5487 vnode_t *tdvp = ap->a_tdvp;
5488 vnode_t *tvp = ap->a_tvp;
5489 int error = 0;
5490
5491 #if __FreeBSD_version < 1400068
5492 ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
5493 ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
5494 #endif
5495
5496 #if __FreeBSD_version >= 1500040
5497 if ((vn_irflag_read(fdvp) & VIRF_NAMEDDIR) != 0) {
5498 error = zfs_check_attrname(ap->a_fcnp->cn_nameptr);
5499 if (error == 0)
5500 error = zfs_check_attrname(ap->a_tcnp->cn_nameptr);
5501 }
5502 #endif
5503
5504 if (error == 0)
5505 error = zfs_do_rename(fdvp, &fvp, ap->a_fcnp, tdvp, &tvp,
5506 ap->a_tcnp, ap->a_fcnp->cn_cred);
5507
5508 vrele(fdvp);
5509 vrele(fvp);
5510 vrele(tdvp);
5511 if (tvp != NULL)
5512 vrele(tvp);
5513
5514 return (error);
5515 }
5516
5517 #ifndef _SYS_SYSPROTO_H_
5518 struct vop_symlink_args {
5519 struct vnode *a_dvp;
5520 struct vnode **a_vpp;
5521 struct componentname *a_cnp;
5522 struct vattr *a_vap;
5523 char *a_target;
5524 };
5525 #endif
5526
5527 static int
zfs_freebsd_symlink(struct vop_symlink_args * ap)5528 zfs_freebsd_symlink(struct vop_symlink_args *ap)
5529 {
5530 struct componentname *cnp = ap->a_cnp;
5531 vattr_t *vap = ap->a_vap;
5532 znode_t *zp = NULL;
5533 char *symlink;
5534 size_t symlink_len;
5535 int rc;
5536
5537 #if __FreeBSD_version < 1400068
5538 ASSERT(cnp->cn_flags & SAVENAME);
5539 #endif
5540
5541 vap->va_type = VLNK; /* FreeBSD: Syscall only sets va_mode. */
5542 vattr_init_mask(vap);
5543 *ap->a_vpp = NULL;
5544
5545 rc = zfs_symlink(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap,
5546 ap->a_target, &zp, cnp->cn_cred, 0 /* flags */, NULL);
5547 if (rc == 0) {
5548 *ap->a_vpp = ZTOV(zp);
5549 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
5550 MPASS(zp->z_cached_symlink == NULL);
5551 symlink_len = strlen(ap->a_target);
5552 symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK);
5553 if (symlink != NULL) {
5554 memcpy(symlink, ap->a_target, symlink_len);
5555 symlink[symlink_len] = '\0';
5556 atomic_store_rel_ptr((uintptr_t *)&zp->z_cached_symlink,
5557 (uintptr_t)symlink);
5558 }
5559 }
5560 return (rc);
5561 }
5562
5563 #ifndef _SYS_SYSPROTO_H_
5564 struct vop_readlink_args {
5565 struct vnode *a_vp;
5566 struct uio *a_uio;
5567 struct ucred *a_cred;
5568 };
5569 #endif
5570
5571 static int
zfs_freebsd_readlink(struct vop_readlink_args * ap)5572 zfs_freebsd_readlink(struct vop_readlink_args *ap)
5573 {
5574 zfs_uio_t uio;
5575 int error;
5576 znode_t *zp = VTOZ(ap->a_vp);
5577 char *symlink, *base;
5578 size_t symlink_len;
5579 bool trycache;
5580
5581 zfs_uio_init(&uio, ap->a_uio);
5582 trycache = false;
5583 if (zfs_uio_segflg(&uio) == UIO_SYSSPACE &&
5584 zfs_uio_iovcnt(&uio) == 1) {
5585 base = zfs_uio_iovbase(&uio, 0);
5586 symlink_len = zfs_uio_iovlen(&uio, 0);
5587 trycache = true;
5588 }
5589 error = zfs_readlink(ap->a_vp, &uio, ap->a_cred, NULL);
5590 if (atomic_load_ptr(&zp->z_cached_symlink) != NULL ||
5591 error != 0 || !trycache) {
5592 return (error);
5593 }
5594 symlink_len -= zfs_uio_resid(&uio);
5595 symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK);
5596 if (symlink != NULL) {
5597 memcpy(symlink, base, symlink_len);
5598 symlink[symlink_len] = '\0';
5599 if (!atomic_cmpset_rel_ptr((uintptr_t *)&zp->z_cached_symlink,
5600 (uintptr_t)NULL, (uintptr_t)symlink)) {
5601 cache_symlink_free(symlink, symlink_len + 1);
5602 }
5603 }
5604 return (error);
5605 }
5606
5607 #ifndef _SYS_SYSPROTO_H_
5608 struct vop_link_args {
5609 struct vnode *a_tdvp;
5610 struct vnode *a_vp;
5611 struct componentname *a_cnp;
5612 };
5613 #endif
5614
5615 static int
zfs_freebsd_link(struct vop_link_args * ap)5616 zfs_freebsd_link(struct vop_link_args *ap)
5617 {
5618 struct componentname *cnp = ap->a_cnp;
5619 vnode_t *vp = ap->a_vp;
5620 vnode_t *tdvp = ap->a_tdvp;
5621
5622 if (tdvp->v_mount != vp->v_mount)
5623 return (EXDEV);
5624
5625 #if __FreeBSD_version < 1400068
5626 ASSERT(cnp->cn_flags & SAVENAME);
5627 #endif
5628
5629 return (zfs_link(VTOZ(tdvp), VTOZ(vp),
5630 cnp->cn_nameptr, cnp->cn_cred, 0));
5631 }
5632
5633 #ifndef _SYS_SYSPROTO_H_
5634 struct vop_inactive_args {
5635 struct vnode *a_vp;
5636 struct thread *a_td;
5637 };
5638 #endif
5639
5640 static int
zfs_freebsd_inactive(struct vop_inactive_args * ap)5641 zfs_freebsd_inactive(struct vop_inactive_args *ap)
5642 {
5643 vnode_t *vp = ap->a_vp;
5644
5645 zfs_inactive(vp, curthread->td_ucred, NULL);
5646 return (0);
5647 }
5648
5649 #ifndef _SYS_SYSPROTO_H_
5650 struct vop_need_inactive_args {
5651 struct vnode *a_vp;
5652 struct thread *a_td;
5653 };
5654 #endif
5655
5656 static int
zfs_freebsd_need_inactive(struct vop_need_inactive_args * ap)5657 zfs_freebsd_need_inactive(struct vop_need_inactive_args *ap)
5658 {
5659 vnode_t *vp = ap->a_vp;
5660 znode_t *zp = VTOZ(vp);
5661 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5662 int need;
5663
5664 if (vn_need_pageq_flush(vp))
5665 return (1);
5666
5667 if (!ZFS_TEARDOWN_INACTIVE_TRY_ENTER_READ(zfsvfs))
5668 return (1);
5669 need = (zp->z_sa_hdl == NULL || zp->z_unlinked || zp->z_atime_dirty);
5670 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
5671
5672 return (need);
5673 }
5674
5675 #ifndef _SYS_SYSPROTO_H_
5676 struct vop_reclaim_args {
5677 struct vnode *a_vp;
5678 struct thread *a_td;
5679 };
5680 #endif
5681
5682 static int
zfs_freebsd_reclaim(struct vop_reclaim_args * ap)5683 zfs_freebsd_reclaim(struct vop_reclaim_args *ap)
5684 {
5685 vnode_t *vp = ap->a_vp;
5686 znode_t *zp = VTOZ(vp);
5687 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5688
5689 ASSERT3P(zp, !=, NULL);
5690
5691 /*
5692 * z_teardown_inactive_lock protects from a race with
5693 * zfs_znode_dmu_fini in zfsvfs_teardown during
5694 * force unmount.
