1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Copyright 2019 Nexenta Systems, Inc.
28 * Copyright (c) 2014, 2016 by Delphix. All rights reserved.
29 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
30 * Copyright 2017 Joyent, Inc.
31 * Copyright 2017 RackTop Systems.
32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33 */
34
35 /*
36 * Routines to manage ZFS mounts. We separate all the nasty routines that have
37 * to deal with the OS. The following functions are the main entry points --
38 * they are used by mount and unmount and when changing a filesystem's
39 * mountpoint.
40 *
41 * zfs_is_mounted()
42 * zfs_mount()
43 * zfs_unmount()
44 * zfs_unmountall()
45 *
46 * This file also contains the functions used to manage sharing filesystems via
47 * NFS and iSCSI:
48 *
49 * zfs_is_shared()
50 * zfs_share()
51 * zfs_unshare()
52 *
53 * zfs_is_shared_nfs()
54 * zfs_is_shared_smb()
55 * zfs_share_proto()
56 * zfs_shareall();
57 * zfs_unshare_nfs()
58 * zfs_unshare_smb()
59 * zfs_unshareall_nfs()
60 * zfs_unshareall_smb()
61 * zfs_unshareall()
62 * zfs_unshareall_bypath()
63 *
64 * The following functions are available for pool consumers, and will
65 * mount/unmount and share/unshare all datasets within pool:
66 *
67 * zpool_enable_datasets()
68 * zpool_disable_datasets()
69 */
70
71 #include <dirent.h>
72 #include <dlfcn.h>
73 #include <errno.h>
74 #include <fcntl.h>
75 #include <libgen.h>
76 #include <libintl.h>
77 #include <stdio.h>
78 #include <stdlib.h>
79 #include <strings.h>
80 #include <unistd.h>
81 #include <zone.h>
82 #include <sys/mntent.h>
83 #include <sys/mount.h>
84 #include <sys/stat.h>
85 #include <sys/statvfs.h>
86 #include <sys/dsl_crypt.h>
87
88 #include <libzfs.h>
89
90 #include "libzfs_impl.h"
91 #include "libzfs_taskq.h"
92
93 #include <libshare.h>
94 #include <sys/systeminfo.h>
95 #define MAXISALEN 257 /* based on sysinfo(2) man page */
96
97 static int mount_tq_nthr = 512; /* taskq threads for multi-threaded mounting */
98
99 static void zfs_mount_task(void *);
100 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *);
101 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
102 zfs_share_proto_t);
103
104 /*
105 * The share protocols table must be in the same order as the zfs_share_proto_t
106 * enum in libzfs_impl.h
107 */
108 typedef struct {
109 zfs_prop_t p_prop;
110 char *p_name;
111 int p_share_err;
112 int p_unshare_err;
113 } proto_table_t;
114
115 proto_table_t proto_table[PROTO_END] = {
116 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
117 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
118 };
119
120 zfs_share_proto_t nfs_only[] = {
121 PROTO_NFS,
122 PROTO_END
123 };
124
125 zfs_share_proto_t smb_only[] = {
126 PROTO_SMB,
127 PROTO_END
128 };
129 zfs_share_proto_t share_all_proto[] = {
130 PROTO_NFS,
131 PROTO_SMB,
132 PROTO_END
133 };
134
135 /*
136 * Search the sharetab for the given mountpoint and protocol, returning
137 * a zfs_share_type_t value.
138 */
139 static zfs_share_type_t
is_shared(libzfs_handle_t * hdl,const char * mountpoint,zfs_share_proto_t proto)140 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto)
141 {
142 char buf[MAXPATHLEN], *tab;
143 char *ptr;
144
145 if (hdl->libzfs_sharetab == NULL)
146 return (SHARED_NOT_SHARED);
147
148 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET);
149
150 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) {
151
152 /* the mountpoint is the first entry on each line */
153 if ((tab = strchr(buf, '\t')) == NULL)
154 continue;
155
156 *tab = '\0';
157 if (strcmp(buf, mountpoint) == 0) {
158 /*
159 * the protocol field is the third field
160 * skip over second field
161 */
162 ptr = ++tab;
163 if ((tab = strchr(ptr, '\t')) == NULL)
164 continue;
165 ptr = ++tab;
166 if ((tab = strchr(ptr, '\t')) == NULL)
167 continue;
168 *tab = '\0';
169 if (strcmp(ptr,
170 proto_table[proto].p_name) == 0) {
171 switch (proto) {
172 case PROTO_NFS:
173 return (SHARED_NFS);
174 case PROTO_SMB:
175 return (SHARED_SMB);
176 default:
177 return (0);
178 }
179 }
180 }
181 }
182
183 return (SHARED_NOT_SHARED);
184 }
185
186 static boolean_t
dir_is_empty_stat(const char * dirname)187 dir_is_empty_stat(const char *dirname)
188 {
189 struct stat st;
190
191 /*
192 * We only want to return false if the given path is a non empty
193 * directory, all other errors are handled elsewhere.
194 */
195 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
196 return (B_TRUE);
197 }
198
199 /*
200 * An empty directory will still have two entries in it, one
201 * entry for each of "." and "..".
202 */
203 if (st.st_size > 2) {
204 return (B_FALSE);
205 }
206
207 return (B_TRUE);
208 }
209
210 static boolean_t
dir_is_empty_readdir(const char * dirname)211 dir_is_empty_readdir(const char *dirname)
212 {
213 DIR *dirp;
214 struct dirent64 *dp;
215 int dirfd;
216
217 if ((dirfd = openat(AT_FDCWD, dirname,
218 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
219 return (B_TRUE);
220 }
221
222 if ((dirp = fdopendir(dirfd)) == NULL) {
223 (void) close(dirfd);
224 return (B_TRUE);
225 }
226
227 while ((dp = readdir64(dirp)) != NULL) {
228
229 if (strcmp(dp->d_name, ".") == 0 ||
230 strcmp(dp->d_name, "..") == 0)
231 continue;
232
233 (void) closedir(dirp);
234 return (B_FALSE);
235 }
236
237 (void) closedir(dirp);
238 return (B_TRUE);
239 }
240
241 /*
242 * Returns true if the specified directory is empty. If we can't open the
243 * directory at all, return true so that the mount can fail with a more
244 * informative error message.
245 */
246 static boolean_t
dir_is_empty(const char * dirname)247 dir_is_empty(const char *dirname)
248 {
249 struct statvfs64 st;
250
251 /*
252 * If the statvfs call fails or the filesystem is not a ZFS
253 * filesystem, fall back to the slow path which uses readdir.
