1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software developed by the Computer Systems
8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
9 * BG 91-66 and contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 */
35
36
37 /*
38 * Proc traversal interface for kvm. ps and w are (probably) the exclusive
39 * users of this code, so we've factored it out into a separate module.
40 * Thus, we keep this grunge out of the other kvm applications (i.e.,
41 * most other applications are interested only in open/close/read/nlist).
42 */
43
44 #include <sys/param.h>
45 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */
46 #include <sys/ucred.h>
47 #include <sys/queue.h>
48 #include <sys/_lock.h>
49 #include <sys/_mutex.h>
50 #include <sys/_task.h>
51 #include <sys/cpuset.h>
52 #include <sys/user.h>
53 #include <sys/proc.h>
54 #define _WANT_PRISON /* make jail.h give us 'struct prison' */
55 #include <sys/jail.h>
56 #include <sys/exec.h>
57 #include <sys/stat.h>
58 #include <sys/sysent.h>
59 #include <sys/ioctl.h>
60 #include <sys/tty.h>
61 #include <sys/file.h>
62 #include <sys/conf.h>
63 #define _WANT_KW_EXITCODE
64 #include <sys/wait.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <stdbool.h>
68 #include <unistd.h>
69 #include <nlist.h>
70 #include <kvm.h>
71
72 #include <sys/sysctl.h>
73
74 #include <limits.h>
75 #include <memory.h>
76 #include <paths.h>
77
78 #include "kvm_private.h"
79
80 #define KREAD(kd, addr, obj) \
81 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
82
83 static int ticks;
84 static int hz;
85 static uint64_t cpu_tick_frequency;
86
87 /*
88 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is
89 * read/initialized before this function is ever called.
90 */
91 static uint64_t
cputick2usec(uint64_t tick)92 cputick2usec(uint64_t tick)
93 {
94 if (cpu_tick_frequency == 0)
95 return (0);
96 return ((tick / cpu_tick_frequency) * 1000000ULL) +
97 ((tick % cpu_tick_frequency) * 1000000ULL) / cpu_tick_frequency;
98 }
99
100 /*
101 * Read proc's from memory file into buffer bp, which has space to hold
102 * at most maxcnt procs.
103 */
104 static int
kvm_proclist(kvm_t * kd,int what,int arg,struct proc * p,struct kinfo_proc * bp,int maxcnt)105 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
106 struct kinfo_proc *bp, int maxcnt)
107 {
108 int cnt = 0;
109 struct kinfo_proc kinfo_proc, *kp;
110 struct pgrp pgrp;
111 struct session sess;
112 struct cdev t_cdev;
113 struct tty tty;
114 struct vmspace vmspace;
115 struct sigacts sigacts;
116 #if 0
117 struct pstats pstats;
118 #endif
119 struct ucred ucred;
120 struct prison pr;
121 struct thread mtd;
122 struct proc proc;
123 struct proc pproc;
124 struct sysentvec sysent;
125 char svname[KI_EMULNAMELEN];
126 struct thread *td = NULL;
127 bool first_thread;
128
129 kp = &kinfo_proc;
130 kp->ki_structsize = sizeof(kinfo_proc);
131 /*
132 * Loop on the processes, then threads within the process if requested.
