1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5 * Copyright (C) 2013 Red Hat
6 * Author: Rob Clark <robdclark@gmail.com>
7 */
8
9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
43
44 #define CONVERT_S3_15(val) \
45 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 struct msm_drm_private *priv = crtc->dev->dev_private;
50
51 return to_dpu_kms(priv->kms);
52 }
53
get_encoder_from_crtc(struct drm_crtc * crtc)54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
55 {
56 struct drm_device *dev = crtc->dev;
57 struct drm_encoder *encoder;
58
59 drm_for_each_encoder(encoder, dev)
60 if (encoder->crtc == crtc)
61 return encoder;
62
63 return NULL;
64 }
65
dpu_crtc_parse_crc_source(const char * src_name)66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
67 {
68 if (!src_name ||
69 !strcmp(src_name, "none"))
70 return DPU_CRTC_CRC_SOURCE_NONE;
71 if (!strcmp(src_name, "auto") ||
72 !strcmp(src_name, "lm"))
73 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
74 if (!strcmp(src_name, "encoder"))
75 return DPU_CRTC_CRC_SOURCE_ENCODER;
76
77 return DPU_CRTC_CRC_SOURCE_INVALID;
78 }
79
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
81 const char *src_name, size_t *values_cnt)
82 {
83 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
84 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
85
86 if (source < 0) {
87 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
88 return -EINVAL;
89 }
90
91 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
92 *values_cnt = crtc_state->num_mixers;
93 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
94 struct drm_encoder *drm_enc;
95
96 *values_cnt = 0;
97
98 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
99 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
100 }
101
102 return 0;
103 }
104
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
106 {
107 struct dpu_crtc_mixer *m;
108 int i;
109
110 for (i = 0; i < crtc_state->num_mixers; ++i) {
111 m = &crtc_state->mixers[i];
112
113 if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
114 continue;
115
116 /* Calculate MISR over 1 frame */
117 m->hw_lm->ops.setup_misr(m->hw_lm);
118 }
119 }
120
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
122 {
123 struct drm_encoder *drm_enc;
124
125 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
126 dpu_encoder_setup_misr(drm_enc);
127 }
128
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
130 {
131 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
132 enum dpu_crtc_crc_source current_source;
133 struct dpu_crtc_state *crtc_state;
134 struct drm_device *drm_dev = crtc->dev;
135
136 bool was_enabled;
137 bool enable = false;
138 int ret = 0;
139
140 if (source < 0) {
141 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
142 return -EINVAL;
143 }
144
145 ret = drm_modeset_lock(&crtc->mutex, NULL);
146
147 if (ret)
148 return ret;
149
150 enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
151 crtc_state = to_dpu_crtc_state(crtc->state);
152
153 spin_lock_irq(&drm_dev->event_lock);
154 current_source = crtc_state->crc_source;
155 spin_unlock_irq(&drm_dev->event_lock);
156
157 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
158
159 if (!was_enabled && enable) {
160 ret = drm_crtc_vblank_get(crtc);
161
162 if (ret)
163 goto cleanup;
164
165 } else if (was_enabled && !enable) {
166 drm_crtc_vblank_put(crtc);
167 }
168
169 spin_lock_irq(&drm_dev->event_lock);
170 crtc_state->crc_source = source;
171 spin_unlock_irq(&drm_dev->event_lock);
172
173 crtc_state->crc_frame_skip_count = 0;
174
175 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
176 dpu_crtc_setup_lm_misr(crtc_state);
177 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
178 dpu_crtc_setup_encoder_misr(crtc);
179 else
180 ret = -EINVAL;
181
182 cleanup:
183 drm_modeset_unlock(&crtc->mutex);
184
185 return ret;
186 }
187
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
189 {
190 struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
191 if (!encoder) {
192 DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
193 return 0;
194 }
195
196 return dpu_encoder_get_vsync_count(encoder);
197 }
198
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
200 struct dpu_crtc_state *crtc_state)
201 {
202 struct dpu_crtc_mixer *m;
203 u32 crcs[CRTC_DUAL_MIXERS];
204
205 int rc = 0;
206 int i;
207
208 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
209
210 for (i = 0; i < crtc_state->num_mixers; ++i) {
211
212 m = &crtc_state->mixers[i];
213
214 if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
215 continue;
216
217 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
218
219 if (rc) {
220 if (rc != -ENODATA)
221 DRM_DEBUG_DRIVER("MISR read failed\n");
222 return rc;
223 }
224 }
225
226 return drm_crtc_add_crc_entry(crtc, true,
227 drm_crtc_accurate_vblank_count(crtc), crcs);
228 }
229
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
231 {
232 struct drm_encoder *drm_enc;
233 int rc, pos = 0;
234 u32 crcs[INTF_MAX];
235
236 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
237 rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
238 if (rc < 0) {
239 if (rc != -ENODATA)
240 DRM_DEBUG_DRIVER("MISR read failed\n");
241
242 return rc;
243 }
244
245 pos += rc;
246 }
247
248 return drm_crtc_add_crc_entry(crtc, true,
249 drm_crtc_accurate_vblank_count(crtc), crcs);
250 }
251
dpu_crtc_get_crc(struct drm_crtc * crtc)252 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
253 {
254 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
255
256 /* Skip first 2 frames in case of "uncooked" CRCs */
257 if (crtc_state->crc_frame_skip_count < 2) {
258 crtc_state->crc_frame_skip_count++;
259 return 0;
260 }
261
262 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
263 return dpu_crtc_get_lm_crc(crtc, crtc_state);
264 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
265 return dpu_crtc_get_encoder_crc(crtc);
266
267 return -EINVAL;
268 }
269
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
271 bool in_vblank_irq,
272 int *vpos, int *hpos,
273 ktime_t *stime, ktime_t *etime,
274 const struct drm_display_mode *mode)
275 {
276 unsigned int pipe = crtc->index;
277 struct drm_encoder *encoder;
278 int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
279
280 encoder = get_encoder_from_crtc(crtc);
281 if (!encoder) {
282 DRM_ERROR("no encoder found for crtc %d\n", pipe);
283 return false;
284 }
285
286 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
287 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
288
289 /*
290 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
291 * the end of VFP. Translate the porch values relative to the line
292 * counter positions.
