1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/reboot.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/of_regulator.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/regulator/coupler.h>
27 #include <linux/regulator/driver.h>
28 #include <linux/regulator/machine.h>
29 #include <linux/module.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35 #include "internal.h"
36 #include "regnl.h"
37
38 static DEFINE_WW_CLASS(regulator_ww_class);
39 static DEFINE_MUTEX(regulator_nesting_mutex);
40 static DEFINE_MUTEX(regulator_list_mutex);
41 static LIST_HEAD(regulator_map_list);
42 static LIST_HEAD(regulator_ena_gpio_list);
43 static LIST_HEAD(regulator_supply_alias_list);
44 static LIST_HEAD(regulator_coupler_list);
45 static bool has_full_constraints;
46
47 static struct dentry *debugfs_root;
48
49 /*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54 struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59 };
60
61 /*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66 struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71 };
72
73 /*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78 struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84 };
85
86 static int _regulator_is_enabled(struct regulator_dev *rdev);
87 static int _regulator_disable(struct regulator *regulator);
88 static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89 static int _regulator_get_current_limit(struct regulator_dev *rdev);
90 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91 static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95 static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100 static void destroy_regulator(struct regulator *regulator);
101 static void _regulator_put(struct regulator *regulator);
102
rdev_get_name(struct regulator_dev * rdev)103 const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111 }
112 EXPORT_SYMBOL_GPL(rdev_get_name);
113
have_full_constraints(void)114 static bool have_full_constraints(void)
115 {
116 return has_full_constraints || of_have_populated_dt();
117 }
118
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)119 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120 {
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130 }
131
132 /**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 *
143 * Return: 0 on success or a negative error number on failure.
144 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)145 static inline int regulator_lock_nested(struct regulator_dev *rdev,
146 struct ww_acquire_ctx *ww_ctx)
147 {
148 bool lock = false;
149 int ret = 0;
150
151 mutex_lock(®ulator_nesting_mutex);
152
153 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
154 if (rdev->mutex_owner == current)
155 rdev->ref_cnt++;
156 else
157 lock = true;
158
159 if (lock) {
160 mutex_unlock(®ulator_nesting_mutex);
161 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
162 mutex_lock(®ulator_nesting_mutex);
163 }
164 } else {
165 lock = true;
166 }
167
168 if (lock && ret != -EDEADLK) {
169 rdev->ref_cnt++;
170 rdev->mutex_owner = current;
171 }
172
173 mutex_unlock(®ulator_nesting_mutex);
174
175 return ret;
176 }
177
178 /**
179 * regulator_lock - lock a single regulator
180 * @rdev: regulator source
181 *
182 * This function can be called many times by one task on
183 * a single regulator and its mutex will be locked only
184 * once. If a task, which is calling this function is other
185 * than the one, which initially locked the mutex, it will
186 * wait on mutex.
187 */
regulator_lock(struct regulator_dev * rdev)188 static void regulator_lock(struct regulator_dev *rdev)
189 {
190 regulator_lock_nested(rdev, NULL);
191 }
192
193 /**
194 * regulator_unlock - unlock a single regulator
195 * @rdev: regulator_source
196 *
197 * This function unlocks the mutex when the
198 * reference counter reaches 0.
199 */
regulator_unlock(struct regulator_dev * rdev)200 static void regulator_unlock(struct regulator_dev *rdev)
201 {
202 mutex_lock(®ulator_nesting_mutex);
203
204 if (--rdev->ref_cnt == 0) {
205 rdev->mutex_owner = NULL;
206 ww_mutex_unlock(&rdev->mutex);
207 }
208
209 WARN_ON_ONCE(rdev->ref_cnt < 0);
210
211 mutex_unlock(®ulator_nesting_mutex);
212 }
213
214 /**
215 * regulator_lock_two - lock two regulators
216 * @rdev1: first regulator
217 * @rdev2: second regulator
218 * @ww_ctx: w/w mutex acquire context
219 *
220 * Locks both rdevs using the regulator_ww_class.
221 */
regulator_lock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)222 static void regulator_lock_two(struct regulator_dev *rdev1,
223 struct regulator_dev *rdev2,
224 struct ww_acquire_ctx *ww_ctx)
225 {
226 struct regulator_dev *held, *contended;
227 int ret;
228
229 ww_acquire_init(ww_ctx, ®ulator_ww_class);
230
231 /* Try to just grab both of them */
232 ret = regulator_lock_nested(rdev1, ww_ctx);
233 WARN_ON(ret);
234 ret = regulator_lock_nested(rdev2, ww_ctx);
235 if (ret != -EDEADLOCK) {
236 WARN_ON(ret);
237 goto exit;
238 }
239
240 held = rdev1;
241 contended = rdev2;
242 while (true) {
243 regulator_unlock(held);
244
245 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
246 contended->ref_cnt++;
247 contended->mutex_owner = current;
248 swap(held, contended);
249 ret = regulator_lock_nested(contended, ww_ctx);
250
251 if (ret != -EDEADLOCK) {
252 WARN_ON(ret);
253 break;
254 }
255 }
256
257 exit:
258 ww_acquire_done(ww_ctx);
259 }
260
261 /**
262 * regulator_unlock_two - unlock two regulators
263 * @rdev1: first regulator
264 * @rdev2: second regulator
265 * @ww_ctx: w/w mutex acquire context
266 *
267 * The inverse of regulator_lock_two().
268 */
269
regulator_unlock_two(struct regulator_dev * rdev1,struct regulator_dev * rdev2,struct ww_acquire_ctx * ww_ctx)270 static void regulator_unlock_two(struct regulator_dev *rdev1,
271 struct regulator_dev *rdev2,
272 struct ww_acquire_ctx *ww_ctx)
273 {
274 regulator_unlock(rdev2);
275 regulator_unlock(rdev1);
276 ww_acquire_fini(ww_ctx);
277 }
278
regulator_supply_is_couple(struct regulator_dev * rdev)279 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
280 {
281 struct regulator_dev *c_rdev;
282 int i;
283
284 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
285 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
286
287 if (rdev->supply->rdev == c_rdev)
288 return true;
289 }
290
291 return false;
292 }
293
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)294 static void regulator_unlock_recursive(struct regulator_dev *rdev,
295 unsigned int n_coupled)
296 {
297 struct regulator_dev *c_rdev, *supply_rdev;
298 int i, supply_n_coupled;
299
300 for (i = n_coupled; i > 0; i--) {
301 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
302
303 if (!c_rdev)
304 continue;
305
306 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
307 supply_rdev = c_rdev->supply->rdev;
308 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
309
310 regulator_unlock_recursive(supply_rdev,
311 supply_n_coupled);
312 }
313
314 regulator_unlock(c_rdev);
315 }
316 }
317
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)318 static int regulator_lock_recursive(struct regulator_dev *rdev,
319 struct regulator_dev **new_contended_rdev,
320 struct regulator_dev **old_contended_rdev,
321 struct ww_acquire_ctx *ww_ctx)
322 {
323 struct regulator_dev *c_rdev;
324 int i, err;
325
326 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
327 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
328
329 if (!c_rdev)
330 continue;
331
332 if (c_rdev != *old_contended_rdev) {
333 err = regulator_lock_nested(c_rdev, ww_ctx);
334 if (err) {
335 if (err == -EDEADLK) {
336 *new_contended_rdev = c_rdev;
337 goto err_unlock;
338 }
339
340 /* shouldn't happen */
341 WARN_ON_ONCE(err != -EALREADY);
342 }
343 } else {
344 *old_contended_rdev = NULL;
345 }
346
347 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
348 err = regulator_lock_recursive(c_rdev->supply->rdev,
349 new_contended_rdev,
350 old_contended_rdev,
351 ww_ctx);
352 if (err) {
353 regulator_unlock(c_rdev);
354 goto err_unlock;
355 }
356 }
357 }
358
359 return 0;
360
361 err_unlock:
362 regulator_unlock_recursive(rdev, i);
363
364 return err;
365 }
366
367 /**
368 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
369 * regulators
370 * @rdev: regulator source
371 * @ww_ctx: w/w mutex acquire context
372 *
373 * Unlock all regulators related with rdev by coupling or supplying.
374 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)375 static void regulator_unlock_dependent(struct regulator_dev *rdev,
376 struct ww_acquire_ctx *ww_ctx)
377 {
378 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
379 ww_acquire_fini(ww_ctx);
380 }
381
382 /**
383 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
384 * @rdev: regulator source
385 * @ww_ctx: w/w mutex acquire context
386 *
387 * This function as a wrapper on regulator_lock_recursive(), which locks
388 * all regulators related with rdev by coupling or supplying.
389 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)390 static void regulator_lock_dependent(struct regulator_dev *rdev,
391 struct ww_acquire_ctx *ww_ctx)
392 {
393 struct regulator_dev *new_contended_rdev = NULL;
394 struct regulator_dev *old_contended_rdev = NULL;
395 int err;
396
397 mutex_lock(®ulator_list_mutex);
398
399 ww_acquire_init(ww_ctx, ®ulator_ww_class);
400
401 do {
402 if (new_contended_rdev) {
403 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
404 old_contended_rdev = new_contended_rdev;
405 old_contended_rdev->ref_cnt++;
406 old_contended_rdev->mutex_owner = current;
407 }
408
409 err = regulator_lock_recursive(rdev,
410 &new_contended_rdev,
411 &old_contended_rdev,
412 ww_ctx);
413
414 if (old_contended_rdev)
415 regulator_unlock(old_contended_rdev);
416
417 } while (err == -EDEADLK);
418
419 ww_acquire_done(ww_ctx);
420
421 mutex_unlock(®ulator_list_mutex);
422 }
423
424 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)425 int regulator_check_voltage(struct regulator_dev *rdev,
426 int *min_uV, int *max_uV)
427 {
428 BUG_ON(*min_uV > *max_uV);
429
430 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
431 rdev_err(rdev, "voltage operation not allowed\n");
432 return -EPERM;
433 }
434
435 if (*max_uV > rdev->constraints->max_uV)
436 *max_uV = rdev->constraints->max_uV;
437 if (*min_uV < rdev->constraints->min_uV)
438 *min_uV = rdev->constraints->min_uV;
439
440 if (*min_uV > *max_uV) {
441 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
442 *min_uV, *max_uV);
443 return -EINVAL;
444 }
445
446 return 0;
447 }
448
449 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)450 static int regulator_check_states(suspend_state_t state)
451 {
452 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
453 }
454
455 /* Make sure we select a voltage that suits the needs of all
456 * regulator consumers
457 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)458 int regulator_check_consumers(struct regulator_dev *rdev,
459 int *min_uV, int *max_uV,
460 suspend_state_t state)
461 {
462 struct regulator *regulator;
463 struct regulator_voltage *voltage;
464
465 list_for_each_entry(regulator, &rdev->consumer_list, list) {
466 voltage = ®ulator->voltage[state];
467 /*
468 * Assume consumers that didn't say anything are OK
469 * with anything in the constraint range.
470 */
471 if (!voltage->min_uV && !voltage->max_uV)
472 continue;
473
474 if (*max_uV > voltage->max_uV)
475 *max_uV = voltage->max_uV;
476 if (*min_uV < voltage->min_uV)
477 *min_uV = voltage->min_uV;
478 }
479
480 if (*min_uV > *max_uV) {
481 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
482 *min_uV, *max_uV);
483 return -EINVAL;
484 }
485
486 return 0;
487 }
488
489 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)490 static int regulator_check_current_limit(struct regulator_dev *rdev,
491 int *min_uA, int *max_uA)
492 {
493 BUG_ON(*min_uA > *max_uA);
494
495 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
496 rdev_err(rdev, "current operation not allowed\n");
497 return -EPERM;
498 }
499
500 if (*max_uA > rdev->constraints->max_uA &&
501 rdev->constraints->max_uA)
502 *max_uA = rdev->constraints->max_uA;
503 if (*min_uA < rdev->constraints->min_uA)
504 *min_uA = rdev->constraints->min_uA;
505
506 if (*min_uA > *max_uA) {
507 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
508 *min_uA, *max_uA);
509 return -EINVAL;
510 }
511
512 return 0;
513 }
514
515 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)516 static int regulator_mode_constrain(struct regulator_dev *rdev,
517 unsigned int *mode)
518 {
519 switch (*mode) {
520 case REGULATOR_MODE_FAST:
521 case REGULATOR_MODE_NORMAL:
522 case REGULATOR_MODE_IDLE:
523 case REGULATOR_MODE_STANDBY:
524 break;
525 default:
526 rdev_err(rdev, "invalid mode %x specified\n", *mode);
527 return -EINVAL;
528 }
529
530 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
531 rdev_err(rdev, "mode operation not allowed\n");
532 return -EPERM;
533 }
534
535 /* The modes are bitmasks, the most power hungry modes having
536 * the lowest values. If the requested mode isn't supported
537 * try higher modes.
538 */
539 while (*mode) {
540 if (rdev->constraints->valid_modes_mask & *mode)
541 return 0;
542 *mode /= 2;
543 }
544
545 return -EINVAL;
546 }
547
548 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)549 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
550 {
551 if (rdev->constraints == NULL)
552 return NULL;
553
554 switch (state) {
555 case PM_SUSPEND_STANDBY:
556 return &rdev->constraints->state_standby;
557 case PM_SUSPEND_MEM:
558 return &rdev->constraints->state_mem;
559 case PM_SUSPEND_MAX:
560 return &rdev->constraints->state_disk;
561 default:
562 return NULL;
563 }
564 }
565
566 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)567 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
568 {
569 const struct regulator_state *rstate;
570
571 rstate = regulator_get_suspend_state(rdev, state);
572 if (rstate == NULL)
573 return NULL;
574
575 /* If we have no suspend mode configuration don't set anything;
576 * only warn if the driver implements set_suspend_voltage or
577 * set_suspend_mode callback.
578 */
579 if (rstate->enabled != ENABLE_IN_SUSPEND &&
580 rstate->enabled != DISABLE_IN_SUSPEND) {
581 if (rdev->desc->ops->set_suspend_voltage ||
582 rdev->desc->ops->set_suspend_mode)
583 rdev_warn(rdev, "No configuration\n");
584 return NULL;
585 }
586
587 return rstate;
588 }
589
microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)590 static ssize_t microvolts_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592 {
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594 int uV;
595
596 regulator_lock(rdev);
597 uV = regulator_get_voltage_rdev(rdev);
598 regulator_unlock(rdev);
599
600 if (uV < 0)
601 return uV;
602 return sprintf(buf, "%d\n", uV);
603 }
604 static DEVICE_ATTR_RO(microvolts);
605
microamps_show(struct device * dev,struct device_attribute * attr,char * buf)606 static ssize_t microamps_show(struct device *dev,
607 struct device_attribute *attr, char *buf)
608 {
609 struct regulator_dev *rdev = dev_get_drvdata(dev);
610
611 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
612 }
613 static DEVICE_ATTR_RO(microamps);
614
name_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
616 char *buf)
617 {
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return sprintf(buf, "%s\n", rdev_get_name(rdev));
621 }
622 static DEVICE_ATTR_RO(name);
623
regulator_opmode_to_str(int mode)624 static const char *regulator_opmode_to_str(int mode)
625 {
626 switch (mode) {
627 case REGULATOR_MODE_FAST:
628 return "fast";
629 case REGULATOR_MODE_NORMAL:
630 return "normal";
631 case REGULATOR_MODE_IDLE:
632 return "idle";
633 case REGULATOR_MODE_STANDBY:
634 return "standby";
635 }
636 return "unknown";
637 }
638
regulator_print_opmode(char * buf,int mode)639 static ssize_t regulator_print_opmode(char *buf, int mode)
640 {
641 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
642 }
643
opmode_show(struct device * dev,struct device_attribute * attr,char * buf)644 static ssize_t opmode_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646 {
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648
649 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
650 }
651 static DEVICE_ATTR_RO(opmode);
652
regulator_print_state(char * buf,int state)653 static ssize_t regulator_print_state(char *buf, int state)
654 {
655 if (state > 0)
656 return sprintf(buf, "enabled\n");
657 else if (state == 0)
658 return sprintf(buf, "disabled\n");
659 else
660 return sprintf(buf, "unknown\n");
661 }
662
state_show(struct device * dev,struct device_attribute * attr,char * buf)663 static ssize_t state_show(struct device *dev,
664 struct device_attribute *attr, char *buf)
665 {
666 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 ssize_t ret;
668
669 regulator_lock(rdev);
670 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
671 regulator_unlock(rdev);
672
673 return ret;
674 }
675 static DEVICE_ATTR_RO(state);
676
status_show(struct device * dev,struct device_attribute * attr,char * buf)677 static ssize_t status_show(struct device *dev,
678 struct device_attribute *attr, char *buf)
679 {
680 struct regulator_dev *rdev = dev_get_drvdata(dev);
681 int status;
682 char *label;
683
684 status = rdev->desc->ops->get_status(rdev);
685 if (status < 0)
686 return status;
687
688 switch (status) {
689 case REGULATOR_STATUS_OFF:
690 label = "off";
691 break;
692 case REGULATOR_STATUS_ON:
693 label = "on";
694 break;
695 case REGULATOR_STATUS_ERROR:
696 label = "error";
697 break;
698 case REGULATOR_STATUS_FAST:
699 label = "fast";
700 break;
701 case REGULATOR_STATUS_NORMAL:
702 label = "normal";
703 break;
704 case REGULATOR_STATUS_IDLE:
705 label = "idle";
706 break;
707 case REGULATOR_STATUS_STANDBY:
708 label = "standby";
709 break;
710 case REGULATOR_STATUS_BYPASS:
711 label = "bypass";
712 break;
713 case REGULATOR_STATUS_UNDEFINED:
714 label = "undefined";
715 break;
716 default:
717 return -ERANGE;
718 }
719
720 return sprintf(buf, "%s\n", label);
721 }
722 static DEVICE_ATTR_RO(status);
723
min_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t min_microamps_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726 {
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728
729 if (!rdev->constraints)
730 return sprintf(buf, "constraint not defined\n");
731
732 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
733 }
734 static DEVICE_ATTR_RO(min_microamps);
735
max_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)736 static ssize_t max_microamps_show(struct device *dev,
737 struct device_attribute *attr, char *buf)
738 {
739 struct regulator_dev *rdev = dev_get_drvdata(dev);
740
741 if (!rdev->constraints)
742 return sprintf(buf, "constraint not defined\n");
743
744 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
745 }
746 static DEVICE_ATTR_RO(max_microamps);
747
min_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t min_microvolts_show(struct device *dev,
749 struct device_attribute *attr, char *buf)
750 {
751 struct regulator_dev *rdev = dev_get_drvdata(dev);
752
753 if (!rdev->constraints)
754 return sprintf(buf, "constraint not defined\n");
755
756 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
757 }
758 static DEVICE_ATTR_RO(min_microvolts);
759
max_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)760 static ssize_t max_microvolts_show(struct device *dev,
761 struct device_attribute *attr, char *buf)
762 {
763 struct regulator_dev *rdev = dev_get_drvdata(dev);
764
765 if (!rdev->constraints)
766 return sprintf(buf, "constraint not defined\n");
767
768 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
769 }
770 static DEVICE_ATTR_RO(max_microvolts);
771
requested_microamps_show(struct device * dev,struct device_attribute * attr,char * buf)772 static ssize_t requested_microamps_show(struct device *dev,
773 struct device_attribute *attr, char *buf)
774 {
775 struct regulator_dev *rdev = dev_get_drvdata(dev);
776 struct regulator *regulator;
777 int uA = 0;
778
779 regulator_lock(rdev);
780 list_for_each_entry(regulator, &rdev->consumer_list, list) {
781 if (regulator->enable_count)
782 uA += regulator->uA_load;
783 }
784 regulator_unlock(rdev);
785 return sprintf(buf, "%d\n", uA);
786 }
787 static DEVICE_ATTR_RO(requested_microamps);
788
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)789 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
790 char *buf)
791 {
792 struct regulator_dev *rdev = dev_get_drvdata(dev);
793 return sprintf(buf, "%d\n", rdev->use_count);
794 }
795 static DEVICE_ATTR_RO(num_users);
796
type_show(struct device * dev,struct device_attribute * attr,char * buf)797 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
798 char *buf)
799 {
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 switch (rdev->desc->type) {
803 case REGULATOR_VOLTAGE:
804 return sprintf(buf, "voltage\n");
805 case REGULATOR_CURRENT:
806 return sprintf(buf, "current\n");
807 }
808 return sprintf(buf, "unknown\n");
809 }
810 static DEVICE_ATTR_RO(type);
811
suspend_mem_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)812 static ssize_t suspend_mem_microvolts_show(struct device *dev,
813 struct device_attribute *attr, char *buf)
814 {
815 struct regulator_dev *rdev = dev_get_drvdata(dev);
816
817 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
818 }
819 static DEVICE_ATTR_RO(suspend_mem_microvolts);
820
suspend_disk_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t suspend_disk_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823 {
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
827 }
828 static DEVICE_ATTR_RO(suspend_disk_microvolts);
829
suspend_standby_microvolts_show(struct device * dev,struct device_attribute * attr,char * buf)830 static ssize_t suspend_standby_microvolts_show(struct device *dev,
831 struct device_attribute *attr, char *buf)
832 {
833 struct regulator_dev *rdev = dev_get_drvdata(dev);
834
835 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
836 }
837 static DEVICE_ATTR_RO(suspend_standby_microvolts);
838
suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)839 static ssize_t suspend_mem_mode_show(struct device *dev,
840 struct device_attribute *attr, char *buf)
841 {
842 struct regulator_dev *rdev = dev_get_drvdata(dev);
843
844 return regulator_print_opmode(buf,
845 rdev->constraints->state_mem.mode);
846 }
847 static DEVICE_ATTR_RO(suspend_mem_mode);
848
suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)849 static ssize_t suspend_disk_mode_show(struct device *dev,
850 struct device_attribute *attr, char *buf)
851 {
852 struct regulator_dev *rdev = dev_get_drvdata(dev);
853
854 return regulator_print_opmode(buf,
855 rdev->constraints->state_disk.mode);
856 }
857 static DEVICE_ATTR_RO(suspend_disk_mode);
858
suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)859 static ssize_t suspend_standby_mode_show(struct device *dev,
860 struct device_attribute *attr, char *buf)
861 {
862 struct regulator_dev *rdev = dev_get_drvdata(dev);
863
864 return regulator_print_opmode(buf,
865 rdev->constraints->state_standby.mode);
866 }
867 static DEVICE_ATTR_RO(suspend_standby_mode);
868
suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)869 static ssize_t suspend_mem_state_show(struct device *dev,
870 struct device_attribute *attr, char *buf)
871 {
872 struct regulator_dev *rdev = dev_get_drvdata(dev);
873
874 return regulator_print_state(buf,
875 rdev->constraints->state_mem.enabled);
876 }
877 static DEVICE_ATTR_RO(suspend_mem_state);
878
suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)879 static ssize_t suspend_disk_state_show(struct device *dev,
880 struct device_attribute *attr, char *buf)
881 {
882 struct regulator_dev *rdev = dev_get_drvdata(dev);
883
884 return regulator_print_state(buf,
885 rdev->constraints->state_disk.enabled);
886 }
887 static DEVICE_ATTR_RO(suspend_disk_state);
888
suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)889 static ssize_t suspend_standby_state_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891 {
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894 return regulator_print_state(buf,
895 rdev->constraints->state_standby.enabled);
896 }
897 static DEVICE_ATTR_RO(suspend_standby_state);
898
bypass_show(struct device * dev,struct device_attribute * attr,char * buf)899 static ssize_t bypass_show(struct device *dev,
900 struct device_attribute *attr, char *buf)
901 {
902 struct regulator_dev *rdev = dev_get_drvdata(dev);
903 const char *report;
904 bool bypass;
905 int ret;
906
907 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
908
909 if (ret != 0)
910 report = "unknown";
911 else if (bypass)
912 report = "enabled";
913 else
914 report = "disabled";
915
916 return sprintf(buf, "%s\n", report);
917 }
918 static DEVICE_ATTR_RO(bypass);
919
power_budget_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)920 static ssize_t power_budget_milliwatt_show(struct device *dev,
921 struct device_attribute *attr,
922 char *buf)
923 {
924 struct regulator_dev *rdev = dev_get_drvdata(dev);
925
926 return sprintf(buf, "%d\n", rdev->constraints->pw_budget_mW);
927 }
928 static DEVICE_ATTR_RO(power_budget_milliwatt);
929
power_requested_milliwatt_show(struct device * dev,struct device_attribute * attr,char * buf)930 static ssize_t power_requested_milliwatt_show(struct device *dev,
931 struct device_attribute *attr,
932 char *buf)
933 {
934 struct regulator_dev *rdev = dev_get_drvdata(dev);
935
936 return sprintf(buf, "%d\n", rdev->pw_requested_mW);
937 }
938 static DEVICE_ATTR_RO(power_requested_milliwatt);
939
940 #define REGULATOR_ERROR_ATTR(name, bit) \
941 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
942 char *buf) \
943 { \
944 int ret; \
945 unsigned int flags; \
946 struct regulator_dev *rdev = dev_get_drvdata(dev); \
947 ret = _regulator_get_error_flags(rdev, &flags); \
948 if (ret) \
949 return ret; \
950 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
951 } \
952 static DEVICE_ATTR_RO(name)
953
954 REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
955 REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
956 REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
957 REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
958 REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
959 REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
960 REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
961 REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
962 REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
963
964 /* Calculate the new optimum regulator operating mode based on the new total
965 * consumer load. All locks held by caller
966 */
drms_uA_update(struct regulator_dev * rdev)967 static int drms_uA_update(struct regulator_dev *rdev)
968 {
969 struct regulator *sibling;
970 int current_uA = 0, output_uV, input_uV, err;
971 unsigned int mode;
972
973 /*
974 * first check to see if we can set modes at all, otherwise just
975 * tell the consumer everything is OK.
