xref: /freebsd/sys/vm/vm_map.c (revision 7685aaea8850f5b6995a17740a016019e0956c70)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_radix.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t vmspace_zone;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
130     vm_offset_t max);
131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
135     vm_map_entry_t gap_entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
142     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
143     int cow);
144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
145     vm_offset_t failed_addr);
146 
147 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
148 
149 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
150     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
151      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
152 
153 /*
154  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
155  * stable.
156  */
157 #define PROC_VMSPACE_LOCK(p) do { } while (0)
158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
159 
160 /*
161  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
162  *
163  *	Asserts that the starting and ending region
164  *	addresses fall within the valid range of the map.
165  */
166 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
167 		{					\
168 		if (start < vm_map_min(map))		\
169 			start = vm_map_min(map);	\
170 		if (end > vm_map_max(map))		\
171 			end = vm_map_max(map);		\
172 		if (start > end)			\
173 			start = end;			\
174 		}
175 
176 #ifndef UMA_USE_DMAP
177 
178 /*
179  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
180  * unlocked, depending on whether the request is coming from the kernel map or a
181  * submap.  This function allocates a virtual address range directly from the
182  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
183  * lock and also to avoid triggering allocator recursion in the vmem boundary
184  * tag allocator.
185  */
186 static void *
kmapent_alloc(uma_zone_t zone,vm_size_t bytes,int domain,uint8_t * pflag,int wait)187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
188     int wait)
189 {
190 	vm_offset_t addr;
191 	int error, locked;
192 
193 	*pflag = UMA_SLAB_PRIV;
194 
195 	if (!(locked = vm_map_locked(kernel_map)))
196 		vm_map_lock(kernel_map);
197 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
198 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
199 		panic("%s: kernel map is exhausted", __func__);
200 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
201 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
202 	if (error != KERN_SUCCESS)
203 		panic("%s: vm_map_insert() failed: %d", __func__, error);
204 	if (!locked)
205 		vm_map_unlock(kernel_map);
206 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
207 	    M_USE_RESERVE | (wait & M_ZERO));
208 	if (error == KERN_SUCCESS) {
209 		return ((void *)addr);
210 	} else {
211 		if (!locked)
212 			vm_map_lock(kernel_map);
213 		vm_map_delete(kernel_map, addr, bytes);
214 		if (!locked)
215 			vm_map_unlock(kernel_map);
216 		return (NULL);
217 	}
218 }
219 
220 static void
kmapent_free(void * item,vm_size_t size,uint8_t pflag)221 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
222 {
223 	vm_offset_t addr;
224 	int error __diagused;
225 
226 	if ((pflag & UMA_SLAB_PRIV) == 0)
227 		/* XXX leaked */
228 		return;
229 
230 	addr = (vm_offset_t)item;
231 	kmem_unback(kernel_object, addr, size);
232 	error = vm_map_remove(kernel_map, addr, addr + size);
233 	KASSERT(error == KERN_SUCCESS,
234 	    ("%s: vm_map_remove failed: %d", __func__, error));
235 }
236 
237 /*
238  * The worst-case upper bound on the number of kernel map entries that may be
239  * created before the zone must be replenished in _vm_map_unlock().
240  */
241 #define	KMAPENT_RESERVE		1
242 
243 #endif /* !UMD_MD_SMALL_ALLOC */
244 
245 /*
246  *	vm_map_startup:
247  *
248  *	Initialize the vm_map module.  Must be called before any other vm_map
249  *	routines.
250  *
251  *	User map and entry structures are allocated from the general purpose
252  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
253  *	require special handling to avoid recursion; see the comments above
254  *	kmapent_alloc() and in vm_map_entry_create().
255  */
256 void
vm_map_startup(void)257 vm_map_startup(void)
258 {
259 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
260 
261 	/*
262 	 * Disable the use of per-CPU buckets: map entry allocation is
263 	 * serialized by the kernel map lock.
264 	 */
265 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
266 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
267 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
268 #ifndef UMA_USE_DMAP
269 	/* Reserve an extra map entry for use when replenishing the reserve. */
270 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
272 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
273 	uma_zone_set_freef(kmapentzone, kmapent_free);
274 #endif
275 
276 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
277 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
278 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
279 #ifdef INVARIANTS
280 	    vmspace_zdtor,
281 #else
282 	    NULL,
283 #endif
284 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 }
286 
287 static int
vmspace_zinit(void * mem,int size,int flags)288 vmspace_zinit(void *mem, int size, int flags)
289 {
290 	struct vmspace *vm;
291 	vm_map_t map;
292 
293 	vm = (struct vmspace *)mem;
294 	map = &vm->vm_map;
295 
296 	memset(map, 0, sizeof(*map));	/* set MAP_SYSTEM_MAP to false */
297 	sx_init(&map->lock, "vm map (user)");
298 	PMAP_LOCK_INIT(vmspace_pmap(vm));
299 	return (0);
300 }
301 
302 #ifdef INVARIANTS
303 static void
vmspace_zdtor(void * mem,int size,void * arg)304 vmspace_zdtor(void *mem, int size, void *arg)
305 {
306 	struct vmspace *vm;
307 
308 	vm = (struct vmspace *)mem;
309 	KASSERT(vm->vm_map.nentries == 0,
310 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
311 	KASSERT(vm->vm_map.size == 0,
312 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
313 }
314 #endif	/* INVARIANTS */
315 
316 /*
317  * Allocate a vmspace structure, including a vm_map and pmap,
318  * and initialize those structures.  The refcnt is set to 1.
319  */
320 struct vmspace *
vmspace_alloc(vm_offset_t min,vm_offset_t max,pmap_pinit_t pinit)321 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
322 {
323 	struct vmspace *vm;
324 
325 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
326 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
327 	if (!pinit(vmspace_pmap(vm))) {
328 		uma_zfree(vmspace_zone, vm);
329 		return (NULL);
330 	}
331 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
332 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
333 	refcount_init(&vm->vm_refcnt, 1);
334 	vm->vm_shm = NULL;
335 	vm->vm_swrss = 0;
336 	vm->vm_tsize = 0;
337 	vm->vm_dsize = 0;
338 	vm->vm_ssize = 0;
339 	vm->vm_taddr = 0;
340 	vm->vm_daddr = 0;
341 	vm->vm_maxsaddr = 0;
342 	return (vm);
343 }
344 
345 #ifdef RACCT
346 static void
vmspace_container_reset(struct proc * p)347 vmspace_container_reset(struct proc *p)
348 {
349 
350 	PROC_LOCK(p);
351 	racct_set(p, RACCT_DATA, 0);
352 	racct_set(p, RACCT_STACK, 0);
353 	racct_set(p, RACCT_RSS, 0);
354 	racct_set(p, RACCT_MEMLOCK, 0);
355 	racct_set(p, RACCT_VMEM, 0);
356 	PROC_UNLOCK(p);
357 }
358 #endif
359 
360 static inline void
vmspace_dofree(struct vmspace * vm)361 vmspace_dofree(struct vmspace *vm)
362 {
363 
364 	CTR1(KTR_VM, "vmspace_free: %p", vm);
365 
366 	/*
367 	 * Make sure any SysV shm is freed, it might not have been in
368 	 * exit1().
369 	 */
370 	shmexit(vm);
371 
372 	/*
373 	 * Lock the map, to wait out all other references to it.
374 	 * Delete all of the mappings and pages they hold, then call
375 	 * the pmap module to reclaim anything left.
376 	 */
377 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
378 	    vm_map_max(&vm->vm_map));
379 
380 	pmap_release(vmspace_pmap(vm));
381 	vm->vm_map.pmap = NULL;
382 	uma_zfree(vmspace_zone, vm);
383 }
384 
385 void
vmspace_free(struct vmspace * vm)386 vmspace_free(struct vmspace *vm)
387 {
388 
389 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
390 	    "vmspace_free() called");
391 
392 	if (refcount_release(&vm->vm_refcnt))
393 		vmspace_dofree(vm);
394 }
395 
396 void
vmspace_exitfree(struct proc * p)397 vmspace_exitfree(struct proc *p)
398 {
399 	struct vmspace *vm;
400 
401 	PROC_VMSPACE_LOCK(p);
402 	vm = p->p_vmspace;
403 	p->p_vmspace = NULL;
404 	PROC_VMSPACE_UNLOCK(p);
405 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
406 	vmspace_free(vm);
407 }
408 
409 void
vmspace_exit(struct thread * td)410 vmspace_exit(struct thread *td)
411 {
412 	struct vmspace *vm;
413 	struct proc *p;
414 	bool released;
415 
416 	p = td->td_proc;
417 	vm = p->p_vmspace;
418 
419 	/*
420 	 * Prepare to release the vmspace reference.  The thread that releases
421 	 * the last reference is responsible for tearing down the vmspace.
422 	 * However, threads not releasing the final reference must switch to the
423 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
424 	 * deactivation does not modify a freed vmspace.
425 	 */
426 	refcount_acquire(&vmspace0.vm_refcnt);
427 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
428 		if (p->p_vmspace != &vmspace0) {
429 			PROC_VMSPACE_LOCK(p);
430 			p->p_vmspace = &vmspace0;
431 			PROC_VMSPACE_UNLOCK(p);
432 			pmap_activate(td);
433 		}
434 		released = refcount_release(&vm->vm_refcnt);
435 	}
436 	if (released) {
437 		/*
438 		 * pmap_remove_pages() expects the pmap to be active, so switch
439 		 * back first if necessary.
440 		 */
441 		if (p->p_vmspace != vm) {
442 			PROC_VMSPACE_LOCK(p);
443 			p->p_vmspace = vm;
444 			PROC_VMSPACE_UNLOCK(p);
445 			pmap_activate(td);
446 		}
447 		pmap_remove_pages(vmspace_pmap(vm));
448 		PROC_VMSPACE_LOCK(p);
449 		p->p_vmspace = &vmspace0;
450 		PROC_VMSPACE_UNLOCK(p);
451 		pmap_activate(td);
452 		vmspace_dofree(vm);
453 	}
454 #ifdef RACCT
455 	if (racct_enable)
456 		vmspace_container_reset(p);
457 #endif
458 }
459 
460 /* Acquire reference to vmspace owned by another process. */
461 
462 struct vmspace *
vmspace_acquire_ref(struct proc * p)463 vmspace_acquire_ref(struct proc *p)
464 {
465 	struct vmspace *vm;
466 
467 	PROC_VMSPACE_LOCK(p);
468 	vm = p->p_vmspace;
469 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
470 		PROC_VMSPACE_UNLOCK(p);
471 		return (NULL);
472 	}
473 	if (vm != p->p_vmspace) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		vmspace_free(vm);
476 		return (NULL);
477 	}
478 	PROC_VMSPACE_UNLOCK(p);
479 	return (vm);
480 }
481 
482 /*
483  * Switch between vmspaces in an AIO kernel process.
484  *
485  * The new vmspace is either the vmspace of a user process obtained
486  * from an active AIO request or the initial vmspace of the AIO kernel
487  * process (when it is idling).  Because user processes will block to
488  * drain any active AIO requests before proceeding in exit() or
489  * execve(), the reference count for vmspaces from AIO requests can
490  * never be 0.  Similarly, AIO kernel processes hold an extra
491  * reference on their initial vmspace for the life of the process.  As
492  * a result, the 'newvm' vmspace always has a non-zero reference
493  * count.  This permits an additional reference on 'newvm' to be
494  * acquired via a simple atomic increment rather than the loop in
495  * vmspace_acquire_ref() above.
496  */
497 void
vmspace_switch_aio(struct vmspace * newvm)498 vmspace_switch_aio(struct vmspace *newvm)
499 {
500 	struct vmspace *oldvm;
501 
502 	/* XXX: Need some way to assert that this is an aio daemon. */
503 
504 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
505 	    ("vmspace_switch_aio: newvm unreferenced"));
506 
507 	oldvm = curproc->p_vmspace;
508 	if (oldvm == newvm)
509 		return;
510 
511 	/*
512 	 * Point to the new address space and refer to it.
513 	 */
514 	curproc->p_vmspace = newvm;
515 	refcount_acquire(&newvm->vm_refcnt);
516 
517 	/* Activate the new mapping. */
518 	pmap_activate(curthread);
519 
520 	vmspace_free(oldvm);
521 }
522 
523 void
_vm_map_lock(vm_map_t map,const char * file,int line)524 _vm_map_lock(vm_map_t map, const char *file, int line)
525 {
526 
527 	if (vm_map_is_system(map))
528 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
529 	else
530 		sx_xlock_(&map->lock, file, line);
531 	map->timestamp++;
532 }
533 
534 void
vm_map_entry_set_vnode_text(vm_map_entry_t entry,bool add)535 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
536 {
537 	vm_object_t object;
538 	struct vnode *vp;
539 	bool vp_held;
540 
541 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
542 		return;
543 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
544 	    ("Submap with execs"));
545 	object = entry->object.vm_object;
546 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
547 	if ((object->flags & OBJ_ANON) != 0)
548 		object = object->handle;
549 	else
550 		KASSERT(object->backing_object == NULL,
551 		    ("non-anon object %p shadows", object));
552 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
553 	    entry, entry->object.vm_object));
554 
555 	/*
556 	 * Mostly, we do not lock the backing object.  It is
557 	 * referenced by the entry we are processing, so it cannot go
558 	 * away.
559 	 */
560 	vm_pager_getvp(object, &vp, &vp_held);
561 	if (vp != NULL) {
562 		if (add) {
563 			VOP_SET_TEXT_CHECKED(vp);
564 		} else {
565 			vn_lock(vp, LK_SHARED | LK_RETRY);
566 			VOP_UNSET_TEXT_CHECKED(vp);
567 			VOP_UNLOCK(vp);
568 		}
569 		if (vp_held)
570 			vdrop(vp);
571 	}
572 }
573 
574 /*
575  * Use a different name for this vm_map_entry field when it's use
576  * is not consistent with its use as part of an ordered search tree.
577  */
578 #define defer_next right
579 
580 static void
vm_map_process_deferred(void)581 vm_map_process_deferred(void)
582 {
583 	struct thread *td;
584 	vm_map_entry_t entry, next;
585 	vm_object_t object;
586 
587 	td = curthread;
588 	entry = td->td_map_def_user;
589 	td->td_map_def_user = NULL;
590 	while (entry != NULL) {
591 		next = entry->defer_next;
592 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
593 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
594 		    MAP_ENTRY_VN_EXEC));
595 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
596 			/*
597 			 * Decrement the object's writemappings and
598 			 * possibly the vnode's v_writecount.
599 			 */
600 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
601 			    ("Submap with writecount"));
602 			object = entry->object.vm_object;
603 			KASSERT(object != NULL, ("No object for writecount"));
604 			vm_pager_release_writecount(object, entry->start,
605 			    entry->end);
606 		}
607 		vm_map_entry_set_vnode_text(entry, false);
608 		vm_map_entry_deallocate(entry, FALSE);
609 		entry = next;
610 	}
611 }
612 
613 #ifdef INVARIANTS
614 static void
_vm_map_assert_locked(vm_map_t map,const char * file,int line)615 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
616 {
617 
618 	if (vm_map_is_system(map))
619 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
620 	else
621 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
622 }
623 
624 #define	VM_MAP_ASSERT_LOCKED(map) \
625     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
626 
627 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
628 #ifdef DIAGNOSTIC
629 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
630 #else
631 static int enable_vmmap_check = VMMAP_CHECK_NONE;
632 #endif
633 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
634     &enable_vmmap_check, 0, "Enable vm map consistency checking");
635 
636 static void _vm_map_assert_consistent(vm_map_t map, int check);
637 
638 #define VM_MAP_ASSERT_CONSISTENT(map) \
639     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
640 #ifdef DIAGNOSTIC
641 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
642 	if (map->nupdates > map->nentries) {				\
643 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
644 		map->nupdates = 0;					\
645 	}								\
646 } while (0)
647 #else
648 #define VM_MAP_UNLOCK_CONSISTENT(map)
649 #endif
650 #else
651 #define	VM_MAP_ASSERT_LOCKED(map)
652 #define VM_MAP_ASSERT_CONSISTENT(map)
653 #define VM_MAP_UNLOCK_CONSISTENT(map)
654 #endif /* INVARIANTS */
655 
656 void
_vm_map_unlock(vm_map_t map,const char * file,int line)657 _vm_map_unlock(vm_map_t map, const char *file, int line)
658 {
659 
660 	VM_MAP_UNLOCK_CONSISTENT(map);
661 	if (vm_map_is_system(map)) {
662 #ifndef UMA_USE_DMAP
663 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
664 			uma_prealloc(kmapentzone, 1);
665 			map->flags &= ~MAP_REPLENISH;
666 		}
667 #endif
668 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
669 	} else {
670 		sx_xunlock_(&map->lock, file, line);
671 		vm_map_process_deferred();
672 	}
673 }
674 
675 void
_vm_map_lock_read(vm_map_t map,const char * file,int line)676 _vm_map_lock_read(vm_map_t map, const char *file, int line)
677 {
678 
679 	if (vm_map_is_system(map))
680 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
681 	else
682 		sx_slock_(&map->lock, file, line);
683 }
684 
685 void
_vm_map_unlock_read(vm_map_t map,const char * file,int line)686 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
687 {
688 
689 	if (vm_map_is_system(map)) {
690 		KASSERT((map->flags & MAP_REPLENISH) == 0,
691 		    ("%s: MAP_REPLENISH leaked", __func__));
692 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
693 	} else {
694 		sx_sunlock_(&map->lock, file, line);
695 		vm_map_process_deferred();
696 	}
697 }
698 
699 int
_vm_map_trylock(vm_map_t map,const char * file,int line)700 _vm_map_trylock(vm_map_t map, const char *file, int line)
701 {
702 	int error;
703 
704 	error = vm_map_is_system(map) ?
705 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
706 	    !sx_try_xlock_(&map->lock, file, line);
707 	if (error == 0)
708 		map->timestamp++;
709 	return (error == 0);
710 }
711 
712 int
_vm_map_trylock_read(vm_map_t map,const char * file,int line)713 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
714 {
715 	int error;
716 
717 	error = vm_map_is_system(map) ?
718 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
719 	    !sx_try_slock_(&map->lock, file, line);
720 	return (error == 0);
721 }
722 
723 /*
724  *	_vm_map_lock_upgrade:	[ internal use only ]
725  *
726  *	Tries to upgrade a read (shared) lock on the specified map to a write
727  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
728  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
729  *	returned without a read or write lock held.
730  *
731  *	Requires that the map be read locked.
732  */
733 int
_vm_map_lock_upgrade(vm_map_t map,const char * file,int line)734 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
735 {
736 	unsigned int last_timestamp;
737 
738 	if (vm_map_is_system(map)) {
739 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
740 	} else {
741 		if (!sx_try_upgrade_(&map->lock, file, line)) {
742 			last_timestamp = map->timestamp;
743 			sx_sunlock_(&map->lock, file, line);
744 			vm_map_process_deferred();
745 			/*
746 			 * If the map's timestamp does not change while the
747 			 * map is unlocked, then the upgrade succeeds.
748 			 */
749 			sx_xlock_(&map->lock, file, line);
750 			if (last_timestamp != map->timestamp) {
751 				sx_xunlock_(&map->lock, file, line);
752 				return (1);
753 			}
754 		}
755 	}
756 	map->timestamp++;
757 	return (0);
758 }
759 
760 void
_vm_map_lock_downgrade(vm_map_t map,const char * file,int line)761 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
762 {
763 
764 	if (vm_map_is_system(map)) {
765 		KASSERT((map->flags & MAP_REPLENISH) == 0,
766 		    ("%s: MAP_REPLENISH leaked", __func__));
767 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
768 	} else {
769 		VM_MAP_UNLOCK_CONSISTENT(map);
770 		sx_downgrade_(&map->lock, file, line);
771 	}
772 }
773 
774 /*
775  *	vm_map_locked:
776  *
777  *	Returns a non-zero value if the caller holds a write (exclusive) lock
778  *	on the specified map and the value "0" otherwise.
779  */
780 int
vm_map_locked(vm_map_t map)781 vm_map_locked(vm_map_t map)
782 {
783 
784 	if (vm_map_is_system(map))
785 		return (mtx_owned(&map->system_mtx));
786 	return (sx_xlocked(&map->lock));
787 }
788 
789 /*
790  *	_vm_map_unlock_and_wait:
791  *
792  *	Atomically releases the lock on the specified map and puts the calling
793  *	thread to sleep.  The calling thread will remain asleep until either
794  *	vm_map_wakeup() is performed on the map or the specified timeout is
795  *	exceeded.
796  *
797  *	WARNING!  This function does not perform deferred deallocations of
798  *	objects and map	entries.  Therefore, the calling thread is expected to
799  *	reacquire the map lock after reawakening and later perform an ordinary
800  *	unlock operation, such as vm_map_unlock(), before completing its
801  *	operation on the map.
802  */
803 int
_vm_map_unlock_and_wait(vm_map_t map,int timo,const char * file,int line)804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
805 {
806 
807 	VM_MAP_UNLOCK_CONSISTENT(map);
808 	mtx_lock(&map_sleep_mtx);
809 	if (vm_map_is_system(map)) {
810 		KASSERT((map->flags & MAP_REPLENISH) == 0,
811 		    ("%s: MAP_REPLENISH leaked", __func__));
812 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
813 	} else {
814 		sx_xunlock_(&map->lock, file, line);
815 	}
816 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
817 	    timo));
818 }
819 
820 /*
821  *	vm_map_wakeup:
822  *
823  *	Awaken any threads that have slept on the map using
824  *	vm_map_unlock_and_wait().
825  */
826 void
vm_map_wakeup(vm_map_t map)827 vm_map_wakeup(vm_map_t map)
828 {
829 
830 	/*
831 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
832 	 * from being performed (and lost) between the map unlock
833 	 * and the msleep() in _vm_map_unlock_and_wait().
