1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22
23 #include "opp.h"
24
25 /*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30 LIST_HEAD(opp_tables);
31
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 struct opp_device *opp_dev;
43
44 guard(mutex)(&opp_table->lock);
45
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev)
48 return true;
49
50 return false;
51 }
52
_find_opp_table_unlocked(struct device * dev)53 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
54 {
55 struct opp_table *opp_table;
56
57 list_for_each_entry(opp_table, &opp_tables, node) {
58 if (_find_opp_dev(dev, opp_table))
59 return dev_pm_opp_get_opp_table_ref(opp_table);
60 }
61
62 return ERR_PTR(-ENODEV);
63 }
64
65 /**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
_find_opp_table(struct device * dev)76 struct opp_table *_find_opp_table(struct device *dev)
77 {
78 if (IS_ERR_OR_NULL(dev)) {
79 pr_err("%s: Invalid parameters\n", __func__);
80 return ERR_PTR(-EINVAL);
81 }
82
83 guard(mutex)(&opp_table_lock);
84 return _find_opp_table_unlocked(dev);
85 }
86
87 /*
88 * Returns true if multiple clocks aren't there, else returns false with WARN.
89 *
90 * We don't force clk_count == 1 here as there are users who don't have a clock
91 * representation in the OPP table and manage the clock configuration themselves
92 * in an platform specific way.
93 */
assert_single_clk(struct opp_table * opp_table,unsigned int __always_unused index)94 static bool assert_single_clk(struct opp_table *opp_table,
95 unsigned int __always_unused index)
96 {
97 return !WARN_ON(opp_table->clk_count > 1);
98 }
99
100 /*
101 * Returns true if clock table is large enough to contain the clock index.
102 */
assert_clk_index(struct opp_table * opp_table,unsigned int index)103 static bool assert_clk_index(struct opp_table *opp_table,
104 unsigned int index)
105 {
106 return opp_table->clk_count > index;
107 }
108
109 /*
110 * Returns true if bandwidth table is large enough to contain the bandwidth index.
111 */
assert_bandwidth_index(struct opp_table * opp_table,unsigned int index)112 static bool assert_bandwidth_index(struct opp_table *opp_table,
113 unsigned int index)
114 {
115 return opp_table->path_count > index;
116 }
117
118 /**
119 * dev_pm_opp_get_bw() - Gets the bandwidth corresponding to an opp
120 * @opp: opp for which bandwidth has to be returned for
121 * @peak: select peak or average bandwidth
122 * @index: bandwidth index
123 *
124 * Return: bandwidth in kBps, else return 0
125 */
dev_pm_opp_get_bw(struct dev_pm_opp * opp,bool peak,int index)126 unsigned long dev_pm_opp_get_bw(struct dev_pm_opp *opp, bool peak, int index)
127 {
128 if (IS_ERR_OR_NULL(opp)) {
129 pr_err("%s: Invalid parameters\n", __func__);
130 return 0;
131 }
132
133 if (index >= opp->opp_table->path_count)
134 return 0;
135
136 if (!opp->bandwidth)
137 return 0;
138
139 return peak ? opp->bandwidth[index].peak : opp->bandwidth[index].avg;
140 }
141 EXPORT_SYMBOL_GPL(dev_pm_opp_get_bw);
142
143 /**
144 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
145 * @opp: opp for which voltage has to be returned for
146 *
147 * Return: voltage in micro volt corresponding to the opp, else
148 * return 0
149 *
150 * This is useful only for devices with single power supply.
151 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)152 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
153 {
154 if (IS_ERR_OR_NULL(opp)) {
155 pr_err("%s: Invalid parameters\n", __func__);
156 return 0;
157 }
158
159 return opp->supplies[0].u_volt;
160 }
161 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
162
163 /**
164 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
165 * @opp: opp for which voltage has to be returned for
166 * @supplies: Placeholder for copying the supply information.
167 *
168 * Return: negative error number on failure, 0 otherwise on success after
169 * setting @supplies.
170 *
171 * This can be used for devices with any number of power supplies. The caller
172 * must ensure the @supplies array must contain space for each regulator.
173 */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)174 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
175 struct dev_pm_opp_supply *supplies)
176 {
177 if (IS_ERR_OR_NULL(opp) || !supplies) {
178 pr_err("%s: Invalid parameters\n", __func__);
179 return -EINVAL;
180 }
181
182 memcpy(supplies, opp->supplies,
183 sizeof(*supplies) * opp->opp_table->regulator_count);
184 return 0;
185 }
186 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
187
188 /**
189 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
190 * @opp: opp for which power has to be returned for
191 *
192 * Return: power in micro watt corresponding to the opp, else
193 * return 0
194 *
195 * This is useful only for devices with single power supply.
196 */
dev_pm_opp_get_power(struct dev_pm_opp * opp)197 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
198 {
199 unsigned long opp_power = 0;
200 int i;
201
202 if (IS_ERR_OR_NULL(opp)) {
203 pr_err("%s: Invalid parameters\n", __func__);
204 return 0;
205 }
206 for (i = 0; i < opp->opp_table->regulator_count; i++)
207 opp_power += opp->supplies[i].u_watt;
208
209 return opp_power;
210 }
211 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
212
213 /**
214 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
215 * available opp with specified index
216 * @opp: opp for which frequency has to be returned for
217 * @index: index of the frequency within the required opp
218 *
219 * Return: frequency in hertz corresponding to the opp with specified index,
220 * else return 0
221 */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)222 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
223 {
224 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
225 pr_err("%s: Invalid parameters\n", __func__);
226 return 0;
227 }
228
229 return opp->rates[index];
230 }
231 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
232
233 /**
234 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
235 * @opp: opp for which level value has to be returned for
236 *
237 * Return: level read from device tree corresponding to the opp, else
238 * return U32_MAX.
239 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)240 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
241 {
242 if (IS_ERR_OR_NULL(opp) || !opp->available) {
243 pr_err("%s: Invalid parameters\n", __func__);
244 return 0;
245 }
246
247 return opp->level;
248 }
249 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
250
251 /**
252 * dev_pm_opp_get_required_pstate() - Gets the required performance state
253 * corresponding to an available opp
254 * @opp: opp for which performance state has to be returned for
255 * @index: index of the required opp
256 *
257 * Return: performance state read from device tree corresponding to the
258 * required opp, else return U32_MAX.
259 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)260 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
261 unsigned int index)
262 {
263 if (IS_ERR_OR_NULL(opp) || !opp->available ||
264 index >= opp->opp_table->required_opp_count) {
265 pr_err("%s: Invalid parameters\n", __func__);
266 return 0;
267 }
268
269 /* required-opps not fully initialized yet */
270 if (lazy_linking_pending(opp->opp_table))
271 return 0;
272
273 /* The required OPP table must belong to a genpd */
274 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
275 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
276 return 0;
277 }
278
279 return opp->required_opps[index]->level;
280 }
281 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
282
283 /**
284 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
285 * @opp: opp for which turbo mode is being verified
286 *
287 * Turbo OPPs are not for normal use, and can be enabled (under certain
288 * conditions) for short duration of times to finish high throughput work
289 * quickly. Running on them for longer times may overheat the chip.
290 *
291 * Return: true if opp is turbo opp, else false.
292 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)293 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
294 {
295 if (IS_ERR_OR_NULL(opp) || !opp->available) {
296 pr_err("%s: Invalid parameters\n", __func__);
297 return false;
298 }
299
300 return opp->turbo;
301 }
302 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
303
304 /**
305 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
306 * @dev: device for which we do this operation
307 *
308 * Return: This function returns the max clock latency in nanoseconds.
309 */
dev_pm_opp_get_max_clock_latency(struct device * dev)310 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
311 {
312 struct opp_table *opp_table __free(put_opp_table);
313
314 opp_table = _find_opp_table(dev);
315 if (IS_ERR(opp_table))
316 return 0;
317
318 return opp_table->clock_latency_ns_max;
319 }
320 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
321
322 /**
323 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
324 * @dev: device for which we do this operation
325 *
326 * Return: This function returns the max voltage latency in nanoseconds.
327 */
dev_pm_opp_get_max_volt_latency(struct device * dev)328 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
329 {
330 struct opp_table *opp_table __free(put_opp_table);
331 struct dev_pm_opp *opp;
332 struct regulator *reg;
333 unsigned long latency_ns = 0;
334 int ret, i, count;
335 struct {
336 unsigned long min;
337 unsigned long max;
338 } *uV;
339
340 opp_table = _find_opp_table(dev);
341 if (IS_ERR(opp_table))
342 return 0;
343
344 /* Regulator may not be required for the device */
345 if (!opp_table->regulators)
346 return 0;
347
348 count = opp_table->regulator_count;
349
350 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
351 if (!uV)
352 return 0;
353
354 scoped_guard(mutex, &opp_table->lock) {
355 for (i = 0; i < count; i++) {
356 uV[i].min = ~0;
357 uV[i].max = 0;
358
359 list_for_each_entry(opp, &opp_table->opp_list, node) {
360 if (!opp->available)
361 continue;
362
363 if (opp->supplies[i].u_volt_min < uV[i].min)
364 uV[i].min = opp->supplies[i].u_volt_min;
365 if (opp->supplies[i].u_volt_max > uV[i].max)
366 uV[i].max = opp->supplies[i].u_volt_max;
367 }
368 }
369 }
370
371 /*
372 * The caller needs to ensure that opp_table (and hence the regulator)
373 * isn't freed, while we are executing this routine.
374 */
375 for (i = 0; i < count; i++) {
376 reg = opp_table->regulators[i];
377 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
378 if (ret > 0)
379 latency_ns += ret * 1000;
380 }
381
382 kfree(uV);
383
384 return latency_ns;
385 }
386 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
387
388 /**
389 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
390 * nanoseconds
391 * @dev: device for which we do this operation
392 *
393 * Return: This function returns the max transition latency, in nanoseconds, to
394 * switch from one OPP to other.
395 */
dev_pm_opp_get_max_transition_latency(struct device * dev)396 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
397 {
398 return dev_pm_opp_get_max_volt_latency(dev) +
399 dev_pm_opp_get_max_clock_latency(dev);
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
402
403 /**
404 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
405 * @dev: device for which we do this operation
406 *
407 * Return: This function returns the frequency of the OPP marked as suspend_opp
408 * if one is available, else returns 0;
409 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)410 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
411 {
412 struct opp_table *opp_table __free(put_opp_table);
413 unsigned long freq = 0;
414
415 opp_table = _find_opp_table(dev);
416 if (IS_ERR(opp_table))
417 return 0;
418
419 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
420 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
421
422 return freq;
423 }
424 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
425
_get_opp_count(struct opp_table * opp_table)426 int _get_opp_count(struct opp_table *opp_table)
427 {
428 struct dev_pm_opp *opp;
429 int count = 0;
430
431 guard(mutex)(&opp_table->lock);
432
433 list_for_each_entry(opp, &opp_table->opp_list, node) {
434 if (opp->available)
435 count++;
436 }
437
438 return count;
439 }
440
441 /**
442 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
443 * @dev: device for which we do this operation
444 *
445 * Return: This function returns the number of available opps if there are any,
446 * else returns 0 if none or the corresponding error value.
