1 /*-
2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3 *
4 * Copyright (c) 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * The Mach Operating System project at Carnegie-Mellon University.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39 *
40 * Permission to use, copy, modify and distribute this software and
41 * its documentation is hereby granted, provided that both the copyright
42 * notice and this permission notice appear in all copies of the
43 * software, derivative works or modified versions, and any portions
44 * thereof, and that both notices appear in supporting documentation.
45 *
46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49 *
50 * Carnegie Mellon requests users of this software to return to
51 *
52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
53 * School of Computer Science
54 * Carnegie Mellon University
55 * Pittsburgh PA 15213-3890
56 *
57 * any improvements or extensions that they make and grant Carnegie the
58 * rights to redistribute these changes.
59 */
60
61 /*
62 * Virtual memory mapping module.
63 */
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97
98 /*
99 * Virtual memory maps provide for the mapping, protection,
100 * and sharing of virtual memory objects. In addition,
101 * this module provides for an efficient virtual copy of
102 * memory from one map to another.
103 *
104 * Synchronization is required prior to most operations.
105 *
106 * Maps consist of an ordered doubly-linked list of simple
107 * entries; a self-adjusting binary search tree of these
108 * entries is used to speed up lookups.
109 *
110 * Since portions of maps are specified by start/end addresses,
111 * which may not align with existing map entries, all
112 * routines merely "clip" entries to these start/end values.
113 * [That is, an entry is split into two, bordering at a
114 * start or end value.] Note that these clippings may not
115 * always be necessary (as the two resulting entries are then
116 * not changed); however, the clipping is done for convenience.
117 *
118 * As mentioned above, virtual copy operations are performed
119 * by copying VM object references from one map to
120 * another, and then marking both regions as copy-on-write.
121 */
122
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t vmspace_zone;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129 vm_offset_t max);
130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134 vm_map_entry_t gap_entry);
135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137 #ifdef INVARIANTS
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142 int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144 vm_offset_t failed_addr);
145
146 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0)
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /*
153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154 * stable.
155 */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160 * VM_MAP_RANGE_CHECK: [ internal use only ]
161 *
162 * Asserts that the starting and ending region
163 * addresses fall within the valid range of the map.
164 */
165 #define VM_MAP_RANGE_CHECK(map, start, end) \
166 { \
167 if (start < vm_map_min(map)) \
168 start = vm_map_min(map); \
169 if (end > vm_map_max(map)) \
170 end = vm_map_max(map); \
171 if (start > end) \
172 start = end; \
173 }
174
175 #ifndef UMA_USE_DMAP
176
177 /*
178 * Allocate a new slab for kernel map entries. The kernel map may be locked or
179 * unlocked, depending on whether the request is coming from the kernel map or a
180 * submap. This function allocates a virtual address range directly from the
181 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182 * lock and also to avoid triggering allocator recursion in the vmem boundary
183 * tag allocator.
184 */
185 static void *
kmapent_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187 int wait)
188 {
189 vm_offset_t addr;
190 int error, locked;
191
192 *pflag = UMA_SLAB_PRIV;
193
194 if (!(locked = vm_map_locked(kernel_map)))
195 vm_map_lock(kernel_map);
196 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198 panic("%s: kernel map is exhausted", __func__);
199 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201 if (error != KERN_SUCCESS)
202 panic("%s: vm_map_insert() failed: %d", __func__, error);
203 if (!locked)
204 vm_map_unlock(kernel_map);
205 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206 M_USE_RESERVE | (wait & M_ZERO));
207 if (error == KERN_SUCCESS) {
208 return ((void *)addr);
209 } else {
210 if (!locked)
211 vm_map_lock(kernel_map);
212 vm_map_delete(kernel_map, addr, bytes);
213 if (!locked)
214 vm_map_unlock(kernel_map);
215 return (NULL);
216 }
217 }
218
219 static void
kmapent_free(void * item,vm_size_t size,uint8_t pflag)220 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221 {
222 vm_offset_t addr;
223 int error __diagused;
224
225 if ((pflag & UMA_SLAB_PRIV) == 0)
226 /* XXX leaked */
227 return;
228
229 addr = (vm_offset_t)item;
230 kmem_unback(kernel_object, addr, size);
231 error = vm_map_remove(kernel_map, addr, addr + size);
232 KASSERT(error == KERN_SUCCESS,
233 ("%s: vm_map_remove failed: %d", __func__, error));
234 }
235
236 /*
237 * The worst-case upper bound on the number of kernel map entries that may be
238 * created before the zone must be replenished in _vm_map_unlock().
239 */
240 #define KMAPENT_RESERVE 1
241
242 #endif /* !UMD_MD_SMALL_ALLOC */
243
244 /*
245 * vm_map_startup:
246 *
247 * Initialize the vm_map module. Must be called before any other vm_map
248 * routines.
249 *
250 * User map and entry structures are allocated from the general purpose
251 * memory pool. Kernel maps are statically defined. Kernel map entries
252 * require special handling to avoid recursion; see the comments above
253 * kmapent_alloc() and in vm_map_entry_create().
254 */
255 void
vm_map_startup(void)256 vm_map_startup(void)
257 {
258 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259
260 /*
261 * Disable the use of per-CPU buckets: map entry allocation is
262 * serialized by the kernel map lock.
263 */
264 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266 UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267 #ifndef UMA_USE_DMAP
268 /* Reserve an extra map entry for use when replenishing the reserve. */
269 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271 uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272 uma_zone_set_freef(kmapentzone, kmapent_free);
273 #endif
274
275 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278 #ifdef INVARIANTS
279 vmspace_zdtor,
280 #else
281 NULL,
282 #endif
283 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284 }
285
286 static int
vmspace_zinit(void * mem,int size,int flags)287 vmspace_zinit(void *mem, int size, int flags)
288 {
289 struct vmspace *vm;
290 vm_map_t map;
291
292 vm = (struct vmspace *)mem;
293 map = &vm->vm_map;
294
295 memset(map, 0, sizeof(*map));
296 mtx_init(&map->system_mtx, "vm map (system)", NULL,
297 MTX_DEF | MTX_DUPOK);
298 sx_init(&map->lock, "vm map (user)");
299 PMAP_LOCK_INIT(vmspace_pmap(vm));
300 return (0);
301 }
302
303 #ifdef INVARIANTS
304 static void
vmspace_zdtor(void * mem,int size,void * arg)305 vmspace_zdtor(void *mem, int size, void *arg)
306 {
307 struct vmspace *vm;
308
309 vm = (struct vmspace *)mem;
310 KASSERT(vm->vm_map.nentries == 0,
311 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
312 KASSERT(vm->vm_map.size == 0,
313 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
314 }
315 #endif /* INVARIANTS */
316
317 /*
318 * Allocate a vmspace structure, including a vm_map and pmap,
319 * and initialize those structures. The refcnt is set to 1.
320 */
321 struct vmspace *
vmspace_alloc(vm_offset_t min,vm_offset_t max,pmap_pinit_t pinit)322 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
323 {
324 struct vmspace *vm;
325
326 vm = uma_zalloc(vmspace_zone, M_WAITOK);
327 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
328 if (!pinit(vmspace_pmap(vm))) {
329 uma_zfree(vmspace_zone, vm);
330 return (NULL);
331 }
332 CTR1(KTR_VM, "vmspace_alloc: %p", vm);
333 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
334 refcount_init(&vm->vm_refcnt, 1);
335 vm->vm_shm = NULL;
336 vm->vm_swrss = 0;
337 vm->vm_tsize = 0;
338 vm->vm_dsize = 0;
339 vm->vm_ssize = 0;
340 vm->vm_taddr = 0;
341 vm->vm_daddr = 0;
342 vm->vm_maxsaddr = 0;
343 return (vm);
344 }
345
346 #ifdef RACCT
347 static void
vmspace_container_reset(struct proc * p)348 vmspace_container_reset(struct proc *p)
349 {
350
351 PROC_LOCK(p);
352 racct_set(p, RACCT_DATA, 0);
353 racct_set(p, RACCT_STACK, 0);
354 racct_set(p, RACCT_RSS, 0);
355 racct_set(p, RACCT_MEMLOCK, 0);
356 racct_set(p, RACCT_VMEM, 0);
357 PROC_UNLOCK(p);
358 }
359 #endif
360
361 static inline void
vmspace_dofree(struct vmspace * vm)362 vmspace_dofree(struct vmspace *vm)
363 {
364
365 CTR1(KTR_VM, "vmspace_free: %p", vm);
366
367 /*
368 * Make sure any SysV shm is freed, it might not have been in
369 * exit1().
370 */
371 shmexit(vm);
372
373 /*
374 * Lock the map, to wait out all other references to it.
375 * Delete all of the mappings and pages they hold, then call
376 * the pmap module to reclaim anything left.
377 */
378 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
379 vm_map_max(&vm->vm_map));
380
381 pmap_release(vmspace_pmap(vm));
382 vm->vm_map.pmap = NULL;
383 uma_zfree(vmspace_zone, vm);
384 }
385
386 void
vmspace_free(struct vmspace * vm)387 vmspace_free(struct vmspace *vm)
388 {
389
390 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
391 "vmspace_free() called");
392
393 if (refcount_release(&vm->vm_refcnt))
394 vmspace_dofree(vm);
395 }
396
397 void
vmspace_exitfree(struct proc * p)398 vmspace_exitfree(struct proc *p)
399 {
400 struct vmspace *vm;
401
402 PROC_VMSPACE_LOCK(p);
403 vm = p->p_vmspace;
404 p->p_vmspace = NULL;
405 PROC_VMSPACE_UNLOCK(p);
406 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
407 vmspace_free(vm);
408 }
409
410 void
vmspace_exit(struct thread * td)411 vmspace_exit(struct thread *td)
412 {
413 struct vmspace *vm;
414 struct proc *p;
415 bool released;
416
417 p = td->td_proc;
418 vm = p->p_vmspace;
419
420 /*
421 * Prepare to release the vmspace reference. The thread that releases
422 * the last reference is responsible for tearing down the vmspace.
423 * However, threads not releasing the final reference must switch to the
424 * kernel's vmspace0 before the decrement so that the subsequent pmap
425 * deactivation does not modify a freed vmspace.
426 */
427 refcount_acquire(&vmspace0.vm_refcnt);
428 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
429 if (p->p_vmspace != &vmspace0) {
430 PROC_VMSPACE_LOCK(p);
431 p->p_vmspace = &vmspace0;
432 PROC_VMSPACE_UNLOCK(p);
433 pmap_activate(td);
434 }
435 released = refcount_release(&vm->vm_refcnt);
436 }
437 if (released) {
438 /*
439 * pmap_remove_pages() expects the pmap to be active, so switch
440 * back first if necessary.
441 */
442 if (p->p_vmspace != vm) {
443 PROC_VMSPACE_LOCK(p);
444 p->p_vmspace = vm;
445 PROC_VMSPACE_UNLOCK(p);
446 pmap_activate(td);
447 }
448 pmap_remove_pages(vmspace_pmap(vm));
449 PROC_VMSPACE_LOCK(p);
450 p->p_vmspace = &vmspace0;
451 PROC_VMSPACE_UNLOCK(p);
452 pmap_activate(td);
453 vmspace_dofree(vm);
454 }
455 #ifdef RACCT
456 if (racct_enable)
457 vmspace_container_reset(p);
458 #endif
459 }
460
461 /* Acquire reference to vmspace owned by another process. */
462
463 struct vmspace *
vmspace_acquire_ref(struct proc * p)464 vmspace_acquire_ref(struct proc *p)
465 {
466 struct vmspace *vm;
467
468 PROC_VMSPACE_LOCK(p);
469 vm = p->p_vmspace;
470 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
471 PROC_VMSPACE_UNLOCK(p);
472 return (NULL);
473 }
474 if (vm != p->p_vmspace) {
475 PROC_VMSPACE_UNLOCK(p);
476 vmspace_free(vm);
477 return (NULL);
478 }
479 PROC_VMSPACE_UNLOCK(p);
480 return (vm);
481 }
482
483 /*
484 * Switch between vmspaces in an AIO kernel process.
485 *
486 * The new vmspace is either the vmspace of a user process obtained
487 * from an active AIO request or the initial vmspace of the AIO kernel
488 * process (when it is idling). Because user processes will block to
489 * drain any active AIO requests before proceeding in exit() or
490 * execve(), the reference count for vmspaces from AIO requests can
491 * never be 0. Similarly, AIO kernel processes hold an extra
492 * reference on their initial vmspace for the life of the process. As
493 * a result, the 'newvm' vmspace always has a non-zero reference
494 * count. This permits an additional reference on 'newvm' to be
495 * acquired via a simple atomic increment rather than the loop in
496 * vmspace_acquire_ref() above.
497 */
498 void
vmspace_switch_aio(struct vmspace * newvm)499 vmspace_switch_aio(struct vmspace *newvm)
500 {
501 struct vmspace *oldvm;
502
503 /* XXX: Need some way to assert that this is an aio daemon. */
504
505 KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
506 ("vmspace_switch_aio: newvm unreferenced"));
507
508 oldvm = curproc->p_vmspace;
509 if (oldvm == newvm)
510 return;
511
512 /*
513 * Point to the new address space and refer to it.
514 */
515 curproc->p_vmspace = newvm;
516 refcount_acquire(&newvm->vm_refcnt);
517
518 /* Activate the new mapping. */
519 pmap_activate(curthread);
520
521 vmspace_free(oldvm);
522 }
523
524 void
_vm_map_lock(vm_map_t map,const char * file,int line)525 _vm_map_lock(vm_map_t map, const char *file, int line)
526 {
527
528 if (map->system_map)
529 mtx_lock_flags_(&map->system_mtx, 0, file, line);
530 else
531 sx_xlock_(&map->lock, file, line);
532 map->timestamp++;
533 }
534
535 void
vm_map_entry_set_vnode_text(vm_map_entry_t entry,bool add)536 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
537 {
538 vm_object_t object;
539 struct vnode *vp;
540 bool vp_held;
541
542 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
543 return;
544 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
545 ("Submap with execs"));
546 object = entry->object.vm_object;
547 KASSERT(object != NULL, ("No object for text, entry %p", entry));
548 if ((object->flags & OBJ_ANON) != 0)
549 object = object->handle;
550 else
551 KASSERT(object->backing_object == NULL,
552 ("non-anon object %p shadows", object));
553 KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
554 entry, entry->object.vm_object));
555
556 /*
557 * Mostly, we do not lock the backing object. It is
558 * referenced by the entry we are processing, so it cannot go
559 * away.
560 */
561 vm_pager_getvp(object, &vp, &vp_held);
562 if (vp != NULL) {
563 if (add) {
564 VOP_SET_TEXT_CHECKED(vp);
565 } else {
566 vn_lock(vp, LK_SHARED | LK_RETRY);
567 VOP_UNSET_TEXT_CHECKED(vp);
568 VOP_UNLOCK(vp);
569 }
570 if (vp_held)
571 vdrop(vp);
572 }
573 }
574
575 /*
576 * Use a different name for this vm_map_entry field when it's use
577 * is not consistent with its use as part of an ordered search tree.
578 */
579 #define defer_next right
580
581 static void
vm_map_process_deferred(void)582 vm_map_process_deferred(void)
583 {
584 struct thread *td;
585 vm_map_entry_t entry, next;
586 vm_object_t object;
587
588 td = curthread;
589 entry = td->td_map_def_user;
590 td->td_map_def_user = NULL;
591 while (entry != NULL) {
592 next = entry->defer_next;
593 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
594 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
595 MAP_ENTRY_VN_EXEC));
596 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
597 /*
598 * Decrement the object's writemappings and
599 * possibly the vnode's v_writecount.
600 */
601 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
602 ("Submap with writecount"));
603 object = entry->object.vm_object;
604 KASSERT(object != NULL, ("No object for writecount"));
605 vm_pager_release_writecount(object, entry->start,
606 entry->end);
607 }
608 vm_map_entry_set_vnode_text(entry, false);
609 vm_map_entry_deallocate(entry, FALSE);
610 entry = next;
611 }
612 }
613
614 #ifdef INVARIANTS
615 static void
_vm_map_assert_locked(vm_map_t map,const char * file,int line)616 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
617 {
618
619 if (map->system_map)
620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 else
622 sx_assert_(&map->lock, SA_XLOCKED, file, line);
623 }
624
625 #define VM_MAP_ASSERT_LOCKED(map) \
626 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
627
628 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
629 #ifdef DIAGNOSTIC
630 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
631 #else
632 static int enable_vmmap_check = VMMAP_CHECK_NONE;
633 #endif
634 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
635 &enable_vmmap_check, 0, "Enable vm map consistency checking");
636
637 static void _vm_map_assert_consistent(vm_map_t map, int check);
638
639 #define VM_MAP_ASSERT_CONSISTENT(map) \
640 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
641 #ifdef DIAGNOSTIC
642 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \
643 if (map->nupdates > map->nentries) { \
644 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \
645 map->nupdates = 0; \
646 } \
647 } while (0)
648 #else
649 #define VM_MAP_UNLOCK_CONSISTENT(map)
650 #endif
651 #else
652 #define VM_MAP_ASSERT_LOCKED(map)
653 #define VM_MAP_ASSERT_CONSISTENT(map)
654 #define VM_MAP_UNLOCK_CONSISTENT(map)
655 #endif /* INVARIANTS */
656
657 void
_vm_map_unlock(vm_map_t map,const char * file,int line)658 _vm_map_unlock(vm_map_t map, const char *file, int line)
659 {
660
661 VM_MAP_UNLOCK_CONSISTENT(map);
662 if (map->system_map) {
663 #ifndef UMA_USE_DMAP
664 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
665 uma_prealloc(kmapentzone, 1);
666 map->flags &= ~MAP_REPLENISH;
667 }
668 #endif
669 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
670 } else {
671 sx_xunlock_(&map->lock, file, line);
672 vm_map_process_deferred();
673 }
674 }
675
676 void
_vm_map_lock_read(vm_map_t map,const char * file,int line)677 _vm_map_lock_read(vm_map_t map, const char *file, int line)
678 {
679
680 if (map->system_map)
681 mtx_lock_flags_(&map->system_mtx, 0, file, line);
682 else
683 sx_slock_(&map->lock, file, line);
684 }
685
686 void
_vm_map_unlock_read(vm_map_t map,const char * file,int line)687 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
688 {
689
690 if (map->system_map) {
691 KASSERT((map->flags & MAP_REPLENISH) == 0,
692 ("%s: MAP_REPLENISH leaked", __func__));
693 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
694 } else {
695 sx_sunlock_(&map->lock, file, line);
696 vm_map_process_deferred();
697 }
698 }
699
700 int
_vm_map_trylock(vm_map_t map,const char * file,int line)701 _vm_map_trylock(vm_map_t map, const char *file, int line)
702 {
703 int error;
704
705 error = map->system_map ?
706 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
707 !sx_try_xlock_(&map->lock, file, line);
708 if (error == 0)
709 map->timestamp++;
710 return (error == 0);
711 }
712
713 int
_vm_map_trylock_read(vm_map_t map,const char * file,int line)714 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
715 {
716 int error;
717
718 error = map->system_map ?
719 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
720 !sx_try_slock_(&map->lock, file, line);
721 return (error == 0);
722 }
723
724 /*
725 * _vm_map_lock_upgrade: [ internal use only ]
726 *
727 * Tries to upgrade a read (shared) lock on the specified map to a write
728 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a
729 * non-zero value if the upgrade fails. If the upgrade fails, the map is
730 * returned without a read or write lock held.
731 *
732 * Requires that the map be read locked.
733 */
734 int
_vm_map_lock_upgrade(vm_map_t map,const char * file,int line)735 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
736 {
737 unsigned int last_timestamp;
738
739 if (map->system_map) {
740 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
741 } else {
742 if (!sx_try_upgrade_(&map->lock, file, line)) {
743 last_timestamp = map->timestamp;
744 sx_sunlock_(&map->lock, file, line);
745 vm_map_process_deferred();
746 /*
747 * If the map's timestamp does not change while the
748 * map is unlocked, then the upgrade succeeds.
749 */
750 sx_xlock_(&map->lock, file, line);
751 if (last_timestamp != map->timestamp) {
752 sx_xunlock_(&map->lock, file, line);
753 return (1);
754 }
755 }
756 }
757 map->timestamp++;
758 return (0);
759 }
760
761 void
_vm_map_lock_downgrade(vm_map_t map,const char * file,int line)762 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
763 {
764
765 if (map->system_map) {
766 KASSERT((map->flags & MAP_REPLENISH) == 0,
767 ("%s: MAP_REPLENISH leaked", __func__));
768 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
769 } else {
770 VM_MAP_UNLOCK_CONSISTENT(map);
771 sx_downgrade_(&map->lock, file, line);
772 }
773 }
774
775 /*
776 * vm_map_locked:
777 *
778 * Returns a non-zero value if the caller holds a write (exclusive) lock
779 * on the specified map and the value "0" otherwise.
780 */
781 int
vm_map_locked(vm_map_t map)782 vm_map_locked(vm_map_t map)
783 {
784
785 if (map->system_map)
786 return (mtx_owned(&map->system_mtx));
787 else
788 return (sx_xlocked(&map->lock));
789 }
790
791 /*
792 * _vm_map_unlock_and_wait:
793 *
794 * Atomically releases the lock on the specified map and puts the calling
795 * thread to sleep. The calling thread will remain asleep until either
796 * vm_map_wakeup() is performed on the map or the specified timeout is
797 * exceeded.
798 *
799 * WARNING! This function does not perform deferred deallocations of
800 * objects and map entries. Therefore, the calling thread is expected to
801 * reacquire the map lock after reawakening and later perform an ordinary
802 * unlock operation, such as vm_map_unlock(), before completing its
803 * operation on the map.
804 */
805 int
_vm_map_unlock_and_wait(vm_map_t map,int timo,const char * file,int line)806 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
807 {
808
809 VM_MAP_UNLOCK_CONSISTENT(map);
810 mtx_lock(&map_sleep_mtx);
811 if (map->system_map) {
812 KASSERT((map->flags & MAP_REPLENISH) == 0,
813 ("%s: MAP_REPLENISH leaked", __func__));
814 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
815 } else {
816 sx_xunlock_(&map->lock, file, line);
817 }
818 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
819 timo));
820 }
821
822 /*
823 * vm_map_wakeup:
824 *
825 * Awaken any threads that have slept on the map using
826 * vm_map_unlock_and_wait().
