1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991 Regents of the University of California.
5 * All rights reserved.
6 * Copyright (c) 1998 Matthew Dillon. All Rights Reserved.
7 *
8 * This code is derived from software contributed to Berkeley by
9 * The Mach Operating System project at Carnegie-Mellon University.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36 /*-
37 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38 * All rights reserved.
39 *
40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
55 * School of Computer Science
56 * Carnegie Mellon University
57 * Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63 /*
64 * Resident memory management module.
65 */
66
67 #include <sys/cdefs.h>
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/counter.h>
73 #include <sys/domainset.h>
74 #include <sys/kernel.h>
75 #include <sys/limits.h>
76 #include <sys/linker.h>
77 #include <sys/lock.h>
78 #include <sys/malloc.h>
79 #include <sys/mman.h>
80 #include <sys/msgbuf.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/rwlock.h>
84 #include <sys/sleepqueue.h>
85 #include <sys/sbuf.h>
86 #include <sys/sched.h>
87 #include <sys/smp.h>
88 #include <sys/sysctl.h>
89 #include <sys/vmmeter.h>
90 #include <sys/vnode.h>
91
92 #include <vm/vm.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_param.h>
95 #include <vm/vm_domainset.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_phys.h>
102 #include <vm/vm_pagequeue.h>
103 #include <vm/vm_pager.h>
104 #include <vm/vm_radix.h>
105 #include <vm/vm_reserv.h>
106 #include <vm/vm_extern.h>
107 #include <vm/vm_dumpset.h>
108 #include <vm/uma.h>
109 #include <vm/uma_int.h>
110
111 #include <machine/md_var.h>
112
113 struct vm_domain vm_dom[MAXMEMDOM];
114
115 DPCPU_DEFINE_STATIC(struct vm_batchqueue, pqbatch[MAXMEMDOM][PQ_COUNT]);
116
117 struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];
118
119 struct mtx_padalign __exclusive_cache_line vm_domainset_lock;
120 /* The following fields are protected by the domainset lock. */
121 domainset_t __exclusive_cache_line vm_min_domains;
122 domainset_t __exclusive_cache_line vm_severe_domains;
123 static int vm_min_waiters;
124 static int vm_severe_waiters;
125 static int vm_pageproc_waiters;
126
127 static SYSCTL_NODE(_vm_stats, OID_AUTO, page, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
128 "VM page statistics");
129
130 static COUNTER_U64_DEFINE_EARLY(pqstate_commit_retries);
131 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, pqstate_commit_retries,
132 CTLFLAG_RD, &pqstate_commit_retries,
133 "Number of failed per-page atomic queue state updates");
134
135 static COUNTER_U64_DEFINE_EARLY(queue_ops);
136 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_ops,
137 CTLFLAG_RD, &queue_ops,
138 "Number of batched queue operations");
139
140 static COUNTER_U64_DEFINE_EARLY(queue_nops);
141 SYSCTL_COUNTER_U64(_vm_stats_page, OID_AUTO, queue_nops,
142 CTLFLAG_RD, &queue_nops,
143 "Number of batched queue operations with no effects");
144
145 /*
146 * bogus page -- for I/O to/from partially complete buffers,
147 * or for paging into sparsely invalid regions.
148 */
149 vm_page_t bogus_page;
150
151 vm_page_t vm_page_array;
152 long vm_page_array_size;
153 long first_page;
154
155 struct bitset *vm_page_dump;
156 long vm_page_dump_pages;
157
158 static TAILQ_HEAD(, vm_page) blacklist_head;
159 static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
160 SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
161 CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");
162
163 static uma_zone_t fakepg_zone;
164
165 static void vm_page_alloc_check(vm_page_t m);
166 static vm_page_t vm_page_alloc_nofree_domain(int domain, int req);
167 static bool _vm_page_busy_sleep(vm_object_t obj, vm_page_t m,
168 vm_pindex_t pindex, const char *wmesg, int allocflags, bool locked);
169 static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
170 static void vm_page_enqueue(vm_page_t m, uint8_t queue);
171 static bool vm_page_free_prep(vm_page_t m);
172 static void vm_page_free_toq(vm_page_t m);
173 static void vm_page_init(void *dummy);
174 static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
175 vm_page_t mpred);
176 static void vm_page_mvqueue(vm_page_t m, const uint8_t queue,
177 const uint16_t nflag);
178 static int vm_page_reclaim_run(int req_class, int domain, u_long npages,
179 vm_page_t m_run, vm_paddr_t high);
180 static void vm_page_release_toq(vm_page_t m, uint8_t nqueue, bool noreuse);
181 static int vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object,
182 int req);
183 static int vm_page_zone_import(void *arg, void **store, int cnt, int domain,
184 int flags);
185 static void vm_page_zone_release(void *arg, void **store, int cnt);
186
187 SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init, NULL);
188
189 static void
vm_page_init(void * dummy)190 vm_page_init(void *dummy)
191 {
192
193 fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
194 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 bogus_page = vm_page_alloc_noobj(VM_ALLOC_WIRED | VM_ALLOC_NOFREE);
196 }
197
198 static int pgcache_zone_max_pcpu;
199 SYSCTL_INT(_vm, OID_AUTO, pgcache_zone_max_pcpu,
200 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pgcache_zone_max_pcpu, 0,
201 "Per-CPU page cache size");
202
203 /*
204 * The cache page zone is initialized later since we need to be able to allocate
205 * pages before UMA is fully initialized.
206 */
207 static void
vm_page_init_cache_zones(void * dummy __unused)208 vm_page_init_cache_zones(void *dummy __unused)
209 {
210 struct vm_domain *vmd;
211 struct vm_pgcache *pgcache;
212 int cache, domain, maxcache, pool;
213
214 TUNABLE_INT_FETCH("vm.pgcache_zone_max_pcpu", &pgcache_zone_max_pcpu);
215 maxcache = pgcache_zone_max_pcpu * mp_ncpus;
216 for (domain = 0; domain < vm_ndomains; domain++) {
217 vmd = VM_DOMAIN(domain);
218 for (pool = 0; pool < VM_NFREEPOOL; pool++) {
219 pgcache = &vmd->vmd_pgcache[pool];
220 pgcache->domain = domain;
221 pgcache->pool = pool;
222 pgcache->zone = uma_zcache_create("vm pgcache",
223 PAGE_SIZE, NULL, NULL, NULL, NULL,
224 vm_page_zone_import, vm_page_zone_release, pgcache,
225 UMA_ZONE_VM);
226
227 /*
228 * Limit each pool's zone to 0.1% of the pages in the
229 * domain.
230 */
231 cache = maxcache != 0 ? maxcache :
232 vmd->vmd_page_count / 1000;
233 uma_zone_set_maxcache(pgcache->zone, cache);
234 }
235 }
236 }
237 SYSINIT(vm_page2, SI_SUB_VM_CONF, SI_ORDER_ANY, vm_page_init_cache_zones, NULL);
238
239 /* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
240 #if PAGE_SIZE == 32768
241 #ifdef CTASSERT
242 CTASSERT(sizeof(u_long) >= 8);
243 #endif
244 #endif
245
246 /*
247 * vm_set_page_size:
248 *
249 * Sets the page size, perhaps based upon the memory
250 * size. Must be called before any use of page-size
251 * dependent functions.
252 */
253 void
vm_set_page_size(void)254 vm_set_page_size(void)
255 {
256 if (vm_cnt.v_page_size == 0)
257 vm_cnt.v_page_size = PAGE_SIZE;
258 if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
259 panic("vm_set_page_size: page size not a power of two");
260 }
261
262 /*
263 * vm_page_blacklist_next:
264 *
265 * Find the next entry in the provided string of blacklist
266 * addresses. Entries are separated by space, comma, or newline.
267 * If an invalid integer is encountered then the rest of the
268 * string is skipped. Updates the list pointer to the next
269 * character, or NULL if the string is exhausted or invalid.
270 */
271 static vm_paddr_t
vm_page_blacklist_next(char ** list,char * end)272 vm_page_blacklist_next(char **list, char *end)
273 {
274 vm_paddr_t bad;
275 char *cp, *pos;
276
277 if (list == NULL || *list == NULL)
278 return (0);
279 if (**list =='\0') {
280 *list = NULL;
281 return (0);
282 }
283
284 /*
285 * If there's no end pointer then the buffer is coming from
286 * the kenv and we know it's null-terminated.
287 */
288 if (end == NULL)
289 end = *list + strlen(*list);
290
291 /* Ensure that strtoq() won't walk off the end */
292 if (*end != '\0') {
293 if (*end == '\n' || *end == ' ' || *end == ',')
294 *end = '\0';
295 else {
296 printf("Blacklist not terminated, skipping\n");
297 *list = NULL;
298 return (0);
299 }
300 }
301
302 for (pos = *list; *pos != '\0'; pos = cp) {
303 bad = strtoq(pos, &cp, 0);
304 if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
305 if (bad == 0) {
306 if (++cp < end)
307 continue;
308 else
309 break;
310 }
311 } else
312 break;
313 if (*cp == '\0' || ++cp >= end)
314 *list = NULL;
315 else
316 *list = cp;
317 return (trunc_page(bad));
318 }
319 printf("Garbage in RAM blacklist, skipping\n");
320 *list = NULL;
321 return (0);
322 }
323
324 bool
vm_page_blacklist_add(vm_paddr_t pa,bool verbose)325 vm_page_blacklist_add(vm_paddr_t pa, bool verbose)
326 {
327 struct vm_domain *vmd;
328 vm_page_t m;
329 bool found;
330
331 m = vm_phys_paddr_to_vm_page(pa);
332 if (m == NULL)
333 return (true); /* page does not exist, no failure */
334
335 vmd = VM_DOMAIN(vm_phys_domain(pa));
336 vm_domain_free_lock(vmd);
337 found = vm_phys_unfree_page(pa);
338 vm_domain_free_unlock(vmd);
339 if (found) {
340 vm_domain_freecnt_inc(vmd, -1);
341 TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
342 if (verbose)
343 printf("Skipping page with pa 0x%jx\n", (uintmax_t)pa);
344 }
345 return (found);
346 }
347
348 /*
349 * vm_page_blacklist_check:
350 *
351 * Iterate through the provided string of blacklist addresses, pulling
352 * each entry out of the physical allocator free list and putting it
353 * onto a list for reporting via the vm.page_blacklist sysctl.
354 */
355 static void
vm_page_blacklist_check(char * list,char * end)356 vm_page_blacklist_check(char *list, char *end)
357 {
358 vm_paddr_t pa;
359 char *next;
360
361 next = list;
362 while (next != NULL) {
363 if ((pa = vm_page_blacklist_next(&next, end)) == 0)
364 continue;
365 vm_page_blacklist_add(pa, bootverbose);
366 }
367 }
368
369 /*
370 * vm_page_blacklist_load:
371 *
372 * Search for a special module named "ram_blacklist". It'll be a
373 * plain text file provided by the user via the loader directive
374 * of the same name.
375 */
376 static void
vm_page_blacklist_load(char ** list,char ** end)377 vm_page_blacklist_load(char **list, char **end)
378 {
379 void *mod;
380 u_char *ptr;
381 u_int len;
382
383 mod = NULL;
384 ptr = NULL;
385
386 mod = preload_search_by_type("ram_blacklist");
387 if (mod != NULL) {
388 ptr = preload_fetch_addr(mod);
389 len = preload_fetch_size(mod);
390 }
391 *list = ptr;
392 if (ptr != NULL)
393 *end = ptr + len;
394 else
395 *end = NULL;
396 return;
397 }
398
399 static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)400 sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
401 {
402 vm_page_t m;
403 struct sbuf sbuf;
404 int error, first;
405
406 first = 1;
407 error = sysctl_wire_old_buffer(req, 0);
408 if (error != 0)
409 return (error);
410 sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
411 TAILQ_FOREACH(m, &blacklist_head, listq) {
412 sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
413 (uintmax_t)m->phys_addr);
414 first = 0;
415 }
416 error = sbuf_finish(&sbuf);
417 sbuf_delete(&sbuf);
418 return (error);
419 }
420
421 /*
422 * Initialize a dummy page for use in scans of the specified paging queue.
423 * In principle, this function only needs to set the flag PG_MARKER.
424 * Nonetheless, it write busies the page as a safety precaution.
425 */
426 void
vm_page_init_marker(vm_page_t marker,int queue,uint16_t aflags)427 vm_page_init_marker(vm_page_t marker, int queue, uint16_t aflags)
428 {
429
430 bzero(marker, sizeof(*marker));
431 marker->flags = PG_MARKER;
432 marker->a.flags = aflags;
433 marker->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
434 marker->a.queue = queue;
435 }
436
437 static void
vm_page_domain_init(int domain)438 vm_page_domain_init(int domain)
439 {
440 struct vm_domain *vmd;
441 struct vm_pagequeue *pq;
442 int i;
443
444 vmd = VM_DOMAIN(domain);
445 bzero(vmd, sizeof(*vmd));
446 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
447 "vm inactive pagequeue";
448 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
449 "vm active pagequeue";
450 *__DECONST(const char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
451 "vm laundry pagequeue";
452 *__DECONST(const char **,
453 &vmd->vmd_pagequeues[PQ_UNSWAPPABLE].pq_name) =
454 "vm unswappable pagequeue";
455 vmd->vmd_domain = domain;
456 vmd->vmd_page_count = 0;
457 vmd->vmd_free_count = 0;
458 vmd->vmd_segs = 0;
459 vmd->vmd_oom = false;
460 vmd->vmd_helper_threads_enabled = true;
461 for (i = 0; i < PQ_COUNT; i++) {
462 pq = &vmd->vmd_pagequeues[i];
463 TAILQ_INIT(&pq->pq_pl);
464 mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
465 MTX_DEF | MTX_DUPOK);
466 pq->pq_pdpages = 0;
467 vm_page_init_marker(&vmd->vmd_markers[i], i, 0);
468 }
469 mtx_init(&vmd->vmd_free_mtx, "vm page free queue", NULL, MTX_DEF);
470 mtx_init(&vmd->vmd_pageout_mtx, "vm pageout lock", NULL, MTX_DEF);
471 snprintf(vmd->vmd_name, sizeof(vmd->vmd_name), "%d", domain);
472
473 /*
474 * inacthead is used to provide FIFO ordering for LRU-bypassing
475 * insertions.
476 */
477 vm_page_init_marker(&vmd->vmd_inacthead, PQ_INACTIVE, PGA_ENQUEUED);
478 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_INACTIVE].pq_pl,
479 &vmd->vmd_inacthead, plinks.q);
480
481 /*
482 * The clock pages are used to implement active queue scanning without
483 * requeues. Scans start at clock[0], which is advanced after the scan
484 * ends. When the two clock hands meet, they are reset and scanning
485 * resumes from the head of the queue.
486 */
487 vm_page_init_marker(&vmd->vmd_clock[0], PQ_ACTIVE, PGA_ENQUEUED);
488 vm_page_init_marker(&vmd->vmd_clock[1], PQ_ACTIVE, PGA_ENQUEUED);
489 TAILQ_INSERT_HEAD(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
490 &vmd->vmd_clock[0], plinks.q);
491 TAILQ_INSERT_TAIL(&vmd->vmd_pagequeues[PQ_ACTIVE].pq_pl,
492 &vmd->vmd_clock[1], plinks.q);
493 }
494
495 /*
496 * Initialize a physical page in preparation for adding it to the free
497 * lists.
498 */
499 void
vm_page_init_page(vm_page_t m,vm_paddr_t pa,int segind,int pool)500 vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind, int pool)
501 {
502 m->object = NULL;
503 m->ref_count = 0;
504 m->busy_lock = VPB_FREED;
505 m->flags = m->a.flags = 0;
506 m->phys_addr = pa;
507 m->a.queue = PQ_NONE;
508 m->psind = 0;
509 m->segind = segind;
510 m->order = VM_NFREEORDER;
511 m->pool = pool;
512 m->valid = m->dirty = 0;
513 pmap_page_init(m);
514 }
515
516 #ifndef PMAP_HAS_PAGE_ARRAY
517 static vm_paddr_t
vm_page_array_alloc(vm_offset_t * vaddr,vm_paddr_t end,vm_paddr_t page_range)518 vm_page_array_alloc(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t page_range)
519 {
520 vm_paddr_t new_end;
521
522 /*
523 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
524 * However, because this page is allocated from KVM, out-of-bounds
525 * accesses using the direct map will not be trapped.
526 */
527 *vaddr += PAGE_SIZE;
528
529 /*
530 * Allocate physical memory for the page structures, and map it.
531 */
532 new_end = trunc_page(end - page_range * sizeof(struct vm_page));
533 vm_page_array = (vm_page_t)pmap_map(vaddr, new_end, end,
534 VM_PROT_READ | VM_PROT_WRITE);
535 vm_page_array_size = page_range;
536
537 return (new_end);
538 }
539 #endif
540
541 /*
542 * vm_page_startup:
543 *
544 * Initializes the resident memory module. Allocates physical memory for
545 * bootstrapping UMA and some data structures that are used to manage
546 * physical pages. Initializes these structures, and populates the free
547 * page queues.
548 */
549 vm_offset_t
vm_page_startup(vm_offset_t vaddr)550 vm_page_startup(vm_offset_t vaddr)
551 {
552 struct vm_phys_seg *seg;
553 struct vm_domain *vmd;
554 vm_page_t m;
555 char *list, *listend;
556 vm_paddr_t end, high_avail, low_avail, new_end, size;
557 vm_paddr_t page_range __unused;
558 vm_paddr_t last_pa, pa, startp, endp;
559 u_long pagecount;
560 #if MINIDUMP_PAGE_TRACKING
561 u_long vm_page_dump_size;
562 #endif
563 int biggestone, i, segind;
564 #ifdef WITNESS
565 vm_offset_t mapped;
566 int witness_size;
567 #endif
568 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
569 long ii;
570 #endif
571 int pool;
572 #ifdef VM_FREEPOOL_LAZYINIT
573 int lazyinit;
574 #endif
575
576 vaddr = round_page(vaddr);
577
578 vm_phys_early_startup();
579 biggestone = vm_phys_avail_largest();
580 end = phys_avail[biggestone+1];
581
582 /*
583 * Initialize the page and queue locks.
584 */
585 mtx_init(&vm_domainset_lock, "vm domainset lock", NULL, MTX_DEF);
586 for (i = 0; i < PA_LOCK_COUNT; i++)
587 mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
588 for (i = 0; i < vm_ndomains; i++)
589 vm_page_domain_init(i);
590
591 new_end = end;
592 #ifdef WITNESS
593 witness_size = round_page(witness_startup_count());
594 new_end -= witness_size;
595 mapped = pmap_map(&vaddr, new_end, new_end + witness_size,
596 VM_PROT_READ | VM_PROT_WRITE);
597 bzero((void *)mapped, witness_size);
598 witness_startup((void *)mapped);
599 #endif
600
601 #if MINIDUMP_PAGE_TRACKING
602 /*
603 * Allocate a bitmap to indicate that a random physical page
604 * needs to be included in a minidump.
605 *
606 * The amd64 port needs this to indicate which direct map pages
607 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
608 *
609 * However, i386 still needs this workspace internally within the
610 * minidump code. In theory, they are not needed on i386, but are
611 * included should the sf_buf code decide to use them.
612 */
613 last_pa = 0;
614 vm_page_dump_pages = 0;
615 for (i = 0; dump_avail[i + 1] != 0; i += 2) {
616 vm_page_dump_pages += howmany(dump_avail[i + 1], PAGE_SIZE) -
617 dump_avail[i] / PAGE_SIZE;
618 if (dump_avail[i + 1] > last_pa)
619 last_pa = dump_avail[i + 1];
620 }
621 vm_page_dump_size = round_page(BITSET_SIZE(vm_page_dump_pages));
622 new_end -= vm_page_dump_size;
623 vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
624 new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
625 bzero((void *)vm_page_dump, vm_page_dump_size);
626 #if MINIDUMP_STARTUP_PAGE_TRACKING
627 /*
628 * Include the UMA bootstrap pages, witness pages and vm_page_dump
629 * in a crash dump. When pmap_map() uses the direct map, they are
630 * not automatically included.
631 */
632 for (pa = new_end; pa < end; pa += PAGE_SIZE)
633 dump_add_page(pa);
634 #endif
635 #else
636 (void)last_pa;
637 #endif
638 phys_avail[biggestone + 1] = new_end;
639 #ifdef __amd64__
640 /*
641 * Request that the physical pages underlying the message buffer be
642 * included in a crash dump. Since the message buffer is accessed
643 * through the direct map, they are not automatically included.
644 */
645 pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
646 last_pa = pa + round_page(msgbufsize);
647 while (pa < last_pa) {
648 dump_add_page(pa);
649 pa += PAGE_SIZE;
650 }
651 #else
652 (void)pa;
653 #endif
654
655 /*
656 * Determine the lowest and highest physical addresses and, in the case
657 * of VM_PHYSSEG_SPARSE, the exact size of the available physical
658 * memory. vm_phys_early_startup() already checked that phys_avail[]
659 * has at least one element.
660 */
661 #ifdef VM_PHYSSEG_SPARSE
662 size = phys_avail[1] - phys_avail[0];
663 #endif
664 low_avail = phys_avail[0];
665 high_avail = phys_avail[1];
666 for (i = 2; phys_avail[i + 1] != 0; i += 2) {
667 #ifdef VM_PHYSSEG_SPARSE
668 size += phys_avail[i + 1] - phys_avail[i];
669 #endif
670 if (phys_avail[i] < low_avail)
671 low_avail = phys_avail[i];
672 if (phys_avail[i + 1] > high_avail)
673 high_avail = phys_avail[i + 1];
674 }
675 for (i = 0; i < vm_phys_nsegs; i++) {
676 #ifdef VM_PHYSSEG_SPARSE
677 size += vm_phys_segs[i].end - vm_phys_segs[i].start;
678 #endif
679 if (vm_phys_segs[i].start < low_avail)
680 low_avail = vm_phys_segs[i].start;
681 if (vm_phys_segs[i].end > high_avail)
682 high_avail = vm_phys_segs[i].end;
683 }
684 first_page = low_avail / PAGE_SIZE;
685 #ifdef VM_PHYSSEG_DENSE
686 size = high_avail - low_avail;
687 #endif
688
689 #ifdef PMAP_HAS_PAGE_ARRAY
690 pmap_page_array_startup(size / PAGE_SIZE);
691 biggestone = vm_phys_avail_largest();
692 end = new_end = phys_avail[biggestone + 1];
693 #else
694 #ifdef VM_PHYSSEG_DENSE
695 /*
696 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
697 * the overhead of a page structure per page only if vm_page_array is
698 * allocated from the last physical memory chunk. Otherwise, we must
699 * allocate page structures representing the physical memory
700 * underlying vm_page_array, even though they will not be used.
701 */
702 if (new_end != high_avail)
703 page_range = size / PAGE_SIZE;
704 else
705 #endif
706 {
707 page_range = size / (PAGE_SIZE + sizeof(struct vm_page));
708
709 /*
710 * If the partial bytes remaining are large enough for
711 * a page (PAGE_SIZE) without a corresponding
712 * 'struct vm_page', then new_end will contain an
713 * extra page after subtracting the length of the VM
714 * page array. Compensate by subtracting an extra
715 * page from new_end.
716 */
717 if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
718 if (new_end == high_avail)
719 high_avail -= PAGE_SIZE;
720 new_end -= PAGE_SIZE;
721 }
722 }
723 end = new_end;
724 new_end = vm_page_array_alloc(&vaddr, end, page_range);
725 #endif
726
727 #if VM_NRESERVLEVEL > 0
728 /*
729 * Allocate physical memory for the reservation management system's
730 * data structures, and map it.
731 */
732 new_end = vm_reserv_startup(&vaddr, new_end);
733 #endif
734 #if MINIDUMP_PAGE_TRACKING && MINIDUMP_STARTUP_PAGE_TRACKING
735 /*
736 * Include vm_page_array and vm_reserv_array in a crash dump.
737 */
738 for (pa = new_end; pa < end; pa += PAGE_SIZE)
739 dump_add_page(pa);
740 #endif
741 phys_avail[biggestone + 1] = new_end;
742
743 /*
744 * Add physical memory segments corresponding to the available
745 * physical pages.
746 */
747 for (i = 0; phys_avail[i + 1] != 0; i += 2)
748 vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);
749
750 /*
751 * Initialize the physical memory allocator.
752 */
753 vm_phys_init();
754
755 pool = VM_FREEPOOL_DEFAULT;
756 #ifdef VM_FREEPOOL_LAZYINIT
757 lazyinit = 1;
758 TUNABLE_INT_FETCH("debug.vm.lazy_page_init", &lazyinit);
759 if (lazyinit)
760 pool = VM_FREEPOOL_LAZYINIT;
761 #endif
762
763 /*
764 * Initialize the page structures and add every available page to the
765 * physical memory allocator's free lists.
766 */
767 #if defined(__i386__) && defined(VM_PHYSSEG_DENSE)
768 for (ii = 0; ii < vm_page_array_size; ii++) {
769 m = &vm_page_array[ii];
770 vm_page_init_page(m, (first_page + ii) << PAGE_SHIFT, 0,
771 VM_FREEPOOL_DEFAULT);
772 m->flags = PG_FICTITIOUS;
773 }
774 #endif
775 vm_cnt.v_page_count = 0;
776 for (segind = 0; segind < vm_phys_nsegs; segind++) {
777 seg = &vm_phys_segs[segind];
778
779 /*
780 * Initialize pages not covered by phys_avail[], since they
781 * might be freed to the allocator at some future point, e.g.,
782 * by kmem_bootstrap_free().
783 */
784 startp = seg->start;
785 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
786 if (startp >= seg->end)
787 break;
788 if (phys_avail[i + 1] < startp)
789 continue;
790 if (phys_avail[i] <= startp) {
791 startp = phys_avail[i + 1];
792 continue;
793 }
794 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
795 for (endp = MIN(phys_avail[i], seg->end);
796 startp < endp; startp += PAGE_SIZE, m++) {
797 vm_page_init_page(m, startp, segind,
798 VM_FREEPOOL_DEFAULT);
799 }
800 }
801
802 /*
803 * Add the segment's pages that are covered by one of
804 * phys_avail's ranges to the free lists.
805 */
806 for (i = 0; phys_avail[i + 1] != 0; i += 2) {
807 if (seg->end <= phys_avail[i] ||
808 seg->start >= phys_avail[i + 1])
809 continue;
810
811 startp = MAX(seg->start, phys_avail[i]);
812 endp = MIN(seg->end, phys_avail[i + 1]);
813 pagecount = (u_long)atop(endp - startp);
814 if (pagecount == 0)
815 continue;
816
817 /*
818 * If lazy vm_page initialization is not enabled, simply
819 * initialize all of the pages in the segment covered by
820 * phys_avail. Otherwise, initialize only the first
821 * page of each run of free pages handed to the vm_phys
822 * allocator, which in turn defers initialization of
823 * pages until they are needed.
824 *
825 * This avoids blocking the boot process for long
826 * periods, which may be relevant for VMs (which ought
827 * to boot as quickly as possible) and/or systems with
828 * large amounts of physical memory.