447 */
dev_pm_opp_get_opp_count(struct device * dev)448 int dev_pm_opp_get_opp_count(struct device *dev)
449 {
450 struct opp_table *opp_table __free(put_opp_table);
451
452 opp_table = _find_opp_table(dev);
453 if (IS_ERR(opp_table)) {
454 dev_dbg(dev, "%s: OPP table not found (%ld)\n",
455 __func__, PTR_ERR(opp_table));
456 return PTR_ERR(opp_table);
457 }
458
459 return _get_opp_count(opp_table);
460 }
461 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
462
463 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)464 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
465 {
466 return opp->rates[index];
467 }
468
_read_level(struct dev_pm_opp * opp,int index)469 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
470 {
471 return opp->level;
472 }
473
_read_bw(struct dev_pm_opp * opp,int index)474 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
475 {
476 return opp->bandwidth[index].peak;
477 }
478
479 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)480 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
481 unsigned long opp_key, unsigned long key)
482 {
483 if (opp_key == key) {
484 *opp = temp_opp;
485 return true;
486 }
487
488 return false;
489 }
490
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)491 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
492 unsigned long opp_key, unsigned long key)
493 {
494 if (opp_key >= key) {
495 *opp = temp_opp;
496 return true;
497 }
498
499 return false;
500 }
501
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)502 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
503 unsigned long opp_key, unsigned long key)
504 {
505 if (opp_key > key)
506 return true;
507
508 *opp = temp_opp;
509 return false;
510 }
511
512 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))513 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
514 unsigned long *key, int index, bool available,
515 unsigned long (*read)(struct dev_pm_opp *opp, int index),
516 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
517 unsigned long opp_key, unsigned long key),
518 bool (*assert)(struct opp_table *opp_table, unsigned int index))
519 {
520 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
521
522 /* Assert that the requirement is met */
523 if (assert && !assert(opp_table, index))
524 return ERR_PTR(-EINVAL);
525
526 guard(mutex)(&opp_table->lock);
527
528 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
529 if (temp_opp->available == available) {
530 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
531 break;
532 }
533 }
534
535 /* Increment the reference count of OPP */
536 if (!IS_ERR(opp)) {
537 *key = read(opp, index);
538 dev_pm_opp_get(opp);
539 }
540
541 return opp;
542 }
543
544 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table,unsigned int index))545 _find_key(struct device *dev, unsigned long *key, int index, bool available,
546 unsigned long (*read)(struct dev_pm_opp *opp, int index),
547 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
548 unsigned long opp_key, unsigned long key),
549 bool (*assert)(struct opp_table *opp_table, unsigned int index))
550 {
551 struct opp_table *opp_table __free(put_opp_table);
552
553 opp_table = _find_opp_table(dev);
554 if (IS_ERR(opp_table)) {
555 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
556 PTR_ERR(opp_table));
557 return ERR_CAST(opp_table);
558 }
559
560 return _opp_table_find_key(opp_table, key, index, available, read,
561 compare, assert);
562 }
563
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))564 static struct dev_pm_opp *_find_key_exact(struct device *dev,
565 unsigned long key, int index, bool available,
566 unsigned long (*read)(struct dev_pm_opp *opp, int index),
567 bool (*assert)(struct opp_table *opp_table, unsigned int index))
568 {
569 /*
570 * The value of key will be updated here, but will be ignored as the
571 * caller doesn't need it.
572 */
573 return _find_key(dev, &key, index, available, read, _compare_exact,
574 assert);
575 }
576
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))577 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
578 unsigned long *key, int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table, unsigned int index))
581 {
582 return _opp_table_find_key(opp_table, key, index, available, read,
583 _compare_ceil, assert);
584 }
585
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))586 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
587 int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table, unsigned int index))
590 {
591 return _find_key(dev, key, index, available, read, _compare_ceil,
592 assert);
593 }
594
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table,unsigned int index))595 static struct dev_pm_opp *_find_key_floor(struct device *dev,
596 unsigned long *key, int index, bool available,
597 unsigned long (*read)(struct dev_pm_opp *opp, int index),
598 bool (*assert)(struct opp_table *opp_table, unsigned int index))
599 {
600 return _find_key(dev, key, index, available, read, _compare_floor,
601 assert);
602 }
603
604 /**
605 * dev_pm_opp_find_freq_exact() - search for an exact frequency
606 * @dev: device for which we do this operation
607 * @freq: frequency to search for
608 * @available: true/false - match for available opp
609 *
610 * Return: Searches for exact match in the opp table and returns pointer to the
611 * matching opp if found, else returns ERR_PTR in case of error and should
612 * be handled using IS_ERR. Error return values can be:
613 * EINVAL: for bad pointer
614 * ERANGE: no match found for search
615 * ENODEV: if device not found in list of registered devices
616 *
617 * Note: available is a modifier for the search. if available=true, then the
618 * match is for exact matching frequency and is available in the stored OPP
619 * table. if false, the match is for exact frequency which is not available.
620 *
621 * This provides a mechanism to enable an opp which is not available currently
622 * or the opposite as well.
623 *
624 * The callers are required to call dev_pm_opp_put() for the returned OPP after
625 * use.
626 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)627 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
628 unsigned long freq, bool available)
629 {
630 return _find_key_exact(dev, freq, 0, available, _read_freq,
631 assert_single_clk);
632 }
633 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
634
635 /**
636 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
637 * clock corresponding to the index
638 * @dev: Device for which we do this operation
639 * @freq: frequency to search for
640 * @index: Clock index
641 * @available: true/false - match for available opp
642 *
643 * Search for the matching exact OPP for the clock corresponding to the
644 * specified index from a starting freq for a device.
645 *
646 * Return: matching *opp , else returns ERR_PTR in case of error and should be
647 * handled using IS_ERR. Error return values can be:
648 * EINVAL: for bad pointer
649 * ERANGE: no match found for search
650 * ENODEV: if device not found in list of registered devices
651 *
652 * The callers are required to call dev_pm_opp_put() for the returned OPP after
653 * use.
654 */
655 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)656 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
657 u32 index, bool available)
658 {
659 return _find_key_exact(dev, freq, index, available, _read_freq,
660 assert_clk_index);
661 }
662 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
663
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)664 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
665 unsigned long *freq)
666 {
667 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
668 assert_single_clk);
669 }
670
671 /**
672 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
673 * @dev: device for which we do this operation
674 * @freq: Start frequency
675 *
676 * Search for the matching ceil *available* OPP from a starting freq
677 * for a device.
678 *
679 * Return: matching *opp and refreshes *freq accordingly, else returns
680 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
681 * values can be:
682 * EINVAL: for bad pointer
683 * ERANGE: no match found for search
684 * ENODEV: if device not found in list of registered devices
685 *
686 * The callers are required to call dev_pm_opp_put() for the returned OPP after
687 * use.
688 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)689 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
690 unsigned long *freq)
691 {
692 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
693 }
694 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
695
696 /**
697 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
698 * clock corresponding to the index
699 * @dev: Device for which we do this operation
700 * @freq: Start frequency
701 * @index: Clock index
702 *
703 * Search for the matching ceil *available* OPP for the clock corresponding to
704 * the specified index from a starting freq for a device.
705 *
706 * Return: matching *opp and refreshes *freq accordingly, else returns
707 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
708 * values can be:
709 * EINVAL: for bad pointer
710 * ERANGE: no match found for search
711 * ENODEV: if device not found in list of registered devices
712 *
713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
714 * use.
715 */
716 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)717 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
718 u32 index)
719 {
720 return _find_key_ceil(dev, freq, index, true, _read_freq,
721 assert_clk_index);
722 }
723 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
724
725 /**
726 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
727 * @dev: device for which we do this operation
728 * @freq: Start frequency
729 *
730 * Search for the matching floor *available* OPP from a starting freq
731 * for a device.
732 *
733 * Return: matching *opp and refreshes *freq accordingly, else returns
734 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
735 * values can be:
736 * EINVAL: for bad pointer
737 * ERANGE: no match found for search
738 * ENODEV: if device not found in list of registered devices
739 *
740 * The callers are required to call dev_pm_opp_put() for the returned OPP after
741 * use.
742 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)743 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
744 unsigned long *freq)
745 {
746 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
747 }
748 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
749
750 /**
751 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
752 * clock corresponding to the index
753 * @dev: Device for which we do this operation
754 * @freq: Start frequency
755 * @index: Clock index
756 *
757 * Search for the matching floor *available* OPP for the clock corresponding to
758 * the specified index from a starting freq for a device.
759 *
760 * Return: matching *opp and refreshes *freq accordingly, else returns
761 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
762 * values can be:
763 * EINVAL: for bad pointer
764 * ERANGE: no match found for search
765 * ENODEV: if device not found in list of registered devices
766 *
767 * The callers are required to call dev_pm_opp_put() for the returned OPP after
768 * use.
769 */
770 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)771 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
772 u32 index)
773 {
774 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
775 }
776 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
777
778 /**
779 * dev_pm_opp_find_level_exact() - search for an exact level
780 * @dev: device for which we do this operation
781 * @level: level to search for
782 *
783 * Return: Searches for exact match in the opp table and returns pointer to the
784 * matching opp if found, else returns ERR_PTR in case of error and should
785 * be handled using IS_ERR. Error return values can be:
786 * EINVAL: for bad pointer
787 * ERANGE: no match found for search
788 * ENODEV: if device not found in list of registered devices
789 *
790 * The callers are required to call dev_pm_opp_put() for the returned OPP after
791 * use.
792 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)793 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
794 unsigned int level)
795 {
796 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
797 }
798 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
799
800 /**
801 * dev_pm_opp_find_level_ceil() - search for an rounded up level
802 * @dev: device for which we do this operation
803 * @level: level to search for
804 *
805 * Return: Searches for rounded up match in the opp table and returns pointer
806 * to the matching opp if found, else returns ERR_PTR in case of error and
807 * should be handled using IS_ERR. Error return values can be:
808 * EINVAL: for bad pointer
809 * ERANGE: no match found for search
810 * ENODEV: if device not found in list of registered devices
811 *
812 * The callers are required to call dev_pm_opp_put() for the returned OPP after
813 * use.
814 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)815 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
816 unsigned int *level)
817 {
818 unsigned long temp = *level;
819 struct dev_pm_opp *opp;
820
821 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
822 if (IS_ERR(opp))
823 return opp;
824
825 /* False match */
826 if (temp == OPP_LEVEL_UNSET) {
827 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
828 dev_pm_opp_put(opp);
829 return ERR_PTR(-ENODEV);
830 }
831
832 *level = temp;
833 return opp;
834 }
835 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
836
837 /**
838 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
839 * @dev: device for which we do this operation
840 * @level: Start level
841 *
842 * Search for the matching floor *available* OPP from a starting level
843 * for a device.