976 */
977 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
978 rdev_dbg(rdev, "DRMS operation not allowed\n");
979 return 0;
980 }
981
982 if (!rdev->desc->ops->get_optimum_mode &&
983 !rdev->desc->ops->set_load)
984 return 0;
985
986 if (!rdev->desc->ops->set_mode &&
987 !rdev->desc->ops->set_load)
988 return -EINVAL;
989
990 /* calc total requested load */
991 list_for_each_entry(sibling, &rdev->consumer_list, list) {
992 if (sibling->enable_count)
993 current_uA += sibling->uA_load;
994 }
995
996 current_uA += rdev->constraints->system_load;
997
998 if (rdev->desc->ops->set_load) {
999 /* set the optimum mode for our new total regulator load */
1000 err = rdev->desc->ops->set_load(rdev, current_uA);
1001 if (err < 0)
1002 rdev_err(rdev, "failed to set load %d: %pe\n",
1003 current_uA, ERR_PTR(err));
1004 } else {
1005 /*
1006 * Unfortunately in some cases the constraints->valid_ops has
1007 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1008 * That's not really legit but we won't consider it a fatal
1009 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1010 * wasn't set.
1011 */
1012 if (!rdev->constraints->valid_modes_mask) {
1013 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1014 return 0;
1015 }
1016
1017 /* get output voltage */
1018 output_uV = regulator_get_voltage_rdev(rdev);
1019
1020 /*
1021 * Don't return an error; if regulator driver cares about
1022 * output_uV then it's up to the driver to validate.
1023 */
1024 if (output_uV <= 0)
1025 rdev_dbg(rdev, "invalid output voltage found\n");
1026
1027 /* get input voltage */
1028 input_uV = 0;
1029 if (rdev->supply)
1030 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1031 if (input_uV <= 0)
1032 input_uV = rdev->constraints->input_uV;
1033
1034 /*
1035 * Don't return an error; if regulator driver cares about
1036 * input_uV then it's up to the driver to validate.
1037 */
1038 if (input_uV <= 0)
1039 rdev_dbg(rdev, "invalid input voltage found\n");
1040
1041 /* now get the optimum mode for our new total regulator load */
1042 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1043 output_uV, current_uA);
1044
1045 /* check the new mode is allowed */
1046 err = regulator_mode_constrain(rdev, &mode);
1047 if (err < 0) {
1048 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1049 current_uA, input_uV, output_uV, ERR_PTR(err));
1050 return err;
1051 }
1052
1053 err = rdev->desc->ops->set_mode(rdev, mode);
1054 if (err < 0)
1055 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1056 mode, ERR_PTR(err));
1057 }
1058
1059 return err;
1060 }
1061
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1062 static int __suspend_set_state(struct regulator_dev *rdev,
1063 const struct regulator_state *rstate)
1064 {
1065 int ret = 0;
1066
1067 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1068 rdev->desc->ops->set_suspend_enable)
1069 ret = rdev->desc->ops->set_suspend_enable(rdev);
1070 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1071 rdev->desc->ops->set_suspend_disable)
1072 ret = rdev->desc->ops->set_suspend_disable(rdev);
1073 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1074 ret = 0;
1075
1076 if (ret < 0) {
1077 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1078 return ret;
1079 }
1080
1081 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1082 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1083 if (ret < 0) {
1084 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1085 return ret;
1086 }
1087 }
1088
1089 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1090 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1091 if (ret < 0) {
1092 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1093 return ret;
1094 }
1095 }
1096
1097 return ret;
1098 }
1099
suspend_set_initial_state(struct regulator_dev * rdev)1100 static int suspend_set_initial_state(struct regulator_dev *rdev)
1101 {
1102 const struct regulator_state *rstate;
1103
1104 rstate = regulator_get_suspend_state_check(rdev,
1105 rdev->constraints->initial_state);
1106 if (!rstate)
1107 return 0;
1108
1109 return __suspend_set_state(rdev, rstate);
1110 }
1111
1112 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1113 static void print_constraints_debug(struct regulator_dev *rdev)
1114 {
1115 struct regulation_constraints *constraints = rdev->constraints;
1116 char buf[160] = "";
1117 size_t len = sizeof(buf) - 1;
1118 int count = 0;
1119 int ret;
1120
1121 if (constraints->min_uV && constraints->max_uV) {
1122 if (constraints->min_uV == constraints->max_uV)
1123 count += scnprintf(buf + count, len - count, "%d mV ",
1124 constraints->min_uV / 1000);
1125 else
1126 count += scnprintf(buf + count, len - count,
1127 "%d <--> %d mV ",
1128 constraints->min_uV / 1000,
1129 constraints->max_uV / 1000);
1130 }
1131
1132 if (!constraints->min_uV ||
1133 constraints->min_uV != constraints->max_uV) {
1134 ret = regulator_get_voltage_rdev(rdev);
1135 if (ret > 0)
1136 count += scnprintf(buf + count, len - count,
1137 "at %d mV ", ret / 1000);
1138 }
1139
1140 if (constraints->uV_offset)
1141 count += scnprintf(buf + count, len - count, "%dmV offset ",
1142 constraints->uV_offset / 1000);
1143
1144 if (constraints->min_uA && constraints->max_uA) {
1145 if (constraints->min_uA == constraints->max_uA)
1146 count += scnprintf(buf + count, len - count, "%d mA ",
1147 constraints->min_uA / 1000);
1148 else
1149 count += scnprintf(buf + count, len - count,
1150 "%d <--> %d mA ",
1151 constraints->min_uA / 1000,
1152 constraints->max_uA / 1000);
1153 }
1154
1155 if (!constraints->min_uA ||
1156 constraints->min_uA != constraints->max_uA) {
1157 ret = _regulator_get_current_limit(rdev);
1158 if (ret > 0)
1159 count += scnprintf(buf + count, len - count,
1160 "at %d mA ", ret / 1000);
1161 }
1162
1163 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1164 count += scnprintf(buf + count, len - count, "fast ");
1165 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1166 count += scnprintf(buf + count, len - count, "normal ");
1167 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1168 count += scnprintf(buf + count, len - count, "idle ");
1169 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1170 count += scnprintf(buf + count, len - count, "standby ");
1171
1172 if (constraints->pw_budget_mW)
1173 count += scnprintf(buf + count, len - count, "%d mW budget",
1174 constraints->pw_budget_mW);
1175
1176 if (!count)
1177 count = scnprintf(buf, len, "no parameters");
1178 else
1179 --count;
1180
1181 count += scnprintf(buf + count, len - count, ", %s",
1182 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1183
1184 rdev_dbg(rdev, "%s\n", buf);
1185 }
1186 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1187 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1188 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1189
print_constraints(struct regulator_dev * rdev)1190 static void print_constraints(struct regulator_dev *rdev)
1191 {
1192 struct regulation_constraints *constraints = rdev->constraints;
1193
1194 print_constraints_debug(rdev);
1195
1196 if ((constraints->min_uV != constraints->max_uV) &&
1197 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1198 rdev_warn(rdev,
1199 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1200 }
1201
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1202 static int machine_constraints_voltage(struct regulator_dev *rdev,
1203 struct regulation_constraints *constraints)
1204 {
1205 const struct regulator_ops *ops = rdev->desc->ops;
1206 int ret;
1207
1208 /* do we need to apply the constraint voltage */
1209 if (rdev->constraints->apply_uV &&
1210 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1211 int target_min, target_max;
1212 int current_uV = regulator_get_voltage_rdev(rdev);
1213
1214 if (current_uV == -ENOTRECOVERABLE) {
1215 /* This regulator can't be read and must be initialized */
1216 rdev_info(rdev, "Setting %d-%duV\n",
1217 rdev->constraints->min_uV,
1218 rdev->constraints->max_uV);
1219 _regulator_do_set_voltage(rdev,
1220 rdev->constraints->min_uV,
1221 rdev->constraints->max_uV);
1222 current_uV = regulator_get_voltage_rdev(rdev);
1223 }
1224
1225 if (current_uV < 0) {
1226 if (current_uV != -EPROBE_DEFER)
1227 rdev_err(rdev,
1228 "failed to get the current voltage: %pe\n",
1229 ERR_PTR(current_uV));
1230 return current_uV;
1231 }
1232
1233 /*
1234 * If we're below the minimum voltage move up to the
1235 * minimum voltage, if we're above the maximum voltage
1236 * then move down to the maximum.
1237 */
1238 target_min = current_uV;
1239 target_max = current_uV;
1240
1241 if (current_uV < rdev->constraints->min_uV) {
1242 target_min = rdev->constraints->min_uV;
1243 target_max = rdev->constraints->min_uV;
1244 }
1245
1246 if (current_uV > rdev->constraints->max_uV) {
1247 target_min = rdev->constraints->max_uV;
1248 target_max = rdev->constraints->max_uV;
1249 }
1250
1251 if (target_min != current_uV || target_max != current_uV) {
1252 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1253 current_uV, target_min, target_max);
1254 ret = _regulator_do_set_voltage(
1255 rdev, target_min, target_max);
1256 if (ret < 0) {
1257 rdev_err(rdev,
1258 "failed to apply %d-%duV constraint: %pe\n",
1259 target_min, target_max, ERR_PTR(ret));
1260 return ret;
1261 }
1262 }
1263 }
1264
1265 /* constrain machine-level voltage specs to fit
1266 * the actual range supported by this regulator.
1267 */
1268 if (ops->list_voltage && rdev->desc->n_voltages) {
1269 int count = rdev->desc->n_voltages;
1270 int i;
1271 int min_uV = INT_MAX;
1272 int max_uV = INT_MIN;
1273 int cmin = constraints->min_uV;
1274 int cmax = constraints->max_uV;
1275
1276 /* it's safe to autoconfigure fixed-voltage supplies
1277 * and the constraints are used by list_voltage.
1278 */
1279 if (count == 1 && !cmin) {
1280 cmin = 1;
1281 cmax = INT_MAX;
1282 constraints->min_uV = cmin;
1283 constraints->max_uV = cmax;
1284 }
1285
1286 /* voltage constraints are optional */
1287 if ((cmin == 0) && (cmax == 0))
1288 return 0;
1289
1290 /* else require explicit machine-level constraints */
1291 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1292 rdev_err(rdev, "invalid voltage constraints\n");
1293 return -EINVAL;
1294 }
1295
1296 /* no need to loop voltages if range is continuous */
1297 if (rdev->desc->continuous_voltage_range)
1298 return 0;
1299
1300 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1301 for (i = 0; i < count; i++) {
1302 int value;
1303
1304 value = ops->list_voltage(rdev, i);
1305 if (value <= 0)
1306 continue;
1307
1308 /* maybe adjust [min_uV..max_uV] */
1309 if (value >= cmin && value < min_uV)
1310 min_uV = value;
1311 if (value <= cmax && value > max_uV)
1312 max_uV = value;
1313 }
1314
1315 /* final: [min_uV..max_uV] valid iff constraints valid */
1316 if (max_uV < min_uV) {
1317 rdev_err(rdev,
1318 "unsupportable voltage constraints %u-%uuV\n",
1319 min_uV, max_uV);
1320 return -EINVAL;
1321 }
1322
1323 /* use regulator's subset of machine constraints */
1324 if (constraints->min_uV < min_uV) {
1325 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1326 constraints->min_uV, min_uV);
1327 constraints->min_uV = min_uV;
1328 }
1329 if (constraints->max_uV > max_uV) {
1330 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1331 constraints->max_uV, max_uV);
1332 constraints->max_uV = max_uV;
1333 }
1334 }
1335
1336 return 0;
1337 }
1338
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1339 static int machine_constraints_current(struct regulator_dev *rdev,
1340 struct regulation_constraints *constraints)
1341 {
1342 const struct regulator_ops *ops = rdev->desc->ops;
1343 int ret;
1344
1345 if (!constraints->min_uA && !constraints->max_uA)
1346 return 0;
1347
1348 if (constraints->min_uA > constraints->max_uA) {
1349 rdev_err(rdev, "Invalid current constraints\n");
1350 return -EINVAL;
1351 }
1352
1353 if (!ops->set_current_limit || !ops->get_current_limit) {
1354 rdev_warn(rdev, "Operation of current configuration missing\n");
1355 return 0;
1356 }
1357
1358 /* Set regulator current in constraints range */
1359 ret = ops->set_current_limit(rdev, constraints->min_uA,
1360 constraints->max_uA);
1361 if (ret < 0) {
1362 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1363 return ret;
1364 }
1365
1366 return 0;
1367 }
1368
1369 static int _regulator_do_enable(struct regulator_dev *rdev);
1370
notif_set_limit(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),int limit,int severity)1371 static int notif_set_limit(struct regulator_dev *rdev,
1372 int (*set)(struct regulator_dev *, int, int, bool),
1373 int limit, int severity)
1374 {
1375 bool enable;
1376
1377 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1378 enable = false;
1379 limit = 0;
1380 } else {
1381 enable = true;
1382 }
1383
1384 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1385 limit = 0;
1386
1387 return set(rdev, limit, severity, enable);
1388 }
1389
handle_notify_limits(struct regulator_dev * rdev,int (* set)(struct regulator_dev *,int,int,bool),struct notification_limit * limits)1390 static int handle_notify_limits(struct regulator_dev *rdev,
1391 int (*set)(struct regulator_dev *, int, int, bool),
1392 struct notification_limit *limits)
1393 {
1394 int ret = 0;
1395
1396 if (!set)
1397 return -EOPNOTSUPP;
1398
1399 if (limits->prot)
1400 ret = notif_set_limit(rdev, set, limits->prot,
1401 REGULATOR_SEVERITY_PROT);
1402 if (ret)
1403 return ret;
1404
1405 if (limits->err)
1406 ret = notif_set_limit(rdev, set, limits->err,
1407 REGULATOR_SEVERITY_ERR);
1408 if (ret)
1409 return ret;
1410
1411 if (limits->warn)
1412 ret = notif_set_limit(rdev, set, limits->warn,
1413 REGULATOR_SEVERITY_WARN);
1414
1415 return ret;
1416 }
1417 /**
1418 * set_machine_constraints - sets regulator constraints
1419 * @rdev: regulator source
1420 *
1421 * Allows platform initialisation code to define and constrain
1422 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1423 * Constraints *must* be set by platform code in order for some
1424 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1425 * set_mode.
1426 *
1427 * Return: 0 on success or a negative error number on failure.
1428 */
set_machine_constraints(struct regulator_dev * rdev)1429 static int set_machine_constraints(struct regulator_dev *rdev)
1430 {
1431 int ret = 0;
1432 const struct regulator_ops *ops = rdev->desc->ops;
1433
1434 ret = machine_constraints_voltage(rdev, rdev->constraints);
1435 if (ret != 0)
1436 return ret;
1437
1438 ret = machine_constraints_current(rdev, rdev->constraints);
1439 if (ret != 0)
1440 return ret;
1441
1442 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1443 ret = ops->set_input_current_limit(rdev,
1444 rdev->constraints->ilim_uA);
1445 if (ret < 0) {
1446 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1447 return ret;
1448 }
1449 }
1450
1451 /* do we need to setup our suspend state */
1452 if (rdev->constraints->initial_state) {
1453 ret = suspend_set_initial_state(rdev);
1454 if (ret < 0) {
1455 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1456 return ret;
1457 }
1458 }
1459
1460 if (rdev->constraints->initial_mode) {
1461 if (!ops->set_mode) {
1462 rdev_err(rdev, "no set_mode operation\n");
1463 return -EINVAL;
1464 }
1465
1466 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1467 if (ret < 0) {
1468 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1469 return ret;
1470 }
1471 } else if (rdev->constraints->system_load) {
1472 /*
1473 * We'll only apply the initial system load if an
1474 * initial mode wasn't specified.
1475 */
1476 drms_uA_update(rdev);
1477 }
1478
1479 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1480 && ops->set_ramp_delay) {
1481 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 if (rdev->constraints->pull_down && ops->set_pull_down) {
1489 ret = ops->set_pull_down(rdev);
1490 if (ret < 0) {
1491 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1492 return ret;
1493 }
1494 }
1495
1496 if (rdev->constraints->soft_start && ops->set_soft_start) {
1497 ret = ops->set_soft_start(rdev);
1498 if (ret < 0) {
1499 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1500 return ret;
1501 }
1502 }
1503
1504 /*
1505 * Existing logic does not warn if over_current_protection is given as
1506 * a constraint but driver does not support that. I think we should
1507 * warn about this type of issues as it is possible someone changes
1508 * PMIC on board to another type - and the another PMIC's driver does
1509 * not support setting protection. Board composer may happily believe
1510 * the DT limits are respected - especially if the new PMIC HW also
1511 * supports protection but the driver does not. I won't change the logic
1512 * without hearing more experienced opinion on this though.
1513 *
1514 * If warning is seen as a good idea then we can merge handling the
1515 * over-curret protection and detection and get rid of this special
1516 * handling.
1517 */
1518 if (rdev->constraints->over_current_protection
1519 && ops->set_over_current_protection) {
1520 int lim = rdev->constraints->over_curr_limits.prot;
1521
1522 ret = ops->set_over_current_protection(rdev, lim,
1523 REGULATOR_SEVERITY_PROT,
1524 true);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to set over current protection: %pe\n",
1527 ERR_PTR(ret));
1528 return ret;
1529 }
1530 }
1531
1532 if (rdev->constraints->over_current_detection)
1533 ret = handle_notify_limits(rdev,
1534 ops->set_over_current_protection,
1535 &rdev->constraints->over_curr_limits);
1536 if (ret) {
1537 if (ret != -EOPNOTSUPP) {
1538 rdev_err(rdev, "failed to set over current limits: %pe\n",
1539 ERR_PTR(ret));
1540 return ret;
1541 }
1542 rdev_warn(rdev,
1543 "IC does not support requested over-current limits\n");
1544 }
1545
1546 if (rdev->constraints->over_voltage_detection)
1547 ret = handle_notify_limits(rdev,
1548 ops->set_over_voltage_protection,
1549 &rdev->constraints->over_voltage_limits);
1550 if (ret) {
1551 if (ret != -EOPNOTSUPP) {
1552 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1553 ERR_PTR(ret));
1554 return ret;
1555 }
1556 rdev_warn(rdev,
1557 "IC does not support requested over voltage limits\n");
1558 }
1559
1560 if (rdev->constraints->under_voltage_detection)
1561 ret = handle_notify_limits(rdev,
1562 ops->set_under_voltage_protection,
1563 &rdev->constraints->under_voltage_limits);
1564 if (ret) {
1565 if (ret != -EOPNOTSUPP) {
1566 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1567 ERR_PTR(ret));
1568 return ret;
1569 }
1570 rdev_warn(rdev,
1571 "IC does not support requested under voltage limits\n");
1572 }
1573
1574 if (rdev->constraints->over_temp_detection)
1575 ret = handle_notify_limits(rdev,
1576 ops->set_thermal_protection,
1577 &rdev->constraints->temp_limits);
1578 if (ret) {
1579 if (ret != -EOPNOTSUPP) {
1580 rdev_err(rdev, "failed to set temperature limits %pe\n",
1581 ERR_PTR(ret));
1582 return ret;
1583 }
1584 rdev_warn(rdev,
1585 "IC does not support requested temperature limits\n");
1586 }
1587
1588 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1589 bool ad_state = (rdev->constraints->active_discharge ==
1590 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1591
1592 ret = ops->set_active_discharge(rdev, ad_state);
1593 if (ret < 0) {
1594 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1595 return ret;
1596 }
1597 }
1598
1599 /*
1600 * If there is no mechanism for controlling the regulator then
1601 * flag it as always_on so we don't end up duplicating checks
1602 * for this so much. Note that we could control the state of
1603 * a supply to control the output on a regulator that has no
1604 * direct control.
1605 */
1606 if (!rdev->ena_pin && !ops->enable) {
1607 if (rdev->supply_name && !rdev->supply)
1608 return -EPROBE_DEFER;
1609
1610 if (rdev->supply)
1611 rdev->constraints->always_on =
1612 rdev->supply->rdev->constraints->always_on;
1613 else
1614 rdev->constraints->always_on = true;
1615 }
1616
1617 /* If the constraints say the regulator should be on at this point
1618 * and we have control then make sure it is enabled.
1619 */
1620 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1621 /* If we want to enable this regulator, make sure that we know
1622 * the supplying regulator.
1623 */
1624 if (rdev->supply_name && !rdev->supply)
1625 return -EPROBE_DEFER;
1626
1627 /* If supplying regulator has already been enabled,
1628 * it's not intended to have use_count increment
1629 * when rdev is only boot-on.
1630 */
1631 if (rdev->supply &&
1632 (rdev->constraints->always_on ||
1633 !regulator_is_enabled(rdev->supply))) {
1634 ret = regulator_enable(rdev->supply);
1635 if (ret < 0) {
1636 _regulator_put(rdev->supply);
1637 rdev->supply = NULL;
1638 return ret;
1639 }
1640 }
1641
1642 ret = _regulator_do_enable(rdev);
1643 if (ret < 0 && ret != -EINVAL) {
1644 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1645 return ret;
1646 }
1647
1648 if (rdev->constraints->always_on)
1649 rdev->use_count++;
1650 } else if (rdev->desc->off_on_delay) {
1651 rdev->last_off = ktime_get();
1652 }
1653
1654 if (!rdev->constraints->pw_budget_mW)
1655 rdev->constraints->pw_budget_mW = INT_MAX;
1656
1657 print_constraints(rdev);
1658 return 0;
1659 }
1660
1661 /**
1662 * set_supply - set regulator supply regulator
1663 * @rdev: regulator (locked)
1664 * @supply_rdev: supply regulator (locked))
1665 *
1666 * Called by platform initialisation code to set the supply regulator for this
1667 * regulator. This ensures that a regulators supply will also be enabled by the
1668 * core if it's child is enabled.
1669 *
1670 * Return: 0 on success or a negative error number on failure.
1671 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1672 static int set_supply(struct regulator_dev *rdev,
1673 struct regulator_dev *supply_rdev)
1674 {
1675 int err;
1676
1677 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1678
1679 if (!try_module_get(supply_rdev->owner))
1680 return -ENODEV;
1681
1682 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1683 if (rdev->supply == NULL) {
1684 module_put(supply_rdev->owner);
1685 err = -ENOMEM;
1686 return err;
1687 }
1688 supply_rdev->open_count++;
1689
1690 return 0;
1691 }
1692
1693 /**
1694 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1695 * @rdev: regulator source
1696 * @consumer_dev_name: dev_name() string for device supply applies to
1697 * @supply: symbolic name for supply
1698 *
1699 * Allows platform initialisation code to map physical regulator
1700 * sources to symbolic names for supplies for use by devices. Devices
1701 * should use these symbolic names to request regulators, avoiding the
1702 * need to provide board-specific regulator names as platform data.
1703 *
1704 * Return: 0 on success or a negative error number on failure.