834 	 */
835 	mtx_lock(&map_sleep_mtx);
836 	mtx_unlock(&map_sleep_mtx);
837 	wakeup(&map->root);
838 }
839 
840 void
vm_map_busy(vm_map_t map)841 vm_map_busy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	map->busy++;
846 }
847 
848 void
vm_map_unbusy(vm_map_t map)849 vm_map_unbusy(vm_map_t map)
850 {
851 
852 	VM_MAP_ASSERT_LOCKED(map);
853 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
854 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
855 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
856 		wakeup(&map->busy);
857 	}
858 }
859 
860 void
vm_map_wait_busy(vm_map_t map)861 vm_map_wait_busy(vm_map_t map)
862 {
863 
864 	VM_MAP_ASSERT_LOCKED(map);
865 	while (map->busy) {
866 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
867 		if (vm_map_is_system(map))
868 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
869 		else
870 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
871 	}
872 	map->timestamp++;
873 }
874 
875 long
vmspace_resident_count(struct vmspace * vmspace)876 vmspace_resident_count(struct vmspace *vmspace)
877 {
878 	return pmap_resident_count(vmspace_pmap(vmspace));
879 }
880 
881 /*
882  * Initialize an existing vm_map structure
883  * such as that in the vmspace structure.
884  */
885 static void
_vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888 
889 	map->header.eflags = MAP_ENTRY_HEADER;
890 	map->pmap = pmap;
891 	map->header.end = min;
892 	map->header.start = max;
893 	map->flags = 0;
894 	map->header.left = map->header.right = &map->header;
895 	map->root = NULL;
896 	map->timestamp = 0;
897 	map->busy = 0;
898 	map->anon_loc = 0;
899 #ifdef DIAGNOSTIC
900 	map->nupdates = 0;
901 #endif
902 }
903 
904 void
vm_map_init(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
906 {
907 	_vm_map_init(map, pmap, min, max);
908 	sx_init(&map->lock, "vm map (user)");
909 }
910 
911 void
vm_map_init_system(vm_map_t map,pmap_t pmap,vm_offset_t min,vm_offset_t max)912 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 	_vm_map_init(map, pmap, min, max);
915 	vm_map_modflags(map, MAP_SYSTEM_MAP, 0);
916 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF |
917 	    MTX_DUPOK);
918 }
919 
920 /*
921  *	vm_map_entry_dispose:	[ internal use only ]
922  *
923  *	Inverse of vm_map_entry_create.
924  */
925 static void
vm_map_entry_dispose(vm_map_t map,vm_map_entry_t entry)926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
927 {
928 	uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry);
929 }
930 
931 /*
932  *	vm_map_entry_create:	[ internal use only ]
933  *
934  *	Allocates a VM map entry for insertion.
935  *	No entry fields are filled in.
936  */
937 static vm_map_entry_t
vm_map_entry_create(vm_map_t map)938 vm_map_entry_create(vm_map_t map)
939 {
940 	vm_map_entry_t new_entry;
941 
942 #ifndef UMA_USE_DMAP
943 	if (map == kernel_map) {
944 		VM_MAP_ASSERT_LOCKED(map);
945 
946 		/*
947 		 * A new slab of kernel map entries cannot be allocated at this
948 		 * point because the kernel map has not yet been updated to
949 		 * reflect the caller's request.  Therefore, we allocate a new
950 		 * map entry, dipping into the reserve if necessary, and set a
951 		 * flag indicating that the reserve must be replenished before
952 		 * the map is unlocked.
953 		 */
954 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
955 		if (new_entry == NULL) {
956 			new_entry = uma_zalloc(kmapentzone,
957 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
958 			kernel_map->flags |= MAP_REPLENISH;
959 		}
960 	} else
961 #endif
962 	if (vm_map_is_system(map)) {
963 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
964 	} else {
965 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
966 	}
967 	KASSERT(new_entry != NULL,
968 	    ("vm_map_entry_create: kernel resources exhausted"));
969 	return (new_entry);
970 }
971 
972 /*
973  *	vm_map_entry_set_behavior:
974  *
975  *	Set the expected access behavior, either normal, random, or
976  *	sequential.
977  */
978 static inline void
vm_map_entry_set_behavior(vm_map_entry_t entry,u_char behavior)979 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
980 {
981 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
982 	    (behavior & MAP_ENTRY_BEHAV_MASK);
983 }
984 
985 /*
986  *	vm_map_entry_max_free_{left,right}:
987  *
988  *	Compute the size of the largest free gap between two entries,
989  *	one the root of a tree and the other the ancestor of that root
990  *	that is the least or greatest ancestor found on the search path.
991  */
992 static inline vm_size_t
vm_map_entry_max_free_left(vm_map_entry_t root,vm_map_entry_t left_ancestor)993 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
994 {
995 
996 	return (root->left != left_ancestor ?
997 	    root->left->max_free : root->start - left_ancestor->end);
998 }
999 
1000 static inline vm_size_t
vm_map_entry_max_free_right(vm_map_entry_t root,vm_map_entry_t right_ancestor)1001 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1002 {
1003 
1004 	return (root->right != right_ancestor ?
1005 	    root->right->max_free : right_ancestor->start - root->end);
1006 }
1007 
1008 /*
1009  *	vm_map_entry_{pred,succ}:
1010  *
1011  *	Find the {predecessor, successor} of the entry by taking one step
1012  *	in the appropriate direction and backtracking as much as necessary.
1013  *	vm_map_entry_succ is defined in vm_map.h.
1014  */
1015 static inline vm_map_entry_t
vm_map_entry_pred(vm_map_entry_t entry)1016 vm_map_entry_pred(vm_map_entry_t entry)
1017 {
1018 	vm_map_entry_t prior;
1019 
1020 	prior = entry->left;
1021 	if (prior->right->start < entry->start) {
1022 		do
1023 			prior = prior->right;
1024 		while (prior->right != entry);
1025 	}
1026 	return (prior);
1027 }
1028 
1029 static inline vm_size_t
vm_size_max(vm_size_t a,vm_size_t b)1030 vm_size_max(vm_size_t a, vm_size_t b)
1031 {
1032 
1033 	return (a > b ? a : b);
1034 }
1035 
1036 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1037 	vm_map_entry_t z;						\
1038 	vm_size_t max_free;						\
1039 									\
1040 	/*								\
1041 	 * Infer root->right->max_free == root->max_free when		\
1042 	 * y->max_free < root->max_free || root->max_free == 0.		\
1043 	 * Otherwise, look right to find it.				\
1044 	 */								\
1045 	y = root->left;							\
1046 	max_free = root->max_free;					\
1047 	KASSERT(max_free == vm_size_max(				\
1048 	    vm_map_entry_max_free_left(root, llist),			\
1049 	    vm_map_entry_max_free_right(root, rlist)),			\
1050 	    ("%s: max_free invariant fails", __func__));		\
1051 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1052 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1053 	if (y != llist && (test)) {					\
1054 		/* Rotate right and make y root. */			\
1055 		z = y->right;						\
1056 		if (z != root) {					\
1057 			root->left = z;					\
1058 			y->right = root;				\
1059 			if (max_free < y->max_free)			\
1060 			    root->max_free = max_free =			\
1061 			    vm_size_max(max_free, z->max_free);		\
1062 		} else if (max_free < y->max_free)			\
1063 			root->max_free = max_free =			\
1064 			    vm_size_max(max_free, root->start - y->end);\
1065 		root = y;						\
1066 		y = root->left;						\
1067 	}								\
1068 	/* Copy right->max_free.  Put root on rlist. */			\
1069 	root->max_free = max_free;					\
1070 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1071 	    ("%s: max_free not copied from right", __func__));		\
1072 	root->left = rlist;						\
1073 	rlist = root;							\
1074 	root = y != llist ? y : NULL;					\
1075 } while (0)
1076 
1077 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1078 	vm_map_entry_t z;						\
1079 	vm_size_t max_free;						\
1080 									\
1081 	/*								\
1082 	 * Infer root->left->max_free == root->max_free when		\
1083 	 * y->max_free < root->max_free || root->max_free == 0.		\
1084 	 * Otherwise, look left to find it.				\
1085 	 */								\
1086 	y = root->right;						\
1087 	max_free = root->max_free;					\
1088 	KASSERT(max_free == vm_size_max(				\
1089 	    vm_map_entry_max_free_left(root, llist),			\
1090 	    vm_map_entry_max_free_right(root, rlist)),			\
1091 	    ("%s: max_free invariant fails", __func__));		\
1092 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1093 		max_free = vm_map_entry_max_free_left(root, llist);	\
1094 	if (y != rlist && (test)) {					\
1095 		/* Rotate left and make y root. */			\
1096 		z = y->left;						\
1097 		if (z != root) {					\
1098 			root->right = z;				\
1099 			y->left = root;					\
1100 			if (max_free < y->max_free)			\
1101 			    root->max_free = max_free =			\
1102 			    vm_size_max(max_free, z->max_free);		\
1103 		} else if (max_free < y->max_free)			\
1104 			root->max_free = max_free =			\
1105 			    vm_size_max(max_free, y->start - root->end);\
1106 		root = y;						\
1107 		y = root->right;					\
1108 	}								\
1109 	/* Copy left->max_free.  Put root on llist. */			\
1110 	root->max_free = max_free;					\
1111 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1112 	    ("%s: max_free not copied from left", __func__));		\
1113 	root->right = llist;						\
1114 	llist = root;							\
1115 	root = y != rlist ? y : NULL;					\
1116 } while (0)
1117 
1118 /*
1119  * Walk down the tree until we find addr or a gap where addr would go, breaking
1120  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1121  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1122  * the two sides in reverse order (bottom-up), with llist linked by the right
1123  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1124  * lists terminated by &map->header.  This function, and the subsequent call to
1125  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1126  * values in &map->header.
1127  */
1128 static __always_inline vm_map_entry_t
vm_map_splay_split(vm_map_t map,vm_offset_t addr,vm_size_t length,vm_map_entry_t * llist,vm_map_entry_t * rlist)1129 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1130     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1131 {
1132 	vm_map_entry_t left, right, root, y;
1133 
1134 	left = right = &map->header;
1135 	root = map->root;
1136 	while (root != NULL && root->max_free >= length) {
1137 		KASSERT(left->end <= root->start &&
1138 		    root->end <= right->start,
1139 		    ("%s: root not within tree bounds", __func__));
1140 		if (addr < root->start) {
1141 			SPLAY_LEFT_STEP(root, y, left, right,
1142 			    y->max_free >= length && addr < y->start);
1143 		} else if (addr >= root->end) {
1144 			SPLAY_RIGHT_STEP(root, y, left, right,
1145 			    y->max_free >= length && addr >= y->end);
1146 		} else
1147 			break;
1148 	}
1149 	*llist = left;
1150 	*rlist = right;
1151 	return (root);
1152 }
1153 
1154 static __always_inline void
vm_map_splay_findnext(vm_map_entry_t root,vm_map_entry_t * rlist)1155 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1156 {
1157 	vm_map_entry_t hi, right, y;
1158 
1159 	right = *rlist;
1160 	hi = root->right == right ? NULL : root->right;
1161 	if (hi == NULL)
1162 		return;
1163 	do
1164 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1165 	while (hi != NULL);
1166 	*rlist = right;
1167 }
1168 
1169 static __always_inline void
vm_map_splay_findprev(vm_map_entry_t root,vm_map_entry_t * llist)1170 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1171 {
1172 	vm_map_entry_t left, lo, y;
1173 
1174 	left = *llist;
1175 	lo = root->left == left ? NULL : root->left;
1176 	if (lo == NULL)
1177 		return;
1178 	do
1179 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1180 	while (lo != NULL);
1181 	*llist = left;
1182 }
1183 
1184 static inline void
vm_map_entry_swap(vm_map_entry_t * a,vm_map_entry_t * b)1185 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1186 {
1187 	vm_map_entry_t tmp;
1188 
1189 	tmp = *b;
1190 	*b = *a;
1191 	*a = tmp;
1192 }
1193 
1194 /*
1195  * Walk back up the two spines, flip the pointers and set max_free.  The
1196  * subtrees of the root go at the bottom of llist and rlist.
1197  */
1198 static vm_size_t
vm_map_splay_merge_left_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t llist)1199 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1200     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1201 {
1202 	do {
1203 		/*
1204 		 * The max_free values of the children of llist are in
1205 		 * llist->max_free and max_free.  Update with the
1206 		 * max value.
1207 		 */
1208 		llist->max_free = max_free =
1209 		    vm_size_max(llist->max_free, max_free);
1210 		vm_map_entry_swap(&llist->right, &tail);
1211 		vm_map_entry_swap(&tail, &llist);
1212 	} while (llist != header);
1213 	root->left = tail;
1214 	return (max_free);
1215 }
1216 
1217 /*
1218  * When llist is known to be the predecessor of root.
1219  */
1220 static inline vm_size_t
vm_map_splay_merge_pred(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1221 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1222     vm_map_entry_t llist)
1223 {
1224 	vm_size_t max_free;
1225 
1226 	max_free = root->start - llist->end;
1227 	if (llist != header) {
1228 		max_free = vm_map_splay_merge_left_walk(header, root,
1229 		    root, max_free, llist);
1230 	} else {
1231 		root->left = header;
1232 		header->right = root;
1233 	}
1234 	return (max_free);
1235 }
1236 
1237 /*
1238  * When llist may or may not be the predecessor of root.
1239  */
1240 static inline vm_size_t
vm_map_splay_merge_left(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t llist)1241 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1242     vm_map_entry_t llist)
1243 {
1244 	vm_size_t max_free;
1245 
1246 	max_free = vm_map_entry_max_free_left(root, llist);
1247 	if (llist != header) {
1248 		max_free = vm_map_splay_merge_left_walk(header, root,
1249 		    root->left == llist ? root : root->left,
1250 		    max_free, llist);
1251 	}
1252 	return (max_free);
1253 }
1254 
1255 static vm_size_t
vm_map_splay_merge_right_walk(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t tail,vm_size_t max_free,vm_map_entry_t rlist)1256 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1257     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1258 {
1259 	do {
1260 		/*
1261 		 * The max_free values of the children of rlist are in
1262 		 * rlist->max_free and max_free.  Update with the
1263 		 * max value.
1264 		 */
1265 		rlist->max_free = max_free =
1266 		    vm_size_max(rlist->max_free, max_free);
1267 		vm_map_entry_swap(&rlist->left, &tail);
1268 		vm_map_entry_swap(&tail, &rlist);
1269 	} while (rlist != header);
1270 	root->right = tail;
1271 	return (max_free);
1272 }
1273 
1274 /*
1275  * When rlist is known to be the succecessor of root.
1276  */
1277 static inline vm_size_t
vm_map_splay_merge_succ(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1278 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1279     vm_map_entry_t rlist)
1280 {
1281 	vm_size_t max_free;
1282 
1283 	max_free = rlist->start - root->end;
1284 	if (rlist != header) {
1285 		max_free = vm_map_splay_merge_right_walk(header, root,
1286 		    root, max_free, rlist);
1287 	} else {
1288 		root->right = header;
1289 		header->left = root;
1290 	}
1291 	return (max_free);
1292 }
1293 
1294 /*
1295  * When rlist may or may not be the succecessor of root.
1296  */
1297 static inline vm_size_t
vm_map_splay_merge_right(vm_map_entry_t header,vm_map_entry_t root,vm_map_entry_t rlist)1298 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1299     vm_map_entry_t rlist)
1300 {
1301 	vm_size_t max_free;
1302 
1303 	max_free = vm_map_entry_max_free_right(root, rlist);
1304 	if (rlist != header) {
1305 		max_free = vm_map_splay_merge_right_walk(header, root,
1306 		    root->right == rlist ? root : root->right,
1307 		    max_free, rlist);
1308 	}
1309 	return (max_free);
1310 }
1311 
1312 /*
1313  *	vm_map_splay:
1314  *
1315  *	The Sleator and Tarjan top-down splay algorithm with the
1316  *	following variation.  Max_free must be computed bottom-up, so
1317  *	on the downward pass, maintain the left and right spines in
1318  *	reverse order.  Then, make a second pass up each side to fix
1319  *	the pointers and compute max_free.  The time bound is O(log n)
1320  *	amortized.
1321  *
1322  *	The tree is threaded, which means that there are no null pointers.
1323  *	When a node has no left child, its left pointer points to its
1324  *	predecessor, which the last ancestor on the search path from the root
1325  *	where the search branched right.  Likewise, when a node has no right
1326  *	child, its right pointer points to its successor.  The map header node
1327  *	is the predecessor of the first map entry, and the successor of the
1328  *	last.
1329  *
1330  *	The new root is the vm_map_entry containing "addr", or else an
1331  *	adjacent entry (lower if possible) if addr is not in the tree.
1332  *
1333  *	The map must be locked, and leaves it so.
1334  *
1335  *	Returns: the new root.
1336  */
1337 static vm_map_entry_t
vm_map_splay(vm_map_t map,vm_offset_t addr)1338 vm_map_splay(vm_map_t map, vm_offset_t addr)
1339 {
1340 	vm_map_entry_t header, llist, rlist, root;
1341 	vm_size_t max_free_left, max_free_right;
1342 
1343 	header = &map->header;
1344 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1345 	if (root != NULL) {
1346 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1347 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1348 	} else if (llist != header) {
1349 		/*
1350 		 * Recover the greatest node in the left
1351 		 * subtree and make it the root.
1352 		 */
1353 		root = llist;
1354 		llist = root->right;
1355 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1356 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1357 	} else if (rlist != header) {
1358 		/*
1359 		 * Recover the least node in the right
1360 		 * subtree and make it the root.
1361 		 */
1362 		root = rlist;
1363 		rlist = root->left;
1364 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1365 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1366 	} else {
1367 		/* There is no root. */
1368 		return (NULL);
1369 	}
1370 	root->max_free = vm_size_max(max_free_left, max_free_right);
1371 	map->root = root;
1372 	VM_MAP_ASSERT_CONSISTENT(map);
1373 	return (root);
1374 }
1375 
1376 /*
1377  *	vm_map_entry_{un,}link:
1378  *
1379  *	Insert/remove entries from maps.  On linking, if new entry clips
1380  *	existing entry, trim existing entry to avoid overlap, and manage
1381  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1382  *	called for, and manage offsets.  Callers should not modify fields in
1383  *	entries already mapped.
1384  */
1385 static void
vm_map_entry_link(vm_map_t map,vm_map_entry_t entry)1386 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1387 {
1388 	vm_map_entry_t header, llist, rlist, root;
1389 	vm_size_t max_free_left, max_free_right;
1390 
1391 	CTR3(KTR_VM,
1392 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1393 	    map->nentries, entry);
1394 	VM_MAP_ASSERT_LOCKED(map);
1395 	map->nentries++;
1396 	header = &map->header;
1397 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1398 	if (root == NULL) {
1399 		/*
1400 		 * The new entry does not overlap any existing entry in the
1401 		 * map, so it becomes the new root of the map tree.
1402 		 */
1403 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1404 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1405 	} else if (entry->start == root->start) {
1406 		/*
1407 		 * The new entry is a clone of root, with only the end field
1408 		 * changed.  The root entry will be shrunk to abut the new
1409 		 * entry, and will be the right child of the new root entry in
1410 		 * the modified map.
1411 		 */
1412 		KASSERT(entry->end < root->end,
1413 		    ("%s: clip_start not within entry", __func__));
1414 		vm_map_splay_findprev(root, &llist);
1415 		if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0)
1416 			root->offset += entry->end - root->start;
1417 		root->start = entry->end;
1418 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 		max_free_right = root->max_free = vm_size_max(
1420 		    vm_map_splay_merge_pred(entry, root, entry),
1421 		    vm_map_splay_merge_right(header, root, rlist));
1422 	} else {
1423 		/*
1424 		 * The new entry is a clone of root, with only the start field
1425 		 * changed.  The root entry will be shrunk to abut the new
1426 		 * entry, and will be the left child of the new root entry in
1427 		 * the modified map.
1428 		 */
1429 		KASSERT(entry->end == root->end,
1430 		    ("%s: clip_start not within entry", __func__));
1431 		vm_map_splay_findnext(root, &rlist);
1432 		if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
1433 			entry->offset += entry->start - root->start;
1434 		root->end = entry->start;
1435 		max_free_left = root->max_free = vm_size_max(
1436 		    vm_map_splay_merge_left(header, root, llist),
1437 		    vm_map_splay_merge_succ(entry, root, entry));
1438 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439 	}
1440 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1441 	map->root = entry;
1442 	VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444 
1445 enum unlink_merge_type {
1446 	UNLINK_MERGE_NONE,
1447 	UNLINK_MERGE_NEXT
1448 };
1449 
1450 static void
vm_map_entry_unlink(vm_map_t map,vm_map_entry_t entry,enum unlink_merge_type op)1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452     enum unlink_merge_type op)
1453 {
1454 	vm_map_entry_t header, llist, rlist, root;
1455 	vm_size_t max_free_left, max_free_right;
1456 
1457 	VM_MAP_ASSERT_LOCKED(map);
1458 	header = &map->header;
1459 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460 	KASSERT(root != NULL,
1461 	    ("vm_map_entry_unlink: unlink object not mapped"));
1462 
1463 	vm_map_splay_findprev(root, &llist);
1464 	vm_map_splay_findnext(root, &rlist);
1465 	if (op == UNLINK_MERGE_NEXT) {
1466 		rlist->start = root->start;
1467 		MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0);
1468 		rlist->offset = root->offset;
1469 	}
1470 	if (llist != header) {
1471 		root = llist;
1472 		llist = root->right;
1473 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1474 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1475 	} else if (rlist != header) {
1476 		root = rlist;
1477 		rlist = root->left;
1478 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1479 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1480 	} else {
1481 		header->left = header->right = header;
1482 		root = NULL;
1483 	}
1484 	if (root != NULL)
1485 		root->max_free = vm_size_max(max_free_left, max_free_right);
1486 	map->root = root;
1487 	VM_MAP_ASSERT_CONSISTENT(map);
1488 	map->nentries--;
1489 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1490 	    map->nentries, entry);
1491 }
1492 
1493 /*
1494  *	vm_map_entry_resize:
1495  *
1496  *	Resize a vm_map_entry, recompute the amount of free space that
1497  *	follows it and propagate that value up the tree.
1498  *
1499  *	The map must be locked, and leaves it so.
1500  */
1501 static void
vm_map_entry_resize(vm_map_t map,vm_map_entry_t entry,vm_size_t grow_amount)1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1503 {
1504 	vm_map_entry_t header, llist, rlist, root;
1505 
1506 	VM_MAP_ASSERT_LOCKED(map);
1507 	header = &map->header;
1508 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1509 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1510 	vm_map_splay_findnext(root, &rlist);
1511 	entry->end += grow_amount;
1512 	root->max_free = vm_size_max(
1513 	    vm_map_splay_merge_left(header, root, llist),
1514 	    vm_map_splay_merge_succ(header, root, rlist));
1515 	map->root = root;
1516 	VM_MAP_ASSERT_CONSISTENT(map);
1517 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1518 	    __func__, map, map->nentries, entry);
1519 }
1520 
1521 /*
1522  *	vm_map_lookup_entry:	[ internal use only ]
1523  *
1524  *	Finds the map entry containing (or
1525  *	immediately preceding) the specified address
1526  *	in the given map; the entry is returned
1527  *	in the "entry" parameter.  The boolean
1528  *	result indicates whether the address is
1529  *	actually contained in the map.
