xref: /linux/drivers/scsi/mpt3sas/mpt3sas_base.c (revision 2e3fcbcc3b0eb9b96d2912cdac920f0ae8d1c8f2)
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30 
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45 
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 
64 
65 #include "mpt3sas_base.h"
66 
67 static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
68 
69 
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH	30000
74 #define MAX_CHAIN_DEPTH		100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0444);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0444);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0444);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, 0444);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
90 
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0444);
93 MODULE_PARM_DESC(max_msix_vectors,
94 	" max msix vectors");
95 
96 static int irqpoll_weight = -1;
97 module_param(irqpoll_weight, int, 0444);
98 MODULE_PARM_DESC(irqpoll_weight,
99 	"irq poll weight (default= one fourth of HBA queue depth)");
100 
101 static int mpt3sas_fwfault_debug;
102 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
103 	" enable detection of firmware fault and halt firmware - (default=0)");
104 
105 static int perf_mode = -1;
106 module_param(perf_mode, int, 0444);
107 MODULE_PARM_DESC(perf_mode,
108 	"Performance mode (only for Aero/Sea Generation), options:\n\t\t"
109 	"0 - balanced: high iops mode is enabled &\n\t\t"
110 	"interrupt coalescing is enabled only on high iops queues,\n\t\t"
111 	"1 - iops: high iops mode is disabled &\n\t\t"
112 	"interrupt coalescing is enabled on all queues,\n\t\t"
113 	"2 - latency: high iops mode is disabled &\n\t\t"
114 	"interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
115 	"\t\tdefault - default perf_mode is 'balanced'"
116 	);
117 
118 static int poll_queues;
119 module_param(poll_queues, int, 0444);
120 MODULE_PARM_DESC(poll_queues, "Number of queues to be use for io_uring poll mode.\n\t\t"
121 	"This parameter is effective only if host_tagset_enable=1. &\n\t\t"
122 	"when poll_queues are enabled then &\n\t\t"
123 	"perf_mode is set to latency mode. &\n\t\t"
124 	);
125 
126 enum mpt3sas_perf_mode {
127 	MPT_PERF_MODE_DEFAULT	= -1,
128 	MPT_PERF_MODE_BALANCED	= 0,
129 	MPT_PERF_MODE_IOPS	= 1,
130 	MPT_PERF_MODE_LATENCY	= 2,
131 };
132 
133 static int
134 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
135 		u32 ioc_state, int timeout);
136 static int
137 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
138 static void
139 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
140 
141 static u32
142 _base_readl_ext_retry(const void __iomem *addr);
143 
144 /**
145  * mpt3sas_base_check_cmd_timeout - Function
146  *		to check timeout and command termination due
147  *		to Host reset.
148  *
149  * @ioc:	per adapter object.
150  * @status:	Status of issued command.
151  * @mpi_request:mf request pointer.
152  * @sz:		size of buffer.
153  *
154  * Return: 1/0 Reset to be done or Not
155  */
156 u8
mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER * ioc,u8 status,void * mpi_request,int sz)157 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
158 		u8 status, void *mpi_request, int sz)
159 {
160 	u8 issue_reset = 0;
161 
162 	if (!(status & MPT3_CMD_RESET))
163 		issue_reset = 1;
164 
165 	ioc_err(ioc, "Command %s\n",
166 		issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
167 	_debug_dump_mf(mpi_request, sz);
168 
169 	return issue_reset;
170 }
171 
172 /**
173  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
174  * @val: ?
175  * @kp: ?
176  *
177  * Return: ?
178  */
179 static int
_scsih_set_fwfault_debug(const char * val,const struct kernel_param * kp)180 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
181 {
182 	int ret = param_set_int(val, kp);
183 	struct MPT3SAS_ADAPTER *ioc;
184 
185 	if (ret)
186 		return ret;
187 
188 	/* global ioc spinlock to protect controller list on list operations */
189 	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
190 	spin_lock(&gioc_lock);
191 	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
192 		ioc->fwfault_debug = mpt3sas_fwfault_debug;
193 	spin_unlock(&gioc_lock);
194 	return 0;
195 }
196 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
197 	param_get_int, &mpt3sas_fwfault_debug, 0644);
198 
199 /**
200  * _base_readl_aero - retry readl for max three times.
201  * @addr: MPT Fusion system interface register address
202  *
203  * Retry the readl() for max three times if it gets zero value
204  * while reading the system interface register.
205  */
206 static inline u32
_base_readl_aero(const void __iomem * addr)207 _base_readl_aero(const void __iomem *addr)
208 {
209 	u32 i = 0, ret_val;
210 
211 	do {
212 		ret_val = readl(addr);
213 		i++;
214 	} while (ret_val == 0 && i < 3);
215 
216 	return ret_val;
217 }
218 
219 static u32
_base_readl_ext_retry(const void __iomem * addr)220 _base_readl_ext_retry(const void __iomem *addr)
221 {
222 	u32 i, ret_val;
223 
224 	for (i = 0 ; i < 30 ; i++) {
225 		ret_val = readl(addr);
226 		if (ret_val != 0)
227 			break;
228 	}
229 
230 	return ret_val;
231 }
232 
233 static inline u32
_base_readl(const void __iomem * addr)234 _base_readl(const void __iomem *addr)
235 {
236 	return readl(addr);
237 }
238 
239 /**
240  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
241  *				  in BAR0 space.
242  *
243  * @ioc: per adapter object
244  * @reply: reply message frame(lower 32bit addr)
245  * @index: System request message index.
246  */
247 static void
_base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER * ioc,u32 reply,u32 index)248 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
249 		u32 index)
250 {
251 	/*
252 	 * 256 is offset within sys register.
253 	 * 256 offset MPI frame starts. Max MPI frame supported is 32.
254 	 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
255 	 */
256 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
257 	void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
258 			MPI_FRAME_START_OFFSET +
259 			(cmd_credit * ioc->request_sz) + (index * sizeof(u32));
260 
261 	writel(reply, reply_free_iomem);
262 }
263 
264 /**
265  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
266  *				to system/BAR0 region.
267  *
268  * @dst_iomem: Pointer to the destination location in BAR0 space.
269  * @src: Pointer to the Source data.
270  * @size: Size of data to be copied.
271  */
272 static void
_base_clone_mpi_to_sys_mem(void * dst_iomem,void * src,u32 size)273 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
274 {
275 	int i;
276 	u32 *src_virt_mem = (u32 *)src;
277 
278 	for (i = 0; i < size/4; i++)
279 		writel((u32)src_virt_mem[i],
280 				(void __iomem *)dst_iomem + (i * 4));
281 }
282 
283 /**
284  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
285  *
286  * @dst_iomem: Pointer to the destination location in BAR0 space.
287  * @src: Pointer to the Source data.
288  * @size: Size of data to be copied.
289  */
290 static void
_base_clone_to_sys_mem(void __iomem * dst_iomem,void * src,u32 size)291 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
292 {
293 	int i;
294 	u32 *src_virt_mem = (u32 *)(src);
295 
296 	for (i = 0; i < size/4; i++)
297 		writel((u32)src_virt_mem[i],
298 			(void __iomem *)dst_iomem + (i * 4));
299 }
300 
301 /**
302  * _base_get_chain - Calculates and Returns virtual chain address
303  *			 for the provided smid in BAR0 space.
304  *
305  * @ioc: per adapter object
306  * @smid: system request message index
307  * @sge_chain_count: Scatter gather chain count.
308  *
309  * Return: the chain address.
310  */
311 static inline void __iomem*
_base_get_chain(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)312 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
313 		u8 sge_chain_count)
314 {
315 	void __iomem *base_chain, *chain_virt;
316 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
317 
318 	base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
319 		(cmd_credit * ioc->request_sz) +
320 		REPLY_FREE_POOL_SIZE;
321 	chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
322 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
323 	return chain_virt;
324 }
325 
326 /**
327  * _base_get_chain_phys - Calculates and Returns physical address
328  *			in BAR0 for scatter gather chains, for
329  *			the provided smid.
330  *
331  * @ioc: per adapter object
332  * @smid: system request message index
333  * @sge_chain_count: Scatter gather chain count.
334  *
335  * Return: Physical chain address.
336  */
337 static inline phys_addr_t
_base_get_chain_phys(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 sge_chain_count)338 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
339 		u8 sge_chain_count)
340 {
341 	phys_addr_t base_chain_phys, chain_phys;
342 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
343 
344 	base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
345 		(cmd_credit * ioc->request_sz) +
346 		REPLY_FREE_POOL_SIZE;
347 	chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
348 			ioc->request_sz) + (sge_chain_count * ioc->request_sz);
349 	return chain_phys;
350 }
351 
352 /**
353  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
354  *			buffer address for the provided smid.
355  *			(Each smid can have 64K starts from 17024)
356  *
357  * @ioc: per adapter object
358  * @smid: system request message index
359  *
360  * Return: Pointer to buffer location in BAR0.
361  */
362 
363 static void __iomem *
_base_get_buffer_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)364 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 {
366 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
367 	// Added extra 1 to reach end of chain.
368 	void __iomem *chain_end = _base_get_chain(ioc,
369 			cmd_credit + 1,
370 			ioc->facts.MaxChainDepth);
371 	return chain_end + (smid * 64 * 1024);
372 }
373 
374 /**
375  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
376  *		Host buffer Physical address for the provided smid.
377  *		(Each smid can have 64K starts from 17024)
378  *
379  * @ioc: per adapter object
380  * @smid: system request message index
381  *
382  * Return: Pointer to buffer location in BAR0.
383  */
384 static phys_addr_t
_base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER * ioc,u16 smid)385 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
386 {
387 	u16 cmd_credit = ioc->facts.RequestCredit + 1;
388 	phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
389 			cmd_credit + 1,
390 			ioc->facts.MaxChainDepth);
391 	return chain_end_phys + (smid * 64 * 1024);
392 }
393 
394 /**
395  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
396  *			lookup list and Provides chain_buffer
397  *			address for the matching dma address.
398  *			(Each smid can have 64K starts from 17024)
399  *
400  * @ioc: per adapter object
401  * @chain_buffer_dma: Chain buffer dma address.
402  *
403  * Return: Pointer to chain buffer. Or Null on Failure.
404  */
405 static void *
_base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER * ioc,dma_addr_t chain_buffer_dma)406 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
407 		dma_addr_t chain_buffer_dma)
408 {
409 	u16 index, j;
410 	struct chain_tracker *ct;
411 
412 	for (index = 0; index < ioc->scsiio_depth; index++) {
413 		for (j = 0; j < ioc->chains_needed_per_io; j++) {
414 			ct = &ioc->chain_lookup[index].chains_per_smid[j];
415 			if (ct && ct->chain_buffer_dma == chain_buffer_dma)
416 				return ct->chain_buffer;
417 		}
418 	}
419 	ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
420 	return NULL;
421 }
422 
423 /**
424  * _clone_sg_entries -	MPI EP's scsiio and config requests
425  *			are handled here. Base function for
426  *			double buffering, before submitting
427  *			the requests.
428  *
429  * @ioc: per adapter object.
430  * @mpi_request: mf request pointer.
431  * @smid: system request message index.
432  */
_clone_sg_entries(struct MPT3SAS_ADAPTER * ioc,void * mpi_request,u16 smid)433 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
434 		void *mpi_request, u16 smid)
435 {
436 	Mpi2SGESimple32_t *sgel, *sgel_next;
437 	u32  sgl_flags, sge_chain_count = 0;
438 	bool is_write = false;
439 	u16 i = 0;
440 	void __iomem *buffer_iomem;
441 	phys_addr_t buffer_iomem_phys;
442 	void __iomem *buff_ptr;
443 	phys_addr_t buff_ptr_phys;
444 	void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
445 	void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
446 	phys_addr_t dst_addr_phys;
447 	MPI2RequestHeader_t *request_hdr;
448 	struct scsi_cmnd *scmd;
449 	struct scatterlist *sg_scmd = NULL;
450 	int is_scsiio_req = 0;
451 
452 	request_hdr = (MPI2RequestHeader_t *) mpi_request;
453 
454 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
455 		Mpi25SCSIIORequest_t *scsiio_request =
456 			(Mpi25SCSIIORequest_t *)mpi_request;
457 		sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
458 		is_scsiio_req = 1;
459 	} else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
460 		Mpi2ConfigRequest_t  *config_req =
461 			(Mpi2ConfigRequest_t *)mpi_request;
462 		sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
463 	} else
464 		return;
465 
466 	/* From smid we can get scsi_cmd, once we have sg_scmd,
467 	 * we just need to get sg_virt and sg_next to get virtual
468 	 * address associated with sgel->Address.
469 	 */
470 
471 	if (is_scsiio_req) {
472 		/* Get scsi_cmd using smid */
473 		scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
474 		if (scmd == NULL) {
475 			ioc_err(ioc, "scmd is NULL\n");
476 			return;
477 		}
478 
479 		/* Get sg_scmd from scmd provided */
480 		sg_scmd = scsi_sglist(scmd);
481 	}
482 
483 	/*
484 	 * 0 - 255	System register
485 	 * 256 - 4352	MPI Frame. (This is based on maxCredit 32)
486 	 * 4352 - 4864	Reply_free pool (512 byte is reserved
487 	 *		considering maxCredit 32. Reply need extra
488 	 *		room, for mCPU case kept four times of
489 	 *		maxCredit).
490 	 * 4864 - 17152	SGE chain element. (32cmd * 3 chain of
491 	 *		128 byte size = 12288)
492 	 * 17152 - x	Host buffer mapped with smid.
493 	 *		(Each smid can have 64K Max IO.)
