1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2015, Joyent, Inc. All rights reserved.
26 */
27
28 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */
29
30 #include "lint.h"
31 #include "thr_uberdata.h"
32 #include "libc.h"
33 #include <stdarg.h>
34 #include <poll.h>
35 #include <stropts.h>
36 #include <dlfcn.h>
37 #include <wait.h>
38 #include <sys/socket.h>
39 #include <sys/uio.h>
40 #include <sys/file.h>
41 #include <sys/door.h>
42
43 /*
44 * These leading-underbar symbols exist because mistakes were made
45 * in the past that put them into non-SUNWprivate versions of
46 * the libc mapfiles. They should be eliminated, but oh well...
47 */
48 #pragma weak _fork = fork
49 #pragma weak _read = read
50 #pragma weak _write = write
51 #pragma weak _getmsg = getmsg
52 #pragma weak _getpmsg = getpmsg
53 #pragma weak _putmsg = putmsg
54 #pragma weak _putpmsg = putpmsg
55 #pragma weak _sleep = sleep
56 #pragma weak _close = close
57 #pragma weak _creat = creat
58 #pragma weak _fcntl = fcntl
59 #pragma weak _fsync = fsync
60 #pragma weak _lockf = lockf
61 #pragma weak _msgrcv = msgrcv
62 #pragma weak _msgsnd = msgsnd
63 #pragma weak _msync = msync
64 #pragma weak _open = open
65 #pragma weak _openat = openat
66 #pragma weak _pause = pause
67 #pragma weak _readv = readv
68 #pragma weak _sigpause = sigpause
69 #pragma weak _sigsuspend = sigsuspend
70 #pragma weak _tcdrain = tcdrain
71 #pragma weak _waitid = waitid
72 #pragma weak _writev = writev
73
74 #if !defined(_LP64)
75 #pragma weak _creat64 = creat64
76 #pragma weak _lockf64 = lockf64
77 #pragma weak _open64 = open64
78 #pragma weak _openat64 = openat64
79 #pragma weak _pread64 = pread64
80 #pragma weak _pwrite64 = pwrite64
81 #endif
82
83 /*
84 * These are SUNWprivate, but they are being used by Sun Studio libcollector.
85 */
86 #pragma weak _fork1 = fork1
87 #pragma weak _forkall = forkall
88
89 /*
90 * atfork_lock protects the pthread_atfork() data structures.
91 *
92 * fork_lock does double-duty. Not only does it (and atfork_lock)
93 * serialize calls to fork() and forkall(), but it also serializes calls
94 * to thr_suspend() and thr_continue() (because fork() and forkall() also
95 * suspend and continue other threads and they want no competition).
96 *
97 * Functions called in dlopen()ed L10N objects can do anything, including
98 * call malloc() and free(). Such calls are not fork-safe when protected
99 * by an ordinary mutex that is acquired in libc's prefork processing
100 * because, with an interposed malloc library present, there would be a
101 * lock ordering violation due to the pthread_atfork() prefork function
102 * in the interposition library acquiring its malloc lock(s) before the
103 * ordinary mutex in libc being acquired by libc's prefork functions.
104 *
105 * Within libc, calls to malloc() and free() are fork-safe if the calls
106 * are made while holding no other libc locks. This covers almost all
107 * of libc's malloc() and free() calls. For those libc code paths, such
108 * as the above-mentioned L10N calls, that require serialization and that
109 * may call malloc() or free(), libc uses callout_lock_enter() to perform
110 * the serialization. This works because callout_lock is not acquired as
111 * part of running the pthread_atfork() prefork handlers (to avoid the
112 * lock ordering violation described above). Rather, it is simply
113 * reinitialized in postfork1_child() to cover the case that some
114 * now-defunct thread might have been suspended while holding it.
115 */
116
117 void
fork_lock_enter(void)118 fork_lock_enter(void)
119 {
120 ASSERT(curthread->ul_critical == 0);
121 (void) mutex_lock(&curthread->ul_uberdata->fork_lock);
122 }
123
124 void
fork_lock_exit(void)125 fork_lock_exit(void)
126 {
127 ASSERT(curthread->ul_critical == 0);
128 (void) mutex_unlock(&curthread->ul_uberdata->fork_lock);
129 }
130
131 /*
132 * Use cancel_safe_mutex_lock() to protect against being cancelled while
133 * holding callout_lock and calling outside of libc (via L10N plugins).
134 * We will honor a pending cancellation request when callout_lock_exit()
135 * is called, by calling cancel_safe_mutex_unlock().