5695 */
5696 ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs);
5697 if (zp->z_sa_hdl == NULL)
5698 zfs_znode_free(zp);
5699 else
5700 zfs_zinactive(zp);
5701 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs);
5702
5703 vp->v_data = NULL;
5704 return (0);
5705 }
5706
5707 #ifndef _SYS_SYSPROTO_H_
5708 struct vop_fid_args {
5709 struct vnode *a_vp;
5710 struct fid *a_fid;
5711 };
5712 #endif
5713
5714 static int
zfs_freebsd_fid(struct vop_fid_args * ap)5715 zfs_freebsd_fid(struct vop_fid_args *ap)
5716 {
5717
5718 return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
5719 }
5720
5721
5722 #ifndef _SYS_SYSPROTO_H_
5723 struct vop_pathconf_args {
5724 struct vnode *a_vp;
5725 int a_name;
5726 register_t *a_retval;
5727 } *ap;
5728 #endif
5729
5730 static int
zfs_freebsd_pathconf(struct vop_pathconf_args * ap)5731 zfs_freebsd_pathconf(struct vop_pathconf_args *ap)
5732 {
5733 ulong_t val;
5734 int error;
5735 #ifdef _PC_CLONE_BLKSIZE
5736 zfsvfs_t *zfsvfs;
5737 #endif
5738
5739 error = zfs_pathconf(ap->a_vp, ap->a_name, &val,
5740 curthread->td_ucred, NULL);
5741 if (error == 0) {
5742 *ap->a_retval = val;
5743 return (error);
5744 }
5745 if (error != EOPNOTSUPP)
5746 return (error);
5747
5748 switch (ap->a_name) {
5749 case _PC_NAME_MAX:
5750 *ap->a_retval = NAME_MAX;
5751 return (0);
5752 #if __FreeBSD_version >= 1400032
5753 case _PC_DEALLOC_PRESENT:
5754 *ap->a_retval = 1;
5755 return (0);
5756 #endif
5757 case _PC_PIPE_BUF:
5758 if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) {
5759 *ap->a_retval = PIPE_BUF;
5760 return (0);
5761 }
5762 return (EINVAL);
5763 #if __FreeBSD_version >= 1500040
5764 case _PC_NAMEDATTR_ENABLED:
5765 MNT_ILOCK(ap->a_vp->v_mount);
5766 if ((ap->a_vp->v_mount->mnt_flag & MNT_NAMEDATTR) != 0)
5767 *ap->a_retval = 1;
5768 else
5769 *ap->a_retval = 0;
5770 MNT_IUNLOCK(ap->a_vp->v_mount);
5771 return (0);
5772 case _PC_HAS_NAMEDATTR:
5773 if (zfs_has_namedattr(ap->a_vp, curthread->td_ucred))
5774 *ap->a_retval = 1;
5775 else
5776 *ap->a_retval = 0;
5777 return (0);
5778 #endif
5779 #ifdef _PC_HAS_HIDDENSYSTEM
5780 case _PC_HAS_HIDDENSYSTEM:
5781 *ap->a_retval = 1;
5782 return (0);
5783 #endif
5784 #ifdef _PC_CLONE_BLKSIZE
5785 case _PC_CLONE_BLKSIZE:
5786 zfsvfs = (zfsvfs_t *)ap->a_vp->v_mount->mnt_data;
5787 if (zfs_bclone_enabled &&
5788 spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
5789 SPA_FEATURE_BLOCK_CLONING))
5790 *ap->a_retval = dsl_dataset_feature_is_active(
5791 zfsvfs->z_os->os_dsl_dataset,
5792 SPA_FEATURE_LARGE_BLOCKS) ?
5793 SPA_MAXBLOCKSIZE :
5794 SPA_OLD_MAXBLOCKSIZE;
5795 else
5796 *ap->a_retval = 0;
5797 return (0);
5798 #endif
5799 default:
5800 return (vop_stdpathconf(ap));
5801 }
5802 }
5803
5804 int zfs_xattr_compat = 1;
5805
5806 static int
zfs_check_attrname(const char * name)5807 zfs_check_attrname(const char *name)
5808 {
5809 /* We don't allow '/' character in attribute name. */
5810 if (strchr(name, '/') != NULL)
5811 return (SET_ERROR(EINVAL));
5812 /* We don't allow attribute names that start with a namespace prefix. */
5813 if (ZFS_XA_NS_PREFIX_FORBIDDEN(name))
5814 return (SET_ERROR(EINVAL));
5815 return (0);
5816 }
5817
5818 /*
5819 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
5820 * extended attribute name:
5821 *
5822 * NAMESPACE XATTR_COMPAT PREFIX
5823 * system * freebsd:system:
5824 * user 1 (none, can be used to access ZFS
5825 * fsattr(5) attributes created on Solaris)
5826 * user 0 user.
5827 */
5828 static int
zfs_create_attrname(int attrnamespace,const char * name,char * attrname,size_t size,boolean_t compat)5829 zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
5830 size_t size, boolean_t compat)
5831 {
5832 const char *namespace, *prefix, *suffix;
5833
5834 memset(attrname, 0, size);
5835
5836 switch (attrnamespace) {
5837 case EXTATTR_NAMESPACE_USER:
5838 if (compat) {
5839 /*
5840 * This is the default namespace by which we can access
5841 * all attributes created on Solaris.
5842 */
5843 prefix = namespace = suffix = "";
5844 } else {
5845 /*
5846 * This is compatible with the user namespace encoding
5847 * on Linux prior to xattr_compat, but nothing
5848 * else.