293 */
294
295 vactive_start = vsw + vbp + 1;
296 vactive_end = vactive_start + mode->crtc_vdisplay;
297
298 /* last scan line before VSYNC */
299 vfp_end = mode->crtc_vtotal;
300
301 if (stime)
302 *stime = ktime_get();
303
304 line = dpu_encoder_get_linecount(encoder);
305
306 if (line < vactive_start)
307 line -= vactive_start;
308 else if (line > vactive_end)
309 line = line - vfp_end - vactive_start;
310 else
311 line -= vactive_start;
312
313 *vpos = line;
314 *hpos = 0;
315
316 if (etime)
317 *etime = ktime_get();
318
319 return true;
320 }
321
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,const struct msm_format * format)322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
323 struct dpu_plane_state *pstate, const struct msm_format *format)
324 {
325 struct dpu_hw_mixer *lm = mixer->hw_lm;
326 uint32_t blend_op;
327 uint32_t fg_alpha, bg_alpha;
328
329 fg_alpha = pstate->base.alpha >> 8;
330 bg_alpha = 0xff - fg_alpha;
331
332 /* default to opaque blending */
333 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
334 !format->alpha_enable) {
335 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
336 DPU_BLEND_BG_ALPHA_BG_CONST;
337 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
338 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
339 DPU_BLEND_BG_ALPHA_FG_PIXEL;
340 if (fg_alpha != 0xff) {
341 bg_alpha = fg_alpha;
342 blend_op |= DPU_BLEND_BG_MOD_ALPHA |
343 DPU_BLEND_BG_INV_MOD_ALPHA;
344 } else {
345 blend_op |= DPU_BLEND_BG_INV_ALPHA;
346 }
347 } else {
348 /* coverage blending */
349 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
350 DPU_BLEND_BG_ALPHA_FG_PIXEL;
351 if (fg_alpha != 0xff) {
352 bg_alpha = fg_alpha;
353 blend_op |= DPU_BLEND_FG_MOD_ALPHA |
354 DPU_BLEND_FG_INV_MOD_ALPHA |
355 DPU_BLEND_BG_MOD_ALPHA |
356 DPU_BLEND_BG_INV_MOD_ALPHA;
357 } else {
358 blend_op |= DPU_BLEND_BG_INV_ALPHA;
359 }
360 }
361
362 lm->ops.setup_blend_config(lm, pstate->stage,
363 fg_alpha, bg_alpha, blend_op);
364
365 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
366 &format->pixel_format, format->alpha_enable, blend_op);
367 }
368
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)369 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
370 {
371 struct dpu_crtc_state *crtc_state;
372 int lm_idx, lm_horiz_position;
373
374 crtc_state = to_dpu_crtc_state(crtc->state);
375
376 lm_horiz_position = 0;
377 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
378 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
379 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
380 struct dpu_hw_mixer_cfg cfg;
381
382 if (!lm_roi || !drm_rect_visible(lm_roi))
383 continue;
384
385 cfg.out_width = drm_rect_width(lm_roi);
386 cfg.out_height = drm_rect_height(lm_roi);
387 cfg.right_mixer = lm_horiz_position++;
388 cfg.flags = 0;
389 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
390 }
391 }
392
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 num_mixers,enum dpu_stage stage,const struct msm_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)393 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
394 struct drm_plane *plane,
395 struct dpu_crtc_mixer *mixer,
396 u32 num_mixers,
397 enum dpu_stage stage,
398 const struct msm_format *format,
399 uint64_t modifier,
400 struct dpu_sw_pipe *pipe,
401 unsigned int stage_idx,
402 struct dpu_hw_stage_cfg *stage_cfg
403 )
404 {
405 uint32_t lm_idx;
406 enum dpu_sspp sspp_idx;
407 struct drm_plane_state *state;
408
409 sspp_idx = pipe->sspp->idx;
410
411 state = plane->state;
412
413 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
414 state, to_dpu_plane_state(state), stage_idx,
415 format->pixel_format,
416 modifier);
417
418 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
419 crtc->base.id,
420 stage,
421 plane->base.id,
422 sspp_idx - SSPP_NONE,
423 state->fb ? state->fb->base.id : -1,
424 pipe->multirect_index);
425
426 stage_cfg->stage[stage][stage_idx] = sspp_idx;
