xref: /freebsd/sys/contrib/dev/rtw89/sar.c (revision 6d67aabd63555ab62a2f2b7f52a75ef100a2fe75)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2019-2020  Realtek Corporation
3  */
4 
5 #include "acpi.h"
6 #include "debug.h"
7 #include "phy.h"
8 #include "reg.h"
9 #include "sar.h"
10 
11 #define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
12 #define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
13 #define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
14 
15 static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
16 						    u32 center_freq)
17 {
18 	switch (center_freq) {
19 	default:
20 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
21 			    "center freq: %u to SAR subband is unhandled\n",
22 			    center_freq);
23 		fallthrough;
24 	case 2412 ... 2484:
25 		return RTW89_SAR_2GHZ_SUBBAND;
26 	case 5180 ... 5320:
27 		return RTW89_SAR_5GHZ_SUBBAND_1_2;
28 	case 5500 ... 5720:
29 		return RTW89_SAR_5GHZ_SUBBAND_2_E;
30 	case 5745 ... 5825:
31 		return RTW89_SAR_5GHZ_SUBBAND_3;
32 	case 5955 ... 6155:
33 		return RTW89_SAR_6GHZ_SUBBAND_5_L;
34 	case 6175 ... 6415:
35 		return RTW89_SAR_6GHZ_SUBBAND_5_H;
36 	case 6435 ... 6515:
37 		return RTW89_SAR_6GHZ_SUBBAND_6;
38 	case 6535 ... 6695:
39 		return RTW89_SAR_6GHZ_SUBBAND_7_L;
40 	case 6715 ... 6855:
41 		return RTW89_SAR_6GHZ_SUBBAND_7_H;
42 
43 	/* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
44 	 * and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
45 	 * struct rtw89_sar_span in the following.
46 	 */
47 
48 	case 6895 ... 7115:
49 		return RTW89_SAR_6GHZ_SUBBAND_8;
50 	}
51 }
52 
53 struct rtw89_sar_span {
54 	enum rtw89_sar_subband subband_low;
55 	enum rtw89_sar_subband subband_high;
56 };
57 
58 #define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
59 
60 #define RTW89_SAR_6GHZ_SPAN_HEAD 6145
61 #define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
62 	((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
63 
64 #define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
65 	[RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
66 		.subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
67 		.subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
68 	}
69 
70 /* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
71  * subbands. In the following, we describe each of them with rtw89_sar_span.
72  */
73 static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
74 	RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
75 	RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
76 	RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
77 	RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
78 	RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
79 	RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
80 	RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
81 	RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
82 	RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
83 	RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
84 	RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
85 	RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
86 };
87 
88 static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
89 					 u32 center_freq, s32 *cfg)
90 {
91 	struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
92 	const struct rtw89_sar_span *span = NULL;
93 	enum rtw89_sar_subband subband_l, subband_h;
94 	int idx;
95 
96 	if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) {
97 		idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
98 		/* To decrease size of rtw89_sar_overlapping_6ghz[],
99 		 * RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
100 		 * to make first span as index 0 of the table. So, if center
101 		 * frequency is less than the first one, it will get netative.
102 		 */
103 		if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
104 			span = &rtw89_sar_overlapping_6ghz[idx];
105 	}
106 
107 	if (span && RTW89_SAR_SPAN_VALID(span)) {
108 		subband_l = span->subband_low;
109 		subband_h = span->subband_high;
110 	} else {
111 		subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
112 		subband_h = subband_l;
113 	}
114 
115 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
116 		    "center_freq %u: SAR subband {%u, %u}\n",
117 		    center_freq, subband_l, subband_h);
118 
119 	if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
120 		return -ENODATA;
121 
122 	if (!rtwsar->set[subband_l])
123 		*cfg = rtwsar->cfg[subband_h];
124 	else if (!rtwsar->set[subband_h])
125 		*cfg = rtwsar->cfg[subband_l];
126 	else
127 		*cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
128 
129 	return 0;
130 }
131 
132 static const
133 struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
134 	[RTW89_SAR_SOURCE_COMMON] = {
135 		.descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
136 		.txpwr_factor_sar = 2,
137 		.query_sar_config = rtw89_query_sar_config_common,
138 	},
139 };
140 
141 #define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data)		\
142 	do {								\
143 		typeof(_src) _s = (_src);				\
144 		typeof(_dev) _d = (_dev);				\
145 		BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source);	\
146 		BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config);	\
147 		lockdep_assert_held(&_d->mutex);			\
148 		_d->sar._cfg_name = *(_cfg_data);			\
149 		_d->sar.src = _s;					\
150 	} while (0)
151 
152 static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
153 {
154 	const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
155 	s32 cfg_mac;
156 
157 	cfg_mac = fct > fct_mac ?