1705 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1706 static int set_consumer_device_supply(struct regulator_dev *rdev,
1707 const char *consumer_dev_name,
1708 const char *supply)
1709 {
1710 struct regulator_map *node, *new_node;
1711 int has_dev;
1712
1713 if (supply == NULL)
1714 return -EINVAL;
1715
1716 if (consumer_dev_name != NULL)
1717 has_dev = 1;
1718 else
1719 has_dev = 0;
1720
1721 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1722 if (new_node == NULL)
1723 return -ENOMEM;
1724
1725 new_node->regulator = rdev;
1726 new_node->supply = supply;
1727
1728 if (has_dev) {
1729 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1730 if (new_node->dev_name == NULL) {
1731 kfree(new_node);
1732 return -ENOMEM;
1733 }
1734 }
1735
1736 mutex_lock(®ulator_list_mutex);
1737 list_for_each_entry(node, ®ulator_map_list, list) {
1738 if (node->dev_name && consumer_dev_name) {
1739 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1740 continue;
1741 } else if (node->dev_name || consumer_dev_name) {
1742 continue;
1743 }
1744
1745 if (strcmp(node->supply, supply) != 0)
1746 continue;
1747
1748 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1749 consumer_dev_name,
1750 dev_name(&node->regulator->dev),
1751 node->regulator->desc->name,
1752 supply,
1753 dev_name(&rdev->dev), rdev_get_name(rdev));
1754 goto fail;
1755 }
1756
1757 list_add(&new_node->list, ®ulator_map_list);
1758 mutex_unlock(®ulator_list_mutex);
1759
1760 return 0;
1761
1762 fail:
1763 mutex_unlock(®ulator_list_mutex);
1764 kfree(new_node->dev_name);
1765 kfree(new_node);
1766 return -EBUSY;
1767 }
1768
unset_regulator_supplies(struct regulator_dev * rdev)1769 static void unset_regulator_supplies(struct regulator_dev *rdev)
1770 {
1771 struct regulator_map *node, *n;
1772
1773 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1774 if (rdev == node->regulator) {
1775 list_del(&node->list);
1776 kfree(node->dev_name);
1777 kfree(node);
1778 }
1779 }
1780 }
1781
1782 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1783 static ssize_t constraint_flags_read_file(struct file *file,
1784 char __user *user_buf,
1785 size_t count, loff_t *ppos)
1786 {
1787 const struct regulator *regulator = file->private_data;
1788 const struct regulation_constraints *c = regulator->rdev->constraints;
1789 char *buf;
1790 ssize_t ret;
1791
1792 if (!c)
1793 return 0;
1794
1795 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1796 if (!buf)
1797 return -ENOMEM;
1798
1799 ret = snprintf(buf, PAGE_SIZE,
1800 "always_on: %u\n"
1801 "boot_on: %u\n"
1802 "apply_uV: %u\n"
1803 "ramp_disable: %u\n"
1804 "soft_start: %u\n"
1805 "pull_down: %u\n"
1806 "over_current_protection: %u\n",
1807 c->always_on,
1808 c->boot_on,
1809 c->apply_uV,
1810 c->ramp_disable,
1811 c->soft_start,
1812 c->pull_down,
1813 c->over_current_protection);
1814
1815 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1816 kfree(buf);
1817
1818 return ret;
1819 }
1820
1821 #endif
1822
1823 static const struct file_operations constraint_flags_fops = {
1824 #ifdef CONFIG_DEBUG_FS
1825 .open = simple_open,
1826 .read = constraint_flags_read_file,
1827 .llseek = default_llseek,
1828 #endif
1829 };
1830
1831 #define REG_STR_SIZE 64
1832
link_and_create_debugfs(struct regulator * regulator,struct regulator_dev * rdev,struct device * dev)1833 static void link_and_create_debugfs(struct regulator *regulator, struct regulator_dev *rdev,
1834 struct device *dev)
1835 {
1836 int err = 0;
1837
1838 if (dev) {
1839 regulator->dev = dev;
1840
1841 /* Add a link to the device sysfs entry */
1842 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1843 regulator->supply_name);
1844 if (err) {
1845 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1846 dev->kobj.name, ERR_PTR(err));
1847 /* non-fatal */
1848 }
1849 }
1850
1851 if (err != -EEXIST) {
1852 regulator->debugfs = debugfs_create_dir(regulator->supply_name, rdev->debugfs);
1853 if (IS_ERR(regulator->debugfs)) {
1854 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1855 regulator->debugfs = NULL;
1856 }
1857 }
1858
1859 if (regulator->debugfs) {
1860 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1861 ®ulator->uA_load);
1862 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1863 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1864 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1865 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1866 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1867 regulator, &constraint_flags_fops);
1868 }
1869 }
1870
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1871 static struct regulator *create_regulator(struct regulator_dev *rdev,
1872 struct device *dev,
1873 const char *supply_name)
1874 {
1875 struct regulator *regulator;
1876
1877 lockdep_assert_held_once(&rdev->mutex.base);
1878
1879 if (dev) {
1880 char buf[REG_STR_SIZE];
1881 int size;
1882
1883 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1884 dev->kobj.name, supply_name);
1885 if (size >= REG_STR_SIZE)
1886 return NULL;
1887
1888 supply_name = kstrdup(buf, GFP_KERNEL);
1889 if (supply_name == NULL)
1890 return NULL;
1891 } else {
1892 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1893 if (supply_name == NULL)
1894 return NULL;
1895 }
1896
1897 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1898 if (regulator == NULL) {
1899 kfree_const(supply_name);
1900 return NULL;
1901 }
1902
1903 regulator->rdev = rdev;
1904 regulator->supply_name = supply_name;
1905
1906 list_add(®ulator->list, &rdev->consumer_list);
1907
1908 /*
1909 * Check now if the regulator is an always on regulator - if
1910 * it is then we don't need to do nearly so much work for
1911 * enable/disable calls.
1912 */
1913 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1914 _regulator_is_enabled(rdev))
1915 regulator->always_on = true;
1916
1917 return regulator;
1918 }
1919
_regulator_get_enable_time(struct regulator_dev * rdev)1920 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1921 {
1922 if (rdev->constraints && rdev->constraints->enable_time)
1923 return rdev->constraints->enable_time;
1924 if (rdev->desc->ops->enable_time)
1925 return rdev->desc->ops->enable_time(rdev);
1926 return rdev->desc->enable_time;
1927 }
1928
regulator_find_supply_alias(struct device * dev,const char * supply)1929 static struct regulator_supply_alias *regulator_find_supply_alias(
1930 struct device *dev, const char *supply)
1931 {
1932 struct regulator_supply_alias *map;
1933
1934 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1935 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1936 return map;
1937
1938 return NULL;
1939 }
1940
regulator_supply_alias(struct device ** dev,const char ** supply)1941 static void regulator_supply_alias(struct device **dev, const char **supply)
1942 {
1943 struct regulator_supply_alias *map;
1944
1945 map = regulator_find_supply_alias(*dev, *supply);
1946 if (map) {
1947 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1948 *supply, map->alias_supply,
1949 dev_name(map->alias_dev));
1950 *dev = map->alias_dev;
1951 *supply = map->alias_supply;
1952 }
1953 }
1954
regulator_match(struct device * dev,const void * data)1955 static int regulator_match(struct device *dev, const void *data)
1956 {
1957 struct regulator_dev *r = dev_to_rdev(dev);
1958
1959 return strcmp(rdev_get_name(r), data) == 0;
1960 }
1961
regulator_lookup_by_name(const char * name)1962 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1963 {
1964 struct device *dev;
1965
1966 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1967
1968 return dev ? dev_to_rdev(dev) : NULL;
1969 }
1970
regulator_dt_lookup(struct device * dev,const char * supply)1971 static struct regulator_dev *regulator_dt_lookup(struct device *dev,
1972 const char *supply)
1973 {
1974 struct regulator_dev *r = NULL;
1975
1976 if (dev_of_node(dev)) {
1977 r = of_regulator_dev_lookup(dev, dev_of_node(dev), supply);
1978 if (PTR_ERR(r) == -ENODEV)
1979 r = NULL;
1980 }
1981
1982 return r;
1983 }
1984
1985 /**
1986 * regulator_dev_lookup - lookup a regulator device.
1987 * @dev: device for regulator "consumer".
1988 * @supply: Supply name or regulator ID.
1989 *
1990 * Return: pointer to &struct regulator_dev or ERR_PTR() encoded negative error number.
1991 *
1992 * If successful, returns a struct regulator_dev that corresponds to the name
1993 * @supply and with the embedded struct device refcount incremented by one.
1994 * The refcount must be dropped by calling put_device().
1995 * On failure one of the following ERR_PTR() encoded values is returned:
1996 * -%ENODEV if lookup fails permanently, -%EPROBE_DEFER if lookup could succeed
1997 * in the future.
1998 */
regulator_dev_lookup(struct device * dev,const char * supply)1999 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2000 const char *supply)
2001 {
2002 struct regulator_dev *r = NULL;
2003 struct regulator_map *map;
2004 const char *devname = NULL;
2005
2006 regulator_supply_alias(&dev, &supply);
2007
2008 /* first do a dt based lookup */
2009 r = regulator_dt_lookup(dev, supply);
2010 if (r)
2011 return r;
2012
2013 /* if not found, try doing it non-dt way */
2014 if (dev)
2015 devname = dev_name(dev);
2016
2017 mutex_lock(®ulator_list_mutex);
2018 list_for_each_entry(map, ®ulator_map_list, list) {
2019 /* If the mapping has a device set up it must match */
2020 if (map->dev_name &&
2021 (!devname || strcmp(map->dev_name, devname)))
2022 continue;
2023
2024 if (strcmp(map->supply, supply) == 0 &&
2025 get_device(&map->regulator->dev)) {
2026 r = map->regulator;
2027 break;
2028 }
2029 }
2030 mutex_unlock(®ulator_list_mutex);
2031
2032 if (r)
2033 return r;
2034
2035 r = regulator_lookup_by_name(supply);
2036 if (r)
2037 return r;
2038
2039 return ERR_PTR(-ENODEV);
2040 }
2041
regulator_resolve_supply(struct regulator_dev * rdev)2042 static int regulator_resolve_supply(struct regulator_dev *rdev)
2043 {
2044 struct regulator_dev *r;
2045 struct device *dev = rdev->dev.parent;
2046 struct ww_acquire_ctx ww_ctx;
2047 int ret = 0;
2048
2049 /* No supply to resolve? */
2050 if (!rdev->supply_name)
2051 return 0;
2052
2053 /* Supply already resolved? (fast-path without locking contention) */
2054 if (rdev->supply)
2055 return 0;
2056
2057 /* first do a dt based lookup on the node described in the virtual
2058 * device.
2059 */
2060 r = regulator_dt_lookup(&rdev->dev, rdev->supply_name);
2061
2062 /* If regulator not found use usual search path in the parent
2063 * device.
2064 */
2065 if (!r)
2066 r = regulator_dev_lookup(dev, rdev->supply_name);
2067
2068 if (IS_ERR(r)) {
2069 ret = PTR_ERR(r);
2070
2071 /* Did the lookup explicitly defer for us? */
2072 if (ret == -EPROBE_DEFER)
2073 goto out;
2074
2075 if (have_full_constraints()) {
2076 r = dummy_regulator_rdev;
2077 if (!r) {
2078 ret = -EPROBE_DEFER;
2079 goto out;
2080 }
2081 get_device(&r->dev);
2082 } else {
2083 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2084 rdev->supply_name, rdev->desc->name);
2085 ret = -EPROBE_DEFER;
2086 goto out;
2087 }
2088 }
2089
2090 if (r == rdev) {
2091 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2092 rdev->desc->name, rdev->supply_name);
2093 if (!have_full_constraints()) {
2094 ret = -EINVAL;
2095 goto out;
2096 }
2097 r = dummy_regulator_rdev;
2098 if (!r) {
2099 ret = -EPROBE_DEFER;
2100 goto out;
2101 }
2102 get_device(&r->dev);
2103 }
2104
2105 /*
2106 * If the supply's parent device is not the same as the
2107 * regulator's parent device, then ensure the parent device
2108 * is bound before we resolve the supply, in case the parent
2109 * device get probe deferred and unregisters the supply.
2110 */
2111 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2112 if (!device_is_bound(r->dev.parent)) {
2113 put_device(&r->dev);
2114 ret = -EPROBE_DEFER;
2115 goto out;
2116 }
2117 }
2118
2119 /* Recursively resolve the supply of the supply */
2120 ret = regulator_resolve_supply(r);
2121 if (ret < 0) {
2122 put_device(&r->dev);
2123 goto out;
2124 }
2125
2126 /*
2127 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2128 * between rdev->supply null check and setting rdev->supply in
2129 * set_supply() from concurrent tasks.
2130 */
2131 regulator_lock_two(rdev, r, &ww_ctx);
2132
2133 /* Supply just resolved by a concurrent task? */
2134 if (rdev->supply) {
2135 regulator_unlock_two(rdev, r, &ww_ctx);
2136 put_device(&r->dev);
2137 goto out;
2138 }
2139
2140 ret = set_supply(rdev, r);
2141 if (ret < 0) {
2142 regulator_unlock_two(rdev, r, &ww_ctx);
2143 put_device(&r->dev);
2144 goto out;
2145 }
2146
2147 regulator_unlock_two(rdev, r, &ww_ctx);
2148
2149 /* rdev->supply was created in set_supply() */
2150 link_and_create_debugfs(rdev->supply, r, &rdev->dev);
2151
2152 /*
2153 * In set_machine_constraints() we may have turned this regulator on
2154 * but we couldn't propagate to the supply if it hadn't been resolved
2155 * yet. Do it now.
2156 */
2157 if (rdev->use_count) {
2158 ret = regulator_enable(rdev->supply);
2159 if (ret < 0) {
2160 _regulator_put(rdev->supply);
2161 rdev->supply = NULL;
2162 goto out;
2163 }
2164 }
2165
2166 out:
2167 return ret;
2168 }
2169
2170 /* common pre-checks for regulator requests */
_regulator_get_common_check(struct device * dev,const char * id,enum regulator_get_type get_type)2171 int _regulator_get_common_check(struct device *dev, const char *id,
2172 enum regulator_get_type get_type)
2173 {
2174 if (get_type >= MAX_GET_TYPE) {
2175 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2176 return -EINVAL;
2177 }
2178
2179 if (id == NULL) {
2180 dev_err(dev, "regulator request with no identifier\n");
2181 return -EINVAL;
2182 }
2183
2184 return 0;
2185 }
2186
2187 /**
2188 * _regulator_get_common - Common code for regulator requests
2189 * @rdev: regulator device pointer as returned by *regulator_dev_lookup()
2190 * Its reference count is expected to have been incremented.
2191 * @dev: device used for dev_printk messages
2192 * @id: Supply name or regulator ID
2193 * @get_type: enum regulator_get_type value corresponding to type of request
2194 *
2195 * Returns: pointer to struct regulator corresponding to @rdev, or ERR_PTR()
2196 * encoded error.
2197 *
2198 * This function should be chained with *regulator_dev_lookup() functions.
2199 */
_regulator_get_common(struct regulator_dev * rdev,struct device * dev,const char * id,enum regulator_get_type get_type)2200 struct regulator *_regulator_get_common(struct regulator_dev *rdev, struct device *dev,
2201 const char *id, enum regulator_get_type get_type)
2202 {
2203 struct regulator *regulator;
2204 struct device_link *link;
2205 int ret;
2206
2207 if (IS_ERR(rdev)) {
2208 ret = PTR_ERR(rdev);
2209
2210 /*
2211 * If regulator_dev_lookup() fails with error other
2212 * than -ENODEV our job here is done, we simply return it.
2213 */
2214 if (ret != -ENODEV)
2215 return ERR_PTR(ret);
2216
2217 if (!have_full_constraints()) {
2218 dev_warn(dev,
2219 "incomplete constraints, dummy supplies not allowed (id=%s)\n", id);
2220 return ERR_PTR(-ENODEV);
2221 }
2222
2223 switch (get_type) {
2224 case NORMAL_GET:
2225 /*
2226 * Assume that a regulator is physically present and
2227 * enabled, even if it isn't hooked up, and just
2228 * provide a dummy.
2229 */
2230 rdev = dummy_regulator_rdev;
2231 if (!rdev)
2232 return ERR_PTR(-EPROBE_DEFER);
2233 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2234 get_device(&rdev->dev);
2235 break;
2236
2237 case EXCLUSIVE_GET:
2238 dev_warn(dev,
2239 "dummy supplies not allowed for exclusive requests (id=%s)\n", id);
2240 fallthrough;
2241
2242 default:
2243 return ERR_PTR(-ENODEV);
2244 }
2245 }
2246
2247 if (rdev->exclusive) {
2248 regulator = ERR_PTR(-EPERM);
2249 put_device(&rdev->dev);
2250 return regulator;
2251 }
2252
2253 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2254 regulator = ERR_PTR(-EBUSY);
2255 put_device(&rdev->dev);
2256 return regulator;
2257 }
2258
2259 mutex_lock(®ulator_list_mutex);
2260 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2261 mutex_unlock(®ulator_list_mutex);
2262
2263 if (ret != 0) {
2264 regulator = ERR_PTR(-EPROBE_DEFER);
2265 put_device(&rdev->dev);
2266 return regulator;
2267 }
2268
2269 ret = regulator_resolve_supply(rdev);
2270 if (ret < 0) {
2271 regulator = ERR_PTR(ret);
2272 put_device(&rdev->dev);
2273 return regulator;
2274 }
2275
2276 if (!try_module_get(rdev->owner)) {
2277 regulator = ERR_PTR(-EPROBE_DEFER);
2278 put_device(&rdev->dev);
2279 return regulator;
2280 }
2281
2282 regulator_lock(rdev);
2283 regulator = create_regulator(rdev, dev, id);
2284 regulator_unlock(rdev);
2285 if (regulator == NULL) {
2286 regulator = ERR_PTR(-ENOMEM);
2287 module_put(rdev->owner);
2288 put_device(&rdev->dev);
2289 return regulator;
2290 }
2291
2292 link_and_create_debugfs(regulator, rdev, dev);
2293
2294 rdev->open_count++;
2295 if (get_type == EXCLUSIVE_GET) {
2296 rdev->exclusive = 1;
2297
2298 ret = _regulator_is_enabled(rdev);
2299 if (ret > 0) {
2300 rdev->use_count = 1;
2301 regulator->enable_count = 1;
2302
2303 /* Propagate the regulator state to its supply */
2304 if (rdev->supply) {
2305 ret = regulator_enable(rdev->supply);
2306 if (ret < 0) {
2307 destroy_regulator(regulator);
2308 module_put(rdev->owner);
2309 put_device(&rdev->dev);
2310 return ERR_PTR(ret);
2311 }
2312 }
2313 } else {
2314 rdev->use_count = 0;
2315 regulator->enable_count = 0;
2316 }
2317 }
2318
2319 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2320 if (!IS_ERR_OR_NULL(link))
2321 regulator->device_link = true;
2322
2323 return regulator;
2324 }
2325
2326 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)2327 struct regulator *_regulator_get(struct device *dev, const char *id,
2328 enum regulator_get_type get_type)
2329 {
2330 struct regulator_dev *rdev;
2331 int ret;
2332
2333 ret = _regulator_get_common_check(dev, id, get_type);
2334 if (ret)
2335 return ERR_PTR(ret);
2336
2337 rdev = regulator_dev_lookup(dev, id);
2338 return _regulator_get_common(rdev, dev, id, get_type);
2339 }
2340
2341 /**
2342 * regulator_get - lookup and obtain a reference to a regulator.
2343 * @dev: device for regulator "consumer"
2344 * @id: Supply name or regulator ID.
2345 *
2346 * Use of supply names configured via set_consumer_device_supply() is
2347 * strongly encouraged. It is recommended that the supply name used
2348 * should match the name used for the supply and/or the relevant
2349 * device pins in the datasheet.
2350 *
2351 * Return: Pointer to a &struct regulator corresponding to the regulator
2352 * producer, or an ERR_PTR() encoded negative error number.
2353 */
regulator_get(struct device * dev,const char * id)2354 struct regulator *regulator_get(struct device *dev, const char *id)
2355 {
2356 return _regulator_get(dev, id, NORMAL_GET);
2357 }
2358 EXPORT_SYMBOL_GPL(regulator_get);
2359
2360 /**
2361 * regulator_get_exclusive - obtain exclusive access to a regulator.
2362 * @dev: device for regulator "consumer"
2363 * @id: Supply name or regulator ID.
2364 *
2365 * Other consumers will be unable to obtain this regulator while this
2366 * reference is held and the use count for the regulator will be
2367 * initialised to reflect the current state of the regulator.
2368 *
2369 * This is intended for use by consumers which cannot tolerate shared
2370 * use of the regulator such as those which need to force the
2371 * regulator off for correct operation of the hardware they are
2372 * controlling.
2373 *
2374 * Use of supply names configured via set_consumer_device_supply() is
2375 * strongly encouraged. It is recommended that the supply name used
2376 * should match the name used for the supply and/or the relevant
2377 * device pins in the datasheet.
2378 *
2379 * Return: Pointer to a &struct regulator corresponding to the regulator
2380 * producer, or an ERR_PTR() encoded negative error number.
2381 */
regulator_get_exclusive(struct device * dev,const char * id)2382 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2383 {
2384 return _regulator_get(dev, id, EXCLUSIVE_GET);
2385 }
2386 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2387
2388 /**
2389 * regulator_get_optional - obtain optional access to a regulator.
2390 * @dev: device for regulator "consumer"
2391 * @id: Supply name or regulator ID.
2392 *
2393 * This is intended for use by consumers for devices which can have
2394 * some supplies unconnected in normal use, such as some MMC devices.
2395 * It can allow the regulator core to provide stub supplies for other
2396 * supplies requested using normal regulator_get() calls without
2397 * disrupting the operation of drivers that can handle absent
2398 * supplies.
2399 *
2400 * Use of supply names configured via set_consumer_device_supply() is
2401 * strongly encouraged. It is recommended that the supply name used
2402 * should match the name used for the supply and/or the relevant
2403 * device pins in the datasheet.
2404 *
2405 * Return: Pointer to a &struct regulator corresponding to the regulator
2406 * producer, or an ERR_PTR() encoded negative error number.
2407 */
regulator_get_optional(struct device * dev,const char * id)2408 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2409 {
2410 return _regulator_get(dev, id, OPTIONAL_GET);
2411 }
2412 EXPORT_SYMBOL_GPL(regulator_get_optional);
2413
destroy_regulator(struct regulator * regulator)2414 static void destroy_regulator(struct regulator *regulator)
2415 {
2416 struct regulator_dev *rdev = regulator->rdev;
2417
2418 debugfs_remove_recursive(regulator->debugfs);
2419
2420 if (regulator->dev) {
2421 if (regulator->device_link)
2422 device_link_remove(regulator->dev, &rdev->dev);
2423
2424 /* remove any sysfs entries */
2425 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2426 }
2427
2428 regulator_lock(rdev);
2429 list_del(®ulator->list);
2430
2431 rdev->open_count--;
2432 rdev->exclusive = 0;
2433 regulator_unlock(rdev);
2434
2435 kfree_const(regulator->supply_name);
2436 kfree(regulator);
2437 }
2438
2439 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2440 static void _regulator_put(struct regulator *regulator)
2441 {
2442 struct regulator_dev *rdev;
2443
2444 if (IS_ERR_OR_NULL(regulator))
2445 return;
2446
2447 lockdep_assert_held_once(®ulator_list_mutex);
2448
2449 /* Docs say you must disable before calling regulator_put() */
2450 WARN_ON(regulator->enable_count);
2451
2452 rdev = regulator->rdev;
2453
2454 destroy_regulator(regulator);
2455
2456 module_put(rdev->owner);
2457 put_device(&rdev->dev);
2458 }
2459
2460 /**
2461 * regulator_put - "free" the regulator source
2462 * @regulator: regulator source
2463 *
2464 * Note: drivers must ensure that all regulator_enable calls made on this
2465 * regulator source are balanced by regulator_disable calls prior to calling
2466 * this function.
2467 */
regulator_put(struct regulator * regulator)2468 void regulator_put(struct regulator *regulator)
2469 {
2470 mutex_lock(®ulator_list_mutex);
2471 _regulator_put(regulator);
2472 mutex_unlock(®ulator_list_mutex);
2473 }
2474 EXPORT_SYMBOL_GPL(regulator_put);
2475
2476 /**
2477 * regulator_register_supply_alias - Provide device alias for supply lookup
2478 *
2479 * @dev: device that will be given as the regulator "consumer"
2480 * @id: Supply name or regulator ID
2481 * @alias_dev: device that should be used to lookup the supply
2482 * @alias_id: Supply name or regulator ID that should be used to lookup the
2483 * supply
2484 *
2485 * All lookups for id on dev will instead be conducted for alias_id on
2486 * alias_dev.
2487 *
2488 * Return: 0 on success or a negative error number on failure.
2489 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2490 int regulator_register_supply_alias(struct device *dev, const char *id,
2491 struct device *alias_dev,
2492 const char *alias_id)
2493 {
2494 struct regulator_supply_alias *map;
2495
2496 map = regulator_find_supply_alias(dev, id);
2497 if (map)
2498 return -EEXIST;
2499
2500 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2501 if (!map)
2502 return -ENOMEM;
2503
2504 map->src_dev = dev;
2505 map->src_supply = id;
2506 map->alias_dev = alias_dev;
2507 map->alias_supply = alias_id;
2508
2509 list_add(&map->list, ®ulator_supply_alias_list);
2510
2511 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2512 id, dev_name(dev), alias_id, dev_name(alias_dev));
2513
2514 return 0;
2515 }
2516 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2517
2518 /**
2519 * regulator_unregister_supply_alias - Remove device alias
2520 *
2521 * @dev: device that will be given as the regulator "consumer"
2522 * @id: Supply name or regulator ID
2523 *
2524 * Remove a lookup alias if one exists for id on dev.
2525 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2526 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2527 {
2528 struct regulator_supply_alias *map;
2529
2530 map = regulator_find_supply_alias(dev, id);
2531 if (map) {
2532 list_del(&map->list);
2533 kfree(map);
2534 }
2535 }
2536 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2537
2538 /**
2539 * regulator_bulk_register_supply_alias - register multiple aliases
2540 *
2541 * @dev: device that will be given as the regulator "consumer"
2542 * @id: List of supply names or regulator IDs
2543 * @alias_dev: device that should be used to lookup the supply
2544 * @alias_id: List of supply names or regulator IDs that should be used to
2545 * lookup the supply
2546 * @num_id: Number of aliases to register
2547 *
2548 * This helper function allows drivers to register several supply
2549 * aliases in one operation. If any of the aliases cannot be
2550 * registered any aliases that were registered will be removed
2551 * before returning to the caller.