427 stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
428
429 /* blend config update */
430 for (lm_idx = 0; lm_idx < num_mixers; lm_idx++)
431 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
432 }
433
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)434 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
435 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
436 struct dpu_hw_stage_cfg *stage_cfg)
437 {
438 struct drm_plane *plane;
439 struct drm_framebuffer *fb;
440 struct drm_plane_state *state;
441 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
442 struct dpu_plane_state *pstate = NULL;
443 const struct msm_format *format;
444 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
445
446 uint32_t lm_idx;
447 bool bg_alpha_enable = false;
448 DECLARE_BITMAP(fetch_active, SSPP_MAX);
449
450 memset(fetch_active, 0, sizeof(fetch_active));
451 drm_atomic_crtc_for_each_plane(plane, crtc) {
452 state = plane->state;
453 if (!state)
454 continue;
455
456 if (!state->visible)
457 continue;
458
459 pstate = to_dpu_plane_state(state);
460 fb = state->fb;
461
462 format = msm_framebuffer_format(pstate->base.fb);
463
464 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
465 bg_alpha_enable = true;
466
467 set_bit(pstate->pipe.sspp->idx, fetch_active);
468 _dpu_crtc_blend_setup_pipe(crtc, plane,
469 mixer, cstate->num_mixers,
470 pstate->stage,
471 format, fb ? fb->modifier : 0,
472 &pstate->pipe, 0, stage_cfg);
473
474 if (pstate->r_pipe.sspp) {
475 set_bit(pstate->r_pipe.sspp->idx, fetch_active);
476 _dpu_crtc_blend_setup_pipe(crtc, plane,
477 mixer, cstate->num_mixers,
478 pstate->stage,
479 format, fb ? fb->modifier : 0,
480 &pstate->r_pipe, 1, stage_cfg);
481 }
482
483 /* blend config update */
484 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
485 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format);
486
487 if (bg_alpha_enable && !format->alpha_enable)
488 mixer[lm_idx].mixer_op_mode = 0;
489 else
490 mixer[lm_idx].mixer_op_mode |=
491 1 << pstate->stage;
492 }
493 }
494
495 if (ctl->ops.set_active_pipes)
496 ctl->ops.set_active_pipes(ctl, fetch_active);
497
498 _dpu_crtc_program_lm_output_roi(crtc);
499 }
500
501 /**
502 * _dpu_crtc_blend_setup - configure crtc mixers
503 * @crtc: Pointer to drm crtc structure
504 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)505 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
506 {
507 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
508 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
509 struct dpu_crtc_mixer *mixer = cstate->mixers;
510 struct dpu_hw_ctl *ctl;
511 struct dpu_hw_mixer *lm;
512 struct dpu_hw_stage_cfg stage_cfg;
513 int i;
514
515 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
516
517 for (i = 0; i < cstate->num_mixers; i++) {
518 mixer[i].mixer_op_mode = 0;
519 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
520 mixer[i].lm_ctl->ops.clear_all_blendstages(
521 mixer[i].lm_ctl);
522 }
523
524 /* initialize stage cfg */
525 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
526
527 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg);
528
529 for (i = 0; i < cstate->num_mixers; i++) {
530 ctl = mixer[i].lm_ctl;
531 lm = mixer[i].hw_lm;
532
533 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
534
535 /* stage config flush mask */
536 ctl->ops.update_pending_flush_mixer(ctl,
537 mixer[i].hw_lm->idx);
538
539 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
540 mixer[i].hw_lm->idx - LM_0,
541 mixer[i].mixer_op_mode,
542 ctl->idx - CTL_0);
543
544 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
545 &stage_cfg);
546 }
547 }
548
549 /**
550 * _dpu_crtc_complete_flip - signal pending page_flip events
551 * Any pending vblank events are added to the vblank_event_list
552 * so that the next vblank interrupt shall signal them.
553 * However PAGE_FLIP events are not handled through the vblank_event_list.