1530  */
1531 boolean_t
vm_map_lookup_entry(vm_map_t map,vm_offset_t address,vm_map_entry_t * entry)1532 vm_map_lookup_entry(
1533 	vm_map_t map,
1534 	vm_offset_t address,
1535 	vm_map_entry_t *entry)	/* OUT */
1536 {
1537 	vm_map_entry_t cur, header, lbound, ubound;
1538 	boolean_t locked;
1539 
1540 	/*
1541 	 * If the map is empty, then the map entry immediately preceding
1542 	 * "address" is the map's header.
1543 	 */
1544 	header = &map->header;
1545 	cur = map->root;
1546 	if (cur == NULL) {
1547 		*entry = header;
1548 		return (FALSE);
1549 	}
1550 	if (address >= cur->start && cur->end > address) {
1551 		*entry = cur;
1552 		return (TRUE);
1553 	}
1554 	if ((locked = vm_map_locked(map)) ||
1555 	    sx_try_upgrade(&map->lock)) {
1556 		/*
1557 		 * Splay requires a write lock on the map.  However, it only
1558 		 * restructures the binary search tree; it does not otherwise
1559 		 * change the map.  Thus, the map's timestamp need not change
1560 		 * on a temporary upgrade.
1561 		 */
1562 		cur = vm_map_splay(map, address);
1563 		if (!locked) {
1564 			VM_MAP_UNLOCK_CONSISTENT(map);
1565 			sx_downgrade(&map->lock);
1566 		}
1567 
1568 		/*
1569 		 * If "address" is contained within a map entry, the new root
1570 		 * is that map entry.  Otherwise, the new root is a map entry
1571 		 * immediately before or after "address".
1572 		 */
1573 		if (address < cur->start) {
1574 			*entry = header;
1575 			return (FALSE);
1576 		}
1577 		*entry = cur;
1578 		return (address < cur->end);
1579 	}
1580 	/*
1581 	 * Since the map is only locked for read access, perform a
1582 	 * standard binary search tree lookup for "address".
1583 	 */
1584 	lbound = ubound = header;
1585 	for (;;) {
1586 		if (address < cur->start) {
1587 			ubound = cur;
1588 			cur = cur->left;
1589 			if (cur == lbound)
1590 				break;
1591 		} else if (cur->end <= address) {
1592 			lbound = cur;
1593 			cur = cur->right;
1594 			if (cur == ubound)
1595 				break;
1596 		} else {
1597 			*entry = cur;
1598 			return (TRUE);
1599 		}
1600 	}
1601 	*entry = lbound;
1602 	return (FALSE);
1603 }
1604 
1605 /*
1606  * vm_map_insert1() is identical to vm_map_insert() except that it
1607  * returns the newly inserted map entry in '*res'.  In case the new
1608  * entry is coalesced with a neighbor or an existing entry was
1609  * resized, that entry is returned.  In any case, the returned entry
1610  * covers the specified address range.
1611  */
1612 static int
vm_map_insert1(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow,vm_map_entry_t * res)1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1614     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1615     vm_map_entry_t *res)
1616 {
1617 	vm_map_entry_t new_entry, next_entry, prev_entry;
1618 	struct ucred *cred;
1619 	vm_eflags_t protoeflags;
1620 	vm_inherit_t inheritance;
1621 	u_long bdry;
1622 	u_int bidx;
1623 	int cflags;
1624 
1625 	VM_MAP_ASSERT_LOCKED(map);
1626 	KASSERT(object != kernel_object ||
1627 	    (cow & MAP_COPY_ON_WRITE) == 0,
1628 	    ("vm_map_insert: kernel object and COW"));
1629 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1630 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1631 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1632 	    object, cow));
1633 	KASSERT((prot & ~max) == 0,
1634 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1635 
1636 	/*
1637 	 * Check that the start and end points are not bogus.
1638 	 */
1639 	if (start == end || !vm_map_range_valid(map, start, end))
1640 		return (KERN_INVALID_ADDRESS);
1641 
1642 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1643 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1644 		return (KERN_PROTECTION_FAILURE);
1645 
1646 	/*
1647 	 * Find the entry prior to the proposed starting address; if it's part
1648 	 * of an existing entry, this range is bogus.
1649 	 */
1650 	if (vm_map_lookup_entry(map, start, &prev_entry))
1651 		return (KERN_NO_SPACE);
1652 
1653 	/*
1654 	 * Assert that the next entry doesn't overlap the end point.
1655 	 */
1656 	next_entry = vm_map_entry_succ(prev_entry);
1657 	if (next_entry->start < end)
1658 		return (KERN_NO_SPACE);
1659 
1660 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1661 	    max != VM_PROT_NONE))
1662 		return (KERN_INVALID_ARGUMENT);
1663 
1664 	protoeflags = 0;
1665 	if (cow & MAP_COPY_ON_WRITE)
1666 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1667 	if (cow & MAP_NOFAULT)
1668 		protoeflags |= MAP_ENTRY_NOFAULT;
1669 	if (cow & MAP_DISABLE_SYNCER)
1670 		protoeflags |= MAP_ENTRY_NOSYNC;
1671 	if (cow & MAP_DISABLE_COREDUMP)
1672 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1673 	if (cow & MAP_STACK_AREA)
1674 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1675 	if (cow & MAP_WRITECOUNT)
1676 		protoeflags |= MAP_ENTRY_WRITECNT;
1677 	if (cow & MAP_VN_EXEC)
1678 		protoeflags |= MAP_ENTRY_VN_EXEC;
1679 	if ((cow & MAP_CREATE_GUARD) != 0)
1680 		protoeflags |= MAP_ENTRY_GUARD;
1681 	if ((cow & MAP_CREATE_STACK_GAP) != 0)
1682 		protoeflags |= MAP_ENTRY_STACK_GAP;
1683 	if (cow & MAP_INHERIT_SHARE)
1684 		inheritance = VM_INHERIT_SHARE;
1685 	else
1686 		inheritance = VM_INHERIT_DEFAULT;
1687 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1688 		/* This magically ignores index 0, for usual page size. */
1689 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1690 		    MAP_SPLIT_BOUNDARY_SHIFT;
1691 		if (bidx >= MAXPAGESIZES)
1692 			return (KERN_INVALID_ARGUMENT);
1693 		bdry = pagesizes[bidx] - 1;
1694 		if ((start & bdry) != 0 || (end & bdry) != 0)
1695 			return (KERN_INVALID_ARGUMENT);
1696 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1697 	}
1698 
1699 	cred = NULL;
1700 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) {
1701 		cflags = OBJCO_NO_CHARGE;
1702 	} else {
1703 		cflags = 0;
1704 		if ((cow & MAP_ACC_CHARGED) != 0 ||
1705 		    ((prot & VM_PROT_WRITE) != 0 &&
1706 		    ((protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1707 		    object == NULL))) {
1708 			if ((cow & MAP_ACC_CHARGED) == 0) {
1709 				if (!swap_reserve(end - start))
1710 					return (KERN_RESOURCE_SHORTAGE);
1711 
1712 				/*
1713 				 * Only inform vm_object_coalesce()
1714 				 * that the object was charged if
1715 				 * there is no need for CoW, so the
1716 				 * swap amount reserved is applicable
1717 				 * to the prev_entry->object.
1718 				 */
1719 				if ((protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)
1720 					cflags |= OBJCO_CHARGED;
1721 			}
1722 			KASSERT(object == NULL ||
1723 			    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1724 			    object->cred == NULL,
1725 			    ("overcommit: vm_map_insert o %p", object));
1726 			cred = curthread->td_ucred;
1727 		}
1728 	}
1729 
1730 	/* Expand the kernel pmap, if necessary. */
1731 	if (map == kernel_map && end > kernel_vm_end) {
1732 		int rv;
1733 
1734 		rv = pmap_growkernel(end);
1735 		if (rv != KERN_SUCCESS)
1736 			return (rv);
1737 	}
1738 	if (object != NULL) {
1739 		/*
1740 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1741 		 * is trivially proven to be the only mapping for any
1742 		 * of the object's pages.  (Object granularity
1743 		 * reference counting is insufficient to recognize
1744 		 * aliases with precision.)
1745 		 */
1746 		if ((object->flags & OBJ_ANON) != 0) {
1747 			VM_OBJECT_WLOCK(object);
1748 			if (object->ref_count > 1 || object->shadow_count != 0)
1749 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1750 			VM_OBJECT_WUNLOCK(object);
1751 		}
1752 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1753 	    protoeflags &&
1754 	    (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 &&
1755 	    prev_entry->end == start && (prev_entry->cred == cred ||
1756 	    (prev_entry->object.vm_object != NULL &&
1757 	    prev_entry->object.vm_object->cred == cred)) &&
1758 	    vm_object_coalesce(prev_entry->object.vm_object,
1759 	    prev_entry->offset,
1760 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1761 	    (vm_size_t)(end - prev_entry->end), cflags)) {
1762 		/*
1763 		 * We were able to extend the object.  Determine if we
1764 		 * can extend the previous map entry to include the
1765 		 * new range as well.
1766 		 */
1767 		if (prev_entry->inheritance == inheritance &&
1768 		    prev_entry->protection == prot &&
1769 		    prev_entry->max_protection == max &&
1770 		    prev_entry->wired_count == 0) {
1771 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1772 			    0, ("prev_entry %p has incoherent wiring",
1773 			    prev_entry));
1774 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1775 				map->size += end - prev_entry->end;
1776 			vm_map_entry_resize(map, prev_entry,
1777 			    end - prev_entry->end);
1778 			*res = vm_map_try_merge_entries(map, prev_entry,
1779 			    next_entry);
1780 			return (KERN_SUCCESS);
1781 		}
1782 
1783 		/*
1784 		 * If we can extend the object but cannot extend the
1785 		 * map entry, we have to create a new map entry.  We
1786 		 * must bump the ref count on the extended object to
1787 		 * account for it.  object may be NULL.
1788 		 */
1789 		object = prev_entry->object.vm_object;
1790 		offset = prev_entry->offset +
1791 		    (prev_entry->end - prev_entry->start);
1792 		vm_object_reference(object);
1793 		if (cred != NULL && object != NULL && object->cred != NULL &&
1794 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1795 			/* Object already accounts for this uid. */
1796 			cred = NULL;
1797 		}
1798 	}
1799 	if (cred != NULL)
1800 		crhold(cred);
1801 
1802 	/*
1803 	 * Create a new entry
1804 	 */
1805 	new_entry = vm_map_entry_create(map);
1806 	new_entry->start = start;
1807 	new_entry->end = end;
1808 	new_entry->cred = NULL;
1809 
1810 	new_entry->eflags = protoeflags;
1811 	new_entry->object.vm_object = object;
1812 	new_entry->offset = offset;
1813 
1814 	new_entry->inheritance = inheritance;
1815 	new_entry->protection = prot;
1816 	new_entry->max_protection = max;
1817 	new_entry->wired_count = 0;
1818 	new_entry->wiring_thread = NULL;
1819 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1820 	new_entry->next_read = start;
1821 
1822 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1823 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1824 	new_entry->cred = cred;
1825 
1826 	/*
1827 	 * Insert the new entry into the list
1828 	 */
1829 	vm_map_entry_link(map, new_entry);
1830 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1831 		map->size += new_entry->end - new_entry->start;
1832 
1833 	/*
1834 	 * Try to coalesce the new entry with both the previous and next
1835 	 * entries in the list.  Previously, we only attempted to coalesce
1836 	 * with the previous entry when object is NULL.  Here, we handle the
1837 	 * other cases, which are less common.
1838 	 */
1839 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1840 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1841 
1842 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1843 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1844 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1845 	}
1846 
1847 	return (KERN_SUCCESS);
1848 }
1849 
1850 /*
1851  *	vm_map_insert:
1852  *
1853  *	Inserts the given VM object into the target map at the
1854  *	specified address range.
1855  *
1856  *	Requires that the map be locked, and leaves it so.
1857  *
1858  *	If object is non-NULL, ref count must be bumped by caller
1859  *	prior to making call to account for the new entry.
1860  */
1861 int
vm_map_insert(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_offset_t end,vm_prot_t prot,vm_prot_t max,int cow)1862 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1863     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1864 {
1865 	vm_map_entry_t res;
1866 
1867 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1868 	    cow, &res));
1869 }
1870 
1871 /*
1872  *	vm_map_findspace:
1873  *
1874  *	Find the first fit (lowest VM address) for "length" free bytes
1875  *	beginning at address >= start in the given map.
1876  *
1877  *	In a vm_map_entry, "max_free" is the maximum amount of
1878  *	contiguous free space between an entry in its subtree and a
1879  *	neighbor of that entry.  This allows finding a free region in
1880  *	one path down the tree, so O(log n) amortized with splay
1881  *	trees.
1882  *
1883  *	The map must be locked, and leaves it so.
1884  *
1885  *	Returns: starting address if sufficient space,
1886  *		 vm_map_max(map)-length+1 if insufficient space.
1887  */
1888 vm_offset_t
vm_map_findspace(vm_map_t map,vm_offset_t start,vm_size_t length)1889 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1890 {
1891 	vm_map_entry_t header, llist, rlist, root, y;
1892 	vm_size_t left_length, max_free_left, max_free_right;
1893 	vm_offset_t gap_end;
1894 
1895 	VM_MAP_ASSERT_LOCKED(map);
1896 
1897 	/*
1898 	 * Request must fit within min/max VM address and must avoid
1899 	 * address wrap.
1900 	 */
1901 	start = MAX(start, vm_map_min(map));
1902 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1903 		return (vm_map_max(map) - length + 1);
1904 
1905 	/* Empty tree means wide open address space. */
1906 	if (map->root == NULL)
1907 		return (start);
1908 
1909 	/*
1910 	 * After splay_split, if start is within an entry, push it to the start
1911 	 * of the following gap.  If rlist is at the end of the gap containing
1912 	 * start, save the end of that gap in gap_end to see if the gap is big
1913 	 * enough; otherwise set gap_end to start skip gap-checking and move
1914 	 * directly to a search of the right subtree.
1915 	 */
1916 	header = &map->header;
1917 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1918 	gap_end = rlist->start;
1919 	if (root != NULL) {
1920 		start = root->end;
1921 		if (root->right != rlist)
1922 			gap_end = start;
1923 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1924 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1925 	} else if (rlist != header) {
1926 		root = rlist;
1927 		rlist = root->left;
1928 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1929 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1930 	} else {
1931 		root = llist;
1932 		llist = root->right;
1933 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1934 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1935 	}
1936 	root->max_free = vm_size_max(max_free_left, max_free_right);
1937 	map->root = root;
1938 	VM_MAP_ASSERT_CONSISTENT(map);
1939 	if (length <= gap_end - start)
1940 		return (start);
1941 
1942 	/* With max_free, can immediately tell if no solution. */
1943 	if (root->right == header || length > root->right->max_free)
1944 		return (vm_map_max(map) - length + 1);
1945 
1946 	/*
1947 	 * Splay for the least large-enough gap in the right subtree.
1948 	 */
1949 	llist = rlist = header;
1950 	for (left_length = 0;;
1951 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1952 		if (length <= left_length)
1953 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1954 			    length <= vm_map_entry_max_free_left(y, llist));
1955 		else
1956 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1957 			    length > vm_map_entry_max_free_left(y, root));
1958 		if (root == NULL)
1959 			break;
1960 	}
1961 	root = llist;
1962 	llist = root->right;
1963 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1964 	if (rlist == header) {
1965 		root->max_free = vm_size_max(max_free_left,
1966 		    vm_map_splay_merge_succ(header, root, rlist));
1967 	} else {
1968 		y = rlist;
1969 		rlist = y->left;
1970 		y->max_free = vm_size_max(
1971 		    vm_map_splay_merge_pred(root, y, root),
1972 		    vm_map_splay_merge_right(header, y, rlist));
1973 		root->max_free = vm_size_max(max_free_left, y->max_free);
1974 	}
1975 	map->root = root;
1976 	VM_MAP_ASSERT_CONSISTENT(map);
1977 	return (root->end);
1978 }
1979 
1980 int
vm_map_fixed(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t start,vm_size_t length,vm_prot_t prot,vm_prot_t max,int cow)1981 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1982     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1983     vm_prot_t max, int cow)
1984 {
1985 	vm_offset_t end;
1986 	int result;
1987 
1988 	end = start + length;
1989 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
1990 	    ("vm_map_fixed: non-NULL backing object for stack"));
1991 	vm_map_lock(map);
1992 	VM_MAP_RANGE_CHECK(map, start, end);
1993 	if ((cow & MAP_CHECK_EXCL) == 0) {
1994 		result = vm_map_delete(map, start, end);
1995 		if (result != KERN_SUCCESS)
1996 			goto out;
1997 	}
1998 	if ((cow & MAP_STACK_AREA) != 0) {
1999 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
2000 		    prot, max, cow);
2001 	} else {
2002 		result = vm_map_insert(map, object, offset, start, end,
2003 		    prot, max, cow);
2004 	}
2005 out:
2006 	vm_map_unlock(map);
2007 	return (result);
2008 }
2009 
2010 #if VM_NRESERVLEVEL <= 1
2011 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
2012 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
2013 #elif VM_NRESERVLEVEL == 2
2014 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
2015 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
2016 #else
2017 #error "Unsupported VM_NRESERVLEVEL"
2018 #endif
2019 
2020 static int cluster_anon = 1;
2021 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2022     &cluster_anon, 0,
2023     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2024 
2025 static bool
clustering_anon_allowed(vm_offset_t addr,int cow)2026 clustering_anon_allowed(vm_offset_t addr, int cow)
2027 {
2028 
2029 	switch (cluster_anon) {
2030 	case 0:
2031 		return (false);
2032 	case 1:
2033 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2034 	case 2:
2035 	default:
2036 		return (true);
2037 	}
2038 }
2039 
2040 static long aslr_restarts;
2041 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2042     &aslr_restarts, 0,
2043     "Number of aslr failures");
2044 
2045 /*
2046  * Searches for the specified amount of free space in the given map with the
2047  * specified alignment.  Performs an address-ordered, first-fit search from
2048  * the given address "*addr", with an optional upper bound "max_addr".  If the
2049  * parameter "alignment" is zero, then the alignment is computed from the
2050  * given (object, offset) pair so as to enable the greatest possible use of
2051  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2052  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2053  *
2054  * The map must be locked.  Initially, there must be at least "length" bytes
2055  * of free space at the given address.
2056  */
2057 static int
vm_map_alignspace(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2058 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2059     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2060     vm_offset_t alignment)
2061 {
2062 	vm_offset_t aligned_addr, free_addr;
2063 
2064 	VM_MAP_ASSERT_LOCKED(map);
2065 	free_addr = *addr;
2066 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2067 	    ("caller failed to provide space %#jx at address %p",
2068 	     (uintmax_t)length, (void *)free_addr));
2069 	for (;;) {
2070 		/*
2071 		 * At the start of every iteration, the free space at address
2072 		 * "*addr" is at least "length" bytes.
2073 		 */
2074 		if (alignment == 0)
2075 			pmap_align_superpage(object, offset, addr, length);
2076 		else
2077 			*addr = roundup2(*addr, alignment);
2078 		aligned_addr = *addr;
2079 		if (aligned_addr == free_addr) {
2080 			/*
2081 			 * Alignment did not change "*addr", so "*addr" must
2082 			 * still provide sufficient free space.
2083 			 */
2084 			return (KERN_SUCCESS);
2085 		}
2086 
2087 		/*
2088 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2089 		 * be a valid address, in which case vm_map_findspace() cannot
2090 		 * be relied upon to fail.
2091 		 */
2092 		if (aligned_addr < free_addr)
2093 			return (KERN_NO_SPACE);
2094 		*addr = vm_map_findspace(map, aligned_addr, length);
2095 		if (*addr + length > vm_map_max(map) ||
2096 		    (max_addr != 0 && *addr + length > max_addr))
2097 			return (KERN_NO_SPACE);
2098 		free_addr = *addr;
2099 		if (free_addr == aligned_addr) {
2100 			/*
2101 			 * If a successful call to vm_map_findspace() did not
2102 			 * change "*addr", then "*addr" must still be aligned
2103 			 * and provide sufficient free space.
2104 			 */
2105 			return (KERN_SUCCESS);
2106 		}
2107 	}
2108 }
2109 
2110 int
vm_map_find_aligned(vm_map_t map,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,vm_offset_t alignment)2111 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2112     vm_offset_t max_addr, vm_offset_t alignment)
2113 {
2114 	/* XXXKIB ASLR eh ? */
2115 	*addr = vm_map_findspace(map, *addr, length);
2116 	if (*addr + length > vm_map_max(map) ||
2117 	    (max_addr != 0 && *addr + length > max_addr))
2118 		return (KERN_NO_SPACE);
2119 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2120 	    alignment));
2121 }
2122 
2123 /*
2124  *	vm_map_find finds an unallocated region in the target address
2125  *	map with the given length.  The search is defined to be
2126  *	first-fit from the specified address; the region found is
2127  *	returned in the same parameter.
2128  *
2129  *	If object is non-NULL, ref count must be bumped by caller
2130  *	prior to making call to account for the new entry.