158 		  cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
159 
160 	return (s8)clamp_t(s32, cfg_mac,
161 			   RTW89_SAR_TXPWR_MAC_MIN,
162 			   RTW89_SAR_TXPWR_MAC_MAX);
163 }
164 
165 static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
166 				 s8 cfg)
167 {
168 	const u8 fct = sar_hdl->txpwr_factor_sar;
169 
170 	if (fct > RTW89_TAS_FACTOR)
171 		return cfg << (fct - RTW89_TAS_FACTOR);
172 	else
173 		return cfg >> (RTW89_TAS_FACTOR - fct);
174 }
175 
176 static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
177 				 s8 cfg)
178 {
179 	const u8 fct = sar_hdl->txpwr_factor_sar;
180 
181 	if (fct > RTW89_TAS_FACTOR)
182 		return cfg >> (fct - RTW89_TAS_FACTOR);
183 	else
184 		return cfg << (RTW89_TAS_FACTOR - fct);
185 }
186 
187 s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq)
188 {
189 	const enum rtw89_sar_sources src = rtwdev->sar.src;
190 	/* its members are protected by rtw89_sar_set_src() */
191 	const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
192 	struct rtw89_tas_info *tas = &rtwdev->tas;
193 	s8 delta;
194 	int ret;
195 	s32 cfg;
196 	u8 fct;
197 
198 	lockdep_assert_held(&rtwdev->mutex);
199 
200 	if (src == RTW89_SAR_SOURCE_NONE)
201 		return RTW89_SAR_TXPWR_MAC_MAX;
202 
203 	ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
204 	if (ret)
205 		return RTW89_SAR_TXPWR_MAC_MAX;
206 
207 	if (tas->enable) {
208 		switch (tas->state) {
209 		case RTW89_TAS_STATE_DPR_OFF:
210 			return RTW89_SAR_TXPWR_MAC_MAX;
211 		case RTW89_TAS_STATE_DPR_ON:
212 			delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta);
213 			cfg -= delta;
214 			break;
215 		case RTW89_TAS_STATE_DPR_FORBID:
216 		default:
217 			break;
218 		}
219 	}
220 
221 	fct = sar_hdl->txpwr_factor_sar;
222 
223 	return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
224 }
225 
226 void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq)
227 {
228 	const enum rtw89_sar_sources src = rtwdev->sar.src;
229 	/* its members are protected by rtw89_sar_set_src() */
230 	const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
231 	const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
232 	int ret;
233 	s32 cfg;
234 	u8 fct;
235 
236 	lockdep_assert_held(&rtwdev->mutex);
237 
238 	if (src == RTW89_SAR_SOURCE_NONE) {
239 		seq_puts(m, "no SAR is applied\n");
240 		return;
241 	}
242 
243 	seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
244 
245 	ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
246 	if (ret) {
247 		seq_printf(m, "config: return code: %d\n", ret);
248 		seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
249 			   RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
250 		return;
251 	}
252 
253 	fct = sar_hdl->txpwr_factor_sar;
254 
255 	seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
256 }
257 
258 void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev)
259 {
260 	struct rtw89_tas_info *tas = &rtwdev->tas;
261 
262 	if (!tas->enable) {
263 		seq_puts(m, "no TAS is applied\n");
264 		return;
265 	}
266 
267 	seq_printf(m, "DPR gap: %d\n", tas->dpr_gap);
268 	seq_printf(m, "TAS delta: %d\n", tas->delta);
269 }
270 
271 static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
272 				  const struct rtw89_sar_cfg_common *sar)
273 {
274 	enum rtw89_sar_sources src;
275 	int ret = 0;
276 
277 	mutex_lock(&rtwdev->mutex);
278 