136 */
137 void
callout_lock_enter(void)138 callout_lock_enter(void)
139 {
140 ASSERT(curthread->ul_critical == 0);
141 cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock);
142 }
143
144 void
callout_lock_exit(void)145 callout_lock_exit(void)
146 {
147 ASSERT(curthread->ul_critical == 0);
148 cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock);
149 }
150
151 pid_t
forkx(int flags)152 forkx(int flags)
153 {
154 ulwp_t *self = curthread;
155 uberdata_t *udp = self->ul_uberdata;
156 pid_t pid;
157
158 if (self->ul_vfork) {
159 /*
160 * We are a child of vfork(); omit all of the fork
161 * logic and go straight to the system call trap.
162 * A vfork() child of a multithreaded parent
163 * must never call fork().
164 */
165 if (udp->uberflags.uf_mt) {
166 errno = ENOTSUP;
167 return (-1);
168 }
169 pid = __forkx(flags);
170 if (pid == 0) { /* child */
171 udp->pid = getpid();
172 self->ul_vfork = 0;
173 }
174 return (pid);
175 }
176
177 sigoff(self);
178 if (self->ul_fork) {
179 /*
180 * Cannot call fork() from a fork handler.
181 */
182 sigon(self);
183 errno = EDEADLK;
184 return (-1);
185 }
186 self->ul_fork = 1;
187
188 /*
189 * The functions registered by pthread_atfork() are defined by
190 * the application and its libraries and we must not hold any
191 * internal lmutex_lock()-acquired locks while invoking them.
192 * We hold only udp->atfork_lock to protect the atfork linkages.
193 * If one of these pthread_atfork() functions attempts to fork
194 * or to call pthread_atfork(), libc will detect the error and
195 * fail the call with EDEADLK. Otherwise, the pthread_atfork()
196 * functions are free to do anything they please (except they
197 * will not receive any signals).
198 */
199 (void) mutex_lock(&udp->atfork_lock);
200
201 /*
202 * Posix (SUSv3) requires fork() to be async-signal-safe.
203 * This cannot be made to happen with fork handlers in place
204 * (they grab locks). To be in nominal compliance, don't run
205 * any fork handlers if we are called within a signal context.
206 * This leaves the child process in a questionable state with
207 * respect to its locks, but at least the parent process does
208 * not become deadlocked due to the calling thread attempting
209 * to acquire a lock that it already owns.
210 */
211 if (self->ul_siglink == NULL)
212 _prefork_handler();
213
214 /*
215 * Block every other thread attempting thr_suspend() or thr_continue().
216 */
217 (void) mutex_lock(&udp->fork_lock);
218
219 /*
220 * Block all signals.
221 * Just deferring them via sigoff() is not enough.
222 * We have to avoid taking a deferred signal in the child
223 * that was actually sent to the parent before __forkx().
224 */
225 block_all_signals(self);
226
227 /*
228 * This suspends all threads but this one, leaving them
229 * suspended outside of any critical regions in the library.
230 * Thus, we are assured that no lmutex_lock()-acquired library
231 * locks are held while we invoke fork() from the current thread.
232 */
233 suspend_fork();
234
235 pid = __forkx(flags);
236
237 if (pid == 0) { /* child */
238 /*
239 * Clear our schedctl pointer.
240 * Discard any deferred signal that was sent to the parent.
241 * Because we blocked all signals before __forkx(), a
242 * deferred signal cannot have been taken by the child.
243 */
244 self->ul_schedctl_called = NULL;
245 self->ul_schedctl = NULL;
246 self->ul_cursig = 0;
247 self->ul_siginfo.si_signo = 0;
248 udp->pid = getpid();
249 /* reset the library's data structures to reflect one thread */
250 unregister_locks();
251 postfork1_child();
252 restore_signals(self);
253 (void) mutex_unlock(&udp->fork_lock);
254 if (self->ul_siglink == NULL)
255 _postfork_child_handler();
256 } else {
257 /* restart all threads that were suspended for fork() */
258 continue_fork(0);
259 restore_signals(self);
260 (void) mutex_unlock(&udp->fork_lock);
261 if (self->ul_siglink == NULL)
262 _postfork_parent_handler();
263 }
264
265 (void) mutex_unlock(&udp->atfork_lock);
266 self->ul_fork = 0;
267 sigon(self);
268
269 return (pid);
270 }
271
272 /*
273 * fork() is fork1() for both Posix threads and Solaris threads.
274 * The forkall() interface exists for applications that require
275 * the semantics of replicating all threads.
276 */
277 #pragma weak fork1 = fork
278 pid_t
fork(void)279 fork(void)
280 {
281 return (forkx(0));
282 }
283
284 /*
285 * Much of the logic here is the same as in forkx().
286 * See the comments in forkx(), above.