133 */
134 if (what == KERN_PROC_ALL)
135 what |= KERN_PROC_INC_THREAD;
136 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
137 memset(kp, 0, sizeof *kp);
138 if (KREAD(kd, (u_long)p, &proc)) {
139 _kvm_err(kd, kd->program, "can't read proc at %p", p);
140 return (-1);
141 }
142 if (proc.p_state == PRS_NEW)
143 continue;
144 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
145 kp->ki_uid = ucred.cr_uid;
146 kp->ki_ruid = ucred.cr_ruid;
147 kp->ki_svuid = ucred.cr_svuid;
148 kp->ki_rgid = ucred.cr_rgid;
149 kp->ki_svgid = ucred.cr_svgid;
150 kp->ki_cr_flags = 0;
151 if (ucred.cr_flags & CRED_FLAG_CAPMODE)
152 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
153 if (ucred.cr_ngroups > KI_NGROUPS) {
154 kp->ki_ngroups = KI_NGROUPS;
155 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
156 } else
157 kp->ki_ngroups = ucred.cr_ngroups;
158 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups,
159 kp->ki_ngroups * sizeof(gid_t));
160 if (ucred.cr_prison != NULL) {
161 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
162 _kvm_err(kd, kd->program,
163 "can't read prison at %p",
164 ucred.cr_prison);
165 return (-1);
166 }
167 kp->ki_jid = pr.pr_id;
168 }
169 }
170
171 switch(what & ~KERN_PROC_INC_THREAD) {
172
173 case KERN_PROC_GID:
174 if (kp->ki_groups[0] != (gid_t)arg)
175 continue;
176 break;
177
178 case KERN_PROC_PID:
179 if (proc.p_pid != (pid_t)arg)
180 continue;
181 break;
182
183 case KERN_PROC_RGID:
184 if (kp->ki_rgid != (gid_t)arg)
185 continue;
186 break;
187
188 case KERN_PROC_UID:
189 if (kp->ki_uid != (uid_t)arg)
190 continue;
191 break;
192
193 case KERN_PROC_RUID:
194 if (kp->ki_ruid != (uid_t)arg)
195 continue;
196 break;
197 }
198 /*
199 * We're going to add another proc to the set. If this
200 * will overflow the buffer, assume the reason is because
201 * nprocs (or the proc list) is corrupt and declare an error.
202 */
203 if (cnt >= maxcnt) {
204 _kvm_err(kd, kd->program, "nprocs corrupt");
205 return (-1);
206 }
207 /*
208 * gather kinfo_proc
209 */
210 kp->ki_paddr = p;
211 kp->ki_addr = 0; /* XXX uarea */
212 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
213 kp->ki_args = proc.p_args;
214 kp->ki_numthreads = proc.p_numthreads;
215 kp->ki_tracep = NULL; /* XXXKIB do not expose ktr_io_params */
216 kp->ki_textvp = proc.p_textvp;
217 kp->ki_fd = proc.p_fd;
218 kp->ki_pd = proc.p_pd;
219 kp->ki_vmspace = proc.p_vmspace;
220 if (proc.p_sigacts != NULL) {
221 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
222 _kvm_err(kd, kd->program,
223 "can't read sigacts at %p", proc.p_sigacts);
224 return (-1);
225 }
226 kp->ki_sigignore = sigacts.ps_sigignore;
227 kp->ki_sigcatch = sigacts.ps_sigcatch;
228 }
229 #if 0
230 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
231 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
232 _kvm_err(kd, kd->program,
233 "can't read stats at %x", proc.p_stats);
234 return (-1);
235 }
236 kp->ki_start = pstats.p_start;
237
238 /*
239 * XXX: The times here are probably zero and need
240 * to be calculated from the raw data in p_rux and
241 * p_crux.
242 */
243 kp->ki_rusage = pstats.p_ru;
244 kp->ki_childstime = pstats.p_cru.ru_stime;
245 kp->ki_childutime = pstats.p_cru.ru_utime;
246 /* Some callers want child-times in a single value */
247 timeradd(&kp->ki_childstime, &kp->ki_childutime,
248 &kp->ki_childtime);
249 }
250 #endif
251 if (proc.p_oppid)
252 kp->ki_ppid = proc.p_oppid;
253 else if (proc.p_pptr) {
254 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
255 _kvm_err(kd, kd->program,
256 "can't read pproc at %p", proc.p_pptr);
257 return (-1);
258 }
259 kp->ki_ppid = pproc.p_pid;
260 } else
261 kp->ki_ppid = 0;
262 if (proc.p_pgrp == NULL)
263 goto nopgrp;
264 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
