1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22
23 #include "opp.h"
24
25 /*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30 LIST_HEAD(opp_tables);
31
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39
_find_opp_dev(const struct device * dev,struct opp_table * opp_table)40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54 }
55
_find_opp_table_unlocked(struct device * dev)56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68 }
69
70 /**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
_find_opp_table(struct device * dev)81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95 }
96
97 /*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
assert_single_clk(struct opp_table * opp_table)104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 return !WARN_ON(opp_table->clk_count > 1);
107 }
108
109 /**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
dev_pm_opp_get_voltage(struct dev_pm_opp * opp)118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129 /**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
dev_pm_opp_get_supplies(struct dev_pm_opp * opp,struct dev_pm_opp_supply * supplies)140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142 {
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154 /**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
dev_pm_opp_get_power(struct dev_pm_opp * opp)163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179 /**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
dev_pm_opp_get_freq_indexed(struct dev_pm_opp * opp,u32 index)188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199 /**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return U32_MAX.
205 */
dev_pm_opp_get_level(struct dev_pm_opp * opp)206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217 /**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return U32_MAX.
225 */
dev_pm_opp_get_required_pstate(struct dev_pm_opp * opp,unsigned int index)226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228 {
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249 /**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
dev_pm_opp_is_turbo(struct dev_pm_opp * opp)259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270 /**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
dev_pm_opp_get_max_clock_latency(struct device * dev)276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293 /**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
dev_pm_opp_get_max_volt_latency(struct device * dev)299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(&opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(uV);
356 put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363 /**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
dev_pm_opp_get_max_transition_latency(struct device * dev)371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378 /**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
dev_pm_opp_get_suspend_opp_freq(struct device * dev)385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
_get_opp_count(struct opp_table * opp_table)403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418 }
419
420 /**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
dev_pm_opp_get_opp_count(struct device * dev)427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447 /* Helpers to read keys */
_read_freq(struct dev_pm_opp * opp,int index)448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 return opp->rates[index];
451 }
452
_read_level(struct dev_pm_opp * opp,int index)453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 return opp->level;
456 }
457
_read_bw(struct dev_pm_opp * opp,int index)458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 return opp->bandwidth[index].peak;
461 }
462
463 /* Generic comparison helpers */
_compare_exact(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466 {
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473 }
474
_compare_ceil(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477 {
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484 }
485
_compare_floor(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key)486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488 {
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494 }
495
496 /* Generic key finding helpers */
_opp_table_find_key(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503 {
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528 }
529
530 static struct dev_pm_opp *
_find_key(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* compare)(struct dev_pm_opp ** opp,struct dev_pm_opp * temp_opp,unsigned long opp_key,unsigned long key),bool (* assert)(struct opp_table * opp_table))531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536 {
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553 }
554
_find_key_exact(struct device * dev,unsigned long key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559 {
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
566 }
567
_opp_table_find_key_ceil(struct opp_table * opp_table,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572 {
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
575 }
576
_find_key_ceil(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581 {
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
584 }
585
_find_key_floor(struct device * dev,unsigned long * key,int index,bool available,unsigned long (* read)(struct dev_pm_opp * opp,int index),bool (* assert)(struct opp_table * opp_table))586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590 {
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
593 }
594
595 /**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
dev_pm_opp_find_freq_exact(struct device * dev,unsigned long freq,bool available)618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620 {
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626 /**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646 struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device * dev,unsigned long freq,u32 index,bool available)647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649 {
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
_find_freq_ceil(struct opp_table * opp_table,unsigned long * freq)654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656 {
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 assert_single_clk);
659 }
660
661 /**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
dev_pm_opp_find_freq_ceil(struct device * dev,unsigned long * freq)679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681 {
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686 /**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706 struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device * dev,unsigned long * freq,u32 index)707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709 {
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714 /**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
dev_pm_opp_find_freq_floor(struct device * dev,unsigned long * freq)732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734 {
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739 /**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759 struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device * dev,unsigned long * freq,u32 index)760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762 {
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767 /**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
dev_pm_opp_find_level_exact(struct device * dev,unsigned int level)782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784 {
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789 /**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
dev_pm_opp_find_level_ceil(struct device * dev,unsigned int * level)804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806 {
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 if (IS_ERR(opp))
812 return opp;
813
814 /* False match */
815 if (temp == OPP_LEVEL_UNSET) {
816 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 dev_pm_opp_put(opp);
818 return ERR_PTR(-ENODEV);
819 }
820
821 *level = temp;
822 return opp;
823 }
824 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825
826 /**
827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828 * @dev: device for which we do this operation
829 * @level: Start level
830 *
831 * Search for the matching floor *available* OPP from a starting level
832 * for a device.
833 *
834 * Return: matching *opp and refreshes *level accordingly, else returns
835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836 * values can be:
837 * EINVAL: for bad pointer
838 * ERANGE: no match found for search
839 * ENODEV: if device not found in list of registered devices
840 *
841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
842 * use.
843 */
dev_pm_opp_find_level_floor(struct device * dev,unsigned int * level)844 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 unsigned int *level)
846 {
847 unsigned long temp = *level;
848 struct dev_pm_opp *opp;
849
850 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851 *level = temp;
852 return opp;
853 }
854 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855
856 /**
857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858 * @dev: device for which we do this operation
859 * @bw: start bandwidth
860 * @index: which bandwidth to compare, in case of OPPs with several values
861 *
862 * Search for the matching floor *available* OPP from a starting bandwidth
863 * for a device.
864 *
865 * Return: matching *opp and refreshes *bw accordingly, else returns
866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867 * values can be:
868 * EINVAL: for bad pointer
869 * ERANGE: no match found for search
870 * ENODEV: if device not found in list of registered devices
871 *
872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
873 * use.
874 */
dev_pm_opp_find_bw_ceil(struct device * dev,unsigned int * bw,int index)875 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 int index)
877 {
878 unsigned long temp = *bw;
879 struct dev_pm_opp *opp;
880
881 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882 *bw = temp;
883 return opp;
884 }
885 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886
887 /**
888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889 * @dev: device for which we do this operation
890 * @bw: start bandwidth
891 * @index: which bandwidth to compare, in case of OPPs with several values
892 *
893 * Search for the matching floor *available* OPP from a starting bandwidth
894 * for a device.
895 *
896 * Return: matching *opp and refreshes *bw accordingly, else returns
897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898 * values can be:
899 * EINVAL: for bad pointer
900 * ERANGE: no match found for search
901 * ENODEV: if device not found in list of registered devices
902 *
903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
904 * use.
905 */
dev_pm_opp_find_bw_floor(struct device * dev,unsigned int * bw,int index)906 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 unsigned int *bw, int index)
908 {
909 unsigned long temp = *bw;
910 struct dev_pm_opp *opp;
911
912 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913 *bw = temp;
914 return opp;
915 }
916 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917
_set_opp_voltage(struct device * dev,struct regulator * reg,struct dev_pm_opp_supply * supply)918 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 struct dev_pm_opp_supply *supply)
920 {
921 int ret;
922
923 /* Regulator not available for device */
924 if (IS_ERR(reg)) {
925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 PTR_ERR(reg));
927 return 0;
928 }
929
930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932
933 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934 supply->u_volt, supply->u_volt_max);
935 if (ret)
936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 __func__, supply->u_volt_min, supply->u_volt,
938 supply->u_volt_max, ret);
939
940 return ret;
941 }
942
943 static int
_opp_config_clk_single(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)944 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 struct dev_pm_opp *opp, void *data, bool scaling_down)
946 {
947 unsigned long *target = data;
948 unsigned long freq;
949 int ret;
950
951 /* One of target and opp must be available */
952 if (target) {
953 freq = *target;
954 } else if (opp) {
955 freq = opp->rates[0];
956 } else {
957 WARN_ON(1);
958 return -EINVAL;
959 }
960
961 ret = clk_set_rate(opp_table->clk, freq);
962 if (ret) {
963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 ret);
965 } else {
966 opp_table->current_rate_single_clk = freq;
967 }
968
969 return ret;
970 }
971
972 /*
973 * Simple implementation for configuring multiple clocks. Configure clocks in
974 * the order in which they are present in the array while scaling up.
975 */
dev_pm_opp_config_clks_simple(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)976 int dev_pm_opp_config_clks_simple(struct device *dev,
977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 bool scaling_down)
979 {
980 int ret, i;
981
982 if (scaling_down) {
983 for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 return ret;
989 }
990 }
991 } else {
992 for (i = 0; i < opp_table->clk_count; i++) {
993 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994 if (ret) {
995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 ret);
997 return ret;
998 }
999 }
1000 }
1001
1002 return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
_opp_config_regulator_single(struct device * dev,struct dev_pm_opp * old_opp,struct dev_pm_opp * new_opp,struct regulator ** regulators,unsigned int count)1006 static int _opp_config_regulator_single(struct device *dev,
1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 struct regulator **regulators, unsigned int count)
1009 {
1010 struct regulator *reg = regulators[0];
1011 int ret;
1012
1013 /* This function only supports single regulator per device */
1014 if (WARN_ON(count > 1)) {
1015 dev_err(dev, "multiple regulators are not supported\n");
1016 return -EINVAL;
1017 }
1018
1019 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020 if (ret)
1021 return ret;
1022
1023 /*
1024 * Enable the regulator after setting its voltages, otherwise it breaks
1025 * some boot-enabled regulators.