827 */
828 void
vm_map_wakeup(vm_map_t map)829 vm_map_wakeup(vm_map_t map)
830 {
831
832 /*
833 * Acquire and release map_sleep_mtx to prevent a wakeup()
834 * from being performed (and lost) between the map unlock
835 * and the msleep() in _vm_map_unlock_and_wait().
836 */
837 mtx_lock(&map_sleep_mtx);
838 mtx_unlock(&map_sleep_mtx);
839 wakeup(&map->root);
840 }
841
842 void
vm_map_busy(vm_map_t map)843 vm_map_busy(vm_map_t map)
844 {
845
846 VM_MAP_ASSERT_LOCKED(map);
847 map->busy++;
848 }
849
850 void
vm_map_unbusy(vm_map_t map)851 vm_map_unbusy(vm_map_t map)
852 {
853
854 VM_MAP_ASSERT_LOCKED(map);
855 KASSERT(map->busy, ("vm_map_unbusy: not busy"));
856 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
857 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
858 wakeup(&map->busy);
859 }
860 }
861
862 void
vm_map_wait_busy(vm_map_t map)863 vm_map_wait_busy(vm_map_t map)
864 {
865
866 VM_MAP_ASSERT_LOCKED(map);
867 while (map->busy) {
868 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
869 if (map->system_map)
870 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
871 else
872 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
873 }
874 map->timestamp++;
875 }
876
877 long
vmspace_resident_count(struct vmspace * vmspace)878 vmspace_resident_count(struct vmspace *vmspace)
879 {
880 return pmap_resident_count(vmspace_pmap(vmspace));
881 }
882
883 /*
884 * Initialize an existing vm_map structure
885 * such as that in the vmspace structure.
886 */
887 static void
_vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)888 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
889 {
890
891 map->header.eflags = MAP_ENTRY_HEADER;
892 map->needs_wakeup = FALSE;
893 map->system_map = 0;
894 map->pmap = pmap;
895 map->header.end = min;
896 map->header.start = max;
897 map->flags = 0;
898 map->header.left = map->header.right = &map->header;
899 map->root = NULL;
900 map->timestamp = 0;
901 map->busy = 0;
902 map->anon_loc = 0;
903 #ifdef DIAGNOSTIC
904 map->nupdates = 0;
905 #endif
906 }
907
908 void
vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)909 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
910 {
911
912 _vm_map_init(map, pmap, min, max);
913 mtx_init(&map->system_mtx, "vm map (system)", NULL,
914 MTX_DEF | MTX_DUPOK);
915 sx_init(&map->lock, "vm map (user)");
916 }
917
918 /*
919 * vm_map_entry_dispose: [ internal use only ]
920 *
921 * Inverse of vm_map_entry_create.
922 */
923 static void
vm_map_entry_dispose(vm_map_t map,vm_map_entry_t entry)924 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
925 {
926 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
927 }
928
929 /*
930 * vm_map_entry_create: [ internal use only ]
931 *
932 * Allocates a VM map entry for insertion.
933 * No entry fields are filled in.
934 */
935 static vm_map_entry_t
vm_map_entry_create(vm_map_t map)936 vm_map_entry_create(vm_map_t map)
937 {
938 vm_map_entry_t new_entry;
939
940 #ifndef UMA_USE_DMAP
941 if (map == kernel_map) {
942 VM_MAP_ASSERT_LOCKED(map);
943
944 /*
945 * A new slab of kernel map entries cannot be allocated at this
946 * point because the kernel map has not yet been updated to
947 * reflect the caller's request. Therefore, we allocate a new
948 * map entry, dipping into the reserve if necessary, and set a
949 * flag indicating that the reserve must be replenished before
950 * the map is unlocked.
951 */
952 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
953 if (new_entry == NULL) {
954 new_entry = uma_zalloc(kmapentzone,
955 M_NOWAIT | M_NOVM | M_USE_RESERVE);
956 kernel_map->flags |= MAP_REPLENISH;
957 }
958 } else
959 #endif
960 if (map->system_map) {
961 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
962 } else {
963 new_entry = uma_zalloc(mapentzone, M_WAITOK);
964 }
965 KASSERT(new_entry != NULL,
966 ("vm_map_entry_create: kernel resources exhausted"));
967 return (new_entry);
968 }
969
970 /*
971 * vm_map_entry_set_behavior:
972 *
973 * Set the expected access behavior, either normal, random, or
974 * sequential.
975 */
976 static inline void
vm_map_entry_set_behavior(vm_map_entry_t entry,u_char behavior)977 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
978 {
979 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
980 (behavior & MAP_ENTRY_BEHAV_MASK);
981 }
982
983 /*
984 * vm_map_entry_max_free_{left,right}:
985 *
986 * Compute the size of the largest free gap between two entries,
987 * one the root of a tree and the other the ancestor of that root
988 * that is the least or greatest ancestor found on the search path.
989 */
990 static inline vm_size_t
vm_map_entry_max_free_left(vm_map_entry_t root,vm_map_entry_t left_ancestor)991 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
992 {
993
994 return (root->left != left_ancestor ?
995 root->left->max_free : root->start - left_ancestor->end);
996 }
997
998 static inline vm_size_t
vm_map_entry_max_free_right(vm_map_entry_t root,vm_map_entry_t right_ancestor)999 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1000 {
1001
1002 return (root->right != right_ancestor ?
1003 root->right->max_free : right_ancestor->start - root->end);
1004 }
1005
1006 /*
1007 * vm_map_entry_{pred,succ}:
1008 *
1009 * Find the {predecessor, successor} of the entry by taking one step
1010 * in the appropriate direction and backtracking as much as necessary.
1011 * vm_map_entry_succ is defined in vm_map.h.
1012 */
1013 static inline vm_map_entry_t
vm_map_entry_pred(vm_map_entry_t entry)1014 vm_map_entry_pred(vm_map_entry_t entry)
1015 {
1016 vm_map_entry_t prior;
1017
1018 prior = entry->left;
1019 if (prior->right->start < entry->start) {
1020 do
1021 prior = prior->right;
1022 while (prior->right != entry);
1023 }
1024 return (prior);
1025 }
1026
1027 static inline vm_size_t
vm_size_max(vm_size_t a,vm_size_t b)1028 vm_size_max(vm_size_t a, vm_size_t b)
1029 {
1030
1031 return (a > b ? a : b);
1032 }
1033
1034 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \
1035 vm_map_entry_t z; \
1036 vm_size_t max_free; \
1037 \
1038 /* \
1039 * Infer root->right->max_free == root->max_free when \
1040 * y->max_free < root->max_free || root->max_free == 0. \
1041 * Otherwise, look right to find it. \
1042 */ \
1043 y = root->left; \
1044 max_free = root->max_free; \
1045 KASSERT(max_free == vm_size_max( \
1046 vm_map_entry_max_free_left(root, llist), \
1047 vm_map_entry_max_free_right(root, rlist)), \
1048 ("%s: max_free invariant fails", __func__)); \
1049 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \
1050 max_free = vm_map_entry_max_free_right(root, rlist); \
1051 if (y != llist && (test)) { \
1052 /* Rotate right and make y root. */ \
1053 z = y->right; \
1054 if (z != root) { \
1055 root->left = z; \
1056 y->right = root; \
1057 if (max_free < y->max_free) \
1058 root->max_free = max_free = \
1059 vm_size_max(max_free, z->max_free); \
1060 } else if (max_free < y->max_free) \
1061 root->max_free = max_free = \
1062 vm_size_max(max_free, root->start - y->end);\
1063 root = y; \
1064 y = root->left; \
1065 } \
1066 /* Copy right->max_free. Put root on rlist. */ \
1067 root->max_free = max_free; \
1068 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \
1069 ("%s: max_free not copied from right", __func__)); \
1070 root->left = rlist; \
1071 rlist = root; \
1072 root = y != llist ? y : NULL; \
1073 } while (0)
1074
1075 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \
1076 vm_map_entry_t z; \
1077 vm_size_t max_free; \
1078 \
1079 /* \
1080 * Infer root->left->max_free == root->max_free when \
1081 * y->max_free < root->max_free || root->max_free == 0. \
1082 * Otherwise, look left to find it. \
1083 */ \
1084 y = root->right; \
1085 max_free = root->max_free; \
1086 KASSERT(max_free == vm_size_max( \
1087 vm_map_entry_max_free_left(root, llist), \
1088 vm_map_entry_max_free_right(root, rlist)), \
1089 ("%s: max_free invariant fails", __func__)); \
1090 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \
1091 max_free = vm_map_entry_max_free_left(root, llist); \
1092 if (y != rlist && (test)) { \
1093 /* Rotate left and make y root. */ \
1094 z = y->left; \
1095 if (z != root) { \
1096 root->right = z; \
1097 y->left = root; \
1098 if (max_free < y->max_free) \
1099 root->max_free = max_free = \
1100 vm_size_max(max_free, z->max_free); \
1101 } else if (max_free < y->max_free) \
1102 root->max_free = max_free = \
1103 vm_size_max(max_free, y->start - root->end);\
1104 root = y; \
1105 y = root->right; \
1106 } \
1107 /* Copy left->max_free. Put root on llist. */ \
1108 root->max_free = max_free; \
1109 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \
1110 ("%s: max_free not copied from left", __func__)); \
1111 root->right = llist; \
1112 llist = root; \
1113 root = y != rlist ? y : NULL; \
1114 } while (0)
1115
1116 /*
1117 * Walk down the tree until we find addr or a gap where addr would go, breaking
1118 * off left and right subtrees of nodes less than, or greater than addr. Treat
1119 * subtrees with root->max_free < length as empty trees. llist and rlist are
1120 * the two sides in reverse order (bottom-up), with llist linked by the right
1121 * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1122 * lists terminated by &map->header. This function, and the subsequent call to
1123 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1124 * values in &map->header.
1125 */
1126 static __always_inline vm_map_entry_t
vm_map_splay_split(vm_map_t map,vm_offset_t addr,vm_size_t length,vm_map_entry_t * llist,vm_map_entry_t * rlist)1127 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1128 vm_map_entry_t *llist, vm_map_entry_t *rlist)
1129 {
1130 vm_map_entry_t left, right, root, y;
1131
1132 left = right = &map->header;
1133 root = map->root;
1134 while (root != NULL && root->max_free >= length) {
1135 KASSERT(left->end <= root->start &&
1136 root->end <= right->start,
1137 ("%s: root not within tree bounds", __func__));
1138 if (addr < root->start) {
1139 SPLAY_LEFT_STEP(root, y, left, right,
1140 y->max_free >= length && addr < y->start);
1141 } else if (addr >= root->end) {
1142 SPLAY_RIGHT_STEP(root, y, left, right,
1143 y->max_free >= length && addr >= y->end);
1144 } else
1145 break;
1146 }
1147 *llist = left;
1148 *rlist = right;
1149 return (root);
1150 }
1151
1152 static __always_inline void
vm_map_splay_findnext(vm_map_entry_t root,vm_map_entry_t * rlist)1153 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1154 {
1155 vm_map_entry_t hi, right, y;
1156
1157 right = *rlist;
1158 hi = root->right == right ? NULL : root->right;
1159 if (hi == NULL)
1160 return;
1161 do
1162 SPLAY_LEFT_STEP(hi, y, root, right, true);
1163 while (hi != NULL);
1164 *rlist = right;
1165 }
1166
1167 static __always_inline void
vm_map_splay_findprev(vm_map_entry_t root,vm_map_entry_t * llist)1168 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1169 {
1170 vm_map_entry_t left, lo, y;
1171
1172 left = *llist;
1173 lo = root->left == left ? NULL : root->left;
1174 if (lo == NULL)
1175 return;
1176 do
1177 SPLAY_RIGHT_STEP(lo, y, left, root, true);
1178 while (lo != NULL);
1179 *llist = left;
1180 }
1181
1182 static inline void
vm_map_entry_swap(vm_map_entry_t * a,vm_map_entry_t * b)1183 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1184 {
1185 vm_map_entry_t tmp;
1186
1187 tmp = *b;
1188 *b = *a;
1189 *a = tmp;
1190 }
1191
1192 /*
1193 * Walk back up the two spines, flip the pointers and set max_free. The
1194 * subtrees of the root go at the bottom of llist and rlist.
1195 */
1196 static vm_size_t
vm_map_splay_merge_left_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t llist)1197 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1198 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1199 {
1200 do {
1201 /*
1202 * The max_free values of the children of llist are in
1203 * llist->max_free and max_free. Update with the
1204 * max value.
1205 */
1206 llist->max_free = max_free =
1207 vm_size_max(llist->max_free, max_free);
1208 vm_map_entry_swap(&llist->right, &tail);
1209 vm_map_entry_swap(&tail, &llist);
1210 } while (llist != header);
1211 root->left = tail;
1212 return (max_free);
1213 }
1214
1215 /*
1216 * When llist is known to be the predecessor of root.
1217 */
1218 static inline vm_size_t
vm_map_splay_merge_pred(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1219 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1220 vm_map_entry_t llist)
1221 {
1222 vm_size_t max_free;
1223
1224 max_free = root->start - llist->end;
1225 if (llist != header) {
1226 max_free = vm_map_splay_merge_left_walk(header, root,
1227 root, max_free, llist);
1228 } else {
1229 root->left = header;
1230 header->right = root;
1231 }
1232 return (max_free);
1233 }
1234
1235 /*
1236 * When llist may or may not be the predecessor of root.
1237 */
1238 static inline vm_size_t
vm_map_splay_merge_left(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1239 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1240 vm_map_entry_t llist)
1241 {
1242 vm_size_t max_free;
1243
1244 max_free = vm_map_entry_max_free_left(root, llist);
1245 if (llist != header) {
1246 max_free = vm_map_splay_merge_left_walk(header, root,
1247 root->left == llist ? root : root->left,
1248 max_free, llist);
1249 }
1250 return (max_free);
1251 }
1252
1253 static vm_size_t
vm_map_splay_merge_right_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t rlist)1254 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1255 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1256 {
1257 do {
1258 /*
1259 * The max_free values of the children of rlist are in
1260 * rlist->max_free and max_free. Update with the
1261 * max value.
1262 */
1263 rlist->max_free = max_free =
1264 vm_size_max(rlist->max_free, max_free);
1265 vm_map_entry_swap(&rlist->left, &tail);
1266 vm_map_entry_swap(&tail, &rlist);
1267 } while (rlist != header);
1268 root->right = tail;
1269 return (max_free);
1270 }
1271
1272 /*
1273 * When rlist is known to be the succecessor of root.
1274 */
1275 static inline vm_size_t
vm_map_splay_merge_succ(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1276 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1277 vm_map_entry_t rlist)
1278 {
1279 vm_size_t max_free;
1280
1281 max_free = rlist->start - root->end;
1282 if (rlist != header) {
1283 max_free = vm_map_splay_merge_right_walk(header, root,
1284 root, max_free, rlist);
1285 } else {
1286 root->right = header;
1287 header->left = root;
1288 }
1289 return (max_free);
1290 }
1291
1292 /*
1293 * When rlist may or may not be the succecessor of root.
1294 */
1295 static inline vm_size_t
vm_map_splay_merge_right(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1296 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1297 vm_map_entry_t rlist)
1298 {
1299 vm_size_t max_free;
1300
1301 max_free = vm_map_entry_max_free_right(root, rlist);
1302 if (rlist != header) {
1303 max_free = vm_map_splay_merge_right_walk(header, root,
1304 root->right == rlist ? root : root->right,
1305 max_free, rlist);
1306 }
1307 return (max_free);
1308 }
1309
1310 /*
1311 * vm_map_splay:
1312 *
1313 * The Sleator and Tarjan top-down splay algorithm with the
1314 * following variation. Max_free must be computed bottom-up, so
1315 * on the downward pass, maintain the left and right spines in
1316 * reverse order. Then, make a second pass up each side to fix
1317 * the pointers and compute max_free. The time bound is O(log n)
1318 * amortized.
1319 *
1320 * The tree is threaded, which means that there are no null pointers.
1321 * When a node has no left child, its left pointer points to its
1322 * predecessor, which the last ancestor on the search path from the root
1323 * where the search branched right. Likewise, when a node has no right
1324 * child, its right pointer points to its successor. The map header node
1325 * is the predecessor of the first map entry, and the successor of the
1326 * last.
1327 *
1328 * The new root is the vm_map_entry containing "addr", or else an
1329 * adjacent entry (lower if possible) if addr is not in the tree.
1330 *
1331 * The map must be locked, and leaves it so.
1332 *
1333 * Returns: the new root.
1334 */
1335 static vm_map_entry_t
vm_map_splay(vm_map_t map,vm_offset_t addr)1336 vm_map_splay(vm_map_t map, vm_offset_t addr)
1337 {
1338 vm_map_entry_t header, llist, rlist, root;
1339 vm_size_t max_free_left, max_free_right;
1340
1341 header = &map->header;
1342 root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1343 if (root != NULL) {
1344 max_free_left = vm_map_splay_merge_left(header, root, llist);
1345 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346 } else if (llist != header) {
1347 /*
1348 * Recover the greatest node in the left
1349 * subtree and make it the root.
1350 */
1351 root = llist;
1352 llist = root->right;
1353 max_free_left = vm_map_splay_merge_left(header, root, llist);
1354 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1355 } else if (rlist != header) {
1356 /*
1357 * Recover the least node in the right
1358 * subtree and make it the root.
1359 */
1360 root = rlist;
1361 rlist = root->left;
1362 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1363 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1364 } else {
1365 /* There is no root. */
1366 return (NULL);
1367 }
1368 root->max_free = vm_size_max(max_free_left, max_free_right);
1369 map->root = root;
1370 VM_MAP_ASSERT_CONSISTENT(map);
1371 return (root);
1372 }
1373
1374 /*
1375 * vm_map_entry_{un,}link:
1376 *
1377 * Insert/remove entries from maps. On linking, if new entry clips
1378 * existing entry, trim existing entry to avoid overlap, and manage
1379 * offsets. On unlinking, merge disappearing entry with neighbor, if
1380 * called for, and manage offsets. Callers should not modify fields in
1381 * entries already mapped.
1382 */
1383 static void
vm_map_entry_link(vm_map_t map,vm_map_entry_t entry)1384 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1385 {
1386 vm_map_entry_t header, llist, rlist, root;
1387 vm_size_t max_free_left, max_free_right;
1388
1389 CTR3(KTR_VM,
1390 "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1391 map->nentries, entry);
1392 VM_MAP_ASSERT_LOCKED(map);
1393 map->nentries++;
1394 header = &map->header;
1395 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1396 if (root == NULL) {
1397 /*
1398 * The new entry does not overlap any existing entry in the
1399 * map, so it becomes the new root of the map tree.
1400 */
1401 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1403 } else if (entry->start == root->start) {
1404 /*
1405 * The new entry is a clone of root, with only the end field
1406 * changed. The root entry will be shrunk to abut the new
1407 * entry, and will be the right child of the new root entry in
1408 * the modified map.
1409 */
1410 KASSERT(entry->end < root->end,
1411 ("%s: clip_start not within entry", __func__));
1412 vm_map_splay_findprev(root, &llist);
1413 if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1414 MAP_ENTRY_STACK_GAP_UP)) == 0)
1415 root->offset += entry->end - root->start;
1416 root->start = entry->end;
1417 max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1418 max_free_right = root->max_free = vm_size_max(
1419 vm_map_splay_merge_pred(entry, root, entry),
1420 vm_map_splay_merge_right(header, root, rlist));
1421 } else {
1422 /*
1423 * The new entry is a clone of root, with only the start field
1424 * changed. The root entry will be shrunk to abut the new
1425 * entry, and will be the left child of the new root entry in
1426 * the modified map.
1427 */
1428 KASSERT(entry->end == root->end,
1429 ("%s: clip_start not within entry", __func__));
1430 vm_map_splay_findnext(root, &rlist);
1431 if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1432 MAP_ENTRY_STACK_GAP_UP)) == 0)
1433 entry->offset += entry->start - root->start;
1434 root->end = entry->start;
1435 max_free_left = root->max_free = vm_size_max(
1436 vm_map_splay_merge_left(header, root, llist),
1437 vm_map_splay_merge_succ(entry, root, entry));
1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439 }
1440 entry->max_free = vm_size_max(max_free_left, max_free_right);
1441 map->root = entry;
1442 VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444
1445 enum unlink_merge_type {
1446 UNLINK_MERGE_NONE,
1447 UNLINK_MERGE_NEXT
1448 };
1449
1450 static void
vm_map_entry_unlink(vm_map_t map,vm_map_entry_t entry,enum unlink_merge_type op)1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452 enum unlink_merge_type op)
1453 {
1454 vm_map_entry_t header, llist, rlist, root;
1455 vm_size_t max_free_left, max_free_right;
1456
1457 VM_MAP_ASSERT_LOCKED(map);
1458 header = &map->header;
1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460 KASSERT(root != NULL,
1461 ("vm_map_entry_unlink: unlink object not mapped"));
1462
1463 vm_map_splay_findprev(root, &llist);
1464 vm_map_splay_findnext(root, &rlist);
1465 if (op == UNLINK_MERGE_NEXT) {
1466 rlist->start = root->start;
1467 MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1468 MAP_ENTRY_STACK_GAP_UP)) == 0);
1469 rlist->offset = root->offset;
1470 }
1471 if (llist != header) {
1472 root = llist;
1473 llist = root->right;
1474 max_free_left = vm_map_splay_merge_left(header, root, llist);
1475 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1476 } else if (rlist != header) {
1477 root = rlist;
1478 rlist = root->left;
1479 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1480 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1481 } else {
1482 header->left = header->right = header;
1483 root = NULL;
1484 }
1485 if (root != NULL)
1486 root->max_free = vm_size_max(max_free_left, max_free_right);
1487 map->root = root;
1488 VM_MAP_ASSERT_CONSISTENT(map);
1489 map->nentries--;
1490 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1491 map->nentries, entry);
1492 }
1493
1494 /*
1495 * vm_map_entry_resize:
1496 *
1497 * Resize a vm_map_entry, recompute the amount of free space that
1498 * follows it and propagate that value up the tree.