494 	 * BAR0+Last 1K MSIX Addr and Data
495 	 * Total size in use 2113664 bytes of 4MB BAR0
496 	 */
497 
498 	buffer_iomem = _base_get_buffer_bar0(ioc, smid);
499 	buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
500 
501 	buff_ptr = buffer_iomem;
502 	buff_ptr_phys = buffer_iomem_phys;
503 	WARN_ON(buff_ptr_phys > U32_MAX);
504 
505 	if (le32_to_cpu(sgel->FlagsLength) &
506 			(MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
507 		is_write = true;
508 
509 	for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
510 
511 		sgl_flags =
512 		    (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
513 
514 		switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
515 		case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
516 			/*
517 			 * Helper function which on passing
518 			 * chain_buffer_dma returns chain_buffer. Get
519 			 * the virtual address for sgel->Address
520 			 */
521 			sgel_next =
522 				_base_get_chain_buffer_dma_to_chain_buffer(ioc,
523 						le32_to_cpu(sgel->Address));
524 			if (sgel_next == NULL)
525 				return;
526 			/*
527 			 * This is coping 128 byte chain
528 			 * frame (not a host buffer)
529 			 */
530 			dst_chain_addr[sge_chain_count] =
531 				_base_get_chain(ioc,
532 					smid, sge_chain_count);
533 			src_chain_addr[sge_chain_count] =
534 						(void *) sgel_next;
535 			dst_addr_phys = _base_get_chain_phys(ioc,
536 						smid, sge_chain_count);
537 			WARN_ON(dst_addr_phys > U32_MAX);
538 			sgel->Address =
539 				cpu_to_le32(lower_32_bits(dst_addr_phys));
540 			sgel = sgel_next;
541 			sge_chain_count++;
542 			break;
543 		case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
544 			if (is_write) {
545 				if (is_scsiio_req) {
546 					_base_clone_to_sys_mem(buff_ptr,
547 					    sg_virt(sg_scmd),
548 					    (le32_to_cpu(sgel->FlagsLength) &
549 					    0x00ffffff));
550 					/*
551 					 * FIXME: this relies on a a zero
552 					 * PCI mem_offset.
553 					 */
554 					sgel->Address =
555 					    cpu_to_le32((u32)buff_ptr_phys);
556 				} else {
557 					_base_clone_to_sys_mem(buff_ptr,
558 					    ioc->config_vaddr,
559 					    (le32_to_cpu(sgel->FlagsLength) &
560 					    0x00ffffff));
561 					sgel->Address =
562 					    cpu_to_le32((u32)buff_ptr_phys);
563 				}
564 			}
565 			buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
566 			    0x00ffffff);
567 			buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
568 			    0x00ffffff);
569 			if ((le32_to_cpu(sgel->FlagsLength) &
570 			    (MPI2_SGE_FLAGS_END_OF_BUFFER
571 					<< MPI2_SGE_FLAGS_SHIFT)))
572 				goto eob_clone_chain;
573 			else {
574 				/*
575 				 * Every single element in MPT will have
576 				 * associated sg_next. Better to sanity that
577 				 * sg_next is not NULL, but it will be a bug
578 				 * if it is null.
579 				 */
580 				if (is_scsiio_req) {
581 					sg_scmd = sg_next(sg_scmd);
582 					if (sg_scmd)
583 						sgel++;
584 					else
585 						goto eob_clone_chain;
586 				}
587 			}
588 			break;
589 		}
590 	}
591 
592 eob_clone_chain:
593 	for (i = 0; i < sge_chain_count; i++) {
594 		if (is_scsiio_req)
595 			_base_clone_to_sys_mem(dst_chain_addr[i],
596 				src_chain_addr[i], ioc->request_sz);
597 	}
598 }
599 
600 /**
601  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
602  * @arg: input argument, used to derive ioc
603  *
604  * Return:
605  * 0 if controller is removed from pci subsystem.
606  * -1 for other case.
607  */
mpt3sas_remove_dead_ioc_func(void * arg)608 static int mpt3sas_remove_dead_ioc_func(void *arg)
609 {
610 	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
611 	struct pci_dev *pdev;
612 
613 	if (!ioc)
614 		return -1;
615 
616 	pdev = ioc->pdev;
617 	if (!pdev)
618 		return -1;
619 	pci_stop_and_remove_bus_device_locked(pdev);
620 	return 0;
621 }
622 
623 /**
624  * _base_sync_drv_fw_timestamp - Sync Drive-Fw TimeStamp.
625  * @ioc: Per Adapter Object
626  *
627  * Return: nothing.
628  */
_base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER * ioc)629 static void _base_sync_drv_fw_timestamp(struct MPT3SAS_ADAPTER *ioc)
630 {
631 	Mpi26IoUnitControlRequest_t *mpi_request;
632 	Mpi26IoUnitControlReply_t *mpi_reply;
633 	u16 smid;
634 	ktime_t current_time;
635 	u64 TimeStamp = 0;
636 	u8 issue_reset = 0;
637 
638 	mutex_lock(&ioc->scsih_cmds.mutex);
639 	if (ioc->scsih_cmds.status != MPT3_CMD_NOT_USED) {
640 		ioc_err(ioc, "scsih_cmd in use %s\n", __func__);
641 		goto out;
642 	}
643 	ioc->scsih_cmds.status = MPT3_CMD_PENDING;
644 	smid = mpt3sas_base_get_smid(ioc, ioc->scsih_cb_idx);
645 	if (!smid) {
646 		ioc_err(ioc, "Failed obtaining a smid %s\n", __func__);
647 		ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
648 		goto out;
649 	}
650 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
651 	ioc->scsih_cmds.smid = smid;
652 	memset(mpi_request, 0, sizeof(Mpi26IoUnitControlRequest_t));
653 	mpi_request->Function = MPI2_FUNCTION_IO_UNIT_CONTROL;
654 	mpi_request->Operation = MPI26_CTRL_OP_SET_IOC_PARAMETER;
655 	mpi_request->IOCParameter = MPI26_SET_IOC_PARAMETER_SYNC_TIMESTAMP;
656 	current_time = ktime_get_real();
657 	TimeStamp = ktime_to_ms(current_time);
658 	mpi_request->Reserved7 = cpu_to_le32(TimeStamp >> 32);
659 	mpi_request->IOCParameterValue = cpu_to_le32(TimeStamp & 0xFFFFFFFF);
660 	init_completion(&ioc->scsih_cmds.done);
661 	ioc->put_smid_default(ioc, smid);
662 	dinitprintk(ioc, ioc_info(ioc,
663 	    "Io Unit Control Sync TimeStamp (sending), @time %lld ms\n",
664 	    TimeStamp));
665 	wait_for_completion_timeout(&ioc->scsih_cmds.done,
666 		MPT3SAS_TIMESYNC_TIMEOUT_SECONDS*HZ);
667 	if (!(ioc->scsih_cmds.status & MPT3_CMD_COMPLETE)) {
668 		mpt3sas_check_cmd_timeout(ioc,
669 		    ioc->scsih_cmds.status, mpi_request,
670 		    sizeof(Mpi2SasIoUnitControlRequest_t)/4, issue_reset);
671 		goto issue_host_reset;
672 	}
673 	if (ioc->scsih_cmds.status & MPT3_CMD_REPLY_VALID) {
674 		mpi_reply = ioc->scsih_cmds.reply;
675 		dinitprintk(ioc, ioc_info(ioc,
676 		    "Io Unit Control sync timestamp (complete): ioc_status(0x%04x), loginfo(0x%08x)\n",
677 		    le16_to_cpu(mpi_reply->IOCStatus),
678 		    le32_to_cpu(mpi_reply->IOCLogInfo)));
679 	}
680 issue_host_reset:
681 	if (issue_reset)
682 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
683 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
684 out:
685 	mutex_unlock(&ioc->scsih_cmds.mutex);
686 }
687 
688 /**
689  * _base_fault_reset_work - workq handling ioc fault conditions
690  * @work: input argument, used to derive ioc
691  *
692  * Context: sleep.
693  */
694 static void
_base_fault_reset_work(struct work_struct * work)695 _base_fault_reset_work(struct work_struct *work)
696 {
697 	struct MPT3SAS_ADAPTER *ioc =
698 	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
699 	unsigned long	 flags;
700 	u32 doorbell;
701 	int rc;
702 	struct task_struct *p;
703 
704 
705 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
706 	if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
707 			ioc->pci_error_recovery)
708 		goto rearm_timer;
709 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
710 
711 	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
712 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
713 		ioc_err(ioc, "SAS host is non-operational !!!!\n");
714 
715 		/* It may be possible that EEH recovery can resolve some of
716 		 * pci bus failure issues rather removing the dead ioc function
717 		 * by considering controller is in a non-operational state. So
718 		 * here priority is given to the EEH recovery. If it doesn't
719 		 * not resolve this issue, mpt3sas driver will consider this
720 		 * controller to non-operational state and remove the dead ioc
721 		 * function.
722 		 */
723 		if (ioc->non_operational_loop++ < 5) {
724 			spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
725 							 flags);
726 			goto rearm_timer;
727 		}
728 
729 		/*
730 		 * Call _scsih_flush_pending_cmds callback so that we flush all
731 		 * pending commands back to OS. This call is required to avoid
732 		 * deadlock at block layer. Dead IOC will fail to do diag reset,
733 		 * and this call is safe since dead ioc will never return any
734 		 * command back from HW.
735 		 */
736 		mpt3sas_base_pause_mq_polling(ioc);
737 		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
738 		/*
739 		 * Set remove_host flag early since kernel thread will
740 		 * take some time to execute.
741 		 */
742 		ioc->remove_host = 1;
743 		/*Remove the Dead Host */
744 		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
745 		    "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
746 		if (IS_ERR(p))
747 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
748 				__func__);
749 		else
750 			ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
751 				__func__);
752 		return; /* don't rearm timer */
753 	}
754 
755 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
756 		u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
757 		    ioc->manu_pg11.CoreDumpTOSec :
758 		    MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
759 
760 		timeout /= (FAULT_POLLING_INTERVAL/1000);
761 
762 		if (ioc->ioc_coredump_loop == 0) {
763 			mpt3sas_print_coredump_info(ioc,
764 			    doorbell & MPI2_DOORBELL_DATA_MASK);
765 			/* do not accept any IOs and disable the interrupts */
766 			spin_lock_irqsave(
767 			    &ioc->ioc_reset_in_progress_lock, flags);
768 			ioc->shost_recovery = 1;
769 			spin_unlock_irqrestore(
770 			    &ioc->ioc_reset_in_progress_lock, flags);
771 			mpt3sas_base_mask_interrupts(ioc);
772 			mpt3sas_base_pause_mq_polling(ioc);
773 			_base_clear_outstanding_commands(ioc);
774 		}
775 
776 		ioc_info(ioc, "%s: CoreDump loop %d.",
777 		    __func__, ioc->ioc_coredump_loop);
778 
779 		/* Wait until CoreDump completes or times out */
780 		if (ioc->ioc_coredump_loop++ < timeout) {
781 			spin_lock_irqsave(
782 			    &ioc->ioc_reset_in_progress_lock, flags);
783 			goto rearm_timer;
784 		}
785 	}
786 
787 	if (ioc->ioc_coredump_loop) {
788 		if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
789 			ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
790 			    __func__, ioc->ioc_coredump_loop);
791 		else
792 			ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
793 			    __func__, ioc->ioc_coredump_loop);
794 		ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
795 	}
796 	ioc->non_operational_loop = 0;
797 	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
798 		rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
799 		ioc_warn(ioc, "%s: hard reset: %s\n",
800 			 __func__, rc == 0 ? "success" : "failed");
801 		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
802 		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
803 			mpt3sas_print_fault_code(ioc, doorbell &
804 			    MPI2_DOORBELL_DATA_MASK);
805 		} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
806 		    MPI2_IOC_STATE_COREDUMP)
807 			mpt3sas_print_coredump_info(ioc, doorbell &
808 			    MPI2_DOORBELL_DATA_MASK);
809 		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
810 		    MPI2_IOC_STATE_OPERATIONAL)
811 			return; /* don't rearm timer */
812 	}
813 	ioc->ioc_coredump_loop = 0;
814 	if (ioc->time_sync_interval &&
815 	    ++ioc->timestamp_update_count >= ioc->time_sync_interval) {
816 		ioc->timestamp_update_count = 0;
817 		_base_sync_drv_fw_timestamp(ioc);
818 	}
819 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
820  rearm_timer:
821 	if (ioc->fault_reset_work_q)
822 		queue_delayed_work(ioc->fault_reset_work_q,
823 		    &ioc->fault_reset_work,
824 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
825 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
826 }
827 
828 /**
829  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
830  * @ioc: per adapter object
831  *
832  * Context: sleep.
833  */
834 void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER * ioc)835 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
836 {
837 	unsigned long	 flags;
838 
839 	if (ioc->fault_reset_work_q)
840 		return;
841 
842 	ioc->timestamp_update_count = 0;
843 	/* initialize fault polling */
844 
845 	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
846 	snprintf(ioc->fault_reset_work_q_name,
847 	    sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
848 	    ioc->driver_name, ioc->id);
849 	ioc->fault_reset_work_q = alloc_ordered_workqueue(
850 		"%s", WQ_MEM_RECLAIM, ioc->fault_reset_work_q_name);
851 	if (!ioc->fault_reset_work_q) {
852 		ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
853 		return;
854 	}
855 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
856 	if (ioc->fault_reset_work_q)
857 		queue_delayed_work(ioc->fault_reset_work_q,
858 		    &ioc->fault_reset_work,
859 		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
860 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
861 }
862 
863 /**
864  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
865  * @ioc: per adapter object
866  *
867  * Context: sleep.
868  */
869 void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER * ioc)870 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
871 {
872 	unsigned long flags;
873 	struct workqueue_struct *wq;
874 
875 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
876 	wq = ioc->fault_reset_work_q;
877 	ioc->fault_reset_work_q = NULL;
878 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
879 	if (wq) {
880 		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
881 			flush_workqueue(wq);
882 		destroy_workqueue(wq);
883 	}
884 }
885 
886 /**
887  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
888  * @ioc: per adapter object
889  * @fault_code: fault code
890  */
891 void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)892 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
893 {
894 	ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
895 }
896 
897 /**
898  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
899  * @ioc: per adapter object
900  * @fault_code: fault code
901  *
902  * Return: nothing.