5849 */
5850 prefix = "";
5851 namespace = "user";
5852 suffix = ".";
5853 }
5854 break;
5855 case EXTATTR_NAMESPACE_SYSTEM:
5856 prefix = "freebsd:";
5857 namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
5858 suffix = ":";
5859 break;
5860 case EXTATTR_NAMESPACE_EMPTY:
5861 default:
5862 return (SET_ERROR(EINVAL));
5863 }
5864 if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
5865 name) >= size) {
5866 return (SET_ERROR(ENAMETOOLONG));
5867 }
5868 return (0);
5869 }
5870
5871 static int
zfs_ensure_xattr_cached(znode_t * zp)5872 zfs_ensure_xattr_cached(znode_t *zp)
5873 {
5874 int error = 0;
5875
5876 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
5877
5878 if (zp->z_xattr_cached != NULL)
5879 return (0);
5880
5881 if (rw_write_held(&zp->z_xattr_lock))
5882 return (zfs_sa_get_xattr(zp));
5883
5884 if (!rw_tryupgrade(&zp->z_xattr_lock)) {
5885 rw_exit(&zp->z_xattr_lock);
5886 rw_enter(&zp->z_xattr_lock, RW_WRITER);
5887 }
5888 if (zp->z_xattr_cached == NULL)
5889 error = zfs_sa_get_xattr(zp);
5890 rw_downgrade(&zp->z_xattr_lock);
5891 return (error);
5892 }
5893
5894 #ifndef _SYS_SYSPROTO_H_
5895 struct vop_getextattr {
5896 IN struct vnode *a_vp;
5897 IN int a_attrnamespace;
5898 IN const char *a_name;
5899 INOUT struct uio *a_uio;
5900 OUT size_t *a_size;
5901 IN struct ucred *a_cred;
5902 IN struct thread *a_td;
5903 };
5904 #endif
5905
5906 static int
zfs_getextattr_dir(struct vop_getextattr_args * ap,const char * attrname)5907 zfs_getextattr_dir(struct vop_getextattr_args *ap, const char *attrname)
5908 {
5909 struct thread *td = ap->a_td;
5910 struct nameidata nd;
5911 struct vattr va;
5912 vnode_t *xvp = NULL, *vp;
5913 int error, flags;
5914
5915 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
5916 LOOKUP_XATTR, B_FALSE);
5917 if (error != 0)
5918 return (error);
5919
5920 flags = FREAD;
5921 #if __FreeBSD_version < 1400043
5922 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
5923 xvp, td);
5924 #else
5925 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp);
5926 #endif
5927 error = vn_open_cred(&nd, &flags, 0, VN_OPEN_INVFS, ap->a_cred, NULL);
5928 if (error != 0)
5929 return (SET_ERROR(error));
5930 vp = nd.ni_vp;
5931 NDFREE_PNBUF(&nd);
5932
5933 if (ap->a_size != NULL) {
5934 error = VOP_GETATTR(vp, &va, ap->a_cred);
5935 if (error == 0)
5936 *ap->a_size = (size_t)va.va_size;
5937 } else if (ap->a_uio != NULL)
5938 error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
5939
5940 VOP_UNLOCK(vp);
5941 vn_close(vp, flags, ap->a_cred, td);
5942 return (error);
5943 }
5944
5945 static int
zfs_getextattr_sa(struct vop_getextattr_args * ap,const char * attrname)5946 zfs_getextattr_sa(struct vop_getextattr_args *ap, const char *attrname)
5947 {
5948 znode_t *zp = VTOZ(ap->a_vp);
5949 uchar_t *nv_value;
5950 uint_t nv_size;
5951 int error;
5952
5953 error = zfs_ensure_xattr_cached(zp);
5954 if (error != 0)
5955 return (error);
5956
5957 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
5958 ASSERT3P(zp->z_xattr_cached, !=, NULL);
5959
5960 error = nvlist_lookup_byte_array(zp->z_xattr_cached, attrname,
5961 &nv_value, &nv_size);
5962 if (error != 0)
5963 return (SET_ERROR(error));
5964
5965 if (ap->a_size != NULL)
5966 *ap->a_size = nv_size;
5967 else if (ap->a_uio != NULL)
5968 error = uiomove(nv_value, nv_size, ap->a_uio);
5969 if (error != 0)
5970 return (SET_ERROR(error));
5971
5972 return (0);
5973 }
5974
5975 static int
zfs_getextattr_impl(struct vop_getextattr_args * ap,boolean_t compat)5976 zfs_getextattr_impl(struct vop_getextattr_args *ap, boolean_t compat)
5977 {
5978 znode_t *zp = VTOZ(ap->a_vp);
5979 zfsvfs_t *zfsvfs = ZTOZSB(zp);
5980 char attrname[EXTATTR_MAXNAMELEN+1];
5981 int error;
5982
5983 error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
5984 sizeof (attrname), compat);
5985 if (error != 0)
5986 return (error);
5987
5988 error = ENOENT;
5989 if (zfsvfs->z_use_sa && zp->z_is_sa)
5990 error = zfs_getextattr_sa(ap, attrname);
5991 if (error == ENOENT)
5992 error = zfs_getextattr_dir(ap, attrname);
5993 return (error);
5994 }
5995
5996 /*
5997 * Vnode operation to retrieve a named extended attribute.
5998 */
5999 static int
zfs_getextattr(struct vop_getextattr_args * ap)6000 zfs_getextattr(struct vop_getextattr_args *ap)
6001 {
6002 znode_t *zp = VTOZ(ap->a_vp);
6003 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6004 int error;
6005
6006 /*
6007 * If the xattr property is off, refuse the request.
6008 */
6009 if (!(zfsvfs->z_flags & ZSB_XATTR))
6010 return (SET_ERROR(EOPNOTSUPP));
6011
6012 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6013 ap->a_cred, ap->a_td, VREAD);
6014 if (error != 0)
6015 return (SET_ERROR(error));
6016
6017 error = zfs_check_attrname(ap->a_name);
6018 if (error != 0)
6019 return (error);
6020
6021 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6022 return (error);
6023 error = ENOENT;
6024 rw_enter(&zp->z_xattr_lock, RW_READER);
6025
6026 error = zfs_getextattr_impl(ap, zfs_xattr_compat);
6027 if ((error == ENOENT || error == ENOATTR) &&
6028 ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) {
6029 /*
6030 * Fall back to the alternate namespace format if we failed to
6031 * find a user xattr.
6032 */
6033 error = zfs_getextattr_impl(ap, !zfs_xattr_compat);
6034 }
6035
6036 rw_exit(&zp->z_xattr_lock);
6037 zfs_exit(zfsvfs, FTAG);
6038 if (error == ENOENT)
6039 error = SET_ERROR(ENOATTR);
6040 return (error);
6041 }
6042
6043 #ifndef _SYS_SYSPROTO_H_
6044 struct vop_deleteextattr {
6045 IN struct vnode *a_vp;
6046 IN int a_attrnamespace;
6047 IN const char *a_name;
6048 IN struct ucred *a_cred;
6049 IN struct thread *a_td;
6050 };
6051 #endif
6052
6053 static int
zfs_deleteextattr_dir(struct vop_deleteextattr_args * ap,const char * attrname)6054 zfs_deleteextattr_dir(struct vop_deleteextattr_args *ap, const char *attrname)
6055 {
6056 struct nameidata nd;
6057 vnode_t *xvp = NULL, *vp;
6058 int error;
6059
6060 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
6061 LOOKUP_XATTR, B_FALSE);
6062 if (error != 0)
6063 return (error);
6064
6065 #if __FreeBSD_version < 1400043
6066 NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6067 UIO_SYSSPACE, attrname, xvp, ap->a_td);
6068 #else
6069 NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6070 UIO_SYSSPACE, attrname, xvp);
6071 #endif
6072 error = namei(&nd);
6073 if (error != 0)
6074 return (SET_ERROR(error));
6075
6076 vp = nd.ni_vp;
6077 error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6078 NDFREE_PNBUF(&nd);
6079
6080 vput(nd.ni_dvp);
6081 if (vp == nd.ni_dvp)
6082 vrele(vp);
6083 else
6084 vput(vp);
6085
6086 return (error);
6087 }
6088
6089 static int
zfs_deleteextattr_sa(struct vop_deleteextattr_args * ap,const char * attrname)6090 zfs_deleteextattr_sa(struct vop_deleteextattr_args *ap, const char *attrname)
6091 {
6092 znode_t *zp = VTOZ(ap->a_vp);
6093 nvlist_t *nvl;
6094 int error;
6095
6096 error = zfs_ensure_xattr_cached(zp);
6097 if (error != 0)
6098 return (error);
6099
6100 ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock));
6101 ASSERT3P(zp->z_xattr_cached, !=, NULL);
6102
6103 nvl = zp->z_xattr_cached;
6104 error = nvlist_remove(nvl, attrname, DATA_TYPE_BYTE_ARRAY);
6105 if (error != 0)
6106 error = SET_ERROR(error);
6107 else
6108 error = zfs_sa_set_xattr(zp, attrname, NULL, 0);
6109 if (error != 0) {
6110 zp->z_xattr_cached = NULL;
6111 nvlist_free(nvl);
6112 }
6113 return (error);
6114 }
6115
6116 static int
zfs_deleteextattr_impl(struct vop_deleteextattr_args * ap,boolean_t compat)6117 zfs_deleteextattr_impl(struct vop_deleteextattr_args *ap, boolean_t compat)
6118 {
6119 znode_t *zp = VTOZ(ap->a_vp);
6120 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6121 char attrname[EXTATTR_MAXNAMELEN+1];
6122 int error;
6123
6124 error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6125 sizeof (attrname), compat);
6126 if (error != 0)
6127 return (error);
6128
6129 error = ENOENT;
6130 if (zfsvfs->z_use_sa && zp->z_is_sa)
6131 error = zfs_deleteextattr_sa(ap, attrname);
6132 if (error == ENOENT)
6133 error = zfs_deleteextattr_dir(ap, attrname);
6134 return (error);
6135 }
6136
6137 /*
6138 * Vnode operation to remove a named attribute.