554 * This API signals any pending PAGE_FLIP events requested through
555 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
556 * @crtc: Pointer to drm crtc structure
557 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)558 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
559 {
560 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
561 struct drm_device *dev = crtc->dev;
562 unsigned long flags;
563
564 spin_lock_irqsave(&dev->event_lock, flags);
565 if (dpu_crtc->event) {
566 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
567 dpu_crtc->event);
568 trace_dpu_crtc_complete_flip(DRMID(crtc));
569 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
570 dpu_crtc->event = NULL;
571 }
572 spin_unlock_irqrestore(&dev->event_lock, flags);
573 }
574
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)575 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
576 {
577 struct drm_encoder *encoder;
578
579 /*
580 * TODO: This function is called from dpu debugfs and as part of atomic
581 * check. When called from debugfs, the crtc->mutex must be held to
582 * read crtc->state. However reading crtc->state from atomic check isn't
583 * allowed (unless you have a good reason, a big comment, and a deep
584 * understanding of how the atomic/modeset locks work (<- and this is
585 * probably not possible)). So we'll keep the WARN_ON here for now, but
586 * really we need to figure out a better way to track our operating mode
587 */
588 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
589
590 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
591 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
592 return dpu_encoder_get_intf_mode(encoder);
593
594 return INTF_MODE_NONE;
595 }
596
dpu_crtc_vblank_callback(struct drm_crtc * crtc)597 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
598 {
599 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
600
601 /* keep statistics on vblank callback - with auto reset via debugfs */
602 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
603 dpu_crtc->vblank_cb_time = ktime_get();
604 else
605 dpu_crtc->vblank_cb_count++;
606
607 dpu_crtc_get_crc(crtc);
608
609 drm_crtc_handle_vblank(crtc);
610 trace_dpu_crtc_vblank_cb(DRMID(crtc));
611 }
612
dpu_crtc_frame_event_work(struct kthread_work * work)613 static void dpu_crtc_frame_event_work(struct kthread_work *work)
614 {
615 struct dpu_crtc_frame_event *fevent = container_of(work,
616 struct dpu_crtc_frame_event, work);
617 struct drm_crtc *crtc = fevent->crtc;
618 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
619 unsigned long flags;
620 bool frame_done = false;
621
622 DPU_ATRACE_BEGIN("crtc_frame_event");
623
624 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
625 ktime_to_ns(fevent->ts));
626
627 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
628 | DPU_ENCODER_FRAME_EVENT_ERROR
629 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
630
631 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
632 /* ignore vblank when not pending */
633 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
634 /* release bandwidth and other resources */
635 trace_dpu_crtc_frame_event_done(DRMID(crtc),
636 fevent->event);
637 dpu_core_perf_crtc_release_bw(crtc);
638 } else {
639 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
640 fevent->event);
641 }
642
643 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
644 | DPU_ENCODER_FRAME_EVENT_ERROR))
645 frame_done = true;
646 }
647
648 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
649 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
650 crtc->base.id, ktime_to_ns(fevent->ts));
651
652 if (frame_done)
653 complete_all(&dpu_crtc->frame_done_comp);
654
655 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
656 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
657 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
658 DPU_ATRACE_END("crtc_frame_event");
659 }
660
661 /**
662 * dpu_crtc_frame_event_cb - crtc frame event callback API
663 * @crtc: Pointer to crtc
664 * @event: Event to process
665 *
666 * Encoder may call this for different events from different context - IRQ,
667 * user thread, commit_thread, etc. Each event should be carefully reviewed and
668 * should be processed in proper task context to avoid schedulin delay or
669 * properly manage the irq context's bottom half processing.
670 */
dpu_crtc_frame_event_cb(struct drm_crtc * crtc,u32 event)671 void dpu_crtc_frame_event_cb(struct drm_crtc *crtc, u32 event)
672 {
673 struct dpu_crtc *dpu_crtc;
674 struct msm_drm_private *priv;
675 struct dpu_crtc_frame_event *fevent;
676 unsigned long flags;
677 u32 crtc_id;
678
679 /* Nothing to do on idle event */
680 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
681 return;
682
683 dpu_crtc = to_dpu_crtc(crtc);
684 priv = crtc->dev->dev_private;
685 crtc_id = drm_crtc_index(crtc);
686
687 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
688
689 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
690 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
691 struct dpu_crtc_frame_event, list);
692 if (fevent)
693 list_del_init(&fevent->list);
694 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
695
696 if (!fevent) {
697 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
698 return;
699 }
700
701 fevent->event = event;
702 fevent->crtc = crtc;
703 fevent->ts = ktime_get();
704 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
705 }
706
dpu_crtc_complete_commit(struct drm_crtc * crtc)707 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
708 {
709 trace_dpu_crtc_complete_commit(DRMID(crtc));
710 dpu_core_perf_crtc_update(crtc, 0);
711 _dpu_crtc_complete_flip(crtc);
712 }
713
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)714 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
715 struct drm_crtc_state *state)
716 {
717 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
718 struct drm_display_mode *adj_mode = &state->adjusted_mode;
719 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
720 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
721 int i;
722
723 for (i = 0; i < cstate->num_mixers; i++) {
724 struct drm_rect *r = &cstate->lm_bounds[i];
725 r->x1 = crtc_split_width * i;
726 r->y1 = 0;
727 r->x2 = r->x1 + crtc_split_width;
728 r->y2 = adj_mode->vdisplay;
729
730 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
731
732 if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
733 return -E2BIG;
734 }
735
736 return 0;
737 }
738
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)739 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
740 struct dpu_hw_pcc_cfg *cfg)
741 {
742 struct drm_color_ctm *ctm;
743
744 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
745
746 ctm = (struct drm_color_ctm *)state->ctm->data;
747
748 if (!ctm)
749 return;
750
751 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
752 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
753 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
754
755 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
756 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
757 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
758
759 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
760 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
761 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
762 }
763
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)764 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
765 {
766 struct drm_crtc_state *state = crtc->state;
767 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
768 struct dpu_crtc_mixer *mixer = cstate->mixers;
769 struct dpu_hw_pcc_cfg cfg;
770 struct dpu_hw_ctl *ctl;
771 struct dpu_hw_dspp *dspp;
772 int i;
773
774
775 if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
776 return;
777
778 for (i = 0; i < cstate->num_mixers; i++) {
779 ctl = mixer[i].lm_ctl;
780 dspp = mixer[i].hw_dspp;
781
782 if (!dspp || !dspp->ops.setup_pcc)
783 continue;
784
785 if (!state->ctm) {
786 dspp->ops.setup_pcc(dspp, NULL);
787 } else {
788 _dpu_crtc_get_pcc_coeff(state, &cfg);
789 dspp->ops.setup_pcc(dspp, &cfg);
790 }
791
792 /* stage config flush mask */
793 ctl->ops.update_pending_flush_dspp(ctl,
794 mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
795 }
796 }
797
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)798 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
799 struct drm_atomic_state *state)
800 {
801 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
802 struct drm_encoder *encoder;
803
804 if (!crtc->state->enable) {
805 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
806 crtc->base.id, crtc->state->enable);
807 return;
808 }
809
810 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
811
812 _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
813
814 /* encoder will trigger pending mask now */
815 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
816 dpu_encoder_trigger_kickoff_pending(encoder);
817
818 /*
819 * If no mixers have been allocated in dpu_crtc_atomic_check(),
820 * it means we are trying to flush a CRTC whose state is disabled:
821 * nothing else needs to be done.