265 _kvm_err(kd, kd->program, "can't read pgrp at %p",
266 proc.p_pgrp);
267 return (-1);
268 }
269 kp->ki_pgid = pgrp.pg_id;
270 kp->ki_jobc = -1; /* Or calculate? Arguably not. */
271 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
272 _kvm_err(kd, kd->program, "can't read session at %p",
273 pgrp.pg_session);
274 return (-1);
275 }
276 kp->ki_sid = sess.s_sid;
277 (void)memcpy(kp->ki_login, sess.s_login,
278 sizeof(kp->ki_login));
279 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
280 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
281 _kvm_err(kd, kd->program,
282 "can't read tty at %p", sess.s_ttyp);
283 return (-1);
284 }
285 if (tty.t_dev != NULL) {
286 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
287 _kvm_err(kd, kd->program,
288 "can't read cdev at %p",
289 tty.t_dev);
290 return (-1);
291 }
292 #if 0
293 kp->ki_tdev = t_cdev.si_udev;
294 #else
295 kp->ki_tdev = NODEV;
296 #endif
297 }
298 if (tty.t_pgrp != NULL) {
299 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
300 _kvm_err(kd, kd->program,
301 "can't read tpgrp at %p",
302 tty.t_pgrp);
303 return (-1);
304 }
305 kp->ki_tpgid = pgrp.pg_id;
306 } else
307 kp->ki_tpgid = -1;
308 if (tty.t_session != NULL) {
309 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
310 _kvm_err(kd, kd->program,
311 "can't read session at %p",
312 tty.t_session);
313 return (-1);
314 }
315 kp->ki_tsid = sess.s_sid;
316 }
317 } else {
318 nopgrp:
319 kp->ki_tdev = NODEV;
320 }
321
322 (void)kvm_read(kd, (u_long)proc.p_vmspace,
323 (char *)&vmspace, sizeof(vmspace));
324 kp->ki_size = vmspace.vm_map.size;
325 /*
326 * Approximate the kernel's method of calculating
327 * this field.
328 */
329 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
330 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap);
331 kp->ki_swrss = vmspace.vm_swrss;
332 kp->ki_tsize = vmspace.vm_tsize;
333 kp->ki_dsize = vmspace.vm_dsize;
334 kp->ki_ssize = vmspace.vm_ssize;
335
336 switch (what & ~KERN_PROC_INC_THREAD) {
337
338 case KERN_PROC_PGRP:
339 if (kp->ki_pgid != (pid_t)arg)
340 continue;
341 break;
342
343 case KERN_PROC_SESSION:
344 if (kp->ki_sid != (pid_t)arg)
345 continue;
346 break;
347
348 case KERN_PROC_TTY:
349 if ((proc.p_flag & P_CONTROLT) == 0 ||
350 kp->ki_tdev != (dev_t)arg)
351 continue;
352 break;
353 }
354 if (proc.p_comm[0] != 0)
355 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
356 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
357 sizeof(sysent));
358 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
359 sizeof(svname));
360 if (svname[0] != 0)
361 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
362 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime);
363 kp->ki_pid = proc.p_pid;
364 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig);
365 kp->ki_acflag = proc.p_acflag;
366 kp->ki_lock = proc.p_lock;
367 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
368
369 /* Per-thread items; iterate as appropriate. */
370 td = TAILQ_FIRST(&proc.p_threads);
371 for (first_thread = true; cnt < maxcnt && td != NULL &&
372 (first_thread || (what & KERN_PROC_INC_THREAD));
373 first_thread = false) {
374 if (proc.p_state != PRS_ZOMBIE) {
375 if (KREAD(kd, (u_long)td, &mtd)) {
376 _kvm_err(kd, kd->program,
377 "can't read thread at %p", td);
378 return (-1);
379 }
380 if (what & KERN_PROC_INC_THREAD)
381 td = TAILQ_NEXT(&mtd, td_plist);
382 } else
383 td = NULL;
384 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
385 (void)kvm_read(kd, (u_long)mtd.td_wmesg,
386 kp->ki_wmesg, WMESGLEN);
387 else
388 memset(kp->ki_wmesg, 0, WMESGLEN);
389 if (proc.p_pgrp == NULL) {
390 kp->ki_kiflag = 0;
391 } else {
392 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