254 */
255 if ((statvfs64(dirname, &st) != 0) ||
256 (strcmp(st.f_basetype, "zfs") != 0)) {
257 return (dir_is_empty_readdir(dirname));
258 }
259
260 /*
261 * At this point, we know the provided path is on a ZFS
262 * filesystem, so we can use stat instead of readdir to
263 * determine if the directory is empty or not. We try to avoid
264 * using readdir because that requires opening "dirname"; this
265 * open file descriptor can potentially end up in a child
266 * process if there's a concurrent fork, thus preventing the
267 * zfs_mount() from otherwise succeeding (the open file
268 * descriptor inherited by the child process will cause the
269 * parent's mount to fail with EBUSY). The performance
270 * implications of replacing the open, read, and close with a
271 * single stat is nice; but is not the main motivation for the
272 * added complexity.
273 */
274 return (dir_is_empty_stat(dirname));
275 }
276
277 /*
278 * Checks to see if the mount is active. If the filesystem is mounted, we fill
279 * in 'where' with the current mountpoint, and return 1. Otherwise, we return
280 * 0.
281 */
282 boolean_t
is_mounted(libzfs_handle_t * zfs_hdl,const char * special,char ** where)283 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
284 {
285 struct mnttab entry;
286
287 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
288 return (B_FALSE);
289
290 if (where != NULL)
291 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
292
293 return (B_TRUE);
294 }
295
296 boolean_t
zfs_is_mounted(zfs_handle_t * zhp,char ** where)297 zfs_is_mounted(zfs_handle_t *zhp, char **where)
298 {
299 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
300 }
301
302 /*
303 * Returns true if the given dataset is mountable, false otherwise. Returns the
304 * mountpoint in 'buf'.
305 */
306 static boolean_t
zfs_is_mountable(zfs_handle_t * zhp,char * buf,size_t buflen,zprop_source_t * source)307 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
308 zprop_source_t *source)
309 {
310 char sourceloc[MAXNAMELEN];
311 zprop_source_t sourcetype;
312
313 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
314 B_FALSE))
315 return (B_FALSE);
316
317 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
318 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
319
320 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
321 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
322 return (B_FALSE);
323
324 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
325 return (B_FALSE);
326
327 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
328 getzoneid() == GLOBAL_ZONEID)
329 return (B_FALSE);
330
331 if (source)
332 *source = sourcetype;
333
334 return (B_TRUE);
335 }
336
337 /*
338 * Mount the given filesystem.
339 */
340 int
zfs_mount(zfs_handle_t * zhp,const char * options,int flags)341 zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
342 {
343 struct stat buf;
344 char mountpoint[ZFS_MAXPROPLEN];
345 char mntopts[MNT_LINE_MAX];
346 libzfs_handle_t *hdl = zhp->zfs_hdl;
347 uint64_t keystatus;
348 int rc;
349
350 if (options == NULL)
351 mntopts[0] = '\0';
352 else
353 (void) strlcpy(mntopts, options, sizeof (mntopts));
354
355 /*
356 * If the pool is imported read-only then all mounts must be read-only
357 */
358 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
359 flags |= MS_RDONLY;
360
361 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
362 return (0);
363
364 /*
365 * If the filesystem is encrypted the key must be loaded in order to
366 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
367 * or not we attempt to load the keys. Note: we must call
368 * zfs_refresh_properties() here since some callers of this function
369 * (most notably zpool_enable_datasets()) may implicitly load our key
370 * by loading the parent's key first.
371 */
372 if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
373 zfs_refresh_properties(zhp);
374 keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
375
376 /*
377 * If the key is unavailable and MS_CRYPT is set give the
378 * user a chance to enter the key. Otherwise just fail
379 * immediately.
380 */
381 if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
382 if (flags & MS_CRYPT) {
383 rc = zfs_crypto_load_key(zhp, B_FALSE, NULL);
384 if (rc != 0)
385 return (rc);
386 } else {
387 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
388 "encryption key not loaded"));
389 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
390 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
391 mountpoint));
392 }
393 }
394
395 }
396
397 /* Create the directory if it doesn't already exist */
398 if (lstat(mountpoint, &buf) != 0) {
399 if (mkdirp(mountpoint, 0755) != 0) {
400 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
401 "failed to create mountpoint"));
402 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
403 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
404 mountpoint));
405 }
406 }
407
408 /*
409 * Determine if the mountpoint is empty. If so, refuse to perform the
410 * mount. We don't perform this check if MS_OVERLAY is specified, which
411 * would defeat the point. We also avoid this check if 'remount' is
412 * specified.
413 */
414 if ((flags & MS_OVERLAY) == 0 &&
415 strstr(mntopts, MNTOPT_REMOUNT) == NULL &&
416 !dir_is_empty(mountpoint)) {
417 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
418 "directory is not empty"));
419 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
420 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
421 }
422
423 /* perform the mount */
424 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags,
425 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) {
426 /*
427 * Generic errors are nasty, but there are just way too many
428 * from mount(), and they're well-understood. We pick a few
429 * common ones to improve upon.
430 */
431 if (errno == EBUSY) {
432 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
433 "mountpoint or dataset is busy"));
434 } else if (errno == EPERM) {
435 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
436 "Insufficient privileges"));
437 } else if (errno == ENOTSUP) {
438 char buf[256];
439 int spa_version;
440
441 VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
442 (void) snprintf(buf, sizeof (buf),
443 dgettext(TEXT_DOMAIN, "Can't mount a version %lld "
444 "file system on a version %d pool. Pool must be"
445 " upgraded to mount this file system."),
446 (u_longlong_t)zfs_prop_get_int(zhp,
447 ZFS_PROP_VERSION), spa_version);
448 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf));
449 } else {
450 zfs_error_aux(hdl, strerror(errno));
451 }
452 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
453 dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
454 zhp->zfs_name));
455 }
456
457 /* add the mounted entry into our cache */
458 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint,
459 mntopts);
460 return (0);
461 }
462
463 /*
464 * Unmount a single filesystem.
465 */
466 static int
unmount_one(libzfs_handle_t * hdl,const char * mountpoint,int flags)467 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
468 {
469 if (umount2(mountpoint, flags) != 0) {
470 zfs_error_aux(hdl, strerror(errno));
471 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED,
472 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
473 mountpoint));
474 }
475
476 return (0);
477 }
478
479 /*
480 * Unmount the given filesystem.
481 */
482 int
zfs_unmount(zfs_handle_t * zhp,const char * mountpoint,int flags)483 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
484 {
485 libzfs_handle_t *hdl = zhp->zfs_hdl;
486 struct mnttab entry;
487 char *mntpt = NULL;
488
489 /* check to see if we need to unmount the filesystem */
490 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
491 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
492 /*
493 * mountpoint may have come from a call to
494 * getmnt/getmntany if it isn't NULL. If it is NULL,
495 * we know it comes from libzfs_mnttab_find which can
496 * then get freed later. We strdup it to play it safe.