1499 *
1500 * The map must be locked, and leaves it so.
1501 */
1502 static void
vm_map_entry_resize(vm_map_t map,vm_map_entry_t entry,vm_size_t grow_amount)1503 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1504 {
1505 vm_map_entry_t header, llist, rlist, root;
1506
1507 VM_MAP_ASSERT_LOCKED(map);
1508 header = &map->header;
1509 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1510 KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1511 vm_map_splay_findnext(root, &rlist);
1512 entry->end += grow_amount;
1513 root->max_free = vm_size_max(
1514 vm_map_splay_merge_left(header, root, llist),
1515 vm_map_splay_merge_succ(header, root, rlist));
1516 map->root = root;
1517 VM_MAP_ASSERT_CONSISTENT(map);
1518 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1519 __func__, map, map->nentries, entry);
1520 }
1521
1522 /*
1523 * vm_map_lookup_entry: [ internal use only ]
1524 *
1525 * Finds the map entry containing (or
1526 * immediately preceding) the specified address
1527 * in the given map; the entry is returned
1528 * in the "entry" parameter. The boolean
1529 * result indicates whether the address is
1530 * actually contained in the map.
1531 */
1532 boolean_t
vm_map_lookup_entry(vm_map_t map,vm_offset_t address,vm_map_entry_t * entry)1533 vm_map_lookup_entry(
1534 vm_map_t map,
1535 vm_offset_t address,
1536 vm_map_entry_t *entry) /* OUT */
1537 {
1538 vm_map_entry_t cur, header, lbound, ubound;
1539 boolean_t locked;
1540
1541 /*
1542 * If the map is empty, then the map entry immediately preceding
1543 * "address" is the map's header.
1544 */
1545 header = &map->header;
1546 cur = map->root;
1547 if (cur == NULL) {
1548 *entry = header;
1549 return (FALSE);
1550 }
1551 if (address >= cur->start && cur->end > address) {
1552 *entry = cur;
1553 return (TRUE);
1554 }
1555 if ((locked = vm_map_locked(map)) ||
1556 sx_try_upgrade(&map->lock)) {
1557 /*
1558 * Splay requires a write lock on the map. However, it only
1559 * restructures the binary search tree; it does not otherwise
1560 * change the map. Thus, the map's timestamp need not change
1561 * on a temporary upgrade.
1562 */
1563 cur = vm_map_splay(map, address);
1564 if (!locked) {
1565 VM_MAP_UNLOCK_CONSISTENT(map);
1566 sx_downgrade(&map->lock);
1567 }
1568
1569 /*
1570 * If "address" is contained within a map entry, the new root
1571 * is that map entry. Otherwise, the new root is a map entry
1572 * immediately before or after "address".
1573 */
1574 if (address < cur->start) {
1575 *entry = header;
1576 return (FALSE);
1577 }
1578 *entry = cur;
1579 return (address < cur->end);
1580 }
1581 /*
1582 * Since the map is only locked for read access, perform a
1583 * standard binary search tree lookup for "address".
1584 */
1585 lbound = ubound = header;
1586 for (;;) {
1587 if (address < cur->start) {
1588 ubound = cur;
1589 cur = cur->left;
1590 if (cur == lbound)
1591 break;
1592 } else if (cur->end <= address) {
1593 lbound = cur;
1594 cur = cur->right;
1595 if (cur == ubound)
1596 break;
1597 } else {
1598 *entry = cur;
1599 return (TRUE);
1600 }
1601 }
1602 *entry = lbound;
1603 return (FALSE);
1604 }
1605
1606 /*
1607 * vm_map_insert1() is identical to vm_map_insert() except that it
1608 * returns the newly inserted map entry in '*res'. In case the new
1609 * entry is coalesced with a neighbor or an existing entry was
1610 * resized, that entry is returned. In any case, the returned entry
1611 * covers the specified address range.
1612 */
1613 static int
vm_map_insert1(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow,vm_map_entry_t * res)1614 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1615 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1616 vm_map_entry_t *res)
1617 {
1618 vm_map_entry_t new_entry, next_entry, prev_entry;
1619 struct ucred *cred;
1620 vm_eflags_t protoeflags;
1621 vm_inherit_t inheritance;
1622 u_long bdry;
1623 u_int bidx;
1624
1625 VM_MAP_ASSERT_LOCKED(map);
1626 KASSERT(object != kernel_object ||
1627 (cow & MAP_COPY_ON_WRITE) == 0,
1628 ("vm_map_insert: kernel object and COW"));
1629 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1630 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1631 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1632 object, cow));
1633 KASSERT((prot & ~max) == 0,
1634 ("prot %#x is not subset of max_prot %#x", prot, max));
1635
1636 /*
1637 * Check that the start and end points are not bogus.
1638 */
1639 if (start == end || !vm_map_range_valid(map, start, end))
1640 return (KERN_INVALID_ADDRESS);
1641
1642 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1643 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1644 return (KERN_PROTECTION_FAILURE);
1645
1646 /*
1647 * Find the entry prior to the proposed starting address; if it's part
1648 * of an existing entry, this range is bogus.
1649 */
1650 if (vm_map_lookup_entry(map, start, &prev_entry))
1651 return (KERN_NO_SPACE);
1652
1653 /*
1654 * Assert that the next entry doesn't overlap the end point.
1655 */
1656 next_entry = vm_map_entry_succ(prev_entry);
1657 if (next_entry->start < end)
1658 return (KERN_NO_SPACE);
1659
1660 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1661 max != VM_PROT_NONE))
1662 return (KERN_INVALID_ARGUMENT);
1663
1664 protoeflags = 0;
1665 if (cow & MAP_COPY_ON_WRITE)
1666 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1667 if (cow & MAP_NOFAULT)
1668 protoeflags |= MAP_ENTRY_NOFAULT;
1669 if (cow & MAP_DISABLE_SYNCER)
1670 protoeflags |= MAP_ENTRY_NOSYNC;
1671 if (cow & MAP_DISABLE_COREDUMP)
1672 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1673 if (cow & MAP_STACK_GROWS_DOWN)
1674 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1675 if (cow & MAP_STACK_GROWS_UP)
1676 protoeflags |= MAP_ENTRY_GROWS_UP;
1677 if (cow & MAP_WRITECOUNT)
1678 protoeflags |= MAP_ENTRY_WRITECNT;
1679 if (cow & MAP_VN_EXEC)
1680 protoeflags |= MAP_ENTRY_VN_EXEC;
1681 if ((cow & MAP_CREATE_GUARD) != 0)
1682 protoeflags |= MAP_ENTRY_GUARD;
1683 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1684 protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1685 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1686 protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1687 if (cow & MAP_INHERIT_SHARE)
1688 inheritance = VM_INHERIT_SHARE;
1689 else
1690 inheritance = VM_INHERIT_DEFAULT;
1691 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1692 /* This magically ignores index 0, for usual page size. */
1693 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1694 MAP_SPLIT_BOUNDARY_SHIFT;
1695 if (bidx >= MAXPAGESIZES)
1696 return (KERN_INVALID_ARGUMENT);
1697 bdry = pagesizes[bidx] - 1;
1698 if ((start & bdry) != 0 || (end & bdry) != 0)
1699 return (KERN_INVALID_ARGUMENT);
1700 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1701 }
1702
1703 cred = NULL;
1704 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1705 goto charged;
1706 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1707 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1708 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1709 return (KERN_RESOURCE_SHORTAGE);
1710 KASSERT(object == NULL ||
1711 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1712 object->cred == NULL,
1713 ("overcommit: vm_map_insert o %p", object));
1714 cred = curthread->td_ucred;
1715 }
1716
1717 charged:
1718 /* Expand the kernel pmap, if necessary. */
1719 if (map == kernel_map && end > kernel_vm_end)
1720 pmap_growkernel(end);
1721 if (object != NULL) {
1722 /*
1723 * OBJ_ONEMAPPING must be cleared unless this mapping
1724 * is trivially proven to be the only mapping for any
1725 * of the object's pages. (Object granularity
1726 * reference counting is insufficient to recognize
1727 * aliases with precision.)
1728 */
1729 if ((object->flags & OBJ_ANON) != 0) {
1730 VM_OBJECT_WLOCK(object);
1731 if (object->ref_count > 1 || object->shadow_count != 0)
1732 vm_object_clear_flag(object, OBJ_ONEMAPPING);
1733 VM_OBJECT_WUNLOCK(object);
1734 }
1735 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1736 protoeflags &&
1737 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1738 MAP_VN_EXEC)) == 0 &&
1739 prev_entry->end == start && (prev_entry->cred == cred ||
1740 (prev_entry->object.vm_object != NULL &&
1741 prev_entry->object.vm_object->cred == cred)) &&
1742 vm_object_coalesce(prev_entry->object.vm_object,
1743 prev_entry->offset,
1744 (vm_size_t)(prev_entry->end - prev_entry->start),
1745 (vm_size_t)(end - prev_entry->end), cred != NULL &&
1746 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1747 /*
1748 * We were able to extend the object. Determine if we
1749 * can extend the previous map entry to include the
1750 * new range as well.
1751 */
1752 if (prev_entry->inheritance == inheritance &&
1753 prev_entry->protection == prot &&
1754 prev_entry->max_protection == max &&
1755 prev_entry->wired_count == 0) {
1756 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1757 0, ("prev_entry %p has incoherent wiring",
1758 prev_entry));
1759 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1760 map->size += end - prev_entry->end;
1761 vm_map_entry_resize(map, prev_entry,
1762 end - prev_entry->end);
1763 *res = vm_map_try_merge_entries(map, prev_entry,
1764 next_entry);
1765 return (KERN_SUCCESS);
1766 }
1767
1768 /*
1769 * If we can extend the object but cannot extend the
1770 * map entry, we have to create a new map entry. We
1771 * must bump the ref count on the extended object to
1772 * account for it. object may be NULL.
1773 */
1774 object = prev_entry->object.vm_object;
1775 offset = prev_entry->offset +
1776 (prev_entry->end - prev_entry->start);
1777 vm_object_reference(object);
1778 if (cred != NULL && object != NULL && object->cred != NULL &&
1779 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 /* Object already accounts for this uid. */
1781 cred = NULL;
1782 }
1783 }
1784 if (cred != NULL)
1785 crhold(cred);
1786
1787 /*
1788 * Create a new entry
1789 */
1790 new_entry = vm_map_entry_create(map);
1791 new_entry->start = start;
1792 new_entry->end = end;
1793 new_entry->cred = NULL;
1794
1795 new_entry->eflags = protoeflags;
1796 new_entry->object.vm_object = object;
1797 new_entry->offset = offset;
1798
1799 new_entry->inheritance = inheritance;
1800 new_entry->protection = prot;
1801 new_entry->max_protection = max;
1802 new_entry->wired_count = 0;
1803 new_entry->wiring_thread = NULL;
1804 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805 new_entry->next_read = start;
1806
1807 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 new_entry->cred = cred;
1810
1811 /*
1812 * Insert the new entry into the list
1813 */
1814 vm_map_entry_link(map, new_entry);
1815 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 map->size += new_entry->end - new_entry->start;
1817
1818 /*
1819 * Try to coalesce the new entry with both the previous and next
1820 * entries in the list. Previously, we only attempted to coalesce
1821 * with the previous entry when object is NULL. Here, we handle the
1822 * other cases, which are less common.
1823 */
1824 vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 *res = vm_map_try_merge_entries(map, new_entry, next_entry);
1826
1827 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 end - start, cow & MAP_PREFAULT_PARTIAL);
1830 }
1831
1832 return (KERN_SUCCESS);
1833 }
1834
1835 /*
1836 * vm_map_insert:
1837 *
1838 * Inserts the given VM object into the target map at the
1839 * specified address range.
1840 *
1841 * Requires that the map be locked, and leaves it so.
1842 *
1843 * If object is non-NULL, ref count must be bumped by caller
1844 * prior to making call to account for the new entry.
1845 */
1846 int
vm_map_insert(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow)1847 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1848 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1849 {
1850 vm_map_entry_t res;
1851
1852 return (vm_map_insert1(map, object, offset, start, end, prot, max,
1853 cow, &res));
1854 }
1855
1856 /*
1857 * vm_map_findspace:
1858 *
1859 * Find the first fit (lowest VM address) for "length" free bytes
1860 * beginning at address >= start in the given map.
1861 *
1862 * In a vm_map_entry, "max_free" is the maximum amount of
1863 * contiguous free space between an entry in its subtree and a
1864 * neighbor of that entry. This allows finding a free region in
1865 * one path down the tree, so O(log n) amortized with splay
1866 * trees.
1867 *
1868 * The map must be locked, and leaves it so.
1869 *
1870 * Returns: starting address if sufficient space,
1871 * vm_map_max(map)-length+1 if insufficient space.
1872 */
1873 vm_offset_t
vm_map_findspace(vm_map_t map,vm_offset_t start,vm_size_t length)1874 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1875 {
1876 vm_map_entry_t header, llist, rlist, root, y;
1877 vm_size_t left_length, max_free_left, max_free_right;
1878 vm_offset_t gap_end;
1879
1880 VM_MAP_ASSERT_LOCKED(map);
1881
1882 /*
1883 * Request must fit within min/max VM address and must avoid
1884 * address wrap.
1885 */
1886 start = MAX(start, vm_map_min(map));
1887 if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1888 return (vm_map_max(map) - length + 1);
1889
1890 /* Empty tree means wide open address space. */
1891 if (map->root == NULL)
1892 return (start);
1893
1894 /*
1895 * After splay_split, if start is within an entry, push it to the start
1896 * of the following gap. If rlist is at the end of the gap containing
1897 * start, save the end of that gap in gap_end to see if the gap is big
1898 * enough; otherwise set gap_end to start skip gap-checking and move
1899 * directly to a search of the right subtree.
1900 */
1901 header = &map->header;
1902 root = vm_map_splay_split(map, start, length, &llist, &rlist);
1903 gap_end = rlist->start;
1904 if (root != NULL) {
1905 start = root->end;
1906 if (root->right != rlist)
1907 gap_end = start;
1908 max_free_left = vm_map_splay_merge_left(header, root, llist);
1909 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1910 } else if (rlist != header) {
1911 root = rlist;
1912 rlist = root->left;
1913 max_free_left = vm_map_splay_merge_pred(header, root, llist);
1914 max_free_right = vm_map_splay_merge_right(header, root, rlist);
1915 } else {
1916 root = llist;
1917 llist = root->right;
1918 max_free_left = vm_map_splay_merge_left(header, root, llist);
1919 max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1920 }
1921 root->max_free = vm_size_max(max_free_left, max_free_right);
1922 map->root = root;
1923 VM_MAP_ASSERT_CONSISTENT(map);
1924 if (length <= gap_end - start)
1925 return (start);
1926
1927 /* With max_free, can immediately tell if no solution. */
1928 if (root->right == header || length > root->right->max_free)
1929 return (vm_map_max(map) - length + 1);
1930
1931 /*
1932 * Splay for the least large-enough gap in the right subtree.
1933 */
1934 llist = rlist = header;
1935 for (left_length = 0;;
1936 left_length = vm_map_entry_max_free_left(root, llist)) {
1937 if (length <= left_length)
1938 SPLAY_LEFT_STEP(root, y, llist, rlist,
1939 length <= vm_map_entry_max_free_left(y, llist));
1940 else
1941 SPLAY_RIGHT_STEP(root, y, llist, rlist,
1942 length > vm_map_entry_max_free_left(y, root));
1943 if (root == NULL)
1944 break;
1945 }
1946 root = llist;
1947 llist = root->right;
1948 max_free_left = vm_map_splay_merge_left(header, root, llist);
1949 if (rlist == header) {
1950 root->max_free = vm_size_max(max_free_left,
1951 vm_map_splay_merge_succ(header, root, rlist));
1952 } else {
1953 y = rlist;
1954 rlist = y->left;
1955 y->max_free = vm_size_max(
1956 vm_map_splay_merge_pred(root, y, root),
1957 vm_map_splay_merge_right(header, y, rlist));
1958 root->max_free = vm_size_max(max_free_left, y->max_free);
1959 }
1960 map->root = root;
1961 VM_MAP_ASSERT_CONSISTENT(map);
1962 return (root->end);
1963 }
1964
1965 int
vm_map_fixed(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_size_t length,vm_prot_t prot,vm_prot_t max,int cow)1966 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1967 vm_offset_t start, vm_size_t length, vm_prot_t prot,
1968 vm_prot_t max, int cow)
1969 {
1970 vm_offset_t end;
1971 int result;
1972
1973 end = start + length;
1974 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1975 object == NULL,
1976 ("vm_map_fixed: non-NULL backing object for stack"));
1977 vm_map_lock(map);
1978 VM_MAP_RANGE_CHECK(map, start, end);
1979 if ((cow & MAP_CHECK_EXCL) == 0) {
1980 result = vm_map_delete(map, start, end);
1981 if (result != KERN_SUCCESS)
1982 goto out;
1983 }
1984 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1985 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1986 prot, max, cow);
1987 } else {
1988 result = vm_map_insert(map, object, offset, start, end,
1989 prot, max, cow);
1990 }
1991 out:
1992 vm_map_unlock(map);
1993 return (result);
1994 }
1995
1996 #if VM_NRESERVLEVEL <= 1
1997 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1998 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1999 #elif VM_NRESERVLEVEL == 2
2000 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
2001 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
2002 #else
2003 #error "Unsupported VM_NRESERVLEVEL"
2004 #endif
2005
2006 static int cluster_anon = 1;
2007 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2008 &cluster_anon, 0,
2009 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2010
2011 static bool
clustering_anon_allowed(vm_offset_t addr,int cow)2012 clustering_anon_allowed(vm_offset_t addr, int cow)
2013 {
2014
2015 switch (cluster_anon) {
2016 case 0:
2017 return (false);
2018 case 1:
2019 return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2020 case 2:
2021 default:
2022 return (true);
2023 }
2024 }
2025
2026 static long aslr_restarts;
2027 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2028 &aslr_restarts, 0,
2029 "Number of aslr failures");
2030
2031 /*
2032 * Searches for the specified amount of free space in the given map with the
2033 * specified alignment. Performs an address-ordered, first-fit search from
2034 * the given address "*addr", with an optional upper bound "max_addr". If the
2035 * parameter "alignment" is zero, then the alignment is computed from the
2036 * given (object, offset) pair so as to enable the greatest possible use of
2037 * superpage mappings. Returns KERN_SUCCESS and the address of the free space
2038 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE.
2039 *
2040 * The map must be locked. Initially, there must be at least "length" bytes
2041 * of free space at the given address.
2042 */
2043 static int
vm_map_alignspace(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2044 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2045 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2046 vm_offset_t alignment)
2047 {
2048 vm_offset_t aligned_addr, free_addr;
2049
2050 VM_MAP_ASSERT_LOCKED(map);
2051 free_addr = *addr;
2052 KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2053 ("caller failed to provide space %#jx at address %p",
2054 (uintmax_t)length, (void *)free_addr));
2055 for (;;) {
2056 /*
2057 * At the start of every iteration, the free space at address
2058 * "*addr" is at least "length" bytes.
2059 */
2060 if (alignment == 0)
2061 pmap_align_superpage(object, offset, addr, length);
2062 else
2063 *addr = roundup2(*addr, alignment);
2064 aligned_addr = *addr;
2065 if (aligned_addr == free_addr) {
2066 /*
2067 * Alignment did not change "*addr", so "*addr" must
2068 * still provide sufficient free space.
2069 */
2070 return (KERN_SUCCESS);
2071 }
2072
2073 /*
2074 * Test for address wrap on "*addr". A wrapped "*addr" could
2075 * be a valid address, in which case vm_map_findspace() cannot
2076 * be relied upon to fail.
2077 */
2078 if (aligned_addr < free_addr)
2079 return (KERN_NO_SPACE);
2080 *addr = vm_map_findspace(map, aligned_addr, length);
2081 if (*addr + length > vm_map_max(map) ||
2082 (max_addr != 0 && *addr + length > max_addr))
2083 return (KERN_NO_SPACE);
2084 free_addr = *addr;
2085 if (free_addr == aligned_addr) {
2086 /*
2087 * If a successful call to vm_map_findspace() did not
2088 * change "*addr", then "*addr" must still be aligned
2089 * and provide sufficient free space.
2090 */
2091 return (KERN_SUCCESS);
2092 }
2093 }
2094 }
2095
2096 int
vm_map_find_aligned(vm_map_t map,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2097 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2098 vm_offset_t max_addr, vm_offset_t alignment)
2099 {
2100 /* XXXKIB ASLR eh ? */
2101 *addr = vm_map_findspace(map, *addr, length);
2102 if (*addr + length > vm_map_max(map) ||
2103 (max_addr != 0 && *addr + length > max_addr))
2104 return (KERN_NO_SPACE);
2105 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2106 alignment));
2107 }
2108
2109 /*
2110 * vm_map_find finds an unallocated region in the target address
2111 * map with the given length. The search is defined to be
2112 * first-fit from the specified address; the region found is
2113 * returned in the same parameter.
2114 *
2115 * If object is non-NULL, ref count must be bumped by caller
2116 * prior to making call to account for the new entry.