393 if (sess.s_leader == p)
394 kp->ki_kiflag |= KI_SLEADER;
395 }
396 if ((proc.p_state != PRS_ZOMBIE) &&
397 (mtd.td_blocked != 0)) {
398 kp->ki_kiflag |= KI_LOCKBLOCK;
399 if (mtd.td_lockname)
400 (void)kvm_read(kd,
401 (u_long)mtd.td_lockname,
402 kp->ki_lockname, LOCKNAMELEN);
403 else
404 memset(kp->ki_lockname, 0,
405 LOCKNAMELEN);
406 kp->ki_lockname[LOCKNAMELEN] = 0;
407 } else
408 kp->ki_kiflag &= ~KI_LOCKBLOCK;
409 kp->ki_siglist = proc.p_siglist;
410 if (proc.p_state != PRS_ZOMBIE) {
411 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
412 kp->ki_sigmask = mtd.td_sigmask;
413 kp->ki_swtime = (ticks - proc.p_swtick) / hz;
414 kp->ki_flag = proc.p_flag;
415 kp->ki_sflag = 0;
416 kp->ki_nice = proc.p_nice;
417 kp->ki_traceflag = proc.p_traceflag;
418 if (proc.p_state == PRS_NORMAL) {
419 if (TD_ON_RUNQ(&mtd) ||
420 TD_CAN_RUN(&mtd) ||
421 TD_IS_RUNNING(&mtd)) {
422 kp->ki_stat = SRUN;
423 } else if (TD_GET_STATE(&mtd) ==
424 TDS_INHIBITED) {
425 if (P_SHOULDSTOP(&proc)) {
426 kp->ki_stat = SSTOP;
427 } else if (
428 TD_IS_SLEEPING(&mtd)) {
429 kp->ki_stat = SSLEEP;
430 } else if (TD_ON_LOCK(&mtd)) {
431 kp->ki_stat = SLOCK;
432 } else {
433 kp->ki_stat = SWAIT;
434 }
435 }
436 } else {
437 kp->ki_stat = SIDL;
438 }
439 /* Stuff from the thread */
440 kp->ki_pri.pri_level = mtd.td_priority;
441 kp->ki_pri.pri_native = mtd.td_base_pri;
442 kp->ki_lastcpu = mtd.td_lastcpu;
443 kp->ki_wchan = mtd.td_wchan;
444 kp->ki_oncpu = mtd.td_oncpu;
445 if (mtd.td_name[0] != '\0')
446 strlcpy(kp->ki_tdname, mtd.td_name,
447 sizeof(kp->ki_tdname));
448 else
449 memset(kp->ki_tdname, 0,
450 sizeof(kp->ki_tdname));
451 kp->ki_pctcpu = 0;
452 kp->ki_rqindex = 0;
453
454 /*
455 * Note: legacy fields; wraps at NO_CPU_OLD
456 * or the old max CPU value as appropriate
457 */
458 if (mtd.td_lastcpu == NOCPU)
459 kp->ki_lastcpu_old = NOCPU_OLD;
460 else if (mtd.td_lastcpu > MAXCPU_OLD)
461 kp->ki_lastcpu_old = MAXCPU_OLD;
462 else
463 kp->ki_lastcpu_old = mtd.td_lastcpu;
464
465 if (mtd.td_oncpu == NOCPU)
466 kp->ki_oncpu_old = NOCPU_OLD;
467 else if (mtd.td_oncpu > MAXCPU_OLD)
468 kp->ki_oncpu_old = MAXCPU_OLD;
469 else
470 kp->ki_oncpu_old = mtd.td_oncpu;
471 kp->ki_tid = mtd.td_tid;
472 } else {
473 memset(&kp->ki_sigmask, 0,
474 sizeof(kp->ki_sigmask));
475 kp->ki_stat = SZOMB;
476 kp->ki_tid = 0;
477 }
478
479 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
480 ++bp;
481 ++cnt;
482 }
483 }
484 return (cnt);
485 }
486
487 /*
488 * Build proc info array by reading in proc list from a crash dump.
489 * Return number of procs read. maxcnt is the max we will read.
490 */
491 static int
kvm_deadprocs(kvm_t * kd,int what,int arg,u_long a_allproc,u_long a_zombproc,int maxcnt)492 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
493 u_long a_zombproc, int maxcnt)
494 {
495 struct kinfo_proc *bp = kd->procbase;
496 int acnt, zcnt = 0;
497 struct proc *p;
498
499 if (KREAD(kd, a_allproc, &p)) {
500 _kvm_err(kd, kd->program, "cannot read allproc");
501 return (-1);
502 }
503 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
504 if (acnt < 0)
505 return (acnt);
506
507 if (a_zombproc != 0) {
508 if (KREAD(kd, a_zombproc, &p)) {
509 _kvm_err(kd, kd->program, "cannot read zombproc");
510 return (-1);
511 }
512 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
513 if (zcnt < 0)
514 zcnt = 0;
515 }
516
517 return (acnt + zcnt);
518 }
519
520 struct kinfo_proc *
kvm_getprocs(kvm_t * kd,int op,int arg,int * cnt)521 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
522 {
523 int mib[4], st, nprocs;
524 size_t size, osize;
525 int temp_op;
526
527 if (kd->procbase != 0) {
528 free((void *)kd->procbase);
529 /*
530 * Clear this pointer in case this call fails. Otherwise,
531 * kvm_close() will free it again.