6139 */
6140 static int
zfs_deleteextattr(struct vop_deleteextattr_args * ap)6141 zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6142 {
6143 znode_t *zp = VTOZ(ap->a_vp);
6144 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6145 int error;
6146
6147 /*
6148 * If the xattr property is off, refuse the request.
6149 */
6150 if (!(zfsvfs->z_flags & ZSB_XATTR))
6151 return (SET_ERROR(EOPNOTSUPP));
6152
6153 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6154 ap->a_cred, ap->a_td, VWRITE);
6155 if (error != 0)
6156 return (SET_ERROR(error));
6157
6158 error = zfs_check_attrname(ap->a_name);
6159 if (error != 0)
6160 return (error);
6161
6162 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6163 return (error);
6164 rw_enter(&zp->z_xattr_lock, RW_WRITER);
6165
6166 error = zfs_deleteextattr_impl(ap, zfs_xattr_compat);
6167 if ((error == ENOENT || error == ENOATTR) &&
6168 ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) {
6169 /*
6170 * Fall back to the alternate namespace format if we failed to
6171 * find a user xattr.
6172 */
6173 error = zfs_deleteextattr_impl(ap, !zfs_xattr_compat);
6174 }
6175
6176 rw_exit(&zp->z_xattr_lock);
6177 zfs_exit(zfsvfs, FTAG);
6178 if (error == ENOENT)
6179 error = SET_ERROR(ENOATTR);
6180 return (error);
6181 }
6182
6183 #ifndef _SYS_SYSPROTO_H_
6184 struct vop_setextattr {
6185 IN struct vnode *a_vp;
6186 IN int a_attrnamespace;
6187 IN const char *a_name;
6188 INOUT struct uio *a_uio;
6189 IN struct ucred *a_cred;
6190 IN struct thread *a_td;
6191 };
6192 #endif
6193
6194 static int
zfs_setextattr_dir(struct vop_setextattr_args * ap,const char * attrname)6195 zfs_setextattr_dir(struct vop_setextattr_args *ap, const char *attrname)
6196 {
6197 struct thread *td = ap->a_td;
6198 struct nameidata nd;
6199 struct vattr va;
6200 vnode_t *xvp = NULL, *vp;
6201 int error, flags;
6202
6203 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
6204 LOOKUP_XATTR | CREATE_XATTR_DIR, B_FALSE);
6205 if (error != 0)
6206 return (error);
6207
6208 flags = FFLAGS(O_WRONLY | O_CREAT);
6209 #if __FreeBSD_version < 1400043
6210 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td);
6211 #else
6212 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp);
6213 #endif
6214 error = vn_open_cred(&nd, &flags, 0600, VN_OPEN_INVFS, ap->a_cred,
6215 NULL);
6216 if (error != 0)
6217 return (SET_ERROR(error));
6218 vp = nd.ni_vp;
6219 NDFREE_PNBUF(&nd);
6220
6221 VATTR_NULL(&va);
6222 va.va_size = 0;
6223 error = VOP_SETATTR(vp, &va, ap->a_cred);
6224 if (error == 0)
6225 VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6226
6227 VOP_UNLOCK(vp);
6228 vn_close(vp, flags, ap->a_cred, td);
6229 return (error);
6230 }
6231
6232 static int
zfs_setextattr_sa(struct vop_setextattr_args * ap,const char * attrname)6233 zfs_setextattr_sa(struct vop_setextattr_args *ap, const char *attrname)
6234 {
6235 znode_t *zp = VTOZ(ap->a_vp);
6236 nvlist_t *nvl;
6237 size_t sa_size;
6238 int error;
6239
6240 error = zfs_ensure_xattr_cached(zp);
6241 if (error != 0)
6242 return (error);
6243
6244 ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock));
6245 ASSERT3P(zp->z_xattr_cached, !=, NULL);
6246
6247 nvl = zp->z_xattr_cached;
6248 size_t entry_size = ap->a_uio->uio_resid;
6249 if (entry_size > DXATTR_MAX_ENTRY_SIZE)
6250 return (SET_ERROR(EFBIG));
6251 error = nvlist_size(nvl, &sa_size, NV_ENCODE_XDR);
6252 if (error != 0)
6253 return (SET_ERROR(error));
6254 if (sa_size > DXATTR_MAX_SA_SIZE)
6255 return (SET_ERROR(EFBIG));
6256 uchar_t *buf = kmem_alloc(entry_size, KM_SLEEP);
6257 error = uiomove(buf, entry_size, ap->a_uio);
6258 if (error != 0) {
6259 error = SET_ERROR(error);
6260 } else {
6261 error = nvlist_add_byte_array(nvl, attrname, buf, entry_size);
6262 if (error != 0)
6263 error = SET_ERROR(error);
6264 }
6265 if (error == 0)
6266 error = zfs_sa_set_xattr(zp, attrname, buf, entry_size);
6267 kmem_free(buf, entry_size);
6268 if (error != 0) {
6269 zp->z_xattr_cached = NULL;
6270 nvlist_free(nvl);
6271 }
6272 return (error);
6273 }
6274
6275 static int
zfs_setextattr_impl(struct vop_setextattr_args * ap,boolean_t compat)6276 zfs_setextattr_impl(struct vop_setextattr_args *ap, boolean_t compat)
6277 {
6278 znode_t *zp = VTOZ(ap->a_vp);
6279 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6280 char attrname[EXTATTR_MAXNAMELEN+1];
6281 int error;
6282
6283 error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6284 sizeof (attrname), compat);
6285 if (error != 0)
6286 return (error);
6287
6288 struct vop_deleteextattr_args vda = {
6289 .a_vp = ap->a_vp,
6290 .a_attrnamespace = ap->a_attrnamespace,
6291 .a_name = ap->a_name,
6292 .a_cred = ap->a_cred,
6293 .a_td = ap->a_td,
6294 };
6295 error = ENOENT;
6296 if (zfsvfs->z_use_sa && zp->z_is_sa && zfsvfs->z_xattr_sa) {
6297 error = zfs_setextattr_sa(ap, attrname);
6298 if (error == 0) {
6299 /*
6300 * Successfully put into SA, we need to clear the one
6301 * in dir if present.