1026 */
1027 if (unlikely(!new_opp->opp_table->enabled)) {
1028 ret = regulator_enable(reg);
1029 if (ret < 0)
1030 dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 }
1032
1033 return 0;
1034 }
1035
_set_opp_bw(const struct opp_table * opp_table,struct dev_pm_opp * opp,struct device * dev)1036 static int _set_opp_bw(const struct opp_table *opp_table,
1037 struct dev_pm_opp *opp, struct device *dev)
1038 {
1039 u32 avg, peak;
1040 int i, ret;
1041
1042 if (!opp_table->paths)
1043 return 0;
1044
1045 for (i = 0; i < opp_table->path_count; i++) {
1046 if (!opp) {
1047 avg = 0;
1048 peak = 0;
1049 } else {
1050 avg = opp->bandwidth[i].avg;
1051 peak = opp->bandwidth[i].peak;
1052 }
1053 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054 if (ret) {
1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 opp ? "set" : "remove", i, ret);
1057 return ret;
1058 }
1059 }
1060
1061 return 0;
1062 }
1063
_set_opp_level(struct device * dev,struct dev_pm_opp * opp)1064 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1065 {
1066 unsigned int level = 0;
1067 int ret = 0;
1068
1069 if (opp) {
1070 if (opp->level == OPP_LEVEL_UNSET)
1071 return 0;
1072
1073 level = opp->level;
1074 }
1075
1076 /* Request a new performance state through the device's PM domain. */
1077 ret = dev_pm_domain_set_performance_state(dev, level);
1078 if (ret)
1079 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1080 ret);
1081
1082 return ret;
1083 }
1084
1085 /* This is only called for PM domain for now */
_set_required_opps(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,bool up)1086 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1087 struct dev_pm_opp *opp, bool up)
1088 {
1089 struct device **devs = opp_table->required_devs;
1090 struct dev_pm_opp *required_opp;
1091 int index, target, delta, ret;
1092
1093 if (!devs)
1094 return 0;
1095
1096 /* required-opps not fully initialized yet */
1097 if (lazy_linking_pending(opp_table))
1098 return -EBUSY;
1099
1100 /* Scaling up? Set required OPPs in normal order, else reverse */
1101 if (up) {
1102 index = 0;
1103 target = opp_table->required_opp_count;
1104 delta = 1;
1105 } else {
1106 index = opp_table->required_opp_count - 1;
1107 target = -1;
1108 delta = -1;
1109 }
1110
1111 while (index != target) {
1112 if (devs[index]) {
1113 required_opp = opp ? opp->required_opps[index] : NULL;
1114
1115 ret = _set_opp_level(devs[index], required_opp);
1116 if (ret)
1117 return ret;
1118 }
1119
1120 index += delta;
1121 }
1122
1123 return 0;
1124 }
1125
_find_current_opp(struct device * dev,struct opp_table * opp_table)1126 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1127 {
1128 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1129 unsigned long freq;
1130
1131 if (!IS_ERR(opp_table->clk)) {
1132 freq = clk_get_rate(opp_table->clk);
1133 opp = _find_freq_ceil(opp_table, &freq);
1134 }
1135
1136 /*
1137 * Unable to find the current OPP ? Pick the first from the list since
1138 * it is in ascending order, otherwise rest of the code will need to
1139 * make special checks to validate current_opp.
1140 */
1141 if (IS_ERR(opp)) {
1142 mutex_lock(&opp_table->lock);
1143 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1144 dev_pm_opp_get(opp);
1145 mutex_unlock(&opp_table->lock);
1146 }
1147
1148 opp_table->current_opp = opp;
1149 }
1150
_disable_opp_table(struct device * dev,struct opp_table * opp_table)1151 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1152 {
1153 int ret;
1154
1155 if (!opp_table->enabled)
1156 return 0;
1157
1158 /*
1159 * Some drivers need to support cases where some platforms may
1160 * have OPP table for the device, while others don't and
1161 * opp_set_rate() just needs to behave like clk_set_rate().
1162 */
1163 if (!_get_opp_count(opp_table))
1164 return 0;
1165
1166 ret = _set_opp_bw(opp_table, NULL, dev);
1167 if (ret)
1168 return ret;
1169
1170 if (opp_table->regulators)
1171 regulator_disable(opp_table->regulators[0]);
1172
1173 ret = _set_opp_level(dev, NULL);
1174 if (ret)
1175 goto out;
1176
1177 ret = _set_required_opps(dev, opp_table, NULL, false);
1178
1179 out:
1180 opp_table->enabled = false;
1181 return ret;
1182 }
1183
_set_opp(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * clk_data,bool forced)1184 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1185 struct dev_pm_opp *opp, void *clk_data, bool forced)
1186 {
1187 struct dev_pm_opp *old_opp;
1188 int scaling_down, ret;
1189
1190 if (unlikely(!opp))
1191 return _disable_opp_table(dev, opp_table);
1192
1193 /* Find the currently set OPP if we don't know already */
1194 if (unlikely(!opp_table->current_opp))
1195 _find_current_opp(dev, opp_table);
1196
1197 old_opp = opp_table->current_opp;
1198
1199 /* Return early if nothing to do */
1200 if (!forced && old_opp == opp && opp_table->enabled) {
1201 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1202 return 0;
1203 }
1204
1205 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1206 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1207 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1208 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1209
1210 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1211 if (scaling_down == -1)
1212 scaling_down = 0;
1213
1214 /* Scaling up? Configure required OPPs before frequency */
1215 if (!scaling_down) {
1216 ret = _set_required_opps(dev, opp_table, opp, true);
1217 if (ret) {
1218 dev_err(dev, "Failed to set required opps: %d\n", ret);
1219 return ret;
1220 }
1221
1222 ret = _set_opp_level(dev, opp);
1223 if (ret)
1224 return ret;
1225
1226 ret = _set_opp_bw(opp_table, opp, dev);
1227 if (ret) {
1228 dev_err(dev, "Failed to set bw: %d\n", ret);
1229 return ret;
1230 }
1231
1232 if (opp_table->config_regulators) {
1233 ret = opp_table->config_regulators(dev, old_opp, opp,
1234 opp_table->regulators,
1235 opp_table->regulator_count);
1236 if (ret) {
1237 dev_err(dev, "Failed to set regulator voltages: %d\n",
1238 ret);
1239 return ret;
1240 }
1241 }
1242 }
1243
1244 if (opp_table->config_clks) {
1245 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1246 if (ret)
1247 return ret;
1248 }
1249
1250 /* Scaling down? Configure required OPPs after frequency */
1251 if (scaling_down) {
1252 if (opp_table->config_regulators) {
1253 ret = opp_table->config_regulators(dev, old_opp, opp,
1254 opp_table->regulators,
1255 opp_table->regulator_count);
1256 if (ret) {
1257 dev_err(dev, "Failed to set regulator voltages: %d\n",
1258 ret);
1259 return ret;
1260 }
1261 }
1262
1263 ret = _set_opp_bw(opp_table, opp, dev);
1264 if (ret) {
1265 dev_err(dev, "Failed to set bw: %d\n", ret);
1266 return ret;
1267 }
1268
1269 ret = _set_opp_level(dev, opp);
1270 if (ret)
1271 return ret;
1272
1273 ret = _set_required_opps(dev, opp_table, opp, false);
1274 if (ret) {
1275 dev_err(dev, "Failed to set required opps: %d\n", ret);
1276 return ret;
1277 }
1278 }
1279
1280 opp_table->enabled = true;
1281 dev_pm_opp_put(old_opp);
1282
1283 /* Make sure current_opp doesn't get freed */
1284 dev_pm_opp_get(opp);
1285 opp_table->current_opp = opp;
1286
1287 return ret;
1288 }
1289
1290 /**
1291 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1292 * @dev: device for which we do this operation
1293 * @target_freq: frequency to achieve
1294 *
1295 * This configures the power-supplies to the levels specified by the OPP
1296 * corresponding to the target_freq, and programs the clock to a value <=
1297 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1298 * provided by the opp, should have already rounded to the target OPP's
1299 * frequency.
1300 */
dev_pm_opp_set_rate(struct device * dev,unsigned long target_freq)1301 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1302 {
1303 struct opp_table *opp_table;
1304 unsigned long freq = 0, temp_freq;
1305 struct dev_pm_opp *opp = NULL;
1306 bool forced = false;
1307 int ret;
1308
1309 opp_table = _find_opp_table(dev);
1310 if (IS_ERR(opp_table)) {
1311 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1312 return PTR_ERR(opp_table);
1313 }
1314
1315 if (target_freq) {
1316 /*
1317 * For IO devices which require an OPP on some platforms/SoCs
1318 * while just needing to scale the clock on some others
1319 * we look for empty OPP tables with just a clock handle and
1320 * scale only the clk. This makes dev_pm_opp_set_rate()
1321 * equivalent to a clk_set_rate()
1322 */
1323 if (!_get_opp_count(opp_table)) {
1324 ret = opp_table->config_clks(dev, opp_table, NULL,
1325 &target_freq, false);
1326 goto put_opp_table;
1327 }
1328
1329 freq = clk_round_rate(opp_table->clk, target_freq);
1330 if ((long)freq <= 0)
1331 freq = target_freq;
1332
1333 /*
1334 * The clock driver may support finer resolution of the
1335 * frequencies than the OPP table, don't update the frequency we
1336 * pass to clk_set_rate() here.