287 */
288 pid_t
forkallx(int flags)289 forkallx(int flags)
290 {
291 ulwp_t *self = curthread;
292 uberdata_t *udp = self->ul_uberdata;
293 pid_t pid;
294
295 if (self->ul_vfork) {
296 if (udp->uberflags.uf_mt) {
297 errno = ENOTSUP;
298 return (-1);
299 }
300 pid = __forkallx(flags);
301 if (pid == 0) { /* child */
302 udp->pid = getpid();
303 self->ul_vfork = 0;
304 }
305 return (pid);
306 }
307
308 sigoff(self);
309 if (self->ul_fork) {
310 sigon(self);
311 errno = EDEADLK;
312 return (-1);
313 }
314 self->ul_fork = 1;
315 (void) mutex_lock(&udp->atfork_lock);
316 (void) mutex_lock(&udp->fork_lock);
317 block_all_signals(self);
318 suspend_fork();
319
320 pid = __forkallx(flags);
321
322 if (pid == 0) {
323 self->ul_schedctl_called = NULL;
324 self->ul_schedctl = NULL;
325 self->ul_cursig = 0;
326 self->ul_siginfo.si_signo = 0;
327 udp->pid = getpid();
328 unregister_locks();
329 continue_fork(1);
330 } else {
331 continue_fork(0);
332 }
333 restore_signals(self);
334 (void) mutex_unlock(&udp->fork_lock);
335 (void) mutex_unlock(&udp->atfork_lock);
336 self->ul_fork = 0;
337 sigon(self);
338
339 return (pid);
340 }
341
342 pid_t
forkall(void)343 forkall(void)
344 {
345 return (forkallx(0));
346 }
347
348 /*
349 * For the implementation of cancellation at cancellation points.
350 */
351 #define PROLOGUE \
352 { \
353 ulwp_t *self = curthread; \
354 int nocancel = \
355 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \
356 self->ul_critical | self->ul_sigdefer); \
357 int abort = 0; \
358 if (nocancel == 0) { \
359 self->ul_save_async = self->ul_cancel_async; \
360 if (!self->ul_cancel_disabled) { \
361 self->ul_cancel_async = 1; \
362 if (self->ul_cancel_pending) \
363 pthread_exit(PTHREAD_CANCELED); \
364 } \
365 self->ul_sp = stkptr(); \
366 } else if (self->ul_cancel_pending && \
367 !self->ul_cancel_disabled) { \
368 set_cancel_eintr_flag(self); \
369 abort = 1; \
370 }
371
372 #define EPILOGUE \
373 if (nocancel == 0) { \
374 self->ul_sp = 0; \
375 self->ul_cancel_async = self->ul_save_async; \
376 } \
377 }
378
379 /*
380 * Perform the body of the action required by most of the cancelable
381 * function calls. The return(function_call) part is to allow the
382 * compiler to make the call be executed with tail recursion, which
383 * saves a register window on sparc and slightly (not much) improves
384 * the code for x86/x64 compilations.
385 */
386 #define PERFORM(function_call) \
387 PROLOGUE \
388 if (abort) { \
389 *self->ul_errnop = EINTR; \
390 return (-1); \
391 } \
392 if (nocancel) \
393 return (function_call); \
394 rv = function_call; \
395 EPILOGUE \
396 return (rv);
397
398 /*
399 * Specialized prologue for sigsuspend() and pollsys().
400 * These system calls pass a signal mask to the kernel.
401 * The kernel replaces the thread's signal mask with the
402 * temporary mask before the thread goes to sleep. If
403 * a signal is received, the signal handler will execute
404 * with the temporary mask, as modified by the sigaction
405 * for the particular signal.
406 *
407 * We block all signals until we reach the kernel with the
408 * temporary mask. This eliminates race conditions with
409 * setting the signal mask while signals are being posted.
410 */
411 #define PROLOGUE_MASK(sigmask) \
412 { \
413 ulwp_t *self = curthread; \
414 int nocancel = \
415 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \
416 self->ul_critical | self->ul_sigdefer); \
417 if (!self->ul_vfork) { \
418 if (sigmask) { \
419 block_all_signals(self); \
420 self->ul_tmpmask = *sigmask; \
421 delete_reserved_signals(&self->ul_tmpmask); \
422 self->ul_sigsuspend = 1; \
423 } \
424 if (nocancel == 0) { \
425 self->ul_save_async = self->ul_cancel_async; \
426 if (!self->ul_cancel_disabled) { \
427 self->ul_cancel_async = 1; \
428 if (self->ul_cancel_pending) { \
429 if (self->ul_sigsuspend) { \
430 self->ul_sigsuspend = 0;\
431 restore_signals(self); \
432 } \
433 pthread_exit(PTHREAD_CANCELED); \
434 } \
435 } \
436 self->ul_sp = stkptr(); \
437 } \
438 }
439
440 /*
441 * If a signal is taken, we return from the system call wrapper with
442 * our original signal mask restored (see code in call_user_handler()).
443 * If not (self->ul_sigsuspend is still non-zero), we must restore our
444 * original signal mask ourself.