903  */
904 void
mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER * ioc,u16 fault_code)905 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
906 {
907 	ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
908 }
909 
910 /**
911  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
912  * completes or times out
913  * @ioc: per adapter object
914  * @caller: caller function name
915  *
916  * Return: 0 for success, non-zero for failure.
917  */
918 int
mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER * ioc,const char * caller)919 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
920 		const char *caller)
921 {
922 	u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
923 			ioc->manu_pg11.CoreDumpTOSec :
924 			MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
925 
926 	int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
927 					timeout);
928 
929 	if (ioc_state)
930 		ioc_err(ioc,
931 		    "%s: CoreDump timed out. (ioc_state=0x%x)\n",
932 		    caller, ioc_state);
933 	else
934 		ioc_info(ioc,
935 		    "%s: CoreDump completed. (ioc_state=0x%x)\n",
936 		    caller, ioc_state);
937 
938 	return ioc_state;
939 }
940 
941 /**
942  * mpt3sas_halt_firmware - halt's mpt controller firmware
943  * @ioc: per adapter object
944  *
945  * For debugging timeout related issues.  Writing 0xCOFFEE00
946  * to the doorbell register will halt controller firmware. With
947  * the purpose to stop both driver and firmware, the enduser can
948  * obtain a ring buffer from controller UART.
949  */
950 void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER * ioc)951 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
952 {
953 	u32 doorbell;
954 
955 	if (!ioc->fwfault_debug)
956 		return;
957 
958 	dump_stack();
959 
960 	doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
961 	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
962 		mpt3sas_print_fault_code(ioc, doorbell &
963 		    MPI2_DOORBELL_DATA_MASK);
964 	} else if ((doorbell & MPI2_IOC_STATE_MASK) ==
965 	    MPI2_IOC_STATE_COREDUMP) {
966 		mpt3sas_print_coredump_info(ioc, doorbell &
967 		    MPI2_DOORBELL_DATA_MASK);
968 	} else {
969 		writel(0xC0FFEE00, &ioc->chip->Doorbell);
970 		ioc_err(ioc, "Firmware is halted due to command timeout\n");
971 	}
972 
973 	if (ioc->fwfault_debug == 2)
974 		for (;;)
975 			;
976 	else
977 		panic("panic in %s\n", __func__);
978 }
979 
980 /**
981  * _base_sas_ioc_info - verbose translation of the ioc status
982  * @ioc: per adapter object
983  * @mpi_reply: reply mf payload returned from firmware
984  * @request_hdr: request mf
985  */
986 static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER * ioc,MPI2DefaultReply_t * mpi_reply,MPI2RequestHeader_t * request_hdr)987 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
988 	MPI2RequestHeader_t *request_hdr)
989 {
990 	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
991 	    MPI2_IOCSTATUS_MASK;
992 	char *desc = NULL;
993 	u16 frame_sz;
994 	char *func_str = NULL;
995 
996 	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
997 	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
998 	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
999 	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
1000 		return;
1001 
1002 	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
1003 		return;
1004 	/*
1005 	 * Older Firmware version doesn't support driver trigger pages.
1006 	 * So, skip displaying 'config invalid type' type
1007 	 * of error message.
1008 	 */
1009 	if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
1010 		Mpi2ConfigRequest_t *rqst = (Mpi2ConfigRequest_t *)request_hdr;
1011 
1012 		if ((rqst->ExtPageType ==
1013 		    MPI2_CONFIG_EXTPAGETYPE_DRIVER_PERSISTENT_TRIGGER) &&
1014 		    !(ioc->logging_level & MPT_DEBUG_CONFIG)) {
1015 			return;
1016 		}
1017 	}
1018 
1019 	switch (ioc_status) {
1020 
1021 /****************************************************************************
1022 *  Common IOCStatus values for all replies
1023 ****************************************************************************/
1024 
1025 	case MPI2_IOCSTATUS_INVALID_FUNCTION:
1026 		desc = "invalid function";
1027 		break;
1028 	case MPI2_IOCSTATUS_BUSY:
1029 		desc = "busy";
1030 		break;
1031 	case MPI2_IOCSTATUS_INVALID_SGL:
1032 		desc = "invalid sgl";
1033 		break;
1034 	case MPI2_IOCSTATUS_INTERNAL_ERROR:
1035 		desc = "internal error";
1036 		break;
1037 	case MPI2_IOCSTATUS_INVALID_VPID:
1038 		desc = "invalid vpid";
1039 		break;
1040 	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
1041 		desc = "insufficient resources";
1042 		break;
1043 	case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
1044 		desc = "insufficient power";
1045 		break;
1046 	case MPI2_IOCSTATUS_INVALID_FIELD:
1047 		desc = "invalid field";
1048 		break;
1049 	case MPI2_IOCSTATUS_INVALID_STATE:
1050 		desc = "invalid state";
1051 		break;
1052 	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
1053 		desc = "op state not supported";
1054 		break;
1055 
1056 /****************************************************************************
1057 *  Config IOCStatus values
1058 ****************************************************************************/
1059 
1060 	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
1061 		desc = "config invalid action";
1062 		break;
1063 	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
1064 		desc = "config invalid type";
1065 		break;
1066 	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
1067 		desc = "config invalid page";
1068 		break;
1069 	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
1070 		desc = "config invalid data";
1071 		break;
1072 	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
1073 		desc = "config no defaults";
1074 		break;
1075 	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
1076 		desc = "config can't commit";
1077 		break;
1078 
1079 /****************************************************************************
1080 *  SCSI IO Reply
1081 ****************************************************************************/
1082 
1083 	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
1084 	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
1085 	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
1086 	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
1087 	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
1088 	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
1089 	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
1090 	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
1091 	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
1092 	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
1093 	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
1094 	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
1095 		break;
1096 
1097 /****************************************************************************
1098 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
1099 ****************************************************************************/
1100 
1101 	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
1102 		desc = "eedp guard error";
1103 		break;
1104 	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
1105 		desc = "eedp ref tag error";
1106 		break;
1107 	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1108 		desc = "eedp app tag error";
1109 		break;
1110 
1111 /****************************************************************************
1112 *  SCSI Target values
1113 ****************************************************************************/
1114 
1115 	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1116 		desc = "target invalid io index";
1117 		break;
1118 	case MPI2_IOCSTATUS_TARGET_ABORTED:
1119 		desc = "target aborted";
1120 		break;
1121 	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1122 		desc = "target no conn retryable";
1123 		break;
1124 	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1125 		desc = "target no connection";
1126 		break;
1127 	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1128 		desc = "target xfer count mismatch";
1129 		break;
1130 	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1131 		desc = "target data offset error";
1132 		break;
1133 	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1134 		desc = "target too much write data";
1135 		break;
1136 	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1137 		desc = "target iu too short";
1138 		break;
1139 	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1140 		desc = "target ack nak timeout";
1141 		break;
1142 	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1143 		desc = "target nak received";
1144 		break;
1145 
1146 /****************************************************************************
1147 *  Serial Attached SCSI values
1148 ****************************************************************************/
1149 
1150 	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1151 		desc = "smp request failed";
1152 		break;
1153 	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1154 		desc = "smp data overrun";
1155 		break;
1156 
1157 /****************************************************************************
1158 *  Diagnostic Buffer Post / Diagnostic Release values
1159 ****************************************************************************/
1160 
1161 	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1162 		desc = "diagnostic released";
1163 		break;
1164 	default:
1165 		break;
1166 	}
1167 
1168 	if (!desc)
1169 		return;
1170 
1171 	switch (request_hdr->Function) {
1172 	case MPI2_FUNCTION_CONFIG:
1173 		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1174 		func_str = "config_page";
1175 		break;
1176 	case MPI2_FUNCTION_SCSI_TASK_MGMT:
1177 		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1178 		func_str = "task_mgmt";
1179 		break;
1180 	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1181 		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1182 		func_str = "sas_iounit_ctl";
1183 		break;
1184 	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1185 		frame_sz = sizeof(Mpi2SepRequest_t);
1186 		func_str = "enclosure";
1187 		break;
1188 	case MPI2_FUNCTION_IOC_INIT:
1189 		frame_sz = sizeof(Mpi2IOCInitRequest_t);
1190 		func_str = "ioc_init";
1191 		break;
1192 	case MPI2_FUNCTION_PORT_ENABLE:
1193 		frame_sz = sizeof(Mpi2PortEnableRequest_t);
1194 		func_str = "port_enable";
1195 		break;
1196 	case MPI2_FUNCTION_SMP_PASSTHROUGH:
1197 		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1198 		func_str = "smp_passthru";
1199 		break;
1200 	case MPI2_FUNCTION_NVME_ENCAPSULATED:
1201 		frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1202 		    ioc->sge_size;
1203 		func_str = "nvme_encapsulated";
1204 		break;
1205 	case MPI2_FUNCTION_MCTP_PASSTHROUGH:
1206 		frame_sz = sizeof(Mpi26MctpPassthroughRequest_t) +
1207 		    ioc->sge_size;
1208 		func_str = "mctp_passthru";
1209 		break;
1210 	default:
1211 		frame_sz = 32;
1212 		func_str = "unknown";
1213 		break;
1214 	}
1215 
1216 	ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1217 		 desc, ioc_status, request_hdr, func_str);
1218 
1219 	_debug_dump_mf(request_hdr, frame_sz/4);
1220 }
1221 
1222 /**
1223  * _base_display_event_data - verbose translation of firmware asyn events
1224  * @ioc: per adapter object
1225  * @mpi_reply: reply mf payload returned from firmware
1226  */
1227 static void
_base_display_event_data(struct MPT3SAS_ADAPTER * ioc,Mpi2EventNotificationReply_t * mpi_reply)1228 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1229 	Mpi2EventNotificationReply_t *mpi_reply)
1230 {
1231 	char *desc = NULL;
1232 	u16 event;
1233 
1234 	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1235 		return;
1236 
1237 	event = le16_to_cpu(mpi_reply->Event);
1238 
1239 	switch (event) {
1240 	case MPI2_EVENT_LOG_DATA:
1241 		desc = "Log Data";
1242 		break;
1243 	case MPI2_EVENT_STATE_CHANGE:
1244 		desc = "Status Change";
1245 		break;
1246 	case MPI2_EVENT_HARD_RESET_RECEIVED:
1247 		desc = "Hard Reset Received";
1248 		break;
1249 	case MPI2_EVENT_EVENT_CHANGE:
1250 		desc = "Event Change";
1251 		break;
1252 	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1253 		desc = "Device Status Change";
1254 		break;
1255 	case MPI2_EVENT_IR_OPERATION_STATUS:
1256 		if (!ioc->hide_ir_msg)
1257 			desc = "IR Operation Status";
1258 		break;
1259 	case MPI2_EVENT_SAS_DISCOVERY:
1260 	{
1261 		Mpi2EventDataSasDiscovery_t *event_data =
1262 		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1263 		ioc_info(ioc, "Discovery: (%s)",
1264 			 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1265 			 "start" : "stop");
1266 		if (event_data->DiscoveryStatus)
1267 			pr_cont(" discovery_status(0x%08x)",
1268 			    le32_to_cpu(event_data->DiscoveryStatus));
1269 		pr_cont("\n");
1270 		return;
1271 	}
1272 	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1273 		desc = "SAS Broadcast Primitive";
1274 		break;
1275 	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1276 		desc = "SAS Init Device Status Change";
1277 		break;
1278 	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1279 		desc = "SAS Init Table Overflow";
1280 		break;
1281 	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1282 		desc = "SAS Topology Change List";
1283 		break;
1284 	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1285 		desc = "SAS Enclosure Device Status Change";
1286 		break;
1287 	case MPI2_EVENT_IR_VOLUME:
1288 		if (!ioc->hide_ir_msg)
1289 			desc = "IR Volume";
1290 		break;
1291 	case MPI2_EVENT_IR_PHYSICAL_DISK:
1292 		if (!ioc->hide_ir_msg)
1293 			desc = "IR Physical Disk";
1294 		break;
1295 	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1296 		if (!ioc->hide_ir_msg)
1297 			desc = "IR Configuration Change List";
1298 		break;
1299 	case MPI2_EVENT_LOG_ENTRY_ADDED:
1300 		if (!ioc->hide_ir_msg)
1301 			desc = "Log Entry Added";
1302 		break;
1303 	case MPI2_EVENT_TEMP_THRESHOLD:
1304 		desc = "Temperature Threshold";
1305 		break;
1306 	case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1307 		desc = "Cable Event";
1308 		break;
1309 	case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1310 		desc = "SAS Device Discovery Error";
1311 		break;
1312 	case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1313 		desc = "PCIE Device Status Change";
1314 		break;
1315 	case MPI2_EVENT_PCIE_ENUMERATION:
1316 	{
1317 		Mpi26EventDataPCIeEnumeration_t *event_data =
1318 			(Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1319 		ioc_info(ioc, "PCIE Enumeration: (%s)",
1320 			 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1321 			 "start" : "stop");
1322 		if (event_data->EnumerationStatus)
1323 			pr_cont("enumeration_status(0x%08x)",
1324 				le32_to_cpu(event_data->EnumerationStatus));
1325 		pr_cont("\n");
1326 		return;
1327 	}
1328 	case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1329 		desc = "PCIE Topology Change List";
1330 		break;
1331 	}
1332 
1333 	if (!desc)
1334 		return;
1335 
1336 	ioc_info(ioc, "%s\n", desc);
1337 }
1338 
1339 /**
1340  * _base_sas_log_info - verbose translation of firmware log info
1341  * @ioc: per adapter object
1342  * @log_info: log info
1343  */
1344 static void
_base_sas_log_info(struct MPT3SAS_ADAPTER * ioc,u32 log_info)1345 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc, u32 log_info)
1346 {
1347 	union loginfo_type {
1348 		u32	loginfo;
1349 		struct {
1350 			u32	subcode:16;
1351 			u32	code:8;
1352 			u32	originator:4;
1353 			u32	bus_type:4;
1354 		} dw;
1355 	};
1356 	union loginfo_type sas_loginfo;
1357 	char *originator_str = NULL;
1358 
1359 	sas_loginfo.loginfo = log_info;
1360 	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1361 		return;
1362 
1363 	/* each nexus loss loginfo */
1364 	if (log_info == 0x31170000)
1365 		return;
1366 
1367 	/* eat the loginfos associated with task aborts */
1368 	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1369 	    0x31140000 || log_info == 0x31130000))
1370 		return;
1371 
1372 	switch (sas_loginfo.dw.originator) {
1373 	case 0:
1374 		originator_str = "IOP";
1375 		break;
1376 	case 1:
1377 		originator_str = "PL";
1378 		break;
1379 	case 2:
1380 		if (!ioc->hide_ir_msg)
1381 			originator_str = "IR";
1382 		else
1383 			originator_str = "WarpDrive";
1384 		break;
1385 	}
1386 
1387 	ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1388 		 log_info,
1389 		 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1390 }
1391 
1392 /**
1393  * _base_display_reply_info - handle reply descriptors depending on IOC Status
1394  * @ioc: per adapter object
1395  * @smid: system request message index
1396  * @msix_index: MSIX table index supplied by the OS
1397  * @reply: reply message frame (lower 32bit addr)
1398  */
1399 static void
_base_display_reply_info(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1400 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1401 	u32 reply)
1402 {
1403 	MPI2DefaultReply_t *mpi_reply;
1404 	u16 ioc_status;
1405 	u32 loginfo = 0;
1406 
1407 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1408 	if (unlikely(!mpi_reply)) {
1409 		ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1410 			__FILE__, __LINE__, __func__);
1411 		return;
1412 	}
1413 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1414 
1415 	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1416 	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
1417 		_base_sas_ioc_info(ioc, mpi_reply,
1418 		   mpt3sas_base_get_msg_frame(ioc, smid));
1419 	}
1420 
1421 	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1422 		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1423 		_base_sas_log_info(ioc, loginfo);
1424 	}
1425 
1426 	if (ioc_status || loginfo) {
1427 		ioc_status &= MPI2_IOCSTATUS_MASK;
1428 		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1429 	}
1430 }
1431 
1432 /**
1433  * mpt3sas_base_done - base internal command completion routine
1434  * @ioc: per adapter object
1435  * @smid: system request message index
1436  * @msix_index: MSIX table index supplied by the OS
1437  * @reply: reply message frame(lower 32bit addr)
1438  *
1439  * Return:
1440  * 1 meaning mf should be freed from _base_interrupt
1441  * 0 means the mf is freed from this function.