1337 */
1338 temp_freq = freq;
1339 opp = _find_freq_ceil(opp_table, &temp_freq);
1340 if (IS_ERR(opp)) {
1341 ret = PTR_ERR(opp);
1342 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1343 __func__, freq, ret);
1344 goto put_opp_table;
1345 }
1346
1347 /*
1348 * An OPP entry specifies the highest frequency at which other
1349 * properties of the OPP entry apply. Even if the new OPP is
1350 * same as the old one, we may still reach here for a different
1351 * value of the frequency. In such a case, do not abort but
1352 * configure the hardware to the desired frequency forcefully.
1353 */
1354 forced = opp_table->current_rate_single_clk != freq;
1355 }
1356
1357 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1358
1359 if (freq)
1360 dev_pm_opp_put(opp);
1361
1362 put_opp_table:
1363 dev_pm_opp_put_opp_table(opp_table);
1364 return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1367
1368 /**
1369 * dev_pm_opp_set_opp() - Configure device for OPP
1370 * @dev: device for which we do this operation
1371 * @opp: OPP to set to
1372 *
1373 * This configures the device based on the properties of the OPP passed to this
1374 * routine.
1375 *
1376 * Return: 0 on success, a negative error number otherwise.
1377 */
dev_pm_opp_set_opp(struct device * dev,struct dev_pm_opp * opp)1378 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1379 {
1380 struct opp_table *opp_table;
1381 int ret;
1382
1383 opp_table = _find_opp_table(dev);
1384 if (IS_ERR(opp_table)) {
1385 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1386 return PTR_ERR(opp_table);
1387 }
1388
1389 ret = _set_opp(dev, opp_table, opp, NULL, false);
1390 dev_pm_opp_put_opp_table(opp_table);
1391
1392 return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1395
1396 /* OPP-dev Helpers */
_remove_opp_dev(struct opp_device * opp_dev,struct opp_table * opp_table)1397 static void _remove_opp_dev(struct opp_device *opp_dev,
1398 struct opp_table *opp_table)
1399 {
1400 opp_debug_unregister(opp_dev, opp_table);
1401 list_del(&opp_dev->node);
1402 kfree(opp_dev);
1403 }
1404
_add_opp_dev(const struct device * dev,struct opp_table * opp_table)1405 struct opp_device *_add_opp_dev(const struct device *dev,
1406 struct opp_table *opp_table)
1407 {
1408 struct opp_device *opp_dev;
1409
1410 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1411 if (!opp_dev)
1412 return NULL;
1413
1414 /* Initialize opp-dev */
1415 opp_dev->dev = dev;
1416
1417 mutex_lock(&opp_table->lock);
1418 list_add(&opp_dev->node, &opp_table->dev_list);
1419 mutex_unlock(&opp_table->lock);
1420
1421 /* Create debugfs entries for the opp_table */
1422 opp_debug_register(opp_dev, opp_table);
1423
1424 return opp_dev;
1425 }
1426
_allocate_opp_table(struct device * dev,int index)1427 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1428 {
1429 struct opp_table *opp_table;
1430 struct opp_device *opp_dev;
1431 int ret;
1432
1433 /*
1434 * Allocate a new OPP table. In the infrequent case where a new
1435 * device is needed to be added, we pay this penalty.
1436 */
1437 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1438 if (!opp_table)
1439 return ERR_PTR(-ENOMEM);
1440
1441 mutex_init(&opp_table->lock);
1442 INIT_LIST_HEAD(&opp_table->dev_list);
1443 INIT_LIST_HEAD(&opp_table->lazy);
1444
1445 opp_table->clk = ERR_PTR(-ENODEV);
1446
1447 /* Mark regulator count uninitialized */
1448 opp_table->regulator_count = -1;
1449
1450 opp_dev = _add_opp_dev(dev, opp_table);
1451 if (!opp_dev) {
1452 ret = -ENOMEM;
1453 goto err;
1454 }
1455
1456 _of_init_opp_table(opp_table, dev, index);
1457
1458 /* Find interconnect path(s) for the device */
1459 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1460 if (ret) {
1461 if (ret == -EPROBE_DEFER)
1462 goto remove_opp_dev;
1463
1464 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1465 __func__, ret);
1466 }
1467
1468 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1469 INIT_LIST_HEAD(&opp_table->opp_list);
1470 kref_init(&opp_table->kref);
1471
1472 return opp_table;
1473
1474 remove_opp_dev:
1475 _of_clear_opp_table(opp_table);
1476 _remove_opp_dev(opp_dev, opp_table);
1477 mutex_destroy(&opp_table->lock);
1478 err:
1479 kfree(opp_table);
1480 return ERR_PTR(ret);
1481 }
1482
_get_opp_table_kref(struct opp_table * opp_table)1483 void _get_opp_table_kref(struct opp_table *opp_table)
1484 {
1485 kref_get(&opp_table->kref);
1486 }
1487
_update_opp_table_clk(struct device * dev,struct opp_table * opp_table,bool getclk)1488 static struct opp_table *_update_opp_table_clk(struct device *dev,
1489 struct opp_table *opp_table,
1490 bool getclk)
1491 {
1492 int ret;
1493
1494 /*
1495 * Return early if we don't need to get clk or we have already done it
1496 * earlier.
1497 */
1498 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1499 opp_table->clks)
1500 return opp_table;
1501
1502 /* Find clk for the device */
1503 opp_table->clk = clk_get(dev, NULL);
1504
1505 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1506 if (!ret) {
1507 opp_table->config_clks = _opp_config_clk_single;
1508 opp_table->clk_count = 1;
1509 return opp_table;
1510 }
1511
1512 if (ret == -ENOENT) {
1513 /*
1514 * There are few platforms which don't want the OPP core to
1515 * manage device's clock settings. In such cases neither the
1516 * platform provides the clks explicitly to us, nor the DT
1517 * contains a valid clk entry. The OPP nodes in DT may still
1518 * contain "opp-hz" property though, which we need to parse and
1519 * allow the platform to find an OPP based on freq later on.
1520 *
1521 * This is a simple solution to take care of such corner cases,
1522 * i.e. make the clk_count 1, which lets us allocate space for
1523 * frequency in opp->rates and also parse the entries in DT.
1524 */
1525 opp_table->clk_count = 1;
1526
1527 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1528 return opp_table;
1529 }
1530
1531 dev_pm_opp_put_opp_table(opp_table);
1532 dev_err_probe(dev, ret, "Couldn't find clock\n");
1533
1534 return ERR_PTR(ret);
1535 }
1536
1537 /*
1538 * We need to make sure that the OPP table for a device doesn't get added twice,
1539 * if this routine gets called in parallel with the same device pointer.
1540 *
1541 * The simplest way to enforce that is to perform everything (find existing
1542 * table and if not found, create a new one) under the opp_table_lock, so only
1543 * one creator gets access to the same. But that expands the critical section
1544 * under the lock and may end up causing circular dependencies with frameworks
1545 * like debugfs, interconnect or clock framework as they may be direct or
1546 * indirect users of OPP core.
1547 *
1548 * And for that reason we have to go for a bit tricky implementation here, which
1549 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1550 * of adding an OPP table and others should wait for it to finish.
1551 */
_add_opp_table_indexed(struct device * dev,int index,bool getclk)1552 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1553 bool getclk)
1554 {
1555 struct opp_table *opp_table;
1556
1557 again:
1558 mutex_lock(&opp_table_lock);
1559
1560 opp_table = _find_opp_table_unlocked(dev);
1561 if (!IS_ERR(opp_table))
1562 goto unlock;
1563
1564 /*
1565 * The opp_tables list or an OPP table's dev_list is getting updated by
1566 * another user, wait for it to finish.