844 *
845 * Return: matching *opp and refreshes *level accordingly, else returns
846 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
847 * values can be:
848 * EINVAL: for bad pointer
849 * ERANGE: no match found for search
850 * ENODEV: if device not found in list of registered devices
851 *
852 * The callers are required to call dev_pm_opp_put() for the returned OPP after
853 * use.
854 */
dev_pm_opp_find_level_floor(struct device * dev,unsigned int * level)855 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
856 unsigned int *level)
857 {
858 unsigned long temp = *level;
859 struct dev_pm_opp *opp;
860
861 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
862 *level = temp;
863 return opp;
864 }
865 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
866
867 /**
868 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
869 * @dev: device for which we do this operation
870 * @bw: start bandwidth
871 * @index: which bandwidth to compare, in case of OPPs with several values
872 *
873 * Search for the matching floor *available* OPP from a starting bandwidth
874 * for a device.
875 *
876 * Return: matching *opp and refreshes *bw accordingly, else returns
877 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
878 * values can be:
879 * EINVAL: for bad pointer
880 * ERANGE: no match found for search
881 * ENODEV: if device not found in list of registered devices
882 *
883 * The callers are required to call dev_pm_opp_put() for the returned OPP after
884 * use.
885 */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)886 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
887 int index)
888 {
889 unsigned long temp = *bw;
890 struct dev_pm_opp *opp;
891
892 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
893 assert_bandwidth_index);
894 *bw = temp;
895 return opp;
896 }
897 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
898
899 /**
900 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
901 * @dev: device for which we do this operation
902 * @bw: start bandwidth
903 * @index: which bandwidth to compare, in case of OPPs with several values
904 *
905 * Search for the matching floor *available* OPP from a starting bandwidth
906 * for a device.
907 *
908 * Return: matching *opp and refreshes *bw accordingly, else returns
909 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
910 * values can be:
911 * EINVAL: for bad pointer
912 * ERANGE: no match found for search
913 * ENODEV: if device not found in list of registered devices
914 *
915 * The callers are required to call dev_pm_opp_put() for the returned OPP after
916 * use.
917 */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)918 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
919 unsigned int *bw, int index)
920 {
921 unsigned long temp = *bw;
922 struct dev_pm_opp *opp;
923
924 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
925 assert_bandwidth_index);
926 *bw = temp;
927 return opp;
928 }
929 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
930
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)931 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
932 struct dev_pm_opp_supply *supply)
933 {
934 int ret;
935
936 /* Regulator not available for device */
937 if (IS_ERR(reg)) {
938 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
939 PTR_ERR(reg));
940 return 0;
941 }
942
943 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
944 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
945
946 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
947 supply->u_volt, supply->u_volt_max);
948 if (ret)
949 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
950 __func__, supply->u_volt_min, supply->u_volt,
951 supply->u_volt_max, ret);
952
953 return ret;
954 }
955
956 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)957 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
958 struct dev_pm_opp *opp, void *data, bool scaling_down)
959 {
960 unsigned long *target = data;
961 unsigned long freq;
962 int ret;
963
964 /* One of target and opp must be available */
965 if (target) {
966 freq = *target;
967 } else if (opp) {
968 freq = opp->rates[0];
969 } else {
970 WARN_ON(1);
971 return -EINVAL;
972 }
973
974 ret = clk_set_rate(opp_table->clk, freq);
975 if (ret) {
976 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
977 ret);
978 } else {
979 opp_table->current_rate_single_clk = freq;
980 }
981
982 return ret;
983 }
984
985 /*
986 * Simple implementation for configuring multiple clocks. Configure clocks in
987 * the order in which they are present in the array while scaling up.
988 */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)989 int dev_pm_opp_config_clks_simple(struct device *dev,
990 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
991 bool scaling_down)
992 {
993 int ret, i;
994
995 if (scaling_down) {
996 for (i = opp_table->clk_count - 1; i >= 0; i--) {
997 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
998 if (ret) {
999 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1000 ret);
1001 return ret;
1002 }
1003 }
1004 } else {
1005 for (i = 0; i < opp_table->clk_count; i++) {
1006 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1007 if (ret) {
1008 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1009 ret);
1010 return ret;
1011 }
1012 }
1013 }
1014
1015 return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1018
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)1019 static int _opp_config_regulator_single(struct device *dev,
1020 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1021 struct regulator **regulators, unsigned int count)
1022 {
1023 struct regulator *reg = regulators[0];
1024 int ret;
1025
1026 /* This function only supports single regulator per device */
1027 if (WARN_ON(count > 1)) {
1028 dev_err(dev, "multiple regulators are not supported\n");
1029 return -EINVAL;
1030 }
1031
1032 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1033 if (ret)
1034 return ret;
1035
1036 /*
1037 * Enable the regulator after setting its voltages, otherwise it breaks
1038 * some boot-enabled regulators.
1039 */
1040 if (unlikely(!new_opp->opp_table->enabled)) {
1041 ret = regulator_enable(reg);
1042 if (ret < 0)
1043 dev_warn(dev, "Failed to enable regulator: %d", ret);
1044 }
1045
1046 return 0;
1047 }
1048
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)1049 static int _set_opp_bw(const struct opp_table *opp_table,
1050 struct dev_pm_opp *opp, struct device *dev)
1051 {
1052 u32 avg, peak;
1053 int i, ret;
1054
1055 if (!opp_table->paths)
1056 return 0;
1057
1058 for (i = 0; i < opp_table->path_count; i++) {
1059 if (!opp) {
1060 avg = 0;
1061 peak = 0;
1062 } else {
1063 avg = opp->bandwidth[i].avg;
1064 peak = opp->bandwidth[i].peak;
1065 }
1066 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1067 if (ret) {
1068 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1069 opp ? "set" : "remove", i, ret);
1070 return ret;
1071 }
1072 }
1073
1074 return 0;
1075 }
1076
_set_opp_level(struct device * dev,struct dev_pm_opp * opp)1077 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1078 {
1079 unsigned int level = 0;
1080 int ret = 0;
1081
1082 if (opp) {
1083 if (opp->level == OPP_LEVEL_UNSET)
1084 return 0;
1085
1086 level = opp->level;
1087 }
1088
1089 /* Request a new performance state through the device's PM domain. */
1090 ret = dev_pm_domain_set_performance_state(dev, level);
1091 if (ret)
1092 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1093 ret);
1094
1095 return ret;
1096 }
1097
1098 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1099 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1100 struct dev_pm_opp *opp, bool up)
1101 {
1102 struct device **devs = opp_table->required_devs;
1103 struct dev_pm_opp *required_opp;
1104 int index, target, delta, ret;
1105
1106 if (!devs)
1107 return 0;
1108
1109 /* required-opps not fully initialized yet */
1110 if (lazy_linking_pending(opp_table))
1111 return -EBUSY;
1112
1113 /* Scaling up? Set required OPPs in normal order, else reverse */
1114 if (up) {
1115 index = 0;
1116 target = opp_table->required_opp_count;
1117 delta = 1;
1118 } else {
1119 index = opp_table->required_opp_count - 1;
1120 target = -1;
1121 delta = -1;
1122 }
1123
1124 while (index != target) {
1125 if (devs[index]) {
1126 required_opp = opp ? opp->required_opps[index] : NULL;
1127
1128 ret = _set_opp_level(devs[index], required_opp);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 index += delta;
1134 }
1135
1136 return 0;
1137 }
1138
_find_current_opp(struct device * dev,struct opp_table * opp_table)1139 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1140 {
1141 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1142 unsigned long freq;
1143
1144 if (!IS_ERR(opp_table->clk)) {
1145 freq = clk_get_rate(opp_table->clk);
1146 opp = _find_freq_ceil(opp_table, &freq);
1147 }
1148
1149 /*
1150 * Unable to find the current OPP ? Pick the first from the list since
1151 * it is in ascending order, otherwise rest of the code will need to
1152 * make special checks to validate current_opp.
1153 */
1154 if (IS_ERR(opp)) {
1155 guard(mutex)(&opp_table->lock);
1156 opp = dev_pm_opp_get(list_first_entry(&opp_table->opp_list,
1157 struct dev_pm_opp, node));
1158 }
1159
1160 opp_table->current_opp = opp;
1161 }
1162
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1163 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1164 {
1165 int ret;
1166
1167 if (!opp_table->enabled)
1168 return 0;
1169
1170 /*
1171 * Some drivers need to support cases where some platforms may
1172 * have OPP table for the device, while others don't and
1173 * opp_set_rate() just needs to behave like clk_set_rate().
1174 */
1175 if (!_get_opp_count(opp_table))
1176 return 0;
1177
1178 ret = _set_opp_bw(opp_table, NULL, dev);
1179 if (ret)
1180 return ret;
1181
1182 if (opp_table->regulators)
1183 regulator_disable(opp_table->regulators[0]);
1184
1185 ret = _set_opp_level(dev, NULL);
1186 if (ret)
1187 goto out;
1188
1189 ret = _set_required_opps(dev, opp_table, NULL, false);
1190
1191 out:
1192 opp_table->enabled = false;
1193 return ret;
1194 }
1195
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1196 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1197 struct dev_pm_opp *opp, void *clk_data, bool forced)
1198 {
1199 struct dev_pm_opp *old_opp;
1200 int scaling_down, ret;
1201
1202 if (unlikely(!opp))
1203 return _disable_opp_table(dev, opp_table);
1204
1205 /* Find the currently set OPP if we don't know already */
1206 if (unlikely(!opp_table->current_opp))
1207 _find_current_opp(dev, opp_table);
1208
1209 old_opp = opp_table->current_opp;
1210
1211 /* Return early if nothing to do */
1212 if (!forced && old_opp == opp && opp_table->enabled) {
1213 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1214 return 0;
1215 }
1216
1217 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1218 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1219 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1220 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1221
1222 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1223 if (scaling_down == -1)
1224 scaling_down = 0;
1225
1226 /* Scaling up? Configure required OPPs before frequency */
1227 if (!scaling_down) {
1228 ret = _set_required_opps(dev, opp_table, opp, true);
1229 if (ret) {
1230 dev_err(dev, "Failed to set required opps: %d\n", ret);
1231 return ret;
1232 }
1233
1234 ret = _set_opp_level(dev, opp);
1235 if (ret)
1236 return ret;
1237
1238 ret = _set_opp_bw(opp_table, opp, dev);
1239 if (ret) {
1240 dev_err(dev, "Failed to set bw: %d\n", ret);
1241 return ret;
1242 }
1243
1244 if (opp_table->config_regulators) {
1245 ret = opp_table->config_regulators(dev, old_opp, opp,
1246 opp_table->regulators,
1247 opp_table->regulator_count);
1248 if (ret) {
1249 dev_err(dev, "Failed to set regulator voltages: %d\n",
1250 ret);
1251 return ret;
1252 }
1253 }
1254 }
1255
1256 if (opp_table->config_clks) {
1257 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1258 if (ret)
1259 return ret;
1260 }
1261
1262 /* Scaling down? Configure required OPPs after frequency */
1263 if (scaling_down) {
1264 if (opp_table->config_regulators) {
1265 ret = opp_table->config_regulators(dev, old_opp, opp,
1266 opp_table->regulators,
1267 opp_table->regulator_count);
1268 if (ret) {
1269 dev_err(dev, "Failed to set regulator voltages: %d\n",
1270 ret);
1271 return ret;
1272 }
1273 }
1274
1275 ret = _set_opp_bw(opp_table, opp, dev);
1276 if (ret) {
1277 dev_err(dev, "Failed to set bw: %d\n", ret);
1278 return ret;
1279 }
1280
1281 ret = _set_opp_level(dev, opp);
1282 if (ret)
1283 return ret;
1284
1285 ret = _set_required_opps(dev, opp_table, opp, false);
1286 if (ret) {
1287 dev_err(dev, "Failed to set required opps: %d\n", ret);
1288 return ret;
1289 }
1290 }
1291
1292 opp_table->enabled = true;
1293 dev_pm_opp_put(old_opp);
1294
1295 /* Make sure current_opp doesn't get freed */
1296 opp_table->current_opp = dev_pm_opp_get(opp);
1297
1298 return ret;
1299 }
1300
1301 /**
1302 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1303 * @dev: device for which we do this operation
1304 * @target_freq: frequency to achieve
1305 *
1306 * This configures the power-supplies to the levels specified by the OPP
1307 * corresponding to the target_freq, and programs the clock to a value <=
1308 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1309 * provided by the opp, should have already rounded to the target OPP's
1310 * frequency.