829 */
830 m = vm_phys_seg_paddr_to_vm_page(seg, startp);
831 vm_page_init_page(m, startp, segind, pool);
832 if (pool == VM_FREEPOOL_DEFAULT) {
833 for (u_long j = 1; j < pagecount; j++) {
834 vm_page_init_page(&m[j],
835 startp + ptoa((vm_paddr_t)j),
836 segind, pool);
837 }
838 }
839 vmd = VM_DOMAIN(seg->domain);
840 vm_domain_free_lock(vmd);
841 vm_phys_enqueue_contig(m, pool, pagecount);
842 vm_domain_free_unlock(vmd);
843 vm_domain_freecnt_inc(vmd, pagecount);
844 vm_cnt.v_page_count += (u_int)pagecount;
845 vmd->vmd_page_count += (u_int)pagecount;
846 vmd->vmd_segs |= 1UL << segind;
847 }
848 }
849
850 /*
851 * Remove blacklisted pages from the physical memory allocator.
852 */
853 TAILQ_INIT(&blacklist_head);
854 vm_page_blacklist_load(&list, &listend);
855 vm_page_blacklist_check(list, listend);
856
857 list = kern_getenv("vm.blacklist");
858 vm_page_blacklist_check(list, NULL);
859
860 freeenv(list);
861 #if VM_NRESERVLEVEL > 0
862 /*
863 * Initialize the reservation management system.
864 */
865 vm_reserv_init();
866 #endif
867
868 return (vaddr);
869 }
870
871 void
vm_page_reference(vm_page_t m)872 vm_page_reference(vm_page_t m)
873 {
874
875 vm_page_aflag_set(m, PGA_REFERENCED);
876 }
877
878 /*
879 * vm_page_trybusy
880 *
881 * Helper routine for grab functions to trylock busy.
882 *
883 * Returns true on success and false on failure.
884 */
885 static bool
vm_page_trybusy(vm_page_t m,int allocflags)886 vm_page_trybusy(vm_page_t m, int allocflags)
887 {
888
889 if ((allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0)
890 return (vm_page_trysbusy(m));
891 else
892 return (vm_page_tryxbusy(m));
893 }
894
895 /*
896 * vm_page_tryacquire
897 *
898 * Helper routine for grab functions to trylock busy and wire.
899 *
900 * Returns true on success and false on failure.
901 */
902 static inline bool
vm_page_tryacquire(vm_page_t m,int allocflags)903 vm_page_tryacquire(vm_page_t m, int allocflags)
904 {
905 bool locked;
906
907 locked = vm_page_trybusy(m, allocflags);
908 if (locked && (allocflags & VM_ALLOC_WIRED) != 0)
909 vm_page_wire(m);
910 return (locked);
911 }
912
913 /*
914 * vm_page_busy_acquire:
915 *
916 * Acquire the busy lock as described by VM_ALLOC_* flags. Will loop
917 * and drop the object lock if necessary.
918 */
919 bool
vm_page_busy_acquire(vm_page_t m,int allocflags)920 vm_page_busy_acquire(vm_page_t m, int allocflags)
921 {
922 vm_object_t obj;
923 bool locked;
924
925 /*
926 * The page-specific object must be cached because page
927 * identity can change during the sleep, causing the
928 * re-lock of a different object.
929 * It is assumed that a reference to the object is already
930 * held by the callers.
931 */
932 obj = atomic_load_ptr(&m->object);
933 for (;;) {
934 if (vm_page_tryacquire(m, allocflags))
935 return (true);
936 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
937 return (false);
938 if (obj != NULL)
939 locked = VM_OBJECT_WOWNED(obj);
940 else
941 locked = false;
942 MPASS(locked || vm_page_wired(m));
943 if (_vm_page_busy_sleep(obj, m, m->pindex, "vmpba", allocflags,
944 locked) && locked)
945 VM_OBJECT_WLOCK(obj);
946 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
947 return (false);
948 KASSERT(m->object == obj || m->object == NULL,
949 ("vm_page_busy_acquire: page %p does not belong to %p",
950 m, obj));
951 }
952 }
953
954 /*
955 * vm_page_busy_downgrade:
956 *
957 * Downgrade an exclusive busy page into a single shared busy page.
958 */
959 void
vm_page_busy_downgrade(vm_page_t m)960 vm_page_busy_downgrade(vm_page_t m)
961 {
962 u_int x;
963
964 vm_page_assert_xbusied(m);
965
966 x = vm_page_busy_fetch(m);
967 for (;;) {
968 if (atomic_fcmpset_rel_int(&m->busy_lock,
969 &x, VPB_SHARERS_WORD(1)))
970 break;
971 }
972 if ((x & VPB_BIT_WAITERS) != 0)
973 wakeup(m);
974 }
975
976 /*
977 *
978 * vm_page_busy_tryupgrade:
979 *
980 * Attempt to upgrade a single shared busy into an exclusive busy.
981 */
982 int
vm_page_busy_tryupgrade(vm_page_t m)983 vm_page_busy_tryupgrade(vm_page_t m)
984 {
985 u_int ce, x;
986
987 vm_page_assert_sbusied(m);
988
989 x = vm_page_busy_fetch(m);
990 ce = VPB_CURTHREAD_EXCLUSIVE;
991 for (;;) {
992 if (VPB_SHARERS(x) > 1)
993 return (0);
994 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
995 ("vm_page_busy_tryupgrade: invalid lock state"));
996 if (!atomic_fcmpset_acq_int(&m->busy_lock, &x,
997 ce | (x & VPB_BIT_WAITERS)))
998 continue;
999 return (1);
1000 }
1001 }
1002
1003 /*
1004 * vm_page_sbusied:
1005 *
1006 * Return a positive value if the page is shared busied, 0 otherwise.
1007 */
1008 int
vm_page_sbusied(vm_page_t m)1009 vm_page_sbusied(vm_page_t m)
1010 {
1011 u_int x;
1012
1013 x = vm_page_busy_fetch(m);
1014 return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
1015 }
1016
1017 /*
1018 * vm_page_sunbusy:
1019 *
1020 * Shared unbusy a page.
1021 */
1022 void
vm_page_sunbusy(vm_page_t m)1023 vm_page_sunbusy(vm_page_t m)
1024 {
1025 u_int x;
1026
1027 vm_page_assert_sbusied(m);
1028
1029 x = vm_page_busy_fetch(m);
1030 for (;;) {
1031 KASSERT(x != VPB_FREED,
1032 ("vm_page_sunbusy: Unlocking freed page."));
1033 if (VPB_SHARERS(x) > 1) {
1034 if (atomic_fcmpset_int(&m->busy_lock, &x,
1035 x - VPB_ONE_SHARER))
1036 break;
1037 continue;
1038 }
1039 KASSERT((x & ~VPB_BIT_WAITERS) == VPB_SHARERS_WORD(1),
1040 ("vm_page_sunbusy: invalid lock state"));
1041 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1042 continue;
1043 if ((x & VPB_BIT_WAITERS) == 0)
1044 break;
1045 wakeup(m);
1046 break;
1047 }
1048 }
1049
1050 /*
1051 * vm_page_busy_sleep:
1052 *
1053 * Sleep if the page is busy, using the page pointer as wchan.
1054 * This is used to implement the hard-path of the busying mechanism.
1055 *
1056 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1057 * will not sleep if the page is shared-busy.
1058 *
1059 * The object lock must be held on entry.
1060 *
1061 * Returns true if it slept and dropped the object lock, or false
1062 * if there was no sleep and the lock is still held.
1063 */
1064 bool
vm_page_busy_sleep(vm_page_t m,const char * wmesg,int allocflags)1065 vm_page_busy_sleep(vm_page_t m, const char *wmesg, int allocflags)
1066 {
1067 vm_object_t obj;
1068
1069 obj = m->object;
1070 VM_OBJECT_ASSERT_LOCKED(obj);
1071
1072 return (_vm_page_busy_sleep(obj, m, m->pindex, wmesg, allocflags,
1073 true));
1074 }
1075
1076 /*
1077 * vm_page_busy_sleep_unlocked:
1078 *
1079 * Sleep if the page is busy, using the page pointer as wchan.
1080 * This is used to implement the hard-path of busying mechanism.
1081 *
1082 * If VM_ALLOC_IGN_SBUSY is specified in allocflags, the function
1083 * will not sleep if the page is shared-busy.
1084 *
1085 * The object lock must not be held on entry. The operation will
1086 * return if the page changes identity.
1087 */
1088 void
vm_page_busy_sleep_unlocked(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags)1089 vm_page_busy_sleep_unlocked(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1090 const char *wmesg, int allocflags)
1091 {
1092 VM_OBJECT_ASSERT_UNLOCKED(obj);
1093
1094 (void)_vm_page_busy_sleep(obj, m, pindex, wmesg, allocflags, false);
1095 }
1096
1097 /*
1098 * _vm_page_busy_sleep:
1099 *
1100 * Internal busy sleep function. Verifies the page identity and
1101 * lockstate against parameters. Returns true if it sleeps and
1102 * false otherwise.
1103 *
1104 * allocflags uses VM_ALLOC_* flags to specify the lock required.
1105 *
1106 * If locked is true the lock will be dropped for any true returns
1107 * and held for any false returns.
1108 */
1109 static bool
_vm_page_busy_sleep(vm_object_t obj,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)1110 _vm_page_busy_sleep(vm_object_t obj, vm_page_t m, vm_pindex_t pindex,
1111 const char *wmesg, int allocflags, bool locked)
1112 {
1113 bool xsleep;
1114 u_int x;
1115
1116 /*
1117 * If the object is busy we must wait for that to drain to zero
1118 * before trying the page again.
1119 */
1120 if (obj != NULL && vm_object_busied(obj)) {
1121 if (locked)
1122 VM_OBJECT_DROP(obj);
1123 vm_object_busy_wait(obj, wmesg);
1124 return (true);
1125 }
1126
1127 if (!vm_page_busied(m))
1128 return (false);
1129
1130 xsleep = (allocflags & (VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY)) != 0;
1131 sleepq_lock(m);
1132 x = vm_page_busy_fetch(m);
1133 do {
1134 /*
1135 * If the page changes objects or becomes unlocked we can
1136 * simply return.
1137 */
1138 if (x == VPB_UNBUSIED ||
1139 (xsleep && (x & VPB_BIT_SHARED) != 0) ||
1140 m->object != obj || m->pindex != pindex) {
1141 sleepq_release(m);
1142 return (false);
1143 }
1144 if ((x & VPB_BIT_WAITERS) != 0)
1145 break;
1146 } while (!atomic_fcmpset_int(&m->busy_lock, &x, x | VPB_BIT_WAITERS));
1147 if (locked)
1148 VM_OBJECT_DROP(obj);
1149 DROP_GIANT();
1150 sleepq_add(m, NULL, wmesg, 0, 0);
1151 sleepq_wait(m, PVM);
1152 PICKUP_GIANT();
1153 return (true);
1154 }
1155
1156 /*
1157 * vm_page_trysbusy:
1158 *
1159 * Try to shared busy a page.
1160 * If the operation succeeds 1 is returned otherwise 0.
1161 * The operation never sleeps.
1162 */
1163 int
vm_page_trysbusy(vm_page_t m)1164 vm_page_trysbusy(vm_page_t m)
1165 {
1166 vm_object_t obj;
1167 u_int x;
1168
1169 obj = m->object;
1170 x = vm_page_busy_fetch(m);
1171 for (;;) {
1172 if ((x & VPB_BIT_SHARED) == 0)
1173 return (0);
1174 /*
1175 * Reduce the window for transient busies that will trigger
1176 * false negatives in vm_page_ps_test().
1177 */
1178 if (obj != NULL && vm_object_busied(obj))
1179 return (0);
1180 if (atomic_fcmpset_acq_int(&m->busy_lock, &x,
1181 x + VPB_ONE_SHARER))
1182 break;
1183 }
1184
1185 /* Refetch the object now that we're guaranteed that it is stable. */
1186 obj = m->object;
1187 if (obj != NULL && vm_object_busied(obj)) {
1188 vm_page_sunbusy(m);
1189 return (0);
1190 }
1191 return (1);
1192 }
1193
1194 /*
1195 * vm_page_tryxbusy:
1196 *
1197 * Try to exclusive busy a page.
1198 * If the operation succeeds 1 is returned otherwise 0.
1199 * The operation never sleeps.
1200 */
1201 int
vm_page_tryxbusy(vm_page_t m)1202 vm_page_tryxbusy(vm_page_t m)
1203 {
1204 vm_object_t obj;
1205
1206 if (atomic_cmpset_acq_int(&m->busy_lock, VPB_UNBUSIED,
1207 VPB_CURTHREAD_EXCLUSIVE) == 0)
1208 return (0);
1209
1210 obj = m->object;
1211 if (obj != NULL && vm_object_busied(obj)) {
1212 vm_page_xunbusy(m);
1213 return (0);
1214 }
1215 return (1);
1216 }
1217
1218 static void
vm_page_xunbusy_hard_tail(vm_page_t m)1219 vm_page_xunbusy_hard_tail(vm_page_t m)
1220 {
1221 atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
1222 /* Wake the waiter. */
1223 wakeup(m);
1224 }
1225
1226 /*
1227 * vm_page_xunbusy_hard:
1228 *
1229 * Called when unbusy has failed because there is a waiter.
1230 */
1231 void
vm_page_xunbusy_hard(vm_page_t m)1232 vm_page_xunbusy_hard(vm_page_t m)
1233 {
1234 vm_page_assert_xbusied(m);
1235 vm_page_xunbusy_hard_tail(m);
1236 }
1237
1238 void
vm_page_xunbusy_hard_unchecked(vm_page_t m)1239 vm_page_xunbusy_hard_unchecked(vm_page_t m)
1240 {
1241 vm_page_assert_xbusied_unchecked(m);
1242 vm_page_xunbusy_hard_tail(m);
1243 }
1244
1245 static void
vm_page_busy_free(vm_page_t m)1246 vm_page_busy_free(vm_page_t m)
1247 {
1248 u_int x;
1249
1250 atomic_thread_fence_rel();
1251 x = atomic_swap_int(&m->busy_lock, VPB_FREED);
1252 if ((x & VPB_BIT_WAITERS) != 0)
1253 wakeup(m);
1254 }
1255
1256 /*
1257 * vm_page_unhold_pages:
1258 *
1259 * Unhold each of the pages that is referenced by the given array.
1260 */
1261 void
vm_page_unhold_pages(vm_page_t * ma,int count)1262 vm_page_unhold_pages(vm_page_t *ma, int count)
1263 {
1264
1265 for (; count != 0; count--) {
1266 vm_page_unwire(*ma, PQ_ACTIVE);
1267 ma++;
1268 }
1269 }
1270
1271 vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)1272 PHYS_TO_VM_PAGE(vm_paddr_t pa)
1273 {
1274 vm_page_t m;
1275
1276 #ifdef VM_PHYSSEG_SPARSE
1277 m = vm_phys_paddr_to_vm_page(pa);
1278 if (m == NULL)
1279 m = vm_phys_fictitious_to_vm_page(pa);
1280 return (m);
1281 #elif defined(VM_PHYSSEG_DENSE)
1282 long pi;
1283
1284 pi = atop(pa);
1285 if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1286 m = &vm_page_array[pi - first_page];
1287 return (m);
1288 }
1289 return (vm_phys_fictitious_to_vm_page(pa));
1290 #else
1291 #error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
1292 #endif
1293 }
1294
1295 /*
1296 * vm_page_getfake:
1297 *
1298 * Create a fictitious page with the specified physical address and
1299 * memory attribute. The memory attribute is the only the machine-
1300 * dependent aspect of a fictitious page that must be initialized.
1301 */
1302 vm_page_t
vm_page_getfake(vm_paddr_t paddr,vm_memattr_t memattr)1303 vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
1304 {
1305 vm_page_t m;
1306
1307 m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
1308 vm_page_initfake(m, paddr, memattr);
1309 return (m);
1310 }
1311
1312 void
vm_page_initfake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1313 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1314 {
1315
1316 if ((m->flags & PG_FICTITIOUS) != 0) {
1317 /*
1318 * The page's memattr might have changed since the
1319 * previous initialization. Update the pmap to the
1320 * new memattr.
1321 */
1322 goto memattr;
1323 }
1324 m->phys_addr = paddr;
1325 m->a.queue = PQ_NONE;
1326 /* Fictitious pages don't use "segind". */
1327 m->flags = PG_FICTITIOUS;
1328 /* Fictitious pages don't use "order" or "pool". */
1329 m->oflags = VPO_UNMANAGED;
1330 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
1331 /* Fictitious pages are unevictable. */
1332 m->ref_count = 1;
1333 pmap_page_init(m);
1334 memattr:
1335 pmap_page_set_memattr(m, memattr);
1336 }
1337
1338 /*
1339 * vm_page_putfake:
1340 *
1341 * Release a fictitious page.
1342 */
1343 void
vm_page_putfake(vm_page_t m)1344 vm_page_putfake(vm_page_t m)
1345 {
1346
1347 KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
1348 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1349 ("vm_page_putfake: bad page %p", m));
1350 vm_page_assert_xbusied(m);
1351 vm_page_busy_free(m);
1352 uma_zfree(fakepg_zone, m);
1353 }
1354
1355 /*
1356 * vm_page_updatefake:
1357 *
1358 * Update the given fictitious page to the specified physical address and
1359 * memory attribute.
1360 */
1361 void
vm_page_updatefake(vm_page_t m,vm_paddr_t paddr,vm_memattr_t memattr)1362 vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1363 {
1364
1365 KASSERT((m->flags & PG_FICTITIOUS) != 0,
1366 ("vm_page_updatefake: bad page %p", m));
1367 m->phys_addr = paddr;
1368 pmap_page_set_memattr(m, memattr);
1369 }
1370
1371 /*
1372 * vm_page_free:
1373 *
1374 * Free a page.
1375 */
1376 void
vm_page_free(vm_page_t m)1377 vm_page_free(vm_page_t m)
1378 {
1379
1380 m->flags &= ~PG_ZERO;
1381 vm_page_free_toq(m);
1382 }
1383
1384 /*
1385 * vm_page_free_zero:
1386 *
1387 * Free a page to the zerod-pages queue
1388 */
1389 void
vm_page_free_zero(vm_page_t m)1390 vm_page_free_zero(vm_page_t m)
1391 {
1392
1393 m->flags |= PG_ZERO;
1394 vm_page_free_toq(m);
1395 }
1396
1397 /*
1398 * Unbusy and handle the page queueing for a page from a getpages request that
1399 * was optionally read ahead or behind.
1400 */
1401 void
vm_page_readahead_finish(vm_page_t m)1402 vm_page_readahead_finish(vm_page_t m)
1403 {
1404
1405 /* We shouldn't put invalid pages on queues. */
1406 KASSERT(!vm_page_none_valid(m), ("%s: %p is invalid", __func__, m));
1407
1408 /*
1409 * Since the page is not the actually needed one, whether it should
1410 * be activated or deactivated is not obvious. Empirical results
1411 * have shown that deactivating the page is usually the best choice,
1412 * unless the page is wanted by another thread.
1413 */
1414 if ((vm_page_busy_fetch(m) & VPB_BIT_WAITERS) != 0)
1415 vm_page_activate(m);
1416 else
1417 vm_page_deactivate(m);
1418 vm_page_xunbusy_unchecked(m);
1419 }
1420
1421 /*
1422 * Destroy the identity of an invalid page and free it if possible.
1423 * This is intended to be used when reading a page from backing store fails.
1424 */
1425 void
vm_page_free_invalid(vm_page_t m)1426 vm_page_free_invalid(vm_page_t m)
1427 {
1428
1429 KASSERT(vm_page_none_valid(m), ("page %p is valid", m));
1430 KASSERT(!pmap_page_is_mapped(m), ("page %p is mapped", m));
1431 KASSERT(m->object != NULL, ("page %p has no object", m));
1432 VM_OBJECT_ASSERT_WLOCKED(m->object);
1433
1434 /*
1435 * We may be attempting to free the page as part of the handling for an
1436 * I/O error, in which case the page was xbusied by a different thread.
1437 */
1438 vm_page_xbusy_claim(m);
1439
1440 /*
1441 * If someone has wired this page while the object lock
1442 * was not held, then the thread that unwires is responsible
1443 * for freeing the page. Otherwise just free the page now.
1444 * The wire count of this unmapped page cannot change while
1445 * we have the page xbusy and the page's object wlocked.
1446 */
1447 if (vm_page_remove(m))
1448 vm_page_free(m);
1449 }
1450
1451 /*
1452 * vm_page_dirty_KBI: [ internal use only ]
1453 *
1454 * Set all bits in the page's dirty field.
1455 *
1456 * The object containing the specified page must be locked if the
1457 * call is made from the machine-independent layer.
1458 *
1459 * See vm_page_clear_dirty_mask().
1460 *
1461 * This function should only be called by vm_page_dirty().
1462 */
1463 void
vm_page_dirty_KBI(vm_page_t m)1464 vm_page_dirty_KBI(vm_page_t m)
1465 {
1466
1467 /* Refer to this operation by its public name. */
1468 KASSERT(vm_page_all_valid(m), ("vm_page_dirty: page is invalid!"));
1469 m->dirty = VM_PAGE_BITS_ALL;
1470 }
1471
1472 /*
1473 * Insert the given page into the given object at the given pindex. mpred is
1474 * used for memq linkage. From vm_page_insert, iter is false, mpred is
1475 * initially NULL, and this procedure looks it up. From vm_page_iter_insert,
1476 * iter is true and mpred is known to the caller to be valid, and may be NULL if
1477 * this will be the page with the lowest pindex.
1478 *
1479 * The procedure is marked __always_inline to suggest to the compiler to
1480 * eliminate the lookup parameter and the associated alternate branch.
1481 */
1482 static __always_inline int
vm_page_insert_lookup(vm_page_t m,vm_object_t object,vm_pindex_t pindex,struct pctrie_iter * pages,bool iter,vm_page_t mpred)1483 vm_page_insert_lookup(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
1484 struct pctrie_iter *pages, bool iter, vm_page_t mpred)
1485 {
1486 int error;
1487
1488 VM_OBJECT_ASSERT_WLOCKED(object);
1489 KASSERT(m->object == NULL,
1490 ("vm_page_insert: page %p already inserted", m));
1491
1492 /*
1493 * Record the object/offset pair in this page.
1494 */
1495 m->object = object;
1496 m->pindex = pindex;
1497 m->ref_count |= VPRC_OBJREF;
1498
1499 /*
1500 * Add this page to the object's radix tree, and look up mpred if
1501 * needed.
1502 */
1503 if (iter)
1504 error = vm_radix_iter_insert(pages, m);
1505 else
1506 error = vm_radix_insert_lookup_lt(&object->rtree, m, &mpred);
1507 if (__predict_false(error != 0)) {
1508 m->object = NULL;
1509 m->pindex = 0;
1510 m->ref_count &= ~VPRC_OBJREF;
1511 return (1);
1512 }
1513
1514 /*
1515 * Now link into the object's ordered list of backed pages.
1516 */
1517 vm_page_insert_radixdone(m, object, mpred);
1518 vm_pager_page_inserted(object, m);
1519 return (0);
1520 }
1521
1522 /*
1523 * vm_page_insert: [ internal use only ]
1524 *
1525 * Inserts the given mem entry into the object and object list.
1526 *
1527 * The object must be locked.
1528 */
1529 int
vm_page_insert(vm_page_t m,vm_object_t object,vm_pindex_t pindex)1530 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1531 {
1532 return (vm_page_insert_lookup(m, object, pindex, NULL, false, NULL));
1533 }
1534
1535 /*
1536 * vm_page_iter_insert:
1537 *
1538 * Tries to insert the page "m" into the specified object at offset
1539 * "pindex" using the iterator "pages". Returns 0 if the insertion was
1540 * successful.
1541 *
1542 * The page "mpred" must immediately precede the offset "pindex" within
1543 * the specified object.
1544 *
1545 * The object must be locked.
1546 */
1547 static int
vm_page_iter_insert(struct pctrie_iter * pages,vm_page_t m,vm_object_t object,vm_pindex_t pindex,vm_page_t mpred)1548 vm_page_iter_insert(struct pctrie_iter *pages, vm_page_t m, vm_object_t object,
1549 vm_pindex_t pindex, vm_page_t mpred)
1550 {
1551 return (vm_page_insert_lookup(m, object, pindex, pages, true, mpred));
1552 }
1553
1554 /*
1555 * vm_page_insert_radixdone:
1556 *
1557 * Complete page "m" insertion into the specified object after the
1558 * radix trie hooking.
1559 *
1560 * The page "mpred" must precede the offset "m->pindex" within the
1561 * specified object.
1562 *
1563 * The object must be locked.
1564 */
1565 static void
vm_page_insert_radixdone(vm_page_t m,vm_object_t object,vm_page_t mpred)1566 vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
1567 {
1568
1569 VM_OBJECT_ASSERT_WLOCKED(object);
1570 KASSERT(object != NULL && m->object == object,
1571 ("vm_page_insert_radixdone: page %p has inconsistent object", m));
1572 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1573 ("vm_page_insert_radixdone: page %p is missing object ref", m));
1574 if (mpred != NULL) {
1575 KASSERT(mpred->object == object,
1576 ("vm_page_insert_radixdone: object doesn't contain mpred"));
1577 KASSERT(mpred->pindex < m->pindex,
1578 ("vm_page_insert_radixdone: mpred doesn't precede pindex"));
1579 KASSERT(TAILQ_NEXT(mpred, listq) == NULL ||
1580 m->pindex < TAILQ_NEXT(mpred, listq)->pindex,
1581 ("vm_page_insert_radixdone: pindex doesn't precede msucc"));
1582 } else {
1583 KASSERT(TAILQ_EMPTY(&object->memq) ||
1584 m->pindex < TAILQ_FIRST(&object->memq)->pindex,
1585 ("vm_page_insert_radixdone: no mpred but not first page"));
1586 }
1587
1588 if (mpred != NULL)
1589 TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
1590 else
1591 TAILQ_INSERT_HEAD(&object->memq, m, listq);
1592
1593 /*
1594 * Show that the object has one more resident page.
1595 */
1596 object->resident_page_count++;
1597
1598 /*
1599 * Hold the vnode until the last page is released.
1600 */
1601 if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
1602 vhold(object->handle);
1603
1604 /*
1605 * Since we are inserting a new and possibly dirty page,
1606 * update the object's generation count.
1607 */
1608 if (pmap_page_is_write_mapped(m))
1609 vm_object_set_writeable_dirty(object);
1610 }
1611
1612 /*
1613 * vm_page_remove_radixdone
1614 *
1615 * Complete page "m" removal from the specified object after the radix trie
1616 * unhooking.
1617 *
1618 * The caller is responsible for updating the page's fields to reflect this
1619 * removal.
1620 */
1621 static void
vm_page_remove_radixdone(vm_page_t m)1622 vm_page_remove_radixdone(vm_page_t m)
1623 {
1624 vm_object_t object;
1625
1626 vm_page_assert_xbusied(m);
1627 object = m->object;
1628 VM_OBJECT_ASSERT_WLOCKED(object);
1629 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1630 ("page %p is missing its object ref", m));
1631
1632 /* Deferred free of swap space. */
1633 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1634 vm_pager_page_unswapped(m);
1635
1636 vm_pager_page_removed(object, m);
1637 m->object = NULL;
1638
1639 /*
1640 * Now remove from the object's list of backed pages.
1641 */
1642 TAILQ_REMOVE(&object->memq, m, listq);
1643
1644 /*
1645 * And show that the object has one fewer resident page.
1646 */
1647 object->resident_page_count--;
1648
1649 /*
1650 * The vnode may now be recycled.