6302 */
6303 zfs_deleteextattr_dir(&vda, attrname);
6304 }
6305 }
6306 if (error != 0) {
6307 error = zfs_setextattr_dir(ap, attrname);
6308 if (error == 0 && zp->z_is_sa) {
6309 /*
6310 * Successfully put into dir, we need to clear the one
6311 * in SA if present.
6312 */
6313 zfs_deleteextattr_sa(&vda, attrname);
6314 }
6315 }
6316 if (error == 0 && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) {
6317 /*
6318 * Also clear all versions of the alternate compat name.
6319 */
6320 zfs_deleteextattr_impl(&vda, !compat);
6321 }
6322 return (error);
6323 }
6324
6325 /*
6326 * Vnode operation to set a named attribute.
6327 */
6328 static int
zfs_setextattr(struct vop_setextattr_args * ap)6329 zfs_setextattr(struct vop_setextattr_args *ap)
6330 {
6331 znode_t *zp = VTOZ(ap->a_vp);
6332 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6333 int error;
6334
6335 /*
6336 * If the xattr property is off, refuse the request.
6337 */
6338 if (!(zfsvfs->z_flags & ZSB_XATTR))
6339 return (SET_ERROR(EOPNOTSUPP));
6340
6341 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6342 ap->a_cred, ap->a_td, VWRITE);
6343 if (error != 0)
6344 return (SET_ERROR(error));
6345
6346 error = zfs_check_attrname(ap->a_name);
6347 if (error != 0)
6348 return (error);
6349
6350 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6351 return (error);
6352 rw_enter(&zp->z_xattr_lock, RW_WRITER);
6353
6354 error = zfs_setextattr_impl(ap, zfs_xattr_compat);
6355
6356 rw_exit(&zp->z_xattr_lock);
6357 zfs_exit(zfsvfs, FTAG);
6358 return (error);
6359 }
6360
6361 #ifndef _SYS_SYSPROTO_H_
6362 struct vop_listextattr {
6363 IN struct vnode *a_vp;
6364 IN int a_attrnamespace;
6365 INOUT struct uio *a_uio;
6366 OUT size_t *a_size;
6367 IN struct ucred *a_cred;
6368 IN struct thread *a_td;
6369 };
6370 #endif
6371
6372 static int
zfs_listextattr_dir(struct vop_listextattr_args * ap,const char * attrprefix)6373 zfs_listextattr_dir(struct vop_listextattr_args *ap, const char *attrprefix)
6374 {
6375 struct thread *td = ap->a_td;
6376 struct nameidata nd;
6377 uint8_t dirbuf[sizeof (struct dirent)];
6378 struct iovec aiov;
6379 struct uio auio;
6380 vnode_t *xvp = NULL, *vp;
6381 int error, eof;
6382
6383 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred,
6384 LOOKUP_XATTR, B_FALSE);
6385 if (error != 0) {
6386 /*
6387 * ENOATTR means that the EA directory does not yet exist,
6388 * i.e. there are no extended attributes there.
6389 */
6390 if (error == ENOATTR)
6391 error = 0;
6392 return (error);
6393 }
6394
6395 #if __FreeBSD_version < 1400043
6396 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6397 UIO_SYSSPACE, ".", xvp, td);
6398 #else
6399 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6400 UIO_SYSSPACE, ".", xvp);
6401 #endif
6402 error = namei(&nd);
6403 if (error != 0)
6404 return (SET_ERROR(error));
6405 vp = nd.ni_vp;
6406 NDFREE_PNBUF(&nd);
6407
6408 auio.uio_iov = &aiov;
6409 auio.uio_iovcnt = 1;
6410 auio.uio_segflg = UIO_SYSSPACE;
6411 auio.uio_td = td;
6412 auio.uio_rw = UIO_READ;
6413 auio.uio_offset = 0;
6414
6415 size_t plen = strlen(attrprefix);
6416
6417 do {
6418 aiov.iov_base = (void *)dirbuf;
6419 aiov.iov_len = sizeof (dirbuf);
6420 auio.uio_resid = sizeof (dirbuf);
6421 error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6422 if (error != 0)
6423 break;
6424 int done = sizeof (dirbuf) - auio.uio_resid;
6425 for (int pos = 0; pos < done; ) {
6426 struct dirent *dp = (struct dirent *)(dirbuf + pos);
6427 pos += dp->d_reclen;
6428 /*
6429 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6430 * is what we get when attribute was created on Solaris.
6431 */
6432 if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6433 continue;
6434 else if (plen == 0 &&
6435 ZFS_XA_NS_PREFIX_FORBIDDEN(dp->d_name))
6436 continue;
6437 else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6438 continue;
6439 uint8_t nlen = dp->d_namlen - plen;
6440 if (ap->a_size != NULL) {
6441 *ap->a_size += 1 + nlen;
6442 } else if (ap->a_uio != NULL) {
6443 /*
6444 * Format of extattr name entry is one byte for
6445 * length and the rest for name.
6446 */
6447 error = uiomove(&nlen, 1, ap->a_uio);
6448 if (error == 0) {
6449 char *namep = dp->d_name + plen;
6450 error = uiomove(namep, nlen, ap->a_uio);
6451 }
6452 if (error != 0) {
6453 error = SET_ERROR(error);
6454 break;
6455 }
6456 }
6457 }
6458 } while (!eof && error == 0);
6459
6460 vput(vp);
6461 return (error);
6462 }
6463
6464 static int
zfs_listextattr_sa(struct vop_listextattr_args * ap,const char * attrprefix)6465 zfs_listextattr_sa(struct vop_listextattr_args *ap, const char *attrprefix)
6466 {
6467 znode_t *zp = VTOZ(ap->a_vp);
6468 int error;
6469
6470 error = zfs_ensure_xattr_cached(zp);
6471 if (error != 0)
6472 return (error);
6473
6474 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock));
6475 ASSERT3P(zp->z_xattr_cached, !=, NULL);
6476
6477 size_t plen = strlen(attrprefix);
6478 nvpair_t *nvp = NULL;
6479 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) {
6480 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY);
6481
6482 const char *name = nvpair_name(nvp);
6483 if (plen == 0 && ZFS_XA_NS_PREFIX_FORBIDDEN(name))
6484 continue;
6485 else if (strncmp(name, attrprefix, plen) != 0)
6486 continue;
6487 uint8_t nlen = strlen(name) - plen;
6488 if (ap->a_size != NULL) {
6489 *ap->a_size += 1 + nlen;
6490 } else if (ap->a_uio != NULL) {
6491 /*
6492 * Format of extattr name entry is one byte for
6493 * length and the rest for name.