445 */
446 #define EPILOGUE_MASK \
447 if (nocancel == 0) { \
448 self->ul_sp = 0; \
449 self->ul_cancel_async = self->ul_save_async; \
450 } \
451 if (self->ul_sigsuspend) { \
452 self->ul_sigsuspend = 0; \
453 restore_signals(self); \
454 } \
455 }
456
457 /*
458 * Cancellation prologue and epilogue functions,
459 * for cancellation points too complex to include here.
460 */
461 void
_cancel_prologue(void)462 _cancel_prologue(void)
463 {
464 ulwp_t *self = curthread;
465
466 self->ul_cancel_prologue =
467 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks |
468 self->ul_critical | self->ul_sigdefer) != 0;
469 if (self->ul_cancel_prologue == 0) {
470 self->ul_save_async = self->ul_cancel_async;
471 if (!self->ul_cancel_disabled) {
472 self->ul_cancel_async = 1;
473 if (self->ul_cancel_pending)
474 pthread_exit(PTHREAD_CANCELED);
475 }
476 self->ul_sp = stkptr();
477 } else if (self->ul_cancel_pending &&
478 !self->ul_cancel_disabled) {
479 set_cancel_eintr_flag(self);
480 }
481 }
482
483 void
_cancel_epilogue(void)484 _cancel_epilogue(void)
485 {
486 ulwp_t *self = curthread;
487
488 if (self->ul_cancel_prologue == 0) {
489 self->ul_sp = 0;
490 self->ul_cancel_async = self->ul_save_async;
491 }
492 }
493
494 /*
495 * Called from _thrp_join() (thr_join() is a cancellation point)
496 */
497 int
lwp_wait(thread_t tid,thread_t * found)498 lwp_wait(thread_t tid, thread_t *found)
499 {
500 int error;
501
502 PROLOGUE
503 if (abort)
504 return (EINTR);
505 while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active())
506 continue;
507 EPILOGUE
508 return (error);
509 }
510
511 ssize_t
read(int fd,void * buf,size_t size)512 read(int fd, void *buf, size_t size)
513 {
514 extern ssize_t __read(int, void *, size_t);
515 ssize_t rv;
516
517 PERFORM(__read(fd, buf, size))
518 }
519
520 ssize_t
write(int fd,const void * buf,size_t size)521 write(int fd, const void *buf, size_t size)
522 {
523 extern ssize_t __write(int, const void *, size_t);
524 ssize_t rv;
525
526 PERFORM(__write(fd, buf, size))
527 }
528
529 int
getmsg(int fd,struct strbuf * ctlptr,struct strbuf * dataptr,int * flagsp)530 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
531 int *flagsp)
532 {
533 extern int __getmsg(int, struct strbuf *, struct strbuf *, int *);
534 int rv;
535
536 PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp))
537 }
538
539 int
getpmsg(int fd,struct strbuf * ctlptr,struct strbuf * dataptr,int * bandp,int * flagsp)540 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
541 int *bandp, int *flagsp)
542 {
543 extern int __getpmsg(int, struct strbuf *, struct strbuf *,
544 int *, int *);
545 int rv;
546
547 PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
548 }
549
550 int
putmsg(int fd,const struct strbuf * ctlptr,const struct strbuf * dataptr,int flags)551 putmsg(int fd, const struct strbuf *ctlptr,
552 const struct strbuf *dataptr, int flags)
553 {
554 extern int __putmsg(int, const struct strbuf *,
555 const struct strbuf *, int);
556 int rv;
557
558 PERFORM(__putmsg(fd, ctlptr, dataptr, flags))
559 }
560
561 int
__xpg4_putmsg(int fd,const struct strbuf * ctlptr,const struct strbuf * dataptr,int flags)562 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
563 const struct strbuf *dataptr, int flags)
564 {
565 extern int __putmsg(int, const struct strbuf *,
566 const struct strbuf *, int);
567 int rv;
568
569 PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
570 }
571
572 int
putpmsg(int fd,const struct strbuf * ctlptr,const struct strbuf * dataptr,int band,int flags)573 putpmsg(int fd, const struct strbuf *ctlptr,
574 const struct strbuf *dataptr, int band, int flags)
575 {
576 extern int __putpmsg(int, const struct strbuf *,
577 const struct strbuf *, int, int);
578 int rv;
579
580 PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags))
581 }
582
583 int
__xpg4_putpmsg(int fd,const struct strbuf * ctlptr,const struct strbuf * dataptr,int band,int flags)584 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
585 const struct strbuf *dataptr, int band, int flags)
586 {
587 extern int __putpmsg(int, const struct strbuf *,