2131  */
2132 int
vm_map_find(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2133 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2134     vm_offset_t *addr,	/* IN/OUT */
2135     vm_size_t length, vm_offset_t max_addr, int find_space,
2136     vm_prot_t prot, vm_prot_t max, int cow)
2137 {
2138 	int rv;
2139 
2140 	vm_map_lock(map);
2141 	rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2142 	    find_space, prot, max, cow);
2143 	vm_map_unlock(map);
2144 	return (rv);
2145 }
2146 
2147 int
vm_map_find_locked(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2148 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2149     vm_offset_t *addr,	/* IN/OUT */
2150     vm_size_t length, vm_offset_t max_addr, int find_space,
2151     vm_prot_t prot, vm_prot_t max, int cow)
2152 {
2153 	vm_offset_t alignment, curr_min_addr, min_addr;
2154 	int gap, pidx, rv, try;
2155 	bool cluster, en_aslr, update_anon;
2156 
2157 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
2158 	    ("non-NULL backing object for stack"));
2159 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2160 	    (cow & MAP_STACK_AREA) == 0));
2161 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2162 	    (object->flags & OBJ_COLORED) == 0))
2163 		find_space = VMFS_ANY_SPACE;
2164 	if (find_space >> 8 != 0) {
2165 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2166 		alignment = (vm_offset_t)1 << (find_space >> 8);
2167 	} else
2168 		alignment = 0;
2169 	en_aslr = (map->flags & MAP_ASLR) != 0;
2170 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2171 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2172 	    find_space != VMFS_NO_SPACE && object == NULL &&
2173 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 &&
2174 	    prot != PROT_NONE;
2175 	curr_min_addr = min_addr = *addr;
2176 	if (en_aslr && min_addr == 0 && !cluster &&
2177 	    find_space != VMFS_NO_SPACE &&
2178 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2179 		curr_min_addr = min_addr = vm_map_min(map);
2180 	try = 0;
2181 	if (cluster) {
2182 		curr_min_addr = map->anon_loc;
2183 		if (curr_min_addr == 0)
2184 			cluster = false;
2185 	}
2186 	if (find_space != VMFS_NO_SPACE) {
2187 		KASSERT(find_space == VMFS_ANY_SPACE ||
2188 		    find_space == VMFS_OPTIMAL_SPACE ||
2189 		    find_space == VMFS_SUPER_SPACE ||
2190 		    alignment != 0, ("unexpected VMFS flag"));
2191 again:
2192 		/*
2193 		 * When creating an anonymous mapping, try clustering
2194 		 * with an existing anonymous mapping first.
2195 		 *
2196 		 * We make up to two attempts to find address space
2197 		 * for a given find_space value. The first attempt may
2198 		 * apply randomization or may cluster with an existing
2199 		 * anonymous mapping. If this first attempt fails,
2200 		 * perform a first-fit search of the available address
2201 		 * space.
2202 		 *
2203 		 * If all tries failed, and find_space is
2204 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2205 		 * Again enable clustering and randomization.
2206 		 */
2207 		try++;
2208 		MPASS(try <= 2);
2209 
2210 		if (try == 2) {
2211 			/*
2212 			 * Second try: we failed either to find a
2213 			 * suitable region for randomizing the
2214 			 * allocation, or to cluster with an existing
2215 			 * mapping.  Retry with free run.
2216 			 */
2217 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2218 			    vm_map_min(map) : min_addr;
2219 			atomic_add_long(&aslr_restarts, 1);
2220 		}
2221 
2222 		if (try == 1 && en_aslr && !cluster) {
2223 			/*
2224 			 * Find space for allocation, including
2225 			 * gap needed for later randomization.
2226 			 */
2227 			pidx = 0;
2228 #if VM_NRESERVLEVEL > 0
2229 			if ((find_space == VMFS_SUPER_SPACE ||
2230 			    find_space == VMFS_OPTIMAL_SPACE) &&
2231 			    pagesizes[VM_NRESERVLEVEL] != 0) {
2232 				/*
2233 				 * Do not pointlessly increase the space that
2234 				 * is requested from vm_map_findspace().
2235 				 * pmap_align_superpage() will only change a
2236 				 * mapping's alignment if that mapping is at
2237 				 * least a superpage in size.
2238 				 */
2239 				pidx = VM_NRESERVLEVEL;
2240 				while (pidx > 0 && length < pagesizes[pidx])
2241 					pidx--;
2242 			}
2243 #endif
2244 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2245 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2246 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2247 			*addr = vm_map_findspace(map, curr_min_addr,
2248 			    length + gap * pagesizes[pidx]);
2249 			if (*addr + length + gap * pagesizes[pidx] >
2250 			    vm_map_max(map))
2251 				goto again;
2252 			/* And randomize the start address. */
2253 			*addr += (arc4random() % gap) * pagesizes[pidx];
2254 			if (max_addr != 0 && *addr + length > max_addr)
2255 				goto again;
2256 		} else {
2257 			*addr = vm_map_findspace(map, curr_min_addr, length);
2258 			if (*addr + length > vm_map_max(map) ||
2259 			    (max_addr != 0 && *addr + length > max_addr)) {
2260 				if (cluster) {
2261 					cluster = false;
2262 					MPASS(try == 1);
2263 					goto again;
2264 				}
2265 				return (KERN_NO_SPACE);
2266 			}
2267 		}
2268 
2269 		if (find_space != VMFS_ANY_SPACE &&
2270 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2271 		    max_addr, alignment)) != KERN_SUCCESS) {
2272 			if (find_space == VMFS_OPTIMAL_SPACE) {
2273 				find_space = VMFS_ANY_SPACE;
2274 				curr_min_addr = min_addr;
2275 				cluster = update_anon;
2276 				try = 0;
2277 				goto again;
2278 			}
2279 			return (rv);
2280 		}
2281 	} else if ((cow & MAP_REMAP) != 0) {
2282 		if (!vm_map_range_valid(map, *addr, *addr + length))
2283 			return (KERN_INVALID_ADDRESS);
2284 		rv = vm_map_delete(map, *addr, *addr + length);
2285 		if (rv != KERN_SUCCESS)
2286 			return (rv);
2287 	}
2288 	if ((cow & MAP_STACK_AREA) != 0) {
2289 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2290 		    max, cow);
2291 	} else {
2292 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2293 		    prot, max, cow);
2294 	}
2295 
2296 	/*
2297 	 * Update the starting address for clustered anonymous memory mappings
2298 	 * if a starting address was not previously defined or an ASLR restart
2299 	 * placed an anonymous memory mapping at a lower address.
2300 	 */
2301 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2302 	    *addr < map->anon_loc))
2303 		map->anon_loc = *addr;
2304 	return (rv);
2305 }
2306 
2307 /*
2308  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2309  *	additional parameter ("default_addr") and treats the given address
2310  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2311  *	and not as the minimum address where the mapping is created.
2312  *
2313  *	This function works in two phases.  First, it tries to
2314  *	allocate above the hint.  If that fails and the hint is
2315  *	greater than "default_addr", it performs a second pass, replacing
2316  *	the hint with "default_addr" as the minimum address for the
2317  *	allocation.
2318  */
2319 int
vm_map_find_min(vm_map_t map,vm_object_t object,vm_ooffset_t offset,vm_offset_t * addr,vm_size_t length,vm_offset_t default_addr,vm_offset_t max_addr,int find_space,vm_prot_t prot,vm_prot_t max,int cow)2320 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2321     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2322     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2323     int cow)
2324 {
2325 	vm_offset_t hint;
2326 	int rv;
2327 
2328 	hint = *addr;
2329 	if (hint == 0) {
2330 		cow |= MAP_NO_HINT;
2331 		*addr = hint = default_addr;
2332 	}
2333 	for (;;) {
2334 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2335 		    find_space, prot, max, cow);
2336 		if (rv == KERN_SUCCESS || default_addr >= hint)
2337 			return (rv);
2338 		*addr = hint = default_addr;
2339 	}
2340 }
2341 
2342 /*
2343  * A map entry with any of the following flags set must not be merged with
2344  * another entry.
2345  */
2346 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | \
2347     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2348     MAP_ENTRY_STACK_GAP)
2349 
2350 static bool
vm_map_mergeable_neighbors(vm_map_entry_t prev,vm_map_entry_t entry)2351 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2352 {
2353 
2354 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2355 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2356 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2357 	    prev, entry));
2358 	return (prev->end == entry->start &&
2359 	    prev->object.vm_object == entry->object.vm_object &&
2360 	    (prev->object.vm_object == NULL ||
2361 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2362 	    prev->eflags == entry->eflags &&
2363 	    prev->protection == entry->protection &&
2364 	    prev->max_protection == entry->max_protection &&
2365 	    prev->inheritance == entry->inheritance &&
2366 	    prev->wired_count == entry->wired_count &&
2367 	    prev->cred == entry->cred);
2368 }
2369 
2370 static void
vm_map_merged_neighbor_dispose(vm_map_t map,vm_map_entry_t entry)2371 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2372 {
2373 
2374 	/*
2375 	 * If the backing object is a vnode object, vm_object_deallocate()
2376 	 * calls vrele().  However, vrele() does not lock the vnode because
2377 	 * the vnode has additional references.  Thus, the map lock can be
2378 	 * kept without causing a lock-order reversal with the vnode lock.
2379 	 *
2380 	 * Since we count the number of virtual page mappings in
2381 	 * object->un_pager.vnp.writemappings, the writemappings value
2382 	 * should not be adjusted when the entry is disposed of.
2383 	 */
2384 	if (entry->object.vm_object != NULL)
2385 		vm_object_deallocate(entry->object.vm_object);
2386 	if (entry->cred != NULL)
2387 		crfree(entry->cred);
2388 	vm_map_entry_dispose(map, entry);
2389 }
2390 
2391 /*
2392  *	vm_map_try_merge_entries:
2393  *
2394  *	Compare two map entries that represent consecutive ranges. If
2395  *	the entries can be merged, expand the range of the second to
2396  *	cover the range of the first and delete the first. Then return
2397  *	the map entry that includes the first range.
2398  *
2399  *	The map must be locked.
2400  */
2401 vm_map_entry_t
vm_map_try_merge_entries(vm_map_t map,vm_map_entry_t prev_entry,vm_map_entry_t entry)2402 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2403     vm_map_entry_t entry)
2404 {
2405 
2406 	VM_MAP_ASSERT_LOCKED(map);
2407 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2408 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2409 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2410 		vm_map_merged_neighbor_dispose(map, prev_entry);
2411 		return (entry);
2412 	}
2413 	return (prev_entry);
2414 }
2415 
2416 /*
2417  *	vm_map_entry_back:
2418  *
2419  *	Allocate an object to back a map entry.
2420  */
2421 static inline void
vm_map_entry_back(vm_map_entry_t entry)2422 vm_map_entry_back(vm_map_entry_t entry)
2423 {
2424 	vm_object_t object;
2425 
2426 	KASSERT(entry->object.vm_object == NULL,
2427 	    ("map entry %p has backing object", entry));
2428 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2429 	    ("map entry %p is a submap", entry));
2430 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2431 	    entry->cred, entry->end - entry->start);
2432 	entry->object.vm_object = object;
2433 	entry->offset = 0;
2434 	entry->cred = NULL;
2435 }
2436 
2437 /*
2438  *	vm_map_entry_charge_object
2439  *
2440  *	If there is no object backing this entry, create one.  Otherwise, if
2441  *	the entry has cred, give it to the backing object.
2442  */
2443 static inline void
vm_map_entry_charge_object(vm_map_t map,vm_map_entry_t entry)2444 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2445 {
2446 
2447 	VM_MAP_ASSERT_LOCKED(map);
2448 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2449 	    ("map entry %p is a submap", entry));
2450 	if (entry->object.vm_object == NULL && !vm_map_is_system(map) &&
2451 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2452 		vm_map_entry_back(entry);
2453 	else if (entry->object.vm_object != NULL &&
2454 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2455 	    entry->cred != NULL) {
2456 		VM_OBJECT_WLOCK(entry->object.vm_object);
2457 		KASSERT(entry->object.vm_object->cred == NULL,
2458 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2459 		entry->object.vm_object->cred = entry->cred;
2460 		entry->object.vm_object->charge = entry->end - entry->start;
2461 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2462 		entry->cred = NULL;
2463 	}
2464 }
2465 
2466 /*
2467  *	vm_map_entry_clone
2468  *
2469  *	Create a duplicate map entry for clipping.
2470  */
2471 static vm_map_entry_t
vm_map_entry_clone(vm_map_t map,vm_map_entry_t entry)2472 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2473 {
2474 	vm_map_entry_t new_entry;
2475 
2476 	VM_MAP_ASSERT_LOCKED(map);
2477 
2478 	/*
2479 	 * Create a backing object now, if none exists, so that more individual
2480 	 * objects won't be created after the map entry is split.
2481 	 */
2482 	vm_map_entry_charge_object(map, entry);
2483 
2484 	/* Clone the entry. */
2485 	new_entry = vm_map_entry_create(map);
2486 	*new_entry = *entry;
2487 	if (new_entry->cred != NULL)
2488 		crhold(entry->cred);
2489 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2490 		vm_object_reference(new_entry->object.vm_object);
2491 		vm_map_entry_set_vnode_text(new_entry, true);
2492 		/*
2493 		 * The object->un_pager.vnp.writemappings for the object of
2494 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2495 		 * virtual pages are re-distributed among the clipped entries,
2496 		 * so the sum is left the same.
2497 		 */
2498 	}
2499 	return (new_entry);
2500 }
2501 
2502 /*
2503  *	vm_map_clip_start:	[ internal use only ]
2504  *
2505  *	Asserts that the given entry begins at or after
2506  *	the specified address; if necessary,
2507  *	it splits the entry into two.
2508  */
2509 static int
vm_map_clip_start(vm_map_t map,vm_map_entry_t entry,vm_offset_t startaddr)2510 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2511 {
2512 	vm_map_entry_t new_entry;
2513 	int bdry_idx;
2514 
2515 	if (!vm_map_is_system(map))
2516 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2517 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2518 		    (uintmax_t)startaddr);
2519 
2520 	if (startaddr <= entry->start)
2521 		return (KERN_SUCCESS);
2522 
2523 	VM_MAP_ASSERT_LOCKED(map);
2524 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2525 	    ("%s: invalid clip of entry %p", __func__, entry));
2526 
2527 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2528 	if (bdry_idx != 0) {
2529 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2530 			return (KERN_INVALID_ARGUMENT);
2531 	}
2532 
2533 	new_entry = vm_map_entry_clone(map, entry);
2534 
2535 	/*
2536 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2537 	 * so that this entry has the specified starting address.
2538 	 */
2539 	new_entry->end = startaddr;
2540 	vm_map_entry_link(map, new_entry);
2541 	return (KERN_SUCCESS);
2542 }
2543 
2544 /*
2545  *	vm_map_lookup_clip_start:
2546  *
2547  *	Find the entry at or just after 'start', and clip it if 'start' is in
2548  *	the interior of the entry.  Return entry after 'start', and in
2549  *	prev_entry set the entry before 'start'.
2550  */
2551 static int
vm_map_lookup_clip_start(vm_map_t map,vm_offset_t start,vm_map_entry_t * res_entry,vm_map_entry_t * prev_entry)2552 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2553     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2554 {
2555 	vm_map_entry_t entry;
2556 	int rv;
2557 
2558 	if (!vm_map_is_system(map))
2559 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2560 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2561 		    (uintmax_t)start, prev_entry);
2562 
2563 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2564 		entry = *prev_entry;
2565 		rv = vm_map_clip_start(map, entry, start);
2566 		if (rv != KERN_SUCCESS)
2567 			return (rv);
2568 		*prev_entry = vm_map_entry_pred(entry);
2569 	} else
2570 		entry = vm_map_entry_succ(*prev_entry);
2571 	*res_entry = entry;
2572 	return (KERN_SUCCESS);
2573 }
2574 
2575 /*
2576  *	vm_map_clip_end:	[ internal use only ]
2577  *
2578  *	Asserts that the given entry ends at or before
2579  *	the specified address; if necessary,
2580  *	it splits the entry into two.
2581  */
2582 static int
vm_map_clip_end(vm_map_t map,vm_map_entry_t entry,vm_offset_t endaddr)2583 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2584 {
2585 	vm_map_entry_t new_entry;
2586 	int bdry_idx;
2587 
2588 	if (!vm_map_is_system(map))
2589 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2590 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2591 		    (uintmax_t)endaddr);
2592 
2593 	if (endaddr >= entry->end)
2594 		return (KERN_SUCCESS);
2595 
2596 	VM_MAP_ASSERT_LOCKED(map);
2597 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2598 	    ("%s: invalid clip of entry %p", __func__, entry));
2599 
2600 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2601 	if (bdry_idx != 0) {
2602 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2603 			return (KERN_INVALID_ARGUMENT);
2604 	}
2605 
2606 	new_entry = vm_map_entry_clone(map, entry);
2607 
2608 	/*
2609 	 * Split off the back portion.  Insert the new entry AFTER this one,
2610 	 * so that this entry has the specified ending address.
2611 	 */
2612 	new_entry->start = endaddr;
2613 	vm_map_entry_link(map, new_entry);
2614 
2615 	return (KERN_SUCCESS);
2616 }
2617 
2618 /*
2619  *	vm_map_submap:		[ kernel use only ]
2620  *
2621  *	Mark the given range as handled by a subordinate map.
2622  *
2623  *	This range must have been created with vm_map_find,
2624  *	and no other operations may have been performed on this
2625  *	range prior to calling vm_map_submap.
2626  *
2627  *	Only a limited number of operations can be performed
2628  *	within this rage after calling vm_map_submap:
2629  *		vm_fault
2630  *	[Don't try vm_map_copy!]
2631  *
2632  *	To remove a submapping, one must first remove the
2633  *	range from the superior map, and then destroy the
2634  *	submap (if desired).  [Better yet, don't try it.]
2635  */
2636 int
vm_map_submap(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_map_t submap)2637 vm_map_submap(
2638 	vm_map_t map,
2639 	vm_offset_t start,
2640 	vm_offset_t end,
2641 	vm_map_t submap)
2642 {
2643 	vm_map_entry_t entry;
2644 	int result;
2645 
2646 	result = KERN_INVALID_ARGUMENT;
2647 
2648 	vm_map_lock(submap);
2649 	submap->flags |= MAP_IS_SUB_MAP;
2650 	vm_map_unlock(submap);
2651 
2652 	vm_map_lock(map);
2653 	VM_MAP_RANGE_CHECK(map, start, end);
2654 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2655 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2656 	    entry->object.vm_object == NULL) {
2657 		result = vm_map_clip_start(map, entry, start);
2658 		if (result != KERN_SUCCESS)
2659 			goto unlock;
2660 		result = vm_map_clip_end(map, entry, end);
2661 		if (result != KERN_SUCCESS)
2662 			goto unlock;
2663 		entry->object.sub_map = submap;
2664 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2665 		result = KERN_SUCCESS;
2666 	}
2667 unlock:
2668 	vm_map_unlock(map);
2669 
2670 	if (result != KERN_SUCCESS) {
2671 		vm_map_lock(submap);
2672 		submap->flags &= ~MAP_IS_SUB_MAP;
2673 		vm_map_unlock(submap);
2674 	}
2675 	return (result);
2676 }
2677 
2678 /*
2679  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2680  */
2681 #define	MAX_INIT_PT	96
2682 
2683 /*
2684  *	vm_map_pmap_enter:
2685  *
2686  *	Preload the specified map's pmap with mappings to the specified
2687  *	object's memory-resident pages.  No further physical pages are
2688  *	allocated, and no further virtual pages are retrieved from secondary
2689  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2690  *	limited number of page mappings are created at the low-end of the
2691  *	specified address range.  (For this purpose, a superpage mapping
2692  *	counts as one page mapping.)  Otherwise, all resident pages within
2693  *	the specified address range are mapped.
2694  */
2695 static void
vm_map_pmap_enter(vm_map_t map,vm_offset_t addr,vm_prot_t prot,vm_object_t object,vm_pindex_t pindex,vm_size_t size,int flags)2696 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2697     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2698 {
2699 	struct pctrie_iter pages;
2700 	vm_offset_t start;
2701 	vm_page_t p, p_start;
2702 	vm_pindex_t jump, mask, psize, threshold, tmpidx;
2703 	int psind;
2704 
2705 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2706 		return;
2707 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2708 		VM_OBJECT_WLOCK(object);
2709 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2710 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2711 			    size);
2712 			VM_OBJECT_WUNLOCK(object);
2713 			return;
2714 		}
2715 		VM_OBJECT_LOCK_DOWNGRADE(object);
2716 	} else
2717 		VM_OBJECT_RLOCK(object);
2718 
2719 	psize = atop(size);
2720 	if (psize + pindex > object->size) {
2721 		if (pindex >= object->size) {
2722 			VM_OBJECT_RUNLOCK(object);
2723 			return;
2724 		}
2725 		psize = object->size - pindex;
2726 	}
2727 
2728 	start = 0;
2729 	p_start = NULL;
2730 	threshold = MAX_INIT_PT;
2731 
2732 	vm_page_iter_limit_init(&pages, object, pindex + psize);
2733 	for (p = vm_radix_iter_lookup_ge(&pages, pindex); p != NULL;
2734 	    p = vm_radix_iter_jump(&pages, jump)) {
2735 		/*
2736 		 * don't allow an madvise to blow away our really
2737 		 * free pages allocating pv entries.
2738 		 */
2739 		tmpidx = p->pindex - pindex;
2740 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2741 		    vm_page_count_severe()) ||
2742 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2743 		    tmpidx >= threshold)) {
2744 			psize = tmpidx;
2745 			break;
2746 		}
2747 		jump = 1;
2748 		if (vm_page_all_valid(p)) {
2749 			if (p_start == NULL) {
2750 				start = addr + ptoa(tmpidx);
2751 				p_start = p;
2752 			}
2753 			/* Jump ahead if a superpage mapping is possible. */
2754 			for (psind = p->psind; psind > 0; psind--) {
2755 				if (((addr + ptoa(tmpidx)) &
2756 				    (pagesizes[psind] - 1)) == 0) {
2757 					mask = atop(pagesizes[psind]) - 1;
2758 					if (tmpidx + mask < psize &&
2759 					    vm_page_ps_test(p, psind,
2760 					    PS_ALL_VALID, NULL)) {
2761 						jump += mask;
2762 						threshold += mask;
2763 						break;
2764 					}
2765 				}
2766 			}
2767 		} else if (p_start != NULL) {
2768 			pmap_enter_object(map->pmap, start, addr +
2769 			    ptoa(tmpidx), p_start, prot);
2770 			p_start = NULL;
2771 		}
2772 	}
2773 	if (p_start != NULL)
2774 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2775 		    p_start, prot);
2776 	VM_OBJECT_RUNLOCK(object);
2777 }
2778 
2779 static void
vm_map_protect_guard(vm_map_entry_t entry,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2780 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2781     vm_prot_t new_maxprot, int flags)
2782 {
2783 	vm_prot_t old_prot;
2784 
2785 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2786 	if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
2787 		return;
2788 
2789 	old_prot = PROT_EXTRACT(entry->offset);
2790 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2791 		entry->offset = PROT_MAX(new_maxprot) |
2792 		    (new_maxprot & old_prot);
2793 	}
2794 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2795 		entry->offset = new_prot | PROT_MAX(
2796 		    PROT_MAX_EXTRACT(entry->offset));
2797 	}
2798 }
2799 
2800 /*
2801  *	vm_map_protect:
2802  *
2803  *	Sets the protection and/or the maximum protection of the
2804  *	specified address region in the target map.