6494 */
6495 error = uiomove(&nlen, 1, ap->a_uio);
6496 if (error == 0) {
6497 char *namep = __DECONST(char *, name) + plen;
6498 error = uiomove(namep, nlen, ap->a_uio);
6499 }
6500 if (error != 0) {
6501 error = SET_ERROR(error);
6502 break;
6503 }
6504 }
6505 }
6506
6507 return (error);
6508 }
6509
6510 static int
zfs_listextattr_impl(struct vop_listextattr_args * ap,boolean_t compat)6511 zfs_listextattr_impl(struct vop_listextattr_args *ap, boolean_t compat)
6512 {
6513 znode_t *zp = VTOZ(ap->a_vp);
6514 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6515 char attrprefix[16];
6516 int error;
6517
6518 error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6519 sizeof (attrprefix), compat);
6520 if (error != 0)
6521 return (error);
6522
6523 if (zfsvfs->z_use_sa && zp->z_is_sa)
6524 error = zfs_listextattr_sa(ap, attrprefix);
6525 if (error == 0)
6526 error = zfs_listextattr_dir(ap, attrprefix);
6527 return (error);
6528 }
6529
6530 /*
6531 * Vnode operation to retrieve extended attributes on a vnode.
6532 */
6533 static int
zfs_listextattr(struct vop_listextattr_args * ap)6534 zfs_listextattr(struct vop_listextattr_args *ap)
6535 {
6536 znode_t *zp = VTOZ(ap->a_vp);
6537 zfsvfs_t *zfsvfs = ZTOZSB(zp);
6538 int error;
6539
6540 if (ap->a_size != NULL)
6541 *ap->a_size = 0;
6542
6543 /*
6544 * If the xattr property is off, refuse the request.
6545 */
6546 if (!(zfsvfs->z_flags & ZSB_XATTR))
6547 return (SET_ERROR(EOPNOTSUPP));
6548
6549 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6550 ap->a_cred, ap->a_td, VREAD);
6551 if (error != 0)
6552 return (SET_ERROR(error));
6553
6554 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6555 return (error);
6556 rw_enter(&zp->z_xattr_lock, RW_READER);
6557
6558 error = zfs_listextattr_impl(ap, zfs_xattr_compat);
6559 if (error == 0 && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) {
6560 /* Also list user xattrs with the alternate format. */
6561 error = zfs_listextattr_impl(ap, !zfs_xattr_compat);
6562 }
6563
6564 rw_exit(&zp->z_xattr_lock);
6565 zfs_exit(zfsvfs, FTAG);
6566 return (error);
6567 }
6568
6569 #ifndef _SYS_SYSPROTO_H_
6570 struct vop_getacl_args {
6571 struct vnode *vp;
6572 acl_type_t type;
6573 struct acl *aclp;
6574 struct ucred *cred;
6575 struct thread *td;
6576 };
6577 #endif
6578
6579 static int
zfs_freebsd_getacl(struct vop_getacl_args * ap)6580 zfs_freebsd_getacl(struct vop_getacl_args *ap)
6581 {
6582 int error;
6583 vsecattr_t vsecattr;
6584
6585 if (ap->a_type != ACL_TYPE_NFS4)
6586 return (EINVAL);
6587
6588 vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
6589 if ((error = zfs_getsecattr(VTOZ(ap->a_vp),
6590 &vsecattr, 0, ap->a_cred)))
6591 return (error);
6592
6593 error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp,
6594 vsecattr.vsa_aclcnt);
6595 if (vsecattr.vsa_aclentp != NULL)
6596 kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
6597
6598 return (error);
6599 }
6600
6601 #ifndef _SYS_SYSPROTO_H_
6602 struct vop_setacl_args {
6603 struct vnode *vp;
6604 acl_type_t type;
6605 struct acl *aclp;
6606 struct ucred *cred;
6607 struct thread *td;
6608 };
6609 #endif
6610
6611 static int
zfs_freebsd_setacl(struct vop_setacl_args * ap)6612 zfs_freebsd_setacl(struct vop_setacl_args *ap)
6613 {
6614 int error;
6615 vsecattr_t vsecattr;
6616 int aclbsize; /* size of acl list in bytes */
6617 aclent_t *aaclp;
6618
6619 if (ap->a_type != ACL_TYPE_NFS4)
6620 return (EINVAL);
6621
6622 if (ap->a_aclp == NULL)
6623 return (EINVAL);
6624
6625 if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
6626 return (EINVAL);
6627
6628 /*
6629 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
6630 * splitting every entry into two and appending "canonical six"
6631 * entries at the end. Don't allow for setting an ACL that would
6632 * cause chmod(2) to run out of ACL entries.
6633 */
6634 if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
6635 return (ENOSPC);
6636
6637 error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
6638 if (error != 0)
6639 return (error);
6640
6641 vsecattr.vsa_mask = VSA_ACE;
6642 aclbsize = ap->a_aclp->acl_cnt * sizeof (ace_t);
6643 vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
6644 aaclp = vsecattr.vsa_aclentp;
6645 vsecattr.vsa_aclentsz = aclbsize;
6646
6647 aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
6648 error = zfs_setsecattr(VTOZ(ap->a_vp), &vsecattr, 0, ap->a_cred);
6649 kmem_free(aaclp, aclbsize);
6650
6651 return (error);
6652 }
6653
6654 #ifndef _SYS_SYSPROTO_H_
6655 struct vop_aclcheck_args {
6656 struct vnode *vp;
6657 acl_type_t type;
6658 struct acl *aclp;
6659 struct ucred *cred;
6660 struct thread *td;
6661 };
6662 #endif
6663
6664 static int
zfs_freebsd_aclcheck(struct vop_aclcheck_args * ap)6665 zfs_freebsd_aclcheck(struct vop_aclcheck_args *ap)
6666 {
6667
6668 return (EOPNOTSUPP);
6669 }
6670
6671 #ifndef _SYS_SYSPROTO_H_
6672 struct vop_advise_args {
6673 struct vnode *a_vp;
6674 off_t a_start;
6675 off_t a_end;
6676 int a_advice;
6677 };
6678 #endif
6679
6680 static int
zfs_freebsd_advise(struct vop_advise_args * ap)6681 zfs_freebsd_advise(struct vop_advise_args *ap)
6682 {
6683 vnode_t *vp = ap->a_vp;
6684 off_t start = ap->a_start;
6685 off_t end = ap->a_end;
6686 int advice = ap->a_advice;
6687 off_t len;
6688 znode_t *zp;
6689 zfsvfs_t *zfsvfs;
6690 objset_t *os;
6691 int error = 0;
6692
6693 if (end < start)
6694 return (EINVAL);
6695
6696 error = vn_lock(vp, LK_SHARED);
6697 if (error)
6698 return (error);
6699
6700 zp = VTOZ(vp);
6701 zfsvfs = zp->z_zfsvfs;
6702 os = zp->z_zfsvfs->z_os;
6703
6704 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6705 goto out_unlock;
6706
6707 /* kern_posix_fadvise points to the last byte, we want one past */
6708 if (end != OFF_MAX)
6709 end += 1;
6710 len = end - start;
6711
6712 switch (advice) {
6713 case POSIX_FADV_WILLNEED:
6714 /*
6715 * Pass on the caller's size directly, but note that
6716 * dmu_prefetch_max will effectively cap it. If there really
6717 * is a larger sequential access pattern, perhaps dmu_zfetch
6718 * will detect it.