588 const struct strbuf *, int, int);
589 int rv;
590
591 PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
592 }
593
594 int
nanosleep(const timespec_t * rqtp,timespec_t * rmtp)595 nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
596 {
597 int error;
598
599 PROLOGUE
600 error = abort? EINTR : __nanosleep(rqtp, rmtp);
601 EPILOGUE
602 if (error) {
603 errno = error;
604 return (-1);
605 }
606 return (0);
607 }
608
609 int
clock_nanosleep(clockid_t clock_id,int flags,const timespec_t * rqtp,timespec_t * rmtp)610 clock_nanosleep(clockid_t clock_id, int flags,
611 const timespec_t *rqtp, timespec_t *rmtp)
612 {
613 timespec_t reltime;
614 hrtime_t start;
615 hrtime_t rqlapse;
616 hrtime_t lapse;
617 int error;
618
619 switch (clock_id) {
620 case CLOCK_VIRTUAL:
621 case CLOCK_PROCESS_CPUTIME_ID:
622 case CLOCK_THREAD_CPUTIME_ID:
623 return (ENOTSUP);
624 case CLOCK_REALTIME:
625 case CLOCK_HIGHRES:
626 break;
627 default:
628 return (EINVAL);
629 }
630 if (flags & TIMER_ABSTIME) {
631 abstime_to_reltime(clock_id, rqtp, &reltime);
632 rmtp = NULL;
633 } else {
634 reltime = *rqtp;
635 if (clock_id == CLOCK_HIGHRES)
636 start = gethrtime();
637 }
638 restart:
639 PROLOGUE
640 error = abort? EINTR : __nanosleep(&reltime, rmtp);
641 EPILOGUE
642 if (error == 0 && clock_id == CLOCK_HIGHRES) {
643 /*
644 * Don't return yet if we didn't really get a timeout.
645 * This can happen if we return because someone resets
646 * the system clock.
647 */
648 if (flags & TIMER_ABSTIME) {
649 if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
650 rqtp->tv_nsec > gethrtime()) {
651 abstime_to_reltime(clock_id, rqtp, &reltime);
652 goto restart;
653 }
654 } else {
655 rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
656 rqtp->tv_nsec;
657 lapse = gethrtime() - start;
658 if (rqlapse > lapse) {
659 hrt2ts(rqlapse - lapse, &reltime);
660 goto restart;
661 }
662 }
663 }
664 if (error == 0 && clock_id == CLOCK_REALTIME &&
665 (flags & TIMER_ABSTIME)) {
666 /*
667 * Don't return yet just because someone reset the
668 * system clock. Recompute the new relative time
669 * and reissue the nanosleep() call if necessary.
670 *
671 * Resetting the system clock causes all sorts of
672 * problems and the SUSV3 standards body should
673 * have made the behavior of clock_nanosleep() be
674 * implementation-defined in such a case rather than
675 * being specific about honoring the new system time.
676 * Standards bodies are filled with fools and idiots.
677 */
678 abstime_to_reltime(clock_id, rqtp, &reltime);
679 if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
680 goto restart;
681 }
682 return (error);
683 }
684
685 unsigned int
sleep(unsigned int sec)686 sleep(unsigned int sec)
687 {
688 unsigned int rem = 0;
689 timespec_t ts;
690 timespec_t tsr;
691
692 ts.tv_sec = (time_t)sec;
693 ts.tv_nsec = 0;
694 if (nanosleep(&ts, &tsr) == -1 && errno == EINTR) {
695 rem = (unsigned int)tsr.tv_sec;
696 if (tsr.tv_nsec >= NANOSEC / 2)
697 rem++;
698 }
699 return (rem);
700 }
701
702 int
usleep(useconds_t usec)703 usleep(useconds_t usec)
704 {
705 timespec_t ts;
706
707 ts.tv_sec = usec / MICROSEC;
708 ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
709 (void) nanosleep(&ts, NULL);
710 return (0);
711 }
712
713 int
close(int fildes)714 close(int fildes)
715 {
716 extern void _aio_close(int);
717 extern int __close(int);
718 int rv;
719
720 /*
721 * If we call _aio_close() while in a critical region,
722 * we will draw an ASSERT() failure, so don't do it.
723 * No calls to close() from within libc need _aio_close();
724 * only the application's calls to close() need this,
725 * and such calls are never from a libc critical region.
726 */
727 if (curthread->ul_critical == 0)
728 _aio_close(fildes);
729 PERFORM(__close(fildes))
730 }
731
732 int
door_call(int d,door_arg_t * params)733 door_call(int d, door_arg_t *params)
734 {
735 extern int __door_call(int, door_arg_t *);
736 int rv;
737
738 PERFORM(__door_call(d, params))
739 }
740
741 int
fcntl(int fildes,int cmd,...)742 fcntl(int fildes, int cmd, ...)