2552 *
2553 * Return: 0 on success or a negative error number on failure.
2554 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2555 int regulator_bulk_register_supply_alias(struct device *dev,
2556 const char *const *id,
2557 struct device *alias_dev,
2558 const char *const *alias_id,
2559 int num_id)
2560 {
2561 int i;
2562 int ret;
2563
2564 for (i = 0; i < num_id; ++i) {
2565 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2566 alias_id[i]);
2567 if (ret < 0)
2568 goto err;
2569 }
2570
2571 return 0;
2572
2573 err:
2574 dev_err(dev,
2575 "Failed to create supply alias %s,%s -> %s,%s\n",
2576 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2577
2578 while (--i >= 0)
2579 regulator_unregister_supply_alias(dev, id[i]);
2580
2581 return ret;
2582 }
2583 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2584
2585 /**
2586 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2587 *
2588 * @dev: device that will be given as the regulator "consumer"
2589 * @id: List of supply names or regulator IDs
2590 * @num_id: Number of aliases to unregister
2591 *
2592 * This helper function allows drivers to unregister several supply
2593 * aliases in one operation.
2594 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2595 void regulator_bulk_unregister_supply_alias(struct device *dev,
2596 const char *const *id,
2597 int num_id)
2598 {
2599 int i;
2600
2601 for (i = 0; i < num_id; ++i)
2602 regulator_unregister_supply_alias(dev, id[i]);
2603 }
2604 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2605
2606
2607 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2608 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2609 const struct regulator_config *config)
2610 {
2611 struct regulator_enable_gpio *pin, *new_pin;
2612 struct gpio_desc *gpiod;
2613
2614 gpiod = config->ena_gpiod;
2615 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2616
2617 mutex_lock(®ulator_list_mutex);
2618
2619 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2620 if (pin->gpiod == gpiod) {
2621 rdev_dbg(rdev, "GPIO is already used\n");
2622 goto update_ena_gpio_to_rdev;
2623 }
2624 }
2625
2626 if (new_pin == NULL) {
2627 mutex_unlock(®ulator_list_mutex);
2628 return -ENOMEM;
2629 }
2630
2631 pin = new_pin;
2632 new_pin = NULL;
2633
2634 pin->gpiod = gpiod;
2635 list_add(&pin->list, ®ulator_ena_gpio_list);
2636
2637 update_ena_gpio_to_rdev:
2638 pin->request_count++;
2639 rdev->ena_pin = pin;
2640
2641 mutex_unlock(®ulator_list_mutex);
2642 kfree(new_pin);
2643
2644 return 0;
2645 }
2646
regulator_ena_gpio_free(struct regulator_dev * rdev)2647 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2648 {
2649 struct regulator_enable_gpio *pin, *n;
2650
2651 if (!rdev->ena_pin)
2652 return;
2653
2654 /* Free the GPIO only in case of no use */
2655 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2656 if (pin != rdev->ena_pin)
2657 continue;
2658
2659 if (--pin->request_count)
2660 break;
2661
2662 gpiod_put(pin->gpiod);
2663 list_del(&pin->list);
2664 kfree(pin);
2665 break;
2666 }
2667
2668 rdev->ena_pin = NULL;
2669 }
2670
2671 /**
2672 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2673 * @rdev: regulator_dev structure
2674 * @enable: enable GPIO at initial use?
2675 *
2676 * GPIO is enabled in case of initial use. (enable_count is 0)
2677 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2678 *
2679 * Return: 0 on success or a negative error number on failure.
2680 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2681 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2682 {
2683 struct regulator_enable_gpio *pin = rdev->ena_pin;
2684
2685 if (!pin)
2686 return -EINVAL;
2687
2688 if (enable) {
2689 /* Enable GPIO at initial use */
2690 if (pin->enable_count == 0)
2691 gpiod_set_value_cansleep(pin->gpiod, 1);
2692
2693 pin->enable_count++;
2694 } else {
2695 if (pin->enable_count > 1) {
2696 pin->enable_count--;
2697 return 0;
2698 }
2699
2700 /* Disable GPIO if not used */
2701 if (pin->enable_count <= 1) {
2702 gpiod_set_value_cansleep(pin->gpiod, 0);
2703 pin->enable_count = 0;
2704 }
2705 }
2706
2707 return 0;
2708 }
2709
2710 /**
2711 * _regulator_check_status_enabled - check if regulator status can be
2712 * interpreted as "regulator is enabled"
2713 * @rdev: the regulator device to check
2714 *
2715 * Return:
2716 * * 1 - if status shows regulator is in enabled state
2717 * * 0 - if not enabled state
2718 * * Error Value - as received from ops->get_status()
2719 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2720 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2721 {
2722 int ret = rdev->desc->ops->get_status(rdev);
2723
2724 if (ret < 0) {
2725 rdev_info(rdev, "get_status returned error: %d\n", ret);
2726 return ret;
2727 }
2728
2729 switch (ret) {
2730 case REGULATOR_STATUS_OFF:
2731 case REGULATOR_STATUS_ERROR:
2732 case REGULATOR_STATUS_UNDEFINED:
2733 return 0;
2734 default:
2735 return 1;
2736 }
2737 }
2738
_regulator_do_enable(struct regulator_dev * rdev)2739 static int _regulator_do_enable(struct regulator_dev *rdev)
2740 {
2741 int ret, delay;
2742
2743 /* Query before enabling in case configuration dependent. */
2744 ret = _regulator_get_enable_time(rdev);
2745 if (ret >= 0) {
2746 delay = ret;
2747 } else {
2748 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2749 delay = 0;
2750 }
2751
2752 trace_regulator_enable(rdev_get_name(rdev));
2753
2754 if (rdev->desc->off_on_delay) {
2755 /* if needed, keep a distance of off_on_delay from last time
2756 * this regulator was disabled.
2757 */
2758 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2759 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2760
2761 if (remaining > 0)
2762 fsleep(remaining);
2763 }
2764
2765 if (rdev->ena_pin) {
2766 if (!rdev->ena_gpio_state) {
2767 ret = regulator_ena_gpio_ctrl(rdev, true);
2768 if (ret < 0)
2769 return ret;
2770 rdev->ena_gpio_state = 1;
2771 }
2772 } else if (rdev->desc->ops->enable) {
2773 ret = rdev->desc->ops->enable(rdev);
2774 if (ret < 0)
2775 return ret;
2776 } else {
2777 return -EINVAL;
2778 }
2779
2780 /* Allow the regulator to ramp; it would be useful to extend
2781 * this for bulk operations so that the regulators can ramp
2782 * together.
2783 */
2784 trace_regulator_enable_delay(rdev_get_name(rdev));
2785
2786 /* If poll_enabled_time is set, poll upto the delay calculated
2787 * above, delaying poll_enabled_time uS to check if the regulator
2788 * actually got enabled.
2789 * If the regulator isn't enabled after our delay helper has expired,
2790 * return -ETIMEDOUT.
2791 */
2792 if (rdev->desc->poll_enabled_time) {
2793 int time_remaining = delay;
2794
2795 while (time_remaining > 0) {
2796 fsleep(rdev->desc->poll_enabled_time);
2797
2798 if (rdev->desc->ops->get_status) {
2799 ret = _regulator_check_status_enabled(rdev);
2800 if (ret < 0)
2801 return ret;
2802 else if (ret)
2803 break;
2804 } else if (rdev->desc->ops->is_enabled(rdev))
2805 break;
2806
2807 time_remaining -= rdev->desc->poll_enabled_time;
2808 }
2809
2810 if (time_remaining <= 0) {
2811 rdev_err(rdev, "Enabled check timed out\n");
2812 return -ETIMEDOUT;
2813 }
2814 } else {
2815 fsleep(delay);
2816 }
2817
2818 trace_regulator_enable_complete(rdev_get_name(rdev));
2819
2820 return 0;
2821 }
2822
2823 /**
2824 * _regulator_handle_consumer_enable - handle that a consumer enabled
2825 * @regulator: regulator source
2826 *
2827 * Some things on a regulator consumer (like the contribution towards total
2828 * load on the regulator) only have an effect when the consumer wants the
2829 * regulator enabled. Explained in example with two consumers of the same
2830 * regulator:
2831 * consumer A: set_load(100); => total load = 0
2832 * consumer A: regulator_enable(); => total load = 100
2833 * consumer B: set_load(1000); => total load = 100
2834 * consumer B: regulator_enable(); => total load = 1100
2835 * consumer A: regulator_disable(); => total_load = 1000
2836 *
2837 * This function (together with _regulator_handle_consumer_disable) is
2838 * responsible for keeping track of the refcount for a given regulator consumer
2839 * and applying / unapplying these things.
2840 *
2841 * Return: 0 on success or negative error number on failure.
2842 */
_regulator_handle_consumer_enable(struct regulator * regulator)2843 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2844 {
2845 int ret;
2846 struct regulator_dev *rdev = regulator->rdev;
2847
2848 lockdep_assert_held_once(&rdev->mutex.base);
2849
2850 regulator->enable_count++;
2851 if (regulator->uA_load && regulator->enable_count == 1) {
2852 ret = drms_uA_update(rdev);
2853 if (ret)
2854 regulator->enable_count--;
2855 return ret;
2856 }
2857
2858 return 0;
2859 }
2860
2861 /**
2862 * _regulator_handle_consumer_disable - handle that a consumer disabled
2863 * @regulator: regulator source
2864 *
2865 * The opposite of _regulator_handle_consumer_enable().
2866 *
2867 * Return: 0 on success or a negative error number on failure.
2868 */
_regulator_handle_consumer_disable(struct regulator * regulator)2869 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2870 {
2871 struct regulator_dev *rdev = regulator->rdev;
2872
2873 lockdep_assert_held_once(&rdev->mutex.base);
2874
2875 if (!regulator->enable_count) {
2876 rdev_err(rdev, "Underflow of regulator enable count\n");
2877 return -EINVAL;
2878 }
2879
2880 regulator->enable_count--;
2881 if (regulator->uA_load && regulator->enable_count == 0)
2882 return drms_uA_update(rdev);
2883
2884 return 0;
2885 }
2886
2887 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2888 static int _regulator_enable(struct regulator *regulator)
2889 {
2890 struct regulator_dev *rdev = regulator->rdev;
2891 int ret;
2892
2893 lockdep_assert_held_once(&rdev->mutex.base);
2894
2895 if (rdev->use_count == 0 && rdev->supply) {
2896 ret = _regulator_enable(rdev->supply);
2897 if (ret < 0)
2898 return ret;
2899 }
2900
2901 /* balance only if there are regulators coupled */
2902 if (rdev->coupling_desc.n_coupled > 1) {
2903 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2904 if (ret < 0)
2905 goto err_disable_supply;
2906 }
2907
2908 ret = _regulator_handle_consumer_enable(regulator);
2909 if (ret < 0)
2910 goto err_disable_supply;
2911
2912 if (rdev->use_count == 0) {
2913 /*
2914 * The regulator may already be enabled if it's not switchable
2915 * or was left on
2916 */
2917 ret = _regulator_is_enabled(rdev);
2918 if (ret == -EINVAL || ret == 0) {
2919 if (!regulator_ops_is_valid(rdev,
2920 REGULATOR_CHANGE_STATUS)) {
2921 ret = -EPERM;
2922 goto err_consumer_disable;
2923 }
2924
2925 ret = _regulator_do_enable(rdev);
2926 if (ret < 0)
2927 goto err_consumer_disable;
2928
2929 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2930 NULL);
2931 } else if (ret < 0) {
2932 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2933 goto err_consumer_disable;
2934 }
2935 /* Fallthrough on positive return values - already enabled */
2936 }
2937
2938 if (regulator->enable_count == 1)
2939 rdev->use_count++;
2940
2941 return 0;
2942
2943 err_consumer_disable:
2944 _regulator_handle_consumer_disable(regulator);
2945
2946 err_disable_supply:
2947 if (rdev->use_count == 0 && rdev->supply)
2948 _regulator_disable(rdev->supply);
2949
2950 return ret;
2951 }
2952
2953 /**
2954 * regulator_enable - enable regulator output
2955 * @regulator: regulator source
2956 *
2957 * Request that the regulator be enabled with the regulator output at
2958 * the predefined voltage or current value. Calls to regulator_enable()
2959 * must be balanced with calls to regulator_disable().
2960 *
2961 * NOTE: the output value can be set by other drivers, boot loader or may be
2962 * hardwired in the regulator.
2963 *
2964 * Return: 0 on success or a negative error number on failure.
2965 */
regulator_enable(struct regulator * regulator)2966 int regulator_enable(struct regulator *regulator)
2967 {
2968 struct regulator_dev *rdev = regulator->rdev;
2969 struct ww_acquire_ctx ww_ctx;
2970 int ret;
2971
2972 regulator_lock_dependent(rdev, &ww_ctx);
2973 ret = _regulator_enable(regulator);
2974 regulator_unlock_dependent(rdev, &ww_ctx);
2975
2976 return ret;
2977 }
2978 EXPORT_SYMBOL_GPL(regulator_enable);
2979
_regulator_do_disable(struct regulator_dev * rdev)2980 static int _regulator_do_disable(struct regulator_dev *rdev)
2981 {
2982 int ret;
2983
2984 trace_regulator_disable(rdev_get_name(rdev));
2985
2986 if (rdev->ena_pin) {
2987 if (rdev->ena_gpio_state) {
2988 ret = regulator_ena_gpio_ctrl(rdev, false);
2989 if (ret < 0)
2990 return ret;
2991 rdev->ena_gpio_state = 0;
2992 }
2993
2994 } else if (rdev->desc->ops->disable) {
2995 ret = rdev->desc->ops->disable(rdev);
2996 if (ret != 0)
2997 return ret;
2998 }
2999
3000 if (rdev->desc->off_on_delay)
3001 rdev->last_off = ktime_get_boottime();
3002
3003 trace_regulator_disable_complete(rdev_get_name(rdev));
3004
3005 return 0;
3006 }
3007
3008 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)3009 static int _regulator_disable(struct regulator *regulator)
3010 {
3011 struct regulator_dev *rdev = regulator->rdev;
3012 int ret = 0;
3013
3014 lockdep_assert_held_once(&rdev->mutex.base);
3015
3016 if (WARN(regulator->enable_count == 0,
3017 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3018 return -EIO;
3019
3020 if (regulator->enable_count == 1) {
3021 /* disabling last enable_count from this regulator */
3022 /* are we the last user and permitted to disable ? */
3023 if (rdev->use_count == 1 &&
3024 (rdev->constraints && !rdev->constraints->always_on)) {
3025
3026 /* we are last user */
3027 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3028 ret = _notifier_call_chain(rdev,
3029 REGULATOR_EVENT_PRE_DISABLE,
3030 NULL);
3031 if (ret & NOTIFY_STOP_MASK)
3032 return -EINVAL;
3033
3034 ret = _regulator_do_disable(rdev);
3035 if (ret < 0) {
3036 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3037 _notifier_call_chain(rdev,
3038 REGULATOR_EVENT_ABORT_DISABLE,
3039 NULL);
3040 return ret;
3041 }
3042 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3043 NULL);
3044 }
3045
3046 rdev->use_count = 0;
3047 } else if (rdev->use_count > 1) {
3048 rdev->use_count--;
3049 }
3050 }
3051
3052 if (ret == 0)
3053 ret = _regulator_handle_consumer_disable(regulator);
3054
3055 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3056 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3057
3058 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3059 ret = _regulator_disable(rdev->supply);
3060
3061 return ret;
3062 }
3063
3064 /**
3065 * regulator_disable - disable regulator output
3066 * @regulator: regulator source
3067 *
3068 * Disable the regulator output voltage or current. Calls to
3069 * regulator_enable() must be balanced with calls to
3070 * regulator_disable().
3071 *
3072 * NOTE: this will only disable the regulator output if no other consumer
3073 * devices have it enabled, the regulator device supports disabling and
3074 * machine constraints permit this operation.
3075 *
3076 * Return: 0 on success or a negative error number on failure.
3077 */
regulator_disable(struct regulator * regulator)3078 int regulator_disable(struct regulator *regulator)
3079 {
3080 struct regulator_dev *rdev = regulator->rdev;
3081 struct ww_acquire_ctx ww_ctx;
3082 int ret;
3083
3084 regulator_lock_dependent(rdev, &ww_ctx);
3085 ret = _regulator_disable(regulator);
3086 regulator_unlock_dependent(rdev, &ww_ctx);
3087
3088 return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(regulator_disable);
3091
3092 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)3093 static int _regulator_force_disable(struct regulator_dev *rdev)
3094 {
3095 int ret = 0;
3096
3097 lockdep_assert_held_once(&rdev->mutex.base);
3098
3099 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3100 REGULATOR_EVENT_PRE_DISABLE, NULL);
3101 if (ret & NOTIFY_STOP_MASK)
3102 return -EINVAL;
3103
3104 ret = _regulator_do_disable(rdev);
3105 if (ret < 0) {
3106 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3107 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3108 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3109 return ret;
3110 }
3111
3112 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3113 REGULATOR_EVENT_DISABLE, NULL);
3114
3115 return 0;
3116 }
3117
3118 /**
3119 * regulator_force_disable - force disable regulator output
3120 * @regulator: regulator source
3121 *
3122 * Forcibly disable the regulator output voltage or current.
3123 * NOTE: this *will* disable the regulator output even if other consumer
3124 * devices have it enabled. This should be used for situations when device
3125 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3126 *
3127 * Return: 0 on success or a negative error number on failure.
3128 */
regulator_force_disable(struct regulator * regulator)3129 int regulator_force_disable(struct regulator *regulator)
3130 {
3131 struct regulator_dev *rdev = regulator->rdev;
3132 struct ww_acquire_ctx ww_ctx;
3133 int ret;
3134
3135 regulator_lock_dependent(rdev, &ww_ctx);
3136
3137 ret = _regulator_force_disable(regulator->rdev);
3138
3139 if (rdev->coupling_desc.n_coupled > 1)
3140 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3141
3142 if (regulator->uA_load) {
3143 regulator->uA_load = 0;
3144 ret = drms_uA_update(rdev);
3145 }
3146
3147 if (rdev->use_count != 0 && rdev->supply)
3148 _regulator_disable(rdev->supply);
3149
3150 regulator_unlock_dependent(rdev, &ww_ctx);
3151
3152 return ret;
3153 }
3154 EXPORT_SYMBOL_GPL(regulator_force_disable);
3155
regulator_disable_work(struct work_struct * work)3156 static void regulator_disable_work(struct work_struct *work)
3157 {
3158 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3159 disable_work.work);
3160 struct ww_acquire_ctx ww_ctx;
3161 int count, i, ret;
3162 struct regulator *regulator;
3163 int total_count = 0;
3164
3165 regulator_lock_dependent(rdev, &ww_ctx);
3166
3167 /*
3168 * Workqueue functions queue the new work instance while the previous
3169 * work instance is being processed. Cancel the queued work instance
3170 * as the work instance under processing does the job of the queued
3171 * work instance.
3172 */
3173 cancel_delayed_work(&rdev->disable_work);
3174
3175 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3176 count = regulator->deferred_disables;
3177
3178 if (!count)
3179 continue;
3180
3181 total_count += count;
3182 regulator->deferred_disables = 0;
3183
3184 for (i = 0; i < count; i++) {
3185 ret = _regulator_disable(regulator);
3186 if (ret != 0)
3187 rdev_err(rdev, "Deferred disable failed: %pe\n",
3188 ERR_PTR(ret));
3189 }
3190 }
3191 WARN_ON(!total_count);
3192
3193 if (rdev->coupling_desc.n_coupled > 1)
3194 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3195
3196 regulator_unlock_dependent(rdev, &ww_ctx);
3197 }
3198
3199 /**
3200 * regulator_disable_deferred - disable regulator output with delay
3201 * @regulator: regulator source
3202 * @ms: milliseconds until the regulator is disabled
3203 *
3204 * Execute regulator_disable() on the regulator after a delay. This
3205 * is intended for use with devices that require some time to quiesce.
3206 *
3207 * NOTE: this will only disable the regulator output if no other consumer
3208 * devices have it enabled, the regulator device supports disabling and
3209 * machine constraints permit this operation.
3210 *
3211 * Return: 0 on success or a negative error number on failure.
3212 */
regulator_disable_deferred(struct regulator * regulator,int ms)3213 int regulator_disable_deferred(struct regulator *regulator, int ms)
3214 {
3215 struct regulator_dev *rdev = regulator->rdev;
3216
3217 if (!ms)
3218 return regulator_disable(regulator);
3219
3220 regulator_lock(rdev);
3221 regulator->deferred_disables++;
3222 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3223 msecs_to_jiffies(ms));
3224 regulator_unlock(rdev);
3225
3226 return 0;
3227 }
3228 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3229
_regulator_is_enabled(struct regulator_dev * rdev)3230 static int _regulator_is_enabled(struct regulator_dev *rdev)
3231 {
3232 /* A GPIO control always takes precedence */
3233 if (rdev->ena_pin)
3234 return rdev->ena_gpio_state;
3235
3236 /* If we don't know then assume that the regulator is always on */
3237 if (!rdev->desc->ops->is_enabled)
3238 return 1;
3239
3240 return rdev->desc->ops->is_enabled(rdev);
3241 }
3242
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)3243 static int _regulator_list_voltage(struct regulator_dev *rdev,
3244 unsigned selector, int lock)
3245 {
3246 const struct regulator_ops *ops = rdev->desc->ops;
3247 int ret;
3248
3249 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3250 return rdev->desc->fixed_uV;
3251
3252 if (ops->list_voltage) {
3253 if (selector >= rdev->desc->n_voltages)
3254 return -EINVAL;
3255 if (selector < rdev->desc->linear_min_sel)
3256 return 0;
3257 if (lock)
3258 regulator_lock(rdev);
3259 ret = ops->list_voltage(rdev, selector);
3260 if (lock)
3261 regulator_unlock(rdev);
3262 } else if (rdev->is_switch && rdev->supply) {
3263 ret = _regulator_list_voltage(rdev->supply->rdev,
3264 selector, lock);
3265 } else {
3266 return -EINVAL;
3267 }
3268
3269 if (ret > 0) {
3270 if (ret < rdev->constraints->min_uV)
3271 ret = 0;
3272 else if (ret > rdev->constraints->max_uV)
3273 ret = 0;
3274 }
3275
3276 return ret;
3277 }
3278
3279 /**
3280 * regulator_is_enabled - is the regulator output enabled
3281 * @regulator: regulator source
3282 *
3283 * Note that the device backing this regulator handle can have multiple
3284 * users, so it might be enabled even if regulator_enable() was never
3285 * called for this particular source.
3286 *
3287 * Return: Positive if the regulator driver backing the source/client
3288 * has requested that the device be enabled, zero if it hasn't,
3289 * else a negative error number.
3290 */
regulator_is_enabled(struct regulator * regulator)3291 int regulator_is_enabled(struct regulator *regulator)
3292 {
3293 int ret;
3294
3295 if (regulator->always_on)
3296 return 1;
3297
3298 regulator_lock(regulator->rdev);
3299 ret = _regulator_is_enabled(regulator->rdev);
3300 regulator_unlock(regulator->rdev);
3301
3302 return ret;
3303 }
3304 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3305
3306 /**
3307 * regulator_count_voltages - count regulator_list_voltage() selectors
3308 * @regulator: regulator source
3309 *
3310 * Return: Number of selectors for @regulator, or negative error number.
3311 *
3312 * Selectors are numbered starting at zero, and typically correspond to
3313 * bitfields in hardware registers.
3314 */
regulator_count_voltages(struct regulator * regulator)3315 int regulator_count_voltages(struct regulator *regulator)
3316 {
3317 struct regulator_dev *rdev = regulator->rdev;
3318
3319 if (rdev->desc->n_voltages)
3320 return rdev->desc->n_voltages;
3321
3322 if (!rdev->is_switch || !rdev->supply)
3323 return -EINVAL;
3324
3325 return regulator_count_voltages(rdev->supply);
3326 }
3327 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3328
3329 /**
3330 * regulator_list_voltage - enumerate supported voltages
3331 * @regulator: regulator source
3332 * @selector: identify voltage to list
3333 * Context: can sleep
3334 *
3335 * Return: Voltage for @selector that can be passed to regulator_set_voltage(),
3336 * 0 if @selector can't be used on this system, or a negative error
3337 * number on failure.
3338 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3339 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3340 {
3341 return _regulator_list_voltage(regulator->rdev, selector, 1);
3342 }
3343 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3344
3345 /**
3346 * regulator_get_regmap - get the regulator's register map
3347 * @regulator: regulator source
3348 *
3349 * Return: Pointer to the &struct regmap for @regulator, or ERR_PTR()
3350 * encoded -%EOPNOTSUPP if @regulator doesn't use regmap.
3351 */
regulator_get_regmap(struct regulator * regulator)3352 struct regmap *regulator_get_regmap(struct regulator *regulator)
3353 {
3354 struct regmap *map = regulator->rdev->regmap;
3355
3356 return map ? map : ERR_PTR(-EOPNOTSUPP);
3357 }
3358 EXPORT_SYMBOL_GPL(regulator_get_regmap);
3359
3360 /**
3361 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3362 * @regulator: regulator source
3363 * @vsel_reg: voltage selector register, output parameter
3364 * @vsel_mask: mask for voltage selector bitfield, output parameter
3365 *
3366 * Returns the hardware register offset and bitmask used for setting the
3367 * regulator voltage. This might be useful when configuring voltage-scaling
3368 * hardware or firmware that can make I2C requests behind the kernel's back,
3369 * for example.