2117 */
2118 int
vm_map_find(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2119 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2120 vm_offset_t *addr, /* IN/OUT */
2121 vm_size_t length, vm_offset_t max_addr, int find_space,
2122 vm_prot_t prot, vm_prot_t max, int cow)
2123 {
2124 int rv;
2125
2126 vm_map_lock(map);
2127 rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2128 find_space, prot, max, cow);
2129 vm_map_unlock(map);
2130 return (rv);
2131 }
2132
2133 int
vm_map_find_locked(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2134 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2135 vm_offset_t *addr, /* IN/OUT */
2136 vm_size_t length, vm_offset_t max_addr, int find_space,
2137 vm_prot_t prot, vm_prot_t max, int cow)
2138 {
2139 vm_offset_t alignment, curr_min_addr, min_addr;
2140 int gap, pidx, rv, try;
2141 bool cluster, en_aslr, update_anon;
2142
2143 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2144 object == NULL,
2145 ("non-NULL backing object for stack"));
2146 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2147 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2148 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2149 (object->flags & OBJ_COLORED) == 0))
2150 find_space = VMFS_ANY_SPACE;
2151 if (find_space >> 8 != 0) {
2152 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2153 alignment = (vm_offset_t)1 << (find_space >> 8);
2154 } else
2155 alignment = 0;
2156 en_aslr = (map->flags & MAP_ASLR) != 0;
2157 update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2158 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2159 find_space != VMFS_NO_SPACE && object == NULL &&
2160 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2161 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2162 curr_min_addr = min_addr = *addr;
2163 if (en_aslr && min_addr == 0 && !cluster &&
2164 find_space != VMFS_NO_SPACE &&
2165 (map->flags & MAP_ASLR_IGNSTART) != 0)
2166 curr_min_addr = min_addr = vm_map_min(map);
2167 try = 0;
2168 if (cluster) {
2169 curr_min_addr = map->anon_loc;
2170 if (curr_min_addr == 0)
2171 cluster = false;
2172 }
2173 if (find_space != VMFS_NO_SPACE) {
2174 KASSERT(find_space == VMFS_ANY_SPACE ||
2175 find_space == VMFS_OPTIMAL_SPACE ||
2176 find_space == VMFS_SUPER_SPACE ||
2177 alignment != 0, ("unexpected VMFS flag"));
2178 again:
2179 /*
2180 * When creating an anonymous mapping, try clustering
2181 * with an existing anonymous mapping first.
2182 *
2183 * We make up to two attempts to find address space
2184 * for a given find_space value. The first attempt may
2185 * apply randomization or may cluster with an existing
2186 * anonymous mapping. If this first attempt fails,
2187 * perform a first-fit search of the available address
2188 * space.
2189 *
2190 * If all tries failed, and find_space is
2191 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2192 * Again enable clustering and randomization.
2193 */
2194 try++;
2195 MPASS(try <= 2);
2196
2197 if (try == 2) {
2198 /*
2199 * Second try: we failed either to find a
2200 * suitable region for randomizing the
2201 * allocation, or to cluster with an existing
2202 * mapping. Retry with free run.
2203 */
2204 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2205 vm_map_min(map) : min_addr;
2206 atomic_add_long(&aslr_restarts, 1);
2207 }
2208
2209 if (try == 1 && en_aslr && !cluster) {
2210 /*
2211 * Find space for allocation, including
2212 * gap needed for later randomization.
2213 */
2214 pidx = 0;
2215 #if VM_NRESERVLEVEL > 0
2216 if ((find_space == VMFS_SUPER_SPACE ||
2217 find_space == VMFS_OPTIMAL_SPACE) &&
2218 pagesizes[VM_NRESERVLEVEL] != 0) {
2219 /*
2220 * Do not pointlessly increase the space that
2221 * is requested from vm_map_findspace().
2222 * pmap_align_superpage() will only change a
2223 * mapping's alignment if that mapping is at
2224 * least a superpage in size.
2225 */
2226 pidx = VM_NRESERVLEVEL;
2227 while (pidx > 0 && length < pagesizes[pidx])
2228 pidx--;
2229 }
2230 #endif
2231 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2232 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2233 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2234 *addr = vm_map_findspace(map, curr_min_addr,
2235 length + gap * pagesizes[pidx]);
2236 if (*addr + length + gap * pagesizes[pidx] >
2237 vm_map_max(map))
2238 goto again;
2239 /* And randomize the start address. */
2240 *addr += (arc4random() % gap) * pagesizes[pidx];
2241 if (max_addr != 0 && *addr + length > max_addr)
2242 goto again;
2243 } else {
2244 *addr = vm_map_findspace(map, curr_min_addr, length);
2245 if (*addr + length > vm_map_max(map) ||
2246 (max_addr != 0 && *addr + length > max_addr)) {
2247 if (cluster) {
2248 cluster = false;
2249 MPASS(try == 1);
2250 goto again;
2251 }
2252 return (KERN_NO_SPACE);
2253 }
2254 }
2255
2256 if (find_space != VMFS_ANY_SPACE &&
2257 (rv = vm_map_alignspace(map, object, offset, addr, length,
2258 max_addr, alignment)) != KERN_SUCCESS) {
2259 if (find_space == VMFS_OPTIMAL_SPACE) {
2260 find_space = VMFS_ANY_SPACE;
2261 curr_min_addr = min_addr;
2262 cluster = update_anon;
2263 try = 0;
2264 goto again;
2265 }
2266 return (rv);
2267 }
2268 } else if ((cow & MAP_REMAP) != 0) {
2269 if (!vm_map_range_valid(map, *addr, *addr + length))
2270 return (KERN_INVALID_ADDRESS);
2271 rv = vm_map_delete(map, *addr, *addr + length);
2272 if (rv != KERN_SUCCESS)
2273 return (rv);
2274 }
2275 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2276 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2277 max, cow);
2278 } else {
2279 rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2280 prot, max, cow);
2281 }
2282
2283 /*
2284 * Update the starting address for clustered anonymous memory mappings
2285 * if a starting address was not previously defined or an ASLR restart
2286 * placed an anonymous memory mapping at a lower address.
2287 */
2288 if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2289 *addr < map->anon_loc))
2290 map->anon_loc = *addr;
2291 return (rv);
2292 }
2293
2294 /*
2295 * vm_map_find_min() is a variant of vm_map_find() that takes an
2296 * additional parameter ("default_addr") and treats the given address
2297 * ("*addr") differently. Specifically, it treats "*addr" as a hint
2298 * and not as the minimum address where the mapping is created.
2299 *
2300 * This function works in two phases. First, it tries to
2301 * allocate above the hint. If that fails and the hint is
2302 * greater than "default_addr", it performs a second pass, replacing
2303 * the hint with "default_addr" as the minimum address for the
2304 * allocation.
2305 */
2306 int
vm_map_find_min(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t default_addr,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2307 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2308 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2309 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2310 int cow)
2311 {
2312 vm_offset_t hint;
2313 int rv;
2314
2315 hint = *addr;
2316 if (hint == 0) {
2317 cow |= MAP_NO_HINT;
2318 *addr = hint = default_addr;
2319 }
2320 for (;;) {
2321 rv = vm_map_find(map, object, offset, addr, length, max_addr,
2322 find_space, prot, max, cow);
2323 if (rv == KERN_SUCCESS || default_addr >= hint)
2324 return (rv);
2325 *addr = hint = default_addr;
2326 }
2327 }
2328
2329 /*
2330 * A map entry with any of the following flags set must not be merged with
2331 * another entry.
2332 */
2333 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2334 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2335 MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2336
2337 static bool
vm_map_mergeable_neighbors(vm_map_entry_t prev,vm_map_entry_t entry)2338 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2339 {
2340
2341 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2342 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2343 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2344 prev, entry));
2345 return (prev->end == entry->start &&
2346 prev->object.vm_object == entry->object.vm_object &&
2347 (prev->object.vm_object == NULL ||
2348 prev->offset + (prev->end - prev->start) == entry->offset) &&
2349 prev->eflags == entry->eflags &&
2350 prev->protection == entry->protection &&
2351 prev->max_protection == entry->max_protection &&
2352 prev->inheritance == entry->inheritance &&
2353 prev->wired_count == entry->wired_count &&
2354 prev->cred == entry->cred);
2355 }
2356
2357 static void
vm_map_merged_neighbor_dispose(vm_map_t map,vm_map_entry_t entry)2358 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2359 {
2360
2361 /*
2362 * If the backing object is a vnode object, vm_object_deallocate()
2363 * calls vrele(). However, vrele() does not lock the vnode because
2364 * the vnode has additional references. Thus, the map lock can be
2365 * kept without causing a lock-order reversal with the vnode lock.
2366 *
2367 * Since we count the number of virtual page mappings in
2368 * object->un_pager.vnp.writemappings, the writemappings value
2369 * should not be adjusted when the entry is disposed of.
2370 */
2371 if (entry->object.vm_object != NULL)
2372 vm_object_deallocate(entry->object.vm_object);
2373 if (entry->cred != NULL)
2374 crfree(entry->cred);
2375 vm_map_entry_dispose(map, entry);
2376 }
2377
2378 /*
2379 * vm_map_try_merge_entries:
2380 *
2381 * Compare two map entries that represent consecutive ranges. If
2382 * the entries can be merged, expand the range of the second to
2383 * cover the range of the first and delete the first. Then return
2384 * the map entry that includes the first range.
2385 *
2386 * The map must be locked.
2387 */
2388 vm_map_entry_t
vm_map_try_merge_entries(vm_map_t map,vm_map_entry_t prev_entry,vm_map_entry_t entry)2389 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2390 vm_map_entry_t entry)
2391 {
2392
2393 VM_MAP_ASSERT_LOCKED(map);
2394 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2395 vm_map_mergeable_neighbors(prev_entry, entry)) {
2396 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2397 vm_map_merged_neighbor_dispose(map, prev_entry);
2398 return (entry);
2399 }
2400 return (prev_entry);
2401 }
2402
2403 /*
2404 * vm_map_entry_back:
2405 *
2406 * Allocate an object to back a map entry.
2407 */
2408 static inline void
vm_map_entry_back(vm_map_entry_t entry)2409 vm_map_entry_back(vm_map_entry_t entry)
2410 {
2411 vm_object_t object;
2412
2413 KASSERT(entry->object.vm_object == NULL,
2414 ("map entry %p has backing object", entry));
2415 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2416 ("map entry %p is a submap", entry));
2417 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2418 entry->cred, entry->end - entry->start);
2419 entry->object.vm_object = object;
2420 entry->offset = 0;
2421 entry->cred = NULL;
2422 }
2423
2424 /*
2425 * vm_map_entry_charge_object
2426 *
2427 * If there is no object backing this entry, create one. Otherwise, if
2428 * the entry has cred, give it to the backing object.
2429 */
2430 static inline void
vm_map_entry_charge_object(vm_map_t map,vm_map_entry_t entry)2431 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2432 {
2433
2434 VM_MAP_ASSERT_LOCKED(map);
2435 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2436 ("map entry %p is a submap", entry));
2437 if (entry->object.vm_object == NULL && !map->system_map &&
2438 (entry->eflags & MAP_ENTRY_GUARD) == 0)
2439 vm_map_entry_back(entry);
2440 else if (entry->object.vm_object != NULL &&
2441 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2442 entry->cred != NULL) {
2443 VM_OBJECT_WLOCK(entry->object.vm_object);
2444 KASSERT(entry->object.vm_object->cred == NULL,
2445 ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2446 entry->object.vm_object->cred = entry->cred;
2447 entry->object.vm_object->charge = entry->end - entry->start;
2448 VM_OBJECT_WUNLOCK(entry->object.vm_object);
2449 entry->cred = NULL;
2450 }
2451 }
2452
2453 /*
2454 * vm_map_entry_clone
2455 *
2456 * Create a duplicate map entry for clipping.
2457 */
2458 static vm_map_entry_t
vm_map_entry_clone(vm_map_t map,vm_map_entry_t entry)2459 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2460 {
2461 vm_map_entry_t new_entry;
2462
2463 VM_MAP_ASSERT_LOCKED(map);
2464
2465 /*
2466 * Create a backing object now, if none exists, so that more individual
2467 * objects won't be created after the map entry is split.
2468 */
2469 vm_map_entry_charge_object(map, entry);
2470
2471 /* Clone the entry. */
2472 new_entry = vm_map_entry_create(map);
2473 *new_entry = *entry;
2474 if (new_entry->cred != NULL)
2475 crhold(entry->cred);
2476 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2477 vm_object_reference(new_entry->object.vm_object);
2478 vm_map_entry_set_vnode_text(new_entry, true);
2479 /*
2480 * The object->un_pager.vnp.writemappings for the object of
2481 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The
2482 * virtual pages are re-distributed among the clipped entries,
2483 * so the sum is left the same.
2484 */
2485 }
2486 return (new_entry);
2487 }
2488
2489 /*
2490 * vm_map_clip_start: [ internal use only ]
2491 *
2492 * Asserts that the given entry begins at or after
2493 * the specified address; if necessary,
2494 * it splits the entry into two.
2495 */
2496 static int
vm_map_clip_start(vm_map_t map,vm_map_entry_t entry,vm_offset_t startaddr)2497 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2498 {
2499 vm_map_entry_t new_entry;
2500 int bdry_idx;
2501
2502 if (!map->system_map)
2503 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2504 "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2505 (uintmax_t)startaddr);
2506
2507 if (startaddr <= entry->start)
2508 return (KERN_SUCCESS);
2509
2510 VM_MAP_ASSERT_LOCKED(map);
2511 KASSERT(entry->end > startaddr && entry->start < startaddr,
2512 ("%s: invalid clip of entry %p", __func__, entry));
2513
2514 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2515 if (bdry_idx != 0) {
2516 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2517 return (KERN_INVALID_ARGUMENT);
2518 }
2519
2520 new_entry = vm_map_entry_clone(map, entry);
2521
2522 /*
2523 * Split off the front portion. Insert the new entry BEFORE this one,
2524 * so that this entry has the specified starting address.
2525 */
2526 new_entry->end = startaddr;
2527 vm_map_entry_link(map, new_entry);
2528 return (KERN_SUCCESS);
2529 }
2530
2531 /*
2532 * vm_map_lookup_clip_start:
2533 *
2534 * Find the entry at or just after 'start', and clip it if 'start' is in
2535 * the interior of the entry. Return entry after 'start', and in
2536 * prev_entry set the entry before 'start'.
2537 */
2538 static int
vm_map_lookup_clip_start(vm_map_t map,vm_offset_t start,vm_map_entry_t * res_entry,vm_map_entry_t * prev_entry)2539 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2540 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2541 {
2542 vm_map_entry_t entry;
2543 int rv;
2544
2545 if (!map->system_map)
2546 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2547 "%s: map %p start 0x%jx prev %p", __func__, map,
2548 (uintmax_t)start, prev_entry);
2549
2550 if (vm_map_lookup_entry(map, start, prev_entry)) {
2551 entry = *prev_entry;
2552 rv = vm_map_clip_start(map, entry, start);
2553 if (rv != KERN_SUCCESS)
2554 return (rv);
2555 *prev_entry = vm_map_entry_pred(entry);
2556 } else
2557 entry = vm_map_entry_succ(*prev_entry);
2558 *res_entry = entry;
2559 return (KERN_SUCCESS);
2560 }
2561
2562 /*
2563 * vm_map_clip_end: [ internal use only ]
2564 *
2565 * Asserts that the given entry ends at or before
2566 * the specified address; if necessary,
2567 * it splits the entry into two.
2568 */
2569 static int
vm_map_clip_end(vm_map_t map,vm_map_entry_t entry,vm_offset_t endaddr)2570 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2571 {
2572 vm_map_entry_t new_entry;
2573 int bdry_idx;
2574
2575 if (!map->system_map)
2576 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2577 "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2578 (uintmax_t)endaddr);
2579
2580 if (endaddr >= entry->end)
2581 return (KERN_SUCCESS);
2582
2583 VM_MAP_ASSERT_LOCKED(map);
2584 KASSERT(entry->start < endaddr && entry->end > endaddr,
2585 ("%s: invalid clip of entry %p", __func__, entry));
2586
2587 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2588 if (bdry_idx != 0) {
2589 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2590 return (KERN_INVALID_ARGUMENT);
2591 }
2592
2593 new_entry = vm_map_entry_clone(map, entry);
2594
2595 /*
2596 * Split off the back portion. Insert the new entry AFTER this one,
2597 * so that this entry has the specified ending address.
2598 */
2599 new_entry->start = endaddr;
2600 vm_map_entry_link(map, new_entry);
2601
2602 return (KERN_SUCCESS);
2603 }
2604
2605 /*
2606 * vm_map_submap: [ kernel use only ]
2607 *
2608 * Mark the given range as handled by a subordinate map.
2609 *
2610 * This range must have been created with vm_map_find,
2611 * and no other operations may have been performed on this
2612 * range prior to calling vm_map_submap.
2613 *
2614 * Only a limited number of operations can be performed
2615 * within this rage after calling vm_map_submap:
2616 * vm_fault
2617 * [Don't try vm_map_copy!]
2618 *
2619 * To remove a submapping, one must first remove the
2620 * range from the superior map, and then destroy the
2621 * submap (if desired). [Better yet, don't try it.]
2622 */
2623 int
vm_map_submap(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_map_t submap)2624 vm_map_submap(
2625 vm_map_t map,
2626 vm_offset_t start,
2627 vm_offset_t end,
2628 vm_map_t submap)
2629 {
2630 vm_map_entry_t entry;
2631 int result;
2632
2633 result = KERN_INVALID_ARGUMENT;
2634
2635 vm_map_lock(submap);
2636 submap->flags |= MAP_IS_SUB_MAP;
2637 vm_map_unlock(submap);
2638
2639 vm_map_lock(map);
2640 VM_MAP_RANGE_CHECK(map, start, end);
2641 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2642 (entry->eflags & MAP_ENTRY_COW) == 0 &&
2643 entry->object.vm_object == NULL) {
2644 result = vm_map_clip_start(map, entry, start);
2645 if (result != KERN_SUCCESS)
2646 goto unlock;
2647 result = vm_map_clip_end(map, entry, end);
2648 if (result != KERN_SUCCESS)
2649 goto unlock;
2650 entry->object.sub_map = submap;
2651 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2652 result = KERN_SUCCESS;
2653 }
2654 unlock:
2655 vm_map_unlock(map);
2656
2657 if (result != KERN_SUCCESS) {
2658 vm_map_lock(submap);
2659 submap->flags &= ~MAP_IS_SUB_MAP;
2660 vm_map_unlock(submap);
2661 }
2662 return (result);
2663 }
2664
2665 /*
2666 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2667 */
2668 #define MAX_INIT_PT 96
2669
2670 /*
2671 * vm_map_pmap_enter:
2672 *
2673 * Preload the specified map's pmap with mappings to the specified
2674 * object's memory-resident pages. No further physical pages are
2675 * allocated, and no further virtual pages are retrieved from secondary
2676 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a
2677 * limited number of page mappings are created at the low-end of the
2678 * specified address range. (For this purpose, a superpage mapping
2679 * counts as one page mapping.) Otherwise, all resident pages within
2680 * the specified address range are mapped.
2681 */
2682 static void
vm_map_pmap_enter(vm_map_t map,vm_offset_t addr,vm_prot_t prot,vm_object_t object,vm_pindex_t pindex,vm_size_t size,int flags)2683 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2684 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2685 {
2686 vm_offset_t start;
2687 vm_page_t p, p_start;
2688 vm_pindex_t mask, psize, threshold, tmpidx;
2689 int psind;
2690
2691 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2692 return;
2693 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2694 VM_OBJECT_WLOCK(object);
2695 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2696 pmap_object_init_pt(map->pmap, addr, object, pindex,
2697 size);
2698 VM_OBJECT_WUNLOCK(object);
2699 return;
2700 }
2701 VM_OBJECT_LOCK_DOWNGRADE(object);
2702 } else
2703 VM_OBJECT_RLOCK(object);
2704
2705 psize = atop(size);
2706 if (psize + pindex > object->size) {
2707 if (pindex >= object->size) {
2708 VM_OBJECT_RUNLOCK(object);
2709 return;
2710 }
2711 psize = object->size - pindex;
2712 }
2713
2714 start = 0;
2715 p_start = NULL;
2716 threshold = MAX_INIT_PT;
2717
2718 p = vm_page_find_least(object, pindex);
2719 /*
2720 * Assert: the variable p is either (1) the page with the
2721 * least pindex greater than or equal to the parameter pindex
2722 * or (2) NULL.
2723 */
2724 for (;
2725 p != NULL && (tmpidx = p->pindex - pindex) < psize;
2726 p = TAILQ_NEXT(p, listq)) {
2727 /*
2728 * don't allow an madvise to blow away our really
2729 * free pages allocating pv entries.
2730 */
2731 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2732 vm_page_count_severe()) ||
2733 ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2734 tmpidx >= threshold)) {
2735 psize = tmpidx;
2736 break;
2737 }
2738 if (vm_page_all_valid(p)) {
2739 if (p_start == NULL) {
2740 start = addr + ptoa(tmpidx);
2741 p_start = p;
2742 }
2743 /* Jump ahead if a superpage mapping is possible. */
2744 for (psind = p->psind; psind > 0; psind--) {
2745 if (((addr + ptoa(tmpidx)) &
2746 (pagesizes[psind] - 1)) == 0) {
2747 mask = atop(pagesizes[psind]) - 1;
2748 if (tmpidx + mask < psize &&
2749 vm_page_ps_test(p, psind,
2750 PS_ALL_VALID, NULL)) {
2751 p += mask;
2752 threshold += mask;
2753 break;
2754 }
2755 }
2756 }
2757 } else if (p_start != NULL) {
2758 pmap_enter_object(map->pmap, start, addr +
2759 ptoa(tmpidx), p_start, prot);
2760 p_start = NULL;
2761 }
2762 }
2763 if (p_start != NULL)
2764 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2765 p_start, prot);
2766 VM_OBJECT_RUNLOCK(object);
2767 }
2768
2769 static void
vm_map_protect_guard(vm_map_entry_t entry,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2770 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2771 vm_prot_t new_maxprot, int flags)
2772 {
2773 vm_prot_t old_prot;
2774
2775 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2776 if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2777 MAP_ENTRY_STACK_GAP_DN)) == 0)
2778 return;
2779
2780 old_prot = PROT_EXTRACT(entry->offset);
2781 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2782 entry->offset = PROT_MAX(new_maxprot) |
2783 (new_maxprot & old_prot);
2784 }
2785 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2786 entry->offset = new_prot | PROT_MAX(
2787 PROT_MAX_EXTRACT(entry->offset));
2788 }
2789 }
2790
2791 /*
2792 * vm_map_protect:
2793 *
2794 * Sets the protection and/or the maximum protection of the
2795 * specified address region in the target map.