743 {
744 extern int __fcntl(int, int, ...);
745 intptr_t arg, arg1 = 0;
746 int rv;
747 va_list ap;
748
749 va_start(ap, cmd);
750 switch (cmd) {
751 case F_DUP3FD:
752 arg = va_arg(ap, int);
753 arg1 = va_arg(ap, int);
754 break;
755 default:
756 arg = va_arg(ap, intptr_t);
757 break;
758 }
759 va_end(ap);
760 if (cmd != F_SETLKW)
761 return (__fcntl(fildes, cmd, arg, arg1));
762 PERFORM(__fcntl(fildes, cmd, arg))
763 }
764
765 int
fdatasync(int fildes)766 fdatasync(int fildes)
767 {
768 int rv;
769
770 PERFORM(__fdsync(fildes, FDSYNC_DATA))
771 }
772
773 int
fsync(int fildes)774 fsync(int fildes)
775 {
776 int rv;
777
778 PERFORM(__fdsync(fildes, FDSYNC_FILE))
779 }
780
781 int
syncfs(int fildes)782 syncfs(int fildes)
783 {
784 int rv;
785
786 PERFORM(__fdsync(fildes, FDSYNC_FS))
787 }
788
789 int
lockf(int fildes,int function,off_t size)790 lockf(int fildes, int function, off_t size)
791 {
792 extern int __lockf(int, int, off_t);
793 int rv;
794
795 PERFORM(__lockf(fildes, function, size))
796 }
797
798 #if !defined(_LP64)
799 int
lockf64(int fildes,int function,off64_t size)800 lockf64(int fildes, int function, off64_t size)
801 {
802 extern int __lockf64(int, int, off64_t);
803 int rv;
804
805 PERFORM(__lockf64(fildes, function, size))
806 }
807 #endif /* !_LP64 */
808
809 ssize_t
msgrcv(int msqid,void * msgp,size_t msgsz,long msgtyp,int msgflg)810 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
811 {
812 extern ssize_t __msgrcv(int, void *, size_t, long, int);
813 ssize_t rv;
814
815 PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
816 }
817
818 int
msgsnd(int msqid,const void * msgp,size_t msgsz,int msgflg)819 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
820 {
821 extern int __msgsnd(int, const void *, size_t, int);
822 int rv;
823
824 PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg))
825 }
826
827 int
msync(void * addr,size_t len,int flags)828 msync(void *addr, size_t len, int flags)
829 {
830 extern int __msync(caddr_t, size_t, int);
831 int rv;
832
833 PERFORM(__msync(addr, len, flags))
834 }
835
836 int
openat(int fd,const char * path,int oflag,...)837 openat(int fd, const char *path, int oflag, ...)
838 {
839 mode_t mode;
840 int rv;
841 va_list ap;
842
843 va_start(ap, oflag);
844 mode = va_arg(ap, mode_t);
845 va_end(ap);
846 PERFORM(__openat(fd, path, oflag, mode))
847 }
848
849 int
open(const char * path,int oflag,...)850 open(const char *path, int oflag, ...)
851 {
852 mode_t mode;
853 int rv;
854 va_list ap;
855
856 va_start(ap, oflag);
857 mode = va_arg(ap, mode_t);
858 va_end(ap);
859 PERFORM(__open(path, oflag, mode))
860 }
861
862 int
creat(const char * path,mode_t mode)863 creat(const char *path, mode_t mode)
864 {
865 return (open(path, O_WRONLY | O_CREAT | O_TRUNC, mode));
866 }
867
868 #if !defined(_LP64)
869 int
openat64(int fd,const char * path,int oflag,...)870 openat64(int fd, const char *path, int oflag, ...)
871 {
872 mode_t mode;
873 int rv;
874 va_list ap;
875
876 va_start(ap, oflag);
877 mode = va_arg(ap, mode_t);
878 va_end(ap);
879 PERFORM(__openat64(fd, path, oflag, mode))
880 }
881
882 int
open64(const char * path,int oflag,...)883 open64(const char *path, int oflag, ...)