1311 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1312 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1313 {
1314 struct opp_table *opp_table __free(put_opp_table);
1315 struct dev_pm_opp *opp __free(put_opp) = NULL;
1316 unsigned long freq = 0, temp_freq;
1317 bool forced = false;
1318
1319 opp_table = _find_opp_table(dev);
1320 if (IS_ERR(opp_table)) {
1321 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1322 return PTR_ERR(opp_table);
1323 }
1324
1325 if (target_freq) {
1326 /*
1327 * For IO devices which require an OPP on some platforms/SoCs
1328 * while just needing to scale the clock on some others
1329 * we look for empty OPP tables with just a clock handle and
1330 * scale only the clk. This makes dev_pm_opp_set_rate()
1331 * equivalent to a clk_set_rate()
1332 */
1333 if (!_get_opp_count(opp_table)) {
1334 return opp_table->config_clks(dev, opp_table, NULL,
1335 &target_freq, false);
1336 }
1337
1338 freq = clk_round_rate(opp_table->clk, target_freq);
1339 if ((long)freq <= 0)
1340 freq = target_freq;
1341
1342 /*
1343 * The clock driver may support finer resolution of the
1344 * frequencies than the OPP table, don't update the frequency we
1345 * pass to clk_set_rate() here.
1346 */
1347 temp_freq = freq;
1348 opp = _find_freq_ceil(opp_table, &temp_freq);
1349 if (IS_ERR(opp)) {
1350 dev_err(dev, "%s: failed to find OPP for freq %lu (%ld)\n",
1351 __func__, freq, PTR_ERR(opp));
1352 return PTR_ERR(opp);
1353 }
1354
1355 /*
1356 * An OPP entry specifies the highest frequency at which other
1357 * properties of the OPP entry apply. Even if the new OPP is
1358 * same as the old one, we may still reach here for a different
1359 * value of the frequency. In such a case, do not abort but
1360 * configure the hardware to the desired frequency forcefully.
1361 */
1362 forced = opp_table->current_rate_single_clk != freq;
1363 }
1364
1365 return _set_opp(dev, opp_table, opp, &freq, forced);
1366 }
1367 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369 /**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1379 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380 {
1381 struct opp_table *opp_table __free(put_opp_table);
1382
1383 opp_table = _find_opp_table(dev);
1384 if (IS_ERR(opp_table)) {
1385 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1386 return PTR_ERR(opp_table);
1387 }
1388
1389 return _set_opp(dev, opp_table, opp, NULL, false);
1390 }
1391 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1392
1393 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1394 static void _remove_opp_dev(struct opp_device *opp_dev,
1395 struct opp_table *opp_table)
1396 {
1397 opp_debug_unregister(opp_dev, opp_table);
1398 list_del(&opp_dev->node);
1399 kfree(opp_dev);
1400 }
1401
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1402 struct opp_device *_add_opp_dev(const struct device *dev,
1403 struct opp_table *opp_table)
1404 {
1405 struct opp_device *opp_dev;
1406
1407 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1408 if (!opp_dev)
1409 return NULL;
1410
1411 /* Initialize opp-dev */
1412 opp_dev->dev = dev;
1413
1414 scoped_guard(mutex, &opp_table->lock)
1415 list_add(&opp_dev->node, &opp_table->dev_list);
1416
1417 /* Create debugfs entries for the opp_table */
1418 opp_debug_register(opp_dev, opp_table);
1419
1420 return opp_dev;
1421 }
1422
_allocate_opp_table(struct device * dev,int index)1423 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1424 {
1425 struct opp_table *opp_table;
1426 struct opp_device *opp_dev;
1427 int ret;
1428
1429 /*
1430 * Allocate a new OPP table. In the infrequent case where a new
1431 * device is needed to be added, we pay this penalty.
1432 */
1433 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1434 if (!opp_table)
1435 return ERR_PTR(-ENOMEM);
1436
1437 mutex_init(&opp_table->lock);
1438 INIT_LIST_HEAD(&opp_table->dev_list);
1439 INIT_LIST_HEAD(&opp_table->lazy);
1440
1441 opp_table->clk = ERR_PTR(-ENODEV);
1442
1443 /* Mark regulator count uninitialized */
1444 opp_table->regulator_count = -1;
1445
1446 opp_dev = _add_opp_dev(dev, opp_table);
1447 if (!opp_dev) {
1448 ret = -ENOMEM;
1449 goto err;
1450 }
1451
1452 _of_init_opp_table(opp_table, dev, index);
1453
1454 /* Find interconnect path(s) for the device */
1455 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1456 if (ret) {
1457 if (ret == -EPROBE_DEFER)
1458 goto remove_opp_dev;
1459
1460 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1461 __func__, ret);
1462 }
1463
1464 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1465 INIT_LIST_HEAD(&opp_table->opp_list);
1466 kref_init(&opp_table->kref);
1467
1468 return opp_table;
1469
1470 remove_opp_dev:
1471 _of_clear_opp_table(opp_table);
1472 _remove_opp_dev(opp_dev, opp_table);
1473 mutex_destroy(&opp_table->lock);
1474 err:
1475 kfree(opp_table);
1476 return ERR_PTR(ret);
1477 }
1478
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1479 static struct opp_table *_update_opp_table_clk(struct device *dev,
1480 struct opp_table *opp_table,
1481 bool getclk)
1482 {
1483 int ret;
1484
1485 /*
1486 * Return early if we don't need to get clk or we have already done it
1487 * earlier.
1488 */
1489 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1490 opp_table->clks)
1491 return opp_table;
1492
1493 /* Find clk for the device */
1494 opp_table->clk = clk_get(dev, NULL);
1495
1496 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1497 if (!ret) {
1498 opp_table->config_clks = _opp_config_clk_single;
1499 opp_table->clk_count = 1;
1500 return opp_table;
1501 }
1502
1503 if (ret == -ENOENT) {
1504 /*
1505 * There are few platforms which don't want the OPP core to
1506 * manage device's clock settings. In such cases neither the
1507 * platform provides the clks explicitly to us, nor the DT
1508 * contains a valid clk entry. The OPP nodes in DT may still
1509 * contain "opp-hz" property though, which we need to parse and
1510 * allow the platform to find an OPP based on freq later on.
1511 *
1512 * This is a simple solution to take care of such corner cases,
1513 * i.e. make the clk_count 1, which lets us allocate space for
1514 * frequency in opp->rates and also parse the entries in DT.
1515 */
1516 opp_table->clk_count = 1;
1517
1518 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1519 return opp_table;
1520 }
1521
1522 dev_pm_opp_put_opp_table(opp_table);
1523 dev_err_probe(dev, ret, "Couldn't find clock\n");
1524
1525 return ERR_PTR(ret);
1526 }
1527
1528 /*
1529 * We need to make sure that the OPP table for a device doesn't get added twice,
1530 * if this routine gets called in parallel with the same device pointer.
1531 *
1532 * The simplest way to enforce that is to perform everything (find existing
1533 * table and if not found, create a new one) under the opp_table_lock, so only
1534 * one creator gets access to the same. But that expands the critical section
1535 * under the lock and may end up causing circular dependencies with frameworks
1536 * like debugfs, interconnect or clock framework as they may be direct or
1537 * indirect users of OPP core.
1538 *
1539 * And for that reason we have to go for a bit tricky implementation here, which
1540 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1541 * of adding an OPP table and others should wait for it to finish.
1542 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1543 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1544 bool getclk)
1545 {
1546 struct opp_table *opp_table;
1547
1548 again:
1549 mutex_lock(&opp_table_lock);
1550
1551 opp_table = _find_opp_table_unlocked(dev);
1552 if (!IS_ERR(opp_table))
1553 goto unlock;
1554
1555 /*
1556 * The opp_tables list or an OPP table's dev_list is getting updated by
1557 * another user, wait for it to finish.