2796 */
2797 int
vm_map_protect(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2798 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2799 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2800 {
2801 vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2802 vm_object_t obj;
2803 struct ucred *cred;
2804 vm_offset_t orig_start;
2805 vm_prot_t check_prot, max_prot, old_prot;
2806 int rv;
2807
2808 if (start == end)
2809 return (KERN_SUCCESS);
2810
2811 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2812 VM_MAP_PROTECT_SET_MAXPROT) &&
2813 !CONTAINS_BITS(new_maxprot, new_prot))
2814 return (KERN_OUT_OF_BOUNDS);
2815
2816 orig_start = start;
2817 again:
2818 in_tran = NULL;
2819 start = orig_start;
2820 vm_map_lock(map);
2821
2822 if ((map->flags & MAP_WXORX) != 0 &&
2823 (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2824 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2825 vm_map_unlock(map);
2826 return (KERN_PROTECTION_FAILURE);
2827 }
2828
2829 /*
2830 * Ensure that we are not concurrently wiring pages. vm_map_wire() may
2831 * need to fault pages into the map and will drop the map lock while
2832 * doing so, and the VM object may end up in an inconsistent state if we
2833 * update the protection on the map entry in between faults.
2834 */
2835 vm_map_wait_busy(map);
2836
2837 VM_MAP_RANGE_CHECK(map, start, end);
2838
2839 if (!vm_map_lookup_entry(map, start, &first_entry))
2840 first_entry = vm_map_entry_succ(first_entry);
2841
2842 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2843 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2844 /*
2845 * Handle Linux's PROT_GROWSDOWN flag.
2846 * It means that protection is applied down to the
2847 * whole stack, including the specified range of the
2848 * mapped region, and the grow down region (AKA
2849 * guard).
2850 */
2851 while (!CONTAINS_BITS(first_entry->eflags,
2852 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2853 first_entry != vm_map_entry_first(map))
2854 first_entry = vm_map_entry_pred(first_entry);
2855 start = first_entry->start;
2856 }
2857
2858 /*
2859 * Make a first pass to check for protection violations.
2860 */
2861 check_prot = 0;
2862 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2863 check_prot |= new_prot;
2864 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2865 check_prot |= new_maxprot;
2866 for (entry = first_entry; entry->start < end;
2867 entry = vm_map_entry_succ(entry)) {
2868 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2869 vm_map_unlock(map);
2870 return (KERN_INVALID_ARGUMENT);
2871 }
2872 if ((entry->eflags & (MAP_ENTRY_GUARD |
2873 MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2874 MAP_ENTRY_GUARD)
2875 continue;
2876 max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2877 MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2878 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2879 if (!CONTAINS_BITS(max_prot, check_prot)) {
2880 vm_map_unlock(map);
2881 return (KERN_PROTECTION_FAILURE);
2882 }
2883 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2884 in_tran = entry;
2885 }
2886
2887 /*
2888 * Postpone the operation until all in-transition map entries have
2889 * stabilized. An in-transition entry might already have its pages
2890 * wired and wired_count incremented, but not yet have its
2891 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call
2892 * vm_fault_copy_entry() in the final loop below.
2893 */
2894 if (in_tran != NULL) {
2895 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2896 vm_map_unlock_and_wait(map, 0);
2897 goto again;
2898 }
2899
2900 /*
2901 * Before changing the protections, try to reserve swap space for any
2902 * private (i.e., copy-on-write) mappings that are transitioning from
2903 * read-only to read/write access. If a reservation fails, break out
2904 * of this loop early and let the next loop simplify the entries, since
2905 * some may now be mergeable.
2906 */
2907 rv = vm_map_clip_start(map, first_entry, start);
2908 if (rv != KERN_SUCCESS) {
2909 vm_map_unlock(map);
2910 return (rv);
2911 }
2912 for (entry = first_entry; entry->start < end;
2913 entry = vm_map_entry_succ(entry)) {
2914 rv = vm_map_clip_end(map, entry, end);
2915 if (rv != KERN_SUCCESS) {
2916 vm_map_unlock(map);
2917 return (rv);
2918 }
2919
2920 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2921 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2922 ENTRY_CHARGED(entry) ||
2923 (entry->eflags & MAP_ENTRY_GUARD) != 0)
2924 continue;
2925
2926 cred = curthread->td_ucred;
2927 obj = entry->object.vm_object;
2928
2929 if (obj == NULL ||
2930 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2931 if (!swap_reserve(entry->end - entry->start)) {
2932 rv = KERN_RESOURCE_SHORTAGE;
2933 end = entry->end;
2934 break;
2935 }
2936 crhold(cred);
2937 entry->cred = cred;
2938 continue;
2939 }
2940
2941 VM_OBJECT_WLOCK(obj);
2942 if ((obj->flags & OBJ_SWAP) == 0) {
2943 VM_OBJECT_WUNLOCK(obj);
2944 continue;
2945 }
2946
2947 /*
2948 * Charge for the whole object allocation now, since
2949 * we cannot distinguish between non-charged and
2950 * charged clipped mapping of the same object later.
2951 */
2952 KASSERT(obj->charge == 0,
2953 ("vm_map_protect: object %p overcharged (entry %p)",
2954 obj, entry));
2955 if (!swap_reserve(ptoa(obj->size))) {
2956 VM_OBJECT_WUNLOCK(obj);
2957 rv = KERN_RESOURCE_SHORTAGE;
2958 end = entry->end;
2959 break;
2960 }
2961
2962 crhold(cred);
2963 obj->cred = cred;
2964 obj->charge = ptoa(obj->size);
2965 VM_OBJECT_WUNLOCK(obj);
2966 }
2967
2968 /*
2969 * If enough swap space was available, go back and fix up protections.
2970 * Otherwise, just simplify entries, since some may have been modified.
2971 * [Note that clipping is not necessary the second time.]
2972 */
2973 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2974 entry->start < end;
2975 vm_map_try_merge_entries(map, prev_entry, entry),
2976 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2977 if (rv != KERN_SUCCESS)
2978 continue;
2979
2980 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2981 vm_map_protect_guard(entry, new_prot, new_maxprot,
2982 flags);
2983 continue;
2984 }
2985
2986 old_prot = entry->protection;
2987
2988 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2989 entry->max_protection = new_maxprot;
2990 entry->protection = new_maxprot & old_prot;
2991 }
2992 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2993 entry->protection = new_prot;
2994
2995 /*
2996 * For user wired map entries, the normal lazy evaluation of
2997 * write access upgrades through soft page faults is
2998 * undesirable. Instead, immediately copy any pages that are
2999 * copy-on-write and enable write access in the physical map.
3000 */
3001 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
3002 (entry->protection & VM_PROT_WRITE) != 0 &&
3003 (old_prot & VM_PROT_WRITE) == 0)
3004 vm_fault_copy_entry(map, map, entry, entry, NULL);
3005
3006 /*
3007 * When restricting access, update the physical map. Worry
3008 * about copy-on-write here.
3009 */
3010 if ((old_prot & ~entry->protection) != 0) {
3011 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
3012 VM_PROT_ALL)
3013 pmap_protect(map->pmap, entry->start,
3014 entry->end,
3015 entry->protection & MASK(entry));
3016 #undef MASK
3017 }
3018 }
3019 vm_map_try_merge_entries(map, prev_entry, entry);
3020 vm_map_unlock(map);
3021 return (rv);
3022 }
3023
3024 /*
3025 * vm_map_madvise:
3026 *
3027 * This routine traverses a processes map handling the madvise
3028 * system call. Advisories are classified as either those effecting
3029 * the vm_map_entry structure, or those effecting the underlying
3030 * objects.
3031 */
3032 int
vm_map_madvise(vm_map_t map,vm_offset_t start,vm_offset_t end,int behav)3033 vm_map_madvise(
3034 vm_map_t map,
3035 vm_offset_t start,
3036 vm_offset_t end,
3037 int behav)
3038 {
3039 vm_map_entry_t entry, prev_entry;
3040 int rv;
3041 bool modify_map;
3042
3043 /*
3044 * Some madvise calls directly modify the vm_map_entry, in which case
3045 * we need to use an exclusive lock on the map and we need to perform
3046 * various clipping operations. Otherwise we only need a read-lock
3047 * on the map.
3048 */
3049 switch(behav) {
3050 case MADV_NORMAL:
3051 case MADV_SEQUENTIAL:
3052 case MADV_RANDOM:
3053 case MADV_NOSYNC:
3054 case MADV_AUTOSYNC:
3055 case MADV_NOCORE:
3056 case MADV_CORE:
3057 if (start == end)
3058 return (0);
3059 modify_map = true;
3060 vm_map_lock(map);
3061 break;
3062 case MADV_WILLNEED:
3063 case MADV_DONTNEED:
3064 case MADV_FREE:
3065 if (start == end)
3066 return (0);
3067 modify_map = false;
3068 vm_map_lock_read(map);
3069 break;
3070 default:
3071 return (EINVAL);
3072 }
3073
3074 /*
3075 * Locate starting entry and clip if necessary.
3076 */
3077 VM_MAP_RANGE_CHECK(map, start, end);
3078
3079 if (modify_map) {
3080 /*
3081 * madvise behaviors that are implemented in the vm_map_entry.
3082 *
3083 * We clip the vm_map_entry so that behavioral changes are
3084 * limited to the specified address range.
3085 */
3086 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3087 if (rv != KERN_SUCCESS) {
3088 vm_map_unlock(map);
3089 return (vm_mmap_to_errno(rv));
3090 }
3091
3092 for (; entry->start < end; prev_entry = entry,
3093 entry = vm_map_entry_succ(entry)) {
3094 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3095 continue;
3096
3097 rv = vm_map_clip_end(map, entry, end);
3098 if (rv != KERN_SUCCESS) {
3099 vm_map_unlock(map);
3100 return (vm_mmap_to_errno(rv));
3101 }
3102
3103 switch (behav) {
3104 case MADV_NORMAL:
3105 vm_map_entry_set_behavior(entry,
3106 MAP_ENTRY_BEHAV_NORMAL);
3107 break;
3108 case MADV_SEQUENTIAL:
3109 vm_map_entry_set_behavior(entry,
3110 MAP_ENTRY_BEHAV_SEQUENTIAL);
3111 break;
3112 case MADV_RANDOM:
3113 vm_map_entry_set_behavior(entry,
3114 MAP_ENTRY_BEHAV_RANDOM);
3115 break;
3116 case MADV_NOSYNC:
3117 entry->eflags |= MAP_ENTRY_NOSYNC;
3118 break;
3119 case MADV_AUTOSYNC:
3120 entry->eflags &= ~MAP_ENTRY_NOSYNC;
3121 break;
3122 case MADV_NOCORE:
3123 entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3124 break;
3125 case MADV_CORE:
3126 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3127 break;
3128 default:
3129 break;
3130 }
3131 vm_map_try_merge_entries(map, prev_entry, entry);
3132 }
3133 vm_map_try_merge_entries(map, prev_entry, entry);
3134 vm_map_unlock(map);
3135 } else {
3136 vm_pindex_t pstart, pend;
3137
3138 /*
3139 * madvise behaviors that are implemented in the underlying
3140 * vm_object.
3141 *
3142 * Since we don't clip the vm_map_entry, we have to clip
3143 * the vm_object pindex and count.
3144 */
3145 if (!vm_map_lookup_entry(map, start, &entry))
3146 entry = vm_map_entry_succ(entry);
3147 for (; entry->start < end;
3148 entry = vm_map_entry_succ(entry)) {
3149 vm_offset_t useEnd, useStart;
3150
3151 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3152 MAP_ENTRY_GUARD)) != 0)
3153 continue;
3154
3155 /*
3156 * MADV_FREE would otherwise rewind time to
3157 * the creation of the shadow object. Because
3158 * we hold the VM map read-locked, neither the
3159 * entry's object nor the presence of a
3160 * backing object can change.
3161 */
3162 if (behav == MADV_FREE &&
3163 entry->object.vm_object != NULL &&
3164 entry->object.vm_object->backing_object != NULL)
3165 continue;
3166
3167 pstart = OFF_TO_IDX(entry->offset);
3168 pend = pstart + atop(entry->end - entry->start);
3169 useStart = entry->start;
3170 useEnd = entry->end;
3171
3172 if (entry->start < start) {
3173 pstart += atop(start - entry->start);
3174 useStart = start;
3175 }
3176 if (entry->end > end) {
3177 pend -= atop(entry->end - end);
3178 useEnd = end;
3179 }
3180
3181 if (pstart >= pend)
3182 continue;
3183
3184 /*
3185 * Perform the pmap_advise() before clearing
3186 * PGA_REFERENCED in vm_page_advise(). Otherwise, a
3187 * concurrent pmap operation, such as pmap_remove(),
3188 * could clear a reference in the pmap and set
3189 * PGA_REFERENCED on the page before the pmap_advise()
3190 * had completed. Consequently, the page would appear
3191 * referenced based upon an old reference that
3192 * occurred before this pmap_advise() ran.
3193 */
3194 if (behav == MADV_DONTNEED || behav == MADV_FREE)
3195 pmap_advise(map->pmap, useStart, useEnd,
3196 behav);
3197
3198 vm_object_madvise(entry->object.vm_object, pstart,
3199 pend, behav);
3200
3201 /*
3202 * Pre-populate paging structures in the
3203 * WILLNEED case. For wired entries, the
3204 * paging structures are already populated.
3205 */
3206 if (behav == MADV_WILLNEED &&
3207 entry->wired_count == 0) {
3208 vm_map_pmap_enter(map,
3209 useStart,
3210 entry->protection,
3211 entry->object.vm_object,
3212 pstart,
3213 ptoa(pend - pstart),
3214 MAP_PREFAULT_MADVISE
3215 );
3216 }
3217 }
3218 vm_map_unlock_read(map);
3219 }
3220 return (0);
3221 }
3222
3223 /*
3224 * vm_map_inherit:
3225 *
3226 * Sets the inheritance of the specified address
3227 * range in the target map. Inheritance
3228 * affects how the map will be shared with
3229 * child maps at the time of vmspace_fork.
3230 */
3231 int
vm_map_inherit(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_inherit_t new_inheritance)3232 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3233 vm_inherit_t new_inheritance)
3234 {
3235 vm_map_entry_t entry, lentry, prev_entry, start_entry;
3236 int rv;
3237
3238 switch (new_inheritance) {
3239 case VM_INHERIT_NONE:
3240 case VM_INHERIT_COPY:
3241 case VM_INHERIT_SHARE:
3242 case VM_INHERIT_ZERO:
3243 break;
3244 default:
3245 return (KERN_INVALID_ARGUMENT);
3246 }
3247 if (start == end)
3248 return (KERN_SUCCESS);
3249 vm_map_lock(map);
3250 VM_MAP_RANGE_CHECK(map, start, end);
3251 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3252 if (rv != KERN_SUCCESS)
3253 goto unlock;
3254 if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3255 rv = vm_map_clip_end(map, lentry, end);
3256 if (rv != KERN_SUCCESS)
3257 goto unlock;
3258 }
3259 if (new_inheritance == VM_INHERIT_COPY) {
3260 for (entry = start_entry; entry->start < end;
3261 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3262 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3263 != 0) {
3264 rv = KERN_INVALID_ARGUMENT;
3265 goto unlock;
3266 }
3267 }
3268 }
3269 for (entry = start_entry; entry->start < end; prev_entry = entry,
3270 entry = vm_map_entry_succ(entry)) {
3271 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3272 entry, (uintmax_t)entry->end, (uintmax_t)end));
3273 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3274 new_inheritance != VM_INHERIT_ZERO)
3275 entry->inheritance = new_inheritance;
3276 vm_map_try_merge_entries(map, prev_entry, entry);
3277 }
3278 vm_map_try_merge_entries(map, prev_entry, entry);
3279 unlock:
3280 vm_map_unlock(map);
3281 return (rv);
3282 }
3283
3284 /*
3285 * vm_map_entry_in_transition:
3286 *
3287 * Release the map lock, and sleep until the entry is no longer in
3288 * transition. Awake and acquire the map lock. If the map changed while
3289 * another held the lock, lookup a possibly-changed entry at or after the
3290 * 'start' position of the old entry.
3291 */
3292 static vm_map_entry_t
vm_map_entry_in_transition(vm_map_t map,vm_offset_t in_start,vm_offset_t * io_end,bool holes_ok,vm_map_entry_t in_entry)3293 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3294 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3295 {
3296 vm_map_entry_t entry;
3297 vm_offset_t start;
3298 u_int last_timestamp;
3299
3300 VM_MAP_ASSERT_LOCKED(map);
3301 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3302 ("not in-tranition map entry %p", in_entry));
3303 /*
3304 * We have not yet clipped the entry.
3305 */
3306 start = MAX(in_start, in_entry->start);
3307 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3308 last_timestamp = map->timestamp;
3309 if (vm_map_unlock_and_wait(map, 0)) {
3310 /*
3311 * Allow interruption of user wiring/unwiring?
3312 */
3313 }
3314 vm_map_lock(map);
3315 if (last_timestamp + 1 == map->timestamp)
3316 return (in_entry);
3317
3318 /*
3319 * Look again for the entry because the map was modified while it was
3320 * unlocked. Specifically, the entry may have been clipped, merged, or
3321 * deleted.
3322 */
3323 if (!vm_map_lookup_entry(map, start, &entry)) {
3324 if (!holes_ok) {
3325 *io_end = start;
3326 return (NULL);
3327 }
3328 entry = vm_map_entry_succ(entry);
3329 }
3330 return (entry);
3331 }
3332
3333 /*
3334 * vm_map_unwire:
3335 *
3336 * Implements both kernel and user unwiring.
3337 */
3338 int
vm_map_unwire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3339 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3340 int flags)
3341 {
3342 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3343 int rv;
3344 bool holes_ok, need_wakeup, user_unwire;
3345
3346 if (start == end)
3347 return (KERN_SUCCESS);
3348 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3349 user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3350 vm_map_lock(map);
3351 VM_MAP_RANGE_CHECK(map, start, end);
3352 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3353 if (holes_ok)
3354 first_entry = vm_map_entry_succ(first_entry);
3355 else {
3356 vm_map_unlock(map);
3357 return (KERN_INVALID_ADDRESS);
3358 }
3359 }
3360 rv = KERN_SUCCESS;
3361 for (entry = first_entry; entry->start < end; entry = next_entry) {
3362 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3363 /*
3364 * We have not yet clipped the entry.
3365 */
3366 next_entry = vm_map_entry_in_transition(map, start,
3367 &end, holes_ok, entry);
3368 if (next_entry == NULL) {
3369 if (entry == first_entry) {
3370 vm_map_unlock(map);
3371 return (KERN_INVALID_ADDRESS);
3372 }
3373 rv = KERN_INVALID_ADDRESS;
3374 break;
3375 }
3376 first_entry = (entry == first_entry) ?
3377 next_entry : NULL;
3378 continue;
3379 }
3380 rv = vm_map_clip_start(map, entry, start);
3381 if (rv != KERN_SUCCESS)
3382 break;
3383 rv = vm_map_clip_end(map, entry, end);
3384 if (rv != KERN_SUCCESS)
3385 break;
3386
3387 /*
3388 * Mark the entry in case the map lock is released. (See
3389 * above.)
3390 */
3391 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3392 entry->wiring_thread == NULL,
3393 ("owned map entry %p", entry));
3394 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3395 entry->wiring_thread = curthread;
3396 next_entry = vm_map_entry_succ(entry);
3397 /*
3398 * Check the map for holes in the specified region.
3399 * If holes_ok, skip this check.
3400 */
3401 if (!holes_ok &&
3402 entry->end < end && next_entry->start > entry->end) {
3403 end = entry->end;
3404 rv = KERN_INVALID_ADDRESS;
3405 break;
3406 }
3407 /*
3408 * If system unwiring, require that the entry is system wired.
3409 */
3410 if (!user_unwire &&
3411 vm_map_entry_system_wired_count(entry) == 0) {
3412 end = entry->end;
3413 rv = KERN_INVALID_ARGUMENT;
3414 break;
3415 }
3416 }
3417 need_wakeup = false;
3418 if (first_entry == NULL &&
3419 !vm_map_lookup_entry(map, start, &first_entry)) {
3420 KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3421 prev_entry = first_entry;
3422 entry = vm_map_entry_succ(first_entry);
3423 } else {
3424 prev_entry = vm_map_entry_pred(first_entry);
3425 entry = first_entry;
3426 }
3427 for (; entry->start < end;
3428 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3429 /*
3430 * If holes_ok was specified, an empty
3431 * space in the unwired region could have been mapped
3432 * while the map lock was dropped for draining
3433 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread
3434 * could be simultaneously wiring this new mapping
3435 * entry. Detect these cases and skip any entries
3436 * marked as in transition by us.
3437 */
3438 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3439 entry->wiring_thread != curthread) {
3440 KASSERT(holes_ok,
3441 ("vm_map_unwire: !HOLESOK and new/changed entry"));
3442 continue;
3443 }
3444
3445 if (rv == KERN_SUCCESS && (!user_unwire ||
3446 (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3447 if (entry->wired_count == 1)
3448 vm_map_entry_unwire(map, entry);
3449 else
3450 entry->wired_count--;
3451 if (user_unwire)
3452 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3453 }
3454 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3455 ("vm_map_unwire: in-transition flag missing %p", entry));
3456 KASSERT(entry->wiring_thread == curthread,
3457 ("vm_map_unwire: alien wire %p", entry));
3458 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3459 entry->wiring_thread = NULL;
3460 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3461 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3462 need_wakeup = true;
3463 }
3464 vm_map_try_merge_entries(map, prev_entry, entry);
3465 }
3466 vm_map_try_merge_entries(map, prev_entry, entry);
3467 vm_map_unlock(map);
3468 if (need_wakeup)
3469 vm_map_wakeup(map);
3470 return (rv);
3471 }
3472
3473 static void
vm_map_wire_user_count_sub(u_long npages)3474 vm_map_wire_user_count_sub(u_long npages)
3475 {
3476
3477 atomic_subtract_long(&vm_user_wire_count, npages);
3478 }
3479
3480 static bool
vm_map_wire_user_count_add(u_long npages)3481 vm_map_wire_user_count_add(u_long npages)
3482 {
3483 u_long wired;
3484
3485 wired = vm_user_wire_count;
3486 do {
3487 if (npages + wired > vm_page_max_user_wired)
3488 return (false);
3489 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3490 npages + wired));
3491
3492 return (true);
3493 }
3494
3495 /*
3496 * vm_map_wire_entry_failure:
3497 *
3498 * Handle a wiring failure on the given entry.