6719 */
6720 dmu_prefetch(os, zp->z_id, 0, start, len,
6721 ZIO_PRIORITY_ASYNC_READ);
6722 break;
6723 case POSIX_FADV_NORMAL:
6724 case POSIX_FADV_RANDOM:
6725 case POSIX_FADV_SEQUENTIAL:
6726 case POSIX_FADV_DONTNEED:
6727 case POSIX_FADV_NOREUSE:
6728 /* ignored for now */
6729 break;
6730 default:
6731 error = EINVAL;
6732 break;
6733 }
6734
6735 zfs_exit(zfsvfs, FTAG);
6736
6737 out_unlock:
6738 VOP_UNLOCK(vp);
6739
6740 return (error);
6741 }
6742
6743 static int
zfs_vptocnp(struct vop_vptocnp_args * ap)6744 zfs_vptocnp(struct vop_vptocnp_args *ap)
6745 {
6746 vnode_t *covered_vp;
6747 vnode_t *vp = ap->a_vp;
6748 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
6749 znode_t *zp = VTOZ(vp);
6750 int ltype;
6751 int error;
6752
6753 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6754 return (error);
6755
6756 /*
6757 * If we are a snapshot mounted under .zfs, run the operation
6758 * on the covered vnode.
6759 */
6760 if (zp->z_id != zfsvfs->z_root || zfsvfs->z_parent == zfsvfs) {
6761 char name[MAXNAMLEN + 1];
6762 znode_t *dzp;
6763 size_t len;
6764
6765 error = zfs_znode_parent_and_name(zp, &dzp, name,
6766 sizeof (name));
6767 if (error == 0) {
6768 len = strlen(name);
6769 if (*ap->a_buflen < len)
6770 error = SET_ERROR(ENOMEM);
6771 }
6772 if (error == 0) {
6773 *ap->a_buflen -= len;
6774 memcpy(ap->a_buf + *ap->a_buflen, name, len);
6775 *ap->a_vpp = ZTOV(dzp);
6776 }
6777 zfs_exit(zfsvfs, FTAG);
6778 return (error);
6779 }
6780 zfs_exit(zfsvfs, FTAG);
6781
6782 covered_vp = vp->v_mount->mnt_vnodecovered;
6783 enum vgetstate vs = vget_prep(covered_vp);
6784 ltype = VOP_ISLOCKED(vp);
6785 VOP_UNLOCK(vp);
6786 error = vget_finish(covered_vp, LK_SHARED, vs);
6787 if (error == 0) {
6788 error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_buf,
6789 ap->a_buflen);
6790 vput(covered_vp);
6791 }
6792 vn_lock(vp, ltype | LK_RETRY);
6793 if (VN_IS_DOOMED(vp))
6794 error = SET_ERROR(ENOENT);
6795 return (error);
6796 }
6797
6798 #if __FreeBSD_version >= 1400032
6799 static int
zfs_deallocate(struct vop_deallocate_args * ap)6800 zfs_deallocate(struct vop_deallocate_args *ap)
6801 {
6802 znode_t *zp = VTOZ(ap->a_vp);
6803 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6804 zilog_t *zilog;
6805 off_t off, len, file_sz;
6806 int error;
6807
6808 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
6809 return (error);
6810
6811 /*
6812 * Callers might not be able to detect properly that we are read-only,
6813 * so check it explicitly here.
6814 */
6815 if (zfs_is_readonly(zfsvfs)) {
6816 zfs_exit(zfsvfs, FTAG);
6817 return (SET_ERROR(EROFS));
6818 }
6819
6820 zilog = zfsvfs->z_log;
6821 off = *ap->a_offset;
6822 len = *ap->a_len;
6823 file_sz = zp->z_size;
6824 if (off + len > file_sz)
6825 len = file_sz - off;
6826 /* Fast path for out-of-range request. */
6827 if (len <= 0) {
6828 *ap->a_len = 0;
6829 zfs_exit(zfsvfs, FTAG);
6830 return (0);
6831 }
6832
6833 error = zfs_freesp(zp, off, len, O_RDWR, TRUE);
6834 if (error == 0) {
6835 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS ||
6836 (ap->a_ioflag & IO_SYNC) != 0)
6837 error = zil_commit(zilog, zp->z_id);
6838 if (error == 0) {
6839 *ap->a_offset = off + len;
6840 *ap->a_len = 0;
6841 }
6842 }
6843
6844 zfs_exit(zfsvfs, FTAG);
6845 return (error);
6846 }
6847 #endif
6848
6849 #ifndef _SYS_SYSPROTO_H_
6850 struct vop_copy_file_range_args {
6851 struct vnode *a_invp;
6852 off_t *a_inoffp;
6853 struct vnode *a_outvp;
6854 off_t *a_outoffp;
6855 size_t *a_lenp;
6856 unsigned int a_flags;
6857 struct ucred *a_incred;
6858 struct ucred *a_outcred;
6859 struct thread *a_fsizetd;
6860 }
6861 #endif
6862 /*
6863 * TODO: FreeBSD will only call file system-specific copy_file_range() if both
6864 * files resides under the same mountpoint. In case of ZFS we want to be called
6865 * even is files are in different datasets (but on the same pools, but we need
6866 * to check that ourselves).
6867 */
6868 static int
zfs_freebsd_copy_file_range(struct vop_copy_file_range_args * ap)6869 zfs_freebsd_copy_file_range(struct vop_copy_file_range_args *ap)
6870 {
6871 zfsvfs_t *outzfsvfs;
6872 struct vnode *invp = ap->a_invp;
6873 struct vnode *outvp = ap->a_outvp;
6874 struct mount *mp;
6875 int error;
6876 uint64_t len = *ap->a_lenp;
6877
6878 if (!zfs_bclone_enabled) {
6879 mp = NULL;
6880 goto bad_write_fallback;
6881 }
6882
6883 /*
6884 * TODO: If offset/length is not aligned to recordsize, use
6885 * vn_generic_copy_file_range() on this fragment.
6886 * It would be better to do this after we lock the vnodes, but then we
6887 * need something else than vn_generic_copy_file_range().