1567 */
1568 if (unlikely(opp_tables_busy)) {
1569 mutex_unlock(&opp_table_lock);
1570 cpu_relax();
1571 goto again;
1572 }
1573
1574 opp_tables_busy = true;
1575 opp_table = _managed_opp(dev, index);
1576
1577 /* Drop the lock to reduce the size of critical section */
1578 mutex_unlock(&opp_table_lock);
1579
1580 if (opp_table) {
1581 if (!_add_opp_dev(dev, opp_table)) {
1582 dev_pm_opp_put_opp_table(opp_table);
1583 opp_table = ERR_PTR(-ENOMEM);
1584 }
1585
1586 mutex_lock(&opp_table_lock);
1587 } else {
1588 opp_table = _allocate_opp_table(dev, index);
1589
1590 mutex_lock(&opp_table_lock);
1591 if (!IS_ERR(opp_table))
1592 list_add(&opp_table->node, &opp_tables);
1593 }
1594
1595 opp_tables_busy = false;
1596
1597 unlock:
1598 mutex_unlock(&opp_table_lock);
1599
1600 return _update_opp_table_clk(dev, opp_table, getclk);
1601 }
1602
_add_opp_table(struct device * dev,bool getclk)1603 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1604 {
1605 return _add_opp_table_indexed(dev, 0, getclk);
1606 }
1607
dev_pm_opp_get_opp_table(struct device * dev)1608 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1609 {
1610 return _find_opp_table(dev);
1611 }
1612 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1613
_opp_table_kref_release(struct kref * kref)1614 static void _opp_table_kref_release(struct kref *kref)
1615 {
1616 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1617 struct opp_device *opp_dev, *temp;
1618 int i;
1619
1620 /* Drop the lock as soon as we can */
1621 list_del(&opp_table->node);
1622 mutex_unlock(&opp_table_lock);
1623
1624 if (opp_table->current_opp)
1625 dev_pm_opp_put(opp_table->current_opp);
1626
1627 _of_clear_opp_table(opp_table);
1628
1629 /* Release automatically acquired single clk */
1630 if (!IS_ERR(opp_table->clk))
1631 clk_put(opp_table->clk);
1632
1633 if (opp_table->paths) {
1634 for (i = 0; i < opp_table->path_count; i++)
1635 icc_put(opp_table->paths[i]);
1636 kfree(opp_table->paths);
1637 }
1638
1639 WARN_ON(!list_empty(&opp_table->opp_list));
1640
1641 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1642 _remove_opp_dev(opp_dev, opp_table);
1643
1644 mutex_destroy(&opp_table->lock);
1645 kfree(opp_table);
1646 }
1647
dev_pm_opp_put_opp_table(struct opp_table * opp_table)1648 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1649 {
1650 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1651 &opp_table_lock);
1652 }
1653 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1654
_opp_free(struct dev_pm_opp * opp)1655 void _opp_free(struct dev_pm_opp *opp)
1656 {
1657 kfree(opp);
1658 }
1659
_opp_kref_release(struct kref * kref)1660 static void _opp_kref_release(struct kref *kref)
1661 {
1662 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1663 struct opp_table *opp_table = opp->opp_table;
1664
1665 list_del(&opp->node);
1666 mutex_unlock(&opp_table->lock);
1667
1668 /*
1669 * Notify the changes in the availability of the operable
1670 * frequency/voltage list.
1671 */
1672 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1673 _of_clear_opp(opp_table, opp);
1674 opp_debug_remove_one(opp);
1675 kfree(opp);
1676 }
1677
dev_pm_opp_get(struct dev_pm_opp * opp)1678 void dev_pm_opp_get(struct dev_pm_opp *opp)
1679 {
1680 kref_get(&opp->kref);
1681 }
1682
dev_pm_opp_put(struct dev_pm_opp * opp)1683 void dev_pm_opp_put(struct dev_pm_opp *opp)
1684 {
1685 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1686 }
1687 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1688
1689 /**
1690 * dev_pm_opp_remove() - Remove an OPP from OPP table
1691 * @dev: device for which we do this operation
1692 * @freq: OPP to remove with matching 'freq'
1693 *
1694 * This function removes an opp from the opp table.
1695 */
dev_pm_opp_remove(struct device * dev,unsigned long freq)1696 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1697 {
1698 struct dev_pm_opp *opp = NULL, *iter;
1699 struct opp_table *opp_table;
1700
1701 opp_table = _find_opp_table(dev);
1702 if (IS_ERR(opp_table))
1703 return;
1704
1705 if (!assert_single_clk(opp_table))
1706 goto put_table;
1707
1708 mutex_lock(&opp_table->lock);
1709
1710 list_for_each_entry(iter, &opp_table->opp_list, node) {
1711 if (iter->rates[0] == freq) {
1712 opp = iter;
1713 break;
1714 }
1715 }
1716
1717 mutex_unlock(&opp_table->lock);
1718
1719 if (opp) {
1720 dev_pm_opp_put(opp);
1721
1722 /* Drop the reference taken by dev_pm_opp_add() */
1723 dev_pm_opp_put_opp_table(opp_table);
1724 } else {
1725 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1726 __func__, freq);
1727 }
1728
1729 put_table:
1730 /* Drop the reference taken by _find_opp_table() */
1731 dev_pm_opp_put_opp_table(opp_table);
1732 }
1733 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1734
_opp_get_next(struct opp_table * opp_table,bool dynamic)1735 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1736 bool dynamic)
1737 {
1738 struct dev_pm_opp *opp = NULL, *temp;
1739
1740 mutex_lock(&opp_table->lock);
1741 list_for_each_entry(temp, &opp_table->opp_list, node) {
1742 /*
1743 * Refcount must be dropped only once for each OPP by OPP core,
1744 * do that with help of "removed" flag.
1745 */
1746 if (!temp->removed && dynamic == temp->dynamic) {
1747 opp = temp;
1748 break;
1749 }
1750 }
1751
1752 mutex_unlock(&opp_table->lock);
1753 return opp;
1754 }
1755
1756 /*
1757 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1758 * happen lock less to avoid circular dependency issues. This routine must be
1759 * called without the opp_table->lock held.
1760 */
_opp_remove_all(struct opp_table * opp_table,bool dynamic)1761 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1762 {
1763 struct dev_pm_opp *opp;
1764
1765 while ((opp = _opp_get_next(opp_table, dynamic))) {
1766 opp->removed = true;
1767 dev_pm_opp_put(opp);
1768
1769 /* Drop the references taken by dev_pm_opp_add() */
1770 if (dynamic)
1771 dev_pm_opp_put_opp_table(opp_table);
1772 }
1773 }
1774
_opp_remove_all_static(struct opp_table * opp_table)1775 bool _opp_remove_all_static(struct opp_table *opp_table)
1776 {
1777 mutex_lock(&opp_table->lock);
1778
1779 if (!opp_table->parsed_static_opps) {
1780 mutex_unlock(&opp_table->lock);
1781 return false;
1782 }
1783
1784 if (--opp_table->parsed_static_opps) {
1785 mutex_unlock(&opp_table->lock);
1786 return true;
1787 }
1788
1789 mutex_unlock(&opp_table->lock);
1790
1791 _opp_remove_all(opp_table, false);
1792 return true;
1793 }
1794
1795 /**
1796 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1797 * @dev: device for which we do this operation
1798 *
1799 * This function removes all dynamically created OPPs from the opp table.
1800 */
dev_pm_opp_remove_all_dynamic(struct device * dev)1801 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1802 {
1803 struct opp_table *opp_table;
1804
1805 opp_table = _find_opp_table(dev);
1806 if (IS_ERR(opp_table))
1807 return;
1808
1809 _opp_remove_all(opp_table, true);
1810
1811 /* Drop the reference taken by _find_opp_table() */
1812 dev_pm_opp_put_opp_table(opp_table);
1813 }
1814 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1815
_opp_allocate(struct opp_table * opp_table)1816 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1817 {
1818 struct dev_pm_opp *opp;
1819 int supply_count, supply_size, icc_size, clk_size;
1820
1821 /* Allocate space for at least one supply */
1822 supply_count = opp_table->regulator_count > 0 ?
1823 opp_table->regulator_count : 1;
1824 supply_size = sizeof(*opp->supplies) * supply_count;
1825 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1826 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1827
1828 /* allocate new OPP node and supplies structures */
1829 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1830 if (!opp)
1831 return NULL;
1832
1833 /* Put the supplies, bw and clock at the end of the OPP structure */
1834 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1835
1836 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1837
1838 if (icc_size)
1839 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1840
1841 INIT_LIST_HEAD(&opp->node);
1842
1843 opp->level = OPP_LEVEL_UNSET;
1844
1845 return opp;
1846 }
1847
_opp_supported_by_regulators(struct dev_pm_opp * opp,struct opp_table * opp_table)1848 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1849 struct opp_table *opp_table)
1850 {
1851 struct regulator *reg;
1852 int i;
1853
1854 if (!opp_table->regulators)
1855 return true;
1856
1857 for (i = 0; i < opp_table->regulator_count; i++) {
1858 reg = opp_table->regulators[i];
1859
1860 if (!regulator_is_supported_voltage(reg,
1861 opp->supplies[i].u_volt_min,
1862 opp->supplies[i].u_volt_max)) {
1863 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1864 __func__, opp->supplies[i].u_volt_min,
1865 opp->supplies[i].u_volt_max);
1866 return false;
1867 }
1868 }
1869
1870 return true;
1871 }
1872
_opp_compare_rate(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1873 static int _opp_compare_rate(struct opp_table *opp_table,
1874 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1875 {
1876 int i;
1877
1878 for (i = 0; i < opp_table->clk_count; i++) {
1879 if (opp1->rates[i] != opp2->rates[i])
1880 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1881 }
1882
1883 /* Same rates for both OPPs */
1884 return 0;
1885 }
1886
_opp_compare_bw(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1887 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1888 struct dev_pm_opp *opp2)
1889 {
1890 int i;
1891
1892 for (i = 0; i < opp_table->path_count; i++) {
1893 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1894 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1895 }
1896
1897 /* Same bw for both OPPs */
1898 return 0;
1899 }
1900
1901 /*
1902 * Returns
1903 * 0: opp1 == opp2
1904 * 1: opp1 > opp2
1905 * -1: opp1 < opp2
1906 */
_opp_compare_key(struct opp_table * opp_table,struct dev_pm_opp * opp1,struct dev_pm_opp * opp2)1907 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1908 struct dev_pm_opp *opp2)
1909 {
1910 int ret;
1911
1912 ret = _opp_compare_rate(opp_table, opp1, opp2);
1913 if (ret)
1914 return ret;
1915
1916 ret = _opp_compare_bw(opp_table, opp1, opp2);
1917 if (ret)
1918 return ret;
1919
1920 if (opp1->level != opp2->level)
1921 return opp1->level < opp2->level ? -1 : 1;
1922
1923 /* Duplicate OPPs */
1924 return 0;
1925 }
1926
_opp_is_duplicate(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table,struct list_head ** head)1927 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1928 struct opp_table *opp_table,
1929 struct list_head **head)
1930 {
1931 struct dev_pm_opp *opp;
1932 int opp_cmp;
1933
1934 /*
1935 * Insert new OPP in order of increasing frequency and discard if
1936 * already present.