3370 *
3371 * Return: 0 on success, or -%EOPNOTSUPP if the regulator does not support
3372 * voltage selectors.
3373 *
3374 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3375 * and 0 is returned, otherwise a negative error number is returned.
3376 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3377 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3378 unsigned *vsel_reg,
3379 unsigned *vsel_mask)
3380 {
3381 struct regulator_dev *rdev = regulator->rdev;
3382 const struct regulator_ops *ops = rdev->desc->ops;
3383
3384 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3385 return -EOPNOTSUPP;
3386
3387 *vsel_reg = rdev->desc->vsel_reg;
3388 *vsel_mask = rdev->desc->vsel_mask;
3389
3390 return 0;
3391 }
3392 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3393
3394 /**
3395 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3396 * @regulator: regulator source
3397 * @selector: identify voltage to list
3398 *
3399 * Converts the selector to a hardware-specific voltage selector that can be
3400 * directly written to the regulator registers. The address of the voltage
3401 * register can be determined by calling @regulator_get_hardware_vsel_register.
3402 *
3403 * Return: 0 on success, -%EINVAL if the selector is outside the supported
3404 * range, or -%EOPNOTSUPP if the regulator does not support voltage
3405 * selectors.
3406 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3407 int regulator_list_hardware_vsel(struct regulator *regulator,
3408 unsigned selector)
3409 {
3410 struct regulator_dev *rdev = regulator->rdev;
3411 const struct regulator_ops *ops = rdev->desc->ops;
3412
3413 if (selector >= rdev->desc->n_voltages)
3414 return -EINVAL;
3415 if (selector < rdev->desc->linear_min_sel)
3416 return 0;
3417 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3418 return -EOPNOTSUPP;
3419
3420 return selector;
3421 }
3422 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3423
3424 /**
3425 * regulator_hardware_enable - access the HW for enable/disable regulator
3426 * @regulator: regulator source
3427 * @enable: true for enable, false for disable
3428 *
3429 * Request that the regulator be enabled/disabled with the regulator output at
3430 * the predefined voltage or current value.
3431 *
3432 * Return: 0 on success or a negative error number on failure.
3433 */
regulator_hardware_enable(struct regulator * regulator,bool enable)3434 int regulator_hardware_enable(struct regulator *regulator, bool enable)
3435 {
3436 struct regulator_dev *rdev = regulator->rdev;
3437 const struct regulator_ops *ops = rdev->desc->ops;
3438 int ret = -EOPNOTSUPP;
3439
3440 if (!rdev->exclusive || !ops || !ops->enable || !ops->disable)
3441 return ret;
3442
3443 if (enable)
3444 ret = ops->enable(rdev);
3445 else
3446 ret = ops->disable(rdev);
3447
3448 return ret;
3449 }
3450 EXPORT_SYMBOL_GPL(regulator_hardware_enable);
3451
3452 /**
3453 * regulator_get_linear_step - return the voltage step size between VSEL values
3454 * @regulator: regulator source
3455 *
3456 * Return: The voltage step size between VSEL values for linear regulators,
3457 * or 0 if the regulator isn't a linear regulator.
3458 */
regulator_get_linear_step(struct regulator * regulator)3459 unsigned int regulator_get_linear_step(struct regulator *regulator)
3460 {
3461 struct regulator_dev *rdev = regulator->rdev;
3462
3463 return rdev->desc->uV_step;
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3466
3467 /**
3468 * regulator_is_supported_voltage - check if a voltage range can be supported
3469 *
3470 * @regulator: Regulator to check.
3471 * @min_uV: Minimum required voltage in uV.
3472 * @max_uV: Maximum required voltage in uV.
3473 *
3474 * Return: 1 if the voltage range is supported, 0 if not, or a negative error
3475 * number if @regulator's voltage can't be changed and voltage readback
3476 * failed.
3477 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3478 int regulator_is_supported_voltage(struct regulator *regulator,
3479 int min_uV, int max_uV)
3480 {
3481 struct regulator_dev *rdev = regulator->rdev;
3482 int i, voltages, ret;
3483
3484 /* If we can't change voltage check the current voltage */
3485 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3486 ret = regulator_get_voltage(regulator);
3487 if (ret >= 0)
3488 return min_uV <= ret && ret <= max_uV;
3489 else
3490 return ret;
3491 }
3492
3493 /* Any voltage within constrains range is fine? */
3494 if (rdev->desc->continuous_voltage_range)
3495 return min_uV >= rdev->constraints->min_uV &&
3496 max_uV <= rdev->constraints->max_uV;
3497
3498 ret = regulator_count_voltages(regulator);
3499 if (ret < 0)
3500 return 0;
3501 voltages = ret;
3502
3503 for (i = 0; i < voltages; i++) {
3504 ret = regulator_list_voltage(regulator, i);
3505
3506 if (ret >= min_uV && ret <= max_uV)
3507 return 1;
3508 }
3509
3510 return 0;
3511 }
3512 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3513
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3514 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3515 int max_uV)
3516 {
3517 const struct regulator_desc *desc = rdev->desc;
3518
3519 if (desc->ops->map_voltage)
3520 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3521
3522 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3523 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3524
3525 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3526 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3527
3528 if (desc->ops->list_voltage ==
3529 regulator_list_voltage_pickable_linear_range)
3530 return regulator_map_voltage_pickable_linear_range(rdev,
3531 min_uV, max_uV);
3532
3533 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3534 }
3535
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3536 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3537 int min_uV, int max_uV,
3538 unsigned *selector)
3539 {
3540 struct pre_voltage_change_data data;
3541 int ret;
3542
3543 data.old_uV = regulator_get_voltage_rdev(rdev);
3544 data.min_uV = min_uV;
3545 data.max_uV = max_uV;
3546 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3547 &data);
3548 if (ret & NOTIFY_STOP_MASK)
3549 return -EINVAL;
3550
3551 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3552 if (ret >= 0)
3553 return ret;
3554
3555 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3556 (void *)data.old_uV);
3557
3558 return ret;
3559 }
3560
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3561 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3562 int uV, unsigned selector)
3563 {
3564 struct pre_voltage_change_data data;
3565 int ret;
3566
3567 data.old_uV = regulator_get_voltage_rdev(rdev);
3568 data.min_uV = uV;
3569 data.max_uV = uV;
3570 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3571 &data);
3572 if (ret & NOTIFY_STOP_MASK)
3573 return -EINVAL;
3574
3575 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3576 if (ret >= 0)
3577 return ret;
3578
3579 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3580 (void *)data.old_uV);
3581
3582 return ret;
3583 }
3584
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3585 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3586 int uV, int new_selector)
3587 {
3588 const struct regulator_ops *ops = rdev->desc->ops;
3589 int diff, old_sel, curr_sel, ret;
3590
3591 /* Stepping is only needed if the regulator is enabled. */
3592 if (!_regulator_is_enabled(rdev))
3593 goto final_set;
3594
3595 if (!ops->get_voltage_sel)
3596 return -EINVAL;
3597
3598 old_sel = ops->get_voltage_sel(rdev);
3599 if (old_sel < 0)
3600 return old_sel;
3601
3602 diff = new_selector - old_sel;
3603 if (diff == 0)
3604 return 0; /* No change needed. */
3605
3606 if (diff > 0) {
3607 /* Stepping up. */
3608 for (curr_sel = old_sel + rdev->desc->vsel_step;
3609 curr_sel < new_selector;
3610 curr_sel += rdev->desc->vsel_step) {
3611 /*
3612 * Call the callback directly instead of using
3613 * _regulator_call_set_voltage_sel() as we don't
3614 * want to notify anyone yet. Same in the branch
3615 * below.
3616 */
3617 ret = ops->set_voltage_sel(rdev, curr_sel);
3618 if (ret)
3619 goto try_revert;
3620 }
3621 } else {
3622 /* Stepping down. */
3623 for (curr_sel = old_sel - rdev->desc->vsel_step;
3624 curr_sel > new_selector;
3625 curr_sel -= rdev->desc->vsel_step) {
3626 ret = ops->set_voltage_sel(rdev, curr_sel);
3627 if (ret)
3628 goto try_revert;
3629 }
3630 }
3631
3632 final_set:
3633 /* The final selector will trigger the notifiers. */
3634 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3635
3636 try_revert:
3637 /*
3638 * At least try to return to the previous voltage if setting a new
3639 * one failed.
3640 */
3641 (void)ops->set_voltage_sel(rdev, old_sel);
3642 return ret;
3643 }
3644
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3645 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3646 int old_uV, int new_uV)
3647 {
3648 unsigned int ramp_delay = 0;
3649
3650 if (rdev->constraints->ramp_delay)
3651 ramp_delay = rdev->constraints->ramp_delay;
3652 else if (rdev->desc->ramp_delay)
3653 ramp_delay = rdev->desc->ramp_delay;
3654 else if (rdev->constraints->settling_time)
3655 return rdev->constraints->settling_time;
3656 else if (rdev->constraints->settling_time_up &&
3657 (new_uV > old_uV))
3658 return rdev->constraints->settling_time_up;
3659 else if (rdev->constraints->settling_time_down &&
3660 (new_uV < old_uV))
3661 return rdev->constraints->settling_time_down;
3662
3663 if (ramp_delay == 0)
3664 return 0;
3665
3666 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3667 }
3668
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3669 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3670 int min_uV, int max_uV)
3671 {
3672 int ret;
3673 int delay = 0;
3674 int best_val = 0;
3675 unsigned int selector;
3676 int old_selector = -1;
3677 const struct regulator_ops *ops = rdev->desc->ops;
3678 int old_uV = regulator_get_voltage_rdev(rdev);
3679
3680 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3681
3682 min_uV += rdev->constraints->uV_offset;
3683 max_uV += rdev->constraints->uV_offset;
3684
3685 /*
3686 * If we can't obtain the old selector there is not enough
3687 * info to call set_voltage_time_sel().
3688 */
3689 if (_regulator_is_enabled(rdev) &&
3690 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3691 old_selector = ops->get_voltage_sel(rdev);
3692 if (old_selector < 0)
3693 return old_selector;
3694 }
3695
3696 if (ops->set_voltage) {
3697 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3698 &selector);
3699
3700 if (ret >= 0) {
3701 if (ops->list_voltage)
3702 best_val = ops->list_voltage(rdev,
3703 selector);
3704 else
3705 best_val = regulator_get_voltage_rdev(rdev);
3706 }
3707
3708 } else if (ops->set_voltage_sel) {
3709 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3710 if (ret >= 0) {
3711 best_val = ops->list_voltage(rdev, ret);
3712 if (min_uV <= best_val && max_uV >= best_val) {
3713 selector = ret;
3714 if (old_selector == selector)
3715 ret = 0;
3716 else if (rdev->desc->vsel_step)
3717 ret = _regulator_set_voltage_sel_step(
3718 rdev, best_val, selector);
3719 else
3720 ret = _regulator_call_set_voltage_sel(
3721 rdev, best_val, selector);
3722 } else {
3723 ret = -EINVAL;
3724 }
3725 }
3726 } else {
3727 ret = -EINVAL;
3728 }
3729
3730 if (ret)
3731 goto out;
3732
3733 if (ops->set_voltage_time_sel) {
3734 /*
3735 * Call set_voltage_time_sel if successfully obtained
3736 * old_selector
3737 */
3738 if (old_selector >= 0 && old_selector != selector)
3739 delay = ops->set_voltage_time_sel(rdev, old_selector,
3740 selector);
3741 } else {
3742 if (old_uV != best_val) {
3743 if (ops->set_voltage_time)
3744 delay = ops->set_voltage_time(rdev, old_uV,
3745 best_val);
3746 else
3747 delay = _regulator_set_voltage_time(rdev,
3748 old_uV,
3749 best_val);
3750 }
3751 }
3752
3753 if (delay < 0) {
3754 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3755 delay = 0;
3756 }
3757
3758 /* Insert any necessary delays */
3759 fsleep(delay);
3760
3761 if (best_val >= 0) {
3762 unsigned long data = best_val;
3763
3764 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3765 (void *)data);
3766 }
3767
3768 out:
3769 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3770
3771 return ret;
3772 }
3773
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3774 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3775 int min_uV, int max_uV, suspend_state_t state)
3776 {
3777 struct regulator_state *rstate;
3778 int uV, sel;
3779
3780 rstate = regulator_get_suspend_state(rdev, state);
3781 if (rstate == NULL)
3782 return -EINVAL;
3783
3784 if (min_uV < rstate->min_uV)
3785 min_uV = rstate->min_uV;
3786 if (max_uV > rstate->max_uV)
3787 max_uV = rstate->max_uV;
3788
3789 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3790 if (sel < 0)
3791 return sel;
3792
3793 uV = rdev->desc->ops->list_voltage(rdev, sel);
3794 if (uV >= min_uV && uV <= max_uV)
3795 rstate->uV = uV;
3796
3797 return 0;
3798 }
3799
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3800 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3801 int min_uV, int max_uV,
3802 suspend_state_t state)
3803 {
3804 struct regulator_dev *rdev = regulator->rdev;
3805 struct regulator_voltage *voltage = ®ulator->voltage[state];
3806 int ret = 0;
3807 int old_min_uV, old_max_uV;
3808 int current_uV;
3809
3810 /* If we're setting the same range as last time the change
3811 * should be a noop (some cpufreq implementations use the same
3812 * voltage for multiple frequencies, for example).
3813 */
3814 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3815 goto out;
3816
3817 /* If we're trying to set a range that overlaps the current voltage,
3818 * return successfully even though the regulator does not support
3819 * changing the voltage.
3820 */
3821 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3822 current_uV = regulator_get_voltage_rdev(rdev);
3823 if (min_uV <= current_uV && current_uV <= max_uV) {
3824 voltage->min_uV = min_uV;
3825 voltage->max_uV = max_uV;
3826 goto out;
3827 }
3828 }
3829
3830 /* sanity check */
3831 if (!rdev->desc->ops->set_voltage &&
3832 !rdev->desc->ops->set_voltage_sel) {
3833 ret = -EINVAL;
3834 goto out;
3835 }
3836
3837 /* constraints check */
3838 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3839 if (ret < 0)
3840 goto out;
3841
3842 /* restore original values in case of error */
3843 old_min_uV = voltage->min_uV;
3844 old_max_uV = voltage->max_uV;
3845 voltage->min_uV = min_uV;
3846 voltage->max_uV = max_uV;
3847
3848 /* for not coupled regulators this will just set the voltage */
3849 ret = regulator_balance_voltage(rdev, state);
3850 if (ret < 0) {
3851 voltage->min_uV = old_min_uV;
3852 voltage->max_uV = old_max_uV;
3853 }
3854
3855 out:
3856 return ret;
3857 }
3858
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3859 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3860 int max_uV, suspend_state_t state)
3861 {
3862 int best_supply_uV = 0;
3863 int supply_change_uV = 0;
3864 int ret;
3865
3866 if (rdev->supply &&
3867 regulator_ops_is_valid(rdev->supply->rdev,
3868 REGULATOR_CHANGE_VOLTAGE) &&
3869 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3870 rdev->desc->ops->get_voltage_sel))) {
3871 int current_supply_uV;
3872 int selector;
3873
3874 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3875 if (selector < 0) {
3876 ret = selector;
3877 goto out;
3878 }
3879
3880 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3881 if (best_supply_uV < 0) {
3882 ret = best_supply_uV;
3883 goto out;
3884 }
3885
3886 best_supply_uV += rdev->desc->min_dropout_uV;
3887
3888 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3889 if (current_supply_uV < 0) {
3890 ret = current_supply_uV;
3891 goto out;
3892 }
3893
3894 supply_change_uV = best_supply_uV - current_supply_uV;
3895 }
3896
3897 if (supply_change_uV > 0) {
3898 ret = regulator_set_voltage_unlocked(rdev->supply,
3899 best_supply_uV, INT_MAX, state);
3900 if (ret) {
3901 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3902 ERR_PTR(ret));
3903 goto out;
3904 }
3905 }
3906
3907 if (state == PM_SUSPEND_ON)
3908 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3909 else
3910 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3911 max_uV, state);
3912 if (ret < 0)
3913 goto out;
3914
3915 if (supply_change_uV < 0) {
3916 ret = regulator_set_voltage_unlocked(rdev->supply,
3917 best_supply_uV, INT_MAX, state);
3918 if (ret)
3919 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3920 ERR_PTR(ret));
3921 /* No need to fail here */
3922 ret = 0;
3923 }
3924
3925 out:
3926 return ret;
3927 }
3928 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3929
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3930 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3931 int *current_uV, int *min_uV)
3932 {
3933 struct regulation_constraints *constraints = rdev->constraints;
3934
3935 /* Limit voltage change only if necessary */
3936 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3937 return 1;
3938
3939 if (*current_uV < 0) {
3940 *current_uV = regulator_get_voltage_rdev(rdev);
3941
3942 if (*current_uV < 0)
3943 return *current_uV;
3944 }
3945
3946 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3947 return 1;
3948
3949 /* Clamp target voltage within the given step */
3950 if (*current_uV < *min_uV)
3951 *min_uV = min(*current_uV + constraints->max_uV_step,
3952 *min_uV);
3953 else
3954 *min_uV = max(*current_uV - constraints->max_uV_step,
3955 *min_uV);
3956
3957 return 0;
3958 }
3959
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3960 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3961 int *current_uV,
3962 int *min_uV, int *max_uV,
3963 suspend_state_t state,
3964 int n_coupled)
3965 {
3966 struct coupling_desc *c_desc = &rdev->coupling_desc;
3967 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3968 struct regulation_constraints *constraints = rdev->constraints;
3969 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3970 int max_current_uV = 0, min_current_uV = INT_MAX;
3971 int highest_min_uV = 0, target_uV, possible_uV;
3972 int i, ret, max_spread;
3973 bool done;
3974
3975 *current_uV = -1;
3976
3977 /*
3978 * If there are no coupled regulators, simply set the voltage
3979 * demanded by consumers.
3980 */
3981 if (n_coupled == 1) {
3982 /*
3983 * If consumers don't provide any demands, set voltage
3984 * to min_uV
3985 */
3986 desired_min_uV = constraints->min_uV;
3987 desired_max_uV = constraints->max_uV;
3988
3989 ret = regulator_check_consumers(rdev,
3990 &desired_min_uV,
3991 &desired_max_uV, state);
3992 if (ret < 0)
3993 return ret;
3994
3995 done = true;
3996
3997 goto finish;
3998 }
3999
4000 /* Find highest min desired voltage */
4001 for (i = 0; i < n_coupled; i++) {
4002 int tmp_min = 0;
4003 int tmp_max = INT_MAX;
4004
4005 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
4006
4007 ret = regulator_check_consumers(c_rdevs[i],
4008 &tmp_min,
4009 &tmp_max, state);
4010 if (ret < 0)
4011 return ret;
4012
4013 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
4014 if (ret < 0)
4015 return ret;
4016
4017 highest_min_uV = max(highest_min_uV, tmp_min);
4018
4019 if (i == 0) {
4020 desired_min_uV = tmp_min;
4021 desired_max_uV = tmp_max;
4022 }
4023 }
4024
4025 max_spread = constraints->max_spread[0];
4026
4027 /*
4028 * Let target_uV be equal to the desired one if possible.
4029 * If not, set it to minimum voltage, allowed by other coupled
4030 * regulators.
4031 */
4032 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
4033
4034 /*
4035 * Find min and max voltages, which currently aren't violating
4036 * max_spread.
4037 */
4038 for (i = 1; i < n_coupled; i++) {
4039 int tmp_act;
4040
4041 if (!_regulator_is_enabled(c_rdevs[i]))
4042 continue;
4043
4044 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4045 if (tmp_act < 0)
4046 return tmp_act;
4047
4048 min_current_uV = min(tmp_act, min_current_uV);
4049 max_current_uV = max(tmp_act, max_current_uV);
4050 }
4051
4052 /* There aren't any other regulators enabled */
4053 if (max_current_uV == 0) {
4054 possible_uV = target_uV;
4055 } else {
4056 /*
4057 * Correct target voltage, so as it currently isn't
4058 * violating max_spread
4059 */
4060 possible_uV = max(target_uV, max_current_uV - max_spread);
4061 possible_uV = min(possible_uV, min_current_uV + max_spread);
4062 }
4063
4064 if (possible_uV > desired_max_uV)
4065 return -EINVAL;
4066
4067 done = (possible_uV == target_uV);
4068 desired_min_uV = possible_uV;
4069
4070 finish:
4071 /* Apply max_uV_step constraint if necessary */
4072 if (state == PM_SUSPEND_ON) {
4073 ret = regulator_limit_voltage_step(rdev, current_uV,
4074 &desired_min_uV);
4075 if (ret < 0)
4076 return ret;
4077
4078 if (ret == 0)
4079 done = false;
4080 }
4081
4082 /* Set current_uV if wasn't done earlier in the code and if necessary */
4083 if (n_coupled > 1 && *current_uV == -1) {
4084
4085 if (_regulator_is_enabled(rdev)) {
4086 ret = regulator_get_voltage_rdev(rdev);
4087 if (ret < 0)
4088 return ret;
4089
4090 *current_uV = ret;
4091 } else {
4092 *current_uV = desired_min_uV;
4093 }
4094 }
4095
4096 *min_uV = desired_min_uV;
4097 *max_uV = desired_max_uV;
4098
4099 return done;
4100 }
4101
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)4102 int regulator_do_balance_voltage(struct regulator_dev *rdev,
4103 suspend_state_t state, bool skip_coupled)
4104 {
4105 struct regulator_dev **c_rdevs;
4106 struct regulator_dev *best_rdev;
4107 struct coupling_desc *c_desc = &rdev->coupling_desc;
4108 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4109 unsigned int delta, best_delta;
4110 unsigned long c_rdev_done = 0;
4111 bool best_c_rdev_done;
4112
4113 c_rdevs = c_desc->coupled_rdevs;
4114 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4115
4116 /*
4117 * Find the best possible voltage change on each loop. Leave the loop
4118 * if there isn't any possible change.
4119 */
4120 do {
4121 best_c_rdev_done = false;
4122 best_delta = 0;
4123 best_min_uV = 0;
4124 best_max_uV = 0;
4125 best_c_rdev = 0;
4126 best_rdev = NULL;
4127
4128 /*
4129 * Find highest difference between optimal voltage
4130 * and current voltage.
4131 */
4132 for (i = 0; i < n_coupled; i++) {
4133 /*
4134 * optimal_uV is the best voltage that can be set for
4135 * i-th regulator at the moment without violating
4136 * max_spread constraint in order to balance
4137 * the coupled voltages.
4138 */
4139 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4140
4141 if (test_bit(i, &c_rdev_done))
4142 continue;
4143
4144 ret = regulator_get_optimal_voltage(c_rdevs[i],
4145 ¤t_uV,
4146 &optimal_uV,
4147 &optimal_max_uV,
4148 state, n_coupled);
4149 if (ret < 0)
4150 goto out;
4151
4152 delta = abs(optimal_uV - current_uV);
4153
4154 if (delta && best_delta <= delta) {
4155 best_c_rdev_done = ret;
4156 best_delta = delta;
4157 best_rdev = c_rdevs[i];
4158 best_min_uV = optimal_uV;
4159 best_max_uV = optimal_max_uV;
4160 best_c_rdev = i;
4161 }
4162 }
4163
4164 /* Nothing to change, return successfully */
4165 if (!best_rdev) {
4166 ret = 0;
4167 goto out;
4168 }
4169
4170 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4171 best_max_uV, state);
4172
4173 if (ret < 0)
4174 goto out;
4175
4176 if (best_c_rdev_done)
4177 set_bit(best_c_rdev, &c_rdev_done);
4178
4179 } while (n_coupled > 1);
4180
4181 out:
4182 return ret;
4183 }
4184
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)4185 static int regulator_balance_voltage(struct regulator_dev *rdev,
4186 suspend_state_t state)
4187 {
4188 struct coupling_desc *c_desc = &rdev->coupling_desc;
4189 struct regulator_coupler *coupler = c_desc->coupler;
4190 bool skip_coupled = false;
4191
4192 /*
4193 * If system is in a state other than PM_SUSPEND_ON, don't check
4194 * other coupled regulators.
4195 */
4196 if (state != PM_SUSPEND_ON)
4197 skip_coupled = true;
4198
4199 if (c_desc->n_resolved < c_desc->n_coupled) {
4200 rdev_err(rdev, "Not all coupled regulators registered\n");
4201 return -EPERM;
4202 }
4203
4204 /* Invoke custom balancer for customized couplers */
4205 if (coupler && coupler->balance_voltage)
4206 return coupler->balance_voltage(coupler, rdev, state);
4207
4208 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4209 }
4210
4211 /**
4212 * regulator_set_voltage - set regulator output voltage
4213 * @regulator: regulator source
4214 * @min_uV: Minimum required voltage in uV
4215 * @max_uV: Maximum acceptable voltage in uV
4216 *
4217 * Sets a voltage regulator to the desired output voltage. This can be set
4218 * during any regulator state. IOW, regulator can be disabled or enabled.