1442  */
1443 u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)1444 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1445 	u32 reply)
1446 {
1447 	MPI2DefaultReply_t *mpi_reply;
1448 
1449 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1450 	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1451 		return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1452 
1453 	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1454 		return 1;
1455 
1456 	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1457 	if (mpi_reply) {
1458 		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1459 		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1460 	}
1461 	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1462 
1463 	complete(&ioc->base_cmds.done);
1464 	return 1;
1465 }
1466 
1467 /**
1468  * _base_async_event - main callback handler for firmware asyn events
1469  * @ioc: per adapter object
1470  * @msix_index: MSIX table index supplied by the OS
1471  * @reply: reply message frame(lower 32bit addr)
1472  *
1473  * Return:
1474  * 1 meaning mf should be freed from _base_interrupt
1475  * 0 means the mf is freed from this function.
1476  */
1477 static u8
_base_async_event(struct MPT3SAS_ADAPTER * ioc,u8 msix_index,u32 reply)1478 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1479 {
1480 	Mpi2EventNotificationReply_t *mpi_reply;
1481 	Mpi2EventAckRequest_t *ack_request;
1482 	u16 smid;
1483 	struct _event_ack_list *delayed_event_ack;
1484 
1485 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1486 	if (!mpi_reply)
1487 		return 1;
1488 	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1489 		return 1;
1490 
1491 	_base_display_event_data(ioc, mpi_reply);
1492 
1493 	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1494 		goto out;
1495 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1496 	if (!smid) {
1497 		delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1498 					GFP_ATOMIC);
1499 		if (!delayed_event_ack)
1500 			goto out;
1501 		INIT_LIST_HEAD(&delayed_event_ack->list);
1502 		delayed_event_ack->Event = mpi_reply->Event;
1503 		delayed_event_ack->EventContext = mpi_reply->EventContext;
1504 		list_add_tail(&delayed_event_ack->list,
1505 				&ioc->delayed_event_ack_list);
1506 		dewtprintk(ioc,
1507 			   ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1508 				    le16_to_cpu(mpi_reply->Event)));
1509 		goto out;
1510 	}
1511 
1512 	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1513 	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1514 	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1515 	ack_request->Event = mpi_reply->Event;
1516 	ack_request->EventContext = mpi_reply->EventContext;
1517 	ack_request->VF_ID = 0;  /* TODO */
1518 	ack_request->VP_ID = 0;
1519 	ioc->put_smid_default(ioc, smid);
1520 
1521  out:
1522 
1523 	/* scsih callback handler */
1524 	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1525 
1526 	/* ctl callback handler */
1527 	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1528 
1529 	return 1;
1530 }
1531 
1532 static struct scsiio_tracker *
_get_st_from_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)1533 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1534 {
1535 	struct scsi_cmnd *cmd;
1536 
1537 	if (WARN_ON(!smid) ||
1538 	    WARN_ON(smid >= ioc->hi_priority_smid))
1539 		return NULL;
1540 
1541 	cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1542 	if (cmd)
1543 		return scsi_cmd_priv(cmd);
1544 
1545 	return NULL;
1546 }
1547 
1548 /**
1549  * _base_get_cb_idx - obtain the callback index
1550  * @ioc: per adapter object
1551  * @smid: system request message index
1552  *
1553  * Return: callback index.
1554  */
1555 static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER * ioc,u16 smid)1556 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1557 {
1558 	int i;
1559 	u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1560 	u8 cb_idx = 0xFF;
1561 
1562 	if (smid < ioc->hi_priority_smid) {
1563 		struct scsiio_tracker *st;
1564 
1565 		if (smid < ctl_smid) {
1566 			st = _get_st_from_smid(ioc, smid);
1567 			if (st)
1568 				cb_idx = st->cb_idx;
1569 		} else if (smid == ctl_smid)
1570 			cb_idx = ioc->ctl_cb_idx;
1571 	} else if (smid < ioc->internal_smid) {
1572 		i = smid - ioc->hi_priority_smid;
1573 		cb_idx = ioc->hpr_lookup[i].cb_idx;
1574 	} else if (smid <= ioc->hba_queue_depth) {
1575 		i = smid - ioc->internal_smid;
1576 		cb_idx = ioc->internal_lookup[i].cb_idx;
1577 	}
1578 	return cb_idx;
1579 }
1580 
1581 /**
1582  * mpt3sas_base_pause_mq_polling - pause polling on the mq poll queues
1583  *				when driver is flushing out the IOs.
1584  * @ioc: per adapter object
1585  *
1586  * Pause polling on the mq poll (io uring) queues when driver is flushing
1587  * out the IOs. Otherwise we may see the race condition of completing the same
1588  * IO from two paths.
1589  *
1590  * Returns nothing.
1591  */
1592 void
mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER * ioc)1593 mpt3sas_base_pause_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1594 {
1595 	int iopoll_q_count =
1596 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1597 	int qid;
1598 
1599 	for (qid = 0; qid < iopoll_q_count; qid++)
1600 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 1);
1601 
1602 	/*
1603 	 * wait for current poll to complete.
1604 	 */
1605 	for (qid = 0; qid < iopoll_q_count; qid++) {
1606 		while (atomic_read(&ioc->io_uring_poll_queues[qid].busy)) {
1607 			cpu_relax();
1608 			udelay(500);
1609 		}
1610 	}
1611 }
1612 
1613 /**
1614  * mpt3sas_base_resume_mq_polling - Resume polling on mq poll queues.
1615  * @ioc: per adapter object
1616  *
1617  * Returns nothing.
1618  */
1619 void
mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER * ioc)1620 mpt3sas_base_resume_mq_polling(struct MPT3SAS_ADAPTER *ioc)
1621 {
1622 	int iopoll_q_count =
1623 	    ioc->reply_queue_count - ioc->iopoll_q_start_index;
1624 	int qid;
1625 
1626 	for (qid = 0; qid < iopoll_q_count; qid++)
1627 		atomic_set(&ioc->io_uring_poll_queues[qid].pause, 0);
1628 }
1629 
1630 /**
1631  * mpt3sas_base_mask_interrupts - disable interrupts
1632  * @ioc: per adapter object
1633  *
1634  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1635  */
1636 void
mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER * ioc)1637 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1638 {
1639 	u32 him_register;
1640 
1641 	ioc->mask_interrupts = 1;
1642 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1643 	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1644 	writel(him_register, &ioc->chip->HostInterruptMask);
1645 	ioc->base_readl(&ioc->chip->HostInterruptMask);
1646 }
1647 
1648 /**
1649  * mpt3sas_base_unmask_interrupts - enable interrupts
1650  * @ioc: per adapter object
1651  *
1652  * Enabling only Reply Interrupts
1653  */
1654 void
mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER * ioc)1655 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1656 {
1657 	u32 him_register;
1658 
1659 	him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1660 	him_register &= ~MPI2_HIM_RIM;
1661 	writel(him_register, &ioc->chip->HostInterruptMask);
1662 	ioc->mask_interrupts = 0;
1663 }
1664 
1665 union reply_descriptor {
1666 	u64 word;
1667 	struct {
1668 		u32 low;
1669 		u32 high;
1670 	} u;
1671 };
1672 
base_mod64(u64 dividend,u32 divisor)1673 static u32 base_mod64(u64 dividend, u32 divisor)
1674 {
1675 	u32 remainder;
1676 
1677 	if (!divisor)
1678 		pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1679 	remainder = do_div(dividend, divisor);
1680 	return remainder;
1681 }
1682 
1683 /**
1684  * _base_process_reply_queue - Process reply descriptors from reply
1685  *		descriptor post queue.
1686  * @reply_q: per IRQ's reply queue object.
1687  *
1688  * Return: number of reply descriptors processed from reply
1689  *		descriptor queue.
1690  */
1691 static int
_base_process_reply_queue(struct adapter_reply_queue * reply_q)1692 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1693 {
1694 	union reply_descriptor rd;
1695 	u64 completed_cmds;
1696 	u8 request_descript_type;
1697 	u16 smid;
1698 	u8 cb_idx;
1699 	u32 reply;
1700 	u8 msix_index = reply_q->msix_index;
1701 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1702 	Mpi2ReplyDescriptorsUnion_t *rpf;
1703 	u8 rc;
1704 
1705 	completed_cmds = 0;
1706 	if (!atomic_add_unless(&reply_q->busy, 1, 1))
1707 		return completed_cmds;
1708 
1709 	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1710 	request_descript_type = rpf->Default.ReplyFlags
1711 	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1712 	if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1713 		atomic_dec(&reply_q->busy);
1714 		return completed_cmds;
1715 	}
1716 
1717 	cb_idx = 0xFF;
1718 	do {
1719 		rd.word = le64_to_cpu(rpf->Words);
1720 		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1721 			goto out;
1722 		reply = 0;
1723 		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1724 		if (request_descript_type ==
1725 		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1726 		    request_descript_type ==
1727 		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1728 		    request_descript_type ==
1729 		    MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1730 			cb_idx = _base_get_cb_idx(ioc, smid);
1731 			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1732 			    (likely(mpt_callbacks[cb_idx] != NULL))) {
1733 				rc = mpt_callbacks[cb_idx](ioc, smid,
1734 				    msix_index, 0);
1735 				if (rc)
1736 					mpt3sas_base_free_smid(ioc, smid);
1737 			}
1738 		} else if (request_descript_type ==
1739 		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1740 			reply = le32_to_cpu(
1741 			    rpf->AddressReply.ReplyFrameAddress);
1742 			if (reply > ioc->reply_dma_max_address ||
1743 			    reply < ioc->reply_dma_min_address)
1744 				reply = 0;
1745 			if (smid) {
1746 				cb_idx = _base_get_cb_idx(ioc, smid);
1747 				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1748 				    (likely(mpt_callbacks[cb_idx] != NULL))) {
1749 					rc = mpt_callbacks[cb_idx](ioc, smid,
1750 					    msix_index, reply);
1751 					if (reply)
1752 						_base_display_reply_info(ioc,
1753 						    smid, msix_index, reply);
1754 					if (rc)
1755 						mpt3sas_base_free_smid(ioc,
1756 						    smid);
1757 				}
1758 			} else {
1759 				_base_async_event(ioc, msix_index, reply);
1760 			}
1761 
1762 			/* reply free queue handling */
1763 			if (reply) {
1764 				ioc->reply_free_host_index =
1765 				    (ioc->reply_free_host_index ==
1766 				    (ioc->reply_free_queue_depth - 1)) ?
1767 				    0 : ioc->reply_free_host_index + 1;
1768 				ioc->reply_free[ioc->reply_free_host_index] =
1769 				    cpu_to_le32(reply);
1770 				if (ioc->is_mcpu_endpoint)
1771 					_base_clone_reply_to_sys_mem(ioc,
1772 						reply,
1773 						ioc->reply_free_host_index);
1774 				writel(ioc->reply_free_host_index,
1775 				    &ioc->chip->ReplyFreeHostIndex);
1776 			}
1777 		}
1778 
1779 		rpf->Words = cpu_to_le64(ULLONG_MAX);
1780 		reply_q->reply_post_host_index =
1781 		    (reply_q->reply_post_host_index ==
1782 		    (ioc->reply_post_queue_depth - 1)) ? 0 :
1783 		    reply_q->reply_post_host_index + 1;
1784 		request_descript_type =
1785 		    reply_q->reply_post_free[reply_q->reply_post_host_index].