532 */
533 kd->procbase = 0;
534 }
535 if (ISALIVE(kd)) {
536 size = 0;
537 mib[0] = CTL_KERN;
538 mib[1] = KERN_PROC;
539 mib[2] = op;
540 mib[3] = arg;
541 temp_op = op & ~KERN_PROC_INC_THREAD;
542 st = sysctl(mib,
543 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
544 3 : 4, NULL, &size, NULL, 0);
545 if (st == -1) {
546 _kvm_syserr(kd, kd->program, "kvm_getprocs");
547 return (0);
548 }
549 /*
550 * We can't continue with a size of 0 because we pass
551 * it to realloc() (via _kvm_realloc()), and passing 0
552 * to realloc() results in undefined behavior.
553 */
554 if (size == 0) {
555 /*
556 * XXX: We should probably return an invalid,
557 * but non-NULL, pointer here so any client
558 * program trying to dereference it will
559 * crash. However, _kvm_freeprocs() calls
560 * free() on kd->procbase if it isn't NULL,
561 * and free()'ing a junk pointer isn't good.
562 * Then again, _kvm_freeprocs() isn't used
563 * anywhere . . .
564 */
565 kd->procbase = _kvm_malloc(kd, 1);
566 goto liveout;
567 }
568 do {
569 size += size / 10;
570 kd->procbase = (struct kinfo_proc *)
571 _kvm_realloc(kd, kd->procbase, size);
572 if (kd->procbase == NULL)
573 return (0);
574 osize = size;
575 st = sysctl(mib, temp_op == KERN_PROC_ALL ||
576 temp_op == KERN_PROC_PROC ? 3 : 4,
577 kd->procbase, &size, NULL, 0);
578 } while (st == -1 && errno == ENOMEM && size == osize);
579 if (st == -1) {
580 _kvm_syserr(kd, kd->program, "kvm_getprocs");
581 return (0);
582 }
583 /*
584 * We have to check the size again because sysctl()
585 * may "round up" oldlenp if oldp is NULL; hence it
586 * might've told us that there was data to get when
587 * there really isn't any.
588 */
589 if (size > 0 &&
590 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
591 _kvm_err(kd, kd->program,
592 "kinfo_proc size mismatch (expected %zu, got %d)",
593 sizeof(struct kinfo_proc),
594 kd->procbase->ki_structsize);
595 return (0);
596 }
597 liveout:
598 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
599 } else {
600 struct nlist nl[6], *p;
601 struct nlist nlz[2];
602
603 nl[0].n_name = "_nprocs";
604 nl[1].n_name = "_allproc";
605 nl[2].n_name = "_ticks";
606 nl[3].n_name = "_hz";
607 nl[4].n_name = "_cpu_tick_frequency";
608 nl[5].n_name = 0;
609
610 nlz[0].n_name = "_zombproc";
611 nlz[1].n_name = 0;
612
613 if (!kd->arch->ka_native(kd)) {
614 _kvm_err(kd, kd->program,
615 "cannot read procs from non-native core");
616 return (0);
617 }
618
619 if (kvm_nlist(kd, nl) != 0) {
620 for (p = nl; p->n_type != 0; ++p)
621 ;
622 _kvm_err(kd, kd->program,
623 "%s: no such symbol", p->n_name);
624 return (0);
625 }
626 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */
627 if (KREAD(kd, nl[0].n_value, &nprocs)) {
628 _kvm_err(kd, kd->program, "can't read nprocs");
629 return (0);
630 }
631 /*
632 * If returning all threads, we don't know how many that
633 * might be. Presume that there are, on average, no more
634 * than 10 threads per process.