884 {
885 mode_t mode;
886 int rv;
887 va_list ap;
888
889 va_start(ap, oflag);
890 mode = va_arg(ap, mode_t);
891 va_end(ap);
892 PERFORM(__open64(path, oflag, mode))
893 }
894
895 int
creat64(const char * path,mode_t mode)896 creat64(const char *path, mode_t mode)
897 {
898 return (open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode));
899 }
900 #endif /* !_LP64 */
901
902 int
pause(void)903 pause(void)
904 {
905 extern int __pause(void);
906 int rv;
907
908 PERFORM(__pause())
909 }
910
911 ssize_t
pread(int fildes,void * buf,size_t nbyte,off_t offset)912 pread(int fildes, void *buf, size_t nbyte, off_t offset)
913 {
914 extern ssize_t __pread(int, void *, size_t, off_t);
915 ssize_t rv;
916
917 PERFORM(__pread(fildes, buf, nbyte, offset))
918 }
919
920 #if !defined(_LP64)
921 ssize_t
pread64(int fildes,void * buf,size_t nbyte,off64_t offset)922 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
923 {
924 extern ssize_t __pread64(int, void *, size_t, off64_t);
925 ssize_t rv;
926
927 PERFORM(__pread64(fildes, buf, nbyte, offset))
928 }
929
930 ssize_t
preadv64(int fildes,const struct iovec * iov,int iovcnt,off64_t offset)931 preadv64(int fildes, const struct iovec *iov, int iovcnt, off64_t offset)
932 {
933
934 extern ssize_t __preadv64(int, const struct iovec *, int, off_t, off_t);
935 ssize_t rv;
936
937 PERFORM(__preadv64(fildes, iov, iovcnt, offset & 0xffffffffULL,
938 offset>>32))
939 }
940 #endif /* !_LP64 */
941
942 ssize_t
preadv(int fildes,const struct iovec * iov,int iovcnt,off_t offset)943 preadv(int fildes, const struct iovec *iov, int iovcnt, off_t offset)
944 {
945
946 extern ssize_t __preadv(int, const struct iovec *, int, off_t, off_t);
947 ssize_t rv;
948
949 PERFORM(__preadv(fildes, iov, iovcnt, offset, 0))
950 }
951 ssize_t
pwrite(int fildes,const void * buf,size_t nbyte,off_t offset)952 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
953 {
954 extern ssize_t __pwrite(int, const void *, size_t, off_t);
955 ssize_t rv;
956
957 PERFORM(__pwrite(fildes, buf, nbyte, offset))
958 }
959
960 #if !defined(_LP64)
961 ssize_t
pwrite64(int fildes,const void * buf,size_t nbyte,off64_t offset)962 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
963 {
964 extern ssize_t __pwrite64(int, const void *, size_t, off64_t);
965 ssize_t rv;
966
967 PERFORM(__pwrite64(fildes, buf, nbyte, offset))
968 }
969
970 ssize_t
pwritev64(int fildes,const struct iovec * iov,int iovcnt,off64_t offset)971 pwritev64(int fildes, const struct iovec *iov, int iovcnt, off64_t offset)
972 {
973
974 extern ssize_t __pwritev64(int,
975 const struct iovec *, int, off_t, off_t);
976 ssize_t rv;
977
978 PERFORM(__pwritev64(fildes, iov, iovcnt, offset &
979 0xffffffffULL, offset>>32))
980 }
981
982 #endif /* !_LP64 */
983
984 ssize_t
pwritev(int fildes,const struct iovec * iov,int iovcnt,off_t offset)985 pwritev(int fildes, const struct iovec *iov, int iovcnt, off_t offset)
986 {
987 extern ssize_t __pwritev(int, const struct iovec *, int, off_t, off_t);
988 ssize_t rv;
989
990 PERFORM(__pwritev(fildes, iov, iovcnt, offset, 0))
991 }
992
993 ssize_t
readv(int fildes,const struct iovec * iov,int iovcnt)994 readv(int fildes, const struct iovec *iov, int iovcnt)
995 {
996 extern ssize_t __readv(int, const struct iovec *, int);
997 ssize_t rv;
998
999 PERFORM(__readv(fildes, iov, iovcnt))
1000 }
1001
1002 int
sigpause(int sig)1003 sigpause(int sig)
1004 {
1005 extern int __sigpause(int);
1006 int rv;
1007
1008 PERFORM(__sigpause(sig))
1009 }
1010
1011 int
sigsuspend(const sigset_t * set)1012 sigsuspend(const sigset_t *set)
1013 {
1014 extern int __sigsuspend(const sigset_t *);
1015 int rv;
1016
1017 PROLOGUE_MASK(set)
1018 rv = __sigsuspend(set);
1019 EPILOGUE_MASK
1020 return (rv);
1021 }
1022
1023 int
_pollsys(struct pollfd * fds,nfds_t nfd,const timespec_t * timeout,const sigset_t * sigmask)1024 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
1025 const sigset_t *sigmask)
1026 {
1027 extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
1028 const sigset_t *);
1029 int rv;
1030
1031 PROLOGUE_MASK(sigmask)
1032 rv = __pollsys(fds, nfd, timeout, sigmask);
1033 EPILOGUE_MASK
1034 return (rv);
1035 }
1036
1037 int
sigtimedwait(const sigset_t * set,siginfo_t * infop,const timespec_t * timeout)1038 sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
1039 {
1040 extern int __sigtimedwait(const sigset_t *, siginfo_t *,
1041 const timespec_t *);