3499 *
3500 * The map should be locked.
3501 */
3502 static void
vm_map_wire_entry_failure(vm_map_t map,vm_map_entry_t entry,vm_offset_t failed_addr)3503 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3504 vm_offset_t failed_addr)
3505 {
3506
3507 VM_MAP_ASSERT_LOCKED(map);
3508 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3509 entry->wired_count == 1,
3510 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3511 KASSERT(failed_addr < entry->end,
3512 ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3513
3514 /*
3515 * If any pages at the start of this entry were successfully wired,
3516 * then unwire them.
3517 */
3518 if (failed_addr > entry->start) {
3519 pmap_unwire(map->pmap, entry->start, failed_addr);
3520 vm_object_unwire(entry->object.vm_object, entry->offset,
3521 failed_addr - entry->start, PQ_ACTIVE);
3522 }
3523
3524 /*
3525 * Assign an out-of-range value to represent the failure to wire this
3526 * entry.
3527 */
3528 entry->wired_count = -1;
3529 }
3530
3531 int
vm_map_wire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3532 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3533 {
3534 int rv;
3535
3536 vm_map_lock(map);
3537 rv = vm_map_wire_locked(map, start, end, flags);
3538 vm_map_unlock(map);
3539 return (rv);
3540 }
3541
3542 /*
3543 * vm_map_wire_locked:
3544 *
3545 * Implements both kernel and user wiring. Returns with the map locked,
3546 * the map lock may be dropped.
3547 */
3548 int
vm_map_wire_locked(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3549 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3550 {
3551 vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3552 vm_offset_t faddr, saved_end, saved_start;
3553 u_long incr, npages;
3554 u_int bidx, last_timestamp;
3555 int rv;
3556 bool holes_ok, need_wakeup, user_wire;
3557 vm_prot_t prot;
3558
3559 VM_MAP_ASSERT_LOCKED(map);
3560
3561 if (start == end)
3562 return (KERN_SUCCESS);
3563 prot = 0;
3564 if (flags & VM_MAP_WIRE_WRITE)
3565 prot |= VM_PROT_WRITE;
3566 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3567 user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3568 VM_MAP_RANGE_CHECK(map, start, end);
3569 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3570 if (holes_ok)
3571 first_entry = vm_map_entry_succ(first_entry);
3572 else
3573 return (KERN_INVALID_ADDRESS);
3574 }
3575 for (entry = first_entry; entry->start < end; entry = next_entry) {
3576 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3577 /*
3578 * We have not yet clipped the entry.
3579 */
3580 next_entry = vm_map_entry_in_transition(map, start,
3581 &end, holes_ok, entry);
3582 if (next_entry == NULL) {
3583 if (entry == first_entry)
3584 return (KERN_INVALID_ADDRESS);
3585 rv = KERN_INVALID_ADDRESS;
3586 goto done;
3587 }
3588 first_entry = (entry == first_entry) ?
3589 next_entry : NULL;
3590 continue;
3591 }
3592 rv = vm_map_clip_start(map, entry, start);
3593 if (rv != KERN_SUCCESS)
3594 goto done;
3595 rv = vm_map_clip_end(map, entry, end);
3596 if (rv != KERN_SUCCESS)
3597 goto done;
3598
3599 /*
3600 * Mark the entry in case the map lock is released. (See
3601 * above.)
3602 */
3603 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3604 entry->wiring_thread == NULL,
3605 ("owned map entry %p", entry));
3606 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3607 entry->wiring_thread = curthread;
3608 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3609 || (entry->protection & prot) != prot) {
3610 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3611 if (!holes_ok) {
3612 end = entry->end;
3613 rv = KERN_INVALID_ADDRESS;
3614 goto done;
3615 }
3616 } else if (entry->wired_count == 0) {
3617 entry->wired_count++;
3618
3619 npages = atop(entry->end - entry->start);
3620 if (user_wire && !vm_map_wire_user_count_add(npages)) {
3621 vm_map_wire_entry_failure(map, entry,
3622 entry->start);
3623 end = entry->end;
3624 rv = KERN_RESOURCE_SHORTAGE;
3625 goto done;
3626 }
3627
3628 /*
3629 * Release the map lock, relying on the in-transition
3630 * mark. Mark the map busy for fork.
3631 */
3632 saved_start = entry->start;
3633 saved_end = entry->end;
3634 last_timestamp = map->timestamp;
3635 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3636 incr = pagesizes[bidx];
3637 vm_map_busy(map);
3638 vm_map_unlock(map);
3639
3640 for (faddr = saved_start; faddr < saved_end;
3641 faddr += incr) {
3642 /*
3643 * Simulate a fault to get the page and enter
3644 * it into the physical map.
3645 */
3646 rv = vm_fault(map, faddr, VM_PROT_NONE,
3647 VM_FAULT_WIRE, NULL);
3648 if (rv != KERN_SUCCESS)
3649 break;
3650 }
3651 vm_map_lock(map);
3652 vm_map_unbusy(map);
3653 if (last_timestamp + 1 != map->timestamp) {
3654 /*
3655 * Look again for the entry because the map was
3656 * modified while it was unlocked. The entry
3657 * may have been clipped, but NOT merged or
3658 * deleted.
3659 */
3660 if (!vm_map_lookup_entry(map, saved_start,
3661 &next_entry))
3662 KASSERT(false,
3663 ("vm_map_wire: lookup failed"));
3664 first_entry = (entry == first_entry) ?
3665 next_entry : NULL;
3666 for (entry = next_entry; entry->end < saved_end;
3667 entry = vm_map_entry_succ(entry)) {
3668 /*
3669 * In case of failure, handle entries
3670 * that were not fully wired here;
3671 * fully wired entries are handled
3672 * later.
3673 */
3674 if (rv != KERN_SUCCESS &&
3675 faddr < entry->end)
3676 vm_map_wire_entry_failure(map,
3677 entry, faddr);
3678 }
3679 }
3680 if (rv != KERN_SUCCESS) {
3681 vm_map_wire_entry_failure(map, entry, faddr);
3682 if (user_wire)
3683 vm_map_wire_user_count_sub(npages);
3684 end = entry->end;
3685 goto done;
3686 }
3687 } else if (!user_wire ||
3688 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3689 entry->wired_count++;
3690 }
3691 /*
3692 * Check the map for holes in the specified region.
3693 * If holes_ok was specified, skip this check.
3694 */
3695 next_entry = vm_map_entry_succ(entry);
3696 if (!holes_ok &&
3697 entry->end < end && next_entry->start > entry->end) {
3698 end = entry->end;
3699 rv = KERN_INVALID_ADDRESS;
3700 goto done;
3701 }
3702 }
3703 rv = KERN_SUCCESS;
3704 done:
3705 need_wakeup = false;
3706 if (first_entry == NULL &&
3707 !vm_map_lookup_entry(map, start, &first_entry)) {
3708 KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3709 prev_entry = first_entry;
3710 entry = vm_map_entry_succ(first_entry);
3711 } else {
3712 prev_entry = vm_map_entry_pred(first_entry);
3713 entry = first_entry;
3714 }
3715 for (; entry->start < end;
3716 prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3717 /*
3718 * If holes_ok was specified, an empty
3719 * space in the unwired region could have been mapped
3720 * while the map lock was dropped for faulting in the
3721 * pages or draining MAP_ENTRY_IN_TRANSITION.
3722 * Moreover, another thread could be simultaneously
3723 * wiring this new mapping entry. Detect these cases
3724 * and skip any entries marked as in transition not by us.
3725 *
3726 * Another way to get an entry not marked with
3727 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3728 * which set rv to KERN_INVALID_ARGUMENT.
3729 */
3730 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3731 entry->wiring_thread != curthread) {
3732 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3733 ("vm_map_wire: !HOLESOK and new/changed entry"));
3734 continue;
3735 }
3736
3737 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3738 /* do nothing */
3739 } else if (rv == KERN_SUCCESS) {
3740 if (user_wire)
3741 entry->eflags |= MAP_ENTRY_USER_WIRED;
3742 } else if (entry->wired_count == -1) {
3743 /*
3744 * Wiring failed on this entry. Thus, unwiring is
3745 * unnecessary.
3746 */
3747 entry->wired_count = 0;
3748 } else if (!user_wire ||
3749 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3750 /*
3751 * Undo the wiring. Wiring succeeded on this entry
3752 * but failed on a later entry.
3753 */
3754 if (entry->wired_count == 1) {
3755 vm_map_entry_unwire(map, entry);
3756 if (user_wire)
3757 vm_map_wire_user_count_sub(
3758 atop(entry->end - entry->start));
3759 } else
3760 entry->wired_count--;
3761 }
3762 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3763 ("vm_map_wire: in-transition flag missing %p", entry));
3764 KASSERT(entry->wiring_thread == curthread,
3765 ("vm_map_wire: alien wire %p", entry));
3766 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3767 MAP_ENTRY_WIRE_SKIPPED);
3768 entry->wiring_thread = NULL;
3769 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3770 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3771 need_wakeup = true;
3772 }
3773 vm_map_try_merge_entries(map, prev_entry, entry);
3774 }
3775 vm_map_try_merge_entries(map, prev_entry, entry);
3776 if (need_wakeup)
3777 vm_map_wakeup(map);
3778 return (rv);
3779 }
3780
3781 /*
3782 * vm_map_sync
3783 *
3784 * Push any dirty cached pages in the address range to their pager.
3785 * If syncio is TRUE, dirty pages are written synchronously.
3786 * If invalidate is TRUE, any cached pages are freed as well.
3787 *
3788 * If the size of the region from start to end is zero, we are
3789 * supposed to flush all modified pages within the region containing
3790 * start. Unfortunately, a region can be split or coalesced with
3791 * neighboring regions, making it difficult to determine what the
3792 * original region was. Therefore, we approximate this requirement by
3793 * flushing the current region containing start.
3794 *
3795 * Returns an error if any part of the specified range is not mapped.
3796 */
3797 int
vm_map_sync(vm_map_t map,vm_offset_t start,vm_offset_t end,boolean_t syncio,boolean_t invalidate)3798 vm_map_sync(
3799 vm_map_t map,
3800 vm_offset_t start,
3801 vm_offset_t end,
3802 boolean_t syncio,
3803 boolean_t invalidate)
3804 {
3805 vm_map_entry_t entry, first_entry, next_entry;
3806 vm_size_t size;
3807 vm_object_t object;
3808 vm_ooffset_t offset;
3809 unsigned int last_timestamp;
3810 int bdry_idx;
3811 boolean_t failed;
3812
3813 vm_map_lock_read(map);
3814 VM_MAP_RANGE_CHECK(map, start, end);
3815 if (!vm_map_lookup_entry(map, start, &first_entry)) {
3816 vm_map_unlock_read(map);
3817 return (KERN_INVALID_ADDRESS);
3818 } else if (start == end) {
3819 start = first_entry->start;
3820 end = first_entry->end;
3821 }
3822
3823 /*
3824 * Make a first pass to check for user-wired memory, holes,
3825 * and partial invalidation of largepage mappings.
3826 */
3827 for (entry = first_entry; entry->start < end; entry = next_entry) {
3828 if (invalidate) {
3829 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3830 vm_map_unlock_read(map);
3831 return (KERN_INVALID_ARGUMENT);
3832 }
3833 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3834 if (bdry_idx != 0 &&
3835 ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3836 (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3837 vm_map_unlock_read(map);
3838 return (KERN_INVALID_ARGUMENT);
3839 }
3840 }
3841 next_entry = vm_map_entry_succ(entry);
3842 if (end > entry->end &&
3843 entry->end != next_entry->start) {
3844 vm_map_unlock_read(map);
3845 return (KERN_INVALID_ADDRESS);
3846 }
3847 }
3848
3849 if (invalidate)
3850 pmap_remove(map->pmap, start, end);
3851 failed = FALSE;
3852
3853 /*
3854 * Make a second pass, cleaning/uncaching pages from the indicated
3855 * objects as we go.
3856 */
3857 for (entry = first_entry; entry->start < end;) {
3858 offset = entry->offset + (start - entry->start);
3859 size = (end <= entry->end ? end : entry->end) - start;
3860 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3861 vm_map_t smap;
3862 vm_map_entry_t tentry;
3863 vm_size_t tsize;
3864
3865 smap = entry->object.sub_map;
3866 vm_map_lock_read(smap);
3867 (void) vm_map_lookup_entry(smap, offset, &tentry);
3868 tsize = tentry->end - offset;
3869 if (tsize < size)
3870 size = tsize;
3871 object = tentry->object.vm_object;
3872 offset = tentry->offset + (offset - tentry->start);
3873 vm_map_unlock_read(smap);
3874 } else {
3875 object = entry->object.vm_object;
3876 }
3877 vm_object_reference(object);
3878 last_timestamp = map->timestamp;
3879 vm_map_unlock_read(map);
3880 if (!vm_object_sync(object, offset, size, syncio, invalidate))
3881 failed = TRUE;
3882 start += size;
3883 vm_object_deallocate(object);
3884 vm_map_lock_read(map);
3885 if (last_timestamp == map->timestamp ||
3886 !vm_map_lookup_entry(map, start, &entry))
3887 entry = vm_map_entry_succ(entry);
3888 }
3889
3890 vm_map_unlock_read(map);
3891 return (failed ? KERN_FAILURE : KERN_SUCCESS);
3892 }
3893
3894 /*
3895 * vm_map_entry_unwire: [ internal use only ]
3896 *
3897 * Make the region specified by this entry pageable.
3898 *
3899 * The map in question should be locked.
3900 * [This is the reason for this routine's existence.]
3901 */
3902 static void
vm_map_entry_unwire(vm_map_t map,vm_map_entry_t entry)3903 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3904 {
3905 vm_size_t size;
3906
3907 VM_MAP_ASSERT_LOCKED(map);
3908 KASSERT(entry->wired_count > 0,
3909 ("vm_map_entry_unwire: entry %p isn't wired", entry));
3910
3911 size = entry->end - entry->start;
3912 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3913 vm_map_wire_user_count_sub(atop(size));
3914 pmap_unwire(map->pmap, entry->start, entry->end);
3915 vm_object_unwire(entry->object.vm_object, entry->offset, size,
3916 PQ_ACTIVE);
3917 entry->wired_count = 0;
3918 }
3919
3920 static void
vm_map_entry_deallocate(vm_map_entry_t entry,boolean_t system_map)3921 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3922 {
3923
3924 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3925 vm_object_deallocate(entry->object.vm_object);
3926 uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3927 }
3928
3929 /*
3930 * vm_map_entry_delete: [ internal use only ]
3931 *
3932 * Deallocate the given entry from the target map.
3933 */
3934 static void
vm_map_entry_delete(vm_map_t map,vm_map_entry_t entry)3935 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3936 {
3937 vm_object_t object;
3938 vm_pindex_t offidxstart, offidxend, size1;
3939 vm_size_t size;
3940
3941 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3942 object = entry->object.vm_object;
3943
3944 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3945 MPASS(entry->cred == NULL);
3946 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3947 MPASS(object == NULL);
3948 vm_map_entry_deallocate(entry, map->system_map);
3949 return;
3950 }
3951
3952 size = entry->end - entry->start;
3953 map->size -= size;
3954
3955 if (entry->cred != NULL) {
3956 swap_release_by_cred(size, entry->cred);
3957 crfree(entry->cred);
3958 }
3959
3960 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3961 entry->object.vm_object = NULL;
3962 } else if ((object->flags & OBJ_ANON) != 0 ||
3963 object == kernel_object) {
3964 KASSERT(entry->cred == NULL || object->cred == NULL ||
3965 (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3966 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3967 offidxstart = OFF_TO_IDX(entry->offset);
3968 offidxend = offidxstart + atop(size);
3969 VM_OBJECT_WLOCK(object);
3970 if (object->ref_count != 1 &&
3971 ((object->flags & OBJ_ONEMAPPING) != 0 ||
3972 object == kernel_object)) {
3973 vm_object_collapse(object);
3974
3975 /*
3976 * The option OBJPR_NOTMAPPED can be passed here
3977 * because vm_map_delete() already performed
3978 * pmap_remove() on the only mapping to this range
3979 * of pages.
3980 */
3981 vm_object_page_remove(object, offidxstart, offidxend,
3982 OBJPR_NOTMAPPED);
3983 if (offidxend >= object->size &&
3984 offidxstart < object->size) {
3985 size1 = object->size;
3986 object->size = offidxstart;
3987 if (object->cred != NULL) {
3988 size1 -= object->size;
3989 KASSERT(object->charge >= ptoa(size1),
3990 ("object %p charge < 0", object));
3991 swap_release_by_cred(ptoa(size1),
3992 object->cred);
3993 object->charge -= ptoa(size1);
3994 }
3995 }
3996 }
3997 VM_OBJECT_WUNLOCK(object);
3998 }
3999 if (map->system_map)
4000 vm_map_entry_deallocate(entry, TRUE);
4001 else {
4002 entry->defer_next = curthread->td_map_def_user;
4003 curthread->td_map_def_user = entry;
4004 }
4005 }
4006
4007 /*
4008 * vm_map_delete: [ internal use only ]
4009 *
4010 * Deallocates the given address range from the target
4011 * map.
4012 */
4013 int
vm_map_delete(vm_map_t map,vm_offset_t start,vm_offset_t end)4014 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4015 {
4016 vm_map_entry_t entry, next_entry, scratch_entry;
4017 int rv;
4018
4019 VM_MAP_ASSERT_LOCKED(map);
4020
4021 if (start == end)
4022 return (KERN_SUCCESS);
4023
4024 /*
4025 * Find the start of the region, and clip it.
4026 * Step through all entries in this region.
4027 */
4028 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4029 if (rv != KERN_SUCCESS)
4030 return (rv);
4031 for (; entry->start < end; entry = next_entry) {
4032 /*
4033 * Wait for wiring or unwiring of an entry to complete.
4034 * Also wait for any system wirings to disappear on
4035 * user maps.
4036 */
4037 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4038 (vm_map_pmap(map) != kernel_pmap &&
4039 vm_map_entry_system_wired_count(entry) != 0)) {
4040 unsigned int last_timestamp;
4041 vm_offset_t saved_start;
4042
4043 saved_start = entry->start;
4044 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4045 last_timestamp = map->timestamp;
4046 (void) vm_map_unlock_and_wait(map, 0);
4047 vm_map_lock(map);
4048 if (last_timestamp + 1 != map->timestamp) {
4049 /*
4050 * Look again for the entry because the map was
4051 * modified while it was unlocked.
4052 * Specifically, the entry may have been
4053 * clipped, merged, or deleted.
4054 */
4055 rv = vm_map_lookup_clip_start(map, saved_start,
4056 &next_entry, &scratch_entry);
4057 if (rv != KERN_SUCCESS)
4058 break;
4059 } else
4060 next_entry = entry;
4061 continue;
4062 }
4063
4064 /* XXXKIB or delete to the upper superpage boundary ? */
4065 rv = vm_map_clip_end(map, entry, end);
4066 if (rv != KERN_SUCCESS)
4067 break;
4068 next_entry = vm_map_entry_succ(entry);
4069
4070 /*
4071 * Unwire before removing addresses from the pmap; otherwise,
4072 * unwiring will put the entries back in the pmap.
4073 */
4074 if (entry->wired_count != 0)
4075 vm_map_entry_unwire(map, entry);
4076
4077 /*
4078 * Remove mappings for the pages, but only if the
4079 * mappings could exist. For instance, it does not
4080 * make sense to call pmap_remove() for guard entries.
4081 */
4082 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4083 entry->object.vm_object != NULL)
4084 pmap_map_delete(map->pmap, entry->start, entry->end);
4085
4086 /*
4087 * Delete the entry only after removing all pmap
4088 * entries pointing to its pages. (Otherwise, its
4089 * page frames may be reallocated, and any modify bits
4090 * will be set in the wrong object!)
4091 */
4092 vm_map_entry_delete(map, entry);
4093 }
4094 return (rv);
4095 }
4096
4097 /*
4098 * vm_map_remove:
4099 *
4100 * Remove the given address range from the target map.
4101 * This is the exported form of vm_map_delete.
4102 */
4103 int
vm_map_remove(vm_map_t map,vm_offset_t start,vm_offset_t end)4104 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4105 {
4106 int result;
4107
4108 vm_map_lock(map);
4109 VM_MAP_RANGE_CHECK(map, start, end);
4110 result = vm_map_delete(map, start, end);
4111 vm_map_unlock(map);
4112 return (result);
4113 }
4114
4115 /*
4116 * vm_map_check_protection:
4117 *
4118 * Assert that the target map allows the specified privilege on the
4119 * entire address region given. The entire region must be allocated.
4120 *
4121 * WARNING! This code does not and should not check whether the
4122 * contents of the region is accessible. For example a smaller file
4123 * might be mapped into a larger address space.
4124 *
4125 * NOTE! This code is also called by munmap().
4126 *
4127 * The map must be locked. A read lock is sufficient.
4128 */
4129 boolean_t
vm_map_check_protection(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t protection)4130 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4131 vm_prot_t protection)
4132 {
4133 vm_map_entry_t entry;
4134 vm_map_entry_t tmp_entry;
4135
4136 if (!vm_map_lookup_entry(map, start, &tmp_entry))
4137 return (FALSE);
4138 entry = tmp_entry;
4139
4140 while (start < end) {
4141 /*
4142 * No holes allowed!
4143 */
4144 if (start < entry->start)
4145 return (FALSE);
4146 /*
4147 * Check protection associated with entry.
4148 */
4149 if ((entry->protection & protection) != protection)
4150 return (FALSE);
4151 /* go to next entry */
4152 start = entry->end;
4153 entry = vm_map_entry_succ(entry);
4154 }
4155 return (TRUE);
4156 }
4157
4158 /*
4159 *
4160 * vm_map_copy_swap_object:
4161 *
4162 * Copies a swap-backed object from an existing map entry to a
4163 * new one. Carries forward the swap charge. May change the
4164 * src object on return.