2805  */
2806 int
vm_map_protect(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t new_prot,vm_prot_t new_maxprot,int flags)2807 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2808     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2809 {
2810 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2811 	vm_object_t obj;
2812 	struct ucred *cred;
2813 	vm_offset_t orig_start;
2814 	vm_prot_t check_prot, max_prot, old_prot;
2815 	int rv;
2816 
2817 	if (start == end)
2818 		return (KERN_SUCCESS);
2819 
2820 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2821 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2822 	    !CONTAINS_BITS(new_maxprot, new_prot))
2823 		return (KERN_OUT_OF_BOUNDS);
2824 
2825 	orig_start = start;
2826 again:
2827 	in_tran = NULL;
2828 	start = orig_start;
2829 	vm_map_lock(map);
2830 
2831 	if ((map->flags & MAP_WXORX) != 0 &&
2832 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2833 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2834 		vm_map_unlock(map);
2835 		return (KERN_PROTECTION_FAILURE);
2836 	}
2837 
2838 	/*
2839 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2840 	 * need to fault pages into the map and will drop the map lock while
2841 	 * doing so, and the VM object may end up in an inconsistent state if we
2842 	 * update the protection on the map entry in between faults.
2843 	 */
2844 	vm_map_wait_busy(map);
2845 
2846 	VM_MAP_RANGE_CHECK(map, start, end);
2847 
2848 	if (!vm_map_lookup_entry(map, start, &first_entry))
2849 		first_entry = vm_map_entry_succ(first_entry);
2850 
2851 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2852 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2853 		/*
2854 		 * Handle Linux's PROT_GROWSDOWN flag.
2855 		 * It means that protection is applied down to the
2856 		 * whole stack, including the specified range of the
2857 		 * mapped region, and the grow down region (AKA
2858 		 * guard).
2859 		 */
2860 		while (!CONTAINS_BITS(first_entry->eflags,
2861 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) &&
2862 		    first_entry != vm_map_entry_first(map))
2863 			first_entry = vm_map_entry_pred(first_entry);
2864 		start = first_entry->start;
2865 	}
2866 
2867 	/*
2868 	 * Make a first pass to check for protection violations.
2869 	 */
2870 	check_prot = 0;
2871 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2872 		check_prot |= new_prot;
2873 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2874 		check_prot |= new_maxprot;
2875 	for (entry = first_entry; entry->start < end;
2876 	    entry = vm_map_entry_succ(entry)) {
2877 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2878 			vm_map_unlock(map);
2879 			return (KERN_INVALID_ARGUMENT);
2880 		}
2881 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2882 		    MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD)
2883 			continue;
2884 		max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ?
2885 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2886 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2887 			vm_map_unlock(map);
2888 			return (KERN_PROTECTION_FAILURE);
2889 		}
2890 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2891 			in_tran = entry;
2892 	}
2893 
2894 	/*
2895 	 * Postpone the operation until all in-transition map entries have
2896 	 * stabilized.  An in-transition entry might already have its pages
2897 	 * wired and wired_count incremented, but not yet have its
2898 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2899 	 * vm_fault_copy_entry() in the final loop below.
2900 	 */
2901 	if (in_tran != NULL) {
2902 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2903 		vm_map_unlock_and_wait(map, 0);
2904 		goto again;
2905 	}
2906 
2907 	/*
2908 	 * Before changing the protections, try to reserve swap space for any
2909 	 * private (i.e., copy-on-write) mappings that are transitioning from
2910 	 * read-only to read/write access.  If a reservation fails, break out
2911 	 * of this loop early and let the next loop simplify the entries, since
2912 	 * some may now be mergeable.
2913 	 */
2914 	rv = vm_map_clip_start(map, first_entry, start);
2915 	if (rv != KERN_SUCCESS) {
2916 		vm_map_unlock(map);
2917 		return (rv);
2918 	}
2919 	for (entry = first_entry; entry->start < end;
2920 	    entry = vm_map_entry_succ(entry)) {
2921 		rv = vm_map_clip_end(map, entry, end);
2922 		if (rv != KERN_SUCCESS) {
2923 			vm_map_unlock(map);
2924 			return (rv);
2925 		}
2926 
2927 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2928 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2929 		    ENTRY_CHARGED(entry) ||
2930 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2931 			continue;
2932 
2933 		cred = curthread->td_ucred;
2934 		obj = entry->object.vm_object;
2935 
2936 		if (obj == NULL ||
2937 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2938 			if (!swap_reserve(entry->end - entry->start)) {
2939 				rv = KERN_RESOURCE_SHORTAGE;
2940 				end = entry->end;
2941 				break;
2942 			}
2943 			crhold(cred);
2944 			entry->cred = cred;
2945 			continue;
2946 		}
2947 
2948 		VM_OBJECT_WLOCK(obj);
2949 		if ((obj->flags & OBJ_SWAP) == 0) {
2950 			VM_OBJECT_WUNLOCK(obj);
2951 			continue;
2952 		}
2953 
2954 		/*
2955 		 * Charge for the whole object allocation now, since
2956 		 * we cannot distinguish between non-charged and
2957 		 * charged clipped mapping of the same object later.
2958 		 */
2959 		KASSERT(obj->charge == 0,
2960 		    ("vm_map_protect: object %p overcharged (entry %p)",
2961 		    obj, entry));
2962 		if (!swap_reserve(ptoa(obj->size))) {
2963 			VM_OBJECT_WUNLOCK(obj);
2964 			rv = KERN_RESOURCE_SHORTAGE;
2965 			end = entry->end;
2966 			break;
2967 		}
2968 
2969 		crhold(cred);
2970 		obj->cred = cred;
2971 		obj->charge = ptoa(obj->size);
2972 		VM_OBJECT_WUNLOCK(obj);
2973 	}
2974 
2975 	/*
2976 	 * If enough swap space was available, go back and fix up protections.
2977 	 * Otherwise, just simplify entries, since some may have been modified.
2978 	 * [Note that clipping is not necessary the second time.]
2979 	 */
2980 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2981 	    entry->start < end;
2982 	    vm_map_try_merge_entries(map, prev_entry, entry),
2983 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2984 		if (rv != KERN_SUCCESS)
2985 			continue;
2986 
2987 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2988 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2989 			    flags);
2990 			continue;
2991 		}
2992 
2993 		old_prot = entry->protection;
2994 
2995 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2996 			entry->max_protection = new_maxprot;
2997 			entry->protection = new_maxprot & old_prot;
2998 		}
2999 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
3000 			entry->protection = new_prot;
3001 
3002 		/*
3003 		 * For user wired map entries, the normal lazy evaluation of
3004 		 * write access upgrades through soft page faults is
3005 		 * undesirable.  Instead, immediately copy any pages that are
3006 		 * copy-on-write and enable write access in the physical map.
3007 		 */
3008 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
3009 		    (entry->protection & VM_PROT_WRITE) != 0 &&
3010 		    (old_prot & VM_PROT_WRITE) == 0)
3011 			vm_fault_copy_entry(map, map, entry, entry, NULL);
3012 
3013 		/*
3014 		 * When restricting access, update the physical map.  Worry
3015 		 * about copy-on-write here.
3016 		 */
3017 		if ((old_prot & ~entry->protection) != 0) {
3018 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
3019 							VM_PROT_ALL)
3020 			pmap_protect(map->pmap, entry->start,
3021 			    entry->end,
3022 			    entry->protection & MASK(entry));
3023 #undef	MASK
3024 		}
3025 	}
3026 	vm_map_try_merge_entries(map, prev_entry, entry);
3027 	vm_map_unlock(map);
3028 	return (rv);
3029 }
3030 
3031 /*
3032  *	vm_map_madvise:
3033  *
3034  *	This routine traverses a processes map handling the madvise
3035  *	system call.  Advisories are classified as either those effecting
3036  *	the vm_map_entry structure, or those effecting the underlying
3037  *	objects.
3038  */
3039 int
vm_map_madvise(vm_map_t map,vm_offset_t start,vm_offset_t end,int behav)3040 vm_map_madvise(
3041 	vm_map_t map,
3042 	vm_offset_t start,
3043 	vm_offset_t end,
3044 	int behav)
3045 {
3046 	vm_map_entry_t entry, prev_entry;
3047 	int rv;
3048 	bool modify_map;
3049 
3050 	/*
3051 	 * Some madvise calls directly modify the vm_map_entry, in which case
3052 	 * we need to use an exclusive lock on the map and we need to perform
3053 	 * various clipping operations.  Otherwise we only need a read-lock
3054 	 * on the map.
3055 	 */
3056 	switch(behav) {
3057 	case MADV_NORMAL:
3058 	case MADV_SEQUENTIAL:
3059 	case MADV_RANDOM:
3060 	case MADV_NOSYNC:
3061 	case MADV_AUTOSYNC:
3062 	case MADV_NOCORE:
3063 	case MADV_CORE:
3064 		if (start == end)
3065 			return (0);
3066 		modify_map = true;
3067 		vm_map_lock(map);
3068 		break;
3069 	case MADV_WILLNEED:
3070 	case MADV_DONTNEED:
3071 	case MADV_FREE:
3072 		if (start == end)
3073 			return (0);
3074 		modify_map = false;
3075 		vm_map_lock_read(map);
3076 		break;
3077 	default:
3078 		return (EINVAL);
3079 	}
3080 
3081 	/*
3082 	 * Locate starting entry and clip if necessary.
3083 	 */
3084 	VM_MAP_RANGE_CHECK(map, start, end);
3085 
3086 	if (modify_map) {
3087 		/*
3088 		 * madvise behaviors that are implemented in the vm_map_entry.
3089 		 *
3090 		 * We clip the vm_map_entry so that behavioral changes are
3091 		 * limited to the specified address range.
3092 		 */
3093 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3094 		if (rv != KERN_SUCCESS) {
3095 			vm_map_unlock(map);
3096 			return (vm_mmap_to_errno(rv));
3097 		}
3098 
3099 		for (; entry->start < end; prev_entry = entry,
3100 		    entry = vm_map_entry_succ(entry)) {
3101 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3102 				continue;
3103 
3104 			rv = vm_map_clip_end(map, entry, end);
3105 			if (rv != KERN_SUCCESS) {
3106 				vm_map_unlock(map);
3107 				return (vm_mmap_to_errno(rv));
3108 			}
3109 
3110 			switch (behav) {
3111 			case MADV_NORMAL:
3112 				vm_map_entry_set_behavior(entry,
3113 				    MAP_ENTRY_BEHAV_NORMAL);
3114 				break;
3115 			case MADV_SEQUENTIAL:
3116 				vm_map_entry_set_behavior(entry,
3117 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3118 				break;
3119 			case MADV_RANDOM:
3120 				vm_map_entry_set_behavior(entry,
3121 				    MAP_ENTRY_BEHAV_RANDOM);
3122 				break;
3123 			case MADV_NOSYNC:
3124 				entry->eflags |= MAP_ENTRY_NOSYNC;
3125 				break;
3126 			case MADV_AUTOSYNC:
3127 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3128 				break;
3129 			case MADV_NOCORE:
3130 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3131 				break;
3132 			case MADV_CORE:
3133 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3134 				break;
3135 			default:
3136 				break;
3137 			}
3138 			vm_map_try_merge_entries(map, prev_entry, entry);
3139 		}
3140 		vm_map_try_merge_entries(map, prev_entry, entry);
3141 		vm_map_unlock(map);
3142 	} else {
3143 		vm_pindex_t pstart, pend;
3144 
3145 		/*
3146 		 * madvise behaviors that are implemented in the underlying
3147 		 * vm_object.
3148 		 *
3149 		 * Since we don't clip the vm_map_entry, we have to clip
3150 		 * the vm_object pindex and count.
3151 		 */
3152 		if (!vm_map_lookup_entry(map, start, &entry))
3153 			entry = vm_map_entry_succ(entry);
3154 		for (; entry->start < end;
3155 		    entry = vm_map_entry_succ(entry)) {
3156 			vm_offset_t useEnd, useStart;
3157 
3158 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3159 			    MAP_ENTRY_GUARD)) != 0)
3160 				continue;
3161 
3162 			/*
3163 			 * MADV_FREE would otherwise rewind time to
3164 			 * the creation of the shadow object.  Because
3165 			 * we hold the VM map read-locked, neither the
3166 			 * entry's object nor the presence of a
3167 			 * backing object can change.
3168 			 */
3169 			if (behav == MADV_FREE &&
3170 			    entry->object.vm_object != NULL &&
3171 			    entry->object.vm_object->backing_object != NULL)
3172 				continue;
3173 
3174 			pstart = OFF_TO_IDX(entry->offset);
3175 			pend = pstart + atop(entry->end - entry->start);
3176 			useStart = entry->start;
3177 			useEnd = entry->end;
3178 
3179 			if (entry->start < start) {
3180 				pstart += atop(start - entry->start);
3181 				useStart = start;
3182 			}
3183 			if (entry->end > end) {
3184 				pend -= atop(entry->end - end);
3185 				useEnd = end;
3186 			}
3187 
3188 			if (pstart >= pend)
3189 				continue;
3190 
3191 			/*
3192 			 * Perform the pmap_advise() before clearing
3193 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3194 			 * concurrent pmap operation, such as pmap_remove(),
3195 			 * could clear a reference in the pmap and set
3196 			 * PGA_REFERENCED on the page before the pmap_advise()
3197 			 * had completed.  Consequently, the page would appear
3198 			 * referenced based upon an old reference that
3199 			 * occurred before this pmap_advise() ran.
3200 			 */
3201 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3202 				pmap_advise(map->pmap, useStart, useEnd,
3203 				    behav);
3204 
3205 			vm_object_madvise(entry->object.vm_object, pstart,
3206 			    pend, behav);
3207 
3208 			/*
3209 			 * Pre-populate paging structures in the
3210 			 * WILLNEED case.  For wired entries, the
3211 			 * paging structures are already populated.
3212 			 */
3213 			if (behav == MADV_WILLNEED &&
3214 			    entry->wired_count == 0) {
3215 				vm_map_pmap_enter(map,
3216 				    useStart,
3217 				    entry->protection,
3218 				    entry->object.vm_object,
3219 				    pstart,
3220 				    ptoa(pend - pstart),
3221 				    MAP_PREFAULT_MADVISE
3222 				);
3223 			}
3224 		}
3225 		vm_map_unlock_read(map);
3226 	}
3227 	return (0);
3228 }
3229 
3230 /*
3231  *	vm_map_inherit:
3232  *
3233  *	Sets the inheritance of the specified address
3234  *	range in the target map.  Inheritance
3235  *	affects how the map will be shared with
3236  *	child maps at the time of vmspace_fork.
3237  */
3238 int
vm_map_inherit(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_inherit_t new_inheritance)3239 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3240 	       vm_inherit_t new_inheritance)
3241 {
3242 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3243 	int rv;
3244 
3245 	switch (new_inheritance) {
3246 	case VM_INHERIT_NONE:
3247 	case VM_INHERIT_COPY:
3248 	case VM_INHERIT_SHARE:
3249 	case VM_INHERIT_ZERO:
3250 		break;
3251 	default:
3252 		return (KERN_INVALID_ARGUMENT);
3253 	}
3254 	if (start == end)
3255 		return (KERN_SUCCESS);
3256 	vm_map_lock(map);
3257 	VM_MAP_RANGE_CHECK(map, start, end);
3258 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3259 	if (rv != KERN_SUCCESS)
3260 		goto unlock;
3261 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3262 		rv = vm_map_clip_end(map, lentry, end);
3263 		if (rv != KERN_SUCCESS)
3264 			goto unlock;
3265 	}
3266 	if (new_inheritance == VM_INHERIT_COPY) {
3267 		for (entry = start_entry; entry->start < end;
3268 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3269 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3270 			    != 0) {
3271 				rv = KERN_INVALID_ARGUMENT;
3272 				goto unlock;
3273 			}
3274 		}
3275 	}
3276 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3277 	    entry = vm_map_entry_succ(entry)) {
3278 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3279 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3280 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3281 		    new_inheritance != VM_INHERIT_ZERO)
3282 			entry->inheritance = new_inheritance;
3283 		vm_map_try_merge_entries(map, prev_entry, entry);
3284 	}
3285 	vm_map_try_merge_entries(map, prev_entry, entry);
3286 unlock:
3287 	vm_map_unlock(map);
3288 	return (rv);
3289 }
3290 
3291 /*
3292  *	vm_map_entry_in_transition:
3293  *
3294  *	Release the map lock, and sleep until the entry is no longer in
3295  *	transition.  Awake and acquire the map lock.  If the map changed while
3296  *	another held the lock, lookup a possibly-changed entry at or after the
3297  *	'start' position of the old entry.
3298  */
3299 static vm_map_entry_t
vm_map_entry_in_transition(vm_map_t map,vm_offset_t in_start,vm_offset_t * io_end,bool holes_ok,vm_map_entry_t in_entry)3300 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3301     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3302 {
3303 	vm_map_entry_t entry;
3304 	vm_offset_t start;
3305 	u_int last_timestamp;
3306 
3307 	VM_MAP_ASSERT_LOCKED(map);
3308 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3309 	    ("not in-tranition map entry %p", in_entry));
3310 	/*
3311 	 * We have not yet clipped the entry.
3312 	 */
3313 	start = MAX(in_start, in_entry->start);
3314 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3315 	last_timestamp = map->timestamp;
3316 	if (vm_map_unlock_and_wait(map, 0)) {
3317 		/*
3318 		 * Allow interruption of user wiring/unwiring?
3319 		 */
3320 	}
3321 	vm_map_lock(map);
3322 	if (last_timestamp + 1 == map->timestamp)
3323 		return (in_entry);
3324 
3325 	/*
3326 	 * Look again for the entry because the map was modified while it was
3327 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3328 	 * deleted.
3329 	 */
3330 	if (!vm_map_lookup_entry(map, start, &entry)) {
3331 		if (!holes_ok) {
3332 			*io_end = start;
3333 			return (NULL);
3334 		}
3335 		entry = vm_map_entry_succ(entry);
3336 	}
3337 	return (entry);
3338 }
3339 
3340 /*
3341  *	vm_map_unwire:
3342  *
3343  *	Implements both kernel and user unwiring.
3344  */
3345 int
vm_map_unwire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3346 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3347     int flags)
3348 {
3349 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3350 	int rv;
3351 	bool holes_ok, need_wakeup, user_unwire;
3352 
3353 	if (start == end)
3354 		return (KERN_SUCCESS);
3355 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3356 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3357 	vm_map_lock(map);
3358 	VM_MAP_RANGE_CHECK(map, start, end);
3359 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3360 		if (holes_ok)
3361 			first_entry = vm_map_entry_succ(first_entry);
3362 		else {
3363 			vm_map_unlock(map);
3364 			return (KERN_INVALID_ADDRESS);
3365 		}
3366 	}
3367 	rv = KERN_SUCCESS;
3368 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3369 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3370 			/*
3371 			 * We have not yet clipped the entry.
3372 			 */
3373 			next_entry = vm_map_entry_in_transition(map, start,
3374 			    &end, holes_ok, entry);
3375 			if (next_entry == NULL) {
3376 				if (entry == first_entry) {
3377 					vm_map_unlock(map);
3378 					return (KERN_INVALID_ADDRESS);
3379 				}
3380 				rv = KERN_INVALID_ADDRESS;
3381 				break;
3382 			}
3383 			first_entry = (entry == first_entry) ?
3384 			    next_entry : NULL;
3385 			continue;
3386 		}
3387 		rv = vm_map_clip_start(map, entry, start);
3388 		if (rv != KERN_SUCCESS)
3389 			break;
3390 		rv = vm_map_clip_end(map, entry, end);
3391 		if (rv != KERN_SUCCESS)
3392 			break;
3393 
3394 		/*
3395 		 * Mark the entry in case the map lock is released.  (See
3396 		 * above.)
3397 		 */
3398 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3399 		    entry->wiring_thread == NULL,
3400 		    ("owned map entry %p", entry));
3401 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3402 		entry->wiring_thread = curthread;
3403 		next_entry = vm_map_entry_succ(entry);
3404 		/*
3405 		 * Check the map for holes in the specified region.
3406 		 * If holes_ok, skip this check.
3407 		 */
3408 		if (!holes_ok &&
3409 		    entry->end < end && next_entry->start > entry->end) {
3410 			end = entry->end;
3411 			rv = KERN_INVALID_ADDRESS;
3412 			break;
3413 		}
3414 		/*
3415 		 * If system unwiring, require that the entry is system wired.
3416 		 */
3417 		if (!user_unwire &&
3418 		    vm_map_entry_system_wired_count(entry) == 0) {
3419 			end = entry->end;
3420 			rv = KERN_INVALID_ARGUMENT;
3421 			break;
3422 		}
3423 	}
3424 	need_wakeup = false;
3425 	if (first_entry == NULL &&
3426 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3427 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3428 		prev_entry = first_entry;
3429 		entry = vm_map_entry_succ(first_entry);
3430 	} else {
3431 		prev_entry = vm_map_entry_pred(first_entry);
3432 		entry = first_entry;
3433 	}
3434 	for (; entry->start < end;
3435 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3436 		/*
3437 		 * If holes_ok was specified, an empty
3438 		 * space in the unwired region could have been mapped
3439 		 * while the map lock was dropped for draining
3440 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3441 		 * could be simultaneously wiring this new mapping
3442 		 * entry.  Detect these cases and skip any entries
3443 		 * marked as in transition by us.