635 */
636 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD))
637 nprocs *= 10; /* XXX */
638 if (KREAD(kd, nl[2].n_value, &ticks)) {
639 _kvm_err(kd, kd->program, "can't read ticks");
640 return (0);
641 }
642 if (KREAD(kd, nl[3].n_value, &hz)) {
643 _kvm_err(kd, kd->program, "can't read hz");
644 return (0);
645 }
646 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) {
647 _kvm_err(kd, kd->program,
648 "can't read cpu_tick_frequency");
649 return (0);
650 }
651 size = nprocs * sizeof(struct kinfo_proc);
652 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
653 if (kd->procbase == NULL)
654 return (0);
655
656 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
657 nlz[0].n_value, nprocs);
658 if (nprocs <= 0) {
659 _kvm_freeprocs(kd);
660 nprocs = 0;
661 }
662 #ifdef notdef
663 else {
664 size = nprocs * sizeof(struct kinfo_proc);
665 kd->procbase = realloc(kd->procbase, size);
666 }
667 #endif
668 }
669 *cnt = nprocs;
670 return (kd->procbase);
671 }
672
673 void
_kvm_freeprocs(kvm_t * kd)674 _kvm_freeprocs(kvm_t *kd)
675 {
676
677 free(kd->procbase);
678 kd->procbase = NULL;
679 }
680
681 void *
_kvm_realloc(kvm_t * kd,void * p,size_t n)682 _kvm_realloc(kvm_t *kd, void *p, size_t n)
683 {
684 void *np;
685
686 np = reallocf(p, n);
687 if (np == NULL)
688 _kvm_err(kd, kd->program, "out of memory");
689 return (np);
690 }
691
692 /*
693 * Get the command args or environment.
694 */
695 static char **
kvm_argv(kvm_t * kd,const struct kinfo_proc * kp,int env,int nchr)696 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr)
697 {
698 int oid[4];
699 int i;
700 size_t bufsz;
701 static int buflen;
702 static char *buf, *p;
703 static char **bufp;
704 static int argc;
705 char **nbufp;
706
707 if (!ISALIVE(kd)) {
708 _kvm_err(kd, kd->program,
709 "cannot read user space from dead kernel");
710 return (NULL);
711 }
712
713 if (nchr == 0 || nchr > ARG_MAX)
714 nchr = ARG_MAX;
715 if (buflen == 0) {
716 buf = malloc(nchr);
717 if (buf == NULL) {
718 _kvm_err(kd, kd->program, "cannot allocate memory");
719 return (NULL);
720 }
721 argc = 32;
722 bufp = malloc(sizeof(char *) * argc);
723 if (bufp == NULL) {
724 free(buf);
725 buf = NULL;
726 _kvm_err(kd, kd->program, "cannot allocate memory");
727 return (NULL);
728 }
729 buflen = nchr;
730 } else if (nchr > buflen) {
731 p = realloc(buf, nchr);
732 if (p != NULL) {
733 buf = p;
734 buflen = nchr;
735 }
736 }
737 oid[0] = CTL_KERN;
738 oid[1] = KERN_PROC;
739 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
740 oid[3] = kp->ki_pid;
741 bufsz = buflen;
742 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) {
743 /*
744 * If the supplied buf is too short to hold the requested
745 * value the sysctl returns with ENOMEM. The buf is filled
746 * with the truncated value and the returned bufsz is equal
747 * to the requested len.
748 */
749 if (errno != ENOMEM || bufsz != (size_t)buflen)
750 return (NULL);
751 buf[bufsz - 1] = '\0';
752 errno = 0;
753 } else if (bufsz == 0)
754 return (NULL);
755 i = 0;
756 p = buf;
757 do {
758 bufp[i++] = p;
759 p += strlen(p) + 1;
760 if (i >= argc) {
761 argc += argc;
762 nbufp = realloc(bufp, sizeof(char *) * argc);
763 if (nbufp == NULL)
764 return (NULL);
765 bufp = nbufp;
766 }
767 } while (p < buf + bufsz);
768 bufp[i++] = 0;
769 return (bufp);
770 }
771
772 char **
kvm_getargv(kvm_t * kd,const struct kinfo_proc * kp,int nchr)773 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
774 {
775 return (kvm_argv(kd, kp, 0, nchr));
776 }
777
778 char **
kvm_getenvv(kvm_t * kd,const struct kinfo_proc * kp,int nchr)779 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
780 {
781 return (kvm_argv(kd, kp, 1, nchr));
782 }
783