822 */
823 if (unlikely(!cstate->num_mixers))
824 return;
825
826 _dpu_crtc_blend_setup(crtc);
827
828 _dpu_crtc_setup_cp_blocks(crtc);
829
830 /*
831 * PP_DONE irq is only used by command mode for now.
832 * It is better to request pending before FLUSH and START trigger
833 * to make sure no pp_done irq missed.
834 * This is safe because no pp_done will happen before SW trigger
835 * in command mode.
836 */
837 }
838
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)839 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
840 struct drm_atomic_state *state)
841 {
842 struct dpu_crtc *dpu_crtc;
843 struct drm_device *dev;
844 struct drm_plane *plane;
845 struct msm_drm_private *priv;
846 unsigned long flags;
847 struct dpu_crtc_state *cstate;
848
849 if (!crtc->state->enable) {
850 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
851 crtc->base.id, crtc->state->enable);
852 return;
853 }
854
855 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
856
857 dpu_crtc = to_dpu_crtc(crtc);
858 cstate = to_dpu_crtc_state(crtc->state);
859 dev = crtc->dev;
860 priv = dev->dev_private;
861
862 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
863 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
864 return;
865 }
866
867 WARN_ON(dpu_crtc->event);
868 spin_lock_irqsave(&dev->event_lock, flags);
869 dpu_crtc->event = crtc->state->event;
870 crtc->state->event = NULL;
871 spin_unlock_irqrestore(&dev->event_lock, flags);
872
873 /*
874 * If no mixers has been allocated in dpu_crtc_atomic_check(),
875 * it means we are trying to flush a CRTC whose state is disabled:
876 * nothing else needs to be done.
877 */
878 if (unlikely(!cstate->num_mixers))
879 return;
880
881 /* update performance setting before crtc kickoff */
882 dpu_core_perf_crtc_update(crtc, 1);
883
884 /*
885 * Final plane updates: Give each plane a chance to complete all
886 * required writes/flushing before crtc's "flush
887 * everything" call below.
888 */
889 drm_atomic_crtc_for_each_plane(plane, crtc) {
890 if (dpu_crtc->smmu_state.transition_error)
891 dpu_plane_set_error(plane, true);
892 dpu_plane_flush(plane);
893 }
894
895 /* Kickoff will be scheduled by outer layer */
896 }
897
898 /**
899 * dpu_crtc_destroy_state - state destroy hook
900 * @crtc: drm CRTC
901 * @state: CRTC state object to release
902 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)903 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
904 struct drm_crtc_state *state)
905 {
906 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
907
908 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
909
910 __drm_atomic_helper_crtc_destroy_state(state);
911
912 kfree(cstate);
913 }
914
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)915 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
916 {
917 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
918 int ret, rc = 0;
919
920 if (!atomic_read(&dpu_crtc->frame_pending)) {
921 DRM_DEBUG_ATOMIC("no frames pending\n");
922 return 0;
923 }
924
925 DPU_ATRACE_BEGIN("frame done completion wait");
926 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
927 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
928 if (!ret) {
929 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
930 rc = -ETIMEDOUT;
931 }
932 DPU_ATRACE_END("frame done completion wait");
933
934 return rc;
935 }
936
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)937 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
938 {
939 struct drm_encoder *encoder;
940 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
941 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
942 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
943
944 /*
945 * If no mixers has been allocated in dpu_crtc_atomic_check(),
946 * it means we are trying to start a CRTC whose state is disabled:
947 * nothing else needs to be done.