1937 *
1938 * Need to use &opp_table->opp_list in the condition part of the 'for'
1939 * loop, don't replace it with head otherwise it will become an infinite
1940 * loop.
1941 */
1942 list_for_each_entry(opp, &opp_table->opp_list, node) {
1943 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1944 if (opp_cmp > 0) {
1945 *head = &opp->node;
1946 continue;
1947 }
1948
1949 if (opp_cmp < 0)
1950 return 0;
1951
1952 /* Duplicate OPPs */
1953 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1954 __func__, opp->rates[0], opp->supplies[0].u_volt,
1955 opp->available, new_opp->rates[0],
1956 new_opp->supplies[0].u_volt, new_opp->available);
1957
1958 /* Should we compare voltages for all regulators here ? */
1959 return opp->available &&
1960 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1961 }
1962
1963 return 0;
1964 }
1965
_required_opps_available(struct dev_pm_opp * opp,int count)1966 void _required_opps_available(struct dev_pm_opp *opp, int count)
1967 {
1968 int i;
1969
1970 for (i = 0; i < count; i++) {
1971 if (opp->required_opps[i]->available)
1972 continue;
1973
1974 opp->available = false;
1975 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1976 __func__, opp->required_opps[i]->np, opp->rates[0]);
1977 return;
1978 }
1979 }
1980
1981 /*
1982 * Returns:
1983 * 0: On success. And appropriate error message for duplicate OPPs.
1984 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1985 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1986 * sure we don't print error messages unnecessarily if different parts of
1987 * kernel try to initialize the OPP table.
1988 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1989 * should be considered an error by the callers of _opp_add().
1990 */
_opp_add(struct device * dev,struct dev_pm_opp * new_opp,struct opp_table * opp_table)1991 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1992 struct opp_table *opp_table)
1993 {
1994 struct list_head *head;
1995 int ret;
1996
1997 mutex_lock(&opp_table->lock);
1998 head = &opp_table->opp_list;
1999
2000 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2001 if (ret) {
2002 mutex_unlock(&opp_table->lock);
2003 return ret;
2004 }
2005
2006 list_add(&new_opp->node, head);
2007 mutex_unlock(&opp_table->lock);
2008
2009 new_opp->opp_table = opp_table;
2010 kref_init(&new_opp->kref);
2011
2012 opp_debug_create_one(new_opp, opp_table);
2013
2014 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2015 new_opp->available = false;
2016 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2017 __func__, new_opp->rates[0]);
2018 }
2019
2020 /* required-opps not fully initialized yet */
2021 if (lazy_linking_pending(opp_table))
2022 return 0;
2023
2024 _required_opps_available(new_opp, opp_table->required_opp_count);
2025
2026 return 0;
2027 }
2028
2029 /**
2030 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2031 * @opp_table: OPP table
2032 * @dev: device for which we do this operation
2033 * @data: The OPP data for the OPP to add
2034 * @dynamic: Dynamically added OPPs.
2035 *
2036 * This function adds an opp definition to the opp table and returns status.
2037 * The opp is made available by default and it can be controlled using
2038 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2039 *
2040 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2041 * and freed by dev_pm_opp_of_remove_table.
2042 *
2043 * Return:
2044 * 0 On success OR
2045 * Duplicate OPPs (both freq and volt are same) and opp->available
2046 * -EEXIST Freq are same and volt are different OR
2047 * Duplicate OPPs (both freq and volt are same) and !opp->available
2048 * -ENOMEM Memory allocation failure
2049 */
_opp_add_v1(struct opp_table * opp_table,struct device * dev,struct dev_pm_opp_data * data,bool dynamic)2050 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2051 struct dev_pm_opp_data *data, bool dynamic)
2052 {
2053 struct dev_pm_opp *new_opp;
2054 unsigned long tol, u_volt = data->u_volt;
2055 int ret;
2056
2057 if (!assert_single_clk(opp_table))
2058 return -EINVAL;
2059
2060 new_opp = _opp_allocate(opp_table);
2061 if (!new_opp)
2062 return -ENOMEM;
2063
2064 /* populate the opp table */
2065 new_opp->rates[0] = data->freq;
2066 new_opp->level = data->level;
2067 new_opp->turbo = data->turbo;
2068 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2069 new_opp->supplies[0].u_volt = u_volt;
2070 new_opp->supplies[0].u_volt_min = u_volt - tol;
2071 new_opp->supplies[0].u_volt_max = u_volt + tol;
2072 new_opp->available = true;
2073 new_opp->dynamic = dynamic;
2074
2075 ret = _opp_add(dev, new_opp, opp_table);
2076 if (ret) {
2077 /* Don't return error for duplicate OPPs */
2078 if (ret == -EBUSY)
2079 ret = 0;
2080 goto free_opp;
2081 }
2082
2083 /*
2084 * Notify the changes in the availability of the operable
2085 * frequency/voltage list.
2086 */
2087 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2088 return 0;
2089
2090 free_opp:
2091 _opp_free(new_opp);
2092
2093 return ret;
2094 }
2095
2096 /*
2097 * This is required only for the V2 bindings, and it enables a platform to
2098 * specify the hierarchy of versions it supports. OPP layer will then enable
2099 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2100 * property.
2101 */
_opp_set_supported_hw(struct opp_table * opp_table,const u32 * versions,unsigned int count)2102 static int _opp_set_supported_hw(struct opp_table *opp_table,
2103 const u32 *versions, unsigned int count)
2104 {
2105 /* Another CPU that shares the OPP table has set the property ? */
2106 if (opp_table->supported_hw)
2107 return 0;
2108
2109 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2110 GFP_KERNEL);
2111 if (!opp_table->supported_hw)
2112 return -ENOMEM;
2113
2114 opp_table->supported_hw_count = count;
2115
2116 return 0;
2117 }
2118
_opp_put_supported_hw(struct opp_table * opp_table)2119 static void _opp_put_supported_hw(struct opp_table *opp_table)
2120 {
2121 if (opp_table->supported_hw) {
2122 kfree(opp_table->supported_hw);
2123 opp_table->supported_hw = NULL;
2124 opp_table->supported_hw_count = 0;
2125 }
2126 }
2127
2128 /*
2129 * This is required only for the V2 bindings, and it enables a platform to
2130 * specify the extn to be used for certain property names. The properties to
2131 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2132 * should postfix the property name with -<name> while looking for them.
2133 */
_opp_set_prop_name(struct opp_table * opp_table,const char * name)2134 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2135 {
2136 /* Another CPU that shares the OPP table has set the property ? */
2137 if (!opp_table->prop_name) {
2138 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2139 if (!opp_table->prop_name)
2140 return -ENOMEM;
2141 }
2142
2143 return 0;
2144 }
2145
_opp_put_prop_name(struct opp_table * opp_table)2146 static void _opp_put_prop_name(struct opp_table *opp_table)
2147 {
2148 if (opp_table->prop_name) {
2149 kfree(opp_table->prop_name);
2150 opp_table->prop_name = NULL;
2151 }
2152 }
2153
2154 /*
2155 * In order to support OPP switching, OPP layer needs to know the name of the
2156 * device's regulators, as the core would be required to switch voltages as
2157 * well.
2158 *
2159 * This must be called before any OPPs are initialized for the device.
2160 */
_opp_set_regulators(struct opp_table * opp_table,struct device * dev,const char * const names[])2161 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2162 const char * const names[])
2163 {
2164 const char * const *temp = names;
2165 struct regulator *reg;
2166 int count = 0, ret, i;
2167
2168 /* Count number of regulators */
2169 while (*temp++)
2170 count++;
2171
2172 if (!count)
2173 return -EINVAL;
2174
2175 /* Another CPU that shares the OPP table has set the regulators ? */
2176 if (opp_table->regulators)
2177 return 0;
2178
2179 opp_table->regulators = kmalloc_array(count,
2180 sizeof(*opp_table->regulators),
2181 GFP_KERNEL);
2182 if (!opp_table->regulators)
2183 return -ENOMEM;
2184
2185 for (i = 0; i < count; i++) {
2186 reg = regulator_get_optional(dev, names[i]);
2187 if (IS_ERR(reg)) {
2188 ret = dev_err_probe(dev, PTR_ERR(reg),
2189 "%s: no regulator (%s) found\n",
2190 __func__, names[i]);
2191 goto free_regulators;
2192 }
2193
2194 opp_table->regulators[i] = reg;
2195 }
2196
2197 opp_table->regulator_count = count;
2198
2199 /* Set generic config_regulators() for single regulators here */
2200 if (count == 1)
2201 opp_table->config_regulators = _opp_config_regulator_single;
2202
2203 return 0;
2204
2205 free_regulators:
2206 while (i != 0)
2207 regulator_put(opp_table->regulators[--i]);
2208
2209 kfree(opp_table->regulators);
2210 opp_table->regulators = NULL;
2211 opp_table->regulator_count = -1;
2212
2213 return ret;
2214 }
2215
_opp_put_regulators(struct opp_table * opp_table)2216 static void _opp_put_regulators(struct opp_table *opp_table)
2217 {
2218 int i;
2219
2220 if (!opp_table->regulators)
2221 return;
2222
2223 if (opp_table->enabled) {
2224 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2225 regulator_disable(opp_table->regulators[i]);
2226 }
2227
2228 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2229 regulator_put(opp_table->regulators[i]);
2230
2231 kfree(opp_table->regulators);
2232 opp_table->regulators = NULL;
2233 opp_table->regulator_count = -1;
2234 }
2235
_put_clks(struct opp_table * opp_table,int count)2236 static void _put_clks(struct opp_table *opp_table, int count)
2237 {
2238 int i;
2239
2240 for (i = count - 1; i >= 0; i--)
2241 clk_put(opp_table->clks[i]);
2242
2243 kfree(opp_table->clks);
2244 opp_table->clks = NULL;
2245 }
2246
2247 /*
2248 * In order to support OPP switching, OPP layer needs to get pointers to the
2249 * clocks for the device. Simple cases work fine without using this routine
2250 * (i.e. by passing connection-id as NULL), but for a device with multiple
2251 * clocks available, the OPP core needs to know the exact names of the clks to
2252 * use.