1042 siginfo_t info;
1043 int sig;
1044
1045 PROLOGUE
1046 if (abort) {
1047 *self->ul_errnop = EINTR;
1048 sig = -1;
1049 } else {
1050 sig = __sigtimedwait(set, &info, timeout);
1051 if (sig == SIGCANCEL &&
1052 (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
1053 do_sigcancel();
1054 *self->ul_errnop = EINTR;
1055 sig = -1;
1056 }
1057 }
1058 EPILOGUE
1059 if (sig != -1 && infop)
1060 (void) memcpy(infop, &info, sizeof (*infop));
1061 return (sig);
1062 }
1063
1064 int
sigwait(sigset_t * set)1065 sigwait(sigset_t *set)
1066 {
1067 return (sigtimedwait(set, NULL, NULL));
1068 }
1069
1070 int
sigwaitinfo(const sigset_t * set,siginfo_t * info)1071 sigwaitinfo(const sigset_t *set, siginfo_t *info)
1072 {
1073 return (sigtimedwait(set, info, NULL));
1074 }
1075
1076 int
sigqueue(pid_t pid,int signo,const union sigval value)1077 sigqueue(pid_t pid, int signo, const union sigval value)
1078 {
1079 extern int __sigqueue(pid_t pid, int signo,
1080 /* const union sigval */ void *value, int si_code, int block);
1081 return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
1082 }
1083
1084 int
_so_accept(int sock,struct sockaddr * addr,uint_t * addrlen,int version,int flags)1085 _so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version,
1086 int flags)
1087 {
1088 extern int __so_accept(int, struct sockaddr *, uint_t *, int, int);
1089 int rv;
1090
1091 PERFORM(__so_accept(sock, addr, addrlen, version, flags))
1092 }
1093
1094 int
_so_connect(int sock,struct sockaddr * addr,uint_t addrlen,int version)1095 _so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version)
1096 {
1097 extern int __so_connect(int, struct sockaddr *, uint_t, int);
1098 int rv;
1099
1100 PERFORM(__so_connect(sock, addr, addrlen, version))
1101 }
1102
1103 int
_so_recv(int sock,void * buf,size_t len,int flags)1104 _so_recv(int sock, void *buf, size_t len, int flags)
1105 {
1106 extern int __so_recv(int, void *, size_t, int);
1107 int rv;
1108
1109 PERFORM(__so_recv(sock, buf, len, flags))
1110 }
1111
1112 int
_so_recvfrom(int sock,void * buf,size_t len,int flags,struct sockaddr * addr,int * addrlen)1113 _so_recvfrom(int sock, void *buf, size_t len, int flags,
1114 struct sockaddr *addr, int *addrlen)
1115 {
1116 extern int __so_recvfrom(int, void *, size_t, int,
1117 struct sockaddr *, int *);
1118 int rv;
1119
1120 PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen))
1121 }
1122
1123 int
_so_recvmsg(int sock,struct msghdr * msg,int flags)1124 _so_recvmsg(int sock, struct msghdr *msg, int flags)
1125 {
1126 extern int __so_recvmsg(int, struct msghdr *, int);
1127 int rv;
1128
1129 PERFORM(__so_recvmsg(sock, msg, flags))
1130 }
1131
1132 int
_so_send(int sock,const void * buf,size_t len,int flags)1133 _so_send(int sock, const void *buf, size_t len, int flags)
1134 {
1135 extern int __so_send(int, const void *, size_t, int);
1136 int rv;
1137
1138 PERFORM(__so_send(sock, buf, len, flags))
1139 }
1140
1141 int
_so_sendmsg(int sock,const struct msghdr * msg,int flags)1142 _so_sendmsg(int sock, const struct msghdr *msg, int flags)
1143 {
1144 extern int __so_sendmsg(int, const struct msghdr *, int);
1145 int rv;
1146
1147 PERFORM(__so_sendmsg(sock, msg, flags))
1148 }
1149
1150 int
_so_sendto(int sock,const void * buf,size_t len,int flags,const struct sockaddr * addr,int * addrlen)1151 _so_sendto(int sock, const void *buf, size_t len, int flags,
1152 const struct sockaddr *addr, int *addrlen)
1153 {
1154 extern int __so_sendto(int, const void *, size_t, int,
1155 const struct sockaddr *, int *);
1156 int rv;
1157
1158 PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen))
1159 }
1160
1161 int
tcdrain(int fildes)1162 tcdrain(int fildes)
1163 {
1164 extern int __tcdrain(int);
1165 int rv;
1166
1167 PERFORM(__tcdrain(fildes))
1168 }
1169
1170 int
waitid(idtype_t idtype,id_t id,siginfo_t * infop,int options)1171 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
1172 {
1173 extern int __waitid(idtype_t, id_t, siginfo_t *, int);
1174 int rv;
1175
1176 if (options & WNOHANG)
1177 return (__waitid(idtype, id, infop, options));
1178 PERFORM(__waitid(idtype, id, infop, options))
1179 }
1180
1181 ssize_t
writev(int fildes,const struct iovec * iov,int iovcnt)1182 writev(int fildes, const struct iovec *iov, int iovcnt)
1183 {
1184 extern ssize_t __writev(int, const struct iovec *, int);
1185 ssize_t rv;
1186
1187 PERFORM(__writev(fildes, iov, iovcnt))
1188 }
1189