948 */
949 if (unlikely(!cstate->num_mixers))
950 return;
951
952 DPU_ATRACE_BEGIN("crtc_commit");
953
954 drm_for_each_encoder_mask(encoder, crtc->dev,
955 crtc->state->encoder_mask) {
956 if (!dpu_encoder_is_valid_for_commit(encoder)) {
957 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
958 goto end;
959 }
960 }
961 /*
962 * Encoder will flush/start now, unless it has a tx pending. If so, it
963 * may delay and flush at an irq event (e.g. ppdone)
964 */
965 drm_for_each_encoder_mask(encoder, crtc->dev,
966 crtc->state->encoder_mask)
967 dpu_encoder_prepare_for_kickoff(encoder);
968
969 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
970 /* acquire bandwidth and other resources */
971 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
972 } else
973 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
974
975 dpu_crtc->play_count++;
976
977 dpu_vbif_clear_errors(dpu_kms);
978
979 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
980 dpu_encoder_kickoff(encoder);
981
982 reinit_completion(&dpu_crtc->frame_done_comp);
983
984 end:
985 DPU_ATRACE_END("crtc_commit");
986 }
987
dpu_crtc_reset(struct drm_crtc * crtc)988 static void dpu_crtc_reset(struct drm_crtc *crtc)
989 {
990 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
991
992 if (crtc->state)
993 dpu_crtc_destroy_state(crtc, crtc->state);
994
995 if (cstate)
996 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
997 else
998 __drm_atomic_helper_crtc_reset(crtc, NULL);
999 }
1000
1001 /**
1002 * dpu_crtc_duplicate_state - state duplicate hook
1003 * @crtc: Pointer to drm crtc structure
1004 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1005 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1006 {
1007 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1008
1009 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1010 if (!cstate) {
1011 DPU_ERROR("failed to allocate state\n");
1012 return NULL;
1013 }
1014
1015 /* duplicate base helper */
1016 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1017
1018 return &cstate->base;
1019 }
1020
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1021 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1022 const struct drm_crtc_state *state)
1023 {
1024 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1025 int i;
1026
1027 for (i = 0; i < cstate->num_mixers; i++) {
1028 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1029 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1030 if (cstate->mixers[i].hw_dspp)
1031 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1032 }
1033 }
1034
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1035 static void dpu_crtc_disable(struct drm_crtc *crtc,
1036 struct drm_atomic_state *state)
1037 {
1038 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1039 crtc);
1040 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1041 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1042 struct drm_encoder *encoder;
1043 unsigned long flags;
1044 bool release_bandwidth = false;
1045
1046 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1047
1048 /* If disable is triggered while in self refresh mode,
1049 * reset the encoder software state so that in enable
1050 * it won't trigger a warn while assigning crtc.
1051 */
1052 if (old_crtc_state->self_refresh_active) {
1053 drm_for_each_encoder_mask(encoder, crtc->dev,
1054 old_crtc_state->encoder_mask) {
1055 dpu_encoder_assign_crtc(encoder, NULL);
1056 }
1057 return;
1058 }
1059
1060 /* Disable/save vblank irq handling */
1061 drm_crtc_vblank_off(crtc);
1062
1063 drm_for_each_encoder_mask(encoder, crtc->dev,
1064 old_crtc_state->encoder_mask) {
1065 /* in video mode, we hold an extra bandwidth reference
1066 * as we cannot drop bandwidth at frame-done if any
1067 * crtc is being used in video mode.
1068 */
1069 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1070 release_bandwidth = true;
1071
1072 /*
1073 * If disable is triggered during psr active(e.g: screen dim in PSR),
1074 * we will need encoder->crtc connection to process the device sleep &
1075 * preserve it during psr sequence.
1076 */
1077 if (!crtc->state->self_refresh_active)
1078 dpu_encoder_assign_crtc(encoder, NULL);
1079 }
1080
1081 /* wait for frame_event_done completion */
1082 if (_dpu_crtc_wait_for_frame_done(crtc))
1083 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1084 crtc->base.id,
1085 atomic_read(&dpu_crtc->frame_pending));
1086
1087 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1088 dpu_crtc->enabled = false;
1089
1090 if (atomic_read(&dpu_crtc->frame_pending)) {
1091 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1092 atomic_read(&dpu_crtc->frame_pending));
1093 if (release_bandwidth)
1094 dpu_core_perf_crtc_release_bw(crtc);
1095 atomic_set(&dpu_crtc->frame_pending, 0);
1096 }
1097
1098 dpu_core_perf_crtc_update(crtc, 0);
1099
1100 /* disable clk & bw control until clk & bw properties are set */
1101 cstate->bw_control = false;
1102 cstate->bw_split_vote = false;
1103
1104 if (crtc->state->event && !crtc->state->active) {
1105 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1106 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1107 crtc->state->event = NULL;
1108 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1109 }
1110
1111 pm_runtime_put_sync(crtc->dev->dev);
1112 }
1113
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1114 static void dpu_crtc_enable(struct drm_crtc *crtc,
1115 struct drm_atomic_state *state)
1116 {
1117 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1118 struct drm_encoder *encoder;
1119 bool request_bandwidth = false;
1120 struct drm_crtc_state *old_crtc_state;
1121
1122 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1123
1124 pm_runtime_get_sync(crtc->dev->dev);
1125
1126 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1127
1128 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1129 /* in video mode, we hold an extra bandwidth reference
1130 * as we cannot drop bandwidth at frame-done if any
1131 * crtc is being used in video mode.