497 */
498 if (mountpoint == NULL)
499 mntpt = zfs_strdup(hdl, entry.mnt_mountp);
500 else
501 mntpt = zfs_strdup(hdl, mountpoint);
502
503 /*
504 * Unshare and unmount the filesystem
505 */
506 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0)
507 return (-1);
508
509 if (unmount_one(hdl, mntpt, flags) != 0) {
510 free(mntpt);
511 (void) zfs_shareall(zhp);
512 return (-1);
513 }
514 libzfs_mnttab_remove(hdl, zhp->zfs_name);
515 free(mntpt);
516 }
517
518 return (0);
519 }
520
521 /*
522 * Unmount this filesystem and any children inheriting the mountpoint property.
523 * To do this, just act like we're changing the mountpoint property, but don't
524 * remount the filesystems afterwards.
525 */
526 int
zfs_unmountall(zfs_handle_t * zhp,int flags)527 zfs_unmountall(zfs_handle_t *zhp, int flags)
528 {
529 prop_changelist_t *clp;
530 int ret;
531
532 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags);
533 if (clp == NULL)
534 return (-1);
535
536 ret = changelist_prefix(clp);
537 changelist_free(clp);
538
539 return (ret);
540 }
541
542 boolean_t
zfs_is_shared(zfs_handle_t * zhp)543 zfs_is_shared(zfs_handle_t *zhp)
544 {
545 zfs_share_type_t rc = 0;
546 zfs_share_proto_t *curr_proto;
547
548 if (ZFS_IS_VOLUME(zhp))
549 return (B_FALSE);
550
551 for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
552 curr_proto++)
553 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
554
555 return (rc ? B_TRUE : B_FALSE);
556 }
557
558 int
zfs_share(zfs_handle_t * zhp)559 zfs_share(zfs_handle_t *zhp)
560 {
561 assert(!ZFS_IS_VOLUME(zhp));
562 return (zfs_share_proto(zhp, share_all_proto));
563 }
564
565 int
zfs_unshare(zfs_handle_t * zhp)566 zfs_unshare(zfs_handle_t *zhp)
567 {
568 assert(!ZFS_IS_VOLUME(zhp));
569 return (zfs_unshareall(zhp));
570 }
571
572 /*
573 * Check to see if the filesystem is currently shared.
574 */
575 zfs_share_type_t
zfs_is_shared_proto(zfs_handle_t * zhp,char ** where,zfs_share_proto_t proto)576 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
577 {
578 char *mountpoint;
579 zfs_share_type_t rc;
580
581 if (!zfs_is_mounted(zhp, &mountpoint))
582 return (SHARED_NOT_SHARED);
583
584 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto))
585 != SHARED_NOT_SHARED) {
586 if (where != NULL)
587 *where = mountpoint;
588 else
589 free(mountpoint);
590 return (rc);
591 } else {
592 free(mountpoint);
593 return (SHARED_NOT_SHARED);
594 }
595 }
596
597 boolean_t
zfs_is_shared_nfs(zfs_handle_t * zhp,char ** where)598 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
599 {
600 return (zfs_is_shared_proto(zhp, where,
601 PROTO_NFS) != SHARED_NOT_SHARED);
602 }
603
604 boolean_t
zfs_is_shared_smb(zfs_handle_t * zhp,char ** where)605 zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
606 {
607 return (zfs_is_shared_proto(zhp, where,
608 PROTO_SMB) != SHARED_NOT_SHARED);
609 }
610
611 /*
612 * Make sure things will work if libshare isn't installed by using
613 * wrapper functions that check to see that the pointers to functions
614 * initialized in _zfs_init_libshare() are actually present.
615 */
616
617 static sa_handle_t (*_sa_init)(int);
618 static sa_handle_t (*_sa_init_arg)(int, void *);
619 static int (*_sa_service)(sa_handle_t);
620 static void (*_sa_fini)(sa_handle_t);
621 static sa_share_t (*_sa_find_share)(sa_handle_t, char *);
622 static int (*_sa_enable_share)(sa_share_t, char *);
623 static int (*_sa_disable_share)(sa_share_t, char *);
624 static char *(*_sa_errorstr)(int);
625 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *);
626 static boolean_t (*_sa_needs_refresh)(sa_handle_t *);
627 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t);
628 static int (* _sa_get_zfs_share)(sa_handle_t, char *, zfs_handle_t *);
629 static void (*_sa_update_sharetab_ts)(sa_handle_t);
630
631 /*
632 * _zfs_init_libshare()
633 *
634 * Find the libshare.so.1 entry points that we use here and save the
635 * values to be used later. This is triggered by the runtime loader.
636 * Make sure the correct ISA version is loaded.
637 */
638
639 #pragma init(_zfs_init_libshare)
640 static void
_zfs_init_libshare(void)641 _zfs_init_libshare(void)
642 {
643 void *libshare;
644 char path[MAXPATHLEN];
645 char isa[MAXISALEN];
646
647 #if defined(_LP64)
648 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1)
649 isa[0] = '\0';
650 #else
651 isa[0] = '\0';
652 #endif
653 (void) snprintf(path, MAXPATHLEN,
654 "/usr/lib/%s/libshare.so.1", isa);
655
656 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) {
657 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init");
658 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare,
659 "sa_init_arg");
660 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini");
661 _sa_service = (int (*)(sa_handle_t))dlsym(libshare,
662 "sa_service");
663 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *))
664 dlsym(libshare, "sa_find_share");
665 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
666 "sa_enable_share");
667 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare,
668 "sa_disable_share");
669 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr");
670 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *))
671 dlsym(libshare, "sa_parse_legacy_options");
672 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *))
673 dlsym(libshare, "sa_needs_refresh");
674 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t))
675 dlsym(libshare, "sa_get_zfs_handle");
676 _sa_get_zfs_share = (int (*)(sa_handle_t, char *,
677 zfs_handle_t *)) dlsym(libshare, "sa_get_zfs_share");
678 _sa_update_sharetab_ts = (void (*)(sa_handle_t))
679 dlsym(libshare, "sa_update_sharetab_ts");
680 if (_sa_init == NULL || _sa_init_arg == NULL ||
681 _sa_fini == NULL || _sa_find_share == NULL ||
682 _sa_enable_share == NULL || _sa_disable_share == NULL ||
683 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL ||
684 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL ||
685 _sa_get_zfs_share == NULL || _sa_service == NULL ||
686 _sa_update_sharetab_ts == NULL) {
687 _sa_init = NULL;
688 _sa_init_arg = NULL;
689 _sa_service = NULL;
690 _sa_fini = NULL;
691 _sa_disable_share = NULL;
692 _sa_enable_share = NULL;
693 _sa_errorstr = NULL;
694 _sa_parse_legacy_options = NULL;
695 (void) dlclose(libshare);
696 _sa_needs_refresh = NULL;
697 _sa_get_zfs_handle = NULL;
698 _sa_get_zfs_share = NULL;
699 _sa_update_sharetab_ts = NULL;
700 }
701 }
702 }
703
704 /*
705 * zfs_init_libshare(zhandle, service)
706 *
707 * Initialize the libshare API if it hasn't already been initialized.