4165 */
4166 static void
vm_map_copy_swap_object(vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_offset_t size,vm_ooffset_t * fork_charge)4167 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4168 vm_offset_t size, vm_ooffset_t *fork_charge)
4169 {
4170 vm_object_t src_object;
4171 struct ucred *cred;
4172 int charged;
4173
4174 src_object = src_entry->object.vm_object;
4175 charged = ENTRY_CHARGED(src_entry);
4176 if ((src_object->flags & OBJ_ANON) != 0) {
4177 VM_OBJECT_WLOCK(src_object);
4178 vm_object_collapse(src_object);
4179 if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4180 vm_object_split(src_entry);
4181 src_object = src_entry->object.vm_object;
4182 }
4183 vm_object_reference_locked(src_object);
4184 vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4185 VM_OBJECT_WUNLOCK(src_object);
4186 } else
4187 vm_object_reference(src_object);
4188 if (src_entry->cred != NULL &&
4189 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4190 KASSERT(src_object->cred == NULL,
4191 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4192 src_object));
4193 src_object->cred = src_entry->cred;
4194 src_object->charge = size;
4195 }
4196 dst_entry->object.vm_object = src_object;
4197 if (charged) {
4198 cred = curthread->td_ucred;
4199 crhold(cred);
4200 dst_entry->cred = cred;
4201 *fork_charge += size;
4202 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4203 crhold(cred);
4204 src_entry->cred = cred;
4205 *fork_charge += size;
4206 }
4207 }
4208 }
4209
4210 /*
4211 * vm_map_copy_entry:
4212 *
4213 * Copies the contents of the source entry to the destination
4214 * entry. The entries *must* be aligned properly.
4215 */
4216 static void
vm_map_copy_entry(vm_map_t src_map,vm_map_t dst_map,vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_ooffset_t * fork_charge)4217 vm_map_copy_entry(
4218 vm_map_t src_map,
4219 vm_map_t dst_map,
4220 vm_map_entry_t src_entry,
4221 vm_map_entry_t dst_entry,
4222 vm_ooffset_t *fork_charge)
4223 {
4224 vm_object_t src_object;
4225 vm_map_entry_t fake_entry;
4226 vm_offset_t size;
4227
4228 VM_MAP_ASSERT_LOCKED(dst_map);
4229
4230 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4231 return;
4232
4233 if (src_entry->wired_count == 0 ||
4234 (src_entry->protection & VM_PROT_WRITE) == 0) {
4235 /*
4236 * If the source entry is marked needs_copy, it is already
4237 * write-protected.
4238 */
4239 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4240 (src_entry->protection & VM_PROT_WRITE) != 0) {
4241 pmap_protect(src_map->pmap,
4242 src_entry->start,
4243 src_entry->end,
4244 src_entry->protection & ~VM_PROT_WRITE);
4245 }
4246
4247 /*
4248 * Make a copy of the object.
4249 */
4250 size = src_entry->end - src_entry->start;
4251 if ((src_object = src_entry->object.vm_object) != NULL) {
4252 if ((src_object->flags & OBJ_SWAP) != 0) {
4253 vm_map_copy_swap_object(src_entry, dst_entry,
4254 size, fork_charge);
4255 /* May have split/collapsed, reload obj. */
4256 src_object = src_entry->object.vm_object;
4257 } else {
4258 vm_object_reference(src_object);
4259 dst_entry->object.vm_object = src_object;
4260 }
4261 src_entry->eflags |= MAP_ENTRY_COW |
4262 MAP_ENTRY_NEEDS_COPY;
4263 dst_entry->eflags |= MAP_ENTRY_COW |
4264 MAP_ENTRY_NEEDS_COPY;
4265 dst_entry->offset = src_entry->offset;
4266 if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4267 /*
4268 * MAP_ENTRY_WRITECNT cannot
4269 * indicate write reference from
4270 * src_entry, since the entry is
4271 * marked as needs copy. Allocate a
4272 * fake entry that is used to
4273 * decrement object->un_pager writecount
4274 * at the appropriate time. Attach
4275 * fake_entry to the deferred list.
4276 */
4277 fake_entry = vm_map_entry_create(dst_map);
4278 fake_entry->eflags = MAP_ENTRY_WRITECNT;
4279 src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4280 vm_object_reference(src_object);
4281 fake_entry->object.vm_object = src_object;
4282 fake_entry->start = src_entry->start;
4283 fake_entry->end = src_entry->end;
4284 fake_entry->defer_next =
4285 curthread->td_map_def_user;
4286 curthread->td_map_def_user = fake_entry;
4287 }
4288
4289 pmap_copy(dst_map->pmap, src_map->pmap,
4290 dst_entry->start, dst_entry->end - dst_entry->start,
4291 src_entry->start);
4292 } else {
4293 dst_entry->object.vm_object = NULL;
4294 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4295 dst_entry->offset = 0;
4296 if (src_entry->cred != NULL) {
4297 dst_entry->cred = curthread->td_ucred;
4298 crhold(dst_entry->cred);
4299 *fork_charge += size;
4300 }
4301 }
4302 } else {
4303 /*
4304 * We don't want to make writeable wired pages copy-on-write.
4305 * Immediately copy these pages into the new map by simulating
4306 * page faults. The new pages are pageable.
4307 */
4308 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4309 fork_charge);
4310 }
4311 }
4312
4313 /*
4314 * vmspace_map_entry_forked:
4315 * Update the newly-forked vmspace each time a map entry is inherited
4316 * or copied. The values for vm_dsize and vm_tsize are approximate
4317 * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4318 */
4319 static void
vmspace_map_entry_forked(const struct vmspace * vm1,struct vmspace * vm2,vm_map_entry_t entry)4320 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4321 vm_map_entry_t entry)
4322 {
4323 vm_size_t entrysize;
4324 vm_offset_t newend;
4325
4326 if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4327 return;
4328 entrysize = entry->end - entry->start;
4329 vm2->vm_map.size += entrysize;
4330 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4331 vm2->vm_ssize += btoc(entrysize);
4332 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4333 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4334 newend = MIN(entry->end,
4335 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4336 vm2->vm_dsize += btoc(newend - entry->start);
4337 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4338 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4339 newend = MIN(entry->end,
4340 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4341 vm2->vm_tsize += btoc(newend - entry->start);
4342 }
4343 }
4344
4345 /*
4346 * vmspace_fork:
4347 * Create a new process vmspace structure and vm_map
4348 * based on those of an existing process. The new map
4349 * is based on the old map, according to the inheritance
4350 * values on the regions in that map.
4351 *
4352 * XXX It might be worth coalescing the entries added to the new vmspace.
4353 *
4354 * The source map must not be locked.
4355 */
4356 struct vmspace *
vmspace_fork(struct vmspace * vm1,vm_ooffset_t * fork_charge)4357 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4358 {
4359 struct vmspace *vm2;
4360 vm_map_t new_map, old_map;
4361 vm_map_entry_t new_entry, old_entry;
4362 vm_object_t object;
4363 int error, locked __diagused;
4364 vm_inherit_t inh;
4365
4366 old_map = &vm1->vm_map;
4367 /* Copy immutable fields of vm1 to vm2. */
4368 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4369 pmap_pinit);
4370 if (vm2 == NULL)
4371 return (NULL);
4372
4373 vm2->vm_taddr = vm1->vm_taddr;
4374 vm2->vm_daddr = vm1->vm_daddr;
4375 vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4376 vm2->vm_stacktop = vm1->vm_stacktop;
4377 vm2->vm_shp_base = vm1->vm_shp_base;
4378 vm_map_lock(old_map);
4379 if (old_map->busy)
4380 vm_map_wait_busy(old_map);
4381 new_map = &vm2->vm_map;
4382 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4383 KASSERT(locked, ("vmspace_fork: lock failed"));
4384
4385 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4386 if (error != 0) {
4387 sx_xunlock(&old_map->lock);
4388 sx_xunlock(&new_map->lock);
4389 vm_map_process_deferred();
4390 vmspace_free(vm2);
4391 return (NULL);
4392 }
4393
4394 new_map->anon_loc = old_map->anon_loc;
4395 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4396 MAP_ASLR_STACK | MAP_WXORX);
4397
4398 VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4399 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4400 panic("vm_map_fork: encountered a submap");
4401
4402 inh = old_entry->inheritance;
4403 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4404 inh != VM_INHERIT_NONE)
4405 inh = VM_INHERIT_COPY;
4406
4407 switch (inh) {
4408 case VM_INHERIT_NONE:
4409 break;
4410
4411 case VM_INHERIT_SHARE:
4412 /*
4413 * Clone the entry, creating the shared object if
4414 * necessary.
4415 */
4416 object = old_entry->object.vm_object;
4417 if (object == NULL) {
4418 vm_map_entry_back(old_entry);
4419 object = old_entry->object.vm_object;
4420 }
4421
4422 /*
4423 * Add the reference before calling vm_object_shadow
4424 * to insure that a shadow object is created.
4425 */
4426 vm_object_reference(object);
4427 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4428 vm_object_shadow(&old_entry->object.vm_object,
4429 &old_entry->offset,
4430 old_entry->end - old_entry->start,
4431 old_entry->cred,
4432 /* Transfer the second reference too. */
4433 true);
4434 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4435 old_entry->cred = NULL;
4436
4437 /*
4438 * As in vm_map_merged_neighbor_dispose(),
4439 * the vnode lock will not be acquired in
4440 * this call to vm_object_deallocate().
4441 */
4442 vm_object_deallocate(object);
4443 object = old_entry->object.vm_object;
4444 } else {
4445 VM_OBJECT_WLOCK(object);
4446 vm_object_clear_flag(object, OBJ_ONEMAPPING);
4447 if (old_entry->cred != NULL) {
4448 KASSERT(object->cred == NULL,
4449 ("vmspace_fork both cred"));
4450 object->cred = old_entry->cred;
4451 object->charge = old_entry->end -
4452 old_entry->start;
4453 old_entry->cred = NULL;
4454 }
4455
4456 /*
4457 * Assert the correct state of the vnode
4458 * v_writecount while the object is locked, to
4459 * not relock it later for the assertion
4460 * correctness.
4461 */
4462 if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4463 object->type == OBJT_VNODE) {
4464 KASSERT(((struct vnode *)object->
4465 handle)->v_writecount > 0,
4466 ("vmspace_fork: v_writecount %p",
4467 object));
4468 KASSERT(object->un_pager.vnp.
4469 writemappings > 0,
4470 ("vmspace_fork: vnp.writecount %p",
4471 object));
4472 }
4473 VM_OBJECT_WUNLOCK(object);
4474 }
4475
4476 /*
4477 * Clone the entry, referencing the shared object.
4478 */
4479 new_entry = vm_map_entry_create(new_map);
4480 *new_entry = *old_entry;
4481 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4482 MAP_ENTRY_IN_TRANSITION);
4483 new_entry->wiring_thread = NULL;
4484 new_entry->wired_count = 0;
4485 if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4486 vm_pager_update_writecount(object,
4487 new_entry->start, new_entry->end);
4488 }
4489 vm_map_entry_set_vnode_text(new_entry, true);
4490
4491 /*
4492 * Insert the entry into the new map -- we know we're
4493 * inserting at the end of the new map.
4494 */
4495 vm_map_entry_link(new_map, new_entry);
4496 vmspace_map_entry_forked(vm1, vm2, new_entry);
4497
4498 /*
4499 * Update the physical map
4500 */
4501 pmap_copy(new_map->pmap, old_map->pmap,
4502 new_entry->start,
4503 (old_entry->end - old_entry->start),
4504 old_entry->start);
4505 break;
4506
4507 case VM_INHERIT_COPY:
4508 /*
4509 * Clone the entry and link into the map.
4510 */
4511 new_entry = vm_map_entry_create(new_map);
4512 *new_entry = *old_entry;
4513 /*
4514 * Copied entry is COW over the old object.
4515 */
4516 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4517 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4518 new_entry->wiring_thread = NULL;
4519 new_entry->wired_count = 0;
4520 new_entry->object.vm_object = NULL;
4521 new_entry->cred = NULL;
4522 vm_map_entry_link(new_map, new_entry);
4523 vmspace_map_entry_forked(vm1, vm2, new_entry);
4524 vm_map_copy_entry(old_map, new_map, old_entry,
4525 new_entry, fork_charge);
4526 vm_map_entry_set_vnode_text(new_entry, true);
4527 break;
4528
4529 case VM_INHERIT_ZERO:
4530 /*
4531 * Create a new anonymous mapping entry modelled from
4532 * the old one.
4533 */
4534 new_entry = vm_map_entry_create(new_map);
4535 memset(new_entry, 0, sizeof(*new_entry));
4536
4537 new_entry->start = old_entry->start;
4538 new_entry->end = old_entry->end;
4539 new_entry->eflags = old_entry->eflags &
4540 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4541 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4542 MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4543 new_entry->protection = old_entry->protection;
4544 new_entry->max_protection = old_entry->max_protection;
4545 new_entry->inheritance = VM_INHERIT_ZERO;
4546
4547 vm_map_entry_link(new_map, new_entry);
4548 vmspace_map_entry_forked(vm1, vm2, new_entry);
4549
4550 new_entry->cred = curthread->td_ucred;
4551 crhold(new_entry->cred);
4552 *fork_charge += (new_entry->end - new_entry->start);
4553
4554 break;
4555 }
4556 }
4557 /*
4558 * Use inlined vm_map_unlock() to postpone handling the deferred
4559 * map entries, which cannot be done until both old_map and
4560 * new_map locks are released.
4561 */
4562 sx_xunlock(&old_map->lock);
4563 sx_xunlock(&new_map->lock);
4564 vm_map_process_deferred();
4565
4566 return (vm2);
4567 }
4568
4569 /*
4570 * Create a process's stack for exec_new_vmspace(). This function is never
4571 * asked to wire the newly created stack.
4572 */
4573 int
vm_map_stack(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_prot_t prot,vm_prot_t max,int cow)4574 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4575 vm_prot_t prot, vm_prot_t max, int cow)
4576 {
4577 vm_size_t growsize, init_ssize;
4578 rlim_t vmemlim;
4579 int rv;
4580
4581 MPASS((map->flags & MAP_WIREFUTURE) == 0);
4582 growsize = sgrowsiz;
4583 init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4584 vm_map_lock(map);
4585 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4586 /* If we would blow our VMEM resource limit, no go */
4587 if (map->size + init_ssize > vmemlim) {
4588 rv = KERN_NO_SPACE;
4589 goto out;
4590 }
4591 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4592 max, cow);
4593 out:
4594 vm_map_unlock(map);
4595 return (rv);
4596 }
4597
4598 static int stack_guard_page = 1;
4599 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4600 &stack_guard_page, 0,
4601 "Specifies the number of guard pages for a stack that grows");
4602
4603 static int
vm_map_stack_locked(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_size_t growsize,vm_prot_t prot,vm_prot_t max,int cow)4604 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4605 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4606 {
4607 vm_map_entry_t gap_entry, new_entry, prev_entry;
4608 vm_offset_t bot, gap_bot, gap_top, top;
4609 vm_size_t init_ssize, sgp;
4610 int orient, rv;
4611
4612 /*
4613 * The stack orientation is piggybacked with the cow argument.
4614 * Extract it into orient and mask the cow argument so that we
4615 * don't pass it around further.
4616 */
4617 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4618 KASSERT(orient != 0, ("No stack grow direction"));
4619 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4620 ("bi-dir stack"));
4621
4622 if (max_ssize == 0 ||
4623 !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4624 return (KERN_INVALID_ADDRESS);
4625 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4626 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4627 (vm_size_t)stack_guard_page * PAGE_SIZE;
4628 if (sgp >= max_ssize)
4629 return (KERN_INVALID_ARGUMENT);
4630
4631 init_ssize = growsize;
4632 if (max_ssize < init_ssize + sgp)
4633 init_ssize = max_ssize - sgp;
4634
4635 /* If addr is already mapped, no go */
4636 if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4637 return (KERN_NO_SPACE);
4638
4639 /*
4640 * If we can't accommodate max_ssize in the current mapping, no go.
4641 */
4642 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4643 return (KERN_NO_SPACE);
4644
4645 /*
4646 * We initially map a stack of only init_ssize. We will grow as
4647 * needed later. Depending on the orientation of the stack (i.e.
4648 * the grow direction) we either map at the top of the range, the
4649 * bottom of the range or in the middle.
4650 *
4651 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4652 * and cow to be 0. Possibly we should eliminate these as input
4653 * parameters, and just pass these values here in the insert call.
4654 */
4655 if (orient == MAP_STACK_GROWS_DOWN) {
4656 bot = addrbos + max_ssize - init_ssize;
4657 top = bot + init_ssize;
4658 gap_bot = addrbos;
4659 gap_top = bot;
4660 } else /* if (orient == MAP_STACK_GROWS_UP) */ {
4661 bot = addrbos;
4662 top = bot + init_ssize;
4663 gap_bot = top;
4664 gap_top = addrbos + max_ssize;
4665 }
4666 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4667 &new_entry);
4668 if (rv != KERN_SUCCESS)
4669 return (rv);
4670 KASSERT(new_entry->end == top || new_entry->start == bot,
4671 ("Bad entry start/end for new stack entry"));
4672 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4673 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4674 ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4675 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4676 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4677 ("new entry lacks MAP_ENTRY_GROWS_UP"));
4678 if (gap_bot == gap_top)
4679 return (KERN_SUCCESS);
4680 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4681 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4682 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4683 if (rv == KERN_SUCCESS) {
4684 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4685 ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4686 KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4687 MAP_ENTRY_STACK_GAP_UP)) != 0,
4688 ("entry %p not stack gap %#x", gap_entry,
4689 gap_entry->eflags));
4690
4691 /*
4692 * Gap can never successfully handle a fault, so
4693 * read-ahead logic is never used for it. Re-use
4694 * next_read of the gap entry to store
4695 * stack_guard_page for vm_map_growstack().
4696 * Similarly, since a gap cannot have a backing object,
4697 * store the original stack protections in the
4698 * object offset.
4699 */
4700 gap_entry->next_read = sgp;
4701 gap_entry->offset = prot | PROT_MAX(max);
4702 } else {
4703 (void)vm_map_delete(map, bot, top);
4704 }
4705 return (rv);
4706 }
4707
4708 /*
4709 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we
4710 * successfully grow the stack.
4711 */
4712 static int
vm_map_growstack(vm_map_t map,vm_offset_t addr,vm_map_entry_t gap_entry)4713 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4714 {
4715 vm_map_entry_t stack_entry;
4716 struct proc *p;
4717 struct vmspace *vm;
4718 struct ucred *cred;
4719 vm_offset_t gap_end, gap_start, grow_start;
4720 vm_size_t grow_amount, guard, max_grow, sgp;
4721 vm_prot_t prot, max;
4722 rlim_t lmemlim, stacklim, vmemlim;
4723 int rv, rv1 __diagused;
4724 bool gap_deleted, grow_down, is_procstack;
4725 #ifdef notyet
4726 uint64_t limit;
4727 #endif
4728 #ifdef RACCT
4729 int error __diagused;
4730 #endif
4731
4732 p = curproc;
4733 vm = p->p_vmspace;
4734
4735 /*
4736 * Disallow stack growth when the access is performed by a
4737 * debugger or AIO daemon. The reason is that the wrong
4738 * resource limits are applied.
4739 */
4740 if (p != initproc && (map != &p->p_vmspace->vm_map ||
4741 p->p_textvp == NULL))
4742 return (KERN_FAILURE);
4743
4744 MPASS(!map->system_map);
4745
4746 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4747 stacklim = lim_cur(curthread, RLIMIT_STACK);
4748 vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4749 retry:
4750 /* If addr is not in a hole for a stack grow area, no need to grow. */
4751 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4752 return (KERN_FAILURE);
4753 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4754 return (KERN_SUCCESS);
4755 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4756 stack_entry = vm_map_entry_succ(gap_entry);
4757 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4758 stack_entry->start != gap_entry->end)
4759 return (KERN_FAILURE);
4760 grow_amount = round_page(stack_entry->start - addr);
4761 grow_down = true;
4762 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4763 stack_entry = vm_map_entry_pred(gap_entry);
4764 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4765 stack_entry->end != gap_entry->start)
4766 return (KERN_FAILURE);
4767 grow_amount = round_page(addr + 1 - stack_entry->end);
4768 grow_down = false;
4769 } else {
4770 return (KERN_FAILURE);
4771 }
4772 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4773 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4774 gap_entry->next_read;
4775 max_grow = gap_entry->end - gap_entry->start;
4776 if (guard > max_grow)
4777 return (KERN_NO_SPACE);
4778 max_grow -= guard;
4779 if (grow_amount > max_grow)
4780 return (KERN_NO_SPACE);
4781
4782 /*
4783 * If this is the main process stack, see if we're over the stack
4784 * limit.
4785 */
4786 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4787 addr < (vm_offset_t)vm->vm_stacktop;
4788 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4789 return (KERN_NO_SPACE);
4790
4791 #ifdef RACCT
4792 if (racct_enable) {
4793 PROC_LOCK(p);
4794 if (is_procstack && racct_set(p, RACCT_STACK,
4795 ctob(vm->vm_ssize) + grow_amount)) {
4796 PROC_UNLOCK(p);
4797 return (KERN_NO_SPACE);
4798 }
4799 PROC_UNLOCK(p);
4800 }
4801 #endif
4802
4803 grow_amount = roundup(grow_amount, sgrowsiz);
4804 if (grow_amount > max_grow)
4805 grow_amount = max_grow;
4806 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4807 grow_amount = trunc_page((vm_size_t)stacklim) -
4808 ctob(vm->vm_ssize);
4809 }
4810
4811 #ifdef notyet
4812 PROC_LOCK(p);
4813 limit = racct_get_available(p, RACCT_STACK);
4814 PROC_UNLOCK(p);
4815 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4816 grow_amount = limit - ctob(vm->vm_ssize);
4817 #endif
4818
4819 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4820 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4821 rv = KERN_NO_SPACE;
4822 goto out;
4823 }
4824 #ifdef RACCT
4825 if (racct_enable) {
4826 PROC_LOCK(p);
4827 if (racct_set(p, RACCT_MEMLOCK,
4828 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4829 PROC_UNLOCK(p);
4830 rv = KERN_NO_SPACE;
4831 goto out;
4832 }
4833 PROC_UNLOCK(p);
4834 }
4835 #endif
4836 }
4837
4838 /* If we would blow our VMEM resource limit, no go */
4839 if (map->size + grow_amount > vmemlim) {
4840 rv = KERN_NO_SPACE;
4841 goto out;
4842 }
4843 #ifdef RACCT
4844 if (racct_enable) {
4845 PROC_LOCK(p);
4846 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4847 PROC_UNLOCK(p);
4848 rv = KERN_NO_SPACE;
4849 goto out;
4850 }
4851 PROC_UNLOCK(p);
4852 }
4853 #endif
4854
4855 if (vm_map_lock_upgrade(map)) {
4856 gap_entry = NULL;
4857 vm_map_lock_read(map);
4858 goto retry;
4859 }
4860
4861 if (grow_down) {
4862 /*
4863 * The gap_entry "offset" field is overloaded. See
4864 * vm_map_stack_locked().