4219 *
4220 * If the regulator is enabled then the voltage will change to the new value
4221 * immediately otherwise if the regulator is disabled the regulator will
4222 * output at the new voltage when enabled.
4223 *
4224 * NOTE: If the regulator is shared between several devices then the lowest
4225 * request voltage that meets the system constraints will be used.
4226 * Regulator system constraints must be set for this regulator before
4227 * calling this function otherwise this call will fail.
4228 *
4229 * Return: 0 on success or a negative error number on failure.
4230 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)4231 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4232 {
4233 struct ww_acquire_ctx ww_ctx;
4234 int ret;
4235
4236 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4237
4238 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4239 PM_SUSPEND_ON);
4240
4241 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4242
4243 return ret;
4244 }
4245 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4246
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)4247 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4248 suspend_state_t state, bool en)
4249 {
4250 struct regulator_state *rstate;
4251
4252 rstate = regulator_get_suspend_state(rdev, state);
4253 if (rstate == NULL)
4254 return -EINVAL;
4255
4256 if (!rstate->changeable)
4257 return -EPERM;
4258
4259 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4260
4261 return 0;
4262 }
4263
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)4264 int regulator_suspend_enable(struct regulator_dev *rdev,
4265 suspend_state_t state)
4266 {
4267 return regulator_suspend_toggle(rdev, state, true);
4268 }
4269 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4270
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)4271 int regulator_suspend_disable(struct regulator_dev *rdev,
4272 suspend_state_t state)
4273 {
4274 struct regulator *regulator;
4275 struct regulator_voltage *voltage;
4276
4277 /*
4278 * if any consumer wants this regulator device keeping on in
4279 * suspend states, don't set it as disabled.
4280 */
4281 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4282 voltage = ®ulator->voltage[state];
4283 if (voltage->min_uV || voltage->max_uV)
4284 return 0;
4285 }
4286
4287 return regulator_suspend_toggle(rdev, state, false);
4288 }
4289 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4290
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4291 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4292 int min_uV, int max_uV,
4293 suspend_state_t state)
4294 {
4295 struct regulator_dev *rdev = regulator->rdev;
4296 struct regulator_state *rstate;
4297
4298 rstate = regulator_get_suspend_state(rdev, state);
4299 if (rstate == NULL)
4300 return -EINVAL;
4301
4302 if (rstate->min_uV == rstate->max_uV) {
4303 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4304 return -EPERM;
4305 }
4306
4307 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4308 }
4309
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4310 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4311 int max_uV, suspend_state_t state)
4312 {
4313 struct ww_acquire_ctx ww_ctx;
4314 int ret;
4315
4316 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4317 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4318 return -EINVAL;
4319
4320 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4321
4322 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4323 max_uV, state);
4324
4325 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4326
4327 return ret;
4328 }
4329 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4330
4331 /**
4332 * regulator_set_voltage_time - get raise/fall time
4333 * @regulator: regulator source
4334 * @old_uV: starting voltage in microvolts
4335 * @new_uV: target voltage in microvolts
4336 *
4337 * Provided with the starting and ending voltage, this function attempts to
4338 * calculate the time in microseconds required to rise or fall to this new
4339 * voltage.
4340 *
4341 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4342 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4343 int regulator_set_voltage_time(struct regulator *regulator,
4344 int old_uV, int new_uV)
4345 {
4346 struct regulator_dev *rdev = regulator->rdev;
4347 const struct regulator_ops *ops = rdev->desc->ops;
4348 int old_sel = -1;
4349 int new_sel = -1;
4350 int voltage;
4351 int i;
4352
4353 if (ops->set_voltage_time)
4354 return ops->set_voltage_time(rdev, old_uV, new_uV);
4355 else if (!ops->set_voltage_time_sel)
4356 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4357
4358 /* Currently requires operations to do this */
4359 if (!ops->list_voltage || !rdev->desc->n_voltages)
4360 return -EINVAL;
4361
4362 for (i = 0; i < rdev->desc->n_voltages; i++) {
4363 /* We only look for exact voltage matches here */
4364 if (i < rdev->desc->linear_min_sel)
4365 continue;
4366
4367 if (old_sel >= 0 && new_sel >= 0)
4368 break;
4369
4370 voltage = regulator_list_voltage(regulator, i);
4371 if (voltage < 0)
4372 return -EINVAL;
4373 if (voltage == 0)
4374 continue;
4375 if (voltage == old_uV)
4376 old_sel = i;
4377 if (voltage == new_uV)
4378 new_sel = i;
4379 }
4380
4381 if (old_sel < 0 || new_sel < 0)
4382 return -EINVAL;
4383
4384 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4385 }
4386 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4387
4388 /**
4389 * regulator_set_voltage_time_sel - get raise/fall time
4390 * @rdev: regulator source device
4391 * @old_selector: selector for starting voltage
4392 * @new_selector: selector for target voltage
4393 *
4394 * Provided with the starting and target voltage selectors, this function
4395 * returns time in microseconds required to rise or fall to this new voltage
4396 *
4397 * Drivers providing ramp_delay in regulation_constraints can use this as their
4398 * set_voltage_time_sel() operation.
4399 *
4400 * Return: ramp time in microseconds, or a negative error number if calculation failed.
4401 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4402 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4403 unsigned int old_selector,
4404 unsigned int new_selector)
4405 {
4406 int old_volt, new_volt;
4407
4408 /* sanity check */
4409 if (!rdev->desc->ops->list_voltage)
4410 return -EINVAL;
4411
4412 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4413 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4414
4415 if (rdev->desc->ops->set_voltage_time)
4416 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4417 new_volt);
4418 else
4419 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4420 }
4421 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4422
regulator_sync_voltage_rdev(struct regulator_dev * rdev)4423 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4424 {
4425 int ret;
4426
4427 regulator_lock(rdev);
4428
4429 if (!rdev->desc->ops->set_voltage &&
4430 !rdev->desc->ops->set_voltage_sel) {
4431 ret = -EINVAL;
4432 goto out;
4433 }
4434
4435 /* balance only, if regulator is coupled */
4436 if (rdev->coupling_desc.n_coupled > 1)
4437 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4438 else
4439 ret = -EOPNOTSUPP;
4440
4441 out:
4442 regulator_unlock(rdev);
4443 return ret;
4444 }
4445
4446 /**
4447 * regulator_sync_voltage - re-apply last regulator output voltage
4448 * @regulator: regulator source
4449 *
4450 * Re-apply the last configured voltage. This is intended to be used
4451 * where some external control source the consumer is cooperating with
4452 * has caused the configured voltage to change.
4453 *
4454 * Return: 0 on success or a negative error number on failure.
4455 */
regulator_sync_voltage(struct regulator * regulator)4456 int regulator_sync_voltage(struct regulator *regulator)
4457 {
4458 struct regulator_dev *rdev = regulator->rdev;
4459 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4460 int ret, min_uV, max_uV;
4461
4462 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4463 return 0;
4464
4465 regulator_lock(rdev);
4466
4467 if (!rdev->desc->ops->set_voltage &&
4468 !rdev->desc->ops->set_voltage_sel) {
4469 ret = -EINVAL;
4470 goto out;
4471 }
4472
4473 /* This is only going to work if we've had a voltage configured. */
4474 if (!voltage->min_uV && !voltage->max_uV) {
4475 ret = -EINVAL;
4476 goto out;
4477 }
4478
4479 min_uV = voltage->min_uV;
4480 max_uV = voltage->max_uV;
4481
4482 /* This should be a paranoia check... */
4483 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4484 if (ret < 0)
4485 goto out;
4486
4487 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4488 if (ret < 0)
4489 goto out;
4490
4491 /* balance only, if regulator is coupled */
4492 if (rdev->coupling_desc.n_coupled > 1)
4493 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4494 else
4495 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4496
4497 out:
4498 regulator_unlock(rdev);
4499 return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4502
regulator_get_voltage_rdev(struct regulator_dev * rdev)4503 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4504 {
4505 int sel, ret;
4506 bool bypassed;
4507
4508 if (rdev->desc->ops->get_bypass) {
4509 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4510 if (ret < 0)
4511 return ret;
4512 if (bypassed) {
4513 /* if bypassed the regulator must have a supply */
4514 if (!rdev->supply) {
4515 rdev_err(rdev,
4516 "bypassed regulator has no supply!\n");
4517 return -EPROBE_DEFER;
4518 }
4519
4520 return regulator_get_voltage_rdev(rdev->supply->rdev);
4521 }
4522 }
4523
4524 if (rdev->desc->ops->get_voltage_sel) {
4525 sel = rdev->desc->ops->get_voltage_sel(rdev);
4526 if (sel < 0)
4527 return sel;
4528 ret = rdev->desc->ops->list_voltage(rdev, sel);
4529 } else if (rdev->desc->ops->get_voltage) {
4530 ret = rdev->desc->ops->get_voltage(rdev);
4531 } else if (rdev->desc->ops->list_voltage) {
4532 ret = rdev->desc->ops->list_voltage(rdev, 0);
4533 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4534 ret = rdev->desc->fixed_uV;
4535 } else if (rdev->supply) {
4536 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4537 } else if (rdev->supply_name) {
4538 return -EPROBE_DEFER;
4539 } else {
4540 return -EINVAL;
4541 }
4542
4543 if (ret < 0)
4544 return ret;
4545 return ret - rdev->constraints->uV_offset;
4546 }
4547 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4548
4549 /**
4550 * regulator_get_voltage - get regulator output voltage
4551 * @regulator: regulator source
4552 *
4553 * Return: Current regulator voltage in uV, or a negative error number on failure.
4554 *
4555 * NOTE: If the regulator is disabled it will return the voltage value. This
4556 * function should not be used to determine regulator state.
4557 */
regulator_get_voltage(struct regulator * regulator)4558 int regulator_get_voltage(struct regulator *regulator)
4559 {
4560 struct ww_acquire_ctx ww_ctx;
4561 int ret;
4562
4563 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4564 ret = regulator_get_voltage_rdev(regulator->rdev);
4565 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4566
4567 return ret;
4568 }
4569 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4570
4571 /**
4572 * regulator_set_current_limit - set regulator output current limit
4573 * @regulator: regulator source
4574 * @min_uA: Minimum supported current in uA
4575 * @max_uA: Maximum supported current in uA
4576 *
4577 * Sets current sink to the desired output current. This can be set during
4578 * any regulator state. IOW, regulator can be disabled or enabled.
4579 *
4580 * If the regulator is enabled then the current will change to the new value
4581 * immediately otherwise if the regulator is disabled the regulator will
4582 * output at the new current when enabled.
4583 *
4584 * NOTE: Regulator system constraints must be set for this regulator before
4585 * calling this function otherwise this call will fail.
4586 *
4587 * Return: 0 on success or a negative error number on failure.
4588 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4589 int regulator_set_current_limit(struct regulator *regulator,
4590 int min_uA, int max_uA)
4591 {
4592 struct regulator_dev *rdev = regulator->rdev;
4593 int ret;
4594
4595 regulator_lock(rdev);
4596
4597 /* sanity check */
4598 if (!rdev->desc->ops->set_current_limit) {
4599 ret = -EINVAL;
4600 goto out;
4601 }
4602
4603 /* constraints check */
4604 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4605 if (ret < 0)
4606 goto out;
4607
4608 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4609 out:
4610 regulator_unlock(rdev);
4611 return ret;
4612 }
4613 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4614
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4615 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4616 {
4617 /* sanity check */
4618 if (!rdev->desc->ops->get_current_limit)
4619 return -EINVAL;
4620
4621 return rdev->desc->ops->get_current_limit(rdev);
4622 }
4623
_regulator_get_current_limit(struct regulator_dev * rdev)4624 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4625 {
4626 int ret;
4627
4628 regulator_lock(rdev);
4629 ret = _regulator_get_current_limit_unlocked(rdev);
4630 regulator_unlock(rdev);
4631
4632 return ret;
4633 }
4634
4635 /**
4636 * regulator_get_current_limit - get regulator output current
4637 * @regulator: regulator source
4638 *
4639 * Return: Current supplied by the specified current sink in uA,
4640 * or a negative error number on failure.
4641 *
4642 * NOTE: If the regulator is disabled it will return the current value. This
4643 * function should not be used to determine regulator state.
4644 */
regulator_get_current_limit(struct regulator * regulator)4645 int regulator_get_current_limit(struct regulator *regulator)
4646 {
4647 return _regulator_get_current_limit(regulator->rdev);
4648 }
4649 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4650
4651 /**
4652 * regulator_get_unclaimed_power_budget - get regulator unclaimed power budget
4653 * @regulator: regulator source
4654 *
4655 * Return: Unclaimed power budget of the regulator in mW.
4656 */
regulator_get_unclaimed_power_budget(struct regulator * regulator)4657 int regulator_get_unclaimed_power_budget(struct regulator *regulator)
4658 {
4659 return regulator->rdev->constraints->pw_budget_mW -
4660 regulator->rdev->pw_requested_mW;
4661 }
4662 EXPORT_SYMBOL_GPL(regulator_get_unclaimed_power_budget);
4663
4664 /**
4665 * regulator_request_power_budget - request power budget on a regulator
4666 * @regulator: regulator source
4667 * @pw_req: Power requested
4668 *
4669 * Return: 0 on success or a negative error number on failure.
4670 */
regulator_request_power_budget(struct regulator * regulator,unsigned int pw_req)4671 int regulator_request_power_budget(struct regulator *regulator,
4672 unsigned int pw_req)
4673 {
4674 struct regulator_dev *rdev = regulator->rdev;
4675 int ret = 0, pw_tot_req;
4676
4677 regulator_lock(rdev);
4678 if (rdev->supply) {
4679 ret = regulator_request_power_budget(rdev->supply, pw_req);
4680 if (ret < 0)
4681 goto out;
4682 }
4683
4684 pw_tot_req = rdev->pw_requested_mW + pw_req;
4685 if (pw_tot_req > rdev->constraints->pw_budget_mW) {
4686 rdev_warn(rdev, "power requested %d mW out of budget %d mW",
4687 pw_req,
4688 rdev->constraints->pw_budget_mW - rdev->pw_requested_mW);
4689 regulator_notifier_call_chain(rdev,
4690 REGULATOR_EVENT_OVER_CURRENT_WARN,
4691 NULL);
4692 ret = -ERANGE;
4693 goto out;
4694 }
4695
4696 rdev->pw_requested_mW = pw_tot_req;
4697 out:
4698 regulator_unlock(rdev);
4699 return ret;
4700 }
4701 EXPORT_SYMBOL_GPL(regulator_request_power_budget);
4702
4703 /**
4704 * regulator_free_power_budget - free power budget on a regulator
4705 * @regulator: regulator source
4706 * @pw: Power to be released.
4707 *
4708 * Return: Power budget of the regulator in mW.
4709 */
regulator_free_power_budget(struct regulator * regulator,unsigned int pw)4710 void regulator_free_power_budget(struct regulator *regulator,
4711 unsigned int pw)
4712 {
4713 struct regulator_dev *rdev = regulator->rdev;
4714 int pw_tot_req;
4715
4716 regulator_lock(rdev);
4717 if (rdev->supply)
4718 regulator_free_power_budget(rdev->supply, pw);
4719
4720 pw_tot_req = rdev->pw_requested_mW - pw;
4721 if (pw_tot_req >= 0)
4722 rdev->pw_requested_mW = pw_tot_req;
4723 else
4724 rdev_warn(rdev,
4725 "too much power freed %d mW (already requested %d mW)",
4726 pw, rdev->pw_requested_mW);
4727
4728 regulator_unlock(rdev);
4729 }
4730 EXPORT_SYMBOL_GPL(regulator_free_power_budget);
4731
4732 /**
4733 * regulator_set_mode - set regulator operating mode
4734 * @regulator: regulator source
4735 * @mode: operating mode - one of the REGULATOR_MODE constants
4736 *
4737 * Set regulator operating mode to increase regulator efficiency or improve
4738 * regulation performance.
4739 *
4740 * NOTE: Regulator system constraints must be set for this regulator before
4741 * calling this function otherwise this call will fail.
4742 *
4743 * Return: 0 on success or a negative error number on failure.
4744 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4745 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4746 {
4747 struct regulator_dev *rdev = regulator->rdev;
4748 int ret;
4749 int regulator_curr_mode;
4750
4751 regulator_lock(rdev);
4752
4753 /* sanity check */
4754 if (!rdev->desc->ops->set_mode) {
4755 ret = -EINVAL;
4756 goto out;
4757 }
4758
4759 /* return if the same mode is requested */
4760 if (rdev->desc->ops->get_mode) {
4761 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4762 if (regulator_curr_mode == mode) {
4763 ret = 0;
4764 goto out;
4765 }
4766 }
4767
4768 /* constraints check */
4769 ret = regulator_mode_constrain(rdev, &mode);
4770 if (ret < 0)
4771 goto out;
4772
4773 ret = rdev->desc->ops->set_mode(rdev, mode);
4774 out:
4775 regulator_unlock(rdev);
4776 return ret;
4777 }
4778 EXPORT_SYMBOL_GPL(regulator_set_mode);
4779
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4780 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4781 {
4782 /* sanity check */
4783 if (!rdev->desc->ops->get_mode)
4784 return -EINVAL;
4785
4786 return rdev->desc->ops->get_mode(rdev);
4787 }
4788
_regulator_get_mode(struct regulator_dev * rdev)4789 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4790 {
4791 int ret;
4792
4793 regulator_lock(rdev);
4794 ret = _regulator_get_mode_unlocked(rdev);
4795 regulator_unlock(rdev);
4796
4797 return ret;
4798 }
4799
4800 /**
4801 * regulator_get_mode - get regulator operating mode
4802 * @regulator: regulator source
4803 *
4804 * Get the current regulator operating mode.
4805 *
4806 * Return: Current operating mode as %REGULATOR_MODE_* values,
4807 * or a negative error number on failure.
4808 */
regulator_get_mode(struct regulator * regulator)4809 unsigned int regulator_get_mode(struct regulator *regulator)
4810 {
4811 return _regulator_get_mode(regulator->rdev);
4812 }
4813 EXPORT_SYMBOL_GPL(regulator_get_mode);
4814
rdev_get_cached_err_flags(struct regulator_dev * rdev)4815 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4816 {
4817 int ret = 0;
4818
4819 if (rdev->use_cached_err) {
4820 spin_lock(&rdev->err_lock);
4821 ret = rdev->cached_err;
4822 spin_unlock(&rdev->err_lock);
4823 }
4824 return ret;
4825 }
4826
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4827 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4828 unsigned int *flags)
4829 {
4830 int cached_flags, ret = 0;
4831
4832 regulator_lock(rdev);
4833
4834 cached_flags = rdev_get_cached_err_flags(rdev);
4835
4836 if (rdev->desc->ops->get_error_flags)
4837 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4838 else if (!rdev->use_cached_err)
4839 ret = -EINVAL;
4840
4841 *flags |= cached_flags;
4842
4843 regulator_unlock(rdev);
4844
4845 return ret;
4846 }
4847
4848 /**
4849 * regulator_get_error_flags - get regulator error information
4850 * @regulator: regulator source
4851 * @flags: pointer to store error flags
4852 *
4853 * Get the current regulator error information.
4854 *
4855 * Return: 0 on success or a negative error number on failure.
4856 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4857 int regulator_get_error_flags(struct regulator *regulator,
4858 unsigned int *flags)
4859 {
4860 return _regulator_get_error_flags(regulator->rdev, flags);
4861 }
4862 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4863
4864 /**
4865 * regulator_set_load - set regulator load
4866 * @regulator: regulator source
4867 * @uA_load: load current
4868 *
4869 * Notifies the regulator core of a new device load. This is then used by
4870 * DRMS (if enabled by constraints) to set the most efficient regulator
4871 * operating mode for the new regulator loading.
4872 *
4873 * Consumer devices notify their supply regulator of the maximum power
4874 * they will require (can be taken from device datasheet in the power
4875 * consumption tables) when they change operational status and hence power
4876 * state. Examples of operational state changes that can affect power
4877 * consumption are :-
4878 *
4879 * o Device is opened / closed.
4880 * o Device I/O is about to begin or has just finished.
4881 * o Device is idling in between work.
4882 *
4883 * This information is also exported via sysfs to userspace.
4884 *
4885 * DRMS will sum the total requested load on the regulator and change
4886 * to the most efficient operating mode if platform constraints allow.
4887 *
4888 * NOTE: when a regulator consumer requests to have a regulator
4889 * disabled then any load that consumer requested no longer counts
4890 * toward the total requested load. If the regulator is re-enabled
4891 * then the previously requested load will start counting again.
4892 *
4893 * If a regulator is an always-on regulator then an individual consumer's
4894 * load will still be removed if that consumer is fully disabled.
4895 *
4896 * Return: 0 on success or a negative error number on failure.
4897 */
regulator_set_load(struct regulator * regulator,int uA_load)4898 int regulator_set_load(struct regulator *regulator, int uA_load)
4899 {
4900 struct regulator_dev *rdev = regulator->rdev;
4901 int old_uA_load;
4902 int ret = 0;
4903
4904 regulator_lock(rdev);
4905 old_uA_load = regulator->uA_load;
4906 regulator->uA_load = uA_load;
4907 if (regulator->enable_count && old_uA_load != uA_load) {
4908 ret = drms_uA_update(rdev);
4909 if (ret < 0)
4910 regulator->uA_load = old_uA_load;
4911 }
4912 regulator_unlock(rdev);
4913
4914 return ret;
4915 }
4916 EXPORT_SYMBOL_GPL(regulator_set_load);
4917
4918 /**
4919 * regulator_allow_bypass - allow the regulator to go into bypass mode
4920 *
4921 * @regulator: Regulator to configure
4922 * @enable: enable or disable bypass mode
4923 *
4924 * Allow the regulator to go into bypass mode if all other consumers
4925 * for the regulator also enable bypass mode and the machine
4926 * constraints allow this. Bypass mode means that the regulator is
4927 * simply passing the input directly to the output with no regulation.
4928 *
4929 * Return: 0 on success or if changing bypass is not possible, or
4930 * a negative error number on failure.
4931 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4932 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4933 {
4934 struct regulator_dev *rdev = regulator->rdev;
4935 const char *name = rdev_get_name(rdev);
4936 int ret = 0;
4937
4938 if (!rdev->desc->ops->set_bypass)
4939 return 0;
4940
4941 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4942 return 0;
4943
4944 regulator_lock(rdev);
4945
4946 if (enable && !regulator->bypass) {
4947 rdev->bypass_count++;
4948
4949 if (rdev->bypass_count == rdev->open_count) {
4950 trace_regulator_bypass_enable(name);
4951
4952 ret = rdev->desc->ops->set_bypass(rdev, enable);
4953 if (ret != 0)
4954 rdev->bypass_count--;
4955 else
4956 trace_regulator_bypass_enable_complete(name);
4957 }
4958
4959 } else if (!enable && regulator->bypass) {
4960 rdev->bypass_count--;
4961
4962 if (rdev->bypass_count != rdev->open_count) {
4963 trace_regulator_bypass_disable(name);
4964
4965 ret = rdev->desc->ops->set_bypass(rdev, enable);
4966 if (ret != 0)
4967 rdev->bypass_count++;
4968 else
4969 trace_regulator_bypass_disable_complete(name);
4970 }
4971 }
4972
4973 if (ret == 0)
4974 regulator->bypass = enable;
4975
4976 regulator_unlock(rdev);
4977
4978 return ret;
4979 }
4980 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4981
4982 /**
4983 * regulator_register_notifier - register regulator event notifier
4984 * @regulator: regulator source
4985 * @nb: notifier block
4986 *
4987 * Register notifier block to receive regulator events.
4988 *
4989 * Return: 0 on success or a negative error number on failure.
4990 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4991 int regulator_register_notifier(struct regulator *regulator,
4992 struct notifier_block *nb)
4993 {
4994 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4995 nb);
4996 }
4997 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4998
4999 /**
5000 * regulator_unregister_notifier - unregister regulator event notifier
5001 * @regulator: regulator source
5002 * @nb: notifier block
5003 *
5004 * Unregister regulator event notifier block.
5005 *
5006 * Return: 0 on success or a negative error number on failure.
5007 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)5008 int regulator_unregister_notifier(struct regulator *regulator,
5009 struct notifier_block *nb)
5010 {
5011 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
5012 nb);
5013 }
5014 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
5015
5016 /* notify regulator consumers and downstream regulator consumers.
5017 * Note mutex must be held by caller.