2253 *
2254 * This must be called before any OPPs are initialized for the device.
2255 */
_opp_set_clknames(struct opp_table * opp_table,struct device * dev,const char * const names[],config_clks_t config_clks)2256 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2257 const char * const names[],
2258 config_clks_t config_clks)
2259 {
2260 const char * const *temp = names;
2261 int count = 0, ret, i;
2262 struct clk *clk;
2263
2264 /* Count number of clks */
2265 while (*temp++)
2266 count++;
2267
2268 /*
2269 * This is a special case where we have a single clock, whose connection
2270 * id name is NULL, i.e. first two entries are NULL in the array.
2271 */
2272 if (!count && !names[1])
2273 count = 1;
2274
2275 /* Fail early for invalid configurations */
2276 if (!count || (!config_clks && count > 1))
2277 return -EINVAL;
2278
2279 /* Another CPU that shares the OPP table has set the clkname ? */
2280 if (opp_table->clks)
2281 return 0;
2282
2283 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2284 GFP_KERNEL);
2285 if (!opp_table->clks)
2286 return -ENOMEM;
2287
2288 /* Find clks for the device */
2289 for (i = 0; i < count; i++) {
2290 clk = clk_get(dev, names[i]);
2291 if (IS_ERR(clk)) {
2292 ret = dev_err_probe(dev, PTR_ERR(clk),
2293 "%s: Couldn't find clock with name: %s\n",
2294 __func__, names[i]);
2295 goto free_clks;
2296 }
2297
2298 opp_table->clks[i] = clk;
2299 }
2300
2301 opp_table->clk_count = count;
2302 opp_table->config_clks = config_clks;
2303
2304 /* Set generic single clk set here */
2305 if (count == 1) {
2306 if (!opp_table->config_clks)
2307 opp_table->config_clks = _opp_config_clk_single;
2308
2309 /*
2310 * We could have just dropped the "clk" field and used "clks"
2311 * everywhere. Instead we kept the "clk" field around for
2312 * following reasons:
2313 *
2314 * - avoiding clks[0] everywhere else.
2315 * - not running single clk helpers for multiple clk usecase by
2316 * mistake.
2317 *
2318 * Since this is single-clk case, just update the clk pointer
2319 * too.
2320 */
2321 opp_table->clk = opp_table->clks[0];
2322 }
2323
2324 return 0;
2325
2326 free_clks:
2327 _put_clks(opp_table, i);
2328 return ret;
2329 }
2330
_opp_put_clknames(struct opp_table * opp_table)2331 static void _opp_put_clknames(struct opp_table *opp_table)
2332 {
2333 if (!opp_table->clks)
2334 return;
2335
2336 opp_table->config_clks = NULL;
2337 opp_table->clk = ERR_PTR(-ENODEV);
2338
2339 _put_clks(opp_table, opp_table->clk_count);
2340 }
2341
2342 /*
2343 * This is useful to support platforms with multiple regulators per device.
2344 *
2345 * This must be called before any OPPs are initialized for the device.
2346 */
_opp_set_config_regulators_helper(struct opp_table * opp_table,struct device * dev,config_regulators_t config_regulators)2347 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2348 struct device *dev, config_regulators_t config_regulators)
2349 {
2350 /* Another CPU that shares the OPP table has set the helper ? */
2351 if (!opp_table->config_regulators)
2352 opp_table->config_regulators = config_regulators;
2353
2354 return 0;
2355 }
2356
_opp_put_config_regulators_helper(struct opp_table * opp_table)2357 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2358 {
2359 if (opp_table->config_regulators)
2360 opp_table->config_regulators = NULL;
2361 }
2362
_opp_set_required_dev(struct opp_table * opp_table,struct device * dev,struct device * required_dev,unsigned int index)2363 static int _opp_set_required_dev(struct opp_table *opp_table,
2364 struct device *dev,
2365 struct device *required_dev,
2366 unsigned int index)
2367 {
2368 struct opp_table *required_table, *pd_table;
2369 struct device *gdev;
2370
2371 /* Genpd core takes care of propagation to parent genpd */
2372 if (opp_table->is_genpd) {
2373 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2374 return -EOPNOTSUPP;
2375 }
2376
2377 if (index >= opp_table->required_opp_count) {
2378 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2379 return -EINVAL;
2380 }
2381
2382 required_table = opp_table->required_opp_tables[index];
2383 if (IS_ERR(required_table)) {
2384 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2385 return -ENODEV;
2386 }
2387
2388 /*
2389 * The required_opp_tables parsing is not perfect, as the OPP core does
2390 * the parsing solely based on the DT node pointers. The core sets the
2391 * required_opp_tables entry to the first OPP table in the "opp_tables"
2392 * list, that matches with the node pointer.
2393 *
2394 * If the target DT OPP table is used by multiple devices and they all
2395 * create separate instances of 'struct opp_table' from it, then it is
2396 * possible that the required_opp_tables entry may be set to the
2397 * incorrect sibling device.
2398 *
2399 * Cross check it again and fix if required.
2400 */
2401 gdev = dev_to_genpd_dev(required_dev);
2402 if (IS_ERR(gdev))
2403 return PTR_ERR(gdev);
2404
2405 pd_table = _find_opp_table(gdev);
2406 if (!IS_ERR(pd_table)) {
2407 if (pd_table != required_table) {
2408 dev_pm_opp_put_opp_table(required_table);
2409 opp_table->required_opp_tables[index] = pd_table;
2410 } else {
2411 dev_pm_opp_put_opp_table(pd_table);
2412 }
2413 }
2414
2415 opp_table->required_devs[index] = required_dev;
2416 return 0;
2417 }
2418
_opp_put_required_dev(struct opp_table * opp_table,unsigned int index)2419 static void _opp_put_required_dev(struct opp_table *opp_table,
2420 unsigned int index)
2421 {
2422 opp_table->required_devs[index] = NULL;
2423 }
2424
_opp_clear_config(struct opp_config_data * data)2425 static void _opp_clear_config(struct opp_config_data *data)
2426 {
2427 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2428 _opp_put_required_dev(data->opp_table,
2429 data->required_dev_index);
2430 if (data->flags & OPP_CONFIG_REGULATOR)
2431 _opp_put_regulators(data->opp_table);
2432 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2433 _opp_put_supported_hw(data->opp_table);
2434 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2435 _opp_put_config_regulators_helper(data->opp_table);
2436 if (data->flags & OPP_CONFIG_PROP_NAME)
2437 _opp_put_prop_name(data->opp_table);
2438 if (data->flags & OPP_CONFIG_CLK)
2439 _opp_put_clknames(data->opp_table);
2440
2441 dev_pm_opp_put_opp_table(data->opp_table);
2442 kfree(data);
2443 }
2444
2445 /**
2446 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2447 * @dev: Device for which configuration is being set.
2448 * @config: OPP configuration.
2449 *
2450 * This allows all device OPP configurations to be performed at once.
2451 *
2452 * This must be called before any OPPs are initialized for the device. This may
2453 * be called multiple times for the same OPP table, for example once for each
2454 * CPU that share the same table. This must be balanced by the same number of
2455 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2456 *
2457 * This returns a token to the caller, which must be passed to
2458 * dev_pm_opp_clear_config() to free the resources later. The value of the
2459 * returned token will be >= 1 for success and negative for errors. The minimum
2460 * value of 1 is chosen here to make it easy for callers to manage the resource.