1558 */
1559 if (unlikely(opp_tables_busy)) {
1560 mutex_unlock(&opp_table_lock);
1561 cpu_relax();
1562 goto again;
1563 }
1564
1565 opp_tables_busy = true;
1566 opp_table = _managed_opp(dev, index);
1567
1568 /* Drop the lock to reduce the size of critical section */
1569 mutex_unlock(&opp_table_lock);
1570
1571 if (opp_table) {
1572 if (!_add_opp_dev(dev, opp_table)) {
1573 dev_pm_opp_put_opp_table(opp_table);
1574 opp_table = ERR_PTR(-ENOMEM);
1575 }
1576
1577 mutex_lock(&opp_table_lock);
1578 } else {
1579 opp_table = _allocate_opp_table(dev, index);
1580
1581 mutex_lock(&opp_table_lock);
1582 if (!IS_ERR(opp_table))
1583 list_add(&opp_table->node, &opp_tables);
1584 }
1585
1586 opp_tables_busy = false;
1587
1588 unlock:
1589 mutex_unlock(&opp_table_lock);
1590
1591 return _update_opp_table_clk(dev, opp_table, getclk);
1592 }
1593
_add_opp_table(struct device * dev,bool getclk)1594 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1595 {
1596 return _add_opp_table_indexed(dev, 0, getclk);
1597 }
1598
dev_pm_opp_get_opp_table(struct device * dev)1599 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1600 {
1601 return _find_opp_table(dev);
1602 }
1603 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1604
_opp_table_kref_release(struct kref * kref)1605 static void _opp_table_kref_release(struct kref *kref)
1606 {
1607 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1608 struct opp_device *opp_dev, *temp;
1609 int i;
1610
1611 /* Drop the lock as soon as we can */
1612 list_del(&opp_table->node);
1613 mutex_unlock(&opp_table_lock);
1614
1615 if (opp_table->current_opp)
1616 dev_pm_opp_put(opp_table->current_opp);
1617
1618 _of_clear_opp_table(opp_table);
1619
1620 /* Release automatically acquired single clk */
1621 if (!IS_ERR(opp_table->clk))
1622 clk_put(opp_table->clk);
1623
1624 if (opp_table->paths) {
1625 for (i = 0; i < opp_table->path_count; i++)
1626 icc_put(opp_table->paths[i]);
1627 kfree(opp_table->paths);
1628 }
1629
1630 WARN_ON(!list_empty(&opp_table->opp_list));
1631
1632 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1633 _remove_opp_dev(opp_dev, opp_table);
1634
1635 mutex_destroy(&opp_table->lock);
1636 kfree(opp_table);
1637 }
1638
dev_pm_opp_get_opp_table_ref(struct opp_table * opp_table)1639 struct opp_table *dev_pm_opp_get_opp_table_ref(struct opp_table *opp_table)
1640 {
1641 kref_get(&opp_table->kref);
1642 return opp_table;
1643 }
1644 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table_ref);
1645
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1646 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1647 {
1648 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1649 &opp_table_lock);
1650 }
1651 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1652
_opp_free(struct dev_pm_opp * opp)1653 void _opp_free(struct dev_pm_opp *opp)
1654 {
1655 kfree(opp);
1656 }
1657
_opp_kref_release(struct kref * kref)1658 static void _opp_kref_release(struct kref *kref)
1659 {
1660 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1661 struct opp_table *opp_table = opp->opp_table;
1662
1663 list_del(&opp->node);
1664 mutex_unlock(&opp_table->lock);
1665
1666 /*
1667 * Notify the changes in the availability of the operable
1668 * frequency/voltage list.
1669 */
1670 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1671 _of_clear_opp(opp_table, opp);
1672 opp_debug_remove_one(opp);
1673 kfree(opp);
1674 }
1675
dev_pm_opp_get(struct dev_pm_opp * opp)1676 struct dev_pm_opp *dev_pm_opp_get(struct dev_pm_opp *opp)
1677 {
1678 kref_get(&opp->kref);
1679 return opp;
1680 }
1681 EXPORT_SYMBOL_GPL(dev_pm_opp_get);
1682
dev_pm_opp_put(struct dev_pm_opp * opp)1683 void dev_pm_opp_put(struct dev_pm_opp *opp)
1684 {
1685 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1686 }
1687 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1688
1689 /**
1690 * dev_pm_opp_remove() - Remove an OPP from OPP table
1691 * @dev: device for which we do this operation
1692 * @freq: OPP to remove with matching 'freq'
1693 *
1694 * This function removes an opp from the opp table.
1695 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1696 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1697 {
1698 struct opp_table *opp_table __free(put_opp_table);
1699 struct dev_pm_opp *opp = NULL, *iter;
1700
1701 opp_table = _find_opp_table(dev);
1702 if (IS_ERR(opp_table))
1703 return;
1704
1705 if (!assert_single_clk(opp_table, 0))
1706 return;
1707
1708 scoped_guard(mutex, &opp_table->lock) {
1709 list_for_each_entry(iter, &opp_table->opp_list, node) {
1710 if (iter->rates[0] == freq) {
1711 opp = iter;
1712 break;
1713 }
1714 }
1715 }
1716
1717 if (opp) {
1718 dev_pm_opp_put(opp);
1719
1720 /* Drop the reference taken by dev_pm_opp_add() */
1721 dev_pm_opp_put_opp_table(opp_table);
1722 } else {
1723 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1724 __func__, freq);
1725 }
1726 }
1727 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1728
_opp_get_next(struct opp_table * opp_table,bool dynamic)1729 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1730 bool dynamic)
1731 {
1732 struct dev_pm_opp *opp;
1733
1734 guard(mutex)(&opp_table->lock);
1735
1736 list_for_each_entry(opp, &opp_table->opp_list, node) {
1737 /*
1738 * Refcount must be dropped only once for each OPP by OPP core,
1739 * do that with help of "removed" flag.
1740 */
1741 if (!opp->removed && dynamic == opp->dynamic)
1742 return opp;
1743 }
1744
1745 return NULL;
1746 }
1747
1748 /*
1749 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1750 * happen lock less to avoid circular dependency issues. This routine must be
1751 * called without the opp_table->lock held.
1752 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1753 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1754 {
1755 struct dev_pm_opp *opp;
1756
1757 while ((opp = _opp_get_next(opp_table, dynamic))) {
1758 opp->removed = true;
1759 dev_pm_opp_put(opp);
1760
1761 /* Drop the references taken by dev_pm_opp_add() */
1762 if (dynamic)
1763 dev_pm_opp_put_opp_table(opp_table);
1764 }
1765 }
1766
_opp_remove_all_static(struct opp_table * opp_table)1767 bool _opp_remove_all_static(struct opp_table *opp_table)
1768 {
1769 scoped_guard(mutex, &opp_table->lock) {
1770 if (!opp_table->parsed_static_opps)
1771 return false;
1772
1773 if (--opp_table->parsed_static_opps)
1774 return true;
1775 }
1776
1777 _opp_remove_all(opp_table, false);
1778 return true;
1779 }
1780
1781 /**
1782 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1783 * @dev: device for which we do this operation
1784 *
1785 * This function removes all dynamically created OPPs from the opp table.
1786 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1787 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1788 {
1789 struct opp_table *opp_table __free(put_opp_table);
1790
1791 opp_table = _find_opp_table(dev);
1792 if (IS_ERR(opp_table))
1793 return;
1794
1795 _opp_remove_all(opp_table, true);
1796 }
1797 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1798
_opp_allocate(struct opp_table * opp_table)1799 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1800 {
1801 struct dev_pm_opp *opp;
1802 int supply_count, supply_size, icc_size, clk_size;
1803
1804 /* Allocate space for at least one supply */
1805 supply_count = opp_table->regulator_count > 0 ?
1806 opp_table->regulator_count : 1;
1807 supply_size = sizeof(*opp->supplies) * supply_count;
1808 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1809 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1810
1811 /* allocate new OPP node and supplies structures */
1812 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1813 if (!opp)
1814 return NULL;
1815
1816 /* Put the supplies, bw and clock at the end of the OPP structure */
1817 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1818
1819 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1820
1821 if (icc_size)
1822 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1823
1824 INIT_LIST_HEAD(&opp->node);
1825
1826 opp->level = OPP_LEVEL_UNSET;
1827
1828 return opp;
1829 }
1830
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1831 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1832 struct opp_table *opp_table)
1833 {
1834 struct regulator *reg;
1835 int i;
1836
1837 if (!opp_table->regulators)
1838 return true;
1839
1840 for (i = 0; i < opp_table->regulator_count; i++) {
1841 reg = opp_table->regulators[i];
1842
1843 if (!regulator_is_supported_voltage(reg,
1844 opp->supplies[i].u_volt_min,
1845 opp->supplies[i].u_volt_max)) {
1846 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1847 __func__, opp->supplies[i].u_volt_min,
1848 opp->supplies[i].u_volt_max);
1849 return false;
1850 }
1851 }
1852
1853 return true;
1854 }
1855
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1856 static int _opp_compare_rate(struct opp_table *opp_table,
1857 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1858 {
1859 int i;
1860
1861 for (i = 0; i < opp_table->clk_count; i++) {
1862 if (opp1->rates[i] != opp2->rates[i])
1863 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1864 }
1865
1866 /* Same rates for both OPPs */
1867 return 0;
1868 }
1869
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1870 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1871 struct dev_pm_opp *opp2)
1872 {
1873 int i;
1874
1875 for (i = 0; i < opp_table->path_count; i++) {
1876 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1877 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1878 }
1879
1880 /* Same bw for both OPPs */
1881 return 0;
1882 }
1883
1884 /*
1885 * Returns
1886 * 0: opp1 == opp2
1887 * 1: opp1 > opp2
1888 * -1: opp1 < opp2
1889 */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1890 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1891 struct dev_pm_opp *opp2)
1892 {
1893 int ret;
1894
1895 ret = _opp_compare_rate(opp_table, opp1, opp2);
1896 if (ret)
1897 return ret;
1898
1899 ret = _opp_compare_bw(opp_table, opp1, opp2);
1900 if (ret)
1901 return ret;
1902
1903 if (opp1->level != opp2->level)
1904 return opp1->level < opp2->level ? -1 : 1;
1905
1906 /* Duplicate OPPs */
1907 return 0;
1908 }
1909
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1910 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1911 struct opp_table *opp_table,
1912 struct list_head **head)
1913 {
1914 struct dev_pm_opp *opp;
1915 int opp_cmp;
1916
1917 /*
1918 * Insert new OPP in order of increasing frequency and discard if
1919 * already present.
1920 *
1921 * Need to use &opp_table->opp_list in the condition part of the 'for'
1922 * loop, don't replace it with head otherwise it will become an infinite
1923 * loop.
1924 */
1925 list_for_each_entry(opp, &opp_table->opp_list, node) {
1926 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1927 if (opp_cmp > 0) {
1928 *head = &opp->node;
1929 continue;
1930 }
1931
1932 if (opp_cmp < 0)
1933 return 0;
1934
1935 /* Duplicate OPPs */
1936 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1937 __func__, opp->rates[0], opp->supplies[0].u_volt,
1938 opp->available, new_opp->rates[0],
1939 new_opp->supplies[0].u_volt, new_opp->available);
1940
1941 /* Should we compare voltages for all regulators here ? */
1942 return opp->available &&
1943 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1944 }
1945
1946 return 0;
1947 }
1948
_required_opps_available(struct dev_pm_opp * opp,int count)1949 void _required_opps_available(struct dev_pm_opp *opp, int count)
1950 {
1951 int i;
1952
1953 for (i = 0; i < count; i++) {
1954 if (opp->required_opps[i]->available)
1955 continue;
1956
1957 opp->available = false;
1958 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1959 __func__, opp->required_opps[i]->np, opp->rates[0]);
1960 return;
1961 }
1962 }
1963
1964 /*
1965 * Returns:
1966 * 0: On success. And appropriate error message for duplicate OPPs.
1967 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1968 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1969 * sure we don't print error messages unnecessarily if different parts of
1970 * kernel try to initialize the OPP table.