5018 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5019 static int _notifier_call_chain(struct regulator_dev *rdev,
5020 unsigned long event, void *data)
5021 {
5022 /* call rdev chain first */
5023 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
5024
5025 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
5026 struct device *parent = rdev->dev.parent;
5027 const char *rname = rdev_get_name(rdev);
5028 char name[32];
5029
5030 /* Avoid duplicate debugfs directory names */
5031 if (parent && rname == rdev->desc->name) {
5032 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5033 rname);
5034 rname = name;
5035 }
5036 reg_generate_netlink_event(rname, event);
5037 }
5038
5039 return ret;
5040 }
5041
_regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers,enum regulator_get_type get_type)5042 int _regulator_bulk_get(struct device *dev, int num_consumers,
5043 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
5044 {
5045 int i;
5046 int ret;
5047
5048 for (i = 0; i < num_consumers; i++)
5049 consumers[i].consumer = NULL;
5050
5051 for (i = 0; i < num_consumers; i++) {
5052 consumers[i].consumer = _regulator_get(dev,
5053 consumers[i].supply, get_type);
5054 if (IS_ERR(consumers[i].consumer)) {
5055 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
5056 "Failed to get supply '%s'\n",
5057 consumers[i].supply);
5058 consumers[i].consumer = NULL;
5059 goto err;
5060 }
5061
5062 if (consumers[i].init_load_uA > 0) {
5063 ret = regulator_set_load(consumers[i].consumer,
5064 consumers[i].init_load_uA);
5065 if (ret) {
5066 i++;
5067 goto err;
5068 }
5069 }
5070 }
5071
5072 return 0;
5073
5074 err:
5075 while (--i >= 0)
5076 regulator_put(consumers[i].consumer);
5077
5078 return ret;
5079 }
5080
5081 /**
5082 * regulator_bulk_get - get multiple regulator consumers
5083 *
5084 * @dev: Device to supply
5085 * @num_consumers: Number of consumers to register
5086 * @consumers: Configuration of consumers; clients are stored here.
5087 *
5088 * This helper function allows drivers to get several regulator
5089 * consumers in one operation. If any of the regulators cannot be
5090 * acquired then any regulators that were allocated will be freed
5091 * before returning to the caller.
5092 *
5093 * Return: 0 on success or a negative error number on failure.
5094 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)5095 int regulator_bulk_get(struct device *dev, int num_consumers,
5096 struct regulator_bulk_data *consumers)
5097 {
5098 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
5099 }
5100 EXPORT_SYMBOL_GPL(regulator_bulk_get);
5101
regulator_bulk_enable_async(void * data,async_cookie_t cookie)5102 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
5103 {
5104 struct regulator_bulk_data *bulk = data;
5105
5106 bulk->ret = regulator_enable(bulk->consumer);
5107 }
5108
5109 /**
5110 * regulator_bulk_enable - enable multiple regulator consumers
5111 *
5112 * @num_consumers: Number of consumers
5113 * @consumers: Consumer data; clients are stored here.
5114 *
5115 * This convenience API allows consumers to enable multiple regulator
5116 * clients in a single API call. If any consumers cannot be enabled
5117 * then any others that were enabled will be disabled again prior to
5118 * return.
5119 *
5120 * Return: 0 on success or a negative error number on failure.
5121 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)5122 int regulator_bulk_enable(int num_consumers,
5123 struct regulator_bulk_data *consumers)
5124 {
5125 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
5126 int i;
5127 int ret = 0;
5128
5129 for (i = 0; i < num_consumers; i++) {
5130 async_schedule_domain(regulator_bulk_enable_async,
5131 &consumers[i], &async_domain);
5132 }
5133
5134 async_synchronize_full_domain(&async_domain);
5135
5136 /* If any consumer failed we need to unwind any that succeeded */
5137 for (i = 0; i < num_consumers; i++) {
5138 if (consumers[i].ret != 0) {
5139 ret = consumers[i].ret;
5140 goto err;
5141 }
5142 }
5143
5144 return 0;
5145
5146 err:
5147 for (i = 0; i < num_consumers; i++) {
5148 if (consumers[i].ret < 0)
5149 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
5150 ERR_PTR(consumers[i].ret));
5151 else
5152 regulator_disable(consumers[i].consumer);
5153 }
5154
5155 return ret;
5156 }
5157 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5158
5159 /**
5160 * regulator_bulk_disable - disable multiple regulator consumers
5161 *
5162 * @num_consumers: Number of consumers
5163 * @consumers: Consumer data; clients are stored here.
5164 *
5165 * This convenience API allows consumers to disable multiple regulator
5166 * clients in a single API call. If any consumers cannot be disabled
5167 * then any others that were disabled will be enabled again prior to
5168 * return.
5169 *
5170 * Return: 0 on success or a negative error number on failure.
5171 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)5172 int regulator_bulk_disable(int num_consumers,
5173 struct regulator_bulk_data *consumers)
5174 {
5175 int i;
5176 int ret, r;
5177
5178 for (i = num_consumers - 1; i >= 0; --i) {
5179 ret = regulator_disable(consumers[i].consumer);
5180 if (ret != 0)
5181 goto err;
5182 }
5183
5184 return 0;
5185
5186 err:
5187 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5188 for (++i; i < num_consumers; ++i) {
5189 r = regulator_enable(consumers[i].consumer);
5190 if (r != 0)
5191 pr_err("Failed to re-enable %s: %pe\n",
5192 consumers[i].supply, ERR_PTR(r));
5193 }
5194
5195 return ret;
5196 }
5197 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5198
5199 /**
5200 * regulator_bulk_force_disable - force disable multiple regulator consumers
5201 *
5202 * @num_consumers: Number of consumers
5203 * @consumers: Consumer data; clients are stored here.
5204 *
5205 * This convenience API allows consumers to forcibly disable multiple regulator
5206 * clients in a single API call.
5207 * NOTE: This should be used for situations when device damage will
5208 * likely occur if the regulators are not disabled (e.g. over temp).
5209 * Although regulator_force_disable function call for some consumers can
5210 * return error numbers, the function is called for all consumers.
5211 *
5212 * Return: 0 on success or a negative error number on failure.
5213 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)5214 int regulator_bulk_force_disable(int num_consumers,
5215 struct regulator_bulk_data *consumers)
5216 {
5217 int i;
5218 int ret = 0;
5219
5220 for (i = 0; i < num_consumers; i++) {
5221 consumers[i].ret =
5222 regulator_force_disable(consumers[i].consumer);
5223
5224 /* Store first error for reporting */
5225 if (consumers[i].ret && !ret)
5226 ret = consumers[i].ret;
5227 }
5228
5229 return ret;
5230 }
5231 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5232
5233 /**
5234 * regulator_bulk_free - free multiple regulator consumers
5235 *
5236 * @num_consumers: Number of consumers
5237 * @consumers: Consumer data; clients are stored here.
5238 *
5239 * This convenience API allows consumers to free multiple regulator
5240 * clients in a single API call.
5241 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)5242 void regulator_bulk_free(int num_consumers,
5243 struct regulator_bulk_data *consumers)
5244 {
5245 int i;
5246
5247 for (i = 0; i < num_consumers; i++) {
5248 regulator_put(consumers[i].consumer);
5249 consumers[i].consumer = NULL;
5250 }
5251 }
5252 EXPORT_SYMBOL_GPL(regulator_bulk_free);
5253
5254 /**
5255 * regulator_handle_critical - Handle events for system-critical regulators.
5256 * @rdev: The regulator device.
5257 * @event: The event being handled.
5258 *
5259 * This function handles critical events such as under-voltage, over-current,
5260 * and unknown errors for regulators deemed system-critical. On detecting such
5261 * events, it triggers a hardware protection shutdown with a defined timeout.
5262 */
regulator_handle_critical(struct regulator_dev * rdev,unsigned long event)5263 static void regulator_handle_critical(struct regulator_dev *rdev,
5264 unsigned long event)
5265 {
5266 const char *reason = NULL;
5267
5268 if (!rdev->constraints->system_critical)
5269 return;
5270
5271 switch (event) {
5272 case REGULATOR_EVENT_UNDER_VOLTAGE:
5273 reason = "System critical regulator: voltage drop detected";
5274 break;
5275 case REGULATOR_EVENT_OVER_CURRENT:
5276 reason = "System critical regulator: over-current detected";
5277 break;
5278 case REGULATOR_EVENT_FAIL:
5279 reason = "System critical regulator: unknown error";
5280 }
5281
5282 if (!reason)
5283 return;
5284
5285 hw_protection_shutdown(reason,
5286 rdev->constraints->uv_less_critical_window_ms);
5287 }
5288
5289 /**
5290 * regulator_notifier_call_chain - call regulator event notifier
5291 * @rdev: regulator source
5292 * @event: notifier block
5293 * @data: callback-specific data.
5294 *
5295 * Called by regulator drivers to notify clients a regulator event has
5296 * occurred.
5297 *
5298 * Return: %NOTIFY_DONE.
5299 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)5300 int regulator_notifier_call_chain(struct regulator_dev *rdev,
5301 unsigned long event, void *data)
5302 {
5303 regulator_handle_critical(rdev, event);
5304
5305 _notifier_call_chain(rdev, event, data);
5306 return NOTIFY_DONE;
5307
5308 }
5309 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5310
5311 /**
5312 * regulator_mode_to_status - convert a regulator mode into a status
5313 *
5314 * @mode: Mode to convert
5315 *
5316 * Convert a regulator mode into a status.
5317 *
5318 * Return: %REGULATOR_STATUS_* value corresponding to given mode.
5319 */
regulator_mode_to_status(unsigned int mode)5320 int regulator_mode_to_status(unsigned int mode)
5321 {
5322 switch (mode) {
5323 case REGULATOR_MODE_FAST:
5324 return REGULATOR_STATUS_FAST;
5325 case REGULATOR_MODE_NORMAL:
5326 return REGULATOR_STATUS_NORMAL;
5327 case REGULATOR_MODE_IDLE:
5328 return REGULATOR_STATUS_IDLE;
5329 case REGULATOR_MODE_STANDBY:
5330 return REGULATOR_STATUS_STANDBY;
5331 default:
5332 return REGULATOR_STATUS_UNDEFINED;
5333 }
5334 }
5335 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5336
5337 static struct attribute *regulator_dev_attrs[] = {
5338 &dev_attr_name.attr,
5339 &dev_attr_num_users.attr,
5340 &dev_attr_type.attr,
5341 &dev_attr_microvolts.attr,
5342 &dev_attr_microamps.attr,
5343 &dev_attr_opmode.attr,
5344 &dev_attr_state.attr,
5345 &dev_attr_status.attr,
5346 &dev_attr_bypass.attr,
5347 &dev_attr_requested_microamps.attr,
5348 &dev_attr_min_microvolts.attr,
5349 &dev_attr_max_microvolts.attr,
5350 &dev_attr_min_microamps.attr,
5351 &dev_attr_max_microamps.attr,
5352 &dev_attr_under_voltage.attr,
5353 &dev_attr_over_current.attr,
5354 &dev_attr_regulation_out.attr,
5355 &dev_attr_fail.attr,
5356 &dev_attr_over_temp.attr,
5357 &dev_attr_under_voltage_warn.attr,
5358 &dev_attr_over_current_warn.attr,
5359 &dev_attr_over_voltage_warn.attr,
5360 &dev_attr_over_temp_warn.attr,
5361 &dev_attr_suspend_standby_state.attr,
5362 &dev_attr_suspend_mem_state.attr,
5363 &dev_attr_suspend_disk_state.attr,
5364 &dev_attr_suspend_standby_microvolts.attr,
5365 &dev_attr_suspend_mem_microvolts.attr,
5366 &dev_attr_suspend_disk_microvolts.attr,
5367 &dev_attr_suspend_standby_mode.attr,
5368 &dev_attr_suspend_mem_mode.attr,
5369 &dev_attr_suspend_disk_mode.attr,
5370 &dev_attr_power_budget_milliwatt.attr,
5371 &dev_attr_power_requested_milliwatt.attr,
5372 NULL
5373 };
5374
5375 /*
5376 * To avoid cluttering sysfs (and memory) with useless state, only
5377 * create attributes that can be meaningfully displayed.
5378 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)5379 static umode_t regulator_attr_is_visible(struct kobject *kobj,
5380 struct attribute *attr, int idx)
5381 {
5382 struct device *dev = kobj_to_dev(kobj);
5383 struct regulator_dev *rdev = dev_to_rdev(dev);
5384 const struct regulator_ops *ops = rdev->desc->ops;
5385 umode_t mode = attr->mode;
5386
5387 /* these three are always present */
5388 if (attr == &dev_attr_name.attr ||
5389 attr == &dev_attr_num_users.attr ||
5390 attr == &dev_attr_type.attr)
5391 return mode;
5392
5393 /* some attributes need specific methods to be displayed */
5394 if (attr == &dev_attr_microvolts.attr) {
5395 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5396 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5397 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5398 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5399 return mode;
5400 return 0;
5401 }
5402
5403 if (attr == &dev_attr_microamps.attr)
5404 return ops->get_current_limit ? mode : 0;
5405
5406 if (attr == &dev_attr_opmode.attr)
5407 return ops->get_mode ? mode : 0;
5408
5409 if (attr == &dev_attr_state.attr)
5410 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5411
5412 if (attr == &dev_attr_status.attr)
5413 return ops->get_status ? mode : 0;
5414
5415 if (attr == &dev_attr_bypass.attr)
5416 return ops->get_bypass ? mode : 0;
5417
5418 if (attr == &dev_attr_under_voltage.attr ||
5419 attr == &dev_attr_over_current.attr ||
5420 attr == &dev_attr_regulation_out.attr ||
5421 attr == &dev_attr_fail.attr ||
5422 attr == &dev_attr_over_temp.attr ||
5423 attr == &dev_attr_under_voltage_warn.attr ||
5424 attr == &dev_attr_over_current_warn.attr ||
5425 attr == &dev_attr_over_voltage_warn.attr ||
5426 attr == &dev_attr_over_temp_warn.attr)
5427 return ops->get_error_flags ? mode : 0;
5428
5429 /* constraints need specific supporting methods */
5430 if (attr == &dev_attr_min_microvolts.attr ||
5431 attr == &dev_attr_max_microvolts.attr)
5432 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5433
5434 if (attr == &dev_attr_min_microamps.attr ||
5435 attr == &dev_attr_max_microamps.attr)
5436 return ops->set_current_limit ? mode : 0;
5437
5438 if (attr == &dev_attr_suspend_standby_state.attr ||
5439 attr == &dev_attr_suspend_mem_state.attr ||
5440 attr == &dev_attr_suspend_disk_state.attr)
5441 return mode;
5442
5443 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5444 attr == &dev_attr_suspend_mem_microvolts.attr ||
5445 attr == &dev_attr_suspend_disk_microvolts.attr)
5446 return ops->set_suspend_voltage ? mode : 0;
5447
5448 if (attr == &dev_attr_suspend_standby_mode.attr ||
5449 attr == &dev_attr_suspend_mem_mode.attr ||
5450 attr == &dev_attr_suspend_disk_mode.attr)
5451 return ops->set_suspend_mode ? mode : 0;
5452
5453 if (attr == &dev_attr_power_budget_milliwatt.attr ||
5454 attr == &dev_attr_power_requested_milliwatt.attr)
5455 return rdev->constraints->pw_budget_mW != INT_MAX ? mode : 0;
5456
5457 return mode;
5458 }
5459
5460 static const struct attribute_group regulator_dev_group = {
5461 .attrs = regulator_dev_attrs,
5462 .is_visible = regulator_attr_is_visible,
5463 };
5464
5465 static const struct attribute_group *regulator_dev_groups[] = {
5466 ®ulator_dev_group,
5467 NULL
5468 };
5469
regulator_dev_release(struct device * dev)5470 static void regulator_dev_release(struct device *dev)
5471 {
5472 struct regulator_dev *rdev = dev_get_drvdata(dev);
5473
5474 debugfs_remove_recursive(rdev->debugfs);
5475 kfree(rdev->constraints);
5476 of_node_put(rdev->dev.of_node);
5477 kfree(rdev);
5478 }
5479
rdev_init_debugfs(struct regulator_dev * rdev)5480 static void rdev_init_debugfs(struct regulator_dev *rdev)
5481 {
5482 struct device *parent = rdev->dev.parent;
5483 const char *rname = rdev_get_name(rdev);
5484 char name[NAME_MAX];
5485
5486 /* Avoid duplicate debugfs directory names */
5487 if (parent && rname == rdev->desc->name) {
5488 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5489 rname);
5490 rname = name;
5491 }
5492
5493 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5494 if (IS_ERR(rdev->debugfs))
5495 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5496
5497 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5498 &rdev->use_count);
5499 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5500 &rdev->open_count);
5501 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5502 &rdev->bypass_count);
5503 }
5504
regulator_register_resolve_supply(struct device * dev,void * data)5505 static int regulator_register_resolve_supply(struct device *dev, void *data)
5506 {
5507 struct regulator_dev *rdev = dev_to_rdev(dev);
5508
5509 if (regulator_resolve_supply(rdev))
5510 rdev_dbg(rdev, "unable to resolve supply\n");
5511
5512 return 0;
5513 }
5514
regulator_coupler_register(struct regulator_coupler * coupler)5515 int regulator_coupler_register(struct regulator_coupler *coupler)
5516 {
5517 mutex_lock(®ulator_list_mutex);
5518 list_add_tail(&coupler->list, ®ulator_coupler_list);
5519 mutex_unlock(®ulator_list_mutex);
5520
5521 return 0;
5522 }
5523
5524 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5525 regulator_find_coupler(struct regulator_dev *rdev)
5526 {
5527 struct regulator_coupler *coupler;
5528 int err;
5529
5530 /*
5531 * Note that regulators are appended to the list and the generic
5532 * coupler is registered first, hence it will be attached at last
5533 * if nobody cared.
5534 */
5535 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5536 err = coupler->attach_regulator(coupler, rdev);
5537 if (!err) {
5538 if (!coupler->balance_voltage &&
5539 rdev->coupling_desc.n_coupled > 2)
5540 goto err_unsupported;
5541
5542 return coupler;
5543 }
5544
5545 if (err < 0)
5546 return ERR_PTR(err);
5547
5548 if (err == 1)
5549 continue;
5550
5551 break;
5552 }
5553
5554 return ERR_PTR(-EINVAL);
5555
5556 err_unsupported:
5557 if (coupler->detach_regulator)
5558 coupler->detach_regulator(coupler, rdev);
5559
5560 rdev_err(rdev,
5561 "Voltage balancing for multiple regulator couples is unimplemented\n");
5562
5563 return ERR_PTR(-EPERM);
5564 }
5565
regulator_resolve_coupling(struct regulator_dev * rdev)5566 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5567 {
5568 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5569 struct coupling_desc *c_desc = &rdev->coupling_desc;
5570 int n_coupled = c_desc->n_coupled;
5571 struct regulator_dev *c_rdev;
5572 int i;
5573
5574 for (i = 1; i < n_coupled; i++) {
5575 /* already resolved */
5576 if (c_desc->coupled_rdevs[i])
5577 continue;
5578
5579 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5580
5581 if (!c_rdev)
5582 continue;
5583
5584 if (c_rdev->coupling_desc.coupler != coupler) {
5585 rdev_err(rdev, "coupler mismatch with %s\n",
5586 rdev_get_name(c_rdev));
5587 return;
5588 }
5589
5590 c_desc->coupled_rdevs[i] = c_rdev;
5591 c_desc->n_resolved++;
5592
5593 regulator_resolve_coupling(c_rdev);
5594 }
5595 }
5596
regulator_remove_coupling(struct regulator_dev * rdev)5597 static void regulator_remove_coupling(struct regulator_dev *rdev)
5598 {
5599 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5600 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5601 struct regulator_dev *__c_rdev, *c_rdev;
5602 unsigned int __n_coupled, n_coupled;
5603 int i, k;
5604 int err;
5605
5606 n_coupled = c_desc->n_coupled;
5607
5608 for (i = 1; i < n_coupled; i++) {
5609 c_rdev = c_desc->coupled_rdevs[i];
5610
5611 if (!c_rdev)
5612 continue;
5613
5614 regulator_lock(c_rdev);
5615
5616 __c_desc = &c_rdev->coupling_desc;
5617 __n_coupled = __c_desc->n_coupled;
5618
5619 for (k = 1; k < __n_coupled; k++) {
5620 __c_rdev = __c_desc->coupled_rdevs[k];
5621
5622 if (__c_rdev == rdev) {
5623 __c_desc->coupled_rdevs[k] = NULL;
5624 __c_desc->n_resolved--;
5625 break;
5626 }
5627 }
5628
5629 regulator_unlock(c_rdev);
5630
5631 c_desc->coupled_rdevs[i] = NULL;
5632 c_desc->n_resolved--;
5633 }
5634
5635 if (coupler && coupler->detach_regulator) {
5636 err = coupler->detach_regulator(coupler, rdev);
5637 if (err)
5638 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5639 ERR_PTR(err));
5640 }
5641
5642 kfree(rdev->coupling_desc.coupled_rdevs);
5643 rdev->coupling_desc.coupled_rdevs = NULL;
5644 }
5645
regulator_init_coupling(struct regulator_dev * rdev)5646 static int regulator_init_coupling(struct regulator_dev *rdev)
5647 {
5648 struct regulator_dev **coupled;
5649 int err, n_phandles;
5650
5651 if (!IS_ENABLED(CONFIG_OF))
5652 n_phandles = 0;
5653 else
5654 n_phandles = of_get_n_coupled(rdev);
5655
5656 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5657 if (!coupled)
5658 return -ENOMEM;
5659
5660 rdev->coupling_desc.coupled_rdevs = coupled;
5661
5662 /*
5663 * Every regulator should always have coupling descriptor filled with
5664 * at least pointer to itself.
5665 */
5666 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5667 rdev->coupling_desc.n_coupled = n_phandles + 1;
5668 rdev->coupling_desc.n_resolved++;
5669
5670 /* regulator isn't coupled */
5671 if (n_phandles == 0)
5672 return 0;
5673
5674 if (!of_check_coupling_data(rdev))
5675 return -EPERM;
5676
5677 mutex_lock(®ulator_list_mutex);
5678 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5679 mutex_unlock(®ulator_list_mutex);
5680
5681 if (IS_ERR(rdev->coupling_desc.coupler)) {
5682 err = PTR_ERR(rdev->coupling_desc.coupler);
5683 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5684 return err;
5685 }
5686
5687 return 0;
5688 }
5689
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5690 static int generic_coupler_attach(struct regulator_coupler *coupler,
5691 struct regulator_dev *rdev)
5692 {
5693 if (rdev->coupling_desc.n_coupled > 2) {
5694 rdev_err(rdev,
5695 "Voltage balancing for multiple regulator couples is unimplemented\n");
5696 return -EPERM;
5697 }
5698
5699 if (!rdev->constraints->always_on) {
5700 rdev_err(rdev,
5701 "Coupling of a non always-on regulator is unimplemented\n");
5702 return -ENOTSUPP;
5703 }
5704
5705 return 0;
5706 }
5707
5708 static struct regulator_coupler generic_regulator_coupler = {
5709 .attach_regulator = generic_coupler_attach,
5710 };
5711
5712 /**
5713 * regulator_register - register regulator
5714 * @dev: the device that drive the regulator
5715 * @regulator_desc: regulator to register
5716 * @cfg: runtime configuration for regulator
5717 *
5718 * Called by regulator drivers to register a regulator.
5719 *
5720 * Return: Pointer to a valid &struct regulator_dev on success or
5721 * an ERR_PTR() encoded negative error number on failure.
5722 */
5723 struct regulator_dev *
regulator_register(struct device * dev,const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5724 regulator_register(struct device *dev,
5725 const struct regulator_desc *regulator_desc,
5726 const struct regulator_config *cfg)
5727 {
5728 const struct regulator_init_data *init_data;
5729 struct regulator_config *config = NULL;
5730 static atomic_t regulator_no = ATOMIC_INIT(-1);
5731 struct regulator_dev *rdev;
5732 bool dangling_cfg_gpiod = false;
5733 bool dangling_of_gpiod = false;
5734 int ret, i;
5735 bool resolved_early = false;
5736
5737 if (cfg == NULL)
5738 return ERR_PTR(-EINVAL);
5739 if (cfg->ena_gpiod)
5740 dangling_cfg_gpiod = true;
5741 if (regulator_desc == NULL) {
5742 ret = -EINVAL;
5743 goto rinse;
5744 }
5745
5746 WARN_ON(!dev || !cfg->dev);
5747
5748 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5749 ret = -EINVAL;
5750 goto rinse;
5751 }
5752
5753 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5754 regulator_desc->type != REGULATOR_CURRENT) {
5755 ret = -EINVAL;
5756 goto rinse;
5757 }
5758
5759 /* Only one of each should be implemented */
5760 WARN_ON(regulator_desc->ops->get_voltage &&
5761 regulator_desc->ops->get_voltage_sel);
5762 WARN_ON(regulator_desc->ops->set_voltage &&
5763 regulator_desc->ops->set_voltage_sel);
5764
5765 /* If we're using selectors we must implement list_voltage. */
5766 if (regulator_desc->ops->get_voltage_sel &&
5767 !regulator_desc->ops->list_voltage) {
5768 ret = -EINVAL;
5769 goto rinse;
5770 }
5771 if (regulator_desc->ops->set_voltage_sel &&
5772 !regulator_desc->ops->list_voltage) {
5773 ret = -EINVAL;
5774 goto rinse;
5775 }
5776
5777 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5778 if (rdev == NULL) {
5779 ret = -ENOMEM;
5780 goto rinse;
5781 }
5782 device_initialize(&rdev->dev);
5783 dev_set_drvdata(&rdev->dev, rdev);
5784 rdev->dev.class = ®ulator_class;
5785 spin_lock_init(&rdev->err_lock);
5786
5787 /*
5788 * Duplicate the config so the driver could override it after
5789 * parsing init data.