1651 */
1652 if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
1653 vdrop(object->handle);
1654 }
1655
1656 /*
1657 * vm_page_free_object_prep:
1658 *
1659 * Disassociates the given page from its VM object.
1660 *
1661 * The object must be locked, and the page must be xbusy.
1662 */
1663 static void
vm_page_free_object_prep(vm_page_t m)1664 vm_page_free_object_prep(vm_page_t m)
1665 {
1666 KASSERT(((m->oflags & VPO_UNMANAGED) != 0) ==
1667 ((m->object->flags & OBJ_UNMANAGED) != 0),
1668 ("%s: managed flag mismatch for page %p",
1669 __func__, m));
1670 vm_page_assert_xbusied(m);
1671
1672 /*
1673 * The object reference can be released without an atomic
1674 * operation.
1675 */
1676 KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
1677 m->ref_count == VPRC_OBJREF,
1678 ("%s: page %p has unexpected ref_count %u",
1679 __func__, m, m->ref_count));
1680 vm_page_remove_radixdone(m);
1681 m->ref_count -= VPRC_OBJREF;
1682 }
1683
1684 /*
1685 * vm_page_iter_free:
1686 *
1687 * Free the given page, and use the iterator to remove it from the radix
1688 * tree.
1689 */
1690 void
vm_page_iter_free(struct pctrie_iter * pages,vm_page_t m)1691 vm_page_iter_free(struct pctrie_iter *pages, vm_page_t m)
1692 {
1693 vm_radix_iter_remove(pages);
1694 vm_page_free_object_prep(m);
1695 vm_page_xunbusy(m);
1696 m->flags &= ~PG_ZERO;
1697 vm_page_free_toq(m);
1698 }
1699
1700 /*
1701 * vm_page_remove:
1702 *
1703 * Removes the specified page from its containing object, but does not
1704 * invalidate any backing storage. Returns true if the object's reference
1705 * was the last reference to the page, and false otherwise.
1706 *
1707 * The object must be locked and the page must be exclusively busied.
1708 * The exclusive busy will be released on return. If this is not the
1709 * final ref and the caller does not hold a wire reference it may not
1710 * continue to access the page.
1711 */
1712 bool
vm_page_remove(vm_page_t m)1713 vm_page_remove(vm_page_t m)
1714 {
1715 bool dropped;
1716
1717 dropped = vm_page_remove_xbusy(m);
1718 vm_page_xunbusy(m);
1719
1720 return (dropped);
1721 }
1722
1723 /*
1724 * vm_page_iter_remove:
1725 *
1726 * Remove the current page, and use the iterator to remove it from the
1727 * radix tree.
1728 */
1729 bool
vm_page_iter_remove(struct pctrie_iter * pages,vm_page_t m)1730 vm_page_iter_remove(struct pctrie_iter *pages, vm_page_t m)
1731 {
1732 bool dropped;
1733
1734 vm_radix_iter_remove(pages);
1735 vm_page_remove_radixdone(m);
1736 dropped = (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1737 vm_page_xunbusy(m);
1738
1739 return (dropped);
1740 }
1741
1742 /*
1743 * vm_page_radix_remove
1744 *
1745 * Removes the specified page from the radix tree.
1746 */
1747 static void
vm_page_radix_remove(vm_page_t m)1748 vm_page_radix_remove(vm_page_t m)
1749 {
1750 vm_page_t mrem __diagused;
1751
1752 mrem = vm_radix_remove(&m->object->rtree, m->pindex);
1753 KASSERT(mrem == m,
1754 ("removed page %p, expected page %p", mrem, m));
1755 }
1756
1757 /*
1758 * vm_page_remove_xbusy
1759 *
1760 * Removes the page but leaves the xbusy held. Returns true if this
1761 * removed the final ref and false otherwise.
1762 */
1763 bool
vm_page_remove_xbusy(vm_page_t m)1764 vm_page_remove_xbusy(vm_page_t m)
1765 {
1766
1767 vm_page_radix_remove(m);
1768 vm_page_remove_radixdone(m);
1769 return (vm_page_drop(m, VPRC_OBJREF) == VPRC_OBJREF);
1770 }
1771
1772 /*
1773 * vm_page_lookup:
1774 *
1775 * Returns the page associated with the object/offset
1776 * pair specified; if none is found, NULL is returned.
1777 *
1778 * The object must be locked.
1779 */
1780 vm_page_t
vm_page_lookup(vm_object_t object,vm_pindex_t pindex)1781 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1782 {
1783
1784 VM_OBJECT_ASSERT_LOCKED(object);
1785 return (vm_radix_lookup(&object->rtree, pindex));
1786 }
1787
1788 /*
1789 * vm_page_iter_init:
1790 *
1791 * Initialize iterator for vm pages.
1792 */
1793 void
vm_page_iter_init(struct pctrie_iter * pages,vm_object_t object)1794 vm_page_iter_init(struct pctrie_iter *pages, vm_object_t object)
1795 {
1796
1797 vm_radix_iter_init(pages, &object->rtree);
1798 }
1799
1800 /*
1801 * vm_page_iter_init:
1802 *
1803 * Initialize iterator for vm pages.
1804 */
1805 void
vm_page_iter_limit_init(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t limit)1806 vm_page_iter_limit_init(struct pctrie_iter *pages, vm_object_t object,
1807 vm_pindex_t limit)
1808 {
1809
1810 vm_radix_iter_limit_init(pages, &object->rtree, limit);
1811 }
1812
1813 /*
1814 * vm_page_lookup_unlocked:
1815 *
1816 * Returns the page associated with the object/offset pair specified;
1817 * if none is found, NULL is returned. The page may be no longer be
1818 * present in the object at the time that this function returns. Only
1819 * useful for opportunistic checks such as inmem().
1820 */
1821 vm_page_t
vm_page_lookup_unlocked(vm_object_t object,vm_pindex_t pindex)1822 vm_page_lookup_unlocked(vm_object_t object, vm_pindex_t pindex)
1823 {
1824
1825 return (vm_radix_lookup_unlocked(&object->rtree, pindex));
1826 }
1827
1828 /*
1829 * vm_page_relookup:
1830 *
1831 * Returns a page that must already have been busied by
1832 * the caller. Used for bogus page replacement.
1833 */
1834 vm_page_t
vm_page_relookup(vm_object_t object,vm_pindex_t pindex)1835 vm_page_relookup(vm_object_t object, vm_pindex_t pindex)
1836 {
1837 vm_page_t m;
1838
1839 m = vm_page_lookup_unlocked(object, pindex);
1840 KASSERT(m != NULL && (vm_page_busied(m) || vm_page_wired(m)) &&
1841 m->object == object && m->pindex == pindex,
1842 ("vm_page_relookup: Invalid page %p", m));
1843 return (m);
1844 }
1845
1846 /*
1847 * This should only be used by lockless functions for releasing transient
1848 * incorrect acquires. The page may have been freed after we acquired a
1849 * busy lock. In this case busy_lock == VPB_FREED and we have nothing
1850 * further to do.
1851 */
1852 static void
vm_page_busy_release(vm_page_t m)1853 vm_page_busy_release(vm_page_t m)
1854 {
1855 u_int x;
1856
1857 x = vm_page_busy_fetch(m);
1858 for (;;) {
1859 if (x == VPB_FREED)
1860 break;
1861 if ((x & VPB_BIT_SHARED) != 0 && VPB_SHARERS(x) > 1) {
1862 if (atomic_fcmpset_int(&m->busy_lock, &x,
1863 x - VPB_ONE_SHARER))
1864 break;
1865 continue;
1866 }
1867 KASSERT((x & VPB_BIT_SHARED) != 0 ||
1868 (x & ~VPB_BIT_WAITERS) == VPB_CURTHREAD_EXCLUSIVE,
1869 ("vm_page_busy_release: %p xbusy not owned.", m));
1870 if (!atomic_fcmpset_rel_int(&m->busy_lock, &x, VPB_UNBUSIED))
1871 continue;
1872 if ((x & VPB_BIT_WAITERS) != 0)
1873 wakeup(m);
1874 break;
1875 }
1876 }
1877
1878 /*
1879 * vm_page_find_least:
1880 *
1881 * Returns the page associated with the object with least pindex
1882 * greater than or equal to the parameter pindex, or NULL.
1883 *
1884 * The object must be locked.
1885 */
1886 vm_page_t
vm_page_find_least(vm_object_t object,vm_pindex_t pindex)1887 vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
1888 {
1889 vm_page_t m;
1890
1891 VM_OBJECT_ASSERT_LOCKED(object);
1892 if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
1893 m = vm_radix_lookup_ge(&object->rtree, pindex);
1894 return (m);
1895 }
1896
1897 /*
1898 * Uses the page mnew as a replacement for an existing page at index
1899 * pindex which must be already present in the object.
1900 *
1901 * Both pages must be exclusively busied on enter. The old page is
1902 * unbusied on exit.
1903 *
1904 * A return value of true means mold is now free. If this is not the
1905 * final ref and the caller does not hold a wire reference it may not
1906 * continue to access the page.
1907 */
1908 static bool
vm_page_replace_hold(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1909 vm_page_replace_hold(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1910 vm_page_t mold)
1911 {
1912 vm_page_t mret __diagused;
1913 bool dropped;
1914
1915 VM_OBJECT_ASSERT_WLOCKED(object);
1916 vm_page_assert_xbusied(mold);
1917 KASSERT(mnew->object == NULL && (mnew->ref_count & VPRC_OBJREF) == 0,
1918 ("vm_page_replace: page %p already in object", mnew));
1919
1920 /*
1921 * This function mostly follows vm_page_insert() and
1922 * vm_page_remove() without the radix, object count and vnode
1923 * dance. Double check such functions for more comments.
1924 */
1925
1926 mnew->object = object;
1927 mnew->pindex = pindex;
1928 atomic_set_int(&mnew->ref_count, VPRC_OBJREF);
1929 mret = vm_radix_replace(&object->rtree, mnew);
1930 KASSERT(mret == mold,
1931 ("invalid page replacement, mold=%p, mret=%p", mold, mret));
1932 KASSERT((mold->oflags & VPO_UNMANAGED) ==
1933 (mnew->oflags & VPO_UNMANAGED),
1934 ("vm_page_replace: mismatched VPO_UNMANAGED"));
1935
1936 /* Keep the resident page list in sorted order. */
1937 TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
1938 TAILQ_REMOVE(&object->memq, mold, listq);
1939 mold->object = NULL;
1940
1941 /*
1942 * The object's resident_page_count does not change because we have
1943 * swapped one page for another, but the generation count should
1944 * change if the page is dirty.
1945 */
1946 if (pmap_page_is_write_mapped(mnew))
1947 vm_object_set_writeable_dirty(object);
1948 dropped = vm_page_drop(mold, VPRC_OBJREF) == VPRC_OBJREF;
1949 vm_page_xunbusy(mold);
1950
1951 return (dropped);
1952 }
1953
1954 void
vm_page_replace(vm_page_t mnew,vm_object_t object,vm_pindex_t pindex,vm_page_t mold)1955 vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex,
1956 vm_page_t mold)
1957 {
1958
1959 vm_page_assert_xbusied(mnew);
1960
1961 if (vm_page_replace_hold(mnew, object, pindex, mold))
1962 vm_page_free(mold);
1963 }
1964
1965 /*
1966 * vm_page_iter_rename:
1967 *
1968 * Tries to move the specified page from its current object to a new object
1969 * and pindex, using the given iterator to remove the page from its current
1970 * object. Returns true if the move was successful, and false if the move
1971 * was aborted due to a failed memory allocation.
1972 *
1973 * Panics if a page already resides in the new object at the new pindex.
1974 *
1975 * This routine dirties the page if it is valid, as callers are expected to
1976 * transfer backing storage only after moving the page. Dirtying the page
1977 * ensures that the destination object retains the most recent copy of the
1978 * page.
1979 *
1980 * The objects must be locked.
1981 */
1982 bool
vm_page_iter_rename(struct pctrie_iter * old_pages,vm_page_t m,vm_object_t new_object,vm_pindex_t new_pindex)1983 vm_page_iter_rename(struct pctrie_iter *old_pages, vm_page_t m,
1984 vm_object_t new_object, vm_pindex_t new_pindex)
1985 {
1986 vm_page_t mpred;
1987 vm_pindex_t opidx;
1988
1989 KASSERT((m->ref_count & VPRC_OBJREF) != 0,
1990 ("%s: page %p is missing object ref", __func__, m));
1991 VM_OBJECT_ASSERT_WLOCKED(m->object);
1992 VM_OBJECT_ASSERT_WLOCKED(new_object);
1993
1994 /*
1995 * Create a custom version of vm_page_insert() which does not depend
1996 * by m_prev and can cheat on the implementation aspects of the
1997 * function.
1998 */
1999 opidx = m->pindex;
2000 m->pindex = new_pindex;
2001 if (vm_radix_insert_lookup_lt(&new_object->rtree, m, &mpred) != 0) {
2002 m->pindex = opidx;
2003 return (false);
2004 }
2005
2006 /*
2007 * The operation cannot fail anymore. The removal must happen before
2008 * the listq iterator is tainted.
2009 */
2010 m->pindex = opidx;
2011 vm_radix_iter_remove(old_pages);
2012 vm_page_remove_radixdone(m);
2013
2014 /* Return back to the new pindex to complete vm_page_insert(). */
2015 m->pindex = new_pindex;
2016 m->object = new_object;
2017
2018 vm_page_insert_radixdone(m, new_object, mpred);
2019 if (vm_page_any_valid(m))
2020 vm_page_dirty(m);
2021 vm_pager_page_inserted(new_object, m);
2022 return (true);
2023 }
2024
2025 /*
2026 * vm_page_mpred:
2027 *
2028 * Return the greatest page of the object with index <= pindex,
2029 * or NULL, if there is none. Assumes object lock is held.
2030 */
2031 vm_page_t
vm_page_mpred(vm_object_t object,vm_pindex_t pindex)2032 vm_page_mpred(vm_object_t object, vm_pindex_t pindex)
2033 {
2034 return (vm_radix_lookup_le(&object->rtree, pindex));
2035 }
2036
2037 /*
2038 * vm_page_alloc:
2039 *
2040 * Allocate and return a page that is associated with the specified
2041 * object and offset pair. By default, this page is exclusive busied.
2042 *
2043 * The caller must always specify an allocation class.
2044 *
2045 * allocation classes:
2046 * VM_ALLOC_NORMAL normal process request
2047 * VM_ALLOC_SYSTEM system *really* needs a page
2048 * VM_ALLOC_INTERRUPT interrupt time request
2049 *
2050 * optional allocation flags:
2051 * VM_ALLOC_COUNT(number) the number of additional pages that the caller
2052 * intends to allocate
2053 * VM_ALLOC_NOBUSY do not exclusive busy the page
2054 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2055 * VM_ALLOC_SBUSY shared busy the allocated page
2056 * VM_ALLOC_WIRED wire the allocated page
2057 * VM_ALLOC_ZERO prefer a zeroed page
2058 */
2059 vm_page_t
vm_page_alloc(vm_object_t object,vm_pindex_t pindex,int req)2060 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
2061 {
2062 struct pctrie_iter pages;
2063
2064 vm_page_iter_init(&pages, object);
2065 return (vm_page_alloc_after(object, &pages, pindex, req,
2066 vm_page_mpred(object, pindex)));
2067 }
2068
2069 /*
2070 * Allocate a page in the specified object with the given page index. To
2071 * optimize insertion of the page into the object, the caller must also specify
2072 * the resident page in the object with largest index smaller than the given
2073 * page index, or NULL if no such page exists.
2074 */
2075 vm_page_t
vm_page_alloc_after(vm_object_t object,struct pctrie_iter * pages,vm_pindex_t pindex,int req,vm_page_t mpred)2076 vm_page_alloc_after(vm_object_t object, struct pctrie_iter *pages,
2077 vm_pindex_t pindex, int req, vm_page_t mpred)
2078 {
2079 struct vm_domainset_iter di;
2080 vm_page_t m;
2081 int domain;
2082
2083 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2084 do {
2085 m = vm_page_alloc_domain_after(object, pages, pindex, domain,
2086 req, mpred);
2087 if (m != NULL)
2088 break;
2089 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2090
2091 return (m);
2092 }
2093
2094 /*
2095 * Returns true if the number of free pages exceeds the minimum
2096 * for the request class and false otherwise.
2097 */
2098 static int
_vm_domain_allocate(struct vm_domain * vmd,int req_class,int npages)2099 _vm_domain_allocate(struct vm_domain *vmd, int req_class, int npages)
2100 {
2101 u_int limit, old, new;
2102
2103 if (req_class == VM_ALLOC_INTERRUPT)
2104 limit = 0;
2105 else if (req_class == VM_ALLOC_SYSTEM)
2106 limit = vmd->vmd_interrupt_free_min;
2107 else
2108 limit = vmd->vmd_free_reserved;
2109
2110 /*
2111 * Attempt to reserve the pages. Fail if we're below the limit.
2112 */
2113 limit += npages;
2114 old = atomic_load_int(&vmd->vmd_free_count);
2115 do {
2116 if (old < limit)
2117 return (0);
2118 new = old - npages;
2119 } while (atomic_fcmpset_int(&vmd->vmd_free_count, &old, new) == 0);
2120
2121 /* Wake the page daemon if we've crossed the threshold. */
2122 if (vm_paging_needed(vmd, new) && !vm_paging_needed(vmd, old))
2123 pagedaemon_wakeup(vmd->vmd_domain);
2124
2125 /* Only update bitsets on transitions. */
2126 if ((old >= vmd->vmd_free_min && new < vmd->vmd_free_min) ||
2127 (old >= vmd->vmd_free_severe && new < vmd->vmd_free_severe))
2128 vm_domain_set(vmd);
2129
2130 return (1);
2131 }
2132
2133 int
vm_domain_allocate(struct vm_domain * vmd,int req,int npages)2134 vm_domain_allocate(struct vm_domain *vmd, int req, int npages)
2135 {
2136 int req_class;
2137
2138 /*
2139 * The page daemon is allowed to dig deeper into the free page list.
2140 */
2141 req_class = req & VM_ALLOC_CLASS_MASK;
2142 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
2143 req_class = VM_ALLOC_SYSTEM;
2144 return (_vm_domain_allocate(vmd, req_class, npages));
2145 }
2146
2147 vm_page_t
vm_page_alloc_domain_after(vm_object_t object,struct pctrie_iter * pages,vm_pindex_t pindex,int domain,int req,vm_page_t mpred)2148 vm_page_alloc_domain_after(vm_object_t object, struct pctrie_iter *pages,
2149 vm_pindex_t pindex, int domain, int req, vm_page_t mpred)
2150 {
2151 struct vm_domain *vmd;
2152 vm_page_t m;
2153 int flags;
2154
2155 #define VPA_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2156 VM_ALLOC_NOWAIT | VM_ALLOC_NOBUSY | \
2157 VM_ALLOC_SBUSY | VM_ALLOC_WIRED | \
2158 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2159 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2160 KASSERT((req & ~VPA_FLAGS) == 0,
2161 ("invalid request %#x", req));
2162 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2163 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2164 ("invalid request %#x", req));
2165 KASSERT(mpred == NULL || mpred->pindex < pindex,
2166 ("mpred %p doesn't precede pindex 0x%jx", mpred,
2167 (uintmax_t)pindex));
2168 VM_OBJECT_ASSERT_WLOCKED(object);
2169
2170 flags = 0;
2171 m = NULL;
2172 if (!vm_pager_can_alloc_page(object, pindex))
2173 return (NULL);
2174 again:
2175 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2176 m = vm_page_alloc_nofree_domain(domain, req);
2177 if (m != NULL)
2178 goto found;
2179 }
2180 #if VM_NRESERVLEVEL > 0
2181 /*
2182 * Can we allocate the page from a reservation?
2183 */
2184 if (vm_object_reserv(object) &&
2185 (m = vm_reserv_alloc_page(object, pages, pindex, domain, req)) !=
2186 NULL) {
2187 goto found;
2188 }
2189 #endif
2190 vmd = VM_DOMAIN(domain);
2191 if (vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone != NULL) {
2192 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DEFAULT].zone,
2193 M_NOWAIT | M_NOVM);
2194 if (m != NULL) {
2195 flags |= PG_PCPU_CACHE;
2196 goto found;
2197 }
2198 }
2199 if (vm_domain_allocate(vmd, req, 1)) {
2200 /*
2201 * If not, allocate it from the free page queues.
2202 */
2203 vm_domain_free_lock(vmd);
2204 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT, 0);
2205 vm_domain_free_unlock(vmd);
2206 if (m == NULL) {
2207 vm_domain_freecnt_inc(vmd, 1);
2208 #if VM_NRESERVLEVEL > 0
2209 if (vm_reserv_reclaim_inactive(domain))
2210 goto again;
2211 #endif
2212 }
2213 }
2214 if (m == NULL) {
2215 /*
2216 * Not allocatable, give up.
2217 */
2218 pctrie_iter_reset(pages);
2219 if (vm_domain_alloc_fail(vmd, object, req))
2220 goto again;
2221 return (NULL);
2222 }
2223
2224 /*
2225 * At this point we had better have found a good page.
2226 */
2227 found:
2228 vm_page_dequeue(m);
2229 vm_page_alloc_check(m);
2230
2231 /*
2232 * Initialize the page. Only the PG_ZERO flag is inherited.
2233 */
2234 flags |= m->flags & PG_ZERO;
2235 if ((req & VM_ALLOC_NODUMP) != 0)
2236 flags |= PG_NODUMP;
2237 if ((req & VM_ALLOC_NOFREE) != 0)
2238 flags |= PG_NOFREE;
2239 m->flags = flags;
2240 m->a.flags = 0;
2241 m->oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2242 m->pool = VM_FREEPOOL_DEFAULT;
2243 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2244 m->busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2245 else if ((req & VM_ALLOC_SBUSY) != 0)
2246 m->busy_lock = VPB_SHARERS_WORD(1);
2247 else
2248 m->busy_lock = VPB_UNBUSIED;
2249 if (req & VM_ALLOC_WIRED) {
2250 vm_wire_add(1);
2251 m->ref_count = 1;
2252 }
2253 m->a.act_count = 0;
2254
2255 if (vm_page_insert_lookup(m, object, pindex, pages, true, mpred)) {
2256 if (req & VM_ALLOC_WIRED) {
2257 vm_wire_sub(1);
2258 m->ref_count = 0;
2259 }
2260 KASSERT(m->object == NULL, ("page %p has object", m));
2261 m->oflags = VPO_UNMANAGED;
2262 m->busy_lock = VPB_UNBUSIED;
2263 /* Don't change PG_ZERO. */
2264 vm_page_free_toq(m);
2265 if (req & VM_ALLOC_WAITFAIL) {
2266 VM_OBJECT_WUNLOCK(object);
2267 vm_radix_wait();
2268 pctrie_iter_reset(pages);
2269 VM_OBJECT_WLOCK(object);
2270 }
2271 return (NULL);
2272 }
2273
2274 /* Ignore device objects; the pager sets "memattr" for them. */
2275 if (object->memattr != VM_MEMATTR_DEFAULT &&
2276 (object->flags & OBJ_FICTITIOUS) == 0)
2277 pmap_page_set_memattr(m, object->memattr);
2278
2279 return (m);
2280 }
2281
2282 /*
2283 * vm_page_alloc_contig:
2284 *
2285 * Allocate a contiguous set of physical pages of the given size "npages"
2286 * from the free lists. All of the physical pages must be at or above
2287 * the given physical address "low" and below the given physical address
2288 * "high". The given value "alignment" determines the alignment of the
2289 * first physical page in the set. If the given value "boundary" is
2290 * non-zero, then the set of physical pages cannot cross any physical
2291 * address boundary that is a multiple of that value. Both "alignment"
2292 * and "boundary" must be a power of two.
2293 *
2294 * If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
2295 * then the memory attribute setting for the physical pages is configured
2296 * to the object's memory attribute setting. Otherwise, the memory
2297 * attribute setting for the physical pages is configured to "memattr",
2298 * overriding the object's memory attribute setting. However, if the
2299 * object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
2300 * memory attribute setting for the physical pages cannot be configured
2301 * to VM_MEMATTR_DEFAULT.
2302 *
2303 * The specified object may not contain fictitious pages.
2304 *
2305 * The caller must always specify an allocation class.
2306 *
2307 * allocation classes:
2308 * VM_ALLOC_NORMAL normal process request
2309 * VM_ALLOC_SYSTEM system *really* needs a page
2310 * VM_ALLOC_INTERRUPT interrupt time request
2311 *
2312 * optional allocation flags:
2313 * VM_ALLOC_NOBUSY do not exclusive busy the page
2314 * VM_ALLOC_NODUMP do not include the page in a kernel core dump
2315 * VM_ALLOC_SBUSY shared busy the allocated page
2316 * VM_ALLOC_WIRED wire the allocated page
2317 * VM_ALLOC_ZERO prefer a zeroed page
2318 */
2319 vm_page_t
vm_page_alloc_contig(vm_object_t object,vm_pindex_t pindex,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2320 vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
2321 u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2322 vm_paddr_t boundary, vm_memattr_t memattr)
2323 {
2324 struct vm_domainset_iter di;
2325 vm_page_t bounds[2];
2326 vm_page_t m;
2327 int domain;
2328 int start_segind;
2329
2330 start_segind = -1;
2331
2332 vm_domainset_iter_page_init(&di, object, pindex, &domain, &req);
2333 do {
2334 m = vm_page_alloc_contig_domain(object, pindex, domain, req,
2335 npages, low, high, alignment, boundary, memattr);
2336 if (m != NULL)
2337 break;
2338 if (start_segind == -1)
2339 start_segind = vm_phys_lookup_segind(low);
2340 if (vm_phys_find_range(bounds, start_segind, domain,
2341 npages, low, high) == -1) {
2342 vm_domainset_iter_ignore(&di, domain);
2343 }
2344 } while (vm_domainset_iter_page(&di, object, &domain) == 0);
2345
2346 return (m);
2347 }
2348
2349 static vm_page_t
vm_page_find_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)2350 vm_page_find_contig_domain(int domain, int req, u_long npages, vm_paddr_t low,
2351 vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
2352 {
2353 struct vm_domain *vmd;
2354 vm_page_t m_ret;
2355
2356 /*
2357 * Can we allocate the pages without the number of free pages falling
2358 * below the lower bound for the allocation class?
2359 */
2360 vmd = VM_DOMAIN(domain);
2361 if (!vm_domain_allocate(vmd, req, npages))
2362 return (NULL);
2363 /*
2364 * Try to allocate the pages from the free page queues.
2365 */
2366 vm_domain_free_lock(vmd);
2367 m_ret = vm_phys_alloc_contig(domain, npages, low, high,
2368 alignment, boundary);
2369 vm_domain_free_unlock(vmd);
2370 if (m_ret != NULL)
2371 return (m_ret);
2372 #if VM_NRESERVLEVEL > 0
2373 /*
2374 * Try to break a reservation to allocate the pages.