4865 */
4866 prot = PROT_EXTRACT(gap_entry->offset);
4867 max = PROT_MAX_EXTRACT(gap_entry->offset);
4868 sgp = gap_entry->next_read;
4869
4870 grow_start = gap_entry->end - grow_amount;
4871 if (gap_entry->start + grow_amount == gap_entry->end) {
4872 gap_start = gap_entry->start;
4873 gap_end = gap_entry->end;
4874 vm_map_entry_delete(map, gap_entry);
4875 gap_deleted = true;
4876 } else {
4877 MPASS(gap_entry->start < gap_entry->end - grow_amount);
4878 vm_map_entry_resize(map, gap_entry, -grow_amount);
4879 gap_deleted = false;
4880 }
4881 rv = vm_map_insert(map, NULL, 0, grow_start,
4882 grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4883 if (rv != KERN_SUCCESS) {
4884 if (gap_deleted) {
4885 rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4886 gap_end, VM_PROT_NONE, VM_PROT_NONE,
4887 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4888 &gap_entry);
4889 MPASS(rv1 == KERN_SUCCESS);
4890 gap_entry->next_read = sgp;
4891 gap_entry->offset = prot | PROT_MAX(max);
4892 } else
4893 vm_map_entry_resize(map, gap_entry,
4894 grow_amount);
4895 }
4896 } else {
4897 grow_start = stack_entry->end;
4898 cred = stack_entry->cred;
4899 if (cred == NULL && stack_entry->object.vm_object != NULL)
4900 cred = stack_entry->object.vm_object->cred;
4901 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4902 rv = KERN_NO_SPACE;
4903 /* Grow the underlying object if applicable. */
4904 else if (stack_entry->object.vm_object == NULL ||
4905 vm_object_coalesce(stack_entry->object.vm_object,
4906 stack_entry->offset,
4907 (vm_size_t)(stack_entry->end - stack_entry->start),
4908 grow_amount, cred != NULL)) {
4909 if (gap_entry->start + grow_amount == gap_entry->end) {
4910 vm_map_entry_delete(map, gap_entry);
4911 vm_map_entry_resize(map, stack_entry,
4912 grow_amount);
4913 } else {
4914 gap_entry->start += grow_amount;
4915 stack_entry->end += grow_amount;
4916 }
4917 map->size += grow_amount;
4918 rv = KERN_SUCCESS;
4919 } else
4920 rv = KERN_FAILURE;
4921 }
4922 if (rv == KERN_SUCCESS && is_procstack)
4923 vm->vm_ssize += btoc(grow_amount);
4924
4925 /*
4926 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4927 */
4928 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4929 rv = vm_map_wire_locked(map, grow_start,
4930 grow_start + grow_amount,
4931 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4932 }
4933 vm_map_lock_downgrade(map);
4934
4935 out:
4936 #ifdef RACCT
4937 if (racct_enable && rv != KERN_SUCCESS) {
4938 PROC_LOCK(p);
4939 error = racct_set(p, RACCT_VMEM, map->size);
4940 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4941 if (!old_mlock) {
4942 error = racct_set(p, RACCT_MEMLOCK,
4943 ptoa(pmap_wired_count(map->pmap)));
4944 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4945 }
4946 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4947 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4948 PROC_UNLOCK(p);
4949 }
4950 #endif
4951
4952 return (rv);
4953 }
4954
4955 /*
4956 * Unshare the specified VM space for exec. If other processes are
4957 * mapped to it, then create a new one. The new vmspace is null.
4958 */
4959 int
vmspace_exec(struct proc * p,vm_offset_t minuser,vm_offset_t maxuser)4960 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4961 {
4962 struct vmspace *oldvmspace = p->p_vmspace;
4963 struct vmspace *newvmspace;
4964
4965 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4966 ("vmspace_exec recursed"));
4967 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4968 if (newvmspace == NULL)
4969 return (ENOMEM);
4970 newvmspace->vm_swrss = oldvmspace->vm_swrss;
4971 /*
4972 * This code is written like this for prototype purposes. The
4973 * goal is to avoid running down the vmspace here, but let the
4974 * other process's that are still using the vmspace to finally
4975 * run it down. Even though there is little or no chance of blocking
4976 * here, it is a good idea to keep this form for future mods.
4977 */
4978 PROC_VMSPACE_LOCK(p);
4979 p->p_vmspace = newvmspace;
4980 PROC_VMSPACE_UNLOCK(p);
4981 if (p == curthread->td_proc)
4982 pmap_activate(curthread);
4983 curthread->td_pflags |= TDP_EXECVMSPC;
4984 return (0);
4985 }
4986
4987 /*
4988 * Unshare the specified VM space for forcing COW. This
4989 * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4990 */
4991 int
vmspace_unshare(struct proc * p)4992 vmspace_unshare(struct proc *p)
4993 {
4994 struct vmspace *oldvmspace = p->p_vmspace;
4995 struct vmspace *newvmspace;
4996 vm_ooffset_t fork_charge;
4997
4998 /*
4999 * The caller is responsible for ensuring that the reference count
5000 * cannot concurrently transition 1 -> 2.
5001 */
5002 if (refcount_load(&oldvmspace->vm_refcnt) == 1)
5003 return (0);
5004 fork_charge = 0;
5005 newvmspace = vmspace_fork(oldvmspace, &fork_charge);
5006 if (newvmspace == NULL)
5007 return (ENOMEM);
5008 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
5009 vmspace_free(newvmspace);
5010 return (ENOMEM);
5011 }
5012 PROC_VMSPACE_LOCK(p);
5013 p->p_vmspace = newvmspace;
5014 PROC_VMSPACE_UNLOCK(p);
5015 if (p == curthread->td_proc)
5016 pmap_activate(curthread);
5017 vmspace_free(oldvmspace);
5018 return (0);
5019 }
5020
5021 /*
5022 * vm_map_lookup:
5023 *
5024 * Finds the VM object, offset, and
5025 * protection for a given virtual address in the
5026 * specified map, assuming a page fault of the
5027 * type specified.
5028 *
5029 * Leaves the map in question locked for read; return
5030 * values are guaranteed until a vm_map_lookup_done
5031 * call is performed. Note that the map argument
5032 * is in/out; the returned map must be used in
5033 * the call to vm_map_lookup_done.
5034 *
5035 * A handle (out_entry) is returned for use in
5036 * vm_map_lookup_done, to make that fast.
5037 *
5038 * If a lookup is requested with "write protection"
5039 * specified, the map may be changed to perform virtual
5040 * copying operations, although the data referenced will
5041 * remain the same.
5042 */
5043 int
vm_map_lookup(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)5044 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */
5045 vm_offset_t vaddr,
5046 vm_prot_t fault_typea,
5047 vm_map_entry_t *out_entry, /* OUT */
5048 vm_object_t *object, /* OUT */
5049 vm_pindex_t *pindex, /* OUT */
5050 vm_prot_t *out_prot, /* OUT */
5051 boolean_t *wired) /* OUT */
5052 {
5053 vm_map_entry_t entry;
5054 vm_map_t map = *var_map;
5055 vm_prot_t prot;
5056 vm_prot_t fault_type;
5057 vm_object_t eobject;
5058 vm_size_t size;
5059 struct ucred *cred;
5060
5061 RetryLookup:
5062
5063 vm_map_lock_read(map);
5064
5065 RetryLookupLocked:
5066 /*
5067 * Lookup the faulting address.
5068 */
5069 if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5070 vm_map_unlock_read(map);
5071 return (KERN_INVALID_ADDRESS);
5072 }
5073
5074 entry = *out_entry;
5075
5076 /*
5077 * Handle submaps.
5078 */
5079 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5080 vm_map_t old_map = map;
5081
5082 *var_map = map = entry->object.sub_map;
5083 vm_map_unlock_read(old_map);
5084 goto RetryLookup;
5085 }
5086
5087 /*
5088 * Check whether this task is allowed to have this page.
5089 */
5090 prot = entry->protection;
5091 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5092 fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5093 if (prot == VM_PROT_NONE && map != kernel_map &&
5094 (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5095 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5096 MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5097 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5098 goto RetryLookupLocked;
5099 }
5100 fault_type = fault_typea & VM_PROT_ALL;
5101 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5102 vm_map_unlock_read(map);
5103 return (KERN_PROTECTION_FAILURE);
5104 }
5105 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5106 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5107 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5108 ("entry %p flags %x", entry, entry->eflags));
5109 if ((fault_typea & VM_PROT_COPY) != 0 &&
5110 (entry->max_protection & VM_PROT_WRITE) == 0 &&
5111 (entry->eflags & MAP_ENTRY_COW) == 0) {
5112 vm_map_unlock_read(map);
5113 return (KERN_PROTECTION_FAILURE);
5114 }
5115
5116 /*
5117 * If this page is not pageable, we have to get it for all possible
5118 * accesses.
5119 */
5120 *wired = (entry->wired_count != 0);
5121 if (*wired)
5122 fault_type = entry->protection;
5123 size = entry->end - entry->start;
5124
5125 /*
5126 * If the entry was copy-on-write, we either ...
5127 */
5128 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5129 /*
5130 * If we want to write the page, we may as well handle that
5131 * now since we've got the map locked.
5132 *
5133 * If we don't need to write the page, we just demote the
5134 * permissions allowed.
5135 */
5136 if ((fault_type & VM_PROT_WRITE) != 0 ||
5137 (fault_typea & VM_PROT_COPY) != 0) {
5138 /*
5139 * Make a new object, and place it in the object
5140 * chain. Note that no new references have appeared
5141 * -- one just moved from the map to the new
5142 * object.
5143 */
5144 if (vm_map_lock_upgrade(map))
5145 goto RetryLookup;
5146
5147 if (entry->cred == NULL) {
5148 /*
5149 * The debugger owner is charged for
5150 * the memory.
5151 */
5152 cred = curthread->td_ucred;
5153 crhold(cred);
5154 if (!swap_reserve_by_cred(size, cred)) {
5155 crfree(cred);
5156 vm_map_unlock(map);
5157 return (KERN_RESOURCE_SHORTAGE);
5158 }
5159 entry->cred = cred;
5160 }
5161 eobject = entry->object.vm_object;
5162 vm_object_shadow(&entry->object.vm_object,
5163 &entry->offset, size, entry->cred, false);
5164 if (eobject == entry->object.vm_object) {
5165 /*
5166 * The object was not shadowed.
5167 */
5168 swap_release_by_cred(size, entry->cred);
5169 crfree(entry->cred);
5170 }
5171 entry->cred = NULL;
5172 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5173
5174 vm_map_lock_downgrade(map);
5175 } else {
5176 /*
5177 * We're attempting to read a copy-on-write page --
5178 * don't allow writes.
5179 */
5180 prot &= ~VM_PROT_WRITE;
5181 }
5182 }
5183
5184 /*
5185 * Create an object if necessary.
5186 */
5187 if (entry->object.vm_object == NULL && !map->system_map) {
5188 if (vm_map_lock_upgrade(map))
5189 goto RetryLookup;
5190 entry->object.vm_object = vm_object_allocate_anon(atop(size),
5191 NULL, entry->cred, size);
5192 entry->offset = 0;
5193 entry->cred = NULL;
5194 vm_map_lock_downgrade(map);
5195 }
5196
5197 /*
5198 * Return the object/offset from this entry. If the entry was
5199 * copy-on-write or empty, it has been fixed up.
5200 */
5201 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5202 *object = entry->object.vm_object;
5203
5204 *out_prot = prot;
5205 return (KERN_SUCCESS);
5206 }
5207
5208 /*
5209 * vm_map_lookup_locked:
5210 *
5211 * Lookup the faulting address. A version of vm_map_lookup that returns
5212 * KERN_FAILURE instead of blocking on map lock or memory allocation.
5213 */
5214 int
vm_map_lookup_locked(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)5215 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */
5216 vm_offset_t vaddr,
5217 vm_prot_t fault_typea,
5218 vm_map_entry_t *out_entry, /* OUT */
5219 vm_object_t *object, /* OUT */
5220 vm_pindex_t *pindex, /* OUT */
5221 vm_prot_t *out_prot, /* OUT */
5222 boolean_t *wired) /* OUT */
5223 {
5224 vm_map_entry_t entry;
5225 vm_map_t map = *var_map;
5226 vm_prot_t prot;
5227 vm_prot_t fault_type = fault_typea;
5228
5229 /*
5230 * Lookup the faulting address.
5231 */
5232 if (!vm_map_lookup_entry(map, vaddr, out_entry))
5233 return (KERN_INVALID_ADDRESS);
5234
5235 entry = *out_entry;
5236
5237 /*
5238 * Fail if the entry refers to a submap.
5239 */
5240 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5241 return (KERN_FAILURE);
5242
5243 /*
5244 * Check whether this task is allowed to have this page.
5245 */
5246 prot = entry->protection;
5247 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5248 if ((fault_type & prot) != fault_type)
5249 return (KERN_PROTECTION_FAILURE);
5250
5251 /*
5252 * If this page is not pageable, we have to get it for all possible
5253 * accesses.
5254 */
5255 *wired = (entry->wired_count != 0);
5256 if (*wired)
5257 fault_type = entry->protection;
5258
5259 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5260 /*
5261 * Fail if the entry was copy-on-write for a write fault.
5262 */
5263 if (fault_type & VM_PROT_WRITE)
5264 return (KERN_FAILURE);
5265 /*
5266 * We're attempting to read a copy-on-write page --
5267 * don't allow writes.
5268 */
5269 prot &= ~VM_PROT_WRITE;
5270 }
5271
5272 /*
5273 * Fail if an object should be created.
5274 */
5275 if (entry->object.vm_object == NULL && !map->system_map)
5276 return (KERN_FAILURE);
5277
5278 /*
5279 * Return the object/offset from this entry. If the entry was
5280 * copy-on-write or empty, it has been fixed up.
5281 */
5282 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5283 *object = entry->object.vm_object;
5284
5285 *out_prot = prot;
5286 return (KERN_SUCCESS);
5287 }
5288
5289 /*
5290 * vm_map_lookup_done:
5291 *
5292 * Releases locks acquired by a vm_map_lookup
5293 * (according to the handle returned by that lookup).
5294 */
5295 void
vm_map_lookup_done(vm_map_t map,vm_map_entry_t entry)5296 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5297 {
5298 /*
5299 * Unlock the main-level map
5300 */
5301 vm_map_unlock_read(map);
5302 }
5303
5304 vm_offset_t
vm_map_max_KBI(const struct vm_map * map)5305 vm_map_max_KBI(const struct vm_map *map)
5306 {
5307
5308 return (vm_map_max(map));
5309 }
5310
5311 vm_offset_t
vm_map_min_KBI(const struct vm_map * map)5312 vm_map_min_KBI(const struct vm_map *map)
5313 {
5314
5315 return (vm_map_min(map));
5316 }
5317
5318 pmap_t
vm_map_pmap_KBI(vm_map_t map)5319 vm_map_pmap_KBI(vm_map_t map)
5320 {
5321
5322 return (map->pmap);
5323 }
5324
5325 bool
vm_map_range_valid_KBI(vm_map_t map,vm_offset_t start,vm_offset_t end)5326 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5327 {
5328
5329 return (vm_map_range_valid(map, start, end));
5330 }
5331
5332 #ifdef INVARIANTS
5333 static void
_vm_map_assert_consistent(vm_map_t map,int check)5334 _vm_map_assert_consistent(vm_map_t map, int check)
5335 {
5336 vm_map_entry_t entry, prev;
5337 vm_map_entry_t cur, header, lbound, ubound;
5338 vm_size_t max_left, max_right;
5339
5340 #ifdef DIAGNOSTIC
5341 ++map->nupdates;
5342 #endif
5343 if (enable_vmmap_check != check)
5344 return;
5345
5346 header = prev = &map->header;
5347 VM_MAP_ENTRY_FOREACH(entry, map) {
5348 KASSERT(prev->end <= entry->start,
5349 ("map %p prev->end = %jx, start = %jx", map,
5350 (uintmax_t)prev->end, (uintmax_t)entry->start));
5351 KASSERT(entry->start < entry->end,
5352 ("map %p start = %jx, end = %jx", map,
5353 (uintmax_t)entry->start, (uintmax_t)entry->end));
5354 KASSERT(entry->left == header ||
5355 entry->left->start < entry->start,
5356 ("map %p left->start = %jx, start = %jx", map,
5357 (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5358 KASSERT(entry->right == header ||
5359 entry->start < entry->right->start,
5360 ("map %p start = %jx, right->start = %jx", map,
5361 (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5362 cur = map->root;
5363 lbound = ubound = header;
5364 for (;;) {
5365 if (entry->start < cur->start) {
5366 ubound = cur;
5367 cur = cur->left;
5368 KASSERT(cur != lbound,
5369 ("map %p cannot find %jx",
5370 map, (uintmax_t)entry->start));
5371 } else if (cur->end <= entry->start) {
5372 lbound = cur;
5373 cur = cur->right;
5374 KASSERT(cur != ubound,
5375 ("map %p cannot find %jx",
5376 map, (uintmax_t)entry->start));
5377 } else {
5378 KASSERT(cur == entry,
5379 ("map %p cannot find %jx",
5380 map, (uintmax_t)entry->start));
5381 break;
5382 }
5383 }
5384 max_left = vm_map_entry_max_free_left(entry, lbound);
5385 max_right = vm_map_entry_max_free_right(entry, ubound);
5386 KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5387 ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5388 (uintmax_t)entry->max_free,
5389 (uintmax_t)max_left, (uintmax_t)max_right));
5390 prev = entry;
5391 }
5392 KASSERT(prev->end <= entry->start,
5393 ("map %p prev->end = %jx, start = %jx", map,
5394 (uintmax_t)prev->end, (uintmax_t)entry->start));
5395 }
5396 #endif
5397
5398 #include "opt_ddb.h"
5399 #ifdef DDB
5400 #include <sys/kernel.h>
5401
5402 #include <ddb/ddb.h>
5403
5404 static void
vm_map_print(vm_map_t map)5405 vm_map_print(vm_map_t map)
5406 {
5407 vm_map_entry_t entry, prev;
5408
5409 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5410 (void *)map,
5411 (void *)map->pmap, map->nentries, map->timestamp);
5412
5413 db_indent += 2;
5414 prev = &map->header;
5415 VM_MAP_ENTRY_FOREACH(entry, map) {
5416 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5417 (void *)entry, (void *)entry->start, (void *)entry->end,
5418 entry->eflags);
5419 {
5420 static const char * const inheritance_name[4] =
5421 {"share", "copy", "none", "donate_copy"};
5422
5423 db_iprintf(" prot=%x/%x/%s",
5424 entry->protection,
5425 entry->max_protection,
5426 inheritance_name[(int)(unsigned char)
5427 entry->inheritance]);
5428 if (entry->wired_count != 0)
5429 db_printf(", wired");
5430 }
5431 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5432 db_printf(", share=%p, offset=0x%jx\n",
5433 (void *)entry->object.sub_map,
5434 (uintmax_t)entry->offset);
5435 if (prev == &map->header ||
5436 prev->object.sub_map !=
5437 entry->object.sub_map) {
5438 db_indent += 2;
5439 vm_map_print((vm_map_t)entry->object.sub_map);
5440 db_indent -= 2;
5441 }
5442 } else {
5443 if (entry->cred != NULL)
5444 db_printf(", ruid %d", entry->cred->cr_ruid);
5445 db_printf(", object=%p, offset=0x%jx",
5446 (void *)entry->object.vm_object,
5447 (uintmax_t)entry->offset);
5448 if (entry->object.vm_object && entry->object.vm_object->cred)
5449 db_printf(", obj ruid %d charge %jx",
5450 entry->object.vm_object->cred->cr_ruid,
5451 (uintmax_t)entry->object.vm_object->charge);
5452 if (entry->eflags & MAP_ENTRY_COW)
5453 db_printf(", copy (%s)",
5454 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5455 db_printf("\n");
5456
5457 if (prev == &map->header ||
5458 prev->object.vm_object !=
5459 entry->object.vm_object) {
5460 db_indent += 2;
5461 vm_object_print((db_expr_t)(intptr_t)
5462 entry->object.vm_object,
5463 0, 0, (char *)0);
5464 db_indent -= 2;
5465 }
5466 }
5467 prev = entry;
5468 }
5469 db_indent -= 2;
5470 }
5471
DB_SHOW_COMMAND(map,map)5472 DB_SHOW_COMMAND(map, map)
5473 {
5474
5475 if (!have_addr) {
5476 db_printf("usage: show map <addr>\n");
5477 return;
5478 }
5479 vm_map_print((vm_map_t)addr);
5480 }
5481
DB_SHOW_COMMAND(procvm,procvm)5482 DB_SHOW_COMMAND(procvm, procvm)
5483 {
5484 struct proc *p;
5485
5486 if (have_addr) {
5487 p = db_lookup_proc(addr);
5488 } else {
5489 p = curproc;
5490 }
5491
5492 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5493 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5494 (void *)vmspace_pmap(p->p_vmspace));
5495
5496 vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5497 }
5498
5499 #endif /* DDB */
5500