5790 */
5791 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5792 if (config == NULL) {
5793 ret = -ENOMEM;
5794 goto clean;
5795 }
5796
5797 /*
5798 * DT may override the config->init_data provided if the platform
5799 * needs to do so. If so, config->init_data is completely ignored.
5800 */
5801 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5802 &rdev->dev.of_node);
5803
5804 /*
5805 * Sometimes not all resources are probed already so we need to take
5806 * that into account. This happens most the time if the ena_gpiod comes
5807 * from a gpio extender or something else.
5808 */
5809 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5810 ret = -EPROBE_DEFER;
5811 goto clean;
5812 }
5813
5814 /*
5815 * We need to keep track of any GPIO descriptor coming from the
5816 * device tree until we have handled it over to the core. If the
5817 * config that was passed in to this function DOES NOT contain
5818 * a descriptor, and the config after this call DOES contain
5819 * a descriptor, we definitely got one from parsing the device
5820 * tree.
5821 */
5822 if (!cfg->ena_gpiod && config->ena_gpiod)
5823 dangling_of_gpiod = true;
5824 if (!init_data) {
5825 init_data = config->init_data;
5826 rdev->dev.of_node = of_node_get(config->of_node);
5827 }
5828
5829 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5830 rdev->reg_data = config->driver_data;
5831 rdev->owner = regulator_desc->owner;
5832 rdev->desc = regulator_desc;
5833 if (config->regmap)
5834 rdev->regmap = config->regmap;
5835 else if (dev_get_regmap(dev, NULL))
5836 rdev->regmap = dev_get_regmap(dev, NULL);
5837 else if (dev->parent)
5838 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5839 INIT_LIST_HEAD(&rdev->consumer_list);
5840 INIT_LIST_HEAD(&rdev->list);
5841 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5842 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5843
5844 if (init_data && init_data->supply_regulator)
5845 rdev->supply_name = init_data->supply_regulator;
5846 else if (regulator_desc->supply_name)
5847 rdev->supply_name = regulator_desc->supply_name;
5848
5849 /* register with sysfs */
5850 rdev->dev.parent = config->dev;
5851 dev_set_name(&rdev->dev, "regulator.%lu",
5852 (unsigned long) atomic_inc_return(®ulator_no));
5853
5854 /* set regulator constraints */
5855 if (init_data)
5856 rdev->constraints = kmemdup(&init_data->constraints,
5857 sizeof(*rdev->constraints),
5858 GFP_KERNEL);
5859 else
5860 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5861 GFP_KERNEL);
5862 if (!rdev->constraints) {
5863 ret = -ENOMEM;
5864 goto wash;
5865 }
5866
5867 if (regulator_desc->init_cb) {
5868 ret = regulator_desc->init_cb(rdev, config);
5869 if (ret < 0)
5870 goto wash;
5871 }
5872
5873 if ((rdev->supply_name && !rdev->supply) &&
5874 (rdev->constraints->always_on ||
5875 rdev->constraints->boot_on)) {
5876 ret = regulator_resolve_supply(rdev);
5877 if (ret)
5878 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5879 ERR_PTR(ret));
5880
5881 resolved_early = true;
5882 }
5883
5884 if (config->ena_gpiod) {
5885 ret = regulator_ena_gpio_request(rdev, config);
5886 if (ret != 0) {
5887 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5888 ERR_PTR(ret));
5889 goto wash;
5890 }
5891 /* The regulator core took over the GPIO descriptor */
5892 dangling_cfg_gpiod = false;
5893 dangling_of_gpiod = false;
5894 }
5895
5896 ret = set_machine_constraints(rdev);
5897 if (ret == -EPROBE_DEFER && !resolved_early) {
5898 /* Regulator might be in bypass mode and so needs its supply
5899 * to set the constraints
5900 */
5901 /* FIXME: this currently triggers a chicken-and-egg problem
5902 * when creating -SUPPLY symlink in sysfs to a regulator
5903 * that is just being created
5904 */
5905 rdev_dbg(rdev, "will resolve supply early: %s\n",
5906 rdev->supply_name);
5907 ret = regulator_resolve_supply(rdev);
5908 if (!ret)
5909 ret = set_machine_constraints(rdev);
5910 else
5911 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5912 ERR_PTR(ret));
5913 }
5914 if (ret < 0)
5915 goto wash;
5916
5917 ret = regulator_init_coupling(rdev);
5918 if (ret < 0)
5919 goto wash;
5920
5921 /* add consumers devices */
5922 if (init_data) {
5923 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5924 ret = set_consumer_device_supply(rdev,
5925 init_data->consumer_supplies[i].dev_name,
5926 init_data->consumer_supplies[i].supply);
5927 if (ret < 0) {
5928 dev_err(dev, "Failed to set supply %s\n",
5929 init_data->consumer_supplies[i].supply);
5930 goto unset_supplies;
5931 }
5932 }
5933 }
5934
5935 if (!rdev->desc->ops->get_voltage &&
5936 !rdev->desc->ops->list_voltage &&
5937 !rdev->desc->fixed_uV)
5938 rdev->is_switch = true;
5939
5940 ret = device_add(&rdev->dev);
5941 if (ret != 0)
5942 goto unset_supplies;
5943
5944 rdev_init_debugfs(rdev);
5945
5946 /* try to resolve regulators coupling since a new one was registered */
5947 mutex_lock(®ulator_list_mutex);
5948 regulator_resolve_coupling(rdev);
5949 mutex_unlock(®ulator_list_mutex);
5950
5951 /* try to resolve regulators supply since a new one was registered */
5952 class_for_each_device(®ulator_class, NULL, NULL,
5953 regulator_register_resolve_supply);
5954 kfree(config);
5955 return rdev;
5956
5957 unset_supplies:
5958 mutex_lock(®ulator_list_mutex);
5959 unset_regulator_supplies(rdev);
5960 regulator_remove_coupling(rdev);
5961 mutex_unlock(®ulator_list_mutex);
5962 wash:
5963 regulator_put(rdev->supply);
5964 kfree(rdev->coupling_desc.coupled_rdevs);
5965 mutex_lock(®ulator_list_mutex);
5966 regulator_ena_gpio_free(rdev);
5967 mutex_unlock(®ulator_list_mutex);
5968 clean:
5969 if (dangling_of_gpiod)
5970 gpiod_put(config->ena_gpiod);
5971 kfree(config);
5972 put_device(&rdev->dev);
5973 rinse:
5974 if (dangling_cfg_gpiod)
5975 gpiod_put(cfg->ena_gpiod);
5976 return ERR_PTR(ret);
5977 }
5978 EXPORT_SYMBOL_GPL(regulator_register);
5979
5980 /**
5981 * regulator_unregister - unregister regulator
5982 * @rdev: regulator to unregister
5983 *
5984 * Called by regulator drivers to unregister a regulator.
5985 */
regulator_unregister(struct regulator_dev * rdev)5986 void regulator_unregister(struct regulator_dev *rdev)
5987 {
5988 if (rdev == NULL)
5989 return;
5990
5991 if (rdev->supply) {
5992 while (rdev->use_count--)
5993 regulator_disable(rdev->supply);
5994 regulator_put(rdev->supply);
5995 }
5996
5997 flush_work(&rdev->disable_work.work);
5998
5999 mutex_lock(®ulator_list_mutex);
6000
6001 WARN_ON(rdev->open_count);
6002 regulator_remove_coupling(rdev);
6003 unset_regulator_supplies(rdev);
6004 list_del(&rdev->list);
6005 regulator_ena_gpio_free(rdev);
6006 device_unregister(&rdev->dev);
6007
6008 mutex_unlock(®ulator_list_mutex);
6009 }
6010 EXPORT_SYMBOL_GPL(regulator_unregister);
6011
6012 #ifdef CONFIG_SUSPEND
6013 /**
6014 * regulator_suspend - prepare regulators for system wide suspend
6015 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
6016 *
6017 * Configure each regulator with it's suspend operating parameters for state.
6018 *
6019 * Return: 0 on success or a negative error number on failure.
6020 */
regulator_suspend(struct device * dev)6021 static int regulator_suspend(struct device *dev)
6022 {
6023 struct regulator_dev *rdev = dev_to_rdev(dev);
6024 suspend_state_t state = pm_suspend_target_state;
6025 int ret;
6026 const struct regulator_state *rstate;
6027
6028 rstate = regulator_get_suspend_state_check(rdev, state);
6029 if (!rstate)
6030 return 0;
6031
6032 regulator_lock(rdev);
6033 ret = __suspend_set_state(rdev, rstate);
6034 regulator_unlock(rdev);
6035
6036 return ret;
6037 }
6038
regulator_resume(struct device * dev)6039 static int regulator_resume(struct device *dev)
6040 {
6041 suspend_state_t state = pm_suspend_target_state;
6042 struct regulator_dev *rdev = dev_to_rdev(dev);
6043 struct regulator_state *rstate;
6044 int ret = 0;
6045
6046 rstate = regulator_get_suspend_state(rdev, state);
6047 if (rstate == NULL)
6048 return 0;
6049
6050 /* Avoid grabbing the lock if we don't need to */
6051 if (!rdev->desc->ops->resume)
6052 return 0;
6053
6054 regulator_lock(rdev);
6055
6056 if (rstate->enabled == ENABLE_IN_SUSPEND ||
6057 rstate->enabled == DISABLE_IN_SUSPEND)
6058 ret = rdev->desc->ops->resume(rdev);
6059
6060 regulator_unlock(rdev);
6061
6062 return ret;
6063 }
6064 #else /* !CONFIG_SUSPEND */
6065
6066 #define regulator_suspend NULL
6067 #define regulator_resume NULL
6068
6069 #endif /* !CONFIG_SUSPEND */
6070
6071 #ifdef CONFIG_PM
6072 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
6073 .suspend = regulator_suspend,
6074 .resume = regulator_resume,
6075 };
6076 #endif
6077
6078 const struct class regulator_class = {
6079 .name = "regulator",
6080 .dev_release = regulator_dev_release,
6081 .dev_groups = regulator_dev_groups,
6082 #ifdef CONFIG_PM
6083 .pm = ®ulator_pm_ops,
6084 #endif
6085 };
6086 /**
6087 * regulator_has_full_constraints - the system has fully specified constraints
6088 *
6089 * Calling this function will cause the regulator API to disable all
6090 * regulators which have a zero use count and don't have an always_on
6091 * constraint in a late_initcall.
6092 *
6093 * The intention is that this will become the default behaviour in a
6094 * future kernel release so users are encouraged to use this facility
6095 * now.
6096 */
regulator_has_full_constraints(void)6097 void regulator_has_full_constraints(void)
6098 {
6099 has_full_constraints = 1;
6100 }
6101 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
6102
6103 /**
6104 * rdev_get_drvdata - get rdev regulator driver data
6105 * @rdev: regulator
6106 *
6107 * Get rdev regulator driver private data. This call can be used in the
6108 * regulator driver context.
6109 *
6110 * Return: Pointer to regulator driver private data.
6111 */
rdev_get_drvdata(struct regulator_dev * rdev)6112 void *rdev_get_drvdata(struct regulator_dev *rdev)
6113 {
6114 return rdev->reg_data;
6115 }
6116 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
6117
6118 /**
6119 * regulator_get_drvdata - get regulator driver data
6120 * @regulator: regulator
6121 *
6122 * Get regulator driver private data. This call can be used in the consumer
6123 * driver context when non API regulator specific functions need to be called.
6124 *
6125 * Return: Pointer to regulator driver private data.
6126 */
regulator_get_drvdata(struct regulator * regulator)6127 void *regulator_get_drvdata(struct regulator *regulator)
6128 {
6129 return regulator->rdev->reg_data;
6130 }
6131 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
6132
6133 /**
6134 * regulator_set_drvdata - set regulator driver data
6135 * @regulator: regulator
6136 * @data: data
6137 */
regulator_set_drvdata(struct regulator * regulator,void * data)6138 void regulator_set_drvdata(struct regulator *regulator, void *data)
6139 {
6140 regulator->rdev->reg_data = data;
6141 }
6142 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
6143
6144 /**
6145 * rdev_get_id - get regulator ID
6146 * @rdev: regulator
6147 *
6148 * Return: Regulator ID for @rdev.
6149 */
rdev_get_id(struct regulator_dev * rdev)6150 int rdev_get_id(struct regulator_dev *rdev)
6151 {
6152 return rdev->desc->id;
6153 }
6154 EXPORT_SYMBOL_GPL(rdev_get_id);
6155
rdev_get_dev(struct regulator_dev * rdev)6156 struct device *rdev_get_dev(struct regulator_dev *rdev)
6157 {
6158 return &rdev->dev;
6159 }
6160 EXPORT_SYMBOL_GPL(rdev_get_dev);
6161
rdev_get_regmap(struct regulator_dev * rdev)6162 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
6163 {
6164 return rdev->regmap;
6165 }
6166 EXPORT_SYMBOL_GPL(rdev_get_regmap);
6167
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)6168 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
6169 {
6170 return reg_init_data->driver_data;
6171 }
6172 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
6173
6174 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)6175 static int supply_map_show(struct seq_file *sf, void *data)
6176 {
6177 struct regulator_map *map;
6178
6179 list_for_each_entry(map, ®ulator_map_list, list) {
6180 seq_printf(sf, "%s -> %s.%s\n",
6181 rdev_get_name(map->regulator), map->dev_name,
6182 map->supply);
6183 }
6184
6185 return 0;
6186 }
6187 DEFINE_SHOW_ATTRIBUTE(supply_map);
6188
6189 struct summary_data {
6190 struct seq_file *s;
6191 struct regulator_dev *parent;
6192 int level;
6193 };
6194
6195 static void regulator_summary_show_subtree(struct seq_file *s,
6196 struct regulator_dev *rdev,
6197 int level);
6198
regulator_summary_show_children(struct device * dev,void * data)6199 static int regulator_summary_show_children(struct device *dev, void *data)
6200 {
6201 struct regulator_dev *rdev = dev_to_rdev(dev);
6202 struct summary_data *summary_data = data;
6203
6204 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6205 regulator_summary_show_subtree(summary_data->s, rdev,
6206 summary_data->level + 1);
6207
6208 return 0;
6209 }
6210
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)6211 static void regulator_summary_show_subtree(struct seq_file *s,
6212 struct regulator_dev *rdev,
6213 int level)
6214 {
6215 struct regulation_constraints *c;
6216 struct regulator *consumer;
6217 struct summary_data summary_data;
6218 unsigned int opmode;
6219
6220 if (!rdev)
6221 return;
6222
6223 opmode = _regulator_get_mode_unlocked(rdev);
6224 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6225 level * 3 + 1, "",
6226 30 - level * 3, rdev_get_name(rdev),
6227 rdev->use_count, rdev->open_count, rdev->bypass_count,
6228 regulator_opmode_to_str(opmode));
6229
6230 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6231 seq_printf(s, "%5dmA ",
6232 _regulator_get_current_limit_unlocked(rdev) / 1000);
6233
6234 c = rdev->constraints;
6235 if (c) {
6236 switch (rdev->desc->type) {
6237 case REGULATOR_VOLTAGE:
6238 seq_printf(s, "%5dmV %5dmV ",
6239 c->min_uV / 1000, c->max_uV / 1000);
6240 break;
6241 case REGULATOR_CURRENT:
6242 seq_printf(s, "%5dmA %5dmA ",
6243 c->min_uA / 1000, c->max_uA / 1000);
6244 break;
6245 }
6246 }
6247
6248 seq_puts(s, "\n");
6249
6250 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6251 if (consumer->dev && consumer->dev->class == ®ulator_class)
6252 continue;
6253
6254 seq_printf(s, "%*s%-*s ",
6255 (level + 1) * 3 + 1, "",
6256 30 - (level + 1) * 3,
6257 consumer->supply_name ? consumer->supply_name :
6258 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6259
6260 switch (rdev->desc->type) {
6261 case REGULATOR_VOLTAGE:
6262 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6263 consumer->enable_count,
6264 consumer->uA_load / 1000,
6265 consumer->uA_load && !consumer->enable_count ?
6266 '*' : ' ',
6267 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6268 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6269 break;
6270 case REGULATOR_CURRENT:
6271 break;
6272 }
6273
6274 seq_puts(s, "\n");
6275 }
6276
6277 summary_data.s = s;
6278 summary_data.level = level;
6279 summary_data.parent = rdev;
6280
6281 class_for_each_device(®ulator_class, NULL, &summary_data,
6282 regulator_summary_show_children);
6283 }
6284
6285 struct summary_lock_data {
6286 struct ww_acquire_ctx *ww_ctx;
6287 struct regulator_dev **new_contended_rdev;
6288 struct regulator_dev **old_contended_rdev;
6289 };
6290
regulator_summary_lock_one(struct device * dev,void * data)6291 static int regulator_summary_lock_one(struct device *dev, void *data)
6292 {
6293 struct regulator_dev *rdev = dev_to_rdev(dev);
6294 struct summary_lock_data *lock_data = data;
6295 int ret = 0;
6296
6297 if (rdev != *lock_data->old_contended_rdev) {
6298 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6299
6300 if (ret == -EDEADLK)
6301 *lock_data->new_contended_rdev = rdev;
6302 else
6303 WARN_ON_ONCE(ret);
6304 } else {
6305 *lock_data->old_contended_rdev = NULL;
6306 }
6307
6308 return ret;
6309 }
6310
regulator_summary_unlock_one(struct device * dev,void * data)6311 static int regulator_summary_unlock_one(struct device *dev, void *data)
6312 {
6313 struct regulator_dev *rdev = dev_to_rdev(dev);
6314 struct summary_lock_data *lock_data = data;
6315
6316 if (lock_data) {
6317 if (rdev == *lock_data->new_contended_rdev)
6318 return -EDEADLK;
6319 }
6320
6321 regulator_unlock(rdev);
6322
6323 return 0;
6324 }
6325
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6326 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6327 struct regulator_dev **new_contended_rdev,
6328 struct regulator_dev **old_contended_rdev)
6329 {
6330 struct summary_lock_data lock_data;
6331 int ret;
6332
6333 lock_data.ww_ctx = ww_ctx;
6334 lock_data.new_contended_rdev = new_contended_rdev;
6335 lock_data.old_contended_rdev = old_contended_rdev;
6336
6337 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6338 regulator_summary_lock_one);
6339 if (ret)
6340 class_for_each_device(®ulator_class, NULL, &lock_data,
6341 regulator_summary_unlock_one);
6342
6343 return ret;
6344 }
6345
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6346 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6347 {
6348 struct regulator_dev *new_contended_rdev = NULL;
6349 struct regulator_dev *old_contended_rdev = NULL;
6350 int err;
6351
6352 mutex_lock(®ulator_list_mutex);
6353
6354 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6355
6356 do {
6357 if (new_contended_rdev) {
6358 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6359 old_contended_rdev = new_contended_rdev;
6360 old_contended_rdev->ref_cnt++;
6361 old_contended_rdev->mutex_owner = current;
6362 }
6363
6364 err = regulator_summary_lock_all(ww_ctx,
6365 &new_contended_rdev,
6366 &old_contended_rdev);
6367
6368 if (old_contended_rdev)
6369 regulator_unlock(old_contended_rdev);
6370
6371 } while (err == -EDEADLK);
6372
6373 ww_acquire_done(ww_ctx);
6374 }
6375
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6376 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6377 {
6378 class_for_each_device(®ulator_class, NULL, NULL,
6379 regulator_summary_unlock_one);
6380 ww_acquire_fini(ww_ctx);
6381
6382 mutex_unlock(®ulator_list_mutex);
6383 }
6384
regulator_summary_show_roots(struct device * dev,void * data)6385 static int regulator_summary_show_roots(struct device *dev, void *data)
6386 {
6387 struct regulator_dev *rdev = dev_to_rdev(dev);
6388 struct seq_file *s = data;
6389
6390 if (!rdev->supply)
6391 regulator_summary_show_subtree(s, rdev, 0);
6392
6393 return 0;
6394 }
6395
regulator_summary_show(struct seq_file * s,void * data)6396 static int regulator_summary_show(struct seq_file *s, void *data)
6397 {
6398 struct ww_acquire_ctx ww_ctx;
6399
6400 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6401 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6402
6403 regulator_summary_lock(&ww_ctx);
6404
6405 class_for_each_device(®ulator_class, NULL, s,
6406 regulator_summary_show_roots);
6407
6408 regulator_summary_unlock(&ww_ctx);
6409
6410 return 0;
6411 }
6412 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6413 #endif /* CONFIG_DEBUG_FS */
6414
regulator_init(void)6415 static int __init regulator_init(void)
6416 {
6417 int ret;
6418
6419 ret = class_register(®ulator_class);
6420
6421 debugfs_root = debugfs_create_dir("regulator", NULL);
6422 if (IS_ERR(debugfs_root))
6423 pr_debug("regulator: Failed to create debugfs directory\n");
6424
6425 #ifdef CONFIG_DEBUG_FS
6426 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6427 &supply_map_fops);
6428
6429 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6430 NULL, ®ulator_summary_fops);
6431 #endif
6432 regulator_dummy_init();
6433
6434 regulator_coupler_register(&generic_regulator_coupler);
6435
6436 return ret;
6437 }
6438
6439 /* init early to allow our consumers to complete system booting */
6440 core_initcall(regulator_init);
6441
regulator_late_cleanup(struct device * dev,void * data)6442 static int regulator_late_cleanup(struct device *dev, void *data)
6443 {
6444 struct regulator_dev *rdev = dev_to_rdev(dev);
6445 struct regulation_constraints *c = rdev->constraints;
6446 int ret;
6447
6448 if (c && c->always_on)
6449 return 0;
6450
6451 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6452 return 0;
6453
6454 regulator_lock(rdev);
6455
6456 if (rdev->use_count)
6457 goto unlock;
6458
6459 /* If reading the status failed, assume that it's off. */
6460 if (_regulator_is_enabled(rdev) <= 0)
6461 goto unlock;
6462
6463 if (have_full_constraints()) {
6464 /* We log since this may kill the system if it goes
6465 * wrong.
6466 */
6467 rdev_info(rdev, "disabling\n");
6468 ret = _regulator_do_disable(rdev);
6469 if (ret != 0)
6470 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6471 } else {
6472 /* The intention is that in future we will
6473 * assume that full constraints are provided
6474 * so warn even if we aren't going to do
6475 * anything here.
6476 */
6477 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6478 }
6479
6480 unlock:
6481 regulator_unlock(rdev);
6482
6483 return 0;
6484 }
6485
6486 static bool regulator_ignore_unused;
regulator_ignore_unused_setup(char * __unused)6487 static int __init regulator_ignore_unused_setup(char *__unused)
6488 {
6489 regulator_ignore_unused = true;
6490 return 1;
6491 }
6492 __setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6493
regulator_init_complete_work_function(struct work_struct * work)6494 static void regulator_init_complete_work_function(struct work_struct *work)
6495 {
6496 /*
6497 * Regulators may had failed to resolve their input supplies
6498 * when were registered, either because the input supply was
6499 * not registered yet or because its parent device was not
6500 * bound yet. So attempt to resolve the input supplies for
6501 * pending regulators before trying to disable unused ones.
6502 */
6503 class_for_each_device(®ulator_class, NULL, NULL,
6504 regulator_register_resolve_supply);
6505
6506 /*
6507 * For debugging purposes, it may be useful to prevent unused
6508 * regulators from being disabled.
6509 */
6510 if (regulator_ignore_unused) {
6511 pr_warn("regulator: Not disabling unused regulators\n");
6512 return;
6513 }
6514
6515 /* If we have a full configuration then disable any regulators
6516 * we have permission to change the status for and which are
6517 * not in use or always_on. This is effectively the default
6518 * for DT and ACPI as they have full constraints.
6519 */
6520 class_for_each_device(®ulator_class, NULL, NULL,
6521 regulator_late_cleanup);
6522 }
6523
6524 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6525 regulator_init_complete_work_function);
6526
regulator_init_complete(void)6527 static int __init regulator_init_complete(void)
6528 {
6529 /*
6530 * Since DT doesn't provide an idiomatic mechanism for
6531 * enabling full constraints and since it's much more natural
6532 * with DT to provide them just assume that a DT enabled
6533 * system has full constraints.
6534 */
6535 if (of_have_populated_dt())
6536 has_full_constraints = true;
6537
6538 /*
6539 * We punt completion for an arbitrary amount of time since
6540 * systems like distros will load many drivers from userspace
6541 * so consumers might not always be ready yet, this is
6542 * particularly an issue with laptops where this might bounce
6543 * the display off then on. Ideally we'd get a notification
6544 * from userspace when this happens but we don't so just wait
6545 * a bit and hope we waited long enough. It'd be better if
6546 * we'd only do this on systems that need it, and a kernel
6547 * command line option might be useful.
6548 */
6549 schedule_delayed_work(®ulator_init_complete_work,
6550 msecs_to_jiffies(30000));
6551
6552 return 0;
6553 }
6554 late_initcall_sync(regulator_init_complete);
6555