708 * In all cases it returns 0 if it succeeded and an error if not. The
709 * service value is which part(s) of the API to initialize and is a
710 * direct map to the libshare sa_init(service) interface.
711 */
712 static int
zfs_init_libshare_impl(libzfs_handle_t * zhandle,int service,void * arg)713 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg)
714 {
715 /*
716 * libshare is either not installed or we're in a branded zone. The
717 * rest of the wrapper functions around the libshare calls already
718 * handle NULL function pointers, but we don't want the callers of
719 * zfs_init_libshare() to fail prematurely if libshare is not available.
720 */
721 if (_sa_init == NULL)
722 return (SA_OK);
723
724 /*
725 * Attempt to refresh libshare. This is necessary if there was a cache
726 * miss for a new ZFS dataset that was just created, or if state of the
727 * sharetab file has changed since libshare was last initialized. We
728 * want to make sure so check timestamps to see if a different process
729 * has updated any of the configuration. If there was some non-ZFS
730 * change, we need to re-initialize the internal cache.
731 */
732 if (_sa_needs_refresh != NULL &&
733 _sa_needs_refresh(zhandle->libzfs_sharehdl)) {
734 zfs_uninit_libshare(zhandle);
735 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
736 }
737
738 if (zhandle && zhandle->libzfs_sharehdl == NULL)
739 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg);
740
741 if (zhandle->libzfs_sharehdl == NULL)
742 return (SA_NO_MEMORY);
743
744 return (SA_OK);
745 }
746 int
zfs_init_libshare(libzfs_handle_t * zhandle,int service)747 zfs_init_libshare(libzfs_handle_t *zhandle, int service)
748 {
749 return (zfs_init_libshare_impl(zhandle, service, NULL));
750 }
751
752 int
zfs_init_libshare_arg(libzfs_handle_t * zhandle,int service,void * arg)753 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg)
754 {
755 return (zfs_init_libshare_impl(zhandle, service, arg));
756 }
757
758
759 /*
760 * zfs_uninit_libshare(zhandle)
761 *
762 * Uninitialize the libshare API if it hasn't already been
763 * uninitialized. It is OK to call multiple times.
764 */
765 void
zfs_uninit_libshare(libzfs_handle_t * zhandle)766 zfs_uninit_libshare(libzfs_handle_t *zhandle)
767 {
768 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) {
769 if (_sa_fini != NULL)
770 _sa_fini(zhandle->libzfs_sharehdl);
771 zhandle->libzfs_sharehdl = NULL;
772 }
773 }
774
775 /*
776 * zfs_parse_options(options, proto)
777 *
778 * Call the legacy parse interface to get the protocol specific
779 * options using the NULL arg to indicate that this is a "parse" only.
780 */
781 int
zfs_parse_options(char * options,zfs_share_proto_t proto)782 zfs_parse_options(char *options, zfs_share_proto_t proto)
783 {
784 if (_sa_parse_legacy_options != NULL) {
785 return (_sa_parse_legacy_options(NULL, options,
786 proto_table[proto].p_name));
787 }
788 return (SA_CONFIG_ERR);
789 }
790
791 /*
792 * zfs_sa_find_share(handle, path)
793 *
794 * wrapper around sa_find_share to find a share path in the
795 * configuration.
796 */
797 static sa_share_t
zfs_sa_find_share(sa_handle_t handle,char * path)798 zfs_sa_find_share(sa_handle_t handle, char *path)
799 {
800 if (_sa_find_share != NULL)
801 return (_sa_find_share(handle, path));
802 return (NULL);
803 }
804
805 /*
806 * zfs_sa_enable_share(share, proto)
807 *
808 * Wrapper for sa_enable_share which enables a share for a specified
809 * protocol.
810 */
811 static int
zfs_sa_enable_share(sa_share_t share,char * proto)812 zfs_sa_enable_share(sa_share_t share, char *proto)
813 {
814 if (_sa_enable_share != NULL)
815 return (_sa_enable_share(share, proto));
816 return (SA_CONFIG_ERR);
817 }
818
819 /*
820 * zfs_sa_disable_share(share, proto)
821 *
822 * Wrapper for sa_enable_share which disables a share for a specified
823 * protocol.
824 */
825 static int
zfs_sa_disable_share(sa_share_t share,char * proto)826 zfs_sa_disable_share(sa_share_t share, char *proto)
827 {
828 if (_sa_disable_share != NULL)
829 return (_sa_disable_share(share, proto));
830 return (SA_CONFIG_ERR);
831 }
832
833 /*
834 * Share the given filesystem according to the options in the specified
835 * protocol specific properties (sharenfs, sharesmb). We rely
836 * on "libshare" to the dirty work for us.
837 */
838 static int
zfs_share_proto(zfs_handle_t * zhp,zfs_share_proto_t * proto)839 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
840 {
841 char mountpoint[ZFS_MAXPROPLEN];
842 char shareopts[ZFS_MAXPROPLEN];
843 char sourcestr[ZFS_MAXPROPLEN];
844 libzfs_handle_t *hdl = zhp->zfs_hdl;
845 sa_share_t share;
846 zfs_share_proto_t *curr_proto;
847 zprop_source_t sourcetype;
848 int service = SA_INIT_ONE_SHARE_FROM_HANDLE;
849 int ret;
850
851 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL))
852 return (0);
853
854 /*
855 * Function may be called in a loop from higher up stack, with libshare
856 * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE).
857 * zfs_init_libshare_arg will refresh the handle's cache if necessary.
858 * In this case we do not want to switch to per share initialization.
859 * Specify SA_INIT_SHARE_API to do full refresh, if refresh required.
860 */
861 if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) &&
862 (_sa_service(hdl->libzfs_sharehdl) ==
863 SA_INIT_SHARE_API_SELECTIVE)) {
864 service = SA_INIT_SHARE_API;
865 }
866
867 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
868 /*
869 * Return success if there are no share options.
870 */
871 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
872 shareopts, sizeof (shareopts), &sourcetype, sourcestr,
873 ZFS_MAXPROPLEN, B_FALSE) != 0 ||
874 strcmp(shareopts, "off") == 0)
875 continue;
876 ret = zfs_init_libshare_arg(hdl, service, zhp);
877 if (ret != SA_OK) {
878 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED,
879 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"),
880 zfs_get_name(zhp), _sa_errorstr != NULL ?
881 _sa_errorstr(ret) : "");
882 return (-1);
883 }
884
885 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint);
886 if (share == NULL) {
887 /*
888 * This may be a new file system that was just
889 * created so isn't in the internal cache.
890 * Rather than reloading the entire configuration,
891 * we can add just this one share to the cache.