2375 */
2376 if ((req & VM_ALLOC_NORECLAIM) == 0) {
2377 m_ret = vm_reserv_reclaim_contig(domain, npages, low,
2378 high, alignment, boundary);
2379 if (m_ret != NULL)
2380 return (m_ret);
2381 }
2382 #endif
2383 vm_domain_freecnt_inc(vmd, npages);
2384 return (NULL);
2385 }
2386
2387 vm_page_t
vm_page_alloc_contig_domain(vm_object_t object,vm_pindex_t pindex,int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2388 vm_page_alloc_contig_domain(vm_object_t object, vm_pindex_t pindex, int domain,
2389 int req, u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
2390 vm_paddr_t boundary, vm_memattr_t memattr)
2391 {
2392 struct pctrie_iter pages;
2393 vm_page_t m, m_ret, mpred;
2394 u_int busy_lock, flags, oflags;
2395
2396 #define VPAC_FLAGS (VPA_FLAGS | VM_ALLOC_NORECLAIM)
2397 KASSERT((req & ~VPAC_FLAGS) == 0,
2398 ("invalid request %#x", req));
2399 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2400 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2401 ("invalid request %#x", req));
2402 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2403 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2404 ("invalid request %#x", req));
2405 VM_OBJECT_ASSERT_WLOCKED(object);
2406 KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
2407 ("vm_page_alloc_contig: object %p has fictitious pages",
2408 object));
2409 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2410
2411 vm_page_iter_init(&pages, object);
2412 mpred = vm_radix_iter_lookup_lt(&pages, pindex);
2413 KASSERT(mpred == NULL || mpred->pindex != pindex,
2414 ("vm_page_alloc_contig: pindex already allocated"));
2415 for (;;) {
2416 #if VM_NRESERVLEVEL > 0
2417 /*
2418 * Can we allocate the pages from a reservation?
2419 */
2420 if (vm_object_reserv(object) &&
2421 (m_ret = vm_reserv_alloc_contig(object, &pages, pindex,
2422 domain, req, npages, low, high, alignment, boundary)) !=
2423 NULL) {
2424 break;
2425 }
2426 #endif
2427 if ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2428 low, high, alignment, boundary)) != NULL)
2429 break;
2430 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), object, req))
2431 return (NULL);
2432 }
2433
2434 /*
2435 * Initialize the pages. Only the PG_ZERO flag is inherited.
2436 */
2437 flags = PG_ZERO;
2438 if ((req & VM_ALLOC_NODUMP) != 0)
2439 flags |= PG_NODUMP;
2440 oflags = (object->flags & OBJ_UNMANAGED) != 0 ? VPO_UNMANAGED : 0;
2441 if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
2442 busy_lock = VPB_CURTHREAD_EXCLUSIVE;
2443 else if ((req & VM_ALLOC_SBUSY) != 0)
2444 busy_lock = VPB_SHARERS_WORD(1);
2445 else
2446 busy_lock = VPB_UNBUSIED;
2447 if ((req & VM_ALLOC_WIRED) != 0)
2448 vm_wire_add(npages);
2449 if (object->memattr != VM_MEMATTR_DEFAULT &&
2450 memattr == VM_MEMATTR_DEFAULT)
2451 memattr = object->memattr;
2452 for (m = m_ret; m < &m_ret[npages]; m++) {
2453 vm_page_dequeue(m);
2454 vm_page_alloc_check(m);
2455 m->a.flags = 0;
2456 m->flags = (m->flags | PG_NODUMP) & flags;
2457 m->busy_lock = busy_lock;
2458 if ((req & VM_ALLOC_WIRED) != 0)
2459 m->ref_count = 1;
2460 m->a.act_count = 0;
2461 m->oflags = oflags;
2462 m->pool = VM_FREEPOOL_DEFAULT;
2463 if (vm_page_iter_insert(&pages, m, object, pindex, mpred)) {
2464 if ((req & VM_ALLOC_WIRED) != 0)
2465 vm_wire_sub(npages);
2466 KASSERT(m->object == NULL,
2467 ("page %p has object", m));
2468 mpred = m;
2469 for (m = m_ret; m < &m_ret[npages]; m++) {
2470 if (m <= mpred &&
2471 (req & VM_ALLOC_WIRED) != 0)
2472 m->ref_count = 0;
2473 m->oflags = VPO_UNMANAGED;
2474 m->busy_lock = VPB_UNBUSIED;
2475 /* Don't change PG_ZERO. */
2476 vm_page_free_toq(m);
2477 }
2478 if (req & VM_ALLOC_WAITFAIL) {
2479 VM_OBJECT_WUNLOCK(object);
2480 vm_radix_wait();
2481 VM_OBJECT_WLOCK(object);
2482 }
2483 return (NULL);
2484 }
2485 mpred = m;
2486 if (memattr != VM_MEMATTR_DEFAULT)
2487 pmap_page_set_memattr(m, memattr);
2488 pindex++;
2489 }
2490 return (m_ret);
2491 }
2492
2493 /*
2494 * Allocate a physical page that is not intended to be inserted into a VM
2495 * object.
2496 */
2497 vm_page_t
vm_page_alloc_noobj_domain(int domain,int req)2498 vm_page_alloc_noobj_domain(int domain, int req)
2499 {
2500 struct vm_domain *vmd;
2501 vm_page_t m;
2502 int flags;
2503
2504 #define VPAN_FLAGS (VM_ALLOC_CLASS_MASK | VM_ALLOC_WAITFAIL | \
2505 VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | \
2506 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED | \
2507 VM_ALLOC_NODUMP | VM_ALLOC_ZERO | \
2508 VM_ALLOC_NOFREE | VM_ALLOC_COUNT_MASK)
2509 KASSERT((req & ~VPAN_FLAGS) == 0,
2510 ("invalid request %#x", req));
2511
2512 flags = ((req & VM_ALLOC_NODUMP) != 0 ? PG_NODUMP : 0) |
2513 ((req & VM_ALLOC_NOFREE) != 0 ? PG_NOFREE : 0);
2514 vmd = VM_DOMAIN(domain);
2515 again:
2516 if (__predict_false((req & VM_ALLOC_NOFREE) != 0)) {
2517 m = vm_page_alloc_nofree_domain(domain, req);
2518 if (m != NULL)
2519 goto found;
2520 }
2521
2522 if (vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone != NULL) {
2523 m = uma_zalloc(vmd->vmd_pgcache[VM_FREEPOOL_DIRECT].zone,
2524 M_NOWAIT | M_NOVM);
2525 if (m != NULL) {
2526 flags |= PG_PCPU_CACHE;
2527 goto found;
2528 }
2529 }
2530
2531 if (vm_domain_allocate(vmd, req, 1)) {
2532 vm_domain_free_lock(vmd);
2533 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DIRECT, 0);
2534 vm_domain_free_unlock(vmd);
2535 if (m == NULL) {
2536 vm_domain_freecnt_inc(vmd, 1);
2537 #if VM_NRESERVLEVEL > 0
2538 if (vm_reserv_reclaim_inactive(domain))
2539 goto again;
2540 #endif
2541 }
2542 }
2543 if (m == NULL) {
2544 if (vm_domain_alloc_fail(vmd, NULL, req))
2545 goto again;
2546 return (NULL);
2547 }
2548
2549 found:
2550 vm_page_dequeue(m);
2551 vm_page_alloc_check(m);
2552
2553 /*
2554 * Consumers should not rely on a useful default pindex value.
2555 */
2556 m->pindex = 0xdeadc0dedeadc0de;
2557 m->flags = (m->flags & PG_ZERO) | flags;
2558 m->a.flags = 0;
2559 m->oflags = VPO_UNMANAGED;
2560 m->pool = VM_FREEPOOL_DIRECT;
2561 m->busy_lock = VPB_UNBUSIED;
2562 if ((req & VM_ALLOC_WIRED) != 0) {
2563 vm_wire_add(1);
2564 m->ref_count = 1;
2565 }
2566
2567 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2568 pmap_zero_page(m);
2569
2570 return (m);
2571 }
2572
2573 #if VM_NRESERVLEVEL > 1
2574 #define VM_NOFREE_IMPORT_ORDER (VM_LEVEL_1_ORDER + VM_LEVEL_0_ORDER)
2575 #elif VM_NRESERVLEVEL > 0
2576 #define VM_NOFREE_IMPORT_ORDER VM_LEVEL_0_ORDER
2577 #else
2578 #define VM_NOFREE_IMPORT_ORDER 8
2579 #endif
2580
2581 /*
2582 * Allocate a single NOFREE page.
2583 *
2584 * This routine hands out NOFREE pages from higher-order
2585 * physical memory blocks in order to reduce memory fragmentation.
2586 * When a NOFREE for a given domain chunk is used up,
2587 * the routine will try to fetch a new one from the freelists
2588 * and discard the old one.
2589 */
2590 static vm_page_t __noinline
vm_page_alloc_nofree_domain(int domain,int req)2591 vm_page_alloc_nofree_domain(int domain, int req)
2592 {
2593 vm_page_t m;
2594 struct vm_domain *vmd;
2595
2596 KASSERT((req & VM_ALLOC_NOFREE) != 0, ("invalid request %#x", req));
2597
2598 vmd = VM_DOMAIN(domain);
2599 vm_domain_free_lock(vmd);
2600 if (TAILQ_EMPTY(&vmd->vmd_nofreeq)) {
2601 int count;
2602
2603 count = 1 << VM_NOFREE_IMPORT_ORDER;
2604 if (!vm_domain_allocate(vmd, req, count)) {
2605 vm_domain_free_unlock(vmd);
2606 return (NULL);
2607 }
2608 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
2609 VM_NOFREE_IMPORT_ORDER);
2610 if (m == NULL) {
2611 vm_domain_freecnt_inc(vmd, count);
2612 vm_domain_free_unlock(vmd);
2613 return (NULL);
2614 }
2615 m->pindex = count;
2616 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, listq);
2617 VM_CNT_ADD(v_nofree_count, count);
2618 }
2619 m = TAILQ_FIRST(&vmd->vmd_nofreeq);
2620 TAILQ_REMOVE(&vmd->vmd_nofreeq, m, listq);
2621 if (m->pindex > 1) {
2622 vm_page_t m_next;
2623
2624 m_next = &m[1];
2625 m_next->pindex = m->pindex - 1;
2626 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m_next, listq);
2627 }
2628 vm_domain_free_unlock(vmd);
2629 VM_CNT_ADD(v_nofree_count, -1);
2630
2631 return (m);
2632 }
2633
2634 /*
2635 * Though a NOFREE page by definition should not be freed, we support putting
2636 * them aside for future NOFREE allocations. This enables code which allocates
2637 * NOFREE pages for some purpose but then encounters an error and releases
2638 * resources.
2639 */
2640 static void __noinline
vm_page_free_nofree(struct vm_domain * vmd,vm_page_t m)2641 vm_page_free_nofree(struct vm_domain *vmd, vm_page_t m)
2642 {
2643 vm_domain_free_lock(vmd);
2644 m->pindex = 1;
2645 TAILQ_INSERT_HEAD(&vmd->vmd_nofreeq, m, listq);
2646 vm_domain_free_unlock(vmd);
2647 VM_CNT_ADD(v_nofree_count, 1);
2648 }
2649
2650 vm_page_t
vm_page_alloc_noobj(int req)2651 vm_page_alloc_noobj(int req)
2652 {
2653 struct vm_domainset_iter di;
2654 vm_page_t m;
2655 int domain;
2656
2657 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2658 do {
2659 m = vm_page_alloc_noobj_domain(domain, req);
2660 if (m != NULL)
2661 break;
2662 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2663
2664 return (m);
2665 }
2666
2667 vm_page_t
vm_page_alloc_noobj_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2668 vm_page_alloc_noobj_contig(int req, u_long npages, vm_paddr_t low,
2669 vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2670 vm_memattr_t memattr)
2671 {
2672 struct vm_domainset_iter di;
2673 vm_page_t m;
2674 int domain;
2675
2676 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
2677 do {
2678 m = vm_page_alloc_noobj_contig_domain(domain, req, npages, low,
2679 high, alignment, boundary, memattr);
2680 if (m != NULL)
2681 break;
2682 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
2683
2684 return (m);
2685 }
2686
2687 vm_page_t
vm_page_alloc_noobj_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,vm_memattr_t memattr)2688 vm_page_alloc_noobj_contig_domain(int domain, int req, u_long npages,
2689 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
2690 vm_memattr_t memattr)
2691 {
2692 vm_page_t m, m_ret;
2693 u_int flags;
2694
2695 #define VPANC_FLAGS (VPAN_FLAGS | VM_ALLOC_NORECLAIM)
2696 KASSERT((req & ~VPANC_FLAGS) == 0,
2697 ("invalid request %#x", req));
2698 KASSERT((req & (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM)) !=
2699 (VM_ALLOC_WAITOK | VM_ALLOC_NORECLAIM),
2700 ("invalid request %#x", req));
2701 KASSERT(((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
2702 (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
2703 ("invalid request %#x", req));
2704 KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
2705
2706 while ((m_ret = vm_page_find_contig_domain(domain, req, npages,
2707 low, high, alignment, boundary)) == NULL) {
2708 if (!vm_domain_alloc_fail(VM_DOMAIN(domain), NULL, req))
2709 return (NULL);
2710 }
2711
2712 /*
2713 * Initialize the pages. Only the PG_ZERO flag is inherited.
2714 */
2715 flags = PG_ZERO;
2716 if ((req & VM_ALLOC_NODUMP) != 0)
2717 flags |= PG_NODUMP;
2718 if ((req & VM_ALLOC_WIRED) != 0)
2719 vm_wire_add(npages);
2720 for (m = m_ret; m < &m_ret[npages]; m++) {
2721 vm_page_dequeue(m);
2722 vm_page_alloc_check(m);
2723
2724 /*
2725 * Consumers should not rely on a useful default pindex value.
2726 */
2727 m->pindex = 0xdeadc0dedeadc0de;
2728 m->a.flags = 0;
2729 m->flags = (m->flags | PG_NODUMP) & flags;
2730 m->busy_lock = VPB_UNBUSIED;
2731 if ((req & VM_ALLOC_WIRED) != 0)
2732 m->ref_count = 1;
2733 m->a.act_count = 0;
2734 m->oflags = VPO_UNMANAGED;
2735 m->pool = VM_FREEPOOL_DIRECT;
2736
2737 /*
2738 * Zero the page before updating any mappings since the page is
2739 * not yet shared with any devices which might require the
2740 * non-default memory attribute. pmap_page_set_memattr()
2741 * flushes data caches before returning.
2742 */
2743 if ((req & VM_ALLOC_ZERO) != 0 && (m->flags & PG_ZERO) == 0)
2744 pmap_zero_page(m);
2745 if (memattr != VM_MEMATTR_DEFAULT)
2746 pmap_page_set_memattr(m, memattr);
2747 }
2748 return (m_ret);
2749 }
2750
2751 /*
2752 * Check a page that has been freshly dequeued from a freelist.
2753 */
2754 static void
vm_page_alloc_check(vm_page_t m)2755 vm_page_alloc_check(vm_page_t m)
2756 {
2757
2758 KASSERT(m->object == NULL, ("page %p has object", m));
2759 KASSERT(m->a.queue == PQ_NONE &&
2760 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
2761 ("page %p has unexpected queue %d, flags %#x",
2762 m, m->a.queue, (m->a.flags & PGA_QUEUE_STATE_MASK)));
2763 KASSERT(m->ref_count == 0, ("page %p has references", m));
2764 KASSERT(vm_page_busy_freed(m), ("page %p is not freed", m));
2765 KASSERT(m->dirty == 0, ("page %p is dirty", m));
2766 KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
2767 ("page %p has unexpected memattr %d",
2768 m, pmap_page_get_memattr(m)));
2769 KASSERT(vm_page_none_valid(m), ("free page %p is valid", m));
2770 pmap_vm_page_alloc_check(m);
2771 }
2772
2773 static int
vm_page_zone_import(void * arg,void ** store,int cnt,int domain,int flags)2774 vm_page_zone_import(void *arg, void **store, int cnt, int domain, int flags)
2775 {
2776 struct vm_domain *vmd;
2777 struct vm_pgcache *pgcache;
2778 int i;
2779
2780 pgcache = arg;
2781 vmd = VM_DOMAIN(pgcache->domain);
2782
2783 /*
2784 * The page daemon should avoid creating extra memory pressure since its
2785 * main purpose is to replenish the store of free pages.
2786 */
2787 if (vmd->vmd_severeset || curproc == pageproc ||
2788 !_vm_domain_allocate(vmd, VM_ALLOC_NORMAL, cnt))
2789 return (0);
2790 domain = vmd->vmd_domain;
2791 vm_domain_free_lock(vmd);
2792 i = vm_phys_alloc_npages(domain, pgcache->pool, cnt,
2793 (vm_page_t *)store);
2794 vm_domain_free_unlock(vmd);
2795 if (cnt != i)
2796 vm_domain_freecnt_inc(vmd, cnt - i);
2797
2798 return (i);
2799 }
2800
2801 static void
vm_page_zone_release(void * arg,void ** store,int cnt)2802 vm_page_zone_release(void *arg, void **store, int cnt)
2803 {
2804 struct vm_domain *vmd;
2805 struct vm_pgcache *pgcache;
2806 vm_page_t m;
2807 int i;
2808
2809 pgcache = arg;
2810 vmd = VM_DOMAIN(pgcache->domain);
2811 vm_domain_free_lock(vmd);
2812 for (i = 0; i < cnt; i++) {
2813 m = (vm_page_t)store[i];
2814 vm_phys_free_pages(m, pgcache->pool, 0);
2815 }
2816 vm_domain_free_unlock(vmd);
2817 vm_domain_freecnt_inc(vmd, cnt);
2818 }
2819
2820 #define VPSC_ANY 0 /* No restrictions. */
2821 #define VPSC_NORESERV 1 /* Skip reservations; implies VPSC_NOSUPER. */
2822 #define VPSC_NOSUPER 2 /* Skip superpages. */
2823
2824 /*
2825 * vm_page_scan_contig:
2826 *
2827 * Scan vm_page_array[] between the specified entries "m_start" and
2828 * "m_end" for a run of contiguous physical pages that satisfy the
2829 * specified conditions, and return the lowest page in the run. The
2830 * specified "alignment" determines the alignment of the lowest physical
2831 * page in the run. If the specified "boundary" is non-zero, then the
2832 * run of physical pages cannot span a physical address that is a
2833 * multiple of "boundary".
2834 *
2835 * "m_end" is never dereferenced, so it need not point to a vm_page
2836 * structure within vm_page_array[].
2837 *
2838 * "npages" must be greater than zero. "m_start" and "m_end" must not
2839 * span a hole (or discontiguity) in the physical address space. Both
2840 * "alignment" and "boundary" must be a power of two.
2841 */
2842 static vm_page_t
vm_page_scan_contig(u_long npages,vm_page_t m_start,vm_page_t m_end,u_long alignment,vm_paddr_t boundary,int options)2843 vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
2844 u_long alignment, vm_paddr_t boundary, int options)
2845 {
2846 vm_object_t object;
2847 vm_paddr_t pa;
2848 vm_page_t m, m_run;
2849 #if VM_NRESERVLEVEL > 0
2850 int level;
2851 #endif
2852 int m_inc, order, run_ext, run_len;
2853
2854 KASSERT(npages > 0, ("npages is 0"));
2855 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
2856 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
2857 m_run = NULL;
2858 run_len = 0;
2859 for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
2860 KASSERT((m->flags & PG_MARKER) == 0,
2861 ("page %p is PG_MARKER", m));
2862 KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->ref_count >= 1,
2863 ("fictitious page %p has invalid ref count", m));
2864
2865 /*
2866 * If the current page would be the start of a run, check its
2867 * physical address against the end, alignment, and boundary
2868 * conditions. If it doesn't satisfy these conditions, either
2869 * terminate the scan or advance to the next page that
2870 * satisfies the failed condition.
2871 */
2872 if (run_len == 0) {
2873 KASSERT(m_run == NULL, ("m_run != NULL"));
2874 if (m + npages > m_end)
2875 break;
2876 pa = VM_PAGE_TO_PHYS(m);
2877 if (!vm_addr_align_ok(pa, alignment)) {
2878 m_inc = atop(roundup2(pa, alignment) - pa);
2879 continue;
2880 }
2881 if (!vm_addr_bound_ok(pa, ptoa(npages), boundary)) {
2882 m_inc = atop(roundup2(pa, boundary) - pa);
2883 continue;
2884 }
2885 } else
2886 KASSERT(m_run != NULL, ("m_run == NULL"));
2887
2888 retry:
2889 m_inc = 1;
2890 if (vm_page_wired(m))
2891 run_ext = 0;
2892 #if VM_NRESERVLEVEL > 0
2893 else if ((level = vm_reserv_level(m)) >= 0 &&
2894 (options & VPSC_NORESERV) != 0) {
2895 run_ext = 0;
2896 /* Advance to the end of the reservation. */
2897 pa = VM_PAGE_TO_PHYS(m);
2898 m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
2899 pa);
2900 }
2901 #endif
2902 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
2903 /*
2904 * The page is considered eligible for relocation if
2905 * and only if it could be laundered or reclaimed by
2906 * the page daemon.
2907 */
2908 VM_OBJECT_RLOCK(object);
2909 if (object != m->object) {
2910 VM_OBJECT_RUNLOCK(object);
2911 goto retry;
2912 }
2913 /* Don't care: PG_NODUMP, PG_ZERO. */
2914 if ((object->flags & OBJ_SWAP) == 0 &&
2915 object->type != OBJT_VNODE) {
2916 run_ext = 0;
2917 #if VM_NRESERVLEVEL > 0
2918 } else if ((options & VPSC_NOSUPER) != 0 &&
2919 (level = vm_reserv_level_iffullpop(m)) >= 0) {
2920 run_ext = 0;
2921 /* Advance to the end of the superpage. */
2922 pa = VM_PAGE_TO_PHYS(m);
2923 m_inc = atop(roundup2(pa + 1,
2924 vm_reserv_size(level)) - pa);
2925 #endif
2926 } else if (object->memattr == VM_MEMATTR_DEFAULT &&
2927 vm_page_queue(m) != PQ_NONE && !vm_page_busied(m)) {
2928 /*
2929 * The page is allocated but eligible for
2930 * relocation. Extend the current run by one
2931 * page.
2932 */
2933 KASSERT(pmap_page_get_memattr(m) ==
2934 VM_MEMATTR_DEFAULT,
2935 ("page %p has an unexpected memattr", m));
2936 KASSERT((m->oflags & (VPO_SWAPINPROG |
2937 VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
2938 ("page %p has unexpected oflags", m));
2939 /* Don't care: PGA_NOSYNC. */
2940 run_ext = 1;
2941 } else
2942 run_ext = 0;
2943 VM_OBJECT_RUNLOCK(object);
2944 #if VM_NRESERVLEVEL > 0
2945 } else if (level >= 0) {
2946 /*
2947 * The page is reserved but not yet allocated. In
2948 * other words, it is still free. Extend the current
2949 * run by one page.
2950 */
2951 run_ext = 1;
2952 #endif
2953 } else if ((order = m->order) < VM_NFREEORDER) {
2954 /*
2955 * The page is enqueued in the physical memory
2956 * allocator's free page queues. Moreover, it is the
2957 * first page in a power-of-two-sized run of
2958 * contiguous free pages. Add these pages to the end
2959 * of the current run, and jump ahead.
2960 */
2961 run_ext = 1 << order;
2962 m_inc = 1 << order;
2963 } else {
2964 /*
2965 * Skip the page for one of the following reasons: (1)
2966 * It is enqueued in the physical memory allocator's
2967 * free page queues. However, it is not the first
2968 * page in a run of contiguous free pages. (This case
2969 * rarely occurs because the scan is performed in
2970 * ascending order.) (2) It is not reserved, and it is
2971 * transitioning from free to allocated. (Conversely,
2972 * the transition from allocated to free for managed
2973 * pages is blocked by the page busy lock.) (3) It is
2974 * allocated but not contained by an object and not
2975 * wired, e.g., allocated by Xen's balloon driver.
2976 */
2977 run_ext = 0;
2978 }
2979
2980 /*
2981 * Extend or reset the current run of pages.
2982 */
2983 if (run_ext > 0) {
2984 if (run_len == 0)
2985 m_run = m;
2986 run_len += run_ext;
2987 } else {
2988 if (run_len > 0) {
2989 m_run = NULL;
2990 run_len = 0;
2991 }
2992 }
2993 }
2994 if (run_len >= npages)
2995 return (m_run);
2996 return (NULL);
2997 }
2998
2999 /*
3000 * vm_page_reclaim_run:
3001 *
3002 * Try to relocate each of the allocated virtual pages within the
3003 * specified run of physical pages to a new physical address. Free the
3004 * physical pages underlying the relocated virtual pages. A virtual page
3005 * is relocatable if and only if it could be laundered or reclaimed by
3006 * the page daemon. Whenever possible, a virtual page is relocated to a
3007 * physical address above "high".
3008 *
3009 * Returns 0 if every physical page within the run was already free or
3010 * just freed by a successful relocation. Otherwise, returns a non-zero
3011 * value indicating why the last attempt to relocate a virtual page was
3012 * unsuccessful.
3013 *
3014 * "req_class" must be an allocation class.
3015 */
3016 static int
vm_page_reclaim_run(int req_class,int domain,u_long npages,vm_page_t m_run,vm_paddr_t high)3017 vm_page_reclaim_run(int req_class, int domain, u_long npages, vm_page_t m_run,
3018 vm_paddr_t high)
3019 {
3020 struct vm_domain *vmd;
3021 struct spglist free;
3022 vm_object_t object;
3023 vm_paddr_t pa;
3024 vm_page_t m, m_end, m_new;
3025 int error, order, req;
3026
3027 KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
3028 ("req_class is not an allocation class"));
3029 SLIST_INIT(&free);
3030 error = 0;
3031 m = m_run;
3032 m_end = m_run + npages;
3033 for (; error == 0 && m < m_end; m++) {
3034 KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
3035 ("page %p is PG_FICTITIOUS or PG_MARKER", m));
3036
3037 /*
3038 * Racily check for wirings. Races are handled once the object
3039 * lock is held and the page is unmapped.
3040 */
3041 if (vm_page_wired(m))
3042 error = EBUSY;
3043 else if ((object = atomic_load_ptr(&m->object)) != NULL) {
3044 /*
3045 * The page is relocated if and only if it could be
3046 * laundered or reclaimed by the page daemon.
3047 */
3048 VM_OBJECT_WLOCK(object);
3049 /* Don't care: PG_NODUMP, PG_ZERO. */
3050 if (m->object != object ||
3051 ((object->flags & OBJ_SWAP) == 0 &&
3052 object->type != OBJT_VNODE))
3053 error = EINVAL;
3054 else if (object->memattr != VM_MEMATTR_DEFAULT)
3055 error = EINVAL;
3056 else if (vm_page_queue(m) != PQ_NONE &&
3057 vm_page_tryxbusy(m) != 0) {
3058 if (vm_page_wired(m)) {
3059 vm_page_xunbusy(m);
3060 error = EBUSY;
3061 goto unlock;
3062 }
3063 KASSERT(pmap_page_get_memattr(m) ==
3064 VM_MEMATTR_DEFAULT,
3065 ("page %p has an unexpected memattr", m));
3066 KASSERT(m->oflags == 0,
3067 ("page %p has unexpected oflags", m));
3068 /* Don't care: PGA_NOSYNC. */
3069 if (!vm_page_none_valid(m)) {
3070 /*
3071 * First, try to allocate a new page
3072 * that is above "high". Failing
3073 * that, try to allocate a new page
3074 * that is below "m_run". Allocate
3075 * the new page between the end of
3076 * "m_run" and "high" only as a last
3077 * resort.