2461 */
dev_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2462 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2463 {
2464 struct opp_table *opp_table;
2465 struct opp_config_data *data;
2466 unsigned int id;
2467 int ret;
2468
2469 data = kmalloc(sizeof(*data), GFP_KERNEL);
2470 if (!data)
2471 return -ENOMEM;
2472
2473 opp_table = _add_opp_table(dev, false);
2474 if (IS_ERR(opp_table)) {
2475 kfree(data);
2476 return PTR_ERR(opp_table);
2477 }
2478
2479 data->opp_table = opp_table;
2480 data->flags = 0;
2481
2482 /* This should be called before OPPs are initialized */
2483 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2484 ret = -EBUSY;
2485 goto err;
2486 }
2487
2488 /* Configure clocks */
2489 if (config->clk_names) {
2490 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2491 config->config_clks);
2492 if (ret)
2493 goto err;
2494
2495 data->flags |= OPP_CONFIG_CLK;
2496 } else if (config->config_clks) {
2497 /* Don't allow config callback without clocks */
2498 ret = -EINVAL;
2499 goto err;
2500 }
2501
2502 /* Configure property names */
2503 if (config->prop_name) {
2504 ret = _opp_set_prop_name(opp_table, config->prop_name);
2505 if (ret)
2506 goto err;
2507
2508 data->flags |= OPP_CONFIG_PROP_NAME;
2509 }
2510
2511 /* Configure config_regulators helper */
2512 if (config->config_regulators) {
2513 ret = _opp_set_config_regulators_helper(opp_table, dev,
2514 config->config_regulators);
2515 if (ret)
2516 goto err;
2517
2518 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2519 }
2520
2521 /* Configure supported hardware */
2522 if (config->supported_hw) {
2523 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2524 config->supported_hw_count);
2525 if (ret)
2526 goto err;
2527
2528 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2529 }
2530
2531 /* Configure supplies */
2532 if (config->regulator_names) {
2533 ret = _opp_set_regulators(opp_table, dev,
2534 config->regulator_names);
2535 if (ret)
2536 goto err;
2537
2538 data->flags |= OPP_CONFIG_REGULATOR;
2539 }
2540
2541 if (config->required_dev) {
2542 ret = _opp_set_required_dev(opp_table, dev,
2543 config->required_dev,
2544 config->required_dev_index);
2545 if (ret)
2546 goto err;
2547
2548 data->required_dev_index = config->required_dev_index;
2549 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2550 }
2551
2552 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2553 GFP_KERNEL);
2554 if (ret)
2555 goto err;
2556
2557 return id;
2558
2559 err:
2560 _opp_clear_config(data);
2561 return ret;
2562 }
2563 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2564
2565 /**
2566 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2567 * @token: The token returned by dev_pm_opp_set_config() previously.
2568 *
2569 * This allows all device OPP configurations to be cleared at once. This must be
2570 * called once for each call made to dev_pm_opp_set_config(), in order to free
2571 * the OPPs properly.
2572 *
2573 * Currently the first call itself ends up freeing all the OPP configurations,
2574 * while the later ones only drop the OPP table reference. This works well for
2575 * now as we would never want to use an half initialized OPP table and want to
2576 * remove the configurations together.
2577 */
dev_pm_opp_clear_config(int token)2578 void dev_pm_opp_clear_config(int token)
2579 {
2580 struct opp_config_data *data;
2581
2582 /*
2583 * This lets the callers call this unconditionally and keep their code
2584 * simple.
2585 */
2586 if (unlikely(token <= 0))
2587 return;
2588
2589 data = xa_erase(&opp_configs, token);
2590 if (WARN_ON(!data))
2591 return;
2592
2593 _opp_clear_config(data);
2594 }
2595 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2596
devm_pm_opp_config_release(void * token)2597 static void devm_pm_opp_config_release(void *token)
2598 {
2599 dev_pm_opp_clear_config((unsigned long)token);
2600 }
2601
2602 /**
2603 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2604 * @dev: Device for which configuration is being set.
2605 * @config: OPP configuration.
2606 *
2607 * This allows all device OPP configurations to be performed at once.
2608 * This is a resource-managed variant of dev_pm_opp_set_config().
2609 *
2610 * Return: 0 on success and errorno otherwise.
2611 */
devm_pm_opp_set_config(struct device * dev,struct dev_pm_opp_config * config)2612 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2613 {
2614 int token = dev_pm_opp_set_config(dev, config);
2615
2616 if (token < 0)
2617 return token;
2618
2619 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2620 (void *) ((unsigned long) token));
2621 }
2622 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2623
2624 /**
2625 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2626 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2627 * @dst_table: Required OPP table of the @src_table.
2628 * @src_opp: OPP from the @src_table.
2629 *
2630 * This function returns the OPP (present in @dst_table) pointed out by the
2631 * "required-opps" property of the @src_opp (present in @src_table).
2632 *
2633 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2634 * use.
2635 *
2636 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2637 */
dev_pm_opp_xlate_required_opp(struct opp_table * src_table,struct opp_table * dst_table,struct dev_pm_opp * src_opp)2638 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2639 struct opp_table *dst_table,
2640 struct dev_pm_opp *src_opp)
2641 {
2642 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2643 int i;
2644
2645 if (!src_table || !dst_table || !src_opp ||
2646 !src_table->required_opp_tables)
2647 return ERR_PTR(-EINVAL);
2648
2649 /* required-opps not fully initialized yet */
2650 if (lazy_linking_pending(src_table))
2651 return ERR_PTR(-EBUSY);
2652
2653 for (i = 0; i < src_table->required_opp_count; i++) {
2654 if (src_table->required_opp_tables[i] == dst_table) {
2655 mutex_lock(&src_table->lock);
2656
2657 list_for_each_entry(opp, &src_table->opp_list, node) {
2658 if (opp == src_opp) {
2659 dest_opp = opp->required_opps[i];
2660 dev_pm_opp_get(dest_opp);
2661 break;
2662 }
2663 }
2664
2665 mutex_unlock(&src_table->lock);
2666 break;
2667 }
2668 }
2669
2670 if (IS_ERR(dest_opp)) {
2671 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2672 src_table, dst_table);
2673 }
2674
2675 return dest_opp;
2676 }
2677 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2678
2679 /**
2680 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2681 * @src_table: OPP table which has dst_table as one of its required OPP table.
2682 * @dst_table: Required OPP table of the src_table.
2683 * @pstate: Current performance state of the src_table.
2684 *
2685 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2686 * "required-opps" property of the OPP (present in @src_table) which has
2687 * performance state set to @pstate.
2688 *
2689 * Return: Zero or positive performance state on success, otherwise negative
2690 * value on errors.
2691 */
dev_pm_opp_xlate_performance_state(struct opp_table * src_table,struct opp_table * dst_table,unsigned int pstate)2692 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2693 struct opp_table *dst_table,
2694 unsigned int pstate)
2695 {
2696 struct dev_pm_opp *opp;
2697 int dest_pstate = -EINVAL;
2698 int i;
2699
2700 /*
2701 * Normally the src_table will have the "required_opps" property set to
2702 * point to one of the OPPs in the dst_table, but in some cases the
2703 * genpd and its master have one to one mapping of performance states
2704 * and so none of them have the "required-opps" property set. Return the
2705 * pstate of the src_table as it is in such cases.
2706 */
2707 if (!src_table || !src_table->required_opp_count)
2708 return pstate;
2709
2710 /* Both OPP tables must belong to genpds */
2711 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2712 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2713 return -EINVAL;
2714 }
2715
2716 /* required-opps not fully initialized yet */
2717 if (lazy_linking_pending(src_table))
2718 return -EBUSY;
2719
2720 for (i = 0; i < src_table->required_opp_count; i++) {
2721 if (src_table->required_opp_tables[i]->np == dst_table->np)
2722 break;
2723 }
2724
2725 if (unlikely(i == src_table->required_opp_count)) {
2726 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2727 __func__, src_table, dst_table);
2728 return -EINVAL;
2729 }
2730
2731 mutex_lock(&src_table->lock);
2732
2733 list_for_each_entry(opp, &src_table->opp_list, node) {
2734 if (opp->level == pstate) {
2735 dest_pstate = opp->required_opps[i]->level;
2736 goto unlock;
2737 }
2738 }
2739
2740 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2741 dst_table);
2742
2743 unlock:
2744 mutex_unlock(&src_table->lock);
2745
2746 return dest_pstate;
2747 }
2748
2749 /**
2750 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2751 * @dev: The device for which we do this operation
2752 * @data: The OPP data for the OPP to add
2753 *
2754 * This function adds an opp definition to the opp table and returns status.
2755 * The opp is made available by default and it can be controlled using
2756 * dev_pm_opp_enable/disable functions.
2757 *
2758 * Return:
2759 * 0 On success OR
2760 * Duplicate OPPs (both freq and volt are same) and opp->available
2761 * -EEXIST Freq are same and volt are different OR
2762 * Duplicate OPPs (both freq and volt are same) and !opp->available
2763 * -ENOMEM Memory allocation failure
2764 */
dev_pm_opp_add_dynamic(struct device * dev,struct dev_pm_opp_data * data)2765 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2766 {
2767 struct opp_table *opp_table;
2768 int ret;
2769
2770 opp_table = _add_opp_table(dev, true);
2771 if (IS_ERR(opp_table))
2772 return PTR_ERR(opp_table);
2773
2774 /* Fix regulator count for dynamic OPPs */
2775 opp_table->regulator_count = 1;
2776
2777 ret = _opp_add_v1(opp_table, dev, data, true);
2778 if (ret)
2779 dev_pm_opp_put_opp_table(opp_table);
2780
2781 return ret;
2782 }
2783 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2784
2785 /**
2786 * _opp_set_availability() - helper to set the availability of an opp
2787 * @dev: device for which we do this operation
2788 * @freq: OPP frequency to modify availability
2789 * @availability_req: availability status requested for this opp
2790 *
2791 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2792 * which is isolated here.
2793 *
2794 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2795 * copy operation, returns 0 if no modification was done OR modification was
2796 * successful.