892 */
893 if ((_sa_get_zfs_share == NULL) ||
894 (_sa_get_zfs_share(hdl->libzfs_sharehdl, "zfs", zhp)
895 != SA_OK)) {
896 (void) zfs_error_fmt(hdl,
897 proto_table[*curr_proto].p_share_err,
898 dgettext(TEXT_DOMAIN, "cannot share '%s'"),
899 zfs_get_name(zhp));
900 return (-1);
901 }
902 share = zfs_sa_find_share(hdl->libzfs_sharehdl,
903 mountpoint);
904 }
905 if (share != NULL) {
906 int err;
907 err = zfs_sa_enable_share(share,
908 proto_table[*curr_proto].p_name);
909 if (err != SA_OK) {
910 (void) zfs_error_fmt(hdl,
911 proto_table[*curr_proto].p_share_err,
912 dgettext(TEXT_DOMAIN, "cannot share '%s'"),
913 zfs_get_name(zhp));
914 return (-1);
915 }
916 } else {
917 (void) zfs_error_fmt(hdl,
918 proto_table[*curr_proto].p_share_err,
919 dgettext(TEXT_DOMAIN, "cannot share '%s'"),
920 zfs_get_name(zhp));
921 return (-1);
922 }
923
924 }
925 return (0);
926 }
927
928
929 int
zfs_share_nfs(zfs_handle_t * zhp)930 zfs_share_nfs(zfs_handle_t *zhp)
931 {
932 return (zfs_share_proto(zhp, nfs_only));
933 }
934
935 int
zfs_share_smb(zfs_handle_t * zhp)936 zfs_share_smb(zfs_handle_t *zhp)
937 {
938 return (zfs_share_proto(zhp, smb_only));
939 }
940
941 int
zfs_shareall(zfs_handle_t * zhp)942 zfs_shareall(zfs_handle_t *zhp)
943 {
944 return (zfs_share_proto(zhp, share_all_proto));
945 }
946
947 /*
948 * Unshare a filesystem by mountpoint.
949 */
950 static int
unshare_one(libzfs_handle_t * hdl,const char * name,const char * mountpoint,zfs_share_proto_t proto)951 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
952 zfs_share_proto_t proto)
953 {
954 sa_share_t share;
955 int err;
956 char *mntpt;
957 int service = SA_INIT_ONE_SHARE_FROM_NAME;
958
959 /*
960 * Mountpoint could get trashed if libshare calls getmntany
961 * which it does during API initialization, so strdup the
962 * value.
963 */
964 mntpt = zfs_strdup(hdl, mountpoint);
965
966 /*
967 * Function may be called in a loop from higher up stack, with libshare
968 * initialized for multiple shares (SA_INIT_SHARE_API_SELECTIVE).
969 * zfs_init_libshare_arg will refresh the handle's cache if necessary.
970 * In this case we do not want to switch to per share initialization.
971 * Specify SA_INIT_SHARE_API to do full refresh, if refresh required.
972 */
973 if ((hdl->libzfs_sharehdl != NULL) && (_sa_service != NULL) &&
974 (_sa_service(hdl->libzfs_sharehdl) ==
975 SA_INIT_SHARE_API_SELECTIVE)) {
976 service = SA_INIT_SHARE_API;
977 }
978
979 err = zfs_init_libshare_arg(hdl, service, (void *)name);
980 if (err != SA_OK) {
981 free(mntpt); /* don't need the copy anymore */
982 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
983 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
984 name, _sa_errorstr(err)));
985 }
986
987 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt);
988 free(mntpt); /* don't need the copy anymore */
989
990 if (share != NULL) {
991 err = zfs_sa_disable_share(share, proto_table[proto].p_name);
992 if (err != SA_OK) {
993 return (zfs_error_fmt(hdl,
994 proto_table[proto].p_unshare_err,
995 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
996 name, _sa_errorstr(err)));
997 }
998 } else {
999 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
1000 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"),
1001 name));
1002 }
1003 return (0);
1004 }
1005
1006 /*
1007 * Unshare the given filesystem.
1008 */
1009 int
zfs_unshare_proto(zfs_handle_t * zhp,const char * mountpoint,zfs_share_proto_t * proto)1010 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
1011 zfs_share_proto_t *proto)
1012 {
1013 libzfs_handle_t *hdl = zhp->zfs_hdl;
1014 struct mnttab entry;
1015 char *mntpt = NULL;
1016
1017 /* check to see if need to unmount the filesystem */
1018 rewind(zhp->zfs_hdl->libzfs_mnttab);
1019 if (mountpoint != NULL)
1020 mountpoint = mntpt = zfs_strdup(hdl, mountpoint);
1021
1022 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
1023 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
1024 zfs_share_proto_t *curr_proto;
1025
1026 if (mountpoint == NULL)
1027 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
1028
1029 for (curr_proto = proto; *curr_proto != PROTO_END;
1030 curr_proto++) {
1031
1032 if (is_shared(hdl, mntpt, *curr_proto) &&
1033 unshare_one(hdl, zhp->zfs_name,
1034 mntpt, *curr_proto) != 0) {
1035 if (mntpt != NULL)
1036 free(mntpt);
1037 return (-1);
1038 }
1039 }
1040 }
1041 if (mntpt != NULL)
1042 free(mntpt);
1043
1044 return (0);
1045 }
1046
1047 int
zfs_unshare_nfs(zfs_handle_t * zhp,const char * mountpoint)1048 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
1049 {
1050 return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1051 }
1052
1053 int
zfs_unshare_smb(zfs_handle_t * zhp,const char * mountpoint)1054 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
1055 {
1056 return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1057 }
1058
1059 /*
1060 * Same as zfs_unmountall(), but for NFS and SMB unshares.
1061 */
1062 int
zfs_unshareall_proto(zfs_handle_t * zhp,zfs_share_proto_t * proto)1063 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
1064 {
1065 prop_changelist_t *clp;
1066 int ret;
1067
1068 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
1069 if (clp == NULL)
1070 return (-1);
1071
1072 ret = changelist_unshare(clp, proto);
1073 changelist_free(clp);
1074
1075 return (ret);
1076 }
1077
1078 int
zfs_unshareall_nfs(zfs_handle_t * zhp)1079 zfs_unshareall_nfs(zfs_handle_t *zhp)
1080 {
1081 return (zfs_unshareall_proto(zhp, nfs_only));
1082 }
1083
1084 int
zfs_unshareall_smb(zfs_handle_t * zhp)1085 zfs_unshareall_smb(zfs_handle_t *zhp)
1086 {
1087 return (zfs_unshareall_proto(zhp, smb_only));
1088 }
1089
1090 int
zfs_unshareall(zfs_handle_t * zhp)1091 zfs_unshareall(zfs_handle_t *zhp)
1092 {
1093 return (zfs_unshareall_proto(zhp, share_all_proto));
1094 }
1095
1096 int
zfs_unshareall_bypath(zfs_handle_t * zhp,const char * mountpoint)1097 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1098 {
1099 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1100 }
1101
1102 /*
1103 * Remove the mountpoint associated with the current dataset, if necessary.