1786 		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1787 		completed_cmds++;
1788 		/* Update the reply post host index after continuously
1789 		 * processing the threshold number of Reply Descriptors.
1790 		 * So that FW can find enough entries to post the Reply
1791 		 * Descriptors in the reply descriptor post queue.
1792 		 */
1793 		if (completed_cmds >= ioc->thresh_hold) {
1794 			if (ioc->combined_reply_queue) {
1795 				writel(reply_q->reply_post_host_index |
1796 						((msix_index  & 7) <<
1797 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1798 				    ioc->replyPostRegisterIndex[msix_index/8]);
1799 			} else {
1800 				writel(reply_q->reply_post_host_index |
1801 						(msix_index <<
1802 						 MPI2_RPHI_MSIX_INDEX_SHIFT),
1803 						&ioc->chip->ReplyPostHostIndex);
1804 			}
1805 			if (!reply_q->is_iouring_poll_q &&
1806 			    !reply_q->irq_poll_scheduled) {
1807 				reply_q->irq_poll_scheduled = true;
1808 				irq_poll_sched(&reply_q->irqpoll);
1809 			}
1810 			atomic_dec(&reply_q->busy);
1811 			return completed_cmds;
1812 		}
1813 		if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1814 			goto out;
1815 		if (!reply_q->reply_post_host_index)
1816 			rpf = reply_q->reply_post_free;
1817 		else
1818 			rpf++;
1819 	} while (1);
1820 
1821  out:
1822 
1823 	if (!completed_cmds) {
1824 		atomic_dec(&reply_q->busy);
1825 		return completed_cmds;
1826 	}
1827 
1828 	if (ioc->is_warpdrive) {
1829 		writel(reply_q->reply_post_host_index,
1830 		ioc->reply_post_host_index[msix_index]);
1831 		atomic_dec(&reply_q->busy);
1832 		return completed_cmds;
1833 	}
1834 
1835 	/* Update Reply Post Host Index.
1836 	 * For those HBA's which support combined reply queue feature
1837 	 * 1. Get the correct Supplemental Reply Post Host Index Register.
1838 	 *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1839 	 *    Index Register address bank i.e replyPostRegisterIndex[],
1840 	 * 2. Then update this register with new reply host index value
1841 	 *    in ReplyPostIndex field and the MSIxIndex field with
1842 	 *    msix_index value reduced to a value between 0 and 7,
1843 	 *    using a modulo 8 operation. Since each Supplemental Reply Post
1844 	 *    Host Index Register supports 8 MSI-X vectors.
1845 	 *
1846 	 * For other HBA's just update the Reply Post Host Index register with
1847 	 * new reply host index value in ReplyPostIndex Field and msix_index
1848 	 * value in MSIxIndex field.
1849 	 */
1850 	if (ioc->combined_reply_queue)
1851 		writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1852 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1853 			ioc->replyPostRegisterIndex[msix_index/8]);
1854 	else
1855 		writel(reply_q->reply_post_host_index | (msix_index <<
1856 			MPI2_RPHI_MSIX_INDEX_SHIFT),
1857 			&ioc->chip->ReplyPostHostIndex);
1858 	atomic_dec(&reply_q->busy);
1859 	return completed_cmds;
1860 }
1861 
1862 /**
1863  * mpt3sas_blk_mq_poll - poll the blk mq poll queue
1864  * @shost: Scsi_Host object
1865  * @queue_num: hw ctx queue number
1866  *
1867  * Return number of entries that has been processed from poll queue.
1868  */
mpt3sas_blk_mq_poll(struct Scsi_Host * shost,unsigned int queue_num)1869 int mpt3sas_blk_mq_poll(struct Scsi_Host *shost, unsigned int queue_num)
1870 {
1871 	struct MPT3SAS_ADAPTER *ioc =
1872 	    (struct MPT3SAS_ADAPTER *)shost->hostdata;
1873 	struct adapter_reply_queue *reply_q;
1874 	int num_entries = 0;
1875 	int qid = queue_num - ioc->iopoll_q_start_index;
1876 
1877 	if (atomic_read(&ioc->io_uring_poll_queues[qid].pause) ||
1878 	    !atomic_add_unless(&ioc->io_uring_poll_queues[qid].busy, 1, 1))
1879 		return 0;
1880 
1881 	reply_q = ioc->io_uring_poll_queues[qid].reply_q;
1882 
1883 	num_entries = _base_process_reply_queue(reply_q);
1884 	atomic_dec(&ioc->io_uring_poll_queues[qid].busy);
1885 
1886 	return num_entries;
1887 }
1888 
1889 /**
1890  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1891  * @irq: irq number (not used)
1892  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1893  *
1894  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1895  */
1896 static irqreturn_t
_base_interrupt(int irq,void * bus_id)1897 _base_interrupt(int irq, void *bus_id)
1898 {
1899 	struct adapter_reply_queue *reply_q = bus_id;
1900 	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1901 
1902 	if (ioc->mask_interrupts)
1903 		return IRQ_NONE;
1904 	if (reply_q->irq_poll_scheduled)
1905 		return IRQ_HANDLED;
1906 	return ((_base_process_reply_queue(reply_q) > 0) ?
1907 			IRQ_HANDLED : IRQ_NONE);
1908 }
1909 
1910 /**
1911  * _base_irqpoll - IRQ poll callback handler
1912  * @irqpoll: irq_poll object
1913  * @budget: irq poll weight
1914  *
1915  * Return: number of reply descriptors processed
1916  */
1917 static int
_base_irqpoll(struct irq_poll * irqpoll,int budget)1918 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1919 {
1920 	struct adapter_reply_queue *reply_q;
1921 	int num_entries = 0;
1922 
1923 	reply_q = container_of(irqpoll, struct adapter_reply_queue,
1924 			irqpoll);
1925 	if (reply_q->irq_line_enable) {
1926 		disable_irq_nosync(reply_q->os_irq);
1927 		reply_q->irq_line_enable = false;
1928 	}
1929 	num_entries = _base_process_reply_queue(reply_q);
1930 	if (num_entries < budget) {
1931 		irq_poll_complete(irqpoll);
1932 		reply_q->irq_poll_scheduled = false;
1933 		reply_q->irq_line_enable = true;
1934 		enable_irq(reply_q->os_irq);
1935 		/*
1936 		 * Go for one more round of processing the
1937 		 * reply descriptor post queue in case the HBA
1938 		 * Firmware has posted some reply descriptors
1939 		 * while reenabling the IRQ.
1940 		 */
1941 		_base_process_reply_queue(reply_q);
1942 	}
1943 
1944 	return num_entries;
1945 }
1946 
1947 /**
1948  * _base_init_irqpolls - initliaze IRQ polls
1949  * @ioc: per adapter object
1950  *
1951  * Return: nothing
1952  */
1953 static void
_base_init_irqpolls(struct MPT3SAS_ADAPTER * ioc)1954 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1955 {
1956 	struct adapter_reply_queue *reply_q, *next;
1957 
1958 	if (list_empty(&ioc->reply_queue_list))
1959 		return;
1960 
1961 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1962 		if (reply_q->is_iouring_poll_q)
1963 			continue;
1964 		irq_poll_init(&reply_q->irqpoll,
1965 			ioc->hba_queue_depth/4, _base_irqpoll);
1966 		reply_q->irq_poll_scheduled = false;
1967 		reply_q->irq_line_enable = true;
1968 		reply_q->os_irq = pci_irq_vector(ioc->pdev,
1969 		    reply_q->msix_index);
1970 	}
1971 }
1972 
1973 /**
1974  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1975  * @ioc: per adapter object
1976  *
1977  * Return: Whether or not MSI/X is enabled.
1978  */
1979 static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER * ioc)1980 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1981 {
1982 	return (ioc->facts.IOCCapabilities &
1983 	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1984 }
1985 
1986 /**
1987  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1988  * @ioc: per adapter object
1989  * @poll: poll over reply descriptor pools incase interrupt for
1990  *		timed-out SCSI command got delayed
1991  * Context: non-ISR context
1992  *
1993  * Called when a Task Management request has completed.
1994  */
1995 void
mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER * ioc,u8 poll)1996 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1997 {
1998 	struct adapter_reply_queue *reply_q;
1999 
2000 	/* If MSIX capability is turned off
2001 	 * then multi-queues are not enabled
2002 	 */
2003 	if (!_base_is_controller_msix_enabled(ioc))
2004 		return;
2005 
2006 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
2007 		if (ioc->shost_recovery || ioc->remove_host ||
2008 				ioc->pci_error_recovery)
2009 			return;
2010 		/* TMs are on msix_index == 0 */
2011 		if (reply_q->msix_index == 0)
2012 			continue;
2013 
2014 		if (reply_q->is_iouring_poll_q) {
2015 			_base_process_reply_queue(reply_q);
2016 			continue;
2017 		}
2018 
2019 		synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
2020 		if (reply_q->irq_poll_scheduled) {
2021 			/* Calling irq_poll_disable will wait for any pending
2022 			 * callbacks to have completed.
2023 			 */
2024 			irq_poll_disable(&reply_q->irqpoll);
2025 			irq_poll_enable(&reply_q->irqpoll);
2026 			/* check how the scheduled poll has ended,
2027 			 * clean up only if necessary
2028 			 */
2029 			if (reply_q->irq_poll_scheduled) {
2030 				reply_q->irq_poll_scheduled = false;
2031 				reply_q->irq_line_enable = true;
2032 				enable_irq(reply_q->os_irq);
2033 			}
2034 		}
2035 
2036 		if (poll)
2037 			_base_process_reply_queue(reply_q);
2038 	}
2039 }
2040 
2041 /**
2042  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
2043  * @cb_idx: callback index
2044  */
2045 void
mpt3sas_base_release_callback_handler(u8 cb_idx)2046 mpt3sas_base_release_callback_handler(u8 cb_idx)
2047 {
2048 	mpt_callbacks[cb_idx] = NULL;
2049 }
2050 
2051 /**
2052  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
2053  * @cb_func: callback function
2054  *
2055  * Return: Index of @cb_func.
2056  */
2057 u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)2058 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
2059 {
2060 	u8 cb_idx;
2061 
2062 	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
2063 		if (mpt_callbacks[cb_idx] == NULL)
2064 			break;
2065 
2066 	mpt_callbacks[cb_idx] = cb_func;
2067 	return cb_idx;
2068 }
2069 
2070 /**
2071  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
2072  */
2073 void
mpt3sas_base_initialize_callback_handler(void)2074 mpt3sas_base_initialize_callback_handler(void)
2075 {
2076 	u8 cb_idx;
2077 
2078 	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
2079 		mpt3sas_base_release_callback_handler(cb_idx);
2080 }
2081 
2082 
2083 /**
2084  * _base_build_zero_len_sge - build zero length sg entry
2085  * @ioc: per adapter object
2086  * @paddr: virtual address for SGE
2087  *
2088  * Create a zero length scatter gather entry to insure the IOCs hardware has
2089  * something to use if the target device goes brain dead and tries
2090  * to send data even when none is asked for.
2091  */
2092 static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER * ioc,void * paddr)2093 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2094 {
2095 	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
2096 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
2097 	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
2098 	    MPI2_SGE_FLAGS_SHIFT);
2099 	ioc->base_add_sg_single(paddr, flags_length, -1);
2100 }
2101 
2102 /**
2103  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
2104  * @paddr: virtual address for SGE
2105  * @flags_length: SGE flags and data transfer length
2106  * @dma_addr: Physical address
2107  */
2108 static void
_base_add_sg_single_32(void * paddr,u32 flags_length,dma_addr_t dma_addr)2109 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2110 {
2111 	Mpi2SGESimple32_t *sgel = paddr;
2112 
2113 	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
2114 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2115 	sgel->FlagsLength = cpu_to_le32(flags_length);
2116 	sgel->Address = cpu_to_le32(dma_addr);
2117 }
2118 
2119 
2120 /**
2121  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
2122  * @paddr: virtual address for SGE
2123  * @flags_length: SGE flags and data transfer length
2124  * @dma_addr: Physical address
2125  */
2126 static void
_base_add_sg_single_64(void * paddr,u32 flags_length,dma_addr_t dma_addr)2127 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
2128 {
2129 	Mpi2SGESimple64_t *sgel = paddr;
2130 
2131 	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
2132 	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
2133 	sgel->FlagsLength = cpu_to_le32(flags_length);
2134 	sgel->Address = cpu_to_le64(dma_addr);
2135 }
2136 
2137 /**
2138  * _base_get_chain_buffer_tracker - obtain chain tracker
2139  * @ioc: per adapter object
2140  * @scmd: SCSI commands of the IO request
2141  *
2142  * Return: chain tracker from chain_lookup table using key as
2143  * smid and smid's chain_offset.