3444 		 */
3445 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3446 		    entry->wiring_thread != curthread) {
3447 			KASSERT(holes_ok,
3448 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3449 			continue;
3450 		}
3451 
3452 		if (rv == KERN_SUCCESS && (!user_unwire ||
3453 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3454 			if (entry->wired_count == 1)
3455 				vm_map_entry_unwire(map, entry);
3456 			else
3457 				entry->wired_count--;
3458 			if (user_unwire)
3459 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3460 		}
3461 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3462 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3463 		KASSERT(entry->wiring_thread == curthread,
3464 		    ("vm_map_unwire: alien wire %p", entry));
3465 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3466 		entry->wiring_thread = NULL;
3467 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3468 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3469 			need_wakeup = true;
3470 		}
3471 		vm_map_try_merge_entries(map, prev_entry, entry);
3472 	}
3473 	vm_map_try_merge_entries(map, prev_entry, entry);
3474 	vm_map_unlock(map);
3475 	if (need_wakeup)
3476 		vm_map_wakeup(map);
3477 	return (rv);
3478 }
3479 
3480 static void
vm_map_wire_user_count_sub(u_long npages)3481 vm_map_wire_user_count_sub(u_long npages)
3482 {
3483 
3484 	atomic_subtract_long(&vm_user_wire_count, npages);
3485 }
3486 
3487 static bool
vm_map_wire_user_count_add(u_long npages)3488 vm_map_wire_user_count_add(u_long npages)
3489 {
3490 	u_long wired;
3491 
3492 	wired = vm_user_wire_count;
3493 	do {
3494 		if (npages + wired > vm_page_max_user_wired)
3495 			return (false);
3496 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3497 	    npages + wired));
3498 
3499 	return (true);
3500 }
3501 
3502 /*
3503  *	vm_map_wire_entry_failure:
3504  *
3505  *	Handle a wiring failure on the given entry.
3506  *
3507  *	The map should be locked.
3508  */
3509 static void
vm_map_wire_entry_failure(vm_map_t map,vm_map_entry_t entry,vm_offset_t failed_addr)3510 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3511     vm_offset_t failed_addr)
3512 {
3513 
3514 	VM_MAP_ASSERT_LOCKED(map);
3515 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3516 	    entry->wired_count == 1,
3517 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3518 	KASSERT(failed_addr < entry->end,
3519 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3520 
3521 	/*
3522 	 * If any pages at the start of this entry were successfully wired,
3523 	 * then unwire them.
3524 	 */
3525 	if (failed_addr > entry->start) {
3526 		pmap_unwire(map->pmap, entry->start, failed_addr);
3527 		vm_object_unwire(entry->object.vm_object, entry->offset,
3528 		    failed_addr - entry->start, PQ_ACTIVE);
3529 	}
3530 
3531 	/*
3532 	 * Assign an out-of-range value to represent the failure to wire this
3533 	 * entry.
3534 	 */
3535 	entry->wired_count = -1;
3536 }
3537 
3538 int
vm_map_wire(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3539 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3540 {
3541 	int rv;
3542 
3543 	vm_map_lock(map);
3544 	rv = vm_map_wire_locked(map, start, end, flags);
3545 	vm_map_unlock(map);
3546 	return (rv);
3547 }
3548 
3549 /*
3550  *	vm_map_wire_locked:
3551  *
3552  *	Implements both kernel and user wiring.  Returns with the map locked,
3553  *	the map lock may be dropped.
3554  */
3555 int
vm_map_wire_locked(vm_map_t map,vm_offset_t start,vm_offset_t end,int flags)3556 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3557 {
3558 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3559 	vm_offset_t faddr, saved_end, saved_start;
3560 	u_long incr, npages;
3561 	u_int bidx, last_timestamp;
3562 	int rv;
3563 	bool holes_ok, need_wakeup, user_wire;
3564 	vm_prot_t prot;
3565 
3566 	VM_MAP_ASSERT_LOCKED(map);
3567 
3568 	if (start == end)
3569 		return (KERN_SUCCESS);
3570 	prot = 0;
3571 	if (flags & VM_MAP_WIRE_WRITE)
3572 		prot |= VM_PROT_WRITE;
3573 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3574 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3575 	VM_MAP_RANGE_CHECK(map, start, end);
3576 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3577 		if (holes_ok)
3578 			first_entry = vm_map_entry_succ(first_entry);
3579 		else
3580 			return (KERN_INVALID_ADDRESS);
3581 	}
3582 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3583 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3584 			/*
3585 			 * We have not yet clipped the entry.
3586 			 */
3587 			next_entry = vm_map_entry_in_transition(map, start,
3588 			    &end, holes_ok, entry);
3589 			if (next_entry == NULL) {
3590 				if (entry == first_entry)
3591 					return (KERN_INVALID_ADDRESS);
3592 				rv = KERN_INVALID_ADDRESS;
3593 				goto done;
3594 			}
3595 			first_entry = (entry == first_entry) ?
3596 			    next_entry : NULL;
3597 			continue;
3598 		}
3599 		rv = vm_map_clip_start(map, entry, start);
3600 		if (rv != KERN_SUCCESS)
3601 			goto done;
3602 		rv = vm_map_clip_end(map, entry, end);
3603 		if (rv != KERN_SUCCESS)
3604 			goto done;
3605 
3606 		/*
3607 		 * Mark the entry in case the map lock is released.  (See
3608 		 * above.)
3609 		 */
3610 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3611 		    entry->wiring_thread == NULL,
3612 		    ("owned map entry %p", entry));
3613 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3614 		entry->wiring_thread = curthread;
3615 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3616 		    || (entry->protection & prot) != prot) {
3617 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3618 			if (!holes_ok) {
3619 				end = entry->end;
3620 				rv = KERN_INVALID_ADDRESS;
3621 				goto done;
3622 			}
3623 		} else if (entry->wired_count == 0) {
3624 			entry->wired_count++;
3625 
3626 			npages = atop(entry->end - entry->start);
3627 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3628 				vm_map_wire_entry_failure(map, entry,
3629 				    entry->start);
3630 				end = entry->end;
3631 				rv = KERN_RESOURCE_SHORTAGE;
3632 				goto done;
3633 			}
3634 
3635 			/*
3636 			 * Release the map lock, relying on the in-transition
3637 			 * mark.  Mark the map busy for fork.
3638 			 */
3639 			saved_start = entry->start;
3640 			saved_end = entry->end;
3641 			last_timestamp = map->timestamp;
3642 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3643 			incr =  pagesizes[bidx];
3644 			vm_map_busy(map);
3645 			vm_map_unlock(map);
3646 
3647 			for (faddr = saved_start; faddr < saved_end;
3648 			    faddr += incr) {
3649 				/*
3650 				 * Simulate a fault to get the page and enter
3651 				 * it into the physical map.
3652 				 */
3653 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3654 				    VM_FAULT_WIRE, NULL);
3655 				if (rv != KERN_SUCCESS)
3656 					break;
3657 			}
3658 			vm_map_lock(map);
3659 			vm_map_unbusy(map);
3660 			if (last_timestamp + 1 != map->timestamp) {
3661 				/*
3662 				 * Look again for the entry because the map was
3663 				 * modified while it was unlocked.  The entry
3664 				 * may have been clipped, but NOT merged or
3665 				 * deleted.
3666 				 */
3667 				if (!vm_map_lookup_entry(map, saved_start,
3668 				    &next_entry))
3669 					KASSERT(false,
3670 					    ("vm_map_wire: lookup failed"));
3671 				first_entry = (entry == first_entry) ?
3672 				    next_entry : NULL;
3673 				for (entry = next_entry; entry->end < saved_end;
3674 				    entry = vm_map_entry_succ(entry)) {
3675 					/*
3676 					 * In case of failure, handle entries
3677 					 * that were not fully wired here;
3678 					 * fully wired entries are handled
3679 					 * later.
3680 					 */
3681 					if (rv != KERN_SUCCESS &&
3682 					    faddr < entry->end)
3683 						vm_map_wire_entry_failure(map,
3684 						    entry, faddr);
3685 				}
3686 			}
3687 			if (rv != KERN_SUCCESS) {
3688 				vm_map_wire_entry_failure(map, entry, faddr);
3689 				if (user_wire)
3690 					vm_map_wire_user_count_sub(npages);
3691 				end = entry->end;
3692 				goto done;
3693 			}
3694 		} else if (!user_wire ||
3695 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3696 			entry->wired_count++;
3697 		}
3698 		/*
3699 		 * Check the map for holes in the specified region.
3700 		 * If holes_ok was specified, skip this check.
3701 		 */
3702 		next_entry = vm_map_entry_succ(entry);
3703 		if (!holes_ok &&
3704 		    entry->end < end && next_entry->start > entry->end) {
3705 			end = entry->end;
3706 			rv = KERN_INVALID_ADDRESS;
3707 			goto done;
3708 		}
3709 	}
3710 	rv = KERN_SUCCESS;
3711 done:
3712 	need_wakeup = false;
3713 	if (first_entry == NULL &&
3714 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3715 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3716 		prev_entry = first_entry;
3717 		entry = vm_map_entry_succ(first_entry);
3718 	} else {
3719 		prev_entry = vm_map_entry_pred(first_entry);
3720 		entry = first_entry;
3721 	}
3722 	for (; entry->start < end;
3723 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3724 		/*
3725 		 * If holes_ok was specified, an empty
3726 		 * space in the unwired region could have been mapped
3727 		 * while the map lock was dropped for faulting in the
3728 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3729 		 * Moreover, another thread could be simultaneously
3730 		 * wiring this new mapping entry.  Detect these cases
3731 		 * and skip any entries marked as in transition not by us.
3732 		 *
3733 		 * Another way to get an entry not marked with
3734 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3735 		 * which set rv to KERN_INVALID_ARGUMENT.
3736 		 */
3737 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3738 		    entry->wiring_thread != curthread) {
3739 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3740 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3741 			continue;
3742 		}
3743 
3744 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3745 			/* do nothing */
3746 		} else if (rv == KERN_SUCCESS) {
3747 			if (user_wire)
3748 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3749 		} else if (entry->wired_count == -1) {
3750 			/*
3751 			 * Wiring failed on this entry.  Thus, unwiring is
3752 			 * unnecessary.
3753 			 */
3754 			entry->wired_count = 0;
3755 		} else if (!user_wire ||
3756 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3757 			/*
3758 			 * Undo the wiring.  Wiring succeeded on this entry
3759 			 * but failed on a later entry.
3760 			 */
3761 			if (entry->wired_count == 1) {
3762 				vm_map_entry_unwire(map, entry);
3763 				if (user_wire)
3764 					vm_map_wire_user_count_sub(
3765 					    atop(entry->end - entry->start));
3766 			} else
3767 				entry->wired_count--;
3768 		}
3769 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3770 		    ("vm_map_wire: in-transition flag missing %p", entry));
3771 		KASSERT(entry->wiring_thread == curthread,
3772 		    ("vm_map_wire: alien wire %p", entry));
3773 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3774 		    MAP_ENTRY_WIRE_SKIPPED);
3775 		entry->wiring_thread = NULL;
3776 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3777 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3778 			need_wakeup = true;
3779 		}
3780 		vm_map_try_merge_entries(map, prev_entry, entry);
3781 	}
3782 	vm_map_try_merge_entries(map, prev_entry, entry);
3783 	if (need_wakeup)
3784 		vm_map_wakeup(map);
3785 	return (rv);
3786 }
3787 
3788 /*
3789  * vm_map_sync
3790  *
3791  * Push any dirty cached pages in the address range to their pager.
3792  * If syncio is TRUE, dirty pages are written synchronously.
3793  * If invalidate is TRUE, any cached pages are freed as well.
3794  *
3795  * If the size of the region from start to end is zero, we are
3796  * supposed to flush all modified pages within the region containing
3797  * start.  Unfortunately, a region can be split or coalesced with
3798  * neighboring regions, making it difficult to determine what the
3799  * original region was.  Therefore, we approximate this requirement by
3800  * flushing the current region containing start.
3801  *
3802  * Returns an error if any part of the specified range is not mapped.
3803  */
3804 int
vm_map_sync(vm_map_t map,vm_offset_t start,vm_offset_t end,boolean_t syncio,boolean_t invalidate)3805 vm_map_sync(
3806 	vm_map_t map,
3807 	vm_offset_t start,
3808 	vm_offset_t end,
3809 	boolean_t syncio,
3810 	boolean_t invalidate)
3811 {
3812 	vm_map_entry_t entry, first_entry, next_entry;
3813 	vm_size_t size;
3814 	vm_object_t object;
3815 	vm_ooffset_t offset;
3816 	unsigned int last_timestamp;
3817 	int bdry_idx;
3818 	boolean_t failed;
3819 
3820 	vm_map_lock_read(map);
3821 	VM_MAP_RANGE_CHECK(map, start, end);
3822 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3823 		vm_map_unlock_read(map);
3824 		return (KERN_INVALID_ADDRESS);
3825 	} else if (start == end) {
3826 		start = first_entry->start;
3827 		end = first_entry->end;
3828 	}
3829 
3830 	/*
3831 	 * Make a first pass to check for user-wired memory, holes,
3832 	 * and partial invalidation of largepage mappings.
3833 	 */
3834 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3835 		if (invalidate) {
3836 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3837 				vm_map_unlock_read(map);
3838 				return (KERN_INVALID_ARGUMENT);
3839 			}
3840 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3841 			if (bdry_idx != 0 &&
3842 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3843 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3844 				vm_map_unlock_read(map);
3845 				return (KERN_INVALID_ARGUMENT);
3846 			}
3847 		}
3848 		next_entry = vm_map_entry_succ(entry);
3849 		if (end > entry->end &&
3850 		    entry->end != next_entry->start) {
3851 			vm_map_unlock_read(map);
3852 			return (KERN_INVALID_ADDRESS);
3853 		}
3854 	}
3855 
3856 	if (invalidate)
3857 		pmap_remove(map->pmap, start, end);
3858 	failed = FALSE;
3859 
3860 	/*
3861 	 * Make a second pass, cleaning/uncaching pages from the indicated
3862 	 * objects as we go.
3863 	 */
3864 	for (entry = first_entry; entry->start < end;) {
3865 		offset = entry->offset + (start - entry->start);
3866 		size = (end <= entry->end ? end : entry->end) - start;
3867 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3868 			vm_map_t smap;
3869 			vm_map_entry_t tentry;
3870 			vm_size_t tsize;
3871 
3872 			smap = entry->object.sub_map;
3873 			vm_map_lock_read(smap);
3874 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3875 			tsize = tentry->end - offset;
3876 			if (tsize < size)
3877 				size = tsize;
3878 			object = tentry->object.vm_object;
3879 			offset = tentry->offset + (offset - tentry->start);
3880 			vm_map_unlock_read(smap);
3881 		} else {
3882 			object = entry->object.vm_object;
3883 		}
3884 		vm_object_reference(object);
3885 		last_timestamp = map->timestamp;
3886 		vm_map_unlock_read(map);
3887 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3888 			failed = TRUE;
3889 		start += size;
3890 		vm_object_deallocate(object);
3891 		vm_map_lock_read(map);
3892 		if (last_timestamp == map->timestamp ||
3893 		    !vm_map_lookup_entry(map, start, &entry))
3894 			entry = vm_map_entry_succ(entry);
3895 	}
3896 
3897 	vm_map_unlock_read(map);
3898 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3899 }
3900 
3901 /*
3902  *	vm_map_entry_unwire:	[ internal use only ]
3903  *
3904  *	Make the region specified by this entry pageable.
3905  *
3906  *	The map in question should be locked.
3907  *	[This is the reason for this routine's existence.]
3908  */
3909 static void
vm_map_entry_unwire(vm_map_t map,vm_map_entry_t entry)3910 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3911 {
3912 	vm_size_t size;
3913 
3914 	VM_MAP_ASSERT_LOCKED(map);
3915 	KASSERT(entry->wired_count > 0,
3916 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3917 
3918 	size = entry->end - entry->start;
3919 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3920 		vm_map_wire_user_count_sub(atop(size));
3921 	pmap_unwire(map->pmap, entry->start, entry->end);
3922 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3923 	    PQ_ACTIVE);
3924 	entry->wired_count = 0;
3925 }
3926 
3927 static void
vm_map_entry_deallocate(vm_map_entry_t entry,boolean_t system_map)3928 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3929 {
3930 
3931 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3932 		vm_object_deallocate(entry->object.vm_object);
3933 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3934 }
3935 
3936 /*
3937  *	vm_map_entry_delete:	[ internal use only ]
3938  *
3939  *	Deallocate the given entry from the target map.
3940  */
3941 static void
vm_map_entry_delete(vm_map_t map,vm_map_entry_t entry)3942 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3943 {
3944 	vm_object_t object;
3945 	vm_pindex_t offidxstart, offidxend, size1;
3946 	vm_size_t size;
3947 
3948 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3949 	object = entry->object.vm_object;
3950 
3951 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3952 		MPASS(entry->cred == NULL);
3953 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3954 		MPASS(object == NULL);
3955 		vm_map_entry_deallocate(entry, vm_map_is_system(map));
3956 		return;
3957 	}
3958 
3959 	size = entry->end - entry->start;
3960 	map->size -= size;
3961 
3962 	if (entry->cred != NULL) {
3963 		swap_release_by_cred(size, entry->cred);
3964 		crfree(entry->cred);
3965 	}
3966 
3967 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3968 		entry->object.vm_object = NULL;
3969 	} else if ((object->flags & OBJ_ANON) != 0 ||
3970 	    object == kernel_object) {
3971 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3972 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3973 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3974 		offidxstart = OFF_TO_IDX(entry->offset);
3975 		offidxend = offidxstart + atop(size);
3976 		VM_OBJECT_WLOCK(object);
3977 		if (object->ref_count != 1 &&
3978 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3979 		    object == kernel_object)) {
3980 			vm_object_collapse(object);
3981 
3982 			/*
3983 			 * The option OBJPR_NOTMAPPED can be passed here
3984 			 * because vm_map_delete() already performed
3985 			 * pmap_remove() on the only mapping to this range
3986 			 * of pages.
3987 			 */
3988 			vm_object_page_remove(object, offidxstart, offidxend,
3989 			    OBJPR_NOTMAPPED);
3990 			if (offidxend >= object->size &&
3991 			    offidxstart < object->size) {
3992 				size1 = object->size;
3993 				object->size = offidxstart;
3994 				if (object->cred != NULL) {
3995 					size1 -= object->size;
3996 					KASSERT(object->charge >= ptoa(size1),
3997 					    ("object %p charge < 0", object));
3998 					swap_release_by_cred(ptoa(size1),
3999 					    object->cred);
4000 					object->charge -= ptoa(size1);
4001 				}
4002 			}
4003 		}
4004 		VM_OBJECT_WUNLOCK(object);
4005 	}
4006 	if (vm_map_is_system(map))
4007 		vm_map_entry_deallocate(entry, TRUE);
4008 	else {
4009 		entry->defer_next = curthread->td_map_def_user;
4010 		curthread->td_map_def_user = entry;
4011 	}
4012 }
4013 
4014 /*
4015  *	vm_map_delete:	[ internal use only ]
4016  *
4017  *	Deallocates the given address range from the target
4018  *	map.
4019  */
4020 int
vm_map_delete(vm_map_t map,vm_offset_t start,vm_offset_t end)4021 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4022 {
4023 	vm_map_entry_t entry, next_entry, scratch_entry;
4024 	int rv;
4025 
4026 	VM_MAP_ASSERT_LOCKED(map);
4027 
4028 	if (start == end)
4029 		return (KERN_SUCCESS);
4030 
4031 	/*
4032 	 * Find the start of the region, and clip it.
4033 	 * Step through all entries in this region.
4034 	 */
4035 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4036 	if (rv != KERN_SUCCESS)
4037 		return (rv);
4038 	for (; entry->start < end; entry = next_entry) {
4039 		/*
4040 		 * Wait for wiring or unwiring of an entry to complete.
4041 		 * Also wait for any system wirings to disappear on
4042 		 * user maps.
4043 		 */
4044 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4045 		    (vm_map_pmap(map) != kernel_pmap &&
4046 		    vm_map_entry_system_wired_count(entry) != 0)) {
4047 			unsigned int last_timestamp;
4048 			vm_offset_t saved_start;
4049 
4050 			saved_start = entry->start;
4051 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4052 			last_timestamp = map->timestamp;
4053 			(void) vm_map_unlock_and_wait(map, 0);
4054 			vm_map_lock(map);
4055 			if (last_timestamp + 1 != map->timestamp) {
4056 				/*
4057 				 * Look again for the entry because the map was
4058 				 * modified while it was unlocked.
4059 				 * Specifically, the entry may have been
4060 				 * clipped, merged, or deleted.
4061 				 */
4062 				rv = vm_map_lookup_clip_start(map, saved_start,
4063 				    &next_entry, &scratch_entry);
4064 				if (rv != KERN_SUCCESS)
4065 					break;
4066 			} else
4067 				next_entry = entry;
4068 			continue;
4069 		}
4070 
4071 		/* XXXKIB or delete to the upper superpage boundary ? */
4072 		rv = vm_map_clip_end(map, entry, end);
4073 		if (rv != KERN_SUCCESS)
4074 			break;
4075 		next_entry = vm_map_entry_succ(entry);
4076 
4077 		/*
4078 		 * Unwire before removing addresses from the pmap; otherwise,
4079 		 * unwiring will put the entries back in the pmap.
4080 		 */
4081 		if (entry->wired_count != 0)
4082 			vm_map_entry_unwire(map, entry);
4083 
4084 		/*
4085 		 * Remove mappings for the pages, but only if the
4086 		 * mappings could exist.  For instance, it does not
4087 		 * make sense to call pmap_remove() for guard entries.
4088 		 */
4089 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4090 		    entry->object.vm_object != NULL)
4091 			pmap_map_delete(map->pmap, entry->start, entry->end);
4092 
4093 		/*
4094 		 * Delete the entry only after removing all pmap
4095 		 * entries pointing to its pages.  (Otherwise, its
4096 		 * page frames may be reallocated, and any modify bits
4097 		 * will be set in the wrong object!)
4098 		 */
4099 		vm_map_entry_delete(map, entry);
4100 	}
4101 	return (rv);
4102 }
4103 
4104 /*
4105  *	vm_map_remove:
4106  *
4107  *	Remove the given address range from the target map.
4108  *	This is the exported form of vm_map_delete.
4109  */
4110 int
vm_map_remove(vm_map_t map,vm_offset_t start,vm_offset_t end)4111 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4112 {
4113 	int result;
4114 
4115 	vm_map_lock(map);
4116 	VM_MAP_RANGE_CHECK(map, start, end);
4117 	result = vm_map_delete(map, start, end);
4118 	vm_map_unlock(map);
4119 	return (result);
4120 }
4121 
4122 /*
4123  *	vm_map_check_protection:
4124  *
4125  *	Assert that the target map allows the specified privilege on the
4126  *	entire address region given.  The entire region must be allocated.
4127  *
4128  *	WARNING!  This code does not and should not check whether the
4129  *	contents of the region is accessible.  For example a smaller file
4130  *	might be mapped into a larger address space.