1104 * We only remove the underlying directory if:
1105 *
1106 * - The mountpoint is not 'none' or 'legacy'
1107 * - The mountpoint is non-empty
1108 * - The mountpoint is the default or inherited
1109 * - The 'zoned' property is set, or we're in a local zone
1110 *
1111 * Any other directories we leave alone.
1112 */
1113 void
remove_mountpoint(zfs_handle_t * zhp)1114 remove_mountpoint(zfs_handle_t *zhp)
1115 {
1116 char mountpoint[ZFS_MAXPROPLEN];
1117 zprop_source_t source;
1118
1119 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1120 &source))
1121 return;
1122
1123 if (source == ZPROP_SRC_DEFAULT ||
1124 source == ZPROP_SRC_INHERITED) {
1125 /*
1126 * Try to remove the directory, silently ignoring any errors.
1127 * The filesystem may have since been removed or moved around,
1128 * and this error isn't really useful to the administrator in
1129 * any way.
1130 */
1131 (void) rmdir(mountpoint);
1132 }
1133 }
1134
1135 /*
1136 * Add the given zfs handle to the cb_handles array, dynamically reallocating
1137 * the array if it is out of space.
1138 */
1139 void
libzfs_add_handle(get_all_cb_t * cbp,zfs_handle_t * zhp)1140 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1141 {
1142 if (cbp->cb_alloc == cbp->cb_used) {
1143 size_t newsz;
1144 zfs_handle_t **newhandles;
1145
1146 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1147 newhandles = zfs_realloc(zhp->zfs_hdl,
1148 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1149 newsz * sizeof (zfs_handle_t *));
1150 cbp->cb_handles = newhandles;
1151 cbp->cb_alloc = newsz;
1152 }
1153 cbp->cb_handles[cbp->cb_used++] = zhp;
1154 }
1155
1156 /*
1157 * Recursive helper function used during file system enumeration
1158 */
1159 static int
zfs_iter_cb(zfs_handle_t * zhp,void * data)1160 zfs_iter_cb(zfs_handle_t *zhp, void *data)
1161 {
1162 get_all_cb_t *cbp = data;
1163
1164 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1165 zfs_close(zhp);
1166 return (0);
1167 }
1168
1169 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1170 zfs_close(zhp);
1171 return (0);
1172 }
1173
1174 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1175 ZFS_KEYSTATUS_UNAVAILABLE) {
1176 zfs_close(zhp);
1177 return (0);
1178 }
1179
1180 /*
1181 * If this filesystem is inconsistent and has a receive resume
1182 * token, we can not mount it.
1183 */
1184 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1185 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1186 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1187 zfs_close(zhp);
1188 return (0);
1189 }
1190
1191 libzfs_add_handle(cbp, zhp);
1192 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1193 zfs_close(zhp);
1194 return (-1);
1195 }
1196 return (0);
1197 }
1198
1199 /*
1200 * Sort comparator that compares two mountpoint paths. We sort these paths so
1201 * that subdirectories immediately follow their parents. This means that we
1202 * effectively treat the '/' character as the lowest value non-nul char.
1203 * Since filesystems from non-global zones can have the same mountpoint
1204 * as other filesystems, the comparator sorts global zone filesystems to
1205 * the top of the list. This means that the global zone will traverse the
1206 * filesystem list in the correct order and can stop when it sees the
1207 * first zoned filesystem. In a non-global zone, only the delegated
1208 * filesystems are seen.
1209 *
1210 * An example sorted list using this comparator would look like:
1211 *
1212 * /foo
1213 * /foo/bar
1214 * /foo/bar/baz
1215 * /foo/baz
1216 * /foo.bar
1217 * /foo (NGZ1)
1218 * /foo (NGZ2)
1219 *
1220 * The mounting code depends on this ordering to deterministically iterate
1221 * over filesystems in order to spawn parallel mount tasks.
1222 */
1223 static int
mountpoint_cmp(const void * arga,const void * argb)1224 mountpoint_cmp(const void *arga, const void *argb)
1225 {
1226 zfs_handle_t *const *zap = arga;
1227 zfs_handle_t *za = *zap;
1228 zfs_handle_t *const *zbp = argb;
1229 zfs_handle_t *zb = *zbp;
1230 char mounta[MAXPATHLEN];
1231 char mountb[MAXPATHLEN];
1232 const char *a = mounta;
1233 const char *b = mountb;
1234 boolean_t gota, gotb;
1235 uint64_t zoneda, zonedb;
1236
1237 zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1238 zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1239 if (zoneda && !zonedb)
1240 return (1);
1241 if (!zoneda && zonedb)
1242 return (-1);
1243
1244 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1245 if (gota) {
1246 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1247 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1248 }
1249 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1250 if (gotb) {
1251 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1252 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1253 }
1254
1255 if (gota && gotb) {
1256 while (*a != '\0' && (*a == *b)) {
1257 a++;
1258 b++;
1259 }
1260 if (*a == *b)
1261 return (0);
1262 if (*a == '\0')
1263 return (-1);
1264 if (*b == '\0')
1265 return (1);
1266 if (*a == '/')
1267 return (-1);
1268 if (*b == '/')
1269 return (1);
1270 return (*a < *b ? -1 : *a > *b);
1271 }
1272
1273 if (gota)
1274 return (-1);
1275 if (gotb)
1276 return (1);
1277
1278 /*
1279 * If neither filesystem has a mountpoint, revert to sorting by
1280 * dataset name.
1281 */
1282 return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1283 }
1284
1285 /*
1286 * Return true if path2 is a child of path1.
1287 */
1288 static boolean_t
libzfs_path_contains(const char * path1,const char * path2)1289 libzfs_path_contains(const char *path1, const char *path2)
1290 {
1291 return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/');
1292 }
1293
1294 /*
1295 * Given a mountpoint specified by idx in the handles array, find the first
1296 * non-descendent of that mountpoint and return its index. Descendant paths
1297 * start with the parent's path. This function relies on the ordering
1298 * enforced by mountpoint_cmp().
1299 */
1300 static int
non_descendant_idx(zfs_handle_t ** handles,size_t num_handles,int idx)1301 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1302 {
1303 char parent[ZFS_MAXPROPLEN];
1304 char child[ZFS_MAXPROPLEN];
1305 int i;
1306
1307 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1308 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1309
1310 for (i = idx + 1; i < num_handles; i++) {
1311 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1312 sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1313 if (!libzfs_path_contains(parent, child))
1314 break;
1315 }
1316 return (i);
1317 }
1318
1319 typedef struct mnt_param {
1320 libzfs_handle_t *mnt_hdl;
1321 zfs_taskq_t *mnt_tq;
1322 zfs_handle_t **mnt_zhps; /* filesystems to mount */
1323 size_t mnt_num_handles;
1324 int mnt_idx; /* Index of selected entry to mount */
1325 zfs_iter_f mnt_func;
1326 void *mnt_data;
1327 } mnt_param_t;
1328
1329 /*
1330 * Allocate and populate the parameter struct for mount function, and
1331 * schedule mounting of the entry selected by idx.