1132 */
1133 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1134 request_bandwidth = true;
1135 }
1136
1137 if (request_bandwidth)
1138 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1139
1140 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1141 dpu_crtc->enabled = true;
1142
1143 if (!old_crtc_state->self_refresh_active) {
1144 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1145 dpu_encoder_assign_crtc(encoder, crtc);
1146 }
1147
1148 /* Enable/restore vblank irq handling */
1149 drm_crtc_vblank_on(crtc);
1150 }
1151
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1152 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1153 {
1154 struct drm_crtc *crtc = cstate->crtc;
1155 struct drm_encoder *encoder;
1156
1157 if (cstate->self_refresh_active)
1158 return true;
1159
1160 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1161 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1162 return true;
1163 }
1164 }
1165
1166 return false;
1167 }
1168
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1169 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1170 struct drm_atomic_state *state)
1171 {
1172 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1173 crtc);
1174 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1175 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1176
1177 const struct drm_plane_state *pstate;
1178 struct drm_plane *plane;
1179
1180 int rc = 0;
1181
1182 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1183
1184 if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1185 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1186 crtc->base.id, crtc_state->enable,
1187 crtc_state->active);
1188 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1189 return 0;
1190 }
1191
1192 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1193
1194 /* force a full mode set if active state changed */
1195 if (crtc_state->active_changed)
1196 crtc_state->mode_changed = true;
1197
1198 if (cstate->num_mixers) {
1199 rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1200 if (rc)
1201 return rc;
1202 }
1203
1204 /* FIXME: move this to dpu_plane_atomic_check? */
1205 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1206 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1207
1208 if (IS_ERR_OR_NULL(pstate)) {
1209 rc = PTR_ERR(pstate);
1210 DPU_ERROR("%s: failed to get plane%d state, %d\n",
1211 dpu_crtc->name, plane->base.id, rc);
1212 return rc;
1213 }
1214
1215 if (!pstate->visible)
1216 continue;
1217
1218 dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1219 }
1220
1221 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1222
1223 rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1224 if (rc) {
1225 DPU_ERROR("crtc%d failed performance check %d\n",
1226 crtc->base.id, rc);
1227 return rc;
1228 }
1229
1230 return 0;
1231 }
1232
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1233 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1234 {
1235 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1236 struct drm_encoder *enc;
1237
1238 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1239
1240 /*
1241 * Normally we would iterate through encoder_mask in crtc state to find
1242 * attached encoders. In this case, we might be disabling vblank _after_
1243 * encoder_mask has been cleared.
1244 *
1245 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1246 * disable (which is also after encoder_mask is cleared). So instead of
1247 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1248 * currently assigned to our crtc.
1249 *
1250 * Note also that this function cannot be called while crtc is disabled
1251 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1252 * about the assigned crtcs being inconsistent with the current state
1253 * (which means no need to worry about modeset locks).
1254 */
1255 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1256 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1257 dpu_crtc);
1258
1259 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1260 }
1261
1262 return 0;
1263 }
1264
1265 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1266 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1267 {
1268 struct dpu_crtc *dpu_crtc;
1269 struct dpu_plane_state *pstate = NULL;
1270 struct dpu_crtc_mixer *m;
1271
1272 struct drm_crtc *crtc;
1273 struct drm_plane *plane;
1274 struct drm_display_mode *mode;
1275 struct drm_framebuffer *fb;
1276 struct drm_plane_state *state;
1277 struct dpu_crtc_state *cstate;
1278
1279 int i, out_width;
1280
1281 dpu_crtc = s->private;
1282 crtc = &dpu_crtc->base;
1283
1284 drm_modeset_lock_all(crtc->dev);
1285 cstate = to_dpu_crtc_state(crtc->state);
1286
1287 mode = &crtc->state->adjusted_mode;
1288 out_width = mode->hdisplay / cstate->num_mixers;
1289
1290 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1291 mode->hdisplay, mode->vdisplay);
1292
1293 seq_puts(s, "\n");
1294
1295 for (i = 0; i < cstate->num_mixers; ++i) {
1296 m = &cstate->mixers[i];
1297 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1298 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1299 out_width, mode->vdisplay);
1300 }
1301
1302 seq_puts(s, "\n");
1303
1304 drm_atomic_crtc_for_each_plane(plane, crtc) {
1305 pstate = to_dpu_plane_state(plane->state);
1306 state = plane->state;
1307
1308 if (!pstate || !state)
1309 continue;
1310
1311 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1312 pstate->stage);
1313
1314 if (plane->state->fb) {
1315 fb = plane->state->fb;
1316
1317 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1318 fb->base.id, (char *) &fb->format->format,
1319 fb->width, fb->height);
1320 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1321 seq_printf(s, "cpp[%d]:%u ",
1322 i, fb->format->cpp[i]);
1323 seq_puts(s, "\n\t");
1324
1325 seq_printf(s, "modifier:%8llu ", fb->modifier);
1326 seq_puts(s, "\n");
1327
1328 seq_puts(s, "\t");
1329 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1330 seq_printf(s, "pitches[%d]:%8u ", i,