3078 */
3079 req = req_class;
3080 if ((m->flags & PG_NODUMP) != 0)
3081 req |= VM_ALLOC_NODUMP;
3082 if (trunc_page(high) !=
3083 ~(vm_paddr_t)PAGE_MASK) {
3084 m_new =
3085 vm_page_alloc_noobj_contig(
3086 req, 1, round_page(high),
3087 ~(vm_paddr_t)0, PAGE_SIZE,
3088 0, VM_MEMATTR_DEFAULT);
3089 } else
3090 m_new = NULL;
3091 if (m_new == NULL) {
3092 pa = VM_PAGE_TO_PHYS(m_run);
3093 m_new =
3094 vm_page_alloc_noobj_contig(
3095 req, 1, 0, pa - 1,
3096 PAGE_SIZE, 0,
3097 VM_MEMATTR_DEFAULT);
3098 }
3099 if (m_new == NULL) {
3100 pa += ptoa(npages);
3101 m_new =
3102 vm_page_alloc_noobj_contig(
3103 req, 1, pa, high, PAGE_SIZE,
3104 0, VM_MEMATTR_DEFAULT);
3105 }
3106 if (m_new == NULL) {
3107 vm_page_xunbusy(m);
3108 error = ENOMEM;
3109 goto unlock;
3110 }
3111
3112 /*
3113 * Unmap the page and check for new
3114 * wirings that may have been acquired
3115 * through a pmap lookup.
3116 */
3117 if (object->ref_count != 0 &&
3118 !vm_page_try_remove_all(m)) {
3119 vm_page_xunbusy(m);
3120 vm_page_free(m_new);
3121 error = EBUSY;
3122 goto unlock;
3123 }
3124
3125 /*
3126 * Replace "m" with the new page. For
3127 * vm_page_replace(), "m" must be busy
3128 * and dequeued. Finally, change "m"
3129 * as if vm_page_free() was called.
3130 */
3131 m_new->a.flags = m->a.flags &
3132 ~PGA_QUEUE_STATE_MASK;
3133 KASSERT(m_new->oflags == VPO_UNMANAGED,
3134 ("page %p is managed", m_new));
3135 m_new->oflags = 0;
3136 pmap_copy_page(m, m_new);
3137 m_new->valid = m->valid;
3138 m_new->dirty = m->dirty;
3139 m->flags &= ~PG_ZERO;
3140 vm_page_dequeue(m);
3141 if (vm_page_replace_hold(m_new, object,
3142 m->pindex, m) &&
3143 vm_page_free_prep(m))
3144 SLIST_INSERT_HEAD(&free, m,
3145 plinks.s.ss);
3146
3147 /*
3148 * The new page must be deactivated
3149 * before the object is unlocked.
3150 */
3151 vm_page_deactivate(m_new);
3152 } else {
3153 m->flags &= ~PG_ZERO;
3154 vm_page_dequeue(m);
3155 if (vm_page_free_prep(m))
3156 SLIST_INSERT_HEAD(&free, m,
3157 plinks.s.ss);
3158 KASSERT(m->dirty == 0,
3159 ("page %p is dirty", m));
3160 }
3161 } else
3162 error = EBUSY;
3163 unlock:
3164 VM_OBJECT_WUNLOCK(object);
3165 } else {
3166 MPASS(vm_page_domain(m) == domain);
3167 vmd = VM_DOMAIN(domain);
3168 vm_domain_free_lock(vmd);
3169 order = m->order;
3170 if (order < VM_NFREEORDER) {
3171 /*
3172 * The page is enqueued in the physical memory
3173 * allocator's free page queues. Moreover, it
3174 * is the first page in a power-of-two-sized
3175 * run of contiguous free pages. Jump ahead
3176 * to the last page within that run, and
3177 * continue from there.
3178 */
3179 m += (1 << order) - 1;
3180 }
3181 #if VM_NRESERVLEVEL > 0
3182 else if (vm_reserv_is_page_free(m))
3183 order = 0;
3184 #endif
3185 vm_domain_free_unlock(vmd);
3186 if (order == VM_NFREEORDER)
3187 error = EINVAL;
3188 }
3189 }
3190 if ((m = SLIST_FIRST(&free)) != NULL) {
3191 int cnt;
3192
3193 vmd = VM_DOMAIN(domain);
3194 cnt = 0;
3195 vm_domain_free_lock(vmd);
3196 do {
3197 MPASS(vm_page_domain(m) == domain);
3198 SLIST_REMOVE_HEAD(&free, plinks.s.ss);
3199 vm_phys_free_pages(m, m->pool, 0);
3200 cnt++;
3201 } while ((m = SLIST_FIRST(&free)) != NULL);
3202 vm_domain_free_unlock(vmd);
3203 vm_domain_freecnt_inc(vmd, cnt);
3204 }
3205 return (error);
3206 }
3207
3208 #define NRUNS 16
3209
3210 #define RUN_INDEX(count, nruns) ((count) % (nruns))
3211
3212 #define MIN_RECLAIM 8
3213
3214 /*
3215 * vm_page_reclaim_contig:
3216 *
3217 * Reclaim allocated, contiguous physical memory satisfying the specified
3218 * conditions by relocating the virtual pages using that physical memory.
3219 * Returns 0 if reclamation is successful, ERANGE if the specified domain
3220 * can't possibly satisfy the reclamation request, or ENOMEM if not
3221 * currently able to reclaim the requested number of pages. Since
3222 * relocation requires the allocation of physical pages, reclamation may
3223 * fail with ENOMEM due to a shortage of free pages. When reclamation
3224 * fails in this manner, callers are expected to perform vm_wait() before
3225 * retrying a failed allocation operation, e.g., vm_page_alloc_contig().
3226 *
3227 * The caller must always specify an allocation class through "req".
3228 *
3229 * allocation classes:
3230 * VM_ALLOC_NORMAL normal process request
3231 * VM_ALLOC_SYSTEM system *really* needs a page
3232 * VM_ALLOC_INTERRUPT interrupt time request
3233 *
3234 * The optional allocation flags are ignored.
3235 *
3236 * "npages" must be greater than zero. Both "alignment" and "boundary"
3237 * must be a power of two.
3238 */
3239 int
vm_page_reclaim_contig_domain_ext(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary,int desired_runs)3240 vm_page_reclaim_contig_domain_ext(int domain, int req, u_long npages,
3241 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
3242 int desired_runs)
3243 {
3244 struct vm_domain *vmd;
3245 vm_page_t bounds[2], m_run, _m_runs[NRUNS], *m_runs;
3246 u_long count, minalign, reclaimed;
3247 int error, i, min_reclaim, nruns, options, req_class;
3248 int segind, start_segind;
3249 int ret;
3250
3251 KASSERT(npages > 0, ("npages is 0"));
3252 KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
3253 KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
3254
3255 ret = ENOMEM;
3256
3257 /*
3258 * If the caller wants to reclaim multiple runs, try to allocate
3259 * space to store the runs. If that fails, fall back to the old
3260 * behavior of just reclaiming MIN_RECLAIM pages.
3261 */
3262 if (desired_runs > 1)
3263 m_runs = malloc((NRUNS + desired_runs) * sizeof(*m_runs),
3264 M_TEMP, M_NOWAIT);
3265 else
3266 m_runs = NULL;
3267
3268 if (m_runs == NULL) {
3269 m_runs = _m_runs;
3270 nruns = NRUNS;
3271 } else {
3272 nruns = NRUNS + desired_runs - 1;
3273 }
3274 min_reclaim = MAX(desired_runs * npages, MIN_RECLAIM);
3275
3276 /*
3277 * The caller will attempt an allocation after some runs have been
3278 * reclaimed and added to the vm_phys buddy lists. Due to limitations
3279 * of vm_phys_alloc_contig(), round up the requested length to the next
3280 * power of two or maximum chunk size, and ensure that each run is
3281 * suitably aligned.
3282 */
3283 minalign = 1ul << imin(flsl(npages - 1), VM_NFREEORDER - 1);
3284 npages = roundup2(npages, minalign);
3285 if (alignment < ptoa(minalign))
3286 alignment = ptoa(minalign);
3287
3288 /*
3289 * The page daemon is allowed to dig deeper into the free page list.
3290 */
3291 req_class = req & VM_ALLOC_CLASS_MASK;
3292 if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
3293 req_class = VM_ALLOC_SYSTEM;
3294
3295 start_segind = vm_phys_lookup_segind(low);
3296
3297 /*
3298 * Return if the number of free pages cannot satisfy the requested
3299 * allocation.
3300 */
3301 vmd = VM_DOMAIN(domain);
3302 count = vmd->vmd_free_count;
3303 if (count < npages + vmd->vmd_free_reserved || (count < npages +
3304 vmd->vmd_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
3305 (count < npages && req_class == VM_ALLOC_INTERRUPT))
3306 goto done;
3307
3308 /*
3309 * Scan up to three times, relaxing the restrictions ("options") on
3310 * the reclamation of reservations and superpages each time.
3311 */
3312 for (options = VPSC_NORESERV;;) {
3313 bool phys_range_exists = false;
3314
3315 /*
3316 * Find the highest runs that satisfy the given constraints
3317 * and restrictions, and record them in "m_runs".
3318 */
3319 count = 0;
3320 segind = start_segind;
3321 while ((segind = vm_phys_find_range(bounds, segind, domain,
3322 npages, low, high)) != -1) {
3323 phys_range_exists = true;
3324 while ((m_run = vm_page_scan_contig(npages, bounds[0],
3325 bounds[1], alignment, boundary, options))) {
3326 bounds[0] = m_run + npages;
3327 m_runs[RUN_INDEX(count, nruns)] = m_run;
3328 count++;
3329 }
3330 segind++;
3331 }
3332
3333 if (!phys_range_exists) {
3334 ret = ERANGE;
3335 goto done;
3336 }
3337
3338 /*
3339 * Reclaim the highest runs in LIFO (descending) order until
3340 * the number of reclaimed pages, "reclaimed", is at least
3341 * "min_reclaim". Reset "reclaimed" each time because each
3342 * reclamation is idempotent, and runs will (likely) recur
3343 * from one scan to the next as restrictions are relaxed.
3344 */
3345 reclaimed = 0;
3346 for (i = 0; count > 0 && i < nruns; i++) {
3347 count--;
3348 m_run = m_runs[RUN_INDEX(count, nruns)];
3349 error = vm_page_reclaim_run(req_class, domain, npages,
3350 m_run, high);
3351 if (error == 0) {
3352 reclaimed += npages;
3353 if (reclaimed >= min_reclaim) {
3354 ret = 0;
3355 goto done;
3356 }
3357 }
3358 }
3359
3360 /*
3361 * Either relax the restrictions on the next scan or return if
3362 * the last scan had no restrictions.
3363 */
3364 if (options == VPSC_NORESERV)
3365 options = VPSC_NOSUPER;
3366 else if (options == VPSC_NOSUPER)
3367 options = VPSC_ANY;
3368 else if (options == VPSC_ANY) {
3369 if (reclaimed != 0)
3370 ret = 0;
3371 goto done;
3372 }
3373 }
3374 done:
3375 if (m_runs != _m_runs)
3376 free(m_runs, M_TEMP);
3377 return (ret);
3378 }
3379
3380 int
vm_page_reclaim_contig_domain(int domain,int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3381 vm_page_reclaim_contig_domain(int domain, int req, u_long npages,
3382 vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
3383 {
3384 return (vm_page_reclaim_contig_domain_ext(domain, req, npages, low,
3385 high, alignment, boundary, 1));
3386 }
3387
3388 int
vm_page_reclaim_contig(int req,u_long npages,vm_paddr_t low,vm_paddr_t high,u_long alignment,vm_paddr_t boundary)3389 vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
3390 u_long alignment, vm_paddr_t boundary)
3391 {
3392 struct vm_domainset_iter di;
3393 int domain, ret, status;
3394
3395 ret = ERANGE;
3396
3397 vm_domainset_iter_page_init(&di, NULL, 0, &domain, &req);
3398 do {
3399 status = vm_page_reclaim_contig_domain(domain, req, npages, low,
3400 high, alignment, boundary);
3401 if (status == 0)
3402 return (0);
3403 else if (status == ERANGE)
3404 vm_domainset_iter_ignore(&di, domain);
3405 else {
3406 KASSERT(status == ENOMEM, ("Unrecognized error %d "
3407 "from vm_page_reclaim_contig_domain()", status));
3408 ret = ENOMEM;
3409 }
3410 } while (vm_domainset_iter_page(&di, NULL, &domain) == 0);
3411
3412 return (ret);
3413 }
3414
3415 /*
3416 * Set the domain in the appropriate page level domainset.
3417 */
3418 void
vm_domain_set(struct vm_domain * vmd)3419 vm_domain_set(struct vm_domain *vmd)
3420 {
3421
3422 mtx_lock(&vm_domainset_lock);
3423 if (!vmd->vmd_minset && vm_paging_min(vmd)) {
3424 vmd->vmd_minset = 1;
3425 DOMAINSET_SET(vmd->vmd_domain, &vm_min_domains);
3426 }
3427 if (!vmd->vmd_severeset && vm_paging_severe(vmd)) {
3428 vmd->vmd_severeset = 1;
3429 DOMAINSET_SET(vmd->vmd_domain, &vm_severe_domains);
3430 }
3431 mtx_unlock(&vm_domainset_lock);
3432 }
3433
3434 /*
3435 * Clear the domain from the appropriate page level domainset.
3436 */
3437 void
vm_domain_clear(struct vm_domain * vmd)3438 vm_domain_clear(struct vm_domain *vmd)
3439 {
3440
3441 mtx_lock(&vm_domainset_lock);
3442 if (vmd->vmd_minset && !vm_paging_min(vmd)) {
3443 vmd->vmd_minset = 0;
3444 DOMAINSET_CLR(vmd->vmd_domain, &vm_min_domains);
3445 if (vm_min_waiters != 0) {
3446 vm_min_waiters = 0;
3447 wakeup(&vm_min_domains);
3448 }
3449 }
3450 if (vmd->vmd_severeset && !vm_paging_severe(vmd)) {
3451 vmd->vmd_severeset = 0;
3452 DOMAINSET_CLR(vmd->vmd_domain, &vm_severe_domains);
3453 if (vm_severe_waiters != 0) {
3454 vm_severe_waiters = 0;
3455 wakeup(&vm_severe_domains);
3456 }
3457 }
3458
3459 /*
3460 * If pageout daemon needs pages, then tell it that there are
3461 * some free.
3462 */
3463 if (vmd->vmd_pageout_pages_needed &&
3464 vmd->vmd_free_count >= vmd->vmd_pageout_free_min) {
3465 wakeup(&vmd->vmd_pageout_pages_needed);
3466 vmd->vmd_pageout_pages_needed = 0;
3467 }
3468
3469 /* See comments in vm_wait_doms(). */
3470 if (vm_pageproc_waiters) {
3471 vm_pageproc_waiters = 0;
3472 wakeup(&vm_pageproc_waiters);
3473 }
3474 mtx_unlock(&vm_domainset_lock);
3475 }
3476
3477 /*
3478 * Wait for free pages to exceed the min threshold globally.
3479 */
3480 void
vm_wait_min(void)3481 vm_wait_min(void)
3482 {
3483
3484 mtx_lock(&vm_domainset_lock);
3485 while (vm_page_count_min()) {
3486 vm_min_waiters++;
3487 msleep(&vm_min_domains, &vm_domainset_lock, PVM, "vmwait", 0);
3488 }
3489 mtx_unlock(&vm_domainset_lock);
3490 }
3491
3492 /*
3493 * Wait for free pages to exceed the severe threshold globally.
3494 */
3495 void
vm_wait_severe(void)3496 vm_wait_severe(void)
3497 {
3498
3499 mtx_lock(&vm_domainset_lock);
3500 while (vm_page_count_severe()) {
3501 vm_severe_waiters++;
3502 msleep(&vm_severe_domains, &vm_domainset_lock, PVM,
3503 "vmwait", 0);
3504 }
3505 mtx_unlock(&vm_domainset_lock);
3506 }
3507
3508 u_int
vm_wait_count(void)3509 vm_wait_count(void)
3510 {
3511
3512 return (vm_severe_waiters + vm_min_waiters + vm_pageproc_waiters);
3513 }
3514
3515 int
vm_wait_doms(const domainset_t * wdoms,int mflags)3516 vm_wait_doms(const domainset_t *wdoms, int mflags)
3517 {
3518 int error;
3519
3520 error = 0;
3521
3522 /*
3523 * We use racey wakeup synchronization to avoid expensive global
3524 * locking for the pageproc when sleeping with a non-specific vm_wait.
3525 * To handle this, we only sleep for one tick in this instance. It
3526 * is expected that most allocations for the pageproc will come from
3527 * kmem or vm_page_grab* which will use the more specific and
3528 * race-free vm_wait_domain().
3529 */
3530 if (curproc == pageproc) {
3531 mtx_lock(&vm_domainset_lock);
3532 vm_pageproc_waiters++;
3533 error = msleep(&vm_pageproc_waiters, &vm_domainset_lock,
3534 PVM | PDROP | mflags, "pageprocwait", 1);
3535 } else {
3536 /*
3537 * XXX Ideally we would wait only until the allocation could
3538 * be satisfied. This condition can cause new allocators to
3539 * consume all freed pages while old allocators wait.
3540 */
3541 mtx_lock(&vm_domainset_lock);
3542 if (vm_page_count_min_set(wdoms)) {
3543 if (pageproc == NULL)
3544 panic("vm_wait in early boot");
3545 vm_min_waiters++;
3546 error = msleep(&vm_min_domains, &vm_domainset_lock,
3547 PVM | PDROP | mflags, "vmwait", 0);
3548 } else
3549 mtx_unlock(&vm_domainset_lock);
3550 }
3551 return (error);
3552 }
3553
3554 /*
3555 * vm_wait_domain:
3556 *
3557 * Sleep until free pages are available for allocation.
3558 * - Called in various places after failed memory allocations.
3559 */
3560 void
vm_wait_domain(int domain)3561 vm_wait_domain(int domain)
3562 {
3563 struct vm_domain *vmd;
3564 domainset_t wdom;
3565
3566 vmd = VM_DOMAIN(domain);
3567 vm_domain_free_assert_unlocked(vmd);
3568
3569 if (curproc == pageproc) {
3570 mtx_lock(&vm_domainset_lock);
3571 if (vmd->vmd_free_count < vmd->vmd_pageout_free_min) {
3572 vmd->vmd_pageout_pages_needed = 1;
3573 msleep(&vmd->vmd_pageout_pages_needed,
3574 &vm_domainset_lock, PDROP | PSWP, "VMWait", 0);
3575 } else
3576 mtx_unlock(&vm_domainset_lock);
3577 } else {
3578 DOMAINSET_ZERO(&wdom);
3579 DOMAINSET_SET(vmd->vmd_domain, &wdom);
3580 vm_wait_doms(&wdom, 0);
3581 }
3582 }
3583
3584 static int
vm_wait_flags(vm_object_t obj,int mflags)3585 vm_wait_flags(vm_object_t obj, int mflags)
3586 {
3587 struct domainset *d;
3588
3589 d = NULL;
3590
3591 /*
3592 * Carefully fetch pointers only once: the struct domainset
3593 * itself is ummutable but the pointer might change.
3594 */
3595 if (obj != NULL)
3596 d = obj->domain.dr_policy;
3597 if (d == NULL)
3598 d = curthread->td_domain.dr_policy;
3599
3600 return (vm_wait_doms(&d->ds_mask, mflags));
3601 }
3602
3603 /*
3604 * vm_wait:
3605 *
3606 * Sleep until free pages are available for allocation in the
3607 * affinity domains of the obj. If obj is NULL, the domain set
3608 * for the calling thread is used.
3609 * Called in various places after failed memory allocations.
3610 */
3611 void
vm_wait(vm_object_t obj)3612 vm_wait(vm_object_t obj)
3613 {
3614 (void)vm_wait_flags(obj, 0);
3615 }
3616
3617 int
vm_wait_intr(vm_object_t obj)3618 vm_wait_intr(vm_object_t obj)
3619 {
3620 return (vm_wait_flags(obj, PCATCH));
3621 }
3622
3623 /*
3624 * vm_domain_alloc_fail:
3625 *
3626 * Called when a page allocation function fails. Informs the
3627 * pagedaemon and performs the requested wait. Requires the
3628 * domain_free and object lock on entry. Returns with the
3629 * object lock held and free lock released. Returns an error when
3630 * retry is necessary.
3631 *
3632 */
3633 static int
vm_domain_alloc_fail(struct vm_domain * vmd,vm_object_t object,int req)3634 vm_domain_alloc_fail(struct vm_domain *vmd, vm_object_t object, int req)
3635 {
3636
3637 vm_domain_free_assert_unlocked(vmd);
3638
3639 atomic_add_int(&vmd->vmd_pageout_deficit,
3640 max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
3641 if (req & (VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL)) {
3642 if (object != NULL)
3643 VM_OBJECT_WUNLOCK(object);
3644 vm_wait_domain(vmd->vmd_domain);
3645 if (object != NULL)
3646 VM_OBJECT_WLOCK(object);
3647 if (req & VM_ALLOC_WAITOK)
3648 return (EAGAIN);
3649 }
3650
3651 return (0);
3652 }
3653
3654 /*
3655 * vm_waitpfault:
3656 *
3657 * Sleep until free pages are available for allocation.
3658 * - Called only in vm_fault so that processes page faulting
3659 * can be easily tracked.
3660 * - Sleeps at a lower priority than vm_wait() so that vm_wait()ing
3661 * processes will be able to grab memory first. Do not change
3662 * this balance without careful testing first.
3663 */
3664 void
vm_waitpfault(struct domainset * dset,int timo)3665 vm_waitpfault(struct domainset *dset, int timo)
3666 {
3667
3668 /*
3669 * XXX Ideally we would wait only until the allocation could
3670 * be satisfied. This condition can cause new allocators to
3671 * consume all freed pages while old allocators wait.
3672 */
3673 mtx_lock(&vm_domainset_lock);
3674 if (vm_page_count_min_set(&dset->ds_mask)) {
3675 vm_min_waiters++;
3676 msleep(&vm_min_domains, &vm_domainset_lock, PUSER | PDROP,
3677 "pfault", timo);
3678 } else
3679 mtx_unlock(&vm_domainset_lock);
3680 }
3681
3682 static struct vm_pagequeue *
_vm_page_pagequeue(vm_page_t m,uint8_t queue)3683 _vm_page_pagequeue(vm_page_t m, uint8_t queue)
3684 {
3685
3686 return (&vm_pagequeue_domain(m)->vmd_pagequeues[queue]);
3687 }
3688
3689 #ifdef INVARIANTS
3690 static struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)3691 vm_page_pagequeue(vm_page_t m)
3692 {
3693
3694 return (_vm_page_pagequeue(m, vm_page_astate_load(m).queue));
3695 }
3696 #endif
3697
3698 static __always_inline bool
vm_page_pqstate_fcmpset(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3699 vm_page_pqstate_fcmpset(vm_page_t m, vm_page_astate_t *old,
3700 vm_page_astate_t new)
3701 {
3702 vm_page_astate_t tmp;
3703
3704 tmp = *old;
3705 do {
3706 if (__predict_true(vm_page_astate_fcmpset(m, old, new)))
3707 return (true);
3708 counter_u64_add(pqstate_commit_retries, 1);
3709 } while (old->_bits == tmp._bits);
3710
3711 return (false);
3712 }
3713
3714 /*
3715 * Do the work of committing a queue state update that moves the page out of
3716 * its current queue.
3717 */
3718 static bool
_vm_page_pqstate_commit_dequeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3719 _vm_page_pqstate_commit_dequeue(struct vm_pagequeue *pq, vm_page_t m,
3720 vm_page_astate_t *old, vm_page_astate_t new)
3721 {
3722 vm_page_t next;
3723
3724 vm_pagequeue_assert_locked(pq);
3725 KASSERT(vm_page_pagequeue(m) == pq,
3726 ("%s: queue %p does not match page %p", __func__, pq, m));
3727 KASSERT(old->queue != PQ_NONE && new.queue != old->queue,
3728 ("%s: invalid queue indices %d %d",
3729 __func__, old->queue, new.queue));
3730
3731 /*
3732 * Once the queue index of the page changes there is nothing
3733 * synchronizing with further updates to the page's physical
3734 * queue state. Therefore we must speculatively remove the page
3735 * from the queue now and be prepared to roll back if the queue
3736 * state update fails. If the page is not physically enqueued then
3737 * we just update its queue index.
3738 */
3739 if ((old->flags & PGA_ENQUEUED) != 0) {
3740 new.flags &= ~PGA_ENQUEUED;
3741 next = TAILQ_NEXT(m, plinks.q);
3742 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3743 vm_pagequeue_cnt_dec(pq);
3744 if (!vm_page_pqstate_fcmpset(m, old, new)) {
3745 if (next == NULL)
3746 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3747 else
3748 TAILQ_INSERT_BEFORE(next, m, plinks.q);
3749 vm_pagequeue_cnt_inc(pq);
3750 return (false);
3751 } else {
3752 return (true);
3753 }
3754 } else {
3755 return (vm_page_pqstate_fcmpset(m, old, new));
3756 }
3757 }
3758
3759 static bool
vm_page_pqstate_commit_dequeue(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3760 vm_page_pqstate_commit_dequeue(vm_page_t m, vm_page_astate_t *old,
3761 vm_page_astate_t new)
3762 {
3763 struct vm_pagequeue *pq;
3764 vm_page_astate_t as;
3765 bool ret;
3766
3767 pq = _vm_page_pagequeue(m, old->queue);
3768
3769 /*
3770 * The queue field and PGA_ENQUEUED flag are stable only so long as the
3771 * corresponding page queue lock is held.
3772 */
3773 vm_pagequeue_lock(pq);
3774 as = vm_page_astate_load(m);
3775 if (__predict_false(as._bits != old->_bits)) {
3776 *old = as;
3777 ret = false;
3778 } else {
3779 ret = _vm_page_pqstate_commit_dequeue(pq, m, old, new);
3780 }
3781 vm_pagequeue_unlock(pq);
3782 return (ret);
3783 }
3784
3785 /*
3786 * Commit a queue state update that enqueues or requeues a page.
3787 */
3788 static bool
_vm_page_pqstate_commit_requeue(struct vm_pagequeue * pq,vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3789 _vm_page_pqstate_commit_requeue(struct vm_pagequeue *pq, vm_page_t m,
3790 vm_page_astate_t *old, vm_page_astate_t new)
3791 {
3792 struct vm_domain *vmd;
3793
3794 vm_pagequeue_assert_locked(pq);
3795 KASSERT(old->queue != PQ_NONE && new.queue == old->queue,
3796 ("%s: invalid queue indices %d %d",
3797 __func__, old->queue, new.queue));
3798
3799 new.flags |= PGA_ENQUEUED;
3800 if (!vm_page_pqstate_fcmpset(m, old, new))
3801 return (false);
3802
3803 if ((old->flags & PGA_ENQUEUED) != 0)
3804 TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
3805 else
3806 vm_pagequeue_cnt_inc(pq);
3807
3808 /*
3809 * Give PGA_REQUEUE_HEAD precedence over PGA_REQUEUE. In particular, if
3810 * both flags are set in close succession, only PGA_REQUEUE_HEAD will be
3811 * applied, even if it was set first.