1332 */
1333 static void
zfs_dispatch_mount(libzfs_handle_t * hdl,zfs_handle_t ** handles,size_t num_handles,int idx,zfs_iter_f func,void * data,zfs_taskq_t * tq)1334 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1335 size_t num_handles, int idx, zfs_iter_f func, void *data, zfs_taskq_t *tq)
1336 {
1337 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1338
1339 mnt_param->mnt_hdl = hdl;
1340 mnt_param->mnt_tq = tq;
1341 mnt_param->mnt_zhps = handles;
1342 mnt_param->mnt_num_handles = num_handles;
1343 mnt_param->mnt_idx = idx;
1344 mnt_param->mnt_func = func;
1345 mnt_param->mnt_data = data;
1346
1347 (void) zfs_taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param,
1348 ZFS_TQ_SLEEP);
1349 }
1350
1351 /*
1352 * This is the structure used to keep state of mounting or sharing operations
1353 * during a call to zpool_enable_datasets().
1354 */
1355 typedef struct mount_state {
1356 /*
1357 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1358 * could update this variable concurrently, no synchronization is
1359 * needed as it's only ever set to -1.
1360 */
1361 int ms_mntstatus;
1362 int ms_mntflags;
1363 const char *ms_mntopts;
1364 } mount_state_t;
1365
1366 static int
zfs_mount_one(zfs_handle_t * zhp,void * arg)1367 zfs_mount_one(zfs_handle_t *zhp, void *arg)
1368 {
1369 mount_state_t *ms = arg;
1370 int ret = 0;
1371
1372 if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1373 ZFS_KEYSTATUS_UNAVAILABLE)
1374 return (0);
1375
1376 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1377 ret = ms->ms_mntstatus = -1;
1378 return (ret);
1379 }
1380
1381 static int
zfs_share_one(zfs_handle_t * zhp,void * arg)1382 zfs_share_one(zfs_handle_t *zhp, void *arg)
1383 {
1384 mount_state_t *ms = arg;
1385 int ret = 0;
1386
1387 if (zfs_share(zhp) != 0)
1388 ret = ms->ms_mntstatus = -1;
1389 return (ret);
1390 }
1391
1392 /*
1393 * Task queue function to mount one file system. On completion, it finds and
1394 * schedules its children to be mounted. This depends on the sorting done in
1395 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1396 * each descending from the previous) will have no parallelism since we always
1397 * have to wait for the parent to finish mounting before we can schedule
1398 * its children.
1399 */
1400 static void
zfs_mount_task(void * arg)1401 zfs_mount_task(void *arg)
1402 {
1403 mnt_param_t *mp = arg;
1404 int idx = mp->mnt_idx;
1405 zfs_handle_t **handles = mp->mnt_zhps;
1406 size_t num_handles = mp->mnt_num_handles;
1407 char mountpoint[ZFS_MAXPROPLEN];
1408
1409 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1410 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1411
1412 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1413 return;
1414
1415 /*
1416 * We dispatch tasks to mount filesystems with mountpoints underneath
1417 * this one. We do this by dispatching the next filesystem with a
1418 * descendant mountpoint of the one we just mounted, then skip all of
1419 * its descendants, dispatch the next descendant mountpoint, and so on.
1420 * The non_descendant_idx() function skips over filesystems that are
1421 * descendants of the filesystem we just dispatched.
1422 */
1423 for (int i = idx + 1; i < num_handles;
1424 i = non_descendant_idx(handles, num_handles, i)) {
1425 char child[ZFS_MAXPROPLEN];
1426 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1427 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1428
1429 if (!libzfs_path_contains(mountpoint, child))
1430 break; /* not a descendant, return */
1431 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1432 mp->mnt_func, mp->mnt_data, mp->mnt_tq);
1433 }
1434 free(mp);
1435 }
1436
1437 /*
1438 * Issue the func callback for each ZFS handle contained in the handles
1439 * array. This function is used to mount all datasets, and so this function
1440 * guarantees that filesystems for parent mountpoints are called before their
1441 * children. As such, before issuing any callbacks, we first sort the array
1442 * of handles by mountpoint.
1443 *
1444 * Callbacks are issued in one of two ways:
1445 *
1446 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1447 * environment variable is set, then we issue callbacks sequentially.
1448 *
1449 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1450 * environment variable is not set, then we use a taskq to dispatch threads
1451 * to mount filesystems is parallel. This function dispatches tasks to mount
1452 * the filesystems at the top-level mountpoints, and these tasks in turn
1453 * are responsible for recursively mounting filesystems in their children
1454 * mountpoints.
1455 */
1456 void
zfs_foreach_mountpoint(libzfs_handle_t * hdl,zfs_handle_t ** handles,size_t num_handles,zfs_iter_f func,void * data,boolean_t parallel)1457 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1458 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1459 {
1460 zoneid_t zoneid = getzoneid();
1461
1462 /*
1463 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1464 * variable that can be used as a convenience to do a/b comparison
1465 * of serial vs. parallel mounting.
1466 */
1467 boolean_t serial_mount = !parallel ||
1468 (getenv("ZFS_SERIAL_MOUNT") != NULL);
1469
1470 /*
1471 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1472 * of how these are sorted.
1473 */
1474 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1475
1476 if (serial_mount) {
1477 for (int i = 0; i < num_handles; i++) {
1478 func(handles[i], data);
1479 }
1480 return;
1481 }
1482
1483 /*
1484 * Issue the callback function for each dataset using a parallel
1485 * algorithm that uses a taskq to manage threads.
1486 */
1487 zfs_taskq_t *tq = zfs_taskq_create("mount_taskq", mount_tq_nthr, 0,
1488 mount_tq_nthr, mount_tq_nthr, ZFS_TASKQ_PREPOPULATE);
1489
1490 /*
1491 * There may be multiple "top level" mountpoints outside of the pool's
1492 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1493 * these.
1494 */
1495 for (int i = 0; i < num_handles;
1496 i = non_descendant_idx(handles, num_handles, i)) {
1497 /*
1498 * Since the mountpoints have been sorted so that the zoned
1499 * filesystems are at the end, a zoned filesystem seen from
1500 * the global zone means that we're done.
1501 */
1502 if (zoneid == GLOBAL_ZONEID &&
1503 zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1504 break;
1505 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1506 tq);
1507 }
1508
1509 zfs_taskq_wait(tq); /* wait for all scheduled mounts to complete */
1510 zfs_taskq_destroy(tq);
1511 }
1512
1513 /*
1514 * Mount and share all datasets within the given pool. This assumes that no
1515 * datasets within the pool are currently mounted.