2144  */
2145 static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)2146 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
2147 			       struct scsi_cmnd *scmd)
2148 {
2149 	struct chain_tracker *chain_req;
2150 	struct scsiio_tracker *st = scsi_cmd_priv(scmd);
2151 	u16 smid = st->smid;
2152 	u8 chain_offset =
2153 	   atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
2154 
2155 	if (chain_offset == ioc->chains_needed_per_io)
2156 		return NULL;
2157 
2158 	chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
2159 	atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
2160 	return chain_req;
2161 }
2162 
2163 
2164 /**
2165  * _base_build_sg - build generic sg
2166  * @ioc: per adapter object
2167  * @psge: virtual address for SGE
2168  * @data_out_dma: physical address for WRITES
2169  * @data_out_sz: data xfer size for WRITES
2170  * @data_in_dma: physical address for READS
2171  * @data_in_sz: data xfer size for READS
2172  */
2173 static void
_base_build_sg(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2174 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
2175 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2176 	size_t data_in_sz)
2177 {
2178 	u32 sgl_flags;
2179 
2180 	if (!data_out_sz && !data_in_sz) {
2181 		_base_build_zero_len_sge(ioc, psge);
2182 		return;
2183 	}
2184 
2185 	if (data_out_sz && data_in_sz) {
2186 		/* WRITE sgel first */
2187 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2188 		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
2189 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2190 		ioc->base_add_sg_single(psge, sgl_flags |
2191 		    data_out_sz, data_out_dma);
2192 
2193 		/* incr sgel */
2194 		psge += ioc->sge_size;
2195 
2196 		/* READ sgel last */
2197 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2198 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2199 		    MPI2_SGE_FLAGS_END_OF_LIST);
2200 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2201 		ioc->base_add_sg_single(psge, sgl_flags |
2202 		    data_in_sz, data_in_dma);
2203 	} else if (data_out_sz) /* WRITE */ {
2204 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2205 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2206 		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2207 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2208 		ioc->base_add_sg_single(psge, sgl_flags |
2209 		    data_out_sz, data_out_dma);
2210 	} else if (data_in_sz) /* READ */ {
2211 		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2212 		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2213 		    MPI2_SGE_FLAGS_END_OF_LIST);
2214 		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2215 		ioc->base_add_sg_single(psge, sgl_flags |
2216 		    data_in_sz, data_in_dma);
2217 	}
2218 }
2219 
2220 /* IEEE format sgls */
2221 
2222 /**
2223  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2224  *                        a native SGL (NVMe PRP).
2225  * @ioc: per adapter object
2226  * @smid: system request message index for getting asscociated SGL
2227  * @nvme_encap_request: the NVMe request msg frame pointer
2228  * @data_out_dma: physical address for WRITES
2229  * @data_out_sz: data xfer size for WRITES
2230  * @data_in_dma: physical address for READS
2231  * @data_in_sz: data xfer size for READS
2232  *
2233  * The native SGL is built starting in the first PRP
2234  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2235  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2236  * used to describe a larger data buffer.  If the data buffer is too large to
2237  * describe using the two PRP entriess inside the NVMe message, then PRP1
2238  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2239  * list located elsewhere in memory to describe the remaining data memory
2240  * segments.  The PRP list will be contiguous.
2241  *
2242  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2243  * consists of a list of PRP entries to describe a number of noncontigous
2244  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2245  * however, that this function is only used by the IOCTL call, so the memory
2246  * given will be guaranteed to be contiguous.  There is no need to translate
2247  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2248  * contiguous space that is one page size each.
2249  *
2250  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2251  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2252  * contains the second PRP element if the memory being described fits within 2
2253  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2254  *
2255  * A PRP list pointer contains the address of a PRP list, structured as a linear
2256  * array of PRP entries.  Each PRP entry in this list describes a segment of
2257  * physical memory.
2258  *
2259  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2260  * always points at the beginning of a 4KB physical memory page, and the offset
2261  * describes where within that 4KB page the memory segment begins.  Only the
2262  * first element in a PRP list may contain a non-zero offset, implying that all
2263  * memory segments following the first begin at the start of a 4KB page.
2264  *
2265  * Each PRP element normally describes 4KB of physical memory, with exceptions
2266  * for the first and last elements in the list.  If the memory being described
2267  * by the list begins at a non-zero offset within the first 4KB page, then the
2268  * first PRP element will contain a non-zero offset indicating where the region
2269  * begins within the 4KB page.  The last memory segment may end before the end
2270  * of the 4KB segment, depending upon the overall size of the memory being
2271  * described by the PRP list.
2272  *
2273  * Since PRP entries lack any indication of size, the overall data buffer length
2274  * is used to determine where the end of the data memory buffer is located, and
2275  * how many PRP entries are required to describe it.
2276  */
2277 static void
_base_build_nvme_prp(struct MPT3SAS_ADAPTER * ioc,u16 smid,Mpi26NVMeEncapsulatedRequest_t * nvme_encap_request,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2278 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2279 	Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2280 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2281 	size_t data_in_sz)
2282 {
2283 	int		prp_size = NVME_PRP_SIZE;
2284 	__le64		*prp_entry, *prp1_entry, *prp2_entry;
2285 	__le64		*prp_page;
2286 	dma_addr_t	prp_entry_dma, prp_page_dma, dma_addr;
2287 	u32		offset, entry_len;
2288 	u32		page_mask_result, page_mask;
2289 	size_t		length;
2290 	struct mpt3sas_nvme_cmd *nvme_cmd =
2291 		(void *)nvme_encap_request->NVMe_Command;
2292 
2293 	/*
2294 	 * Not all commands require a data transfer. If no data, just return
2295 	 * without constructing any PRP.
2296 	 */
2297 	if (!data_in_sz && !data_out_sz)
2298 		return;
2299 	prp1_entry = &nvme_cmd->prp1;
2300 	prp2_entry = &nvme_cmd->prp2;
2301 	prp_entry = prp1_entry;
2302 	/*
2303 	 * For the PRP entries, use the specially allocated buffer of
2304 	 * contiguous memory.
2305 	 */
2306 	prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2307 	prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2308 
2309 	/*
2310 	 * Check if we are within 1 entry of a page boundary we don't
2311 	 * want our first entry to be a PRP List entry.
2312 	 */
2313 	page_mask = ioc->page_size - 1;
2314 	page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2315 	if (!page_mask_result) {
2316 		/* Bump up to next page boundary. */
2317 		prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2318 		prp_page_dma = prp_page_dma + prp_size;
2319 	}
2320 
2321 	/*
2322 	 * Set PRP physical pointer, which initially points to the current PRP
2323 	 * DMA memory page.
2324 	 */
2325 	prp_entry_dma = prp_page_dma;
2326 
2327 	/* Get physical address and length of the data buffer. */
2328 	if (data_in_sz) {
2329 		dma_addr = data_in_dma;
2330 		length = data_in_sz;
2331 	} else {
2332 		dma_addr = data_out_dma;
2333 		length = data_out_sz;
2334 	}
2335 
2336 	/* Loop while the length is not zero. */
2337 	while (length) {
2338 		/*
2339 		 * Check if we need to put a list pointer here if we are at
2340 		 * page boundary - prp_size (8 bytes).
2341 		 */
2342 		page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2343 		if (!page_mask_result) {
2344 			/*
2345 			 * This is the last entry in a PRP List, so we need to
2346 			 * put a PRP list pointer here.  What this does is:
2347 			 *   - bump the current memory pointer to the next
2348 			 *     address, which will be the next full page.
2349 			 *   - set the PRP Entry to point to that page.  This
2350 			 *     is now the PRP List pointer.
2351 			 *   - bump the PRP Entry pointer the start of the
2352 			 *     next page.  Since all of this PRP memory is
2353 			 *     contiguous, no need to get a new page - it's
2354 			 *     just the next address.
2355 			 */
2356 			prp_entry_dma++;
2357 			*prp_entry = cpu_to_le64(prp_entry_dma);
2358 			prp_entry++;
2359 		}
2360 
2361 		/* Need to handle if entry will be part of a page. */
2362 		offset = dma_addr & page_mask;
2363 		entry_len = ioc->page_size - offset;
2364 
2365 		if (prp_entry == prp1_entry) {
2366 			/*
2367 			 * Must fill in the first PRP pointer (PRP1) before
2368 			 * moving on.
2369 			 */
2370 			*prp1_entry = cpu_to_le64(dma_addr);
2371 
2372 			/*
2373 			 * Now point to the second PRP entry within the
2374 			 * command (PRP2).
2375 			 */
2376 			prp_entry = prp2_entry;
2377 		} else if (prp_entry == prp2_entry) {
2378 			/*
2379 			 * Should the PRP2 entry be a PRP List pointer or just
2380 			 * a regular PRP pointer?  If there is more than one
2381 			 * more page of data, must use a PRP List pointer.
2382 			 */
2383 			if (length > ioc->page_size) {
2384 				/*
2385 				 * PRP2 will contain a PRP List pointer because
2386 				 * more PRP's are needed with this command. The
2387 				 * list will start at the beginning of the
2388 				 * contiguous buffer.
2389 				 */
2390 				*prp2_entry = cpu_to_le64(prp_entry_dma);
2391 
2392 				/*
2393 				 * The next PRP Entry will be the start of the
2394 				 * first PRP List.
2395 				 */
2396 				prp_entry = prp_page;
2397 			} else {
2398 				/*
2399 				 * After this, the PRP Entries are complete.
2400 				 * This command uses 2 PRP's and no PRP list.
2401 				 */
2402 				*prp2_entry = cpu_to_le64(dma_addr);
2403 			}
2404 		} else {
2405 			/*
2406 			 * Put entry in list and bump the addresses.
2407 			 *
2408 			 * After PRP1 and PRP2 are filled in, this will fill in
2409 			 * all remaining PRP entries in a PRP List, one per
2410 			 * each time through the loop.
2411 			 */
2412 			*prp_entry = cpu_to_le64(dma_addr);
2413 			prp_entry++;
2414 			prp_entry_dma++;
2415 		}
2416 
2417 		/*
2418 		 * Bump the phys address of the command's data buffer by the
2419 		 * entry_len.
2420 		 */
2421 		dma_addr += entry_len;
2422 
2423 		/* Decrement length accounting for last partial page. */
2424 		if (entry_len > length)
2425 			length = 0;
2426 		else
2427 			length -= entry_len;
2428 	}
2429 }
2430 
2431 /**
2432  * base_make_prp_nvme - Prepare PRPs (Physical Region Page) -
2433  *			SGLs specific to NVMe drives only
2434  *
2435  * @ioc:		per adapter object
2436  * @scmd:		SCSI command from the mid-layer
2437  * @mpi_request:	mpi request
2438  * @smid:		msg Index
2439  * @sge_count:		scatter gather element count.
2440  *
2441  * Return:		true: PRPs are built
2442  *			false: IEEE SGLs needs to be built
2443  */
2444 static void
base_make_prp_nvme(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,Mpi25SCSIIORequest_t * mpi_request,u16 smid,int sge_count)2445 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2446 		struct scsi_cmnd *scmd,
2447 		Mpi25SCSIIORequest_t *mpi_request,
2448 		u16 smid, int sge_count)
2449 {
2450 	int sge_len, num_prp_in_chain = 0;
2451 	Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2452 	__le64 *curr_buff;
2453 	dma_addr_t msg_dma, sge_addr, offset;
2454 	u32 page_mask, page_mask_result;
2455 	struct scatterlist *sg_scmd;
2456 	u32 first_prp_len;
2457 	int data_len = scsi_bufflen(scmd);
2458 	u32 nvme_pg_size;
2459 
2460 	nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2461 	/*
2462 	 * Nvme has a very convoluted prp format.  One prp is required
2463 	 * for each page or partial page. Driver need to split up OS sg_list
2464 	 * entries if it is longer than one page or cross a page
2465 	 * boundary.  Driver also have to insert a PRP list pointer entry as
2466 	 * the last entry in each physical page of the PRP list.
2467 	 *
2468 	 * NOTE: The first PRP "entry" is actually placed in the first
2469 	 * SGL entry in the main message as IEEE 64 format.  The 2nd
2470 	 * entry in the main message is the chain element, and the rest
2471 	 * of the PRP entries are built in the contiguous pcie buffer.
2472 	 */
2473 	page_mask = nvme_pg_size - 1;
2474 
2475 	/*
2476 	 * Native SGL is needed.
2477 	 * Put a chain element in main message frame that points to the first
2478 	 * chain buffer.
2479 	 *
2480 	 * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2481 	 *        a native SGL.
2482 	 */
2483 
2484 	/* Set main message chain element pointer */
2485 	main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2486 	/*
2487 	 * For NVMe the chain element needs to be the 2nd SG entry in the main
2488 	 * message.
2489 	 */
2490 	main_chain_element = (Mpi25IeeeSgeChain64_t *)
2491 		((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2492 
2493 	/*
2494 	 * For the PRP entries, use the specially allocated buffer of
2495 	 * contiguous memory.  Normal chain buffers can't be used
2496 	 * because each chain buffer would need to be the size of an OS
2497 	 * page (4k).