279 	src = rtwdev->sar.src;
280 	if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
281 		rtw89_warn(rtwdev, "SAR source: %d is in use", src);
282 		ret = -EBUSY;
283 		goto exit;
284 	}
285 
286 	rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
287 	rtw89_core_set_chip_txpwr(rtwdev);
288 
289 exit:
290 	mutex_unlock(&rtwdev->mutex);
291 	return ret;
292 }
293 
294 static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
295 	{ .start_freq = 2412, .end_freq = 2484, },
296 	{ .start_freq = 5180, .end_freq = 5320, },
297 	{ .start_freq = 5500, .end_freq = 5720, },
298 	{ .start_freq = 5745, .end_freq = 5825, },
299 	{ .start_freq = 5955, .end_freq = 6155, },
300 	{ .start_freq = 6175, .end_freq = 6415, },
301 	{ .start_freq = 6435, .end_freq = 6515, },
302 	{ .start_freq = 6535, .end_freq = 6695, },
303 	{ .start_freq = 6715, .end_freq = 6875, },
304 	{ .start_freq = 6875, .end_freq = 7115, },
305 };
306 
307 #if defined(__linux__)
308 static_assert(RTW89_SAR_SUBBAND_NR ==
309 #elif defined(__FreeBSD__)
310 rtw89_static_assert(RTW89_SAR_SUBBAND_NR ==
311 #endif
312 	      ARRAY_SIZE(rtw89_common_sar_freq_ranges));
313 
314 const struct cfg80211_sar_capa rtw89_sar_capa = {
315 	.type = NL80211_SAR_TYPE_POWER,
316 	.num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
317 	.freq_ranges = rtw89_common_sar_freq_ranges,
318 };
319 
320 int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
321 			    const struct cfg80211_sar_specs *sar)
322 {
323 	struct rtw89_dev *rtwdev = hw->priv;
324 	struct rtw89_sar_cfg_common sar_common = {0};
325 	u8 fct;
326 	u32 freq_start;
327 	u32 freq_end;
328 	s32 power;
329 	u32 i, idx;
330 
331 	if (sar->type != NL80211_SAR_TYPE_POWER)
332 		return -EINVAL;
333 
334 	fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
335 
336 	for (i = 0; i < sar->num_sub_specs; i++) {
337 		idx = sar->sub_specs[i].freq_range_index;
338 		if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
339 			return -EINVAL;
340 
341 		freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
342 		freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
343 		power = sar->sub_specs[i].power;
344 
345 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
346 			    "On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
347 			    freq_start, freq_end, power, BIT(fct));
348 
349 		sar_common.set[idx] = true;
350 		sar_common.cfg[idx] = power;
351 	}
352 
353 	return rtw89_apply_sar_common(rtwdev, &sar_common);
354 }
355 
356 static void rtw89_tas_state_update(struct rtw89_dev *rtwdev)
357 {
358 	const enum rtw89_sar_sources src = rtwdev->sar.src;
359 	/* its members are protected by rtw89_sar_set_src() */
360 	const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
361 	struct rtw89_tas_info *tas = &rtwdev->tas;
362 	s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT;
363 	s32 dpr_on_threshold, dpr_off_threshold, cfg;
364 	enum rtw89_tas_state state = tas->state;
365 	const struct rtw89_chan *chan;
366 	int ret;
367 
368 	lockdep_assert_held(&rtwdev->mutex);
369 
370 	if (src == RTW89_SAR_SOURCE_NONE)
371 		return;
372 
373 	chan = rtw89_chan_get(rtwdev, RTW89_SUB_ENTITY_0);
374 	ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg);
375 	if (ret)
376 		return;
377 
378 	cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg);
379 
380 	if (tas->delta >= cfg) {