3812 */
3813 if ((old->flags & PGA_REQUEUE_HEAD) != 0) {
3814 vmd = vm_pagequeue_domain(m);
3815 KASSERT(pq == &vmd->vmd_pagequeues[PQ_INACTIVE],
3816 ("%s: invalid page queue for page %p", __func__, m));
3817 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
3818 } else {
3819 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
3820 }
3821 return (true);
3822 }
3823
3824 /*
3825 * Commit a queue state update that encodes a request for a deferred queue
3826 * operation.
3827 */
3828 static bool
vm_page_pqstate_commit_request(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3829 vm_page_pqstate_commit_request(vm_page_t m, vm_page_astate_t *old,
3830 vm_page_astate_t new)
3831 {
3832
3833 KASSERT(old->queue == new.queue || new.queue != PQ_NONE,
3834 ("%s: invalid state, queue %d flags %x",
3835 __func__, new.queue, new.flags));
3836
3837 if (old->_bits != new._bits &&
3838 !vm_page_pqstate_fcmpset(m, old, new))
3839 return (false);
3840 vm_page_pqbatch_submit(m, new.queue);
3841 return (true);
3842 }
3843
3844 /*
3845 * A generic queue state update function. This handles more cases than the
3846 * specialized functions above.
3847 */
3848 bool
vm_page_pqstate_commit(vm_page_t m,vm_page_astate_t * old,vm_page_astate_t new)3849 vm_page_pqstate_commit(vm_page_t m, vm_page_astate_t *old, vm_page_astate_t new)
3850 {
3851
3852 if (old->_bits == new._bits)
3853 return (true);
3854
3855 if (old->queue != PQ_NONE && new.queue != old->queue) {
3856 if (!vm_page_pqstate_commit_dequeue(m, old, new))
3857 return (false);
3858 if (new.queue != PQ_NONE)
3859 vm_page_pqbatch_submit(m, new.queue);
3860 } else {
3861 if (!vm_page_pqstate_fcmpset(m, old, new))
3862 return (false);
3863 if (new.queue != PQ_NONE &&
3864 ((new.flags & ~old->flags) & PGA_QUEUE_OP_MASK) != 0)
3865 vm_page_pqbatch_submit(m, new.queue);
3866 }
3867 return (true);
3868 }
3869
3870 /*
3871 * Apply deferred queue state updates to a page.
3872 */
3873 static inline void
vm_pqbatch_process_page(struct vm_pagequeue * pq,vm_page_t m,uint8_t queue)3874 vm_pqbatch_process_page(struct vm_pagequeue *pq, vm_page_t m, uint8_t queue)
3875 {
3876 vm_page_astate_t new, old;
3877
3878 CRITICAL_ASSERT(curthread);
3879 vm_pagequeue_assert_locked(pq);
3880 KASSERT(queue < PQ_COUNT,
3881 ("%s: invalid queue index %d", __func__, queue));
3882 KASSERT(pq == _vm_page_pagequeue(m, queue),
3883 ("%s: page %p does not belong to queue %p", __func__, m, pq));
3884
3885 for (old = vm_page_astate_load(m);;) {
3886 if (__predict_false(old.queue != queue ||
3887 (old.flags & PGA_QUEUE_OP_MASK) == 0)) {
3888 counter_u64_add(queue_nops, 1);
3889 break;
3890 }
3891 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3892 ("%s: page %p is unmanaged", __func__, m));
3893
3894 new = old;
3895 if ((old.flags & PGA_DEQUEUE) != 0) {
3896 new.flags &= ~PGA_QUEUE_OP_MASK;
3897 new.queue = PQ_NONE;
3898 if (__predict_true(_vm_page_pqstate_commit_dequeue(pq,
3899 m, &old, new))) {
3900 counter_u64_add(queue_ops, 1);
3901 break;
3902 }
3903 } else {
3904 new.flags &= ~(PGA_REQUEUE | PGA_REQUEUE_HEAD);
3905 if (__predict_true(_vm_page_pqstate_commit_requeue(pq,
3906 m, &old, new))) {
3907 counter_u64_add(queue_ops, 1);
3908 break;
3909 }
3910 }
3911 }
3912 }
3913
3914 static void
vm_pqbatch_process(struct vm_pagequeue * pq,struct vm_batchqueue * bq,uint8_t queue)3915 vm_pqbatch_process(struct vm_pagequeue *pq, struct vm_batchqueue *bq,
3916 uint8_t queue)
3917 {
3918 int i;
3919
3920 for (i = 0; i < bq->bq_cnt; i++)
3921 vm_pqbatch_process_page(pq, bq->bq_pa[i], queue);
3922 vm_batchqueue_init(bq);
3923 }
3924
3925 /*
3926 * vm_page_pqbatch_submit: [ internal use only ]
3927 *
3928 * Enqueue a page in the specified page queue's batched work queue.
3929 * The caller must have encoded the requested operation in the page
3930 * structure's a.flags field.
3931 */
3932 void
vm_page_pqbatch_submit(vm_page_t m,uint8_t queue)3933 vm_page_pqbatch_submit(vm_page_t m, uint8_t queue)
3934 {
3935 struct vm_batchqueue *bq;
3936 struct vm_pagequeue *pq;
3937 int domain, slots_remaining;
3938
3939 KASSERT(queue < PQ_COUNT, ("invalid queue %d", queue));
3940
3941 domain = vm_page_domain(m);
3942 critical_enter();
3943 bq = DPCPU_PTR(pqbatch[domain][queue]);
3944 slots_remaining = vm_batchqueue_insert(bq, m);
3945 if (slots_remaining > (VM_BATCHQUEUE_SIZE >> 1)) {
3946 /* keep building the bq */
3947 critical_exit();
3948 return;
3949 } else if (slots_remaining > 0 ) {
3950 /* Try to process the bq if we can get the lock */
3951 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3952 if (vm_pagequeue_trylock(pq)) {
3953 vm_pqbatch_process(pq, bq, queue);
3954 vm_pagequeue_unlock(pq);
3955 }
3956 critical_exit();
3957 return;
3958 }
3959 critical_exit();
3960
3961 /* if we make it here, the bq is full so wait for the lock */
3962
3963 pq = &VM_DOMAIN(domain)->vmd_pagequeues[queue];
3964 vm_pagequeue_lock(pq);
3965 critical_enter();
3966 bq = DPCPU_PTR(pqbatch[domain][queue]);
3967 vm_pqbatch_process(pq, bq, queue);
3968 vm_pqbatch_process_page(pq, m, queue);
3969 vm_pagequeue_unlock(pq);
3970 critical_exit();
3971 }
3972
3973 /*
3974 * vm_page_pqbatch_drain: [ internal use only ]
3975 *
3976 * Force all per-CPU page queue batch queues to be drained. This is
3977 * intended for use in severe memory shortages, to ensure that pages
3978 * do not remain stuck in the batch queues.
3979 */
3980 void
vm_page_pqbatch_drain(void)3981 vm_page_pqbatch_drain(void)
3982 {
3983 struct thread *td;
3984 struct vm_domain *vmd;
3985 struct vm_pagequeue *pq;
3986 int cpu, domain, queue;
3987
3988 td = curthread;
3989 CPU_FOREACH(cpu) {
3990 thread_lock(td);
3991 sched_bind(td, cpu);
3992 thread_unlock(td);
3993
3994 for (domain = 0; domain < vm_ndomains; domain++) {
3995 vmd = VM_DOMAIN(domain);
3996 for (queue = 0; queue < PQ_COUNT; queue++) {
3997 pq = &vmd->vmd_pagequeues[queue];
3998 vm_pagequeue_lock(pq);
3999 critical_enter();
4000 vm_pqbatch_process(pq,
4001 DPCPU_PTR(pqbatch[domain][queue]), queue);
4002 critical_exit();
4003 vm_pagequeue_unlock(pq);
4004 }
4005 }
4006 }
4007 thread_lock(td);
4008 sched_unbind(td);
4009 thread_unlock(td);
4010 }
4011
4012 /*
4013 * vm_page_dequeue_deferred: [ internal use only ]
4014 *
4015 * Request removal of the given page from its current page
4016 * queue. Physical removal from the queue may be deferred
4017 * indefinitely.
4018 */
4019 void
vm_page_dequeue_deferred(vm_page_t m)4020 vm_page_dequeue_deferred(vm_page_t m)
4021 {
4022 vm_page_astate_t new, old;
4023
4024 old = vm_page_astate_load(m);
4025 do {
4026 if (old.queue == PQ_NONE) {
4027 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4028 ("%s: page %p has unexpected queue state",
4029 __func__, m));
4030 break;
4031 }
4032 new = old;
4033 new.flags |= PGA_DEQUEUE;
4034 } while (!vm_page_pqstate_commit_request(m, &old, new));
4035 }
4036
4037 /*
4038 * vm_page_dequeue:
4039 *
4040 * Remove the page from whichever page queue it's in, if any, before
4041 * returning.
4042 */
4043 void
vm_page_dequeue(vm_page_t m)4044 vm_page_dequeue(vm_page_t m)
4045 {
4046 vm_page_astate_t new, old;
4047
4048 old = vm_page_astate_load(m);
4049 do {
4050 if (old.queue == PQ_NONE) {
4051 KASSERT((old.flags & PGA_QUEUE_STATE_MASK) == 0,
4052 ("%s: page %p has unexpected queue state",
4053 __func__, m));
4054 break;
4055 }
4056 new = old;
4057 new.flags &= ~PGA_QUEUE_OP_MASK;
4058 new.queue = PQ_NONE;
4059 } while (!vm_page_pqstate_commit_dequeue(m, &old, new));
4060
4061 }
4062
4063 /*
4064 * Schedule the given page for insertion into the specified page queue.
4065 * Physical insertion of the page may be deferred indefinitely.
4066 */
4067 static void
vm_page_enqueue(vm_page_t m,uint8_t queue)4068 vm_page_enqueue(vm_page_t m, uint8_t queue)
4069 {
4070
4071 KASSERT(m->a.queue == PQ_NONE &&
4072 (m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
4073 ("%s: page %p is already enqueued", __func__, m));
4074 KASSERT(m->ref_count > 0,
4075 ("%s: page %p does not carry any references", __func__, m));
4076
4077 m->a.queue = queue;
4078 if ((m->a.flags & PGA_REQUEUE) == 0)
4079 vm_page_aflag_set(m, PGA_REQUEUE);
4080 vm_page_pqbatch_submit(m, queue);
4081 }
4082
4083 /*
4084 * vm_page_free_prep:
4085 *
4086 * Prepares the given page to be put on the free list,
4087 * disassociating it from any VM object. The caller may return
4088 * the page to the free list only if this function returns true.
4089 *
4090 * The object, if it exists, must be locked, and then the page must
4091 * be xbusy. Otherwise the page must be not busied. A managed
4092 * page must be unmapped.
4093 */
4094 static bool
vm_page_free_prep(vm_page_t m)4095 vm_page_free_prep(vm_page_t m)
4096 {
4097
4098 /*
4099 * Synchronize with threads that have dropped a reference to this
4100 * page.
4101 */
4102 atomic_thread_fence_acq();
4103
4104 #if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
4105 if (PMAP_HAS_DMAP && (m->flags & PG_ZERO) != 0) {
4106 uint64_t *p;
4107 int i;
4108 p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
4109 for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
4110 KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
4111 m, i, (uintmax_t)*p));
4112 }
4113 #endif
4114 if ((m->oflags & VPO_UNMANAGED) == 0) {
4115 KASSERT(!pmap_page_is_mapped(m),
4116 ("vm_page_free_prep: freeing mapped page %p", m));
4117 KASSERT((m->a.flags & (PGA_EXECUTABLE | PGA_WRITEABLE)) == 0,
4118 ("vm_page_free_prep: mapping flags set in page %p", m));
4119 } else {
4120 KASSERT(m->a.queue == PQ_NONE,
4121 ("vm_page_free_prep: unmanaged page %p is queued", m));
4122 }
4123 VM_CNT_INC(v_tfree);
4124
4125 if (m->object != NULL) {
4126 vm_page_radix_remove(m);
4127 vm_page_free_object_prep(m);
4128 } else
4129 vm_page_assert_unbusied(m);
4130
4131 vm_page_busy_free(m);
4132
4133 /*
4134 * If fictitious remove object association and
4135 * return.
4136 */
4137 if ((m->flags & PG_FICTITIOUS) != 0) {
4138 KASSERT(m->ref_count == 1,
4139 ("fictitious page %p is referenced", m));
4140 KASSERT(m->a.queue == PQ_NONE,
4141 ("fictitious page %p is queued", m));
4142 return (false);
4143 }
4144
4145 /*
4146 * Pages need not be dequeued before they are returned to the physical
4147 * memory allocator, but they must at least be marked for a deferred
4148 * dequeue.
4149 */
4150 if ((m->oflags & VPO_UNMANAGED) == 0)
4151 vm_page_dequeue_deferred(m);
4152
4153 m->valid = 0;
4154 vm_page_undirty(m);
4155
4156 if (m->ref_count != 0)
4157 panic("vm_page_free_prep: page %p has references", m);
4158
4159 /*
4160 * Restore the default memory attribute to the page.
4161 */
4162 if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
4163 pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);
4164
4165 #if VM_NRESERVLEVEL > 0
4166 /*
4167 * Determine whether the page belongs to a reservation. If the page was
4168 * allocated from a per-CPU cache, it cannot belong to a reservation, so
4169 * as an optimization, we avoid the check in that case.
4170 */
4171 if ((m->flags & PG_PCPU_CACHE) == 0 && vm_reserv_free_page(m))
4172 return (false);
4173 #endif
4174
4175 return (true);
4176 }
4177
4178 /*
4179 * vm_page_free_toq:
4180 *
4181 * Returns the given page to the free list, disassociating it
4182 * from any VM object.
4183 *
4184 * The object must be locked. The page must be exclusively busied if it
4185 * belongs to an object.
4186 */
4187 static void
vm_page_free_toq(vm_page_t m)4188 vm_page_free_toq(vm_page_t m)
4189 {
4190 struct vm_domain *vmd;
4191 uma_zone_t zone;
4192
4193 if (!vm_page_free_prep(m))
4194 return;
4195
4196 vmd = vm_pagequeue_domain(m);
4197 if (__predict_false((m->flags & PG_NOFREE) != 0)) {
4198 vm_page_free_nofree(vmd, m);
4199 return;
4200 }
4201 zone = vmd->vmd_pgcache[m->pool].zone;
4202 if ((m->flags & PG_PCPU_CACHE) != 0 && zone != NULL) {
4203 uma_zfree(zone, m);
4204 return;
4205 }
4206 vm_domain_free_lock(vmd);
4207 vm_phys_free_pages(m, m->pool, 0);
4208 vm_domain_free_unlock(vmd);
4209 vm_domain_freecnt_inc(vmd, 1);
4210 }
4211
4212 /*
4213 * vm_page_free_pages_toq:
4214 *
4215 * Returns a list of pages to the free list, disassociating it
4216 * from any VM object. In other words, this is equivalent to
4217 * calling vm_page_free_toq() for each page of a list of VM objects.
4218 */
4219 int
vm_page_free_pages_toq(struct spglist * free,bool update_wire_count)4220 vm_page_free_pages_toq(struct spglist *free, bool update_wire_count)
4221 {
4222 vm_page_t m;
4223 int count;
4224
4225 if (SLIST_EMPTY(free))
4226 return (0);
4227
4228 count = 0;
4229 while ((m = SLIST_FIRST(free)) != NULL) {
4230 count++;
4231 SLIST_REMOVE_HEAD(free, plinks.s.ss);
4232 vm_page_free_toq(m);
4233 }
4234
4235 if (update_wire_count)
4236 vm_wire_sub(count);
4237 return (count);
4238 }
4239
4240 /*
4241 * Mark this page as wired down. For managed pages, this prevents reclamation
4242 * by the page daemon, or when the containing object, if any, is destroyed.
4243 */
4244 void
vm_page_wire(vm_page_t m)4245 vm_page_wire(vm_page_t m)
4246 {
4247 u_int old;
4248
4249 #ifdef INVARIANTS
4250 if (m->object != NULL && !vm_page_busied(m) &&
4251 !vm_object_busied(m->object))
4252 VM_OBJECT_ASSERT_LOCKED(m->object);
4253 #endif
4254 KASSERT((m->flags & PG_FICTITIOUS) == 0 ||
4255 VPRC_WIRE_COUNT(m->ref_count) >= 1,
4256 ("vm_page_wire: fictitious page %p has zero wirings", m));
4257
4258 old = atomic_fetchadd_int(&m->ref_count, 1);
4259 KASSERT(VPRC_WIRE_COUNT(old) != VPRC_WIRE_COUNT_MAX,
4260 ("vm_page_wire: counter overflow for page %p", m));
4261 if (VPRC_WIRE_COUNT(old) == 0) {
4262 if ((m->oflags & VPO_UNMANAGED) == 0)
4263 vm_page_aflag_set(m, PGA_DEQUEUE);
4264 vm_wire_add(1);
4265 }
4266 }
4267
4268 /*
4269 * Attempt to wire a mapped page following a pmap lookup of that page.
4270 * This may fail if a thread is concurrently tearing down mappings of the page.
4271 * The transient failure is acceptable because it translates to the
4272 * failure of the caller pmap_extract_and_hold(), which should be then
4273 * followed by the vm_fault() fallback, see e.g. vm_fault_quick_hold_pages().
4274 */
4275 bool
vm_page_wire_mapped(vm_page_t m)4276 vm_page_wire_mapped(vm_page_t m)
4277 {
4278 u_int old;
4279
4280 old = atomic_load_int(&m->ref_count);
4281 do {
4282 KASSERT(old > 0,
4283 ("vm_page_wire_mapped: wiring unreferenced page %p", m));
4284 if ((old & VPRC_BLOCKED) != 0)
4285 return (false);
4286 } while (!atomic_fcmpset_int(&m->ref_count, &old, old + 1));
4287
4288 if (VPRC_WIRE_COUNT(old) == 0) {
4289 if ((m->oflags & VPO_UNMANAGED) == 0)
4290 vm_page_aflag_set(m, PGA_DEQUEUE);
4291 vm_wire_add(1);
4292 }
4293 return (true);
4294 }
4295
4296 /*
4297 * Release a wiring reference to a managed page. If the page still belongs to
4298 * an object, update its position in the page queues to reflect the reference.
4299 * If the wiring was the last reference to the page, free the page.
4300 */
4301 static void
vm_page_unwire_managed(vm_page_t m,uint8_t nqueue,bool noreuse)4302 vm_page_unwire_managed(vm_page_t m, uint8_t nqueue, bool noreuse)
4303 {
4304 u_int old;
4305
4306 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4307 ("%s: page %p is unmanaged", __func__, m));
4308
4309 /*
4310 * Update LRU state before releasing the wiring reference.
4311 * Use a release store when updating the reference count to
4312 * synchronize with vm_page_free_prep().
4313 */
4314 old = atomic_load_int(&m->ref_count);
4315 do {
4316 u_int count;
4317
4318 KASSERT(VPRC_WIRE_COUNT(old) > 0,
4319 ("vm_page_unwire: wire count underflow for page %p", m));
4320
4321 count = old & ~VPRC_BLOCKED;
4322 if (count > VPRC_OBJREF + 1) {
4323 /*
4324 * The page has at least one other wiring reference. An
4325 * earlier iteration of this loop may have called
4326 * vm_page_release_toq() and cleared PGA_DEQUEUE, so
4327 * re-set it if necessary.
4328 */
4329 if ((vm_page_astate_load(m).flags & PGA_DEQUEUE) == 0)
4330 vm_page_aflag_set(m, PGA_DEQUEUE);
4331 } else if (count == VPRC_OBJREF + 1) {
4332 /*
4333 * This is the last wiring. Clear PGA_DEQUEUE and
4334 * update the page's queue state to reflect the
4335 * reference. If the page does not belong to an object
4336 * (i.e., the VPRC_OBJREF bit is clear), we only need to
4337 * clear leftover queue state.
4338 */
4339 vm_page_release_toq(m, nqueue, noreuse);
4340 } else if (count == 1) {
4341 vm_page_aflag_clear(m, PGA_DEQUEUE);
4342 }
4343 } while (!atomic_fcmpset_rel_int(&m->ref_count, &old, old - 1));
4344
4345 if (VPRC_WIRE_COUNT(old) == 1) {
4346 vm_wire_sub(1);
4347 if (old == 1)
4348 vm_page_free(m);
4349 }
4350 }
4351
4352 /*
4353 * Release one wiring of the specified page, potentially allowing it to be
4354 * paged out.
4355 *
4356 * Only managed pages belonging to an object can be paged out. If the number
4357 * of wirings transitions to zero and the page is eligible for page out, then
4358 * the page is added to the specified paging queue. If the released wiring
4359 * represented the last reference to the page, the page is freed.
4360 */
4361 void
vm_page_unwire(vm_page_t m,uint8_t nqueue)4362 vm_page_unwire(vm_page_t m, uint8_t nqueue)
4363 {
4364
4365 KASSERT(nqueue < PQ_COUNT,
4366 ("vm_page_unwire: invalid queue %u request for page %p",
4367 nqueue, m));
4368
4369 if ((m->oflags & VPO_UNMANAGED) != 0) {
4370 if (vm_page_unwire_noq(m) && m->ref_count == 0)
4371 vm_page_free(m);
4372 return;
4373 }
4374 vm_page_unwire_managed(m, nqueue, false);
4375 }
4376
4377 /*
4378 * Unwire a page without (re-)inserting it into a page queue. It is up
4379 * to the caller to enqueue, requeue, or free the page as appropriate.
4380 * In most cases involving managed pages, vm_page_unwire() should be used
4381 * instead.
4382 */
4383 bool
vm_page_unwire_noq(vm_page_t m)4384 vm_page_unwire_noq(vm_page_t m)
4385 {
4386 u_int old;
4387
4388 old = vm_page_drop(m, 1);
4389 KASSERT(VPRC_WIRE_COUNT(old) != 0,
4390 ("%s: counter underflow for page %p", __func__, m));
4391 KASSERT((m->flags & PG_FICTITIOUS) == 0 || VPRC_WIRE_COUNT(old) > 1,
4392 ("%s: missing ref on fictitious page %p", __func__, m));
4393
4394 if (VPRC_WIRE_COUNT(old) > 1)
4395 return (false);
4396 if ((m->oflags & VPO_UNMANAGED) == 0)
4397 vm_page_aflag_clear(m, PGA_DEQUEUE);
4398 vm_wire_sub(1);
4399 return (true);
4400 }
4401
4402 /*
4403 * Ensure that the page ends up in the specified page queue. If the page is
4404 * active or being moved to the active queue, ensure that its act_count is
4405 * at least ACT_INIT but do not otherwise mess with it.
4406 */
4407 static __always_inline void
vm_page_mvqueue(vm_page_t m,const uint8_t nqueue,const uint16_t nflag)4408 vm_page_mvqueue(vm_page_t m, const uint8_t nqueue, const uint16_t nflag)
4409 {
4410 vm_page_astate_t old, new;
4411
4412 KASSERT(m->ref_count > 0,
4413 ("%s: page %p does not carry any references", __func__, m));
4414 KASSERT(nflag == PGA_REQUEUE || nflag == PGA_REQUEUE_HEAD,
4415 ("%s: invalid flags %x", __func__, nflag));
4416
4417 if ((m->oflags & VPO_UNMANAGED) != 0 || vm_page_wired(m))
4418 return;
4419
4420 old = vm_page_astate_load(m);
4421 do {
4422 if ((old.flags & PGA_DEQUEUE) != 0)
4423 break;
4424 new = old;
4425 new.flags &= ~PGA_QUEUE_OP_MASK;
4426 if (nqueue == PQ_ACTIVE)
4427 new.act_count = max(old.act_count, ACT_INIT);
4428 if (old.queue == nqueue) {
4429 /*
4430 * There is no need to requeue pages already in the
4431 * active queue.
4432 */
4433 if (nqueue != PQ_ACTIVE ||
4434 (old.flags & PGA_ENQUEUED) == 0)
4435 new.flags |= nflag;
4436 } else {
4437 new.flags |= nflag;
4438 new.queue = nqueue;
4439 }
4440 } while (!vm_page_pqstate_commit(m, &old, new));
4441 }
4442
4443 /*
4444 * Put the specified page on the active list (if appropriate).
4445 */
4446 void
vm_page_activate(vm_page_t m)4447 vm_page_activate(vm_page_t m)
4448 {
4449
4450 vm_page_mvqueue(m, PQ_ACTIVE, PGA_REQUEUE);
4451 }
4452
4453 /*
4454 * Move the specified page to the tail of the inactive queue, or requeue
4455 * the page if it is already in the inactive queue.
4456 */
4457 void
vm_page_deactivate(vm_page_t m)4458 vm_page_deactivate(vm_page_t m)
4459 {
4460
4461 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE);
4462 }
4463
4464 void
vm_page_deactivate_noreuse(vm_page_t m)4465 vm_page_deactivate_noreuse(vm_page_t m)
4466 {
4467
4468 vm_page_mvqueue(m, PQ_INACTIVE, PGA_REQUEUE_HEAD);
4469 }
4470
4471 /*
4472 * Put a page in the laundry, or requeue it if it is already there.
4473 */
4474 void
vm_page_launder(vm_page_t m)4475 vm_page_launder(vm_page_t m)
4476 {
4477
4478 vm_page_mvqueue(m, PQ_LAUNDRY, PGA_REQUEUE);
4479 }
4480
4481 /*
4482 * Put a page in the PQ_UNSWAPPABLE holding queue.
4483 */
4484 void
vm_page_unswappable(vm_page_t m)4485 vm_page_unswappable(vm_page_t m)
4486 {
4487
4488 VM_OBJECT_ASSERT_LOCKED(m->object);
4489 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4490 ("page %p already unswappable", m));
4491
4492 vm_page_dequeue(m);
4493 vm_page_enqueue(m, PQ_UNSWAPPABLE);
4494 }
4495
4496 /*
4497 * Release a page back to the page queues in preparation for unwiring.
4498 */
4499 static void
vm_page_release_toq(vm_page_t m,uint8_t nqueue,const bool noreuse)4500 vm_page_release_toq(vm_page_t m, uint8_t nqueue, const bool noreuse)
4501 {
4502 vm_page_astate_t old, new;
4503 uint16_t nflag;
4504
4505 /*
4506 * Use a check of the valid bits to determine whether we should
4507 * accelerate reclamation of the page. The object lock might not be
4508 * held here, in which case the check is racy. At worst we will either
4509 * accelerate reclamation of a valid page and violate LRU, or
4510 * unnecessarily defer reclamation of an invalid page.
4511 *
4512 * If we were asked to not cache the page, place it near the head of the
4513 * inactive queue so that is reclaimed sooner.
4514 */
4515 if (noreuse || vm_page_none_valid(m)) {
4516 nqueue = PQ_INACTIVE;
4517 nflag = PGA_REQUEUE_HEAD;
4518 } else {
4519 nflag = PGA_REQUEUE;
4520 }
4521
4522 old = vm_page_astate_load(m);
4523 do {
4524 new = old;
4525
4526 /*
4527 * If the page is already in the active queue and we are not
4528 * trying to accelerate reclamation, simply mark it as
4529 * referenced and avoid any queue operations.
4530 */
4531 new.flags &= ~PGA_QUEUE_OP_MASK;
4532 if (nflag != PGA_REQUEUE_HEAD && old.queue == PQ_ACTIVE &&
4533 (old.flags & PGA_ENQUEUED) != 0)
4534 new.flags |= PGA_REFERENCED;
4535 else {
4536 new.flags |= nflag;
4537 new.queue = nqueue;
4538 }
4539 } while (!vm_page_pqstate_commit(m, &old, new));
4540 }
4541
4542 /*
4543 * Unwire a page and either attempt to free it or re-add it to the page queues.