2498 	 */
2499 	curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2500 	msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2501 
2502 	main_chain_element->Address = cpu_to_le64(msg_dma);
2503 	main_chain_element->NextChainOffset = 0;
2504 	main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2505 			MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2506 			MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2507 
2508 	/* Build first prp, sge need not to be page aligned*/
2509 	ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2510 	sg_scmd = scsi_sglist(scmd);
2511 	sge_addr = sg_dma_address(sg_scmd);
2512 	sge_len = sg_dma_len(sg_scmd);
2513 
2514 	offset = sge_addr & page_mask;
2515 	first_prp_len = nvme_pg_size - offset;
2516 
2517 	ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2518 	ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2519 
2520 	data_len -= first_prp_len;
2521 
2522 	if (sge_len > first_prp_len) {
2523 		sge_addr += first_prp_len;
2524 		sge_len -= first_prp_len;
2525 	} else if (data_len && (sge_len == first_prp_len)) {
2526 		sg_scmd = sg_next(sg_scmd);
2527 		sge_addr = sg_dma_address(sg_scmd);
2528 		sge_len = sg_dma_len(sg_scmd);
2529 	}
2530 
2531 	for (;;) {
2532 		offset = sge_addr & page_mask;
2533 
2534 		/* Put PRP pointer due to page boundary*/
2535 		page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2536 		if (unlikely(!page_mask_result)) {
2537 			scmd_printk(KERN_NOTICE,
2538 				scmd, "page boundary curr_buff: 0x%p\n",
2539 				curr_buff);
2540 			msg_dma += 8;
2541 			*curr_buff = cpu_to_le64(msg_dma);
2542 			curr_buff++;
2543 			num_prp_in_chain++;
2544 		}
2545 
2546 		*curr_buff = cpu_to_le64(sge_addr);
2547 		curr_buff++;
2548 		msg_dma += 8;
2549 		num_prp_in_chain++;
2550 
2551 		sge_addr += nvme_pg_size;
2552 		sge_len -= nvme_pg_size;
2553 		data_len -= nvme_pg_size;
2554 
2555 		if (data_len <= 0)
2556 			break;
2557 
2558 		if (sge_len > 0)
2559 			continue;
2560 
2561 		sg_scmd = sg_next(sg_scmd);
2562 		sge_addr = sg_dma_address(sg_scmd);
2563 		sge_len = sg_dma_len(sg_scmd);
2564 	}
2565 
2566 	main_chain_element->Length =
2567 		cpu_to_le32(num_prp_in_chain * sizeof(u64));
2568 	return;
2569 }
2570 
2571 static bool
base_is_prp_possible(struct MPT3SAS_ADAPTER * ioc,struct _pcie_device * pcie_device,struct scsi_cmnd * scmd,int sge_count)2572 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2573 	struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2574 {
2575 	u32 data_length = 0;
2576 	bool build_prp = true;
2577 
2578 	data_length = scsi_bufflen(scmd);
2579 	if (pcie_device &&
2580 	    (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2581 		build_prp = false;
2582 		return build_prp;
2583 	}
2584 
2585 	/* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2586 	 * we built IEEE SGL
2587 	 */
2588 	if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2589 		build_prp = false;
2590 
2591 	return build_prp;
2592 }
2593 
2594 /**
2595  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2596  * determine if the driver needs to build a native SGL.  If so, that native
2597  * SGL is built in the special contiguous buffers allocated especially for
2598  * PCIe SGL creation.  If the driver will not build a native SGL, return
2599  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2600  * supports NVMe.
2601  * @ioc: per adapter object
2602  * @mpi_request: mf request pointer
2603  * @smid: system request message index
2604  * @scmd: scsi command
2605  * @pcie_device: points to the PCIe device's info
2606  *
2607  * Return: 0 if native SGL was built, 1 if no SGL was built
2608  */
2609 static int
_base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER * ioc,Mpi25SCSIIORequest_t * mpi_request,u16 smid,struct scsi_cmnd * scmd,struct _pcie_device * pcie_device)2610 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2611 	Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2612 	struct _pcie_device *pcie_device)
2613 {
2614 	int sges_left;
2615 
2616 	/* Get the SG list pointer and info. */
2617 	sges_left = scsi_dma_map(scmd);
2618 	if (sges_left < 0)
2619 		return 1;
2620 
2621 	/* Check if we need to build a native SG list. */
2622 	if (!base_is_prp_possible(ioc, pcie_device,
2623 				scmd, sges_left)) {
2624 		/* We built a native SG list, just return. */
2625 		goto out;
2626 	}
2627 
2628 	/*
2629 	 * Build native NVMe PRP.
2630 	 */
2631 	base_make_prp_nvme(ioc, scmd, mpi_request,
2632 			smid, sges_left);
2633 
2634 	return 0;
2635 out:
2636 	scsi_dma_unmap(scmd);
2637 	return 1;
2638 }
2639 
2640 /**
2641  * _base_add_sg_single_ieee - add sg element for IEEE format
2642  * @paddr: virtual address for SGE
2643  * @flags: SGE flags
2644  * @chain_offset: number of 128 byte elements from start of segment
2645  * @length: data transfer length
2646  * @dma_addr: Physical address
2647  */
2648 static void
_base_add_sg_single_ieee(void * paddr,u8 flags,u8 chain_offset,u32 length,dma_addr_t dma_addr)2649 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2650 	dma_addr_t dma_addr)
2651 {
2652 	Mpi25IeeeSgeChain64_t *sgel = paddr;
2653 
2654 	sgel->Flags = flags;
2655 	sgel->NextChainOffset = chain_offset;
2656 	sgel->Length = cpu_to_le32(length);
2657 	sgel->Address = cpu_to_le64(dma_addr);
2658 }
2659 
2660 /**
2661  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2662  * @ioc: per adapter object
2663  * @paddr: virtual address for SGE
2664  *
2665  * Create a zero length scatter gather entry to insure the IOCs hardware has
2666  * something to use if the target device goes brain dead and tries
2667  * to send data even when none is asked for.
2668  */
2669 static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER * ioc,void * paddr)2670 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2671 {
2672 	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2673 		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2674 		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2675 
2676 	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2677 }
2678 
_base_scsi_dma_map(struct scsi_cmnd * cmd)2679 static inline int _base_scsi_dma_map(struct scsi_cmnd *cmd)
2680 {
2681 	/*
2682 	 * Some firmware versions byte-swap the REPORT ZONES command reply from
2683 	 * ATA-ZAC devices by directly accessing in the host buffer. This does
2684 	 * not respect the default command DMA direction and causes IOMMU page
2685 	 * faults on some architectures with an IOMMU enforcing write mappings
2686 	 * (e.g. AMD hosts). Avoid such issue by making the report zones buffer
2687 	 * mapping bi-directional.
2688 	 */
2689 	if (cmd->cmnd[0] == ZBC_IN && cmd->cmnd[1] == ZI_REPORT_ZONES)
2690 		cmd->sc_data_direction = DMA_BIDIRECTIONAL;
2691 
2692 	return scsi_dma_map(cmd);
2693 }
2694 
2695 /**
2696  * _base_build_sg_scmd - main sg creation routine
2697  *		pcie_device is unused here!
2698  * @ioc: per adapter object
2699  * @scmd: scsi command
2700  * @smid: system request message index
2701  * @unused: unused pcie_device pointer
2702  * Context: none.
2703  *
2704  * The main routine that builds scatter gather table from a given
2705  * scsi request sent via the .queuecommand main handler.
2706  *
2707  * Return: 0 success, anything else error
2708  */
2709 static int
_base_build_sg_scmd(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * unused)2710 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2711 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2712 {
2713 	Mpi2SCSIIORequest_t *mpi_request;
2714 	dma_addr_t chain_dma;
2715 	struct scatterlist *sg_scmd;
2716 	void *sg_local, *chain;
2717 	u32 chain_offset;
2718 	u32 chain_length;
2719 	u32 chain_flags;
2720 	int sges_left;
2721 	u32 sges_in_segment;
2722 	u32 sgl_flags;
2723 	u32 sgl_flags_last_element;
2724 	u32 sgl_flags_end_buffer;
2725 	struct chain_tracker *chain_req;
2726 
2727 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2728 
2729 	/* init scatter gather flags */
2730 	sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2731 	if (scmd->sc_data_direction == DMA_TO_DEVICE)
2732 		sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2733 	sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2734 	    << MPI2_SGE_FLAGS_SHIFT;
2735 	sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2736 	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2737 	    << MPI2_SGE_FLAGS_SHIFT;
2738 	sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2739 
2740 	sg_scmd = scsi_sglist(scmd);
2741 	sges_left = _base_scsi_dma_map(scmd);
2742 	if (sges_left < 0)
2743 		return -ENOMEM;
2744 
2745 	sg_local = &mpi_request->SGL;
2746 	sges_in_segment = ioc->max_sges_in_main_message;
2747 	if (sges_left <= sges_in_segment)
2748 		goto fill_in_last_segment;
2749 
2750 	mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2751 	    (sges_in_segment * ioc->sge_size))/4;
2752 
2753 	/* fill in main message segment when there is a chain following */
2754 	while (sges_in_segment) {
2755 		if (sges_in_segment == 1)
2756 			ioc->base_add_sg_single(sg_local,
2757 			    sgl_flags_last_element | sg_dma_len(sg_scmd),
2758 			    sg_dma_address(sg_scmd));
2759 		else
2760 			ioc->base_add_sg_single(sg_local, sgl_flags |
2761 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2762 		sg_scmd = sg_next(sg_scmd);
2763 		sg_local += ioc->sge_size;
2764 		sges_left--;
2765 		sges_in_segment--;
2766 	}
2767 
2768 	/* initializing the chain flags and pointers */
2769 	chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2770 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2771 	if (!chain_req)
2772 		return -1;
2773 	chain = chain_req->chain_buffer;
2774 	chain_dma = chain_req->chain_buffer_dma;
2775 	do {
2776 		sges_in_segment = (sges_left <=
2777 		    ioc->max_sges_in_chain_message) ? sges_left :
2778 		    ioc->max_sges_in_chain_message;
2779 		chain_offset = (sges_left == sges_in_segment) ?
2780 		    0 : (sges_in_segment * ioc->sge_size)/4;
2781 		chain_length = sges_in_segment * ioc->sge_size;
2782 		if (chain_offset) {
2783 			chain_offset = chain_offset <<
2784 			    MPI2_SGE_CHAIN_OFFSET_SHIFT;
2785 			chain_length += ioc->sge_size;
2786 		}
2787 		ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2788 		    chain_length, chain_dma);
2789 		sg_local = chain;
2790 		if (!chain_offset)
2791 			goto fill_in_last_segment;
2792 
2793 		/* fill in chain segments */
2794 		while (sges_in_segment) {
2795 			if (sges_in_segment == 1)
2796 				ioc->base_add_sg_single(sg_local,
2797 				    sgl_flags_last_element |
2798 				    sg_dma_len(sg_scmd),
2799 				    sg_dma_address(sg_scmd));
2800 			else
2801 				ioc->base_add_sg_single(sg_local, sgl_flags |
2802 				    sg_dma_len(sg_scmd),
2803 				    sg_dma_address(sg_scmd));
2804 			sg_scmd = sg_next(sg_scmd);
2805 			sg_local += ioc->sge_size;
2806 			sges_left--;
2807 			sges_in_segment--;
2808 		}
2809 
2810 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2811 		if (!chain_req)
2812 			return -1;
2813 		chain = chain_req->chain_buffer;
2814 		chain_dma = chain_req->chain_buffer_dma;
2815 	} while (1);
2816 
2817 
2818  fill_in_last_segment:
2819 
2820 	/* fill the last segment */
2821 	while (sges_left) {
2822 		if (sges_left == 1)
2823 			ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2824 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2825 		else
2826 			ioc->base_add_sg_single(sg_local, sgl_flags |
2827 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2828 		sg_scmd = sg_next(sg_scmd);
2829 		sg_local += ioc->sge_size;
2830 		sges_left--;
2831 	}
2832 
2833 	return 0;
2834 }
2835 
2836 /**
2837  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2838  * @ioc: per adapter object
2839  * @scmd: scsi command
2840  * @smid: system request message index
2841  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2842  * constructed on need.
2843  * Context: none.
2844  *
2845  * The main routine that builds scatter gather table from a given
2846  * scsi request sent via the .queuecommand main handler.
2847  *
2848  * Return: 0 success, anything else error
2849  */
2850 static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd,u16 smid,struct _pcie_device * pcie_device)2851 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2852 	struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2853 {
2854 	Mpi25SCSIIORequest_t *mpi_request;
2855 	dma_addr_t chain_dma;
2856 	struct scatterlist *sg_scmd;
2857 	void *sg_local, *chain;
2858 	u32 chain_offset;
2859 	u32 chain_length;
2860 	int sges_left;
2861 	u32 sges_in_segment;
2862 	u8 simple_sgl_flags;
2863 	u8 simple_sgl_flags_last;
2864 	u8 chain_sgl_flags;
2865 	struct chain_tracker *chain_req;
2866 
2867 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2868 
2869 	/* init scatter gather flags */
2870 	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2871 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2872 	simple_sgl_flags_last = simple_sgl_flags |
2873 	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2874 	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2875 	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2876 
2877 	/* Check if we need to build a native SG list. */
2878 	if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2879 			smid, scmd, pcie_device) == 0)) {
2880 		/* We built a native SG list, just return. */
2881 		return 0;
2882 	}
2883 
2884 	sg_scmd = scsi_sglist(scmd);
2885 	sges_left = _base_scsi_dma_map(scmd);
2886 	if (sges_left < 0)
2887 		return -ENOMEM;
2888 
2889 	sg_local = &mpi_request->SGL;
2890 	sges_in_segment = (ioc->request_sz -
2891 		   offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2892 	if (sges_left <= sges_in_segment)
2893 		goto fill_in_last_segment;
2894 
2895 	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2896 	    (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2897 
2898 	/* fill in main message segment when there is a chain following */
2899 	while (sges_in_segment > 1) {
2900 		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2901 		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2902 		sg_scmd = sg_next(sg_scmd);
2903 		sg_local += ioc->sge_size_ieee;
2904 		sges_left--;
2905 		sges_in_segment--;
2906 	}
2907 
2908 	/* initializing the pointers */
2909 	chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2910 	if (!chain_req)
2911 		return -1;
2912 	chain = chain_req->chain_buffer;
2913 	chain_dma = chain_req->chain_buffer_dma;
2914 	do {
2915 		sges_in_segment = (sges_left <=
2916 		    ioc->max_sges_in_chain_message) ? sges_left :
2917 		    ioc->max_sges_in_chain_message;
2918 		chain_offset = (sges_left == sges_in_segment) ?