4131  *
4132  *	NOTE!  This code is also called by munmap().
4133  *
4134  *	The map must be locked.  A read lock is sufficient.
4135  */
4136 boolean_t
vm_map_check_protection(vm_map_t map,vm_offset_t start,vm_offset_t end,vm_prot_t protection)4137 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4138 			vm_prot_t protection)
4139 {
4140 	vm_map_entry_t entry;
4141 	vm_map_entry_t tmp_entry;
4142 
4143 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4144 		return (FALSE);
4145 	entry = tmp_entry;
4146 
4147 	while (start < end) {
4148 		/*
4149 		 * No holes allowed!
4150 		 */
4151 		if (start < entry->start)
4152 			return (FALSE);
4153 		/*
4154 		 * Check protection associated with entry.
4155 		 */
4156 		if ((entry->protection & protection) != protection)
4157 			return (FALSE);
4158 		/* go to next entry */
4159 		start = entry->end;
4160 		entry = vm_map_entry_succ(entry);
4161 	}
4162 	return (TRUE);
4163 }
4164 
4165 /*
4166  *
4167  *	vm_map_copy_swap_object:
4168  *
4169  *	Copies a swap-backed object from an existing map entry to a
4170  *	new one.  Carries forward the swap charge.  May change the
4171  *	src object on return.
4172  */
4173 static void
vm_map_copy_swap_object(vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_offset_t size,vm_ooffset_t * fork_charge)4174 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4175     vm_offset_t size, vm_ooffset_t *fork_charge)
4176 {
4177 	vm_object_t src_object;
4178 	struct ucred *cred;
4179 	int charged;
4180 
4181 	src_object = src_entry->object.vm_object;
4182 	charged = ENTRY_CHARGED(src_entry);
4183 	if ((src_object->flags & OBJ_ANON) != 0) {
4184 		VM_OBJECT_WLOCK(src_object);
4185 		vm_object_collapse(src_object);
4186 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4187 			vm_object_split(src_entry);
4188 			src_object = src_entry->object.vm_object;
4189 		}
4190 		vm_object_reference_locked(src_object);
4191 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4192 		VM_OBJECT_WUNLOCK(src_object);
4193 	} else
4194 		vm_object_reference(src_object);
4195 	if (src_entry->cred != NULL &&
4196 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4197 		KASSERT(src_object->cred == NULL,
4198 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4199 		     src_object));
4200 		src_object->cred = src_entry->cred;
4201 		src_object->charge = size;
4202 	}
4203 	dst_entry->object.vm_object = src_object;
4204 	if (charged) {
4205 		cred = curthread->td_ucred;
4206 		crhold(cred);
4207 		dst_entry->cred = cred;
4208 		*fork_charge += size;
4209 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4210 			crhold(cred);
4211 			src_entry->cred = cred;
4212 			*fork_charge += size;
4213 		}
4214 	}
4215 }
4216 
4217 /*
4218  *	vm_map_copy_entry:
4219  *
4220  *	Copies the contents of the source entry to the destination
4221  *	entry.  The entries *must* be aligned properly.
4222  */
4223 static void
vm_map_copy_entry(vm_map_t src_map,vm_map_t dst_map,vm_map_entry_t src_entry,vm_map_entry_t dst_entry,vm_ooffset_t * fork_charge)4224 vm_map_copy_entry(
4225 	vm_map_t src_map,
4226 	vm_map_t dst_map,
4227 	vm_map_entry_t src_entry,
4228 	vm_map_entry_t dst_entry,
4229 	vm_ooffset_t *fork_charge)
4230 {
4231 	vm_object_t src_object;
4232 	vm_map_entry_t fake_entry;
4233 	vm_offset_t size;
4234 
4235 	VM_MAP_ASSERT_LOCKED(dst_map);
4236 
4237 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4238 		return;
4239 
4240 	if (src_entry->wired_count == 0 ||
4241 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4242 		/*
4243 		 * If the source entry is marked needs_copy, it is already
4244 		 * write-protected.
4245 		 */
4246 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4247 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4248 			pmap_protect(src_map->pmap,
4249 			    src_entry->start,
4250 			    src_entry->end,
4251 			    src_entry->protection & ~VM_PROT_WRITE);
4252 		}
4253 
4254 		/*
4255 		 * Make a copy of the object.
4256 		 */
4257 		size = src_entry->end - src_entry->start;
4258 		if ((src_object = src_entry->object.vm_object) != NULL) {
4259 			if ((src_object->flags & OBJ_SWAP) != 0) {
4260 				vm_map_copy_swap_object(src_entry, dst_entry,
4261 				    size, fork_charge);
4262 				/* May have split/collapsed, reload obj. */
4263 				src_object = src_entry->object.vm_object;
4264 			} else {
4265 				vm_object_reference(src_object);
4266 				dst_entry->object.vm_object = src_object;
4267 			}
4268 			src_entry->eflags |= MAP_ENTRY_COW |
4269 			    MAP_ENTRY_NEEDS_COPY;
4270 			dst_entry->eflags |= MAP_ENTRY_COW |
4271 			    MAP_ENTRY_NEEDS_COPY;
4272 			dst_entry->offset = src_entry->offset;
4273 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4274 				/*
4275 				 * MAP_ENTRY_WRITECNT cannot
4276 				 * indicate write reference from
4277 				 * src_entry, since the entry is
4278 				 * marked as needs copy.  Allocate a
4279 				 * fake entry that is used to
4280 				 * decrement object->un_pager writecount
4281 				 * at the appropriate time.  Attach
4282 				 * fake_entry to the deferred list.
4283 				 */
4284 				fake_entry = vm_map_entry_create(dst_map);
4285 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4286 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4287 				vm_object_reference(src_object);
4288 				fake_entry->object.vm_object = src_object;
4289 				fake_entry->start = src_entry->start;
4290 				fake_entry->end = src_entry->end;
4291 				fake_entry->defer_next =
4292 				    curthread->td_map_def_user;
4293 				curthread->td_map_def_user = fake_entry;
4294 			}
4295 
4296 			pmap_copy(dst_map->pmap, src_map->pmap,
4297 			    dst_entry->start, dst_entry->end - dst_entry->start,
4298 			    src_entry->start);
4299 		} else {
4300 			dst_entry->object.vm_object = NULL;
4301 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4302 				dst_entry->offset = 0;
4303 			if (src_entry->cred != NULL) {
4304 				dst_entry->cred = curthread->td_ucred;
4305 				crhold(dst_entry->cred);
4306 				*fork_charge += size;
4307 			}
4308 		}
4309 	} else {
4310 		/*
4311 		 * We don't want to make writeable wired pages copy-on-write.
4312 		 * Immediately copy these pages into the new map by simulating
4313 		 * page faults.  The new pages are pageable.
4314 		 */
4315 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4316 		    fork_charge);
4317 	}
4318 }
4319 
4320 /*
4321  * vmspace_map_entry_forked:
4322  * Update the newly-forked vmspace each time a map entry is inherited
4323  * or copied.  The values for vm_dsize and vm_tsize are approximate
4324  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4325  */
4326 static void
vmspace_map_entry_forked(const struct vmspace * vm1,struct vmspace * vm2,vm_map_entry_t entry)4327 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4328     vm_map_entry_t entry)
4329 {
4330 	vm_size_t entrysize;
4331 	vm_offset_t newend;
4332 
4333 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4334 		return;
4335 	entrysize = entry->end - entry->start;
4336 	vm2->vm_map.size += entrysize;
4337 	if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
4338 		vm2->vm_ssize += btoc(entrysize);
4339 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4340 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4341 		newend = MIN(entry->end,
4342 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4343 		vm2->vm_dsize += btoc(newend - entry->start);
4344 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4345 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4346 		newend = MIN(entry->end,
4347 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4348 		vm2->vm_tsize += btoc(newend - entry->start);
4349 	}
4350 }
4351 
4352 /*
4353  * vmspace_fork:
4354  * Create a new process vmspace structure and vm_map
4355  * based on those of an existing process.  The new map
4356  * is based on the old map, according to the inheritance
4357  * values on the regions in that map.
4358  *
4359  * XXX It might be worth coalescing the entries added to the new vmspace.
4360  *
4361  * The source map must not be locked.
4362  */
4363 struct vmspace *
vmspace_fork(struct vmspace * vm1,vm_ooffset_t * fork_charge)4364 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4365 {
4366 	struct vmspace *vm2;
4367 	vm_map_t new_map, old_map;
4368 	vm_map_entry_t new_entry, old_entry;
4369 	vm_object_t object;
4370 	int error, locked __diagused;
4371 	vm_inherit_t inh;
4372 
4373 	old_map = &vm1->vm_map;
4374 	/* Copy immutable fields of vm1 to vm2. */
4375 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4376 	    pmap_pinit);
4377 	if (vm2 == NULL)
4378 		return (NULL);
4379 
4380 	vm2->vm_taddr = vm1->vm_taddr;
4381 	vm2->vm_daddr = vm1->vm_daddr;
4382 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4383 	vm2->vm_stacktop = vm1->vm_stacktop;
4384 	vm2->vm_shp_base = vm1->vm_shp_base;
4385 	vm_map_lock(old_map);
4386 	if (old_map->busy)
4387 		vm_map_wait_busy(old_map);
4388 	new_map = &vm2->vm_map;
4389 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4390 	KASSERT(locked, ("vmspace_fork: lock failed"));
4391 
4392 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4393 	if (error != 0) {
4394 		sx_xunlock(&old_map->lock);
4395 		sx_xunlock(&new_map->lock);
4396 		vm_map_process_deferred();
4397 		vmspace_free(vm2);
4398 		return (NULL);
4399 	}
4400 
4401 	new_map->anon_loc = old_map->anon_loc;
4402 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4403 	    MAP_ASLR_STACK | MAP_WXORX);
4404 
4405 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4406 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4407 			panic("vm_map_fork: encountered a submap");
4408 
4409 		inh = old_entry->inheritance;
4410 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4411 		    inh != VM_INHERIT_NONE)
4412 			inh = VM_INHERIT_COPY;
4413 
4414 		switch (inh) {
4415 		case VM_INHERIT_NONE:
4416 			break;
4417 
4418 		case VM_INHERIT_SHARE:
4419 			/*
4420 			 * Clone the entry, creating the shared object if
4421 			 * necessary.
4422 			 */
4423 			object = old_entry->object.vm_object;
4424 			if (object == NULL) {
4425 				vm_map_entry_back(old_entry);
4426 				object = old_entry->object.vm_object;
4427 			}
4428 
4429 			/*
4430 			 * Add the reference before calling vm_object_shadow
4431 			 * to insure that a shadow object is created.
4432 			 */
4433 			vm_object_reference(object);
4434 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4435 				vm_object_shadow(&old_entry->object.vm_object,
4436 				    &old_entry->offset,
4437 				    old_entry->end - old_entry->start,
4438 				    old_entry->cred,
4439 				    /* Transfer the second reference too. */
4440 				    true);
4441 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4442 				old_entry->cred = NULL;
4443 
4444 				/*
4445 				 * As in vm_map_merged_neighbor_dispose(),
4446 				 * the vnode lock will not be acquired in
4447 				 * this call to vm_object_deallocate().
4448 				 */
4449 				vm_object_deallocate(object);
4450 				object = old_entry->object.vm_object;
4451 			} else {
4452 				VM_OBJECT_WLOCK(object);
4453 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4454 				if (old_entry->cred != NULL) {
4455 					KASSERT(object->cred == NULL,
4456 					    ("vmspace_fork both cred"));
4457 					object->cred = old_entry->cred;
4458 					object->charge = old_entry->end -
4459 					    old_entry->start;
4460 					old_entry->cred = NULL;
4461 				}
4462 
4463 				/*
4464 				 * Assert the correct state of the vnode
4465 				 * v_writecount while the object is locked, to
4466 				 * not relock it later for the assertion
4467 				 * correctness.
4468 				 */
4469 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4470 				    object->type == OBJT_VNODE) {
4471 					KASSERT(((struct vnode *)object->
4472 					    handle)->v_writecount > 0,
4473 					    ("vmspace_fork: v_writecount %p",
4474 					    object));
4475 					KASSERT(object->un_pager.vnp.
4476 					    writemappings > 0,
4477 					    ("vmspace_fork: vnp.writecount %p",
4478 					    object));
4479 				}
4480 				VM_OBJECT_WUNLOCK(object);
4481 			}
4482 
4483 			/*
4484 			 * Clone the entry, referencing the shared object.
4485 			 */
4486 			new_entry = vm_map_entry_create(new_map);
4487 			*new_entry = *old_entry;
4488 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4489 			    MAP_ENTRY_IN_TRANSITION);
4490 			new_entry->wiring_thread = NULL;
4491 			new_entry->wired_count = 0;
4492 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4493 				vm_pager_update_writecount(object,
4494 				    new_entry->start, new_entry->end);
4495 			}
4496 			vm_map_entry_set_vnode_text(new_entry, true);
4497 
4498 			/*
4499 			 * Insert the entry into the new map -- we know we're
4500 			 * inserting at the end of the new map.
4501 			 */
4502 			vm_map_entry_link(new_map, new_entry);
4503 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4504 
4505 			/*
4506 			 * Update the physical map
4507 			 */
4508 			pmap_copy(new_map->pmap, old_map->pmap,
4509 			    new_entry->start,
4510 			    (old_entry->end - old_entry->start),
4511 			    old_entry->start);
4512 			break;
4513 
4514 		case VM_INHERIT_COPY:
4515 			/*
4516 			 * Clone the entry and link into the map.
4517 			 */
4518 			new_entry = vm_map_entry_create(new_map);
4519 			*new_entry = *old_entry;
4520 			/*
4521 			 * Copied entry is COW over the old object.
4522 			 */
4523 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4524 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4525 			new_entry->wiring_thread = NULL;
4526 			new_entry->wired_count = 0;
4527 			new_entry->object.vm_object = NULL;
4528 			new_entry->cred = NULL;
4529 			vm_map_entry_link(new_map, new_entry);
4530 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4531 			vm_map_copy_entry(old_map, new_map, old_entry,
4532 			    new_entry, fork_charge);
4533 			vm_map_entry_set_vnode_text(new_entry, true);
4534 			break;
4535 
4536 		case VM_INHERIT_ZERO:
4537 			/*
4538 			 * Create a new anonymous mapping entry modelled from
4539 			 * the old one.
4540 			 */
4541 			new_entry = vm_map_entry_create(new_map);
4542 			memset(new_entry, 0, sizeof(*new_entry));
4543 
4544 			new_entry->start = old_entry->start;
4545 			new_entry->end = old_entry->end;
4546 			new_entry->eflags = old_entry->eflags &
4547 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4548 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4549 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4550 			new_entry->protection = old_entry->protection;
4551 			new_entry->max_protection = old_entry->max_protection;
4552 			new_entry->inheritance = VM_INHERIT_ZERO;
4553 
4554 			vm_map_entry_link(new_map, new_entry);
4555 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4556 
4557 			new_entry->cred = curthread->td_ucred;
4558 			crhold(new_entry->cred);
4559 			*fork_charge += (new_entry->end - new_entry->start);
4560 
4561 			break;
4562 		}
4563 	}
4564 	/*
4565 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4566 	 * map entries, which cannot be done until both old_map and
4567 	 * new_map locks are released.
4568 	 */
4569 	sx_xunlock(&old_map->lock);
4570 	sx_xunlock(&new_map->lock);
4571 	vm_map_process_deferred();
4572 
4573 	return (vm2);
4574 }
4575 
4576 /*
4577  * Create a process's stack for exec_new_vmspace().  This function is never
4578  * asked to wire the newly created stack.
4579  */
4580 int
vm_map_stack(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_prot_t prot,vm_prot_t max,int cow)4581 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4582     vm_prot_t prot, vm_prot_t max, int cow)
4583 {
4584 	vm_size_t growsize, init_ssize;
4585 	rlim_t vmemlim;
4586 	int rv;
4587 
4588 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4589 	growsize = sgrowsiz;
4590 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4591 	vm_map_lock(map);
4592 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4593 	/* If we would blow our VMEM resource limit, no go */
4594 	if (map->size + init_ssize > vmemlim) {
4595 		rv = KERN_NO_SPACE;
4596 		goto out;
4597 	}
4598 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4599 	    max, cow);
4600 out:
4601 	vm_map_unlock(map);
4602 	return (rv);
4603 }
4604 
4605 static int stack_guard_page = 1;
4606 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4607     &stack_guard_page, 0,
4608     "Specifies the number of guard pages for a stack that grows");
4609 
4610 static int
vm_map_stack_locked(vm_map_t map,vm_offset_t addrbos,vm_size_t max_ssize,vm_size_t growsize,vm_prot_t prot,vm_prot_t max,int cow)4611 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4612     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4613 {
4614 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4615 	vm_offset_t bot, gap_bot, gap_top, top;
4616 	vm_size_t init_ssize, sgp;
4617 	int rv;
4618 
4619 	KASSERT((cow & MAP_STACK_AREA) != 0,
4620 	    ("New mapping is not a stack"));
4621 
4622 	if (max_ssize == 0 ||
4623 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4624 		return (KERN_INVALID_ADDRESS);
4625 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4626 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4627 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4628 	if (sgp >= max_ssize)
4629 		return (KERN_INVALID_ARGUMENT);
4630 
4631 	init_ssize = growsize;
4632 	if (max_ssize < init_ssize + sgp)
4633 		init_ssize = max_ssize - sgp;
4634 
4635 	/* If addr is already mapped, no go */
4636 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4637 		return (KERN_NO_SPACE);
4638 
4639 	/*
4640 	 * If we can't accommodate max_ssize in the current mapping, no go.
4641 	 */
4642 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4643 		return (KERN_NO_SPACE);
4644 
4645 	/*
4646 	 * We initially map a stack of only init_ssize, at the top of
4647 	 * the range.  We will grow as needed later.
4648 	 *
4649 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4650 	 * and cow to be 0.  Possibly we should eliminate these as input
4651 	 * parameters, and just pass these values here in the insert call.
4652 	 */
4653 	bot = addrbos + max_ssize - init_ssize;
4654 	top = bot + init_ssize;
4655 	gap_bot = addrbos;
4656 	gap_top = bot;
4657 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4658 	    &new_entry);
4659 	if (rv != KERN_SUCCESS)
4660 		return (rv);
4661 	KASSERT(new_entry->end == top || new_entry->start == bot,
4662 	    ("Bad entry start/end for new stack entry"));
4663 	KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4664 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4665 	if (gap_bot == gap_top)
4666 		return (KERN_SUCCESS);
4667 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4668 	    VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4669 	    &gap_entry);
4670 	if (rv == KERN_SUCCESS) {
4671 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4672 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4673 		KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0,
4674 		    ("entry %p not stack gap %#x", gap_entry,
4675 		    gap_entry->eflags));
4676 
4677 		/*
4678 		 * Gap can never successfully handle a fault, so
4679 		 * read-ahead logic is never used for it.  Re-use
4680 		 * next_read of the gap entry to store
4681 		 * stack_guard_page for vm_map_growstack().
4682 		 * Similarly, since a gap cannot have a backing object,
4683 		 * store the original stack protections in the
4684 		 * object offset.
4685 		 */
4686 		gap_entry->next_read = sgp;
4687 		gap_entry->offset = prot | PROT_MAX(max);
4688 	} else {
4689 		(void)vm_map_delete(map, bot, top);
4690 	}
4691 	return (rv);
4692 }
4693 
4694 /*
4695  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4696  * successfully grow the stack.
4697  */
4698 static int
vm_map_growstack(vm_map_t map,vm_offset_t addr,vm_map_entry_t gap_entry)4699 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4700 {
4701 	vm_map_entry_t stack_entry;
4702 	struct proc *p;
4703 	struct vmspace *vm;
4704 	vm_offset_t gap_end, gap_start, grow_start;
4705 	vm_size_t grow_amount, guard, max_grow, sgp;
4706 	vm_prot_t prot, max;
4707 	rlim_t lmemlim, stacklim, vmemlim;
4708 	int rv, rv1 __diagused;
4709 	bool gap_deleted, is_procstack;
4710 #ifdef notyet
4711 	uint64_t limit;
4712 #endif
4713 #ifdef RACCT
4714 	int error __diagused;
4715 #endif
4716 
4717 	p = curproc;
4718 	vm = p->p_vmspace;
4719 
4720 	/*
4721 	 * Disallow stack growth when the access is performed by a
4722 	 * debugger or AIO daemon.  The reason is that the wrong
4723 	 * resource limits are applied.
4724 	 */
4725 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4726 	    p->p_textvp == NULL))
4727 		return (KERN_FAILURE);
4728 
4729 	MPASS(!vm_map_is_system(map));
4730 
4731 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4732 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4733 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4734 retry:
4735 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4736 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4737 		return (KERN_FAILURE);
4738 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4739 		return (KERN_SUCCESS);
4740 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) {
4741 		stack_entry = vm_map_entry_succ(gap_entry);
4742 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4743 		    stack_entry->start != gap_entry->end)
4744 			return (KERN_FAILURE);
4745 		grow_amount = round_page(stack_entry->start - addr);
4746 	} else {
4747 		return (KERN_FAILURE);
4748 	}
4749 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4750 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4751 	    gap_entry->next_read;
4752 	max_grow = gap_entry->end - gap_entry->start;
4753 	if (guard > max_grow)
4754 		return (KERN_NO_SPACE);
4755 	max_grow -= guard;
4756 	if (grow_amount > max_grow)
4757 		return (KERN_NO_SPACE);
4758 
4759 	/*
4760 	 * If this is the main process stack, see if we're over the stack
4761 	 * limit.