1971 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1972 * should be considered an error by the callers of _opp_add().
1973 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1974 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1975 struct opp_table *opp_table)
1976 {
1977 struct list_head *head;
1978 int ret;
1979
1980 scoped_guard(mutex, &opp_table->lock) {
1981 head = &opp_table->opp_list;
1982
1983 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1984 if (ret)
1985 return ret;
1986
1987 list_add(&new_opp->node, head);
1988 }
1989
1990 new_opp->opp_table = opp_table;
1991 kref_init(&new_opp->kref);
1992
1993 opp_debug_create_one(new_opp, opp_table);
1994
1995 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1996 new_opp->available = false;
1997 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1998 __func__, new_opp->rates[0]);
1999 }
2000
2001 /* required-opps not fully initialized yet */
2002 if (lazy_linking_pending(opp_table))
2003 return 0;
2004
2005 _required_opps_available(new_opp, opp_table->required_opp_count);
2006
2007 return 0;
2008 }
2009
2010 /**
2011 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2012 * @opp_table: OPP table
2013 * @dev: device for which we do this operation
2014 * @data: The OPP data for the OPP to add
2015 * @dynamic: Dynamically added OPPs.
2016 *
2017 * This function adds an opp definition to the opp table and returns status.
2018 * The opp is made available by default and it can be controlled using
2019 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2020 *
2021 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2022 * and freed by dev_pm_opp_of_remove_table.
2023 *
2024 * Return:
2025 * 0 On success OR
2026 * Duplicate OPPs (both freq and volt are same) and opp->available
2027 * -EEXIST Freq are same and volt are different OR
2028 * Duplicate OPPs (both freq and volt are same) and !opp->available
2029 * -ENOMEM Memory allocation failure
2030 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,struct dev_pm_opp_data * data,bool dynamic)2031 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2032 struct dev_pm_opp_data *data, bool dynamic)
2033 {
2034 struct dev_pm_opp *new_opp;
2035 unsigned long tol, u_volt = data->u_volt;
2036 int ret;
2037
2038 if (!assert_single_clk(opp_table, 0))
2039 return -EINVAL;
2040
2041 new_opp = _opp_allocate(opp_table);
2042 if (!new_opp)
2043 return -ENOMEM;
2044
2045 /* populate the opp table */
2046 new_opp->rates[0] = data->freq;
2047 new_opp->level = data->level;
2048 new_opp->turbo = data->turbo;
2049 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2050 new_opp->supplies[0].u_volt = u_volt;
2051 new_opp->supplies[0].u_volt_min = u_volt - tol;
2052 new_opp->supplies[0].u_volt_max = u_volt + tol;
2053 new_opp->available = true;
2054 new_opp->dynamic = dynamic;
2055
2056 ret = _opp_add(dev, new_opp, opp_table);
2057 if (ret) {
2058 /* Don't return error for duplicate OPPs */
2059 if (ret == -EBUSY)
2060 ret = 0;
2061 goto free_opp;
2062 }
2063
2064 /*
2065 * Notify the changes in the availability of the operable
2066 * frequency/voltage list.
2067 */
2068 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2069 return 0;
2070
2071 free_opp:
2072 _opp_free(new_opp);
2073
2074 return ret;
2075 }
2076
2077 /*
2078 * This is required only for the V2 bindings, and it enables a platform to
2079 * specify the hierarchy of versions it supports. OPP layer will then enable
2080 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2081 * property.
2082 */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2083 static int _opp_set_supported_hw(struct opp_table *opp_table,
2084 const u32 *versions, unsigned int count)
2085 {
2086 /* Another CPU that shares the OPP table has set the property ? */
2087 if (opp_table->supported_hw)
2088 return 0;
2089
2090 opp_table->supported_hw = kmemdup_array(versions, count,
2091 sizeof(*versions), GFP_KERNEL);
2092 if (!opp_table->supported_hw)
2093 return -ENOMEM;
2094
2095 opp_table->supported_hw_count = count;
2096
2097 return 0;
2098 }
2099
_opp_put_supported_hw(struct opp_table * opp_table)2100 static void _opp_put_supported_hw(struct opp_table *opp_table)
2101 {
2102 if (opp_table->supported_hw) {
2103 kfree(opp_table->supported_hw);
2104 opp_table->supported_hw = NULL;
2105 opp_table->supported_hw_count = 0;
2106 }
2107 }
2108
2109 /*
2110 * This is required only for the V2 bindings, and it enables a platform to
2111 * specify the extn to be used for certain property names. The properties to
2112 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2113 * should postfix the property name with -<name> while looking for them.
2114 */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2115 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2116 {
2117 /* Another CPU that shares the OPP table has set the property ? */
2118 if (!opp_table->prop_name) {
2119 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2120 if (!opp_table->prop_name)
2121 return -ENOMEM;
2122 }
2123
2124 return 0;
2125 }
2126
_opp_put_prop_name(struct opp_table * opp_table)2127 static void _opp_put_prop_name(struct opp_table *opp_table)
2128 {
2129 if (opp_table->prop_name) {
2130 kfree(opp_table->prop_name);
2131 opp_table->prop_name = NULL;
2132 }
2133 }
2134
2135 /*
2136 * In order to support OPP switching, OPP layer needs to know the name of the
2137 * device's regulators, as the core would be required to switch voltages as
2138 * well.
2139 *
2140 * This must be called before any OPPs are initialized for the device.
2141 */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2142 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2143 const char * const names[])
2144 {
2145 const char * const *temp = names;
2146 struct regulator *reg;
2147 int count = 0, ret, i;
2148
2149 /* Count number of regulators */
2150 while (*temp++)
2151 count++;
2152
2153 if (!count)
2154 return -EINVAL;
2155
2156 /* Another CPU that shares the OPP table has set the regulators ? */
2157 if (opp_table->regulators)
2158 return 0;
2159
2160 opp_table->regulators = kmalloc_array(count,
2161 sizeof(*opp_table->regulators),
2162 GFP_KERNEL);
2163 if (!opp_table->regulators)
2164 return -ENOMEM;
2165
2166 for (i = 0; i < count; i++) {
2167 reg = regulator_get_optional(dev, names[i]);
2168 if (IS_ERR(reg)) {
2169 ret = dev_err_probe(dev, PTR_ERR(reg),
2170 "%s: no regulator (%s) found\n",
2171 __func__, names[i]);
2172 goto free_regulators;
2173 }
2174
2175 opp_table->regulators[i] = reg;
2176 }
2177
2178 opp_table->regulator_count = count;
2179
2180 /* Set generic config_regulators() for single regulators here */
2181 if (count == 1)
2182 opp_table->config_regulators = _opp_config_regulator_single;
2183
2184 return 0;
2185
2186 free_regulators:
2187 while (i != 0)
2188 regulator_put(opp_table->regulators[--i]);
2189
2190 kfree(opp_table->regulators);
2191 opp_table->regulators = NULL;
2192 opp_table->regulator_count = -1;
2193
2194 return ret;
2195 }
2196
_opp_put_regulators(struct opp_table * opp_table)2197 static void _opp_put_regulators(struct opp_table *opp_table)
2198 {
2199 int i;
2200
2201 if (!opp_table->regulators)
2202 return;
2203
2204 if (opp_table->enabled) {
2205 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2206 regulator_disable(opp_table->regulators[i]);
2207 }
2208
2209 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2210 regulator_put(opp_table->regulators[i]);
2211
2212 kfree(opp_table->regulators);
2213 opp_table->regulators = NULL;
2214 opp_table->regulator_count = -1;
2215 }
2216
_put_clks(struct opp_table * opp_table,int count)2217 static void _put_clks(struct opp_table *opp_table, int count)
2218 {
2219 int i;
2220
2221 for (i = count - 1; i >= 0; i--)
2222 clk_put(opp_table->clks[i]);
2223
2224 kfree(opp_table->clks);
2225 opp_table->clks = NULL;
2226 }
2227
2228 /*
2229 * In order to support OPP switching, OPP layer needs to get pointers to the
2230 * clocks for the device. Simple cases work fine without using this routine
2231 * (i.e. by passing connection-id as NULL), but for a device with multiple
2232 * clocks available, the OPP core needs to know the exact names of the clks to
2233 * use.
2234 *
2235 * This must be called before any OPPs are initialized for the device.
2236 */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2237 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2238 const char * const names[],
2239 config_clks_t config_clks)
2240 {
2241 const char * const *temp = names;
2242 int count = 0, ret, i;
2243 struct clk *clk;
2244
2245 /* Count number of clks */
2246 while (*temp++)
2247 count++;
2248
2249 /*
2250 * This is a special case where we have a single clock, whose connection
2251 * id name is NULL, i.e. first two entries are NULL in the array.
2252 */
2253 if (!count && !names[1])
2254 count = 1;
2255
2256 /* Fail early for invalid configurations */
2257 if (!count || (!config_clks && count > 1))
2258 return -EINVAL;
2259
2260 /* Another CPU that shares the OPP table has set the clkname ? */
2261 if (opp_table->clks)
2262 return 0;
2263
2264 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2265 GFP_KERNEL);
2266 if (!opp_table->clks)
2267 return -ENOMEM;
2268
2269 /* Find clks for the device */
2270 for (i = 0; i < count; i++) {
2271 clk = clk_get(dev, names[i]);
2272 if (IS_ERR(clk)) {
2273 ret = dev_err_probe(dev, PTR_ERR(clk),
2274 "%s: Couldn't find clock with name: %s\n",
2275 __func__, names[i]);
2276 goto free_clks;
2277 }
2278
2279 opp_table->clks[i] = clk;
2280 }
2281
2282 opp_table->clk_count = count;
2283 opp_table->config_clks = config_clks;
2284
2285 /* Set generic single clk set here */
2286 if (count == 1) {
2287 if (!opp_table->config_clks)
2288 opp_table->config_clks = _opp_config_clk_single;
2289
2290 /*
2291 * We could have just dropped the "clk" field and used "clks"
2292 * everywhere. Instead we kept the "clk" field around for
2293 * following reasons:
2294 *
2295 * - avoiding clks[0] everywhere else.
2296 * - not running single clk helpers for multiple clk usecase by
2297 * mistake.
2298 *
2299 * Since this is single-clk case, just update the clk pointer
2300 * too.
2301 */
2302 opp_table->clk = opp_table->clks[0];
2303 }
2304
2305 return 0;
2306
2307 free_clks:
2308 _put_clks(opp_table, i);
2309 return ret;
2310 }
2311
_opp_put_clknames(struct opp_table * opp_table)2312 static void _opp_put_clknames(struct opp_table *opp_table)
2313 {
2314 if (!opp_table->clks)
2315 return;
2316
2317 opp_table->config_clks = NULL;
2318 opp_table->clk = ERR_PTR(-ENODEV);
2319
2320 _put_clks(opp_table, opp_table->clk_count);
2321 }
2322
2323 /*
2324 * This is useful to support platforms with multiple regulators per device.