6888 */
6889
6890 vn_start_write(outvp, &mp, V_WAIT);
6891 if (__predict_true(mp == outvp->v_mount)) {
6892 outzfsvfs = (zfsvfs_t *)mp->mnt_data;
6893 if (!spa_feature_is_enabled(dmu_objset_spa(outzfsvfs->z_os),
6894 SPA_FEATURE_BLOCK_CLONING)) {
6895 goto bad_write_fallback;
6896 }
6897 }
6898 if (invp == outvp) {
6899 if (vn_lock(outvp, LK_EXCLUSIVE) != 0) {
6900 goto bad_write_fallback;
6901 }
6902 } else {
6903 #if (__FreeBSD_version >= 1302506 && __FreeBSD_version < 1400000) || \
6904 __FreeBSD_version >= 1400086
6905 vn_lock_pair(invp, false, LK_SHARED, outvp, false,
6906 LK_EXCLUSIVE);
6907 #else
6908 vn_lock_pair(invp, false, outvp, false);
6909 #endif
6910 if (VN_IS_DOOMED(invp) || VN_IS_DOOMED(outvp)) {
6911 goto bad_locked_fallback;
6912 }
6913 }
6914
6915 #ifdef MAC
6916 error = mac_vnode_check_write(curthread->td_ucred, ap->a_outcred,
6917 outvp);
6918 if (error != 0)
6919 goto out_locked;
6920 #endif
6921
6922 error = zfs_clone_range(VTOZ(invp), ap->a_inoffp, VTOZ(outvp),
6923 ap->a_outoffp, &len, ap->a_outcred);
6924 if (error == EXDEV || error == EAGAIN || error == EINVAL ||
6925 error == EOPNOTSUPP)
6926 goto bad_locked_fallback;
6927 *ap->a_lenp = (size_t)len;
6928 #ifdef MAC
6929 out_locked:
6930 #endif
6931 if (invp != outvp)
6932 VOP_UNLOCK(invp);
6933 VOP_UNLOCK(outvp);
6934 if (mp != NULL)
6935 vn_finished_write(mp);
6936 return (error);
6937
6938 bad_locked_fallback:
6939 if (invp != outvp)
6940 VOP_UNLOCK(invp);
6941 VOP_UNLOCK(outvp);
6942 bad_write_fallback:
6943 if (mp != NULL)
6944 vn_finished_write(mp);
6945 error = ENOSYS;
6946 return (error);
6947 }
6948
6949 struct vop_vector zfs_vnodeops;
6950 struct vop_vector zfs_fifoops;
6951 struct vop_vector zfs_shareops;
6952
6953 struct vop_vector zfs_vnodeops = {
6954 .vop_default = &default_vnodeops,
6955 .vop_inactive = zfs_freebsd_inactive,
6956 .vop_need_inactive = zfs_freebsd_need_inactive,
6957 .vop_reclaim = zfs_freebsd_reclaim,
6958 .vop_fplookup_vexec = zfs_freebsd_fplookup_vexec,
6959 .vop_fplookup_symlink = zfs_freebsd_fplookup_symlink,
6960 .vop_access = zfs_freebsd_access,
6961 .vop_allocate = VOP_EOPNOTSUPP,
6962 #if __FreeBSD_version >= 1400032
6963 .vop_deallocate = zfs_deallocate,
6964 #endif
6965 .vop_lookup = zfs_cache_lookup,
6966 .vop_cachedlookup = zfs_freebsd_cachedlookup,
6967 .vop_getattr = zfs_freebsd_getattr,
6968 .vop_setattr = zfs_freebsd_setattr,
6969 .vop_create = zfs_freebsd_create,
6970 .vop_mknod = (vop_mknod_t *)zfs_freebsd_create,
6971 .vop_mkdir = zfs_freebsd_mkdir,
6972 .vop_readdir = zfs_freebsd_readdir,
6973 .vop_fsync = zfs_freebsd_fsync,
6974 .vop_open = zfs_freebsd_open,
6975 .vop_close = zfs_freebsd_close,
6976 .vop_rmdir = zfs_freebsd_rmdir,
6977 .vop_ioctl = zfs_freebsd_ioctl,
6978 .vop_link = zfs_freebsd_link,
6979 .vop_symlink = zfs_freebsd_symlink,
6980 .vop_readlink = zfs_freebsd_readlink,
6981 .vop_advise = zfs_freebsd_advise,
6982 .vop_read = zfs_freebsd_read,
6983 .vop_write = zfs_freebsd_write,
6984 .vop_remove = zfs_freebsd_remove,
6985 .vop_rename = zfs_freebsd_rename,
6986 .vop_pathconf = zfs_freebsd_pathconf,
6987 .vop_bmap = zfs_freebsd_bmap,
6988 .vop_fid = zfs_freebsd_fid,
6989 .vop_getextattr = zfs_getextattr,
6990 .vop_deleteextattr = zfs_deleteextattr,
6991 .vop_setextattr = zfs_setextattr,
6992 .vop_listextattr = zfs_listextattr,
6993 .vop_getacl = zfs_freebsd_getacl,
6994 .vop_setacl = zfs_freebsd_setacl,
6995 .vop_aclcheck = zfs_freebsd_aclcheck,
6996 .vop_getpages = zfs_freebsd_getpages,
6997 .vop_putpages = zfs_freebsd_putpages,
6998 .vop_vptocnp = zfs_vptocnp,
6999 .vop_lock1 = vop_lock,
7000 .vop_unlock = vop_unlock,
7001 .vop_islocked = vop_islocked,
7002 #if __FreeBSD_version >= 1400043
7003 .vop_add_writecount = vop_stdadd_writecount_nomsync,
7004 #endif
7005 .vop_copy_file_range = zfs_freebsd_copy_file_range,
7006 };
7007 VFS_VOP_VECTOR_REGISTER(zfs_vnodeops);
7008
7009 struct vop_vector zfs_fifoops = {
7010 .vop_default = &fifo_specops,
7011 .vop_fsync = zfs_freebsd_fsync,
7012 .vop_fplookup_vexec = zfs_freebsd_fplookup_vexec,
7013 .vop_fplookup_symlink = zfs_freebsd_fplookup_symlink,
7014 .vop_access = zfs_freebsd_access,
7015 .vop_getattr = zfs_freebsd_getattr,
7016 .vop_inactive = zfs_freebsd_inactive,
7017 .vop_read = VOP_PANIC,
7018 .vop_reclaim = zfs_freebsd_reclaim,
7019 .vop_setattr = zfs_freebsd_setattr,
7020 .vop_write = VOP_PANIC,
7021 .vop_pathconf = zfs_freebsd_pathconf,
7022 .vop_fid = zfs_freebsd_fid,
7023 .vop_getacl = zfs_freebsd_getacl,
7024 .vop_setacl = zfs_freebsd_setacl,
7025 .vop_aclcheck = zfs_freebsd_aclcheck,
7026 #if __FreeBSD_version >= 1400043
7027 .vop_add_writecount = vop_stdadd_writecount_nomsync,
7028 #endif
7029 };
7030 VFS_VOP_VECTOR_REGISTER(zfs_fifoops);
7031
7032 /*
7033 * special share hidden files vnode operations template
7034 */
7035 struct vop_vector zfs_shareops = {
7036 .vop_default = &default_vnodeops,
7037 .vop_fplookup_vexec = VOP_EAGAIN,
7038 .vop_fplookup_symlink = VOP_EAGAIN,
7039 .vop_access = zfs_freebsd_access,
7040 .vop_inactive = zfs_freebsd_inactive,
7041 .vop_reclaim = zfs_freebsd_reclaim,
7042 .vop_fid = zfs_freebsd_fid,
7043 .vop_pathconf = zfs_freebsd_pathconf,
7044 #if __FreeBSD_version >= 1400043
7045 .vop_add_writecount = vop_stdadd_writecount_nomsync,
7046 #endif
7047 };
7048 VFS_VOP_VECTOR_REGISTER(zfs_shareops);
7049
7050 ZFS_MODULE_PARAM(zfs, zfs_, xattr_compat, INT, ZMOD_RW,
7051 "Use legacy ZFS xattr naming for writing new user namespace xattrs");
7052