4544 */
4545 void
vm_page_release(vm_page_t m,int flags)4546 vm_page_release(vm_page_t m, int flags)
4547 {
4548 vm_object_t object;
4549
4550 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4551 ("vm_page_release: page %p is unmanaged", m));
4552
4553 if ((flags & VPR_TRYFREE) != 0) {
4554 for (;;) {
4555 object = atomic_load_ptr(&m->object);
4556 if (object == NULL)
4557 break;
4558 /* Depends on type-stability. */
4559 if (vm_page_busied(m) || !VM_OBJECT_TRYWLOCK(object))
4560 break;
4561 if (object == m->object) {
4562 vm_page_release_locked(m, flags);
4563 VM_OBJECT_WUNLOCK(object);
4564 return;
4565 }
4566 VM_OBJECT_WUNLOCK(object);
4567 }
4568 }
4569 vm_page_unwire_managed(m, PQ_INACTIVE, flags != 0);
4570 }
4571
4572 /* See vm_page_release(). */
4573 void
vm_page_release_locked(vm_page_t m,int flags)4574 vm_page_release_locked(vm_page_t m, int flags)
4575 {
4576
4577 VM_OBJECT_ASSERT_WLOCKED(m->object);
4578 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4579 ("vm_page_release_locked: page %p is unmanaged", m));
4580
4581 if (vm_page_unwire_noq(m)) {
4582 if ((flags & VPR_TRYFREE) != 0 &&
4583 (m->object->ref_count == 0 || !pmap_page_is_mapped(m)) &&
4584 m->dirty == 0 && vm_page_tryxbusy(m)) {
4585 /*
4586 * An unlocked lookup may have wired the page before the
4587 * busy lock was acquired, in which case the page must
4588 * not be freed.
4589 */
4590 if (__predict_true(!vm_page_wired(m))) {
4591 vm_page_free(m);
4592 return;
4593 }
4594 vm_page_xunbusy(m);
4595 } else {
4596 vm_page_release_toq(m, PQ_INACTIVE, flags != 0);
4597 }
4598 }
4599 }
4600
4601 static bool
vm_page_try_blocked_op(vm_page_t m,void (* op)(vm_page_t))4602 vm_page_try_blocked_op(vm_page_t m, void (*op)(vm_page_t))
4603 {
4604 u_int old;
4605
4606 KASSERT(m->object != NULL && (m->oflags & VPO_UNMANAGED) == 0,
4607 ("vm_page_try_blocked_op: page %p has no object", m));
4608 KASSERT(vm_page_busied(m),
4609 ("vm_page_try_blocked_op: page %p is not busy", m));
4610 VM_OBJECT_ASSERT_LOCKED(m->object);
4611
4612 old = atomic_load_int(&m->ref_count);
4613 do {
4614 KASSERT(old != 0,
4615 ("vm_page_try_blocked_op: page %p has no references", m));
4616 KASSERT((old & VPRC_BLOCKED) == 0,
4617 ("vm_page_try_blocked_op: page %p blocks wirings", m));
4618 if (VPRC_WIRE_COUNT(old) != 0)
4619 return (false);
4620 } while (!atomic_fcmpset_int(&m->ref_count, &old, old | VPRC_BLOCKED));
4621
4622 (op)(m);
4623
4624 /*
4625 * If the object is read-locked, new wirings may be created via an
4626 * object lookup.
4627 */
4628 old = vm_page_drop(m, VPRC_BLOCKED);
4629 KASSERT(!VM_OBJECT_WOWNED(m->object) ||
4630 old == (VPRC_BLOCKED | VPRC_OBJREF),
4631 ("vm_page_try_blocked_op: unexpected refcount value %u for %p",
4632 old, m));
4633 return (true);
4634 }
4635
4636 /*
4637 * Atomically check for wirings and remove all mappings of the page.
4638 */
4639 bool
vm_page_try_remove_all(vm_page_t m)4640 vm_page_try_remove_all(vm_page_t m)
4641 {
4642
4643 return (vm_page_try_blocked_op(m, pmap_remove_all));
4644 }
4645
4646 /*
4647 * Atomically check for wirings and remove all writeable mappings of the page.
4648 */
4649 bool
vm_page_try_remove_write(vm_page_t m)4650 vm_page_try_remove_write(vm_page_t m)
4651 {
4652
4653 return (vm_page_try_blocked_op(m, pmap_remove_write));
4654 }
4655
4656 /*
4657 * vm_page_advise
4658 *
4659 * Apply the specified advice to the given page.
4660 */
4661 void
vm_page_advise(vm_page_t m,int advice)4662 vm_page_advise(vm_page_t m, int advice)
4663 {
4664
4665 VM_OBJECT_ASSERT_WLOCKED(m->object);
4666 vm_page_assert_xbusied(m);
4667
4668 if (advice == MADV_FREE)
4669 /*
4670 * Mark the page clean. This will allow the page to be freed
4671 * without first paging it out. MADV_FREE pages are often
4672 * quickly reused by malloc(3), so we do not do anything that
4673 * would result in a page fault on a later access.
4674 */
4675 vm_page_undirty(m);
4676 else if (advice != MADV_DONTNEED) {
4677 if (advice == MADV_WILLNEED)
4678 vm_page_activate(m);
4679 return;
4680 }
4681
4682 if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
4683 vm_page_dirty(m);
4684
4685 /*
4686 * Clear any references to the page. Otherwise, the page daemon will
4687 * immediately reactivate the page.
4688 */
4689 vm_page_aflag_clear(m, PGA_REFERENCED);
4690
4691 /*
4692 * Place clean pages near the head of the inactive queue rather than
4693 * the tail, thus defeating the queue's LRU operation and ensuring that
4694 * the page will be reused quickly. Dirty pages not already in the
4695 * laundry are moved there.
4696 */
4697 if (m->dirty == 0)
4698 vm_page_deactivate_noreuse(m);
4699 else if (!vm_page_in_laundry(m))
4700 vm_page_launder(m);
4701 }
4702
4703 /*
4704 * vm_page_grab_release
4705 *
4706 * Helper routine for grab functions to release busy on return.
4707 */
4708 static inline void
vm_page_grab_release(vm_page_t m,int allocflags)4709 vm_page_grab_release(vm_page_t m, int allocflags)
4710 {
4711
4712 if ((allocflags & VM_ALLOC_NOBUSY) != 0) {
4713 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4714 vm_page_sunbusy(m);
4715 else
4716 vm_page_xunbusy(m);
4717 }
4718 }
4719
4720 /*
4721 * vm_page_grab_sleep
4722 *
4723 * Sleep for busy according to VM_ALLOC_ parameters. Returns true
4724 * if the caller should retry and false otherwise.
4725 *
4726 * If the object is locked on entry the object will be unlocked with
4727 * false returns and still locked but possibly having been dropped
4728 * with true returns.
4729 */
4730 static bool
vm_page_grab_sleep(vm_object_t object,vm_page_t m,vm_pindex_t pindex,const char * wmesg,int allocflags,bool locked)4731 vm_page_grab_sleep(vm_object_t object, vm_page_t m, vm_pindex_t pindex,
4732 const char *wmesg, int allocflags, bool locked)
4733 {
4734
4735 if ((allocflags & VM_ALLOC_NOWAIT) != 0)
4736 return (false);
4737
4738 /*
4739 * Reference the page before unlocking and sleeping so that
4740 * the page daemon is less likely to reclaim it.
4741 */
4742 if (locked && (allocflags & VM_ALLOC_NOCREAT) == 0)
4743 vm_page_reference(m);
4744
4745 if (_vm_page_busy_sleep(object, m, pindex, wmesg, allocflags, locked) &&
4746 locked)
4747 VM_OBJECT_WLOCK(object);
4748 if ((allocflags & VM_ALLOC_WAITFAIL) != 0)
4749 return (false);
4750
4751 return (true);
4752 }
4753
4754 /*
4755 * Assert that the grab flags are valid.
4756 */
4757 static inline void
vm_page_grab_check(int allocflags)4758 vm_page_grab_check(int allocflags)
4759 {
4760
4761 KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
4762 (allocflags & VM_ALLOC_WIRED) != 0,
4763 ("vm_page_grab*: the pages must be busied or wired"));
4764
4765 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4766 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4767 ("vm_page_grab*: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4768 }
4769
4770 /*
4771 * Calculate the page allocation flags for grab.
4772 */
4773 static inline int
vm_page_grab_pflags(int allocflags)4774 vm_page_grab_pflags(int allocflags)
4775 {
4776 int pflags;
4777
4778 pflags = allocflags &
4779 ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL |
4780 VM_ALLOC_NOBUSY | VM_ALLOC_IGN_SBUSY);
4781 if ((allocflags & VM_ALLOC_NOWAIT) == 0)
4782 pflags |= VM_ALLOC_WAITFAIL;
4783 if ((allocflags & VM_ALLOC_IGN_SBUSY) != 0)
4784 pflags |= VM_ALLOC_SBUSY;
4785
4786 return (pflags);
4787 }
4788
4789 /*
4790 * Grab a page, waiting until we are woken up due to the page changing state.
4791 * We keep on waiting, if the page continues to be in the object, unless
4792 * allocflags forbid waiting.
4793 *
4794 * The object must be locked on entry. This routine may sleep. The lock will,
4795 * however, be released and reacquired if the routine sleeps.
4796 *
4797 * Return a grabbed page, or NULL. Set *found if a page was found, whether or
4798 * not it was grabbed.
4799 */
4800 static inline vm_page_t
vm_page_grab_lookup(struct pctrie_iter * pages,vm_object_t object,vm_pindex_t pindex,int allocflags,bool * found)4801 vm_page_grab_lookup(struct pctrie_iter *pages, vm_object_t object,
4802 vm_pindex_t pindex, int allocflags, bool *found)
4803 {
4804 vm_page_t m;
4805
4806 while ((*found = (m = vm_radix_iter_lookup(pages, pindex)) != NULL) &&
4807 !vm_page_tryacquire(m, allocflags)) {
4808 if (!vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4809 allocflags, true))
4810 return (NULL);
4811 pctrie_iter_reset(pages);
4812 }
4813 return (m);
4814 }
4815
4816 /*
4817 * Grab a page. Use an iterator parameter. Keep on waiting, as long as the page
4818 * exists in the object. If the page doesn't exist, first allocate it and then
4819 * conditionally zero it.
4820 *
4821 * The object must be locked on entry. This routine may sleep. The lock will,
4822 * however, be released and reacquired if the routine sleeps.
4823 */
4824 vm_page_t
vm_page_grab_iter(vm_object_t object,struct pctrie_iter * pages,vm_pindex_t pindex,int allocflags)4825 vm_page_grab_iter(vm_object_t object, struct pctrie_iter *pages,
4826 vm_pindex_t pindex, int allocflags)
4827 {
4828 vm_page_t m, mpred;
4829 bool found;
4830
4831 VM_OBJECT_ASSERT_WLOCKED(object);
4832 vm_page_grab_check(allocflags);
4833
4834 while ((m = vm_page_grab_lookup(
4835 pages, object, pindex, allocflags, &found)) == NULL) {
4836 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4837 return (NULL);
4838 if (found &&
4839 (allocflags & (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4840 return (NULL);
4841 mpred = vm_radix_iter_lookup_lt(pages, pindex);
4842 m = vm_page_alloc_after(object, pages, pindex,
4843 vm_page_grab_pflags(allocflags), mpred);
4844 if (m != NULL) {
4845 if ((allocflags & VM_ALLOC_ZERO) != 0 &&
4846 (m->flags & PG_ZERO) == 0)
4847 pmap_zero_page(m);
4848 break;
4849 }
4850 if ((allocflags &
4851 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL)) != 0)
4852 return (NULL);
4853 }
4854 vm_page_grab_release(m, allocflags);
4855
4856 return (m);
4857 }
4858
4859 /*
4860 * Grab a page. Keep on waiting, as long as the page exists in the object. If
4861 * the page doesn't exist, first allocate it and then conditionally zero it.
4862 *
4863 * The object must be locked on entry. This routine may sleep. The lock will,
4864 * however, be released and reacquired if the routine sleeps.
4865 */
4866 vm_page_t
vm_page_grab(vm_object_t object,vm_pindex_t pindex,int allocflags)4867 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
4868 {
4869 struct pctrie_iter pages;
4870
4871 VM_OBJECT_ASSERT_WLOCKED(object);
4872 vm_page_iter_init(&pages, object);
4873 return (vm_page_grab_iter(object, &pages, pindex, allocflags));
4874 }
4875
4876 /*
4877 * Attempt to validate a page, locklessly acquiring it if necessary, given a
4878 * (object, pindex) tuple and either an invalided page or NULL. The resulting
4879 * page will be validated against the identity tuple, and busied or wired as
4880 * requested. A NULL page returned guarantees that the page was not in radix at
4881 * the time of the call but callers must perform higher level synchronization or
4882 * retry the operation under a lock if they require an atomic answer. This is
4883 * the only lock free validation routine, other routines can depend on the
4884 * resulting page state.
4885 *
4886 * The return value PAGE_NOT_ACQUIRED indicates that the operation failed due to
4887 * caller flags.
4888 */
4889 #define PAGE_NOT_ACQUIRED ((vm_page_t)1)
4890 static vm_page_t
vm_page_acquire_unlocked(vm_object_t object,vm_pindex_t pindex,vm_page_t m,int allocflags)4891 vm_page_acquire_unlocked(vm_object_t object, vm_pindex_t pindex, vm_page_t m,
4892 int allocflags)
4893 {
4894 if (m == NULL)
4895 m = vm_page_lookup_unlocked(object, pindex);
4896 for (; m != NULL; m = vm_page_lookup_unlocked(object, pindex)) {
4897 if (vm_page_trybusy(m, allocflags)) {
4898 if (m->object == object && m->pindex == pindex) {
4899 if ((allocflags & VM_ALLOC_WIRED) != 0)
4900 vm_page_wire(m);
4901 vm_page_grab_release(m, allocflags);
4902 break;
4903 }
4904 /* relookup. */
4905 vm_page_busy_release(m);
4906 cpu_spinwait();
4907 continue;
4908 }
4909 if (!vm_page_grab_sleep(object, m, pindex, "pgnslp",
4910 allocflags, false))
4911 return (PAGE_NOT_ACQUIRED);
4912 }
4913 return (m);
4914 }
4915
4916 /*
4917 * Try to locklessly grab a page and fall back to the object lock if NOCREAT
4918 * is not set.
4919 */
4920 vm_page_t
vm_page_grab_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags)4921 vm_page_grab_unlocked(vm_object_t object, vm_pindex_t pindex, int allocflags)
4922 {
4923 vm_page_t m;
4924
4925 vm_page_grab_check(allocflags);
4926 m = vm_page_acquire_unlocked(object, pindex, NULL, allocflags);
4927 if (m == PAGE_NOT_ACQUIRED)
4928 return (NULL);
4929 if (m != NULL)
4930 return (m);
4931
4932 /*
4933 * The radix lockless lookup should never return a false negative
4934 * errors. If the user specifies NOCREAT they are guaranteed there
4935 * was no page present at the instant of the call. A NOCREAT caller
4936 * must handle create races gracefully.
4937 */
4938 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
4939 return (NULL);
4940
4941 VM_OBJECT_WLOCK(object);
4942 m = vm_page_grab(object, pindex, allocflags);
4943 VM_OBJECT_WUNLOCK(object);
4944
4945 return (m);
4946 }
4947
4948 /*
4949 * Grab a page and make it valid, paging in if necessary. Pages missing from
4950 * their pager are zero filled and validated. If a VM_ALLOC_COUNT is supplied
4951 * and the page is not valid as many as VM_INITIAL_PAGEIN pages can be brought
4952 * in simultaneously. Additional pages will be left on a paging queue but
4953 * will neither be wired nor busy regardless of allocflags.
4954 */
4955 int
vm_page_grab_valid(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)4956 vm_page_grab_valid(vm_page_t *mp, vm_object_t object, vm_pindex_t pindex,
4957 int allocflags)
4958 {
4959 struct pctrie_iter pages;
4960 vm_page_t m, mpred;
4961 vm_page_t ma[VM_INITIAL_PAGEIN];
4962 int after, i, pflags, rv;
4963
4964 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
4965 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
4966 ("vm_page_grab_valid: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
4967 KASSERT((allocflags &
4968 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
4969 ("vm_page_grab_valid: Invalid flags 0x%X", allocflags));
4970 VM_OBJECT_ASSERT_WLOCKED(object);
4971 pflags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY |
4972 VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY);
4973 pflags |= VM_ALLOC_WAITFAIL;
4974 vm_page_iter_init(&pages, object);
4975
4976 retrylookup:
4977 if ((m = vm_radix_iter_lookup(&pages, pindex)) != NULL) {
4978 /*
4979 * If the page is fully valid it can only become invalid
4980 * with the object lock held. If it is not valid it can
4981 * become valid with the busy lock held. Therefore, we
4982 * may unnecessarily lock the exclusive busy here if we
4983 * race with I/O completion not using the object lock.
4984 * However, we will not end up with an invalid page and a
4985 * shared lock.
4986 */
4987 if (!vm_page_trybusy(m,
4988 vm_page_all_valid(m) ? allocflags : 0)) {
4989 (void)vm_page_grab_sleep(object, m, pindex, "pgrbwt",
4990 allocflags, true);
4991 pctrie_iter_reset(&pages);
4992 goto retrylookup;
4993 }
4994 if (vm_page_all_valid(m))
4995 goto out;
4996 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
4997 vm_page_busy_release(m);
4998 *mp = NULL;
4999 return (VM_PAGER_FAIL);
5000 }
5001 } else if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5002 *mp = NULL;
5003 return (VM_PAGER_FAIL);
5004 } else {
5005 mpred = vm_radix_iter_lookup_lt(&pages, pindex);
5006 m = vm_page_alloc_after(object, &pages, pindex, pflags, mpred);
5007 if (m == NULL) {
5008 if (!vm_pager_can_alloc_page(object, pindex)) {
5009 *mp = NULL;
5010 return (VM_PAGER_AGAIN);
5011 }
5012 goto retrylookup;
5013 }
5014 }
5015
5016 vm_page_assert_xbusied(m);
5017 if (vm_pager_has_page(object, pindex, NULL, &after)) {
5018 after = MIN(after, VM_INITIAL_PAGEIN);
5019 after = MIN(after, allocflags >> VM_ALLOC_COUNT_SHIFT);
5020 after = MAX(after, 1);
5021 ma[0] = mpred = m;
5022 for (i = 1; i < after; i++) {
5023 m = vm_radix_iter_lookup(&pages, pindex + i);
5024 if (m == NULL) {
5025 m = vm_page_alloc_after(object, &pages,
5026 pindex + i, VM_ALLOC_NORMAL, mpred);
5027 if (m == NULL)
5028 break;
5029 } else if (vm_page_any_valid(m) || !vm_page_tryxbusy(m))
5030 break;
5031 mpred = ma[i] = m;
5032 }
5033 after = i;
5034 vm_object_pip_add(object, after);
5035 VM_OBJECT_WUNLOCK(object);
5036 rv = vm_pager_get_pages(object, ma, after, NULL, NULL);
5037 VM_OBJECT_WLOCK(object);
5038 vm_object_pip_wakeupn(object, after);
5039 /* Pager may have replaced a page. */
5040 m = ma[0];
5041 if (rv != VM_PAGER_OK) {
5042 for (i = 0; i < after; i++) {
5043 if (!vm_page_wired(ma[i]))
5044 vm_page_free(ma[i]);
5045 else
5046 vm_page_xunbusy(ma[i]);
5047 }
5048 *mp = NULL;
5049 return (rv);
5050 }
5051 for (i = 1; i < after; i++)
5052 vm_page_readahead_finish(ma[i]);
5053 MPASS(vm_page_all_valid(m));
5054 } else {
5055 vm_page_zero_invalid(m, TRUE);
5056 }
5057 out:
5058 if ((allocflags & VM_ALLOC_WIRED) != 0)
5059 vm_page_wire(m);
5060 if ((allocflags & VM_ALLOC_SBUSY) != 0 && vm_page_xbusied(m))
5061 vm_page_busy_downgrade(m);
5062 else if ((allocflags & VM_ALLOC_NOBUSY) != 0)
5063 vm_page_busy_release(m);
5064 *mp = m;
5065 return (VM_PAGER_OK);
5066 }
5067
5068 /*
5069 * Grab a page. Keep on waiting, as long as the page exists in the object. If
5070 * the page doesn't exist, and the pager has it, allocate it and zero part of
5071 * it.
5072 *
5073 * The object must be locked on entry. This routine may sleep. The lock will,
5074 * however, be released and reacquired if the routine sleeps.
5075 */
5076 int
vm_page_grab_zero_partial(vm_object_t object,vm_pindex_t pindex,int base,int end)5077 vm_page_grab_zero_partial(vm_object_t object, vm_pindex_t pindex, int base,
5078 int end)
5079 {
5080 struct pctrie_iter pages;
5081 vm_page_t m, mpred;
5082 int allocflags, rv;
5083 bool found;
5084
5085 VM_OBJECT_ASSERT_WLOCKED(object);
5086 KASSERT(base >= 0, ("%s: base %d", __func__, base));
5087 KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
5088 end));
5089
5090 allocflags = VM_ALLOC_NOCREAT | VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL;
5091 vm_page_iter_init(&pages, object);
5092 while ((m = vm_page_grab_lookup(
5093 &pages, object, pindex, allocflags, &found)) == NULL) {
5094 if (!vm_pager_has_page(object, pindex, NULL, NULL))
5095 return (0);
5096 mpred = vm_radix_iter_lookup_lt(&pages, pindex);
5097 m = vm_page_alloc_after(object, &pages, pindex,
5098 vm_page_grab_pflags(allocflags), mpred);
5099 if (m != NULL) {
5100 vm_object_pip_add(object, 1);
5101 VM_OBJECT_WUNLOCK(object);
5102 rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
5103 VM_OBJECT_WLOCK(object);
5104 vm_object_pip_wakeup(object);
5105 if (rv != VM_PAGER_OK) {
5106 vm_page_free(m);
5107 return (EIO);
5108 }
5109
5110 /*
5111 * Since the page was not resident, and therefore not
5112 * recently accessed, immediately enqueue it for
5113 * asynchronous laundering. The current operation is
5114 * not regarded as an access.
5115 */
5116 vm_page_launder(m);
5117 break;
5118 }
5119 }
5120
5121 pmap_zero_page_area(m, base, end - base);
5122 KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid", __func__, m));
5123 vm_page_set_dirty(m);
5124 vm_page_xunbusy(m);
5125 return (0);
5126 }
5127
5128 /*
5129 * Locklessly grab a valid page. If the page is not valid or not yet
5130 * allocated this will fall back to the object lock method.
5131 */
5132 int
vm_page_grab_valid_unlocked(vm_page_t * mp,vm_object_t object,vm_pindex_t pindex,int allocflags)5133 vm_page_grab_valid_unlocked(vm_page_t *mp, vm_object_t object,
5134 vm_pindex_t pindex, int allocflags)
5135 {
5136 vm_page_t m;
5137 int flags;
5138 int error;
5139
5140 KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
5141 (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
5142 ("vm_page_grab_valid_unlocked: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY "
5143 "mismatch"));
5144 KASSERT((allocflags &
5145 (VM_ALLOC_NOWAIT | VM_ALLOC_WAITFAIL | VM_ALLOC_ZERO)) == 0,
5146 ("vm_page_grab_valid_unlocked: Invalid flags 0x%X", allocflags));
5147
5148 /*
5149 * Attempt a lockless lookup and busy. We need at least an sbusy
5150 * before we can inspect the valid field and return a wired page.
5151 */
5152 flags = allocflags & ~(VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
5153 vm_page_grab_check(flags);
5154 m = vm_page_acquire_unlocked(object, pindex, NULL, flags);
5155 if (m == PAGE_NOT_ACQUIRED)
5156 return (VM_PAGER_FAIL);
5157 if (m != NULL) {
5158 if (vm_page_all_valid(m)) {
5159 if ((allocflags & VM_ALLOC_WIRED) != 0)
5160 vm_page_wire(m);
5161 vm_page_grab_release(m, allocflags);
5162 *mp = m;
5163 return (VM_PAGER_OK);
5164 }
5165 vm_page_busy_release(m);
5166 }
5167 if ((allocflags & VM_ALLOC_NOCREAT) != 0) {
5168 *mp = NULL;
5169 return (VM_PAGER_FAIL);
5170 }
5171 VM_OBJECT_WLOCK(object);
5172 error = vm_page_grab_valid(mp, object, pindex, allocflags);
5173 VM_OBJECT_WUNLOCK(object);
5174
5175 return (error);
5176 }
5177
5178 /*
5179 * Return the specified range of pages from the given object. For each
5180 * page offset within the range, if a page already exists within the object
5181 * at that offset and it is busy, then wait for it to change state. If,
5182 * instead, the page doesn't exist, then allocate it.
5183 *
5184 * The caller must always specify an allocation class.
5185 *
5186 * allocation classes:
5187 * VM_ALLOC_NORMAL normal process request
5188 * VM_ALLOC_SYSTEM system *really* needs the pages
5189 *
5190 * The caller must always specify that the pages are to be busied and/or
5191 * wired.
5192 *
5193 * optional allocation flags:
5194 * VM_ALLOC_IGN_SBUSY do not sleep on soft busy pages
5195 * VM_ALLOC_NOBUSY do not exclusive busy the page
5196 * VM_ALLOC_NOWAIT do not sleep
5197 * VM_ALLOC_SBUSY set page to sbusy state
5198 * VM_ALLOC_WIRED wire the pages
5199 * VM_ALLOC_ZERO zero and validate any invalid pages
5200 *
5201 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep. Otherwise, it
5202 * may return a partial prefix of the requested range.
5203 */
5204 int
vm_page_grab_pages(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5205 vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
5206 vm_page_t *ma, int count)
5207 {
5208 struct pctrie_iter pages;
5209 vm_page_t m, mpred;
5210 int pflags;
5211 int i;
5212
5213 VM_OBJECT_ASSERT_WLOCKED(object);
5214 KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
5215 ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
5216 KASSERT(count > 0,
5217 ("vm_page_grab_pages: invalid page count %d", count));
5218 vm_page_grab_check(allocflags);
5219
5220 pflags = vm_page_grab_pflags(allocflags);
5221 i = 0;
5222 vm_page_iter_init(&pages, object);
5223 retrylookup:
5224 mpred = vm_radix_iter_lookup_lt(&pages, pindex + i);
5225 for (; i < count; i++) {
5226 m = vm_radix_iter_lookup(&pages, pindex + i);
5227 if (m != NULL) {
5228 if (!vm_page_tryacquire(m, allocflags)) {
5229 if (vm_page_grab_sleep(object, m, pindex + i,
5230 "grbmaw", allocflags, true)) {
5231 pctrie_iter_reset(&pages);
5232 goto retrylookup;
5233 }
5234 break;
5235 }
5236 } else {
5237 if ((allocflags & VM_ALLOC_NOCREAT) != 0)
5238 break;
5239 m = vm_page_alloc_after(object, &pages, pindex + i,
5240 pflags | VM_ALLOC_COUNT(count - i), mpred);
5241 if (m == NULL) {
5242 if ((allocflags & (VM_ALLOC_NOWAIT |
5243 VM_ALLOC_WAITFAIL)) != 0)
5244 break;
5245 goto retrylookup;
5246 }
5247 }
5248 if (vm_page_none_valid(m) &&
5249 (allocflags & VM_ALLOC_ZERO) != 0) {
5250 if ((m->flags & PG_ZERO) == 0)
5251 pmap_zero_page(m);
5252 vm_page_valid(m);
5253 }
5254 vm_page_grab_release(m, allocflags);
5255 ma[i] = mpred = m;
5256 }
5257 return (i);
5258 }
5259
5260 /*
5261 * Unlocked variant of vm_page_grab_pages(). This accepts the same flags
5262 * and will fall back to the locked variant to handle allocation.