2325 *
2326 * This must be called before any OPPs are initialized for the device.
2327 */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2328 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2329 struct device *dev, config_regulators_t config_regulators)
2330 {
2331 /* Another CPU that shares the OPP table has set the helper ? */
2332 if (!opp_table->config_regulators)
2333 opp_table->config_regulators = config_regulators;
2334
2335 return 0;
2336 }
2337
_opp_put_config_regulators_helper(struct opp_table * opp_table)2338 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2339 {
2340 if (opp_table->config_regulators)
2341 opp_table->config_regulators = NULL;
2342 }
2343
_opp_set_required_dev(struct opp_table * opp_table,struct device * dev,struct device * required_dev,unsigned int index)2344 static int _opp_set_required_dev(struct opp_table *opp_table,
2345 struct device *dev,
2346 struct device *required_dev,
2347 unsigned int index)
2348 {
2349 struct opp_table *required_table, *pd_table;
2350 struct device *gdev;
2351
2352 /* Genpd core takes care of propagation to parent genpd */
2353 if (opp_table->is_genpd) {
2354 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2355 return -EOPNOTSUPP;
2356 }
2357
2358 if (index >= opp_table->required_opp_count) {
2359 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2360 return -EINVAL;
2361 }
2362
2363 required_table = opp_table->required_opp_tables[index];
2364 if (IS_ERR(required_table)) {
2365 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2366 return -ENODEV;
2367 }
2368
2369 /*
2370 * The required_opp_tables parsing is not perfect, as the OPP core does
2371 * the parsing solely based on the DT node pointers. The core sets the
2372 * required_opp_tables entry to the first OPP table in the "opp_tables"
2373 * list, that matches with the node pointer.
2374 *
2375 * If the target DT OPP table is used by multiple devices and they all
2376 * create separate instances of 'struct opp_table' from it, then it is
2377 * possible that the required_opp_tables entry may be set to the
2378 * incorrect sibling device.
2379 *
2380 * Cross check it again and fix if required.
2381 */
2382 gdev = dev_to_genpd_dev(required_dev);
2383 if (IS_ERR(gdev))
2384 return PTR_ERR(gdev);
2385
2386 pd_table = _find_opp_table(gdev);
2387 if (!IS_ERR(pd_table)) {
2388 if (pd_table != required_table) {
2389 dev_pm_opp_put_opp_table(required_table);
2390 opp_table->required_opp_tables[index] = pd_table;
2391 } else {
2392 dev_pm_opp_put_opp_table(pd_table);
2393 }
2394 }
2395
2396 opp_table->required_devs[index] = required_dev;
2397 return 0;
2398 }
2399
_opp_put_required_dev(struct opp_table * opp_table,unsigned int index)2400 static void _opp_put_required_dev(struct opp_table *opp_table,
2401 unsigned int index)
2402 {
2403 opp_table->required_devs[index] = NULL;
2404 }
2405
_opp_clear_config(struct opp_config_data * data)2406 static void _opp_clear_config(struct opp_config_data *data)
2407 {
2408 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2409 _opp_put_required_dev(data->opp_table,
2410 data->required_dev_index);
2411 if (data->flags & OPP_CONFIG_REGULATOR)
2412 _opp_put_regulators(data->opp_table);
2413 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2414 _opp_put_supported_hw(data->opp_table);
2415 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2416 _opp_put_config_regulators_helper(data->opp_table);
2417 if (data->flags & OPP_CONFIG_PROP_NAME)
2418 _opp_put_prop_name(data->opp_table);
2419 if (data->flags & OPP_CONFIG_CLK)
2420 _opp_put_clknames(data->opp_table);
2421
2422 dev_pm_opp_put_opp_table(data->opp_table);
2423 kfree(data);
2424 }
2425
2426 /**
2427 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2428 * @dev: Device for which configuration is being set.
2429 * @config: OPP configuration.
2430 *
2431 * This allows all device OPP configurations to be performed at once.
2432 *
2433 * This must be called before any OPPs are initialized for the device. This may
2434 * be called multiple times for the same OPP table, for example once for each
2435 * CPU that share the same table. This must be balanced by the same number of
2436 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2437 *
2438 * This returns a token to the caller, which must be passed to
2439 * dev_pm_opp_clear_config() to free the resources later. The value of the
2440 * returned token will be >= 1 for success and negative for errors. The minimum
2441 * value of 1 is chosen here to make it easy for callers to manage the resource.
2442 */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2443 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2444 {
2445 struct opp_table *opp_table;
2446 struct opp_config_data *data;
2447 unsigned int id;
2448 int ret;
2449
2450 data = kmalloc(sizeof(*data), GFP_KERNEL);
2451 if (!data)
2452 return -ENOMEM;
2453
2454 opp_table = _add_opp_table(dev, false);
2455 if (IS_ERR(opp_table)) {
2456 kfree(data);
2457 return PTR_ERR(opp_table);
2458 }
2459
2460 data->opp_table = opp_table;
2461 data->flags = 0;
2462
2463 /* This should be called before OPPs are initialized */
2464 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2465 ret = -EBUSY;
2466 goto err;
2467 }
2468
2469 /* Configure clocks */
2470 if (config->clk_names) {
2471 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2472 config->config_clks);
2473 if (ret)
2474 goto err;
2475
2476 data->flags |= OPP_CONFIG_CLK;
2477 } else if (config->config_clks) {
2478 /* Don't allow config callback without clocks */
2479 ret = -EINVAL;
2480 goto err;
2481 }
2482
2483 /* Configure property names */
2484 if (config->prop_name) {
2485 ret = _opp_set_prop_name(opp_table, config->prop_name);
2486 if (ret)
2487 goto err;
2488
2489 data->flags |= OPP_CONFIG_PROP_NAME;
2490 }
2491
2492 /* Configure config_regulators helper */
2493 if (config->config_regulators) {
2494 ret = _opp_set_config_regulators_helper(opp_table, dev,
2495 config->config_regulators);
2496 if (ret)
2497 goto err;
2498
2499 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2500 }
2501
2502 /* Configure supported hardware */
2503 if (config->supported_hw) {
2504 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2505 config->supported_hw_count);
2506 if (ret)
2507 goto err;
2508
2509 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2510 }
2511
2512 /* Configure supplies */
2513 if (config->regulator_names) {
2514 ret = _opp_set_regulators(opp_table, dev,
2515 config->regulator_names);
2516 if (ret)
2517 goto err;
2518
2519 data->flags |= OPP_CONFIG_REGULATOR;
2520 }
2521
2522 if (config->required_dev) {
2523 ret = _opp_set_required_dev(opp_table, dev,
2524 config->required_dev,
2525 config->required_dev_index);
2526 if (ret)
2527 goto err;
2528
2529 data->required_dev_index = config->required_dev_index;
2530 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2531 }
2532
2533 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2534 GFP_KERNEL);
2535 if (ret)
2536 goto err;
2537
2538 return id;
2539
2540 err:
2541 _opp_clear_config(data);
2542 return ret;
2543 }
2544 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2545
2546 /**
2547 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2548 * @token: The token returned by dev_pm_opp_set_config() previously.
2549 *
2550 * This allows all device OPP configurations to be cleared at once. This must be
2551 * called once for each call made to dev_pm_opp_set_config(), in order to free
2552 * the OPPs properly.
2553 *
2554 * Currently the first call itself ends up freeing all the OPP configurations,
2555 * while the later ones only drop the OPP table reference. This works well for
2556 * now as we would never want to use an half initialized OPP table and want to
2557 * remove the configurations together.
2558 */
dev_pm_opp_clear_config(int token)2559 void dev_pm_opp_clear_config(int token)
2560 {
2561 struct opp_config_data *data;
2562
2563 /*
2564 * This lets the callers call this unconditionally and keep their code
2565 * simple.
2566 */
2567 if (unlikely(token <= 0))
2568 return;
2569
2570 data = xa_erase(&opp_configs, token);
2571 if (WARN_ON(!data))
2572 return;
2573
2574 _opp_clear_config(data);
2575 }
2576 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2577
devm_pm_opp_config_release(void * token)2578 static void devm_pm_opp_config_release(void *token)
2579 {
2580 dev_pm_opp_clear_config((unsigned long)token);
2581 }
2582
2583 /**
2584 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2585 * @dev: Device for which configuration is being set.
2586 * @config: OPP configuration.
2587 *
2588 * This allows all device OPP configurations to be performed at once.
2589 * This is a resource-managed variant of dev_pm_opp_set_config().
2590 *
2591 * Return: 0 on success and errorno otherwise.
2592 */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2593 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2594 {
2595 int token = dev_pm_opp_set_config(dev, config);
2596
2597 if (token < 0)
2598 return token;
2599
2600 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2601 (void *) ((unsigned long) token));
2602 }
2603 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2604
2605 /**
2606 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2607 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2608 * @dst_table: Required OPP table of the @src_table.
2609 * @src_opp: OPP from the @src_table.
2610 *
2611 * This function returns the OPP (present in @dst_table) pointed out by the
2612 * "required-opps" property of the @src_opp (present in @src_table).
2613 *
2614 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2615 * use.
2616 *
2617 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2618 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2619 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2620 struct opp_table *dst_table,
2621 struct dev_pm_opp *src_opp)
2622 {
2623 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2624 int i;
2625
2626 if (!src_table || !dst_table || !src_opp ||
2627 !src_table->required_opp_tables)
2628 return ERR_PTR(-EINVAL);
2629
2630 /* required-opps not fully initialized yet */
2631 if (lazy_linking_pending(src_table))
2632 return ERR_PTR(-EBUSY);
2633
2634 for (i = 0; i < src_table->required_opp_count; i++) {
2635 if (src_table->required_opp_tables[i] != dst_table)
2636 continue;
2637
2638 scoped_guard(mutex, &src_table->lock) {
2639 list_for_each_entry(opp, &src_table->opp_list, node) {
2640 if (opp == src_opp) {
2641 dest_opp = dev_pm_opp_get(opp->required_opps[i]);
2642 break;
2643 }
2644 }
2645 break;
2646 }
2647 }
2648
2649 if (IS_ERR(dest_opp)) {
2650 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2651 src_table, dst_table);
2652 }
2653
2654 return dest_opp;
2655 }
2656 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2657
2658 /**
2659 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2660 * @src_table: OPP table which has dst_table as one of its required OPP table.
2661 * @dst_table: Required OPP table of the src_table.
2662 * @pstate: Current performance state of the src_table.
2663 *
2664 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2665 * "required-opps" property of the OPP (present in @src_table) which has
2666 * performance state set to @pstate.
2667 *
2668 * Return: Zero or positive performance state on success, otherwise negative
2669 * value on errors.