1331 fb->pitches[i]);
1332 seq_puts(s, "\n");
1333
1334 seq_puts(s, "\t");
1335 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1336 seq_printf(s, "offsets[%d]:%8u ", i,
1337 fb->offsets[i]);
1338 seq_puts(s, "\n");
1339 }
1340
1341 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1342 state->src_x, state->src_y, state->src_w, state->src_h);
1343
1344 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1345 state->crtc_x, state->crtc_y, state->crtc_w,
1346 state->crtc_h);
1347 seq_printf(s, "\tsspp[0]:%s\n",
1348 pstate->pipe.sspp->cap->name);
1349 seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n",
1350 pstate->pipe.multirect_mode, pstate->pipe.multirect_index);
1351 if (pstate->r_pipe.sspp) {
1352 seq_printf(s, "\tsspp[1]:%s\n",
1353 pstate->r_pipe.sspp->cap->name);
1354 seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n",
1355 pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index);
1356 }
1357
1358 seq_puts(s, "\n");
1359 }
1360 if (dpu_crtc->vblank_cb_count) {
1361 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1362 s64 diff_ms = ktime_to_ms(diff);
1363 s64 fps = diff_ms ? div_s64(
1364 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1365
1366 seq_printf(s,
1367 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1368 fps, dpu_crtc->vblank_cb_count,
1369 ktime_to_ms(diff), dpu_crtc->play_count);
1370
1371 /* reset time & count for next measurement */
1372 dpu_crtc->vblank_cb_count = 0;
1373 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1374 }
1375
1376 drm_modeset_unlock_all(crtc->dev);
1377
1378 return 0;
1379 }
1380
1381 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1382
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1383 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1384 {
1385 struct drm_crtc *crtc = s->private;
1386 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1387
1388 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1389 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1390 seq_printf(s, "core_clk_rate: %llu\n",
1391 dpu_crtc->cur_perf.core_clk_rate);
1392 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1393 seq_printf(s, "max_per_pipe_ib: %llu\n",
1394 dpu_crtc->cur_perf.max_per_pipe_ib);
1395
1396 return 0;
1397 }
1398 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1399
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1400 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1401 {
1402 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1403
1404 debugfs_create_file("status", 0400,
1405 crtc->debugfs_entry,
1406 dpu_crtc, &_dpu_debugfs_status_fops);
1407 debugfs_create_file("state", 0600,
1408 crtc->debugfs_entry,
1409 &dpu_crtc->base,
1410 &dpu_crtc_debugfs_state_fops);
1411
1412 return 0;
1413 }
1414 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1415 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1416 {
1417 return 0;
1418 }
1419 #endif /* CONFIG_DEBUG_FS */
1420
dpu_crtc_late_register(struct drm_crtc * crtc)1421 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1422 {
1423 return _dpu_crtc_init_debugfs(crtc);
1424 }
1425
1426 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1427 .set_config = drm_atomic_helper_set_config,
1428 .page_flip = drm_atomic_helper_page_flip,
1429 .reset = dpu_crtc_reset,
1430 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1431 .atomic_destroy_state = dpu_crtc_destroy_state,
1432 .atomic_print_state = dpu_crtc_atomic_print_state,
1433 .late_register = dpu_crtc_late_register,
1434 .verify_crc_source = dpu_crtc_verify_crc_source,
1435 .set_crc_source = dpu_crtc_set_crc_source,
1436 .enable_vblank = msm_crtc_enable_vblank,
1437 .disable_vblank = msm_crtc_disable_vblank,
1438 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1439 .get_vblank_counter = dpu_crtc_get_vblank_counter,
1440 };
1441
1442 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1443 .atomic_disable = dpu_crtc_disable,
1444 .atomic_enable = dpu_crtc_enable,
1445 .atomic_check = dpu_crtc_atomic_check,
1446 .atomic_begin = dpu_crtc_atomic_begin,
1447 .atomic_flush = dpu_crtc_atomic_flush,
1448 .get_scanout_position = dpu_crtc_get_scanout_position,
1449 };
1450
1451 /* initialize crtc */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1452 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1453 struct drm_plane *cursor)
1454 {
1455 struct msm_drm_private *priv = dev->dev_private;
1456 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1457 struct drm_crtc *crtc = NULL;
1458 struct dpu_crtc *dpu_crtc;
1459 int i, ret;
1460
1461 dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base,
1462 plane, cursor,
1463 &dpu_crtc_funcs,
1464 NULL);
1465
1466 if (IS_ERR(dpu_crtc))
1467 return ERR_CAST(dpu_crtc);
1468
1469 crtc = &dpu_crtc->base;
1470 crtc->dev = dev;
1471
1472 spin_lock_init(&dpu_crtc->spin_lock);
1473 atomic_set(&dpu_crtc->frame_pending, 0);
1474
1475 init_completion(&dpu_crtc->frame_done_comp);
1476
1477 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1478
1479 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1480 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1481 list_add(&dpu_crtc->frame_events[i].list,
1482 &dpu_crtc->frame_event_list);
1483 kthread_init_work(&dpu_crtc->frame_events[i].work,
1484 dpu_crtc_frame_event_work);
1485 }
1486
1487 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1488
1489 if (dpu_kms->catalog->dspp_count)
1490 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1491
1492 /* save user friendly CRTC name for later */
1493 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1494
1495 /* initialize event handling */
1496 spin_lock_init(&dpu_crtc->event_lock);
1497
1498 ret = drm_self_refresh_helper_init(crtc);
1499 if (ret) {
1500 DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1501 crtc->name, ret);
1502 return ERR_PTR(ret);
1503 }
1504
1505 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1506 return crtc;
1507 }
1508