2919 		    0 : sges_in_segment;
2920 		chain_length = sges_in_segment * ioc->sge_size_ieee;
2921 		if (chain_offset)
2922 			chain_length += ioc->sge_size_ieee;
2923 		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2924 		    chain_offset, chain_length, chain_dma);
2925 
2926 		sg_local = chain;
2927 		if (!chain_offset)
2928 			goto fill_in_last_segment;
2929 
2930 		/* fill in chain segments */
2931 		while (sges_in_segment) {
2932 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2933 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2934 			sg_scmd = sg_next(sg_scmd);
2935 			sg_local += ioc->sge_size_ieee;
2936 			sges_left--;
2937 			sges_in_segment--;
2938 		}
2939 
2940 		chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2941 		if (!chain_req)
2942 			return -1;
2943 		chain = chain_req->chain_buffer;
2944 		chain_dma = chain_req->chain_buffer_dma;
2945 	} while (1);
2946 
2947 
2948  fill_in_last_segment:
2949 
2950 	/* fill the last segment */
2951 	while (sges_left > 0) {
2952 		if (sges_left == 1)
2953 			_base_add_sg_single_ieee(sg_local,
2954 			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2955 			    sg_dma_address(sg_scmd));
2956 		else
2957 			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2958 			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2959 		sg_scmd = sg_next(sg_scmd);
2960 		sg_local += ioc->sge_size_ieee;
2961 		sges_left--;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 /**
2968  * _base_build_sg_ieee - build generic sg for IEEE format
2969  * @ioc: per adapter object
2970  * @psge: virtual address for SGE
2971  * @data_out_dma: physical address for WRITES
2972  * @data_out_sz: data xfer size for WRITES
2973  * @data_in_dma: physical address for READS
2974  * @data_in_sz: data xfer size for READS
2975  */
2976 static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER * ioc,void * psge,dma_addr_t data_out_dma,size_t data_out_sz,dma_addr_t data_in_dma,size_t data_in_sz)2977 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2978 	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2979 	size_t data_in_sz)
2980 {
2981 	u8 sgl_flags;
2982 
2983 	if (!data_out_sz && !data_in_sz) {
2984 		_base_build_zero_len_sge_ieee(ioc, psge);
2985 		return;
2986 	}
2987 
2988 	if (data_out_sz && data_in_sz) {
2989 		/* WRITE sgel first */
2990 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2991 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2992 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2993 		    data_out_dma);
2994 
2995 		/* incr sgel */
2996 		psge += ioc->sge_size_ieee;
2997 
2998 		/* READ sgel last */
2999 		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
3000 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
3001 		    data_in_dma);
3002 	} else if (data_out_sz) /* WRITE */ {
3003 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3004 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
3005 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
3006 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
3007 		    data_out_dma);
3008 	} else if (data_in_sz) /* READ */ {
3009 		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
3010 		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
3011 		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
3012 		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
3013 		    data_in_dma);
3014 	}
3015 }
3016 
3017 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
3018 
3019 /**
3020  * _base_config_dma_addressing - set dma addressing
3021  * @ioc: per adapter object
3022  * @pdev: PCI device struct
3023  *
3024  * Return: 0 for success, non-zero for failure.
3025  */
3026 static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER * ioc,struct pci_dev * pdev)3027 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
3028 {
3029 	struct sysinfo s;
3030 	u64 coherent_dma_mask, dma_mask;
3031 
3032 	if (ioc->is_mcpu_endpoint || sizeof(dma_addr_t) == 4) {
3033 		ioc->dma_mask = 32;
3034 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(32);
3035 	/* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
3036 	} else if (ioc->hba_mpi_version_belonged > MPI2_VERSION) {
3037 		ioc->dma_mask = 63;
3038 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(63);
3039 	} else {
3040 		ioc->dma_mask = 64;
3041 		coherent_dma_mask = dma_mask = DMA_BIT_MASK(64);
3042 	}
3043 
3044 	if (ioc->use_32bit_dma)
3045 		coherent_dma_mask = DMA_BIT_MASK(32);
3046 
3047 	if (dma_set_mask(&pdev->dev, dma_mask) ||
3048 	    dma_set_coherent_mask(&pdev->dev, coherent_dma_mask))
3049 		return -ENODEV;
3050 
3051 	if (ioc->dma_mask > 32) {
3052 		ioc->base_add_sg_single = &_base_add_sg_single_64;
3053 		ioc->sge_size = sizeof(Mpi2SGESimple64_t);
3054 	} else {
3055 		ioc->base_add_sg_single = &_base_add_sg_single_32;
3056 		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
3057 	}
3058 
3059 	si_meminfo(&s);
3060 	ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
3061 		ioc->dma_mask, convert_to_kb(s.totalram));
3062 
3063 	return 0;
3064 }
3065 
3066 /**
3067  * _base_check_enable_msix - checks MSIX capabable.
3068  * @ioc: per adapter object
3069  *
3070  * Check to see if card is capable of MSIX, and set number
3071  * of available msix vectors
3072  */
3073 static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER * ioc)3074 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3075 {
3076 	int base;
3077 	u16 message_control;
3078 
3079 	/* Check whether controller SAS2008 B0 controller,
3080 	 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
3081 	 */
3082 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
3083 	    ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
3084 		return -EINVAL;
3085 	}
3086 
3087 	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
3088 	if (!base) {
3089 		dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
3090 		return -EINVAL;
3091 	}
3092 
3093 	/* get msix vector count */
3094 	/* NUMA_IO not supported for older controllers */
3095 	if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
3096 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
3097 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
3098 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
3099 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
3100 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
3101 	    ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
3102 		ioc->msix_vector_count = 1;
3103 	else {
3104 		pci_read_config_word(ioc->pdev, base + 2, &message_control);
3105 		ioc->msix_vector_count = (message_control & 0x3FF) + 1;
3106 	}
3107 	dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
3108 				  ioc->msix_vector_count));
3109 	return 0;
3110 }
3111 
3112 /**
3113  * mpt3sas_base_free_irq - free irq
3114  * @ioc: per adapter object
3115  *
3116  * Freeing respective reply_queue from the list.
3117  */
3118 void
mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER * ioc)3119 mpt3sas_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
3120 {
3121 	unsigned int irq;
3122 	struct adapter_reply_queue *reply_q, *next;
3123 
3124 	if (list_empty(&ioc->reply_queue_list))
3125 		return;
3126 
3127 	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
3128 		list_del(&reply_q->list);
3129 		if (reply_q->is_iouring_poll_q) {
3130 			kfree(reply_q);
3131 			continue;
3132 		}
3133 
3134 		if (ioc->smp_affinity_enable) {
3135 			irq = pci_irq_vector(ioc->pdev, reply_q->msix_index);
3136 			irq_update_affinity_hint(irq, NULL);
3137 		}
3138 		free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
3139 			 reply_q);
3140 		kfree(reply_q);
3141 	}
3142 }
3143 
3144 /**
3145  * _base_request_irq - request irq
3146  * @ioc: per adapter object
3147  * @index: msix index into vector table
3148  *
3149  * Inserting respective reply_queue into the list.
3150  */
3151 static int
_base_request_irq(struct MPT3SAS_ADAPTER * ioc,u8 index)3152 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
3153 {
3154 	struct pci_dev *pdev = ioc->pdev;
3155 	struct adapter_reply_queue *reply_q;
3156 	int r, qid;
3157 
3158 	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
3159 	if (!reply_q) {
3160 		ioc_err(ioc, "unable to allocate memory %zu!\n",
3161 			sizeof(struct adapter_reply_queue));
3162 		return -ENOMEM;
3163 	}
3164 	reply_q->ioc = ioc;
3165 	reply_q->msix_index = index;
3166 
3167 	atomic_set(&reply_q->busy, 0);
3168 
3169 	if (index >= ioc->iopoll_q_start_index) {
3170 		qid = index - ioc->iopoll_q_start_index;
3171 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-mq-poll%d",
3172 		    ioc->driver_name, ioc->id, qid);
3173 		reply_q->is_iouring_poll_q = 1;
3174 		ioc->io_uring_poll_queues[qid].reply_q = reply_q;
3175 		goto out;
3176 	}
3177 
3178 
3179 	if (ioc->msix_enable)
3180 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
3181 		    ioc->driver_name, ioc->id, index);
3182 	else
3183 		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
3184 		    ioc->driver_name, ioc->id);
3185 	r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
3186 			IRQF_SHARED, reply_q->name, reply_q);
3187 	if (r) {
3188 		pr_err("%s: unable to allocate interrupt %d!\n",
3189 		       reply_q->name, pci_irq_vector(pdev, index));
3190 		kfree(reply_q);
3191 		return -EBUSY;
3192 	}
3193 out:
3194 	INIT_LIST_HEAD(&reply_q->list);
3195 	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
3196 	return 0;
3197 }
3198 
3199 /**
3200  * _base_assign_reply_queues - assigning msix index for each cpu
3201  * @ioc: per adapter object
3202  *
3203  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
3204  */
3205 static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER * ioc)3206 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
3207 {
3208 	unsigned int cpu, nr_cpus, nr_msix, index = 0, irq;
3209 	struct adapter_reply_queue *reply_q;
3210 	int iopoll_q_count = ioc->reply_queue_count -
3211 	    ioc->iopoll_q_start_index;
3212 	const struct cpumask *mask;
3213 
3214 	if (!_base_is_controller_msix_enabled(ioc))
3215 		return;
3216 
3217 	if (ioc->msix_load_balance)
3218 		return;
3219 
3220 	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
3221 
3222 	nr_cpus = num_online_cpus();
3223 	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
3224 					       ioc->facts.MaxMSIxVectors);
3225 	if (!nr_msix)
3226 		return;
3227 
3228 	if (ioc->smp_affinity_enable) {
3229 
3230 		/*
3231 		 * set irq affinity to local numa node for those irqs
3232 		 * corresponding to high iops queues.
3233 		 */
3234 		if (ioc->high_iops_queues) {
3235 			mask = cpumask_of_node(dev_to_node(&ioc->pdev->dev));
3236 			for (index = 0; index < ioc->high_iops_queues;
3237 			    index++) {
3238 				irq = pci_irq_vector(ioc->pdev, index);
3239 				irq_set_affinity_and_hint(irq, mask);
3240 			}
3241 		}
3242 
3243 		list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3244 			const cpumask_t *mask;
3245 
3246 			if (reply_q->msix_index < ioc->high_iops_queues ||
3247 			    reply_q->msix_index >= ioc->iopoll_q_start_index)
3248 				continue;
3249 
3250 			mask = pci_irq_get_affinity(ioc->pdev,
3251 			    reply_q->msix_index);
3252 			if (!mask) {
3253 				ioc_warn(ioc, "no affinity for msi %x\n",
3254 					 reply_q->msix_index);
3255 				goto fall_back;
3256 			}
3257 
3258 			for_each_cpu_and(cpu, mask, cpu_online_mask) {
3259 				if (cpu >= ioc->cpu_msix_table_sz)
3260 					break;
3261 				ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3262 			}
3263 		}
3264 		return;
3265 	}
3266 
3267 fall_back:
3268 	cpu = cpumask_first(cpu_online_mask);
3269 	nr_msix -= (ioc->high_iops_queues - iopoll_q_count);
3270 	index = 0;
3271 
3272 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3273 		unsigned int i, group = nr_cpus / nr_msix;
3274 
3275 		if (reply_q->msix_index < ioc->high_iops_queues ||
3276 		    reply_q->msix_index >= ioc->iopoll_q_start_index)
3277 			continue;
3278 
3279 		if (cpu >= nr_cpus)
3280 			break;
3281 
3282 		if (index < nr_cpus % nr_msix)
3283 			group++;
3284 
3285 		for (i = 0 ; i < group ; i++) {
3286 			ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3287 			cpu = cpumask_next(cpu, cpu_online_mask);
3288 		}
3289 		index++;
3290 	}
3291 }
3292 
3293 /**
3294  * _base_check_and_enable_high_iops_queues - enable high iops mode
3295  * @ioc: per adapter object
3296  * @hba_msix_vector_count: msix vectors supported by HBA
3297  *
3298  * Enable high iops queues only if
3299  *  - HBA is a SEA/AERO controller and
3300  *  - MSI-Xs vector supported by the HBA is 128 and
3301  *  - total CPU count in the system >=16 and
3302  *  - loaded driver with default max_msix_vectors module parameter and
3303  *  - system booted in non kdump mode
3304  *
3305  * Return: nothing.
3306  */
3307 static void
_base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER * ioc,int hba_msix_vector_count)3308 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3309 		int hba_msix_vector_count)
3310 {
3311 	u16 lnksta, speed;
3312 
3313 	/*
3314 	 * Disable high iops queues if io uring poll queues are enabled.
3315 	 */
3316 	if (perf_mode == MPT_PERF_MODE_IOPS ||
3317 	    perf_mode == MPT_PERF_MODE_LATENCY ||
3318 	    ioc->io_uring_poll_queues) {
3319 		ioc->high_iops_queues = 0;
3320 		return;
3321 	}
3322 
3323 	if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3324 
3325 		pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3326 		speed = lnksta & PCI_EXP_LNKSTA_CLS;
3327 
3328 		if (speed < 0x4) {
3329 			ioc->high_iops_queues = 0;
3330 			return;
3331 		}
3332 	}
3333 
3334 	if (!reset_devices && ioc->is_aero_ioc &&
3335 	    hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3336 	    num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3337 	    max_msix_vectors == -1)
3338 		ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3339 	else
3340 		ioc->high_iops_queues = 0;
3341 }
3342 
3343 /**
3344  * mpt3sas_base_disable_msix - disables msix
3345  * @ioc: per adapter object
3346  *
3347  */
3348 void
mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER * ioc)3349 mpt3sas_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3350 {
3351 	if (!ioc->msix_enable)
3352 		return;
3353 	pci_free_irq_vectors(ioc->pdev);
3354 	ioc->msix_enable = 0;
3355 	kfree(ioc->io_uring_poll_queues);
3356 }
3357 
3358 /**
3359  * _base_alloc_irq_vectors - allocate msix vectors
3360  * @ioc: per adapter object
3361  *
3362  */
3363 static int
_base_alloc_irq_vectors(struct MPT3SAS_ADAPTER * ioc)3364 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3365 {
3366 	int i, irq_flags = PCI_IRQ_MSIX;
3367 	struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3368 	struct irq_affinity *descp = &desc;
3369 	/*
3370 	 * Don't allocate msix vectors for poll_queues.
3371 	 * msix_vectors is always within a range of FW supported reply queue.
3372 	 */
3373 	int nr_msix_vectors = ioc