381 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
382 			    "TAS delta exceed SAR limit\n");
383 		state = RTW89_TAS_STATE_DPR_FORBID;
384 		goto out;
385 	}
386 
387 	dpr_on_threshold = cfg;
388 	dpr_off_threshold = cfg - tas->dpr_gap;
389 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
390 		    "DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n",
391 		    dpr_on_threshold, dpr_off_threshold, txpwr_avg);
392 
393 	if (txpwr_avg >= dpr_on_threshold)
394 		state = RTW89_TAS_STATE_DPR_ON;
395 	else if (txpwr_avg < dpr_off_threshold)
396 		state = RTW89_TAS_STATE_DPR_OFF;
397 
398 out:
399 	if (tas->state == state)
400 		return;
401 
402 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
403 		    "TAS old state: %d, new state: %d\n", tas->state, state);
404 	tas->state = state;
405 	rtw89_core_set_chip_txpwr(rtwdev);
406 }
407 
408 void rtw89_tas_init(struct rtw89_dev *rtwdev)
409 {
410 	struct rtw89_tas_info *tas = &rtwdev->tas;
411 	struct rtw89_acpi_dsm_result res = {};
412 	int ret;
413 	u8 val;
414 
415 	ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &res);
416 	if (ret) {
417 		rtw89_debug(rtwdev, RTW89_DBG_SAR,
418 			    "acpi: cannot get TAS: %d\n", ret);
419 		return;
420 	}
421 
422 	val = res.u.value;
423 	switch (val) {
424 	case 0:
425 		tas->enable = false;
426 		break;
427 	case 1:
428 		tas->enable = true;
429 		break;
430 	default:
431 		break;
432 	}
433 
434 	if (!tas->enable) {
435 		rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
436 		return;
437 	}
438 
439 	tas->dpr_gap = RTW89_TAS_DPR_GAP;
440 	tas->delta = RTW89_TAS_DELTA;
441 }
442 
443 void rtw89_tas_reset(struct rtw89_dev *rtwdev)
444 {
445 	struct rtw89_tas_info *tas = &rtwdev->tas;
446 
447 	if (!tas->enable)
448 		return;
449 
450 	memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history));
451 	tas->total_txpwr = 0;
452 	tas->cur_idx = 0;
453 	tas->state = RTW89_TAS_STATE_DPR_OFF;
454 }
455 
456 static const struct rtw89_reg_def txpwr_regs[] = {
457 	{R_PATH0_TXPWR, B_PATH0_TXPWR},
458 	{R_PATH1_TXPWR, B_PATH1_TXPWR},
459 };
460 
461 void rtw89_tas_track(struct rtw89_dev *rtwdev)
462 {
463 	struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
464 	const enum rtw89_sar_sources src = rtwdev->sar.src;
465 	u8 max_nss_num = rtwdev->chip->rf_path_num;
466 	struct rtw89_tas_info *tas = &rtwdev->tas;
467 	s16 tmp, txpwr, instant_txpwr = 0;
468 	u32 val;
469 	int i;
470 
471 	if (!tas->enable || src == RTW89_SAR_SOURCE_NONE)
472 		return;
473 
474 	if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM)
475 		return;
476 
477 	for (i = 0; i < max_nss_num; i++) {
478 		val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr,
479 					    txpwr_regs[i].mask);
480 		tmp = sign_extend32(val, 8);
481 		if (tmp <= 0)
482 			return;
483 		instant_txpwr += tmp;
484 	}
485 
486 	instant_txpwr /= max_nss_num;
487 	/* in unit of 0.25 dBm multiply by percentage */
488 	txpwr = instant_txpwr * env->ifs_clm_tx_ratio;
489 	tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx];
490 	tas->txpwr_history[tas->cur_idx] = txpwr;
491 	rtw89_debug(rtwdev, RTW89_DBG_SAR,
492 		    "instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n",
493 		    instant_txpwr, env->ifs_clm_tx_ratio, txpwr);
494 
495 	tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW;
496 
497 	rtw89_tas_state_update(rtwdev);
498 }
499