2797 */
_opp_set_availability(struct device * dev,unsigned long freq,bool availability_req)2798 static int _opp_set_availability(struct device *dev, unsigned long freq,
2799 bool availability_req)
2800 {
2801 struct opp_table *opp_table;
2802 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2803 int r = 0;
2804
2805 /* Find the opp_table */
2806 opp_table = _find_opp_table(dev);
2807 if (IS_ERR(opp_table)) {
2808 r = PTR_ERR(opp_table);
2809 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2810 return r;
2811 }
2812
2813 if (!assert_single_clk(opp_table)) {
2814 r = -EINVAL;
2815 goto put_table;
2816 }
2817
2818 mutex_lock(&opp_table->lock);
2819
2820 /* Do we have the frequency? */
2821 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2822 if (tmp_opp->rates[0] == freq) {
2823 opp = tmp_opp;
2824 break;
2825 }
2826 }
2827
2828 if (IS_ERR(opp)) {
2829 r = PTR_ERR(opp);
2830 goto unlock;
2831 }
2832
2833 /* Is update really needed? */
2834 if (opp->available == availability_req)
2835 goto unlock;
2836
2837 opp->available = availability_req;
2838
2839 dev_pm_opp_get(opp);
2840 mutex_unlock(&opp_table->lock);
2841
2842 /* Notify the change of the OPP availability */
2843 if (availability_req)
2844 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2845 opp);
2846 else
2847 blocking_notifier_call_chain(&opp_table->head,
2848 OPP_EVENT_DISABLE, opp);
2849
2850 dev_pm_opp_put(opp);
2851 goto put_table;
2852
2853 unlock:
2854 mutex_unlock(&opp_table->lock);
2855 put_table:
2856 dev_pm_opp_put_opp_table(opp_table);
2857 return r;
2858 }
2859
2860 /**
2861 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2862 * @dev: device for which we do this operation
2863 * @freq: OPP frequency to adjust voltage of
2864 * @u_volt: new OPP target voltage
2865 * @u_volt_min: new OPP min voltage
2866 * @u_volt_max: new OPP max voltage
2867 *
2868 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2869 * copy operation, returns 0 if no modifcation was done OR modification was
2870 * successful.
2871 */
dev_pm_opp_adjust_voltage(struct device * dev,unsigned long freq,unsigned long u_volt,unsigned long u_volt_min,unsigned long u_volt_max)2872 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2873 unsigned long u_volt, unsigned long u_volt_min,
2874 unsigned long u_volt_max)
2875
2876 {
2877 struct opp_table *opp_table;
2878 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2879 int r = 0;
2880
2881 /* Find the opp_table */
2882 opp_table = _find_opp_table(dev);
2883 if (IS_ERR(opp_table)) {
2884 r = PTR_ERR(opp_table);
2885 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2886 return r;
2887 }
2888
2889 if (!assert_single_clk(opp_table)) {
2890 r = -EINVAL;
2891 goto put_table;
2892 }
2893
2894 mutex_lock(&opp_table->lock);
2895
2896 /* Do we have the frequency? */
2897 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2898 if (tmp_opp->rates[0] == freq) {
2899 opp = tmp_opp;
2900 break;
2901 }
2902 }
2903
2904 if (IS_ERR(opp)) {
2905 r = PTR_ERR(opp);
2906 goto adjust_unlock;
2907 }
2908
2909 /* Is update really needed? */
2910 if (opp->supplies->u_volt == u_volt)
2911 goto adjust_unlock;
2912
2913 opp->supplies->u_volt = u_volt;
2914 opp->supplies->u_volt_min = u_volt_min;
2915 opp->supplies->u_volt_max = u_volt_max;
2916
2917 dev_pm_opp_get(opp);
2918 mutex_unlock(&opp_table->lock);
2919
2920 /* Notify the voltage change of the OPP */
2921 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2922 opp);
2923
2924 dev_pm_opp_put(opp);
2925 goto put_table;
2926
2927 adjust_unlock:
2928 mutex_unlock(&opp_table->lock);
2929 put_table:
2930 dev_pm_opp_put_opp_table(opp_table);
2931 return r;
2932 }
2933 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2934
2935 /**
2936 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2937 * @dev: device for which we do this operation
2938 *
2939 * Sync voltage state of the OPP table regulators.
2940 *
2941 * Return: 0 on success or a negative error value.
2942 */
dev_pm_opp_sync_regulators(struct device * dev)2943 int dev_pm_opp_sync_regulators(struct device *dev)
2944 {
2945 struct opp_table *opp_table;
2946 struct regulator *reg;
2947 int i, ret = 0;
2948
2949 /* Device may not have OPP table */
2950 opp_table = _find_opp_table(dev);
2951 if (IS_ERR(opp_table))
2952 return 0;
2953
2954 /* Regulator may not be required for the device */
2955 if (unlikely(!opp_table->regulators))
2956 goto put_table;
2957
2958 /* Nothing to sync if voltage wasn't changed */
2959 if (!opp_table->enabled)
2960 goto put_table;
2961
2962 for (i = 0; i < opp_table->regulator_count; i++) {
2963 reg = opp_table->regulators[i];
2964 ret = regulator_sync_voltage(reg);
2965 if (ret)
2966 break;
2967 }
2968 put_table:
2969 /* Drop reference taken by _find_opp_table() */
2970 dev_pm_opp_put_opp_table(opp_table);
2971
2972 return ret;
2973 }
2974 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2975
2976 /**
2977 * dev_pm_opp_enable() - Enable a specific OPP
2978 * @dev: device for which we do this operation
2979 * @freq: OPP frequency to enable
2980 *
2981 * Enables a provided opp. If the operation is valid, this returns 0, else the
2982 * corresponding error value. It is meant to be used for users an OPP available
2983 * after being temporarily made unavailable with dev_pm_opp_disable.
2984 *
2985 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2986 * copy operation, returns 0 if no modification was done OR modification was
2987 * successful.
2988 */
dev_pm_opp_enable(struct device * dev,unsigned long freq)2989 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2990 {
2991 return _opp_set_availability(dev, freq, true);
2992 }
2993 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2994
2995 /**
2996 * dev_pm_opp_disable() - Disable a specific OPP
2997 * @dev: device for which we do this operation
2998 * @freq: OPP frequency to disable
2999 *
3000 * Disables a provided opp. If the operation is valid, this returns
3001 * 0, else the corresponding error value. It is meant to be a temporary
3002 * control by users to make this OPP not available until the circumstances are
3003 * right to make it available again (with a call to dev_pm_opp_enable).
3004 *
3005 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3006 * copy operation, returns 0 if no modification was done OR modification was
3007 * successful.
3008 */
dev_pm_opp_disable(struct device * dev,unsigned long freq)3009 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3010 {
3011 return _opp_set_availability(dev, freq, false);
3012 }
3013 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3014
3015 /**
3016 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3017 * @dev: Device for which notifier needs to be registered
3018 * @nb: Notifier block to be registered
3019 *
3020 * Return: 0 on success or a negative error value.
3021 */
dev_pm_opp_register_notifier(struct device * dev,struct notifier_block * nb)3022 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3023 {
3024 struct opp_table *opp_table;
3025 int ret;
3026
3027 opp_table = _find_opp_table(dev);
3028 if (IS_ERR(opp_table))
3029 return PTR_ERR(opp_table);
3030
3031 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3032
3033 dev_pm_opp_put_opp_table(opp_table);
3034
3035 return ret;
3036 }
3037 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3038
3039 /**
3040 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3041 * @dev: Device for which notifier needs to be unregistered
3042 * @nb: Notifier block to be unregistered
3043 *
3044 * Return: 0 on success or a negative error value.
3045 */
dev_pm_opp_unregister_notifier(struct device * dev,struct notifier_block * nb)3046 int dev_pm_opp_unregister_notifier(struct device *dev,
3047 struct notifier_block *nb)
3048 {
3049 struct opp_table *opp_table;
3050 int ret;
3051
3052 opp_table = _find_opp_table(dev);
3053 if (IS_ERR(opp_table))
3054 return PTR_ERR(opp_table);
3055
3056 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3057
3058 dev_pm_opp_put_opp_table(opp_table);
3059
3060 return ret;
3061 }
3062 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3063
3064 /**
3065 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3066 * @dev: device pointer used to lookup OPP table.
3067 *
3068 * Free both OPPs created using static entries present in DT and the
3069 * dynamically added entries.
3070 */
dev_pm_opp_remove_table(struct device * dev)3071 void dev_pm_opp_remove_table(struct device *dev)
3072 {
3073 struct opp_table *opp_table;
3074
3075 /* Check for existing table for 'dev' */
3076 opp_table = _find_opp_table(dev);
3077 if (IS_ERR(opp_table)) {
3078 int error = PTR_ERR(opp_table);
3079
3080 if (error != -ENODEV)
3081 WARN(1, "%s: opp_table: %d\n",
3082 IS_ERR_OR_NULL(dev) ?
3083 "Invalid device" : dev_name(dev),
3084 error);
3085 return;
3086 }
3087
3088 /*
3089 * Drop the extra reference only if the OPP table was successfully added
3090 * with dev_pm_opp_of_add_table() earlier.
3091 **/
3092 if (_opp_remove_all_static(opp_table))
3093 dev_pm_opp_put_opp_table(opp_table);
3094
3095 /* Drop reference taken by _find_opp_table() */
3096 dev_pm_opp_put_opp_table(opp_table);
3097 }
3098 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3099