2670 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2671 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2672 struct opp_table *dst_table,
2673 unsigned int pstate)
2674 {
2675 struct dev_pm_opp *opp;
2676 int i;
2677
2678 /*
2679 * Normally the src_table will have the "required_opps" property set to
2680 * point to one of the OPPs in the dst_table, but in some cases the
2681 * genpd and its master have one to one mapping of performance states
2682 * and so none of them have the "required-opps" property set. Return the
2683 * pstate of the src_table as it is in such cases.
2684 */
2685 if (!src_table || !src_table->required_opp_count)
2686 return pstate;
2687
2688 /* Both OPP tables must belong to genpds */
2689 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2690 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2691 return -EINVAL;
2692 }
2693
2694 /* required-opps not fully initialized yet */
2695 if (lazy_linking_pending(src_table))
2696 return -EBUSY;
2697
2698 for (i = 0; i < src_table->required_opp_count; i++) {
2699 if (src_table->required_opp_tables[i]->np == dst_table->np)
2700 break;
2701 }
2702
2703 if (unlikely(i == src_table->required_opp_count)) {
2704 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2705 __func__, src_table, dst_table);
2706 return -EINVAL;
2707 }
2708
2709 guard(mutex)(&src_table->lock);
2710
2711 list_for_each_entry(opp, &src_table->opp_list, node) {
2712 if (opp->level == pstate)
2713 return opp->required_opps[i]->level;
2714 }
2715
2716 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2717 dst_table);
2718
2719 return -EINVAL;
2720 }
2721
2722 /**
2723 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2724 * @dev: The device for which we do this operation
2725 * @data: The OPP data for the OPP to add
2726 *
2727 * This function adds an opp definition to the opp table and returns status.
2728 * The opp is made available by default and it can be controlled using
2729 * dev_pm_opp_enable/disable functions.
2730 *
2731 * Return:
2732 * 0 On success OR
2733 * Duplicate OPPs (both freq and volt are same) and opp->available
2734 * -EEXIST Freq are same and volt are different OR
2735 * Duplicate OPPs (both freq and volt are same) and !opp->available
2736 * -ENOMEM Memory allocation failure
2737 */
dev_pm_opp_add_dynamic(struct device * dev,struct dev_pm_opp_data * data)2738 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2739 {
2740 struct opp_table *opp_table;
2741 int ret;
2742
2743 opp_table = _add_opp_table(dev, true);
2744 if (IS_ERR(opp_table))
2745 return PTR_ERR(opp_table);
2746
2747 /* Fix regulator count for dynamic OPPs */
2748 opp_table->regulator_count = 1;
2749
2750 ret = _opp_add_v1(opp_table, dev, data, true);
2751 if (ret)
2752 dev_pm_opp_put_opp_table(opp_table);
2753
2754 return ret;
2755 }
2756 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2757
2758 /**
2759 * _opp_set_availability() - helper to set the availability of an opp
2760 * @dev: device for which we do this operation
2761 * @freq: OPP frequency to modify availability
2762 * @availability_req: availability status requested for this opp
2763 *
2764 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2765 * which is isolated here.
2766 *
2767 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2768 * copy operation, returns 0 if no modification was done OR modification was
2769 * successful.
2770 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2771 static int _opp_set_availability(struct device *dev, unsigned long freq,
2772 bool availability_req)
2773 {
2774 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp;
2775 struct opp_table *opp_table __free(put_opp_table);
2776
2777 /* Find the opp_table */
2778 opp_table = _find_opp_table(dev);
2779 if (IS_ERR(opp_table)) {
2780 dev_warn(dev, "%s: Device OPP not found (%ld)\n", __func__,
2781 PTR_ERR(opp_table));
2782 return PTR_ERR(opp_table);
2783 }
2784
2785 if (!assert_single_clk(opp_table, 0))
2786 return -EINVAL;
2787
2788 scoped_guard(mutex, &opp_table->lock) {
2789 /* Do we have the frequency? */
2790 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2791 if (tmp_opp->rates[0] == freq) {
2792 opp = dev_pm_opp_get(tmp_opp);
2793
2794 /* Is update really needed? */
2795 if (opp->available == availability_req)
2796 return 0;
2797
2798 opp->available = availability_req;
2799 break;
2800 }
2801 }
2802 }
2803
2804 if (IS_ERR(opp))
2805 return PTR_ERR(opp);
2806
2807 /* Notify the change of the OPP availability */
2808 if (availability_req)
2809 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2810 opp);
2811 else
2812 blocking_notifier_call_chain(&opp_table->head,
2813 OPP_EVENT_DISABLE, opp);
2814
2815 return 0;
2816 }
2817
2818 /**
2819 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2820 * @dev: device for which we do this operation
2821 * @freq: OPP frequency to adjust voltage of
2822 * @u_volt: new OPP target voltage
2823 * @u_volt_min: new OPP min voltage
2824 * @u_volt_max: new OPP max voltage
2825 *
2826 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2827 * copy operation, returns 0 if no modifcation was done OR modification was
2828 * successful.
2829 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2830 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2831 unsigned long u_volt, unsigned long u_volt_min,
2832 unsigned long u_volt_max)
2833
2834 {
2835 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp;
2836 struct opp_table *opp_table __free(put_opp_table);
2837 int r;
2838
2839 /* Find the opp_table */
2840 opp_table = _find_opp_table(dev);
2841 if (IS_ERR(opp_table)) {
2842 r = PTR_ERR(opp_table);
2843 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2844 return r;
2845 }
2846
2847 if (!assert_single_clk(opp_table, 0))
2848 return -EINVAL;
2849
2850 scoped_guard(mutex, &opp_table->lock) {
2851 /* Do we have the frequency? */
2852 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2853 if (tmp_opp->rates[0] == freq) {
2854 opp = dev_pm_opp_get(tmp_opp);
2855
2856 /* Is update really needed? */
2857 if (opp->supplies->u_volt == u_volt)
2858 return 0;
2859
2860 opp->supplies->u_volt = u_volt;
2861 opp->supplies->u_volt_min = u_volt_min;
2862 opp->supplies->u_volt_max = u_volt_max;
2863
2864 break;
2865 }
2866 }
2867 }
2868
2869 if (IS_ERR(opp))
2870 return PTR_ERR(opp);
2871
2872 /* Notify the voltage change of the OPP */
2873 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2874 opp);
2875
2876 return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2879
2880 /**
2881 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2882 * @dev: device for which we do this operation
2883 *
2884 * Sync voltage state of the OPP table regulators.
2885 *
2886 * Return: 0 on success or a negative error value.
2887 */
dev_pm_opp_sync_regulators(struct device * dev)2888 int dev_pm_opp_sync_regulators(struct device *dev)
2889 {
2890 struct opp_table *opp_table __free(put_opp_table);
2891 struct regulator *reg;
2892 int ret, i;
2893
2894 /* Device may not have OPP table */
2895 opp_table = _find_opp_table(dev);
2896 if (IS_ERR(opp_table))
2897 return 0;
2898
2899 /* Regulator may not be required for the device */
2900 if (unlikely(!opp_table->regulators))
2901 return 0;
2902
2903 /* Nothing to sync if voltage wasn't changed */
2904 if (!opp_table->enabled)
2905 return 0;
2906
2907 for (i = 0; i < opp_table->regulator_count; i++) {
2908 reg = opp_table->regulators[i];
2909 ret = regulator_sync_voltage(reg);
2910 if (ret)
2911 return ret;
2912 }
2913
2914 return 0;
2915 }
2916 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2917
2918 /**
2919 * dev_pm_opp_enable() - Enable a specific OPP
2920 * @dev: device for which we do this operation
2921 * @freq: OPP frequency to enable
2922 *
2923 * Enables a provided opp. If the operation is valid, this returns 0, else the
2924 * corresponding error value. It is meant to be used for users an OPP available
2925 * after being temporarily made unavailable with dev_pm_opp_disable.
2926 *
2927 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2928 * copy operation, returns 0 if no modification was done OR modification was
2929 * successful.
2930 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2931 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2932 {
2933 return _opp_set_availability(dev, freq, true);
2934 }
2935 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2936
2937 /**
2938 * dev_pm_opp_disable() - Disable a specific OPP
2939 * @dev: device for which we do this operation
2940 * @freq: OPP frequency to disable
2941 *
2942 * Disables a provided opp. If the operation is valid, this returns
2943 * 0, else the corresponding error value. It is meant to be a temporary
2944 * control by users to make this OPP not available until the circumstances are
2945 * right to make it available again (with a call to dev_pm_opp_enable).
2946 *
2947 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2948 * copy operation, returns 0 if no modification was done OR modification was
2949 * successful.
2950 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)2951 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2952 {
2953 return _opp_set_availability(dev, freq, false);
2954 }
2955 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2956
2957 /**
2958 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2959 * @dev: Device for which notifier needs to be registered
2960 * @nb: Notifier block to be registered
2961 *
2962 * Return: 0 on success or a negative error value.
2963 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)2964 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2965 {
2966 struct opp_table *opp_table __free(put_opp_table);
2967
2968 opp_table = _find_opp_table(dev);
2969 if (IS_ERR(opp_table))
2970 return PTR_ERR(opp_table);
2971
2972 return blocking_notifier_chain_register(&opp_table->head, nb);
2973 }
2974 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2975
2976 /**
2977 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2978 * @dev: Device for which notifier needs to be unregistered
2979 * @nb: Notifier block to be unregistered
2980 *
2981 * Return: 0 on success or a negative error value.
2982 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)2983 int dev_pm_opp_unregister_notifier(struct device *dev,
2984 struct notifier_block *nb)
2985 {
2986 struct opp_table *opp_table __free(put_opp_table);
2987
2988 opp_table = _find_opp_table(dev);
2989 if (IS_ERR(opp_table))
2990 return PTR_ERR(opp_table);
2991
2992 return blocking_notifier_chain_unregister(&opp_table->head, nb);
2993 }
2994 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2995
2996 /**
2997 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2998 * @dev: device pointer used to lookup OPP table.
2999 *
3000 * Free both OPPs created using static entries present in DT and the
3001 * dynamically added entries.
3002 */
dev_pm_opp_remove_table(struct device * dev)3003 void dev_pm_opp_remove_table(struct device *dev)
3004 {
3005 struct opp_table *opp_table __free(put_opp_table);
3006
3007 /* Check for existing table for 'dev' */
3008 opp_table = _find_opp_table(dev);
3009 if (IS_ERR(opp_table)) {
3010 int error = PTR_ERR(opp_table);
3011
3012 if (error != -ENODEV)
3013 WARN(1, "%s: opp_table: %d\n",
3014 IS_ERR_OR_NULL(dev) ?
3015 "Invalid device" : dev_name(dev),
3016 error);
3017 return;
3018 }
3019
3020 /*
3021 * Drop the extra reference only if the OPP table was successfully added
3022 * with dev_pm_opp_of_add_table() earlier.
3023 **/
3024 if (_opp_remove_all_static(opp_table))
3025 dev_pm_opp_put_opp_table(opp_table);
3026 }
3027 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3028