5263 */
5264 int
vm_page_grab_pages_unlocked(vm_object_t object,vm_pindex_t pindex,int allocflags,vm_page_t * ma,int count)5265 vm_page_grab_pages_unlocked(vm_object_t object, vm_pindex_t pindex,
5266 int allocflags, vm_page_t *ma, int count)
5267 {
5268 vm_page_t m;
5269 int flags;
5270 int i;
5271
5272 KASSERT(count > 0,
5273 ("vm_page_grab_pages_unlocked: invalid page count %d", count));
5274 vm_page_grab_check(allocflags);
5275
5276 /*
5277 * Modify flags for lockless acquire to hold the page until we
5278 * set it valid if necessary.
5279 */
5280 flags = allocflags & ~VM_ALLOC_NOBUSY;
5281 vm_page_grab_check(flags);
5282 m = NULL;
5283 for (i = 0; i < count; i++, pindex++) {
5284 /*
5285 * We may see a false NULL here because the previous page has
5286 * been removed or just inserted and the list is loaded without
5287 * barriers. Switch to radix to verify.
5288 */
5289 if (m == NULL || QMD_IS_TRASHED(m) || m->pindex != pindex ||
5290 atomic_load_ptr(&m->object) != object) {
5291 /*
5292 * This guarantees the result is instantaneously
5293 * correct.
5294 */
5295 m = NULL;
5296 }
5297 m = vm_page_acquire_unlocked(object, pindex, m, flags);
5298 if (m == PAGE_NOT_ACQUIRED)
5299 return (i);
5300 if (m == NULL)
5301 break;
5302 if ((flags & VM_ALLOC_ZERO) != 0 && vm_page_none_valid(m)) {
5303 if ((m->flags & PG_ZERO) == 0)
5304 pmap_zero_page(m);
5305 vm_page_valid(m);
5306 }
5307 /* m will still be wired or busy according to flags. */
5308 vm_page_grab_release(m, allocflags);
5309 ma[i] = m;
5310 m = TAILQ_NEXT(m, listq);
5311 }
5312 if (i == count || (allocflags & VM_ALLOC_NOCREAT) != 0)
5313 return (i);
5314 count -= i;
5315 VM_OBJECT_WLOCK(object);
5316 i += vm_page_grab_pages(object, pindex, allocflags, &ma[i], count);
5317 VM_OBJECT_WUNLOCK(object);
5318
5319 return (i);
5320 }
5321
5322 /*
5323 * Mapping function for valid or dirty bits in a page.
5324 *
5325 * Inputs are required to range within a page.
5326 */
5327 vm_page_bits_t
vm_page_bits(int base,int size)5328 vm_page_bits(int base, int size)
5329 {
5330 int first_bit;
5331 int last_bit;
5332
5333 KASSERT(
5334 base + size <= PAGE_SIZE,
5335 ("vm_page_bits: illegal base/size %d/%d", base, size)
5336 );
5337
5338 if (size == 0) /* handle degenerate case */
5339 return (0);
5340
5341 first_bit = base >> DEV_BSHIFT;
5342 last_bit = (base + size - 1) >> DEV_BSHIFT;
5343
5344 return (((vm_page_bits_t)2 << last_bit) -
5345 ((vm_page_bits_t)1 << first_bit));
5346 }
5347
5348 void
vm_page_bits_set(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t set)5349 vm_page_bits_set(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t set)
5350 {
5351
5352 #if PAGE_SIZE == 32768
5353 atomic_set_64((uint64_t *)bits, set);
5354 #elif PAGE_SIZE == 16384
5355 atomic_set_32((uint32_t *)bits, set);
5356 #elif (PAGE_SIZE == 8192) && defined(atomic_set_16)
5357 atomic_set_16((uint16_t *)bits, set);
5358 #elif (PAGE_SIZE == 4096) && defined(atomic_set_8)
5359 atomic_set_8((uint8_t *)bits, set);
5360 #else /* PAGE_SIZE <= 8192 */
5361 uintptr_t addr;
5362 int shift;
5363
5364 addr = (uintptr_t)bits;
5365 /*
5366 * Use a trick to perform a 32-bit atomic on the
5367 * containing aligned word, to not depend on the existence
5368 * of atomic_{set, clear}_{8, 16}.
5369 */
5370 shift = addr & (sizeof(uint32_t) - 1);
5371 #if BYTE_ORDER == BIG_ENDIAN
5372 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5373 #else
5374 shift *= NBBY;
5375 #endif
5376 addr &= ~(sizeof(uint32_t) - 1);
5377 atomic_set_32((uint32_t *)addr, set << shift);
5378 #endif /* PAGE_SIZE */
5379 }
5380
5381 static inline void
vm_page_bits_clear(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t clear)5382 vm_page_bits_clear(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t clear)
5383 {
5384
5385 #if PAGE_SIZE == 32768
5386 atomic_clear_64((uint64_t *)bits, clear);
5387 #elif PAGE_SIZE == 16384
5388 atomic_clear_32((uint32_t *)bits, clear);
5389 #elif (PAGE_SIZE == 8192) && defined(atomic_clear_16)
5390 atomic_clear_16((uint16_t *)bits, clear);
5391 #elif (PAGE_SIZE == 4096) && defined(atomic_clear_8)
5392 atomic_clear_8((uint8_t *)bits, clear);
5393 #else /* PAGE_SIZE <= 8192 */
5394 uintptr_t addr;
5395 int shift;
5396
5397 addr = (uintptr_t)bits;
5398 /*
5399 * Use a trick to perform a 32-bit atomic on the
5400 * containing aligned word, to not depend on the existence
5401 * of atomic_{set, clear}_{8, 16}.
5402 */
5403 shift = addr & (sizeof(uint32_t) - 1);
5404 #if BYTE_ORDER == BIG_ENDIAN
5405 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5406 #else
5407 shift *= NBBY;
5408 #endif
5409 addr &= ~(sizeof(uint32_t) - 1);
5410 atomic_clear_32((uint32_t *)addr, clear << shift);
5411 #endif /* PAGE_SIZE */
5412 }
5413
5414 static inline vm_page_bits_t
vm_page_bits_swap(vm_page_t m,vm_page_bits_t * bits,vm_page_bits_t newbits)5415 vm_page_bits_swap(vm_page_t m, vm_page_bits_t *bits, vm_page_bits_t newbits)
5416 {
5417 #if PAGE_SIZE == 32768
5418 uint64_t old;
5419
5420 old = *bits;
5421 while (atomic_fcmpset_64(bits, &old, newbits) == 0);
5422 return (old);
5423 #elif PAGE_SIZE == 16384
5424 uint32_t old;
5425
5426 old = *bits;
5427 while (atomic_fcmpset_32(bits, &old, newbits) == 0);
5428 return (old);
5429 #elif (PAGE_SIZE == 8192) && defined(atomic_fcmpset_16)
5430 uint16_t old;
5431
5432 old = *bits;
5433 while (atomic_fcmpset_16(bits, &old, newbits) == 0);
5434 return (old);
5435 #elif (PAGE_SIZE == 4096) && defined(atomic_fcmpset_8)
5436 uint8_t old;
5437
5438 old = *bits;
5439 while (atomic_fcmpset_8(bits, &old, newbits) == 0);
5440 return (old);
5441 #else /* PAGE_SIZE <= 4096*/
5442 uintptr_t addr;
5443 uint32_t old, new, mask;
5444 int shift;
5445
5446 addr = (uintptr_t)bits;
5447 /*
5448 * Use a trick to perform a 32-bit atomic on the
5449 * containing aligned word, to not depend on the existence
5450 * of atomic_{set, swap, clear}_{8, 16}.
5451 */
5452 shift = addr & (sizeof(uint32_t) - 1);
5453 #if BYTE_ORDER == BIG_ENDIAN
5454 shift = (sizeof(uint32_t) - sizeof(vm_page_bits_t) - shift) * NBBY;
5455 #else
5456 shift *= NBBY;
5457 #endif
5458 addr &= ~(sizeof(uint32_t) - 1);
5459 mask = VM_PAGE_BITS_ALL << shift;
5460
5461 old = *bits;
5462 do {
5463 new = old & ~mask;
5464 new |= newbits << shift;
5465 } while (atomic_fcmpset_32((uint32_t *)addr, &old, new) == 0);
5466 return (old >> shift);
5467 #endif /* PAGE_SIZE */
5468 }
5469
5470 /*
5471 * vm_page_set_valid_range:
5472 *
5473 * Sets portions of a page valid. The arguments are expected
5474 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5475 * of any partial chunks touched by the range. The invalid portion of
5476 * such chunks will be zeroed.
5477 *
5478 * (base + size) must be less then or equal to PAGE_SIZE.
5479 */
5480 void
vm_page_set_valid_range(vm_page_t m,int base,int size)5481 vm_page_set_valid_range(vm_page_t m, int base, int size)
5482 {
5483 int endoff, frag;
5484 vm_page_bits_t pagebits;
5485
5486 vm_page_assert_busied(m);
5487 if (size == 0) /* handle degenerate case */
5488 return;
5489
5490 /*
5491 * If the base is not DEV_BSIZE aligned and the valid
5492 * bit is clear, we have to zero out a portion of the
5493 * first block.
5494 */
5495 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5496 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
5497 pmap_zero_page_area(m, frag, base - frag);
5498
5499 /*
5500 * If the ending offset is not DEV_BSIZE aligned and the
5501 * valid bit is clear, we have to zero out a portion of
5502 * the last block.
5503 */
5504 endoff = base + size;
5505 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5506 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
5507 pmap_zero_page_area(m, endoff,
5508 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5509
5510 /*
5511 * Assert that no previously invalid block that is now being validated
5512 * is already dirty.
5513 */
5514 KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
5515 ("vm_page_set_valid_range: page %p is dirty", m));
5516
5517 /*
5518 * Set valid bits inclusive of any overlap.
5519 */
5520 pagebits = vm_page_bits(base, size);
5521 if (vm_page_xbusied(m))
5522 m->valid |= pagebits;
5523 else
5524 vm_page_bits_set(m, &m->valid, pagebits);
5525 }
5526
5527 /*
5528 * Set the page dirty bits and free the invalid swap space if
5529 * present. Returns the previous dirty bits.
5530 */
5531 vm_page_bits_t
vm_page_set_dirty(vm_page_t m)5532 vm_page_set_dirty(vm_page_t m)
5533 {
5534 vm_page_bits_t old;
5535
5536 VM_PAGE_OBJECT_BUSY_ASSERT(m);
5537
5538 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m)) {
5539 old = m->dirty;
5540 m->dirty = VM_PAGE_BITS_ALL;
5541 } else
5542 old = vm_page_bits_swap(m, &m->dirty, VM_PAGE_BITS_ALL);
5543 if (old == 0 && (m->a.flags & PGA_SWAP_SPACE) != 0)
5544 vm_pager_page_unswapped(m);
5545
5546 return (old);
5547 }
5548
5549 /*
5550 * Clear the given bits from the specified page's dirty field.
5551 */
5552 static __inline void
vm_page_clear_dirty_mask(vm_page_t m,vm_page_bits_t pagebits)5553 vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
5554 {
5555
5556 vm_page_assert_busied(m);
5557
5558 /*
5559 * If the page is xbusied and not write mapped we are the
5560 * only thread that can modify dirty bits. Otherwise, The pmap
5561 * layer can call vm_page_dirty() without holding a distinguished
5562 * lock. The combination of page busy and atomic operations
5563 * suffice to guarantee consistency of the page dirty field.
5564 */
5565 if (vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
5566 m->dirty &= ~pagebits;
5567 else
5568 vm_page_bits_clear(m, &m->dirty, pagebits);
5569 }
5570
5571 /*
5572 * vm_page_set_validclean:
5573 *
5574 * Sets portions of a page valid and clean. The arguments are expected
5575 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
5576 * of any partial chunks touched by the range. The invalid portion of
5577 * such chunks will be zero'd.
5578 *
5579 * (base + size) must be less then or equal to PAGE_SIZE.
5580 */
5581 void
vm_page_set_validclean(vm_page_t m,int base,int size)5582 vm_page_set_validclean(vm_page_t m, int base, int size)
5583 {
5584 vm_page_bits_t oldvalid, pagebits;
5585 int endoff, frag;
5586
5587 vm_page_assert_busied(m);
5588 if (size == 0) /* handle degenerate case */
5589 return;
5590
5591 /*
5592 * If the base is not DEV_BSIZE aligned and the valid
5593 * bit is clear, we have to zero out a portion of the
5594 * first block.
5595 */
5596 if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
5597 (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
5598 pmap_zero_page_area(m, frag, base - frag);
5599
5600 /*
5601 * If the ending offset is not DEV_BSIZE aligned and the
5602 * valid bit is clear, we have to zero out a portion of
5603 * the last block.
5604 */
5605 endoff = base + size;
5606 if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
5607 (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
5608 pmap_zero_page_area(m, endoff,
5609 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));
5610
5611 /*
5612 * Set valid, clear dirty bits. If validating the entire
5613 * page we can safely clear the pmap modify bit. We also
5614 * use this opportunity to clear the PGA_NOSYNC flag. If a process
5615 * takes a write fault on a MAP_NOSYNC memory area the flag will
5616 * be set again.
5617 *
5618 * We set valid bits inclusive of any overlap, but we can only
5619 * clear dirty bits for DEV_BSIZE chunks that are fully within
5620 * the range.
5621 */
5622 oldvalid = m->valid;
5623 pagebits = vm_page_bits(base, size);
5624 if (vm_page_xbusied(m))
5625 m->valid |= pagebits;
5626 else
5627 vm_page_bits_set(m, &m->valid, pagebits);
5628 #if 0 /* NOT YET */
5629 if ((frag = base & (DEV_BSIZE - 1)) != 0) {
5630 frag = DEV_BSIZE - frag;
5631 base += frag;
5632 size -= frag;
5633 if (size < 0)
5634 size = 0;
5635 }
5636 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
5637 #endif
5638 if (base == 0 && size == PAGE_SIZE) {
5639 /*
5640 * The page can only be modified within the pmap if it is
5641 * mapped, and it can only be mapped if it was previously
5642 * fully valid.
5643 */
5644 if (oldvalid == VM_PAGE_BITS_ALL)
5645 /*
5646 * Perform the pmap_clear_modify() first. Otherwise,
5647 * a concurrent pmap operation, such as
5648 * pmap_protect(), could clear a modification in the
5649 * pmap and set the dirty field on the page before
5650 * pmap_clear_modify() had begun and after the dirty
5651 * field was cleared here.
5652 */
5653 pmap_clear_modify(m);
5654 m->dirty = 0;
5655 vm_page_aflag_clear(m, PGA_NOSYNC);
5656 } else if (oldvalid != VM_PAGE_BITS_ALL && vm_page_xbusied(m))
5657 m->dirty &= ~pagebits;
5658 else
5659 vm_page_clear_dirty_mask(m, pagebits);
5660 }
5661
5662 void
vm_page_clear_dirty(vm_page_t m,int base,int size)5663 vm_page_clear_dirty(vm_page_t m, int base, int size)
5664 {
5665
5666 vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
5667 }
5668
5669 /*
5670 * vm_page_set_invalid:
5671 *
5672 * Invalidates DEV_BSIZE'd chunks within a page. Both the
5673 * valid and dirty bits for the effected areas are cleared.
5674 */
5675 void
vm_page_set_invalid(vm_page_t m,int base,int size)5676 vm_page_set_invalid(vm_page_t m, int base, int size)
5677 {
5678 vm_page_bits_t bits;
5679 vm_object_t object;
5680
5681 /*
5682 * The object lock is required so that pages can't be mapped
5683 * read-only while we're in the process of invalidating them.
5684 */
5685 object = m->object;
5686 VM_OBJECT_ASSERT_WLOCKED(object);
5687 vm_page_assert_busied(m);
5688
5689 if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
5690 size >= object->un_pager.vnp.vnp_size)
5691 bits = VM_PAGE_BITS_ALL;
5692 else
5693 bits = vm_page_bits(base, size);
5694 if (object->ref_count != 0 && vm_page_all_valid(m) && bits != 0)
5695 pmap_remove_all(m);
5696 KASSERT((bits == 0 && vm_page_all_valid(m)) ||
5697 !pmap_page_is_mapped(m),
5698 ("vm_page_set_invalid: page %p is mapped", m));
5699 if (vm_page_xbusied(m)) {
5700 m->valid &= ~bits;
5701 m->dirty &= ~bits;
5702 } else {
5703 vm_page_bits_clear(m, &m->valid, bits);
5704 vm_page_bits_clear(m, &m->dirty, bits);
5705 }
5706 }
5707
5708 /*
5709 * vm_page_invalid:
5710 *
5711 * Invalidates the entire page. The page must be busy, unmapped, and
5712 * the enclosing object must be locked. The object locks protects
5713 * against concurrent read-only pmap enter which is done without
5714 * busy.
5715 */
5716 void
vm_page_invalid(vm_page_t m)5717 vm_page_invalid(vm_page_t m)
5718 {
5719
5720 vm_page_assert_busied(m);
5721 VM_OBJECT_ASSERT_WLOCKED(m->object);
5722 MPASS(!pmap_page_is_mapped(m));
5723
5724 if (vm_page_xbusied(m))
5725 m->valid = 0;
5726 else
5727 vm_page_bits_clear(m, &m->valid, VM_PAGE_BITS_ALL);
5728 }
5729
5730 /*
5731 * vm_page_zero_invalid()
5732 *
5733 * The kernel assumes that the invalid portions of a page contain
5734 * garbage, but such pages can be mapped into memory by user code.
5735 * When this occurs, we must zero out the non-valid portions of the
5736 * page so user code sees what it expects.
5737 *
5738 * Pages are most often semi-valid when the end of a file is mapped
5739 * into memory and the file's size is not page aligned.
5740 */
5741 void
vm_page_zero_invalid(vm_page_t m,boolean_t setvalid)5742 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
5743 {
5744 int b;
5745 int i;
5746
5747 /*
5748 * Scan the valid bits looking for invalid sections that
5749 * must be zeroed. Invalid sub-DEV_BSIZE'd areas ( where the
5750 * valid bit may be set ) have already been zeroed by
5751 * vm_page_set_validclean().
5752 */
5753 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
5754 if (i == (PAGE_SIZE / DEV_BSIZE) ||
5755 (m->valid & ((vm_page_bits_t)1 << i))) {
5756 if (i > b) {
5757 pmap_zero_page_area(m,
5758 b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
5759 }
5760 b = i + 1;
5761 }
5762 }
5763
5764 /*
5765 * setvalid is TRUE when we can safely set the zero'd areas
5766 * as being valid. We can do this if there are no cache consistency
5767 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
5768 */
5769 if (setvalid)
5770 vm_page_valid(m);
5771 }
5772
5773 /*
5774 * vm_page_is_valid:
5775 *
5776 * Is (partial) page valid? Note that the case where size == 0
5777 * will return FALSE in the degenerate case where the page is
5778 * entirely invalid, and TRUE otherwise.
5779 *
5780 * Some callers envoke this routine without the busy lock held and
5781 * handle races via higher level locks. Typical callers should
5782 * hold a busy lock to prevent invalidation.
5783 */
5784 int
vm_page_is_valid(vm_page_t m,int base,int size)5785 vm_page_is_valid(vm_page_t m, int base, int size)
5786 {
5787 vm_page_bits_t bits;
5788
5789 bits = vm_page_bits(base, size);
5790 return (vm_page_any_valid(m) && (m->valid & bits) == bits);
5791 }
5792
5793 /*
5794 * Returns true if all of the specified predicates are true for the entire
5795 * (super)page and false otherwise.
5796 */
5797 bool
vm_page_ps_test(vm_page_t m,int psind,int flags,vm_page_t skip_m)5798 vm_page_ps_test(vm_page_t m, int psind, int flags, vm_page_t skip_m)
5799 {
5800 vm_object_t object;
5801 int i, npages;
5802
5803 object = m->object;
5804 if (skip_m != NULL && skip_m->object != object)
5805 return (false);
5806 VM_OBJECT_ASSERT_LOCKED(object);
5807 KASSERT(psind <= m->psind,
5808 ("psind %d > psind %d of m %p", psind, m->psind, m));
5809 npages = atop(pagesizes[psind]);
5810
5811 /*
5812 * The physically contiguous pages that make up a superpage, i.e., a
5813 * page with a page size index ("psind") greater than zero, will
5814 * occupy adjacent entries in vm_page_array[].
5815 */
5816 for (i = 0; i < npages; i++) {
5817 /* Always test object consistency, including "skip_m". */
5818 if (m[i].object != object)
5819 return (false);
5820 if (&m[i] == skip_m)
5821 continue;
5822 if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
5823 return (false);
5824 if ((flags & PS_ALL_DIRTY) != 0) {
5825 /*
5826 * Calling vm_page_test_dirty() or pmap_is_modified()
5827 * might stop this case from spuriously returning
5828 * "false". However, that would require a write lock
5829 * on the object containing "m[i]".
5830 */
5831 if (m[i].dirty != VM_PAGE_BITS_ALL)
5832 return (false);
5833 }
5834 if ((flags & PS_ALL_VALID) != 0 &&
5835 m[i].valid != VM_PAGE_BITS_ALL)
5836 return (false);
5837 }
5838 return (true);
5839 }
5840
5841 /*
5842 * Set the page's dirty bits if the page is modified.
5843 */
5844 void
vm_page_test_dirty(vm_page_t m)5845 vm_page_test_dirty(vm_page_t m)
5846 {
5847
5848 vm_page_assert_busied(m);
5849 if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
5850 vm_page_dirty(m);
5851 }
5852
5853 void
vm_page_valid(vm_page_t m)5854 vm_page_valid(vm_page_t m)
5855 {
5856
5857 vm_page_assert_busied(m);
5858 if (vm_page_xbusied(m))
5859 m->valid = VM_PAGE_BITS_ALL;
5860 else
5861 vm_page_bits_set(m, &m->valid, VM_PAGE_BITS_ALL);
5862 }
5863
5864 void
vm_page_lock_KBI(vm_page_t m,const char * file,int line)5865 vm_page_lock_KBI(vm_page_t m, const char *file, int line)
5866 {
5867
5868 mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
5869 }
5870
5871 void
vm_page_unlock_KBI(vm_page_t m,const char * file,int line)5872 vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
5873 {
5874
5875 mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
5876 }
5877
5878 int
vm_page_trylock_KBI(vm_page_t m,const char * file,int line)5879 vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
5880 {
5881
5882 return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
5883 }
5884
5885 #if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
5886 void
vm_page_assert_locked_KBI(vm_page_t m,const char * file,int line)5887 vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
5888 {
5889
5890 vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
5891 }
5892
5893 void
vm_page_lock_assert_KBI(vm_page_t m,int a,const char * file,int line)5894 vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
5895 {
5896
5897 mtx_assert_(vm_page_lockptr(m), a, file, line);
5898 }
5899 #endif
5900
5901 #ifdef INVARIANTS
5902 void
vm_page_object_busy_assert(vm_page_t m)5903 vm_page_object_busy_assert(vm_page_t m)
5904 {
5905
5906 /*
5907 * Certain of the page's fields may only be modified by the
5908 * holder of a page or object busy.
5909 */
5910 if (m->object != NULL && !vm_page_busied(m))
5911 VM_OBJECT_ASSERT_BUSY(m->object);
5912 }
5913
5914 void
vm_page_assert_pga_writeable(vm_page_t m,uint16_t bits)5915 vm_page_assert_pga_writeable(vm_page_t m, uint16_t bits)
5916 {
5917
5918 if ((bits & PGA_WRITEABLE) == 0)
5919 return;
5920
5921 /*
5922 * The PGA_WRITEABLE flag can only be set if the page is
5923 * managed, is exclusively busied or the object is locked.
5924 * Currently, this flag is only set by pmap_enter().
5925 */
5926 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5927 ("PGA_WRITEABLE on unmanaged page"));
5928 if (!vm_page_xbusied(m))
5929 VM_OBJECT_ASSERT_BUSY(m->object);
5930 }
5931 #endif
5932
5933 #include "opt_ddb.h"
5934 #ifdef DDB
5935 #include <sys/kernel.h>
5936
5937 #include <ddb/ddb.h>
5938
DB_SHOW_COMMAND_FLAGS(page,vm_page_print_page_info,DB_CMD_MEMSAFE)5939 DB_SHOW_COMMAND_FLAGS(page, vm_page_print_page_info, DB_CMD_MEMSAFE)
5940 {
5941
5942 db_printf("vm_cnt.v_free_count: %d\n", vm_free_count());
5943 db_printf("vm_cnt.v_inactive_count: %d\n", vm_inactive_count());
5944 db_printf("vm_cnt.v_active_count: %d\n", vm_active_count());
5945 db_printf("vm_cnt.v_laundry_count: %d\n", vm_laundry_count());
5946 db_printf("vm_cnt.v_wire_count: %d\n", vm_wire_count());
5947 db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
5948 db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
5949 db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
5950 db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
5951 }
5952
DB_SHOW_COMMAND_FLAGS(pageq,vm_page_print_pageq_info,DB_CMD_MEMSAFE)5953 DB_SHOW_COMMAND_FLAGS(pageq, vm_page_print_pageq_info, DB_CMD_MEMSAFE)
5954 {
5955 int dom;
5956
5957 db_printf("pq_free %d\n", vm_free_count());
5958 for (dom = 0; dom < vm_ndomains; dom++) {
5959 db_printf(
5960 "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d pq_unsw %d\n",
5961 dom,
5962 vm_dom[dom].vmd_page_count,
5963 vm_dom[dom].vmd_free_count,
5964 vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
5965 vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
5966 vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt,
5967 vm_dom[dom].vmd_pagequeues[PQ_UNSWAPPABLE].pq_cnt);
5968 }
5969 }
5970
DB_SHOW_COMMAND(pginfo,vm_page_print_pginfo)5971 DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
5972 {
5973 vm_page_t m;
5974 boolean_t phys, virt;
5975
5976 if (!have_addr) {
5977 db_printf("show pginfo addr\n");
5978 return;
5979 }
5980
5981 phys = strchr(modif, 'p') != NULL;
5982 virt = strchr(modif, 'v') != NULL;
5983 if (virt)
5984 m = PHYS_TO_VM_PAGE(pmap_kextract(addr));
5985 else if (phys)
5986 m = PHYS_TO_VM_PAGE(addr);
5987 else
5988 m = (vm_page_t)addr;
5989 db_printf(
5990 "page %p obj %p pidx 0x%jx phys 0x%jx q %d ref 0x%x\n"
5991 " af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
5992 m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
5993 m->a.queue, m->ref_count, m->a.flags, m->oflags,
5994 m->flags, m->a.act_count, m->busy_lock, m->valid, m->dirty);
5995 }
5996 #endif /* DDB */
5997