1516 */
1517 #pragma weak zpool_mount_datasets = zpool_enable_datasets
1518 int
zpool_enable_datasets(zpool_handle_t * zhp,const char * mntopts,int flags)1519 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1520 {
1521 get_all_cb_t cb = { 0 };
1522 mount_state_t ms = { 0 };
1523 zfs_handle_t *zfsp;
1524 sa_init_selective_arg_t sharearg;
1525 int ret = 0;
1526
1527 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1528 ZFS_TYPE_DATASET)) == NULL)
1529 goto out;
1530
1531
1532 /*
1533 * Gather all non-snapshot datasets within the pool. Start by adding
1534 * the root filesystem for this pool to the list, and then iterate
1535 * over all child filesystems.
1536 */
1537 libzfs_add_handle(&cb, zfsp);
1538 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1539 goto out;
1540
1541 ms.ms_mntopts = mntopts;
1542 ms.ms_mntflags = flags;
1543 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1544 zfs_mount_one, &ms, B_TRUE);
1545 if (ms.ms_mntstatus != 0)
1546 ret = ms.ms_mntstatus;
1547
1548 /*
1549 * Initialize libshare SA_INIT_SHARE_API_SELECTIVE here
1550 * to avoid unnecessary load/unload of the libshare API
1551 * per shared dataset downstream.
1552 */
1553 sharearg.zhandle_arr = cb.cb_handles;
1554 sharearg.zhandle_len = cb.cb_used;
1555 if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl,
1556 SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0)
1557 goto out;
1558
1559 ms.ms_mntstatus = 0;
1560 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1561 zfs_share_one, &ms, B_FALSE);
1562 if (ms.ms_mntstatus != 0)
1563 ret = ms.ms_mntstatus;
1564
1565 out:
1566 for (int i = 0; i < cb.cb_used; i++)
1567 zfs_close(cb.cb_handles[i]);
1568 free(cb.cb_handles);
1569
1570 return (ret);
1571 }
1572
1573 static int
mountpoint_compare(const void * a,const void * b)1574 mountpoint_compare(const void *a, const void *b)
1575 {
1576 const char *mounta = *((char **)a);
1577 const char *mountb = *((char **)b);
1578
1579 return (strcmp(mountb, mounta));
1580 }
1581
1582 /* alias for 2002/240 */
1583 #pragma weak zpool_unmount_datasets = zpool_disable_datasets
1584 /*
1585 * Unshare and unmount all datasets within the given pool. We don't want to
1586 * rely on traversing the DSL to discover the filesystems within the pool,
1587 * because this may be expensive (if not all of them are mounted), and can fail
1588 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and
1589 * gather all the filesystems that are currently mounted.
1590 */
1591 int
zpool_disable_datasets(zpool_handle_t * zhp,boolean_t force)1592 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1593 {
1594 int used, alloc;
1595 struct mnttab entry;
1596 size_t namelen;
1597 char **mountpoints = NULL;
1598 zfs_handle_t **datasets = NULL;
1599 libzfs_handle_t *hdl = zhp->zpool_hdl;
1600 int i;
1601 int ret = -1;
1602 int flags = (force ? MS_FORCE : 0);
1603 sa_init_selective_arg_t sharearg;
1604
1605 namelen = strlen(zhp->zpool_name);
1606
1607 rewind(hdl->libzfs_mnttab);
1608 used = alloc = 0;
1609 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1610 /*
1611 * Ignore non-ZFS entries.
1612 */
1613 if (entry.mnt_fstype == NULL ||
1614 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1615 continue;
1616
1617 /*
1618 * Ignore filesystems not within this pool.
1619 */
1620 if (entry.mnt_mountp == NULL ||
1621 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1622 (entry.mnt_special[namelen] != '/' &&
1623 entry.mnt_special[namelen] != '\0'))
1624 continue;
1625
1626 /*
1627 * At this point we've found a filesystem within our pool. Add
1628 * it to our growing list.
1629 */
1630 if (used == alloc) {
1631 if (alloc == 0) {
1632 if ((mountpoints = zfs_alloc(hdl,
1633 8 * sizeof (void *))) == NULL)
1634 goto out;
1635
1636 if ((datasets = zfs_alloc(hdl,
1637 8 * sizeof (void *))) == NULL)
1638 goto out;
1639
1640 alloc = 8;
1641 } else {
1642 void *ptr;
1643
1644 if ((ptr = zfs_realloc(hdl, mountpoints,
1645 alloc * sizeof (void *),
1646 alloc * 2 * sizeof (void *))) == NULL)
1647 goto out;
1648 mountpoints = ptr;
1649
1650 if ((ptr = zfs_realloc(hdl, datasets,
1651 alloc * sizeof (void *),
1652 alloc * 2 * sizeof (void *))) == NULL)
1653 goto out;
1654 datasets = ptr;
1655
1656 alloc *= 2;
1657 }
1658 }
1659
1660 if ((mountpoints[used] = zfs_strdup(hdl,
1661 entry.mnt_mountp)) == NULL)
1662 goto out;
1663
1664 /*
1665 * This is allowed to fail, in case there is some I/O error. It
1666 * is only used to determine if we need to remove the underlying
1667 * mountpoint, so failure is not fatal.
1668 */
1669 datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1670
1671 used++;
1672 }
1673
1674 /*
1675 * At this point, we have the entire list of filesystems, so sort it by
1676 * mountpoint.
1677 */
1678 sharearg.zhandle_arr = datasets;
1679 sharearg.zhandle_len = used;
1680 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE,
1681 &sharearg);
1682 if (ret != 0)
1683 goto out;
1684 qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1685
1686 /*
1687 * Walk through and first unshare everything.
1688 */
1689 for (i = 0; i < used; i++) {
1690 zfs_share_proto_t *curr_proto;
1691 for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1692 curr_proto++) {
1693 if (is_shared(hdl, mountpoints[i], *curr_proto) &&
1694 unshare_one(hdl, mountpoints[i],
1695 mountpoints[i], *curr_proto) != 0)
1696 goto out;
1697 }
1698 }
1699
1700 /*
1701 * Now unmount everything, removing the underlying directories as
1702 * appropriate.
1703 */
1704 for (i = 0; i < used; i++) {
1705 if (unmount_one(hdl, mountpoints[i], flags) != 0)
1706 goto out;
1707 }
1708
1709 for (i = 0; i < used; i++) {
1710 if (datasets[i])
1711 remove_mountpoint(datasets[i]);
1712 }
1713
1714 ret = 0;
1715 out:
1716 for (i = 0; i < used; i++) {
1717 if (datasets[i])
1718 zfs_close(datasets[i]);
1719 free(mountpoints[i]);
1720 }
1721 free(datasets);
1722 free(mountpoints);
1723
1724 return (ret);
1725 }
1726