4762 	 */
4763 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4764 	    addr < (vm_offset_t)vm->vm_stacktop;
4765 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4766 		return (KERN_NO_SPACE);
4767 
4768 #ifdef RACCT
4769 	if (racct_enable) {
4770 		PROC_LOCK(p);
4771 		if (is_procstack && racct_set(p, RACCT_STACK,
4772 		    ctob(vm->vm_ssize) + grow_amount)) {
4773 			PROC_UNLOCK(p);
4774 			return (KERN_NO_SPACE);
4775 		}
4776 		PROC_UNLOCK(p);
4777 	}
4778 #endif
4779 
4780 	grow_amount = roundup(grow_amount, sgrowsiz);
4781 	if (grow_amount > max_grow)
4782 		grow_amount = max_grow;
4783 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4784 		grow_amount = trunc_page((vm_size_t)stacklim) -
4785 		    ctob(vm->vm_ssize);
4786 	}
4787 
4788 #ifdef notyet
4789 	PROC_LOCK(p);
4790 	limit = racct_get_available(p, RACCT_STACK);
4791 	PROC_UNLOCK(p);
4792 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4793 		grow_amount = limit - ctob(vm->vm_ssize);
4794 #endif
4795 
4796 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4797 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4798 			rv = KERN_NO_SPACE;
4799 			goto out;
4800 		}
4801 #ifdef RACCT
4802 		if (racct_enable) {
4803 			PROC_LOCK(p);
4804 			if (racct_set(p, RACCT_MEMLOCK,
4805 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4806 				PROC_UNLOCK(p);
4807 				rv = KERN_NO_SPACE;
4808 				goto out;
4809 			}
4810 			PROC_UNLOCK(p);
4811 		}
4812 #endif
4813 	}
4814 
4815 	/* If we would blow our VMEM resource limit, no go */
4816 	if (map->size + grow_amount > vmemlim) {
4817 		rv = KERN_NO_SPACE;
4818 		goto out;
4819 	}
4820 #ifdef RACCT
4821 	if (racct_enable) {
4822 		PROC_LOCK(p);
4823 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4824 			PROC_UNLOCK(p);
4825 			rv = KERN_NO_SPACE;
4826 			goto out;
4827 		}
4828 		PROC_UNLOCK(p);
4829 	}
4830 #endif
4831 
4832 	if (vm_map_lock_upgrade(map)) {
4833 		gap_entry = NULL;
4834 		vm_map_lock_read(map);
4835 		goto retry;
4836 	}
4837 
4838 	/*
4839 	 * The gap_entry "offset" field is overloaded.  See
4840 	 * vm_map_stack_locked().
4841 	 */
4842 	prot = PROT_EXTRACT(gap_entry->offset);
4843 	max = PROT_MAX_EXTRACT(gap_entry->offset);
4844 	sgp = gap_entry->next_read;
4845 
4846 	grow_start = gap_entry->end - grow_amount;
4847 	if (gap_entry->start + grow_amount == gap_entry->end) {
4848 		gap_start = gap_entry->start;
4849 		gap_end = gap_entry->end;
4850 		vm_map_entry_delete(map, gap_entry);
4851 		gap_deleted = true;
4852 	} else {
4853 		MPASS(gap_entry->start < gap_entry->end - grow_amount);
4854 		vm_map_entry_resize(map, gap_entry, -grow_amount);
4855 		gap_deleted = false;
4856 	}
4857 	rv = vm_map_insert(map, NULL, 0, grow_start,
4858 	    grow_start + grow_amount, prot, max, MAP_STACK_AREA);
4859 	if (rv != KERN_SUCCESS) {
4860 		if (gap_deleted) {
4861 			rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4862 			    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4863 			    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4864 			    &gap_entry);
4865 			MPASS(rv1 == KERN_SUCCESS);
4866 			gap_entry->next_read = sgp;
4867 			gap_entry->offset = prot | PROT_MAX(max);
4868 		} else {
4869 			vm_map_entry_resize(map, gap_entry,
4870 			    grow_amount);
4871 		}
4872 	}
4873 	if (rv == KERN_SUCCESS && is_procstack)
4874 		vm->vm_ssize += btoc(grow_amount);
4875 
4876 	/*
4877 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4878 	 */
4879 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4880 		rv = vm_map_wire_locked(map, grow_start,
4881 		    grow_start + grow_amount,
4882 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4883 	}
4884 	vm_map_lock_downgrade(map);
4885 
4886 out:
4887 #ifdef RACCT
4888 	if (racct_enable && rv != KERN_SUCCESS) {
4889 		PROC_LOCK(p);
4890 		error = racct_set(p, RACCT_VMEM, map->size);
4891 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4892 		if (!old_mlock) {
4893 			error = racct_set(p, RACCT_MEMLOCK,
4894 			    ptoa(pmap_wired_count(map->pmap)));
4895 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4896 		}
4897 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4898 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4899 		PROC_UNLOCK(p);
4900 	}
4901 #endif
4902 
4903 	return (rv);
4904 }
4905 
4906 /*
4907  * Unshare the specified VM space for exec.  If other processes are
4908  * mapped to it, then create a new one.  The new vmspace is null.
4909  */
4910 int
vmspace_exec(struct proc * p,vm_offset_t minuser,vm_offset_t maxuser)4911 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4912 {
4913 	struct vmspace *oldvmspace = p->p_vmspace;
4914 	struct vmspace *newvmspace;
4915 
4916 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4917 	    ("vmspace_exec recursed"));
4918 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4919 	if (newvmspace == NULL)
4920 		return (ENOMEM);
4921 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4922 	/*
4923 	 * This code is written like this for prototype purposes.  The
4924 	 * goal is to avoid running down the vmspace here, but let the
4925 	 * other process's that are still using the vmspace to finally
4926 	 * run it down.  Even though there is little or no chance of blocking
4927 	 * here, it is a good idea to keep this form for future mods.
4928 	 */
4929 	PROC_VMSPACE_LOCK(p);
4930 	p->p_vmspace = newvmspace;
4931 	PROC_VMSPACE_UNLOCK(p);
4932 	if (p == curthread->td_proc)
4933 		pmap_activate(curthread);
4934 	curthread->td_pflags |= TDP_EXECVMSPC;
4935 	return (0);
4936 }
4937 
4938 /*
4939  * Unshare the specified VM space for forcing COW.  This
4940  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4941  */
4942 int
vmspace_unshare(struct proc * p)4943 vmspace_unshare(struct proc *p)
4944 {
4945 	struct vmspace *oldvmspace = p->p_vmspace;
4946 	struct vmspace *newvmspace;
4947 	vm_ooffset_t fork_charge;
4948 
4949 	/*
4950 	 * The caller is responsible for ensuring that the reference count
4951 	 * cannot concurrently transition 1 -> 2.
4952 	 */
4953 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4954 		return (0);
4955 	fork_charge = 0;
4956 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4957 	if (newvmspace == NULL)
4958 		return (ENOMEM);
4959 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4960 		vmspace_free(newvmspace);
4961 		return (ENOMEM);
4962 	}
4963 	PROC_VMSPACE_LOCK(p);
4964 	p->p_vmspace = newvmspace;
4965 	PROC_VMSPACE_UNLOCK(p);
4966 	if (p == curthread->td_proc)
4967 		pmap_activate(curthread);
4968 	vmspace_free(oldvmspace);
4969 	return (0);
4970 }
4971 
4972 /*
4973  *	vm_map_lookup:
4974  *
4975  *	Finds the VM object, offset, and
4976  *	protection for a given virtual address in the
4977  *	specified map, assuming a page fault of the
4978  *	type specified.
4979  *
4980  *	Leaves the map in question locked for read; return
4981  *	values are guaranteed until a vm_map_lookup_done
4982  *	call is performed.  Note that the map argument
4983  *	is in/out; the returned map must be used in
4984  *	the call to vm_map_lookup_done.
4985  *
4986  *	A handle (out_entry) is returned for use in
4987  *	vm_map_lookup_done, to make that fast.
4988  *
4989  *	If a lookup is requested with "write protection"
4990  *	specified, the map may be changed to perform virtual
4991  *	copying operations, although the data referenced will
4992  *	remain the same.
4993  */
4994 int
vm_map_lookup(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)4995 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4996 	      vm_offset_t vaddr,
4997 	      vm_prot_t fault_typea,
4998 	      vm_map_entry_t *out_entry,	/* OUT */
4999 	      vm_object_t *object,		/* OUT */
5000 	      vm_pindex_t *pindex,		/* OUT */
5001 	      vm_prot_t *out_prot,		/* OUT */
5002 	      boolean_t *wired)			/* OUT */
5003 {
5004 	vm_map_entry_t entry;
5005 	vm_map_t map = *var_map;
5006 	vm_prot_t prot;
5007 	vm_prot_t fault_type;
5008 	vm_object_t eobject;
5009 	vm_size_t size;
5010 	struct ucred *cred;
5011 
5012 RetryLookup:
5013 
5014 	vm_map_lock_read(map);
5015 
5016 RetryLookupLocked:
5017 	/*
5018 	 * Lookup the faulting address.
5019 	 */
5020 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5021 		vm_map_unlock_read(map);
5022 		return (KERN_INVALID_ADDRESS);
5023 	}
5024 
5025 	entry = *out_entry;
5026 
5027 	/*
5028 	 * Handle submaps.
5029 	 */
5030 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5031 		vm_map_t old_map = map;
5032 
5033 		*var_map = map = entry->object.sub_map;
5034 		vm_map_unlock_read(old_map);
5035 		goto RetryLookup;
5036 	}
5037 
5038 	/*
5039 	 * Check whether this task is allowed to have this page.
5040 	 */
5041 	prot = entry->protection;
5042 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5043 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5044 		if (prot == VM_PROT_NONE && map != kernel_map &&
5045 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5046 		    (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 &&
5047 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5048 			goto RetryLookupLocked;
5049 	}
5050 	fault_type = fault_typea & VM_PROT_ALL;
5051 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5052 		vm_map_unlock_read(map);
5053 		return (KERN_PROTECTION_FAILURE);
5054 	}
5055 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5056 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5057 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5058 	    ("entry %p flags %x", entry, entry->eflags));
5059 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5060 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5061 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5062 		vm_map_unlock_read(map);
5063 		return (KERN_PROTECTION_FAILURE);
5064 	}
5065 
5066 	/*
5067 	 * If this page is not pageable, we have to get it for all possible
5068 	 * accesses.
5069 	 */
5070 	*wired = (entry->wired_count != 0);
5071 	if (*wired)
5072 		fault_type = entry->protection;
5073 	size = entry->end - entry->start;
5074 
5075 	/*
5076 	 * If the entry was copy-on-write, we either ...
5077 	 */
5078 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5079 		/*
5080 		 * If we want to write the page, we may as well handle that
5081 		 * now since we've got the map locked.
5082 		 *
5083 		 * If we don't need to write the page, we just demote the
5084 		 * permissions allowed.
5085 		 */
5086 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5087 		    (fault_typea & VM_PROT_COPY) != 0) {
5088 			/*
5089 			 * Make a new object, and place it in the object
5090 			 * chain.  Note that no new references have appeared
5091 			 * -- one just moved from the map to the new
5092 			 * object.
5093 			 */
5094 			if (vm_map_lock_upgrade(map))
5095 				goto RetryLookup;
5096 
5097 			if (entry->cred == NULL) {
5098 				/*
5099 				 * The debugger owner is charged for
5100 				 * the memory.
5101 				 */
5102 				cred = curthread->td_ucred;
5103 				crhold(cred);
5104 				if (!swap_reserve_by_cred(size, cred)) {
5105 					crfree(cred);
5106 					vm_map_unlock(map);
5107 					return (KERN_RESOURCE_SHORTAGE);
5108 				}
5109 				entry->cred = cred;
5110 			}
5111 			eobject = entry->object.vm_object;
5112 			vm_object_shadow(&entry->object.vm_object,
5113 			    &entry->offset, size, entry->cred, false);
5114 			if (eobject == entry->object.vm_object) {
5115 				/*
5116 				 * The object was not shadowed.
5117 				 */
5118 				swap_release_by_cred(size, entry->cred);
5119 				crfree(entry->cred);
5120 			}
5121 			entry->cred = NULL;
5122 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5123 
5124 			vm_map_lock_downgrade(map);
5125 		} else {
5126 			/*
5127 			 * We're attempting to read a copy-on-write page --
5128 			 * don't allow writes.
5129 			 */
5130 			prot &= ~VM_PROT_WRITE;
5131 		}
5132 	}
5133 
5134 	/*
5135 	 * Create an object if necessary.
5136 	 */
5137 	if (entry->object.vm_object == NULL && !vm_map_is_system(map)) {
5138 		if (vm_map_lock_upgrade(map))
5139 			goto RetryLookup;
5140 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5141 		    NULL, entry->cred, size);
5142 		entry->offset = 0;
5143 		entry->cred = NULL;
5144 		vm_map_lock_downgrade(map);
5145 	}
5146 
5147 	/*
5148 	 * Return the object/offset from this entry.  If the entry was
5149 	 * copy-on-write or empty, it has been fixed up.
5150 	 */
5151 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5152 	*object = entry->object.vm_object;
5153 
5154 	*out_prot = prot;
5155 	return (KERN_SUCCESS);
5156 }
5157 
5158 /*
5159  *	vm_map_lookup_locked:
5160  *
5161  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5162  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5163  */
5164 int
vm_map_lookup_locked(vm_map_t * var_map,vm_offset_t vaddr,vm_prot_t fault_typea,vm_map_entry_t * out_entry,vm_object_t * object,vm_pindex_t * pindex,vm_prot_t * out_prot,boolean_t * wired)5165 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5166 		     vm_offset_t vaddr,
5167 		     vm_prot_t fault_typea,
5168 		     vm_map_entry_t *out_entry,	/* OUT */
5169 		     vm_object_t *object,	/* OUT */
5170 		     vm_pindex_t *pindex,	/* OUT */
5171 		     vm_prot_t *out_prot,	/* OUT */
5172 		     boolean_t *wired)		/* OUT */
5173 {
5174 	vm_map_entry_t entry;
5175 	vm_map_t map = *var_map;
5176 	vm_prot_t prot;
5177 	vm_prot_t fault_type = fault_typea;
5178 
5179 	/*
5180 	 * Lookup the faulting address.
5181 	 */
5182 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5183 		return (KERN_INVALID_ADDRESS);
5184 
5185 	entry = *out_entry;
5186 
5187 	/*
5188 	 * Fail if the entry refers to a submap.
5189 	 */
5190 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5191 		return (KERN_FAILURE);
5192 
5193 	/*
5194 	 * Check whether this task is allowed to have this page.
5195 	 */
5196 	prot = entry->protection;
5197 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5198 	if ((fault_type & prot) != fault_type)
5199 		return (KERN_PROTECTION_FAILURE);
5200 
5201 	/*
5202 	 * If this page is not pageable, we have to get it for all possible
5203 	 * accesses.
5204 	 */
5205 	*wired = (entry->wired_count != 0);
5206 	if (*wired)
5207 		fault_type = entry->protection;
5208 
5209 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5210 		/*
5211 		 * Fail if the entry was copy-on-write for a write fault.
5212 		 */
5213 		if (fault_type & VM_PROT_WRITE)
5214 			return (KERN_FAILURE);
5215 		/*
5216 		 * We're attempting to read a copy-on-write page --
5217 		 * don't allow writes.
5218 		 */
5219 		prot &= ~VM_PROT_WRITE;
5220 	}
5221 
5222 	/*
5223 	 * Fail if an object should be created.
5224 	 */
5225 	if (entry->object.vm_object == NULL && !vm_map_is_system(map))
5226 		return (KERN_FAILURE);
5227 
5228 	/*
5229 	 * Return the object/offset from this entry.  If the entry was
5230 	 * copy-on-write or empty, it has been fixed up.
5231 	 */
5232 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5233 	*object = entry->object.vm_object;
5234 
5235 	*out_prot = prot;
5236 	return (KERN_SUCCESS);
5237 }
5238 
5239 /*
5240  *	vm_map_lookup_done:
5241  *
5242  *	Releases locks acquired by a vm_map_lookup
5243  *	(according to the handle returned by that lookup).
5244  */
5245 void
vm_map_lookup_done(vm_map_t map,vm_map_entry_t entry)5246 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5247 {
5248 	/*
5249 	 * Unlock the main-level map
5250 	 */
5251 	vm_map_unlock_read(map);
5252 }
5253 
5254 vm_offset_t
vm_map_max_KBI(const struct vm_map * map)5255 vm_map_max_KBI(const struct vm_map *map)
5256 {
5257 
5258 	return (vm_map_max(map));
5259 }
5260 
5261 vm_offset_t
vm_map_min_KBI(const struct vm_map * map)5262 vm_map_min_KBI(const struct vm_map *map)
5263 {
5264 
5265 	return (vm_map_min(map));
5266 }
5267 
5268 pmap_t
vm_map_pmap_KBI(vm_map_t map)5269 vm_map_pmap_KBI(vm_map_t map)
5270 {
5271 
5272 	return (map->pmap);
5273 }
5274 
5275 bool
vm_map_range_valid_KBI(vm_map_t map,vm_offset_t start,vm_offset_t end)5276 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5277 {
5278 
5279 	return (vm_map_range_valid(map, start, end));
5280 }
5281 
5282 #ifdef INVARIANTS
5283 static void
_vm_map_assert_consistent(vm_map_t map,int check)5284 _vm_map_assert_consistent(vm_map_t map, int check)
5285 {
5286 	vm_map_entry_t entry, prev;
5287 	vm_map_entry_t cur, header, lbound, ubound;
5288 	vm_size_t max_left, max_right;
5289 
5290 #ifdef DIAGNOSTIC
5291 	++map->nupdates;
5292 #endif
5293 	if (enable_vmmap_check != check)
5294 		return;
5295 
5296 	header = prev = &map->header;
5297 	VM_MAP_ENTRY_FOREACH(entry, map) {
5298 		KASSERT(prev->end <= entry->start,
5299 		    ("map %p prev->end = %jx, start = %jx", map,
5300 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5301 		KASSERT(entry->start < entry->end,
5302 		    ("map %p start = %jx, end = %jx", map,
5303 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5304 		KASSERT(entry->left == header ||
5305 		    entry->left->start < entry->start,
5306 		    ("map %p left->start = %jx, start = %jx", map,
5307 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5308 		KASSERT(entry->right == header ||
5309 		    entry->start < entry->right->start,
5310 		    ("map %p start = %jx, right->start = %jx", map,
5311 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5312 		cur = map->root;
5313 		lbound = ubound = header;
5314 		for (;;) {
5315 			if (entry->start < cur->start) {
5316 				ubound = cur;
5317 				cur = cur->left;
5318 				KASSERT(cur != lbound,
5319 				    ("map %p cannot find %jx",
5320 				    map, (uintmax_t)entry->start));
5321 			} else if (cur->end <= entry->start) {
5322 				lbound = cur;
5323 				cur = cur->right;
5324 				KASSERT(cur != ubound,
5325 				    ("map %p cannot find %jx",
5326 				    map, (uintmax_t)entry->start));
5327 			} else {
5328 				KASSERT(cur == entry,
5329 				    ("map %p cannot find %jx",
5330 				    map, (uintmax_t)entry->start));
5331 				break;
5332 			}
5333 		}
5334 		max_left = vm_map_entry_max_free_left(entry, lbound);
5335 		max_right = vm_map_entry_max_free_right(entry, ubound);
5336 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5337 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5338 		    (uintmax_t)entry->max_free,
5339 		    (uintmax_t)max_left, (uintmax_t)max_right));
5340 		prev = entry;
5341 	}
5342 	KASSERT(prev->end <= entry->start,
5343 	    ("map %p prev->end = %jx, start = %jx", map,
5344 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5345 }
5346 #endif
5347 
5348 #include "opt_ddb.h"
5349 #ifdef DDB
5350 #include <sys/kernel.h>
5351 
5352 #include <ddb/ddb.h>
5353 
5354 static void
vm_map_print(vm_map_t map)5355 vm_map_print(vm_map_t map)
5356 {
5357 	vm_map_entry_t entry, prev;
5358 
5359 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5360 	    (void *)map,
5361 	    (void *)map->pmap, map->nentries, map->timestamp);
5362 
5363 	db_indent += 2;
5364 	prev = &map->header;
5365 	VM_MAP_ENTRY_FOREACH(entry, map) {
5366 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5367 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5368 		    entry->eflags);
5369 		{
5370 			static const char * const inheritance_name[4] =
5371 			{"share", "copy", "none", "donate_copy"};
5372 
5373 			db_iprintf(" prot=%x/%x/%s",
5374 			    entry->protection,
5375 			    entry->max_protection,
5376 			    inheritance_name[(int)(unsigned char)
5377 			    entry->inheritance]);
5378 			if (entry->wired_count != 0)
5379 				db_printf(", wired");
5380 		}
5381 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5382 			db_printf(", share=%p, offset=0x%jx\n",
5383 			    (void *)entry->object.sub_map,
5384 			    (uintmax_t)entry->offset);
5385 			if (prev == &map->header ||
5386 			    prev->object.sub_map !=
5387 				entry->object.sub_map) {
5388 				db_indent += 2;
5389 				vm_map_print((vm_map_t)entry->object.sub_map);
5390 				db_indent -= 2;
5391 			}
5392 		} else {
5393 			if (entry->cred != NULL)
5394 				db_printf(", ruid %d", entry->cred->cr_ruid);
5395 			db_printf(", object=%p, offset=0x%jx",
5396 			    (void *)entry->object.vm_object,
5397 			    (uintmax_t)entry->offset);
5398 			if (entry->object.vm_object && entry->object.vm_object->cred)
5399 				db_printf(", obj ruid %d charge %jx",
5400 				    entry->object.vm_object->cred->cr_ruid,
5401 				    (uintmax_t)entry->object.vm_object->charge);
5402 			if (entry->eflags & MAP_ENTRY_COW)
5403 				db_printf(", copy (%s)",
5404 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5405 			db_printf("\n");
5406 
5407 			if (prev == &map->header ||
5408 			    prev->object.vm_object !=
5409 				entry->object.vm_object) {
5410 				db_indent += 2;
5411 				vm_object_print((db_expr_t)(intptr_t)
5412 						entry->object.vm_object,
5413 						0, 0, (char *)0);
5414 				db_indent -= 2;
5415 			}
5416 		}
5417 		prev = entry;
5418 	}
5419 	db_indent -= 2;
5420 }
5421 
DB_SHOW_COMMAND(map,map)5422 DB_SHOW_COMMAND(map, map)
5423 {
5424 
5425 	if (!have_addr) {
5426 		db_printf("usage: show map <addr>\n");
5427 		return;
5428 	}
5429 	vm_map_print((vm_map_t)addr);
5430 }
5431 
DB_SHOW_COMMAND(procvm,procvm)5432 DB_SHOW_COMMAND(procvm, procvm)
5433 {
5434 	struct proc *p;
5435 
5436 	if (have_addr) {
5437 		p = db_lookup_proc(addr);
5438 	} else {
5439 		p = curproc;
5440 	}
5441 
5442 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5443 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5444 	    (void *)vmspace_pmap(p->p_vmspace));
5445 
5446 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5447 }
5448 
5449 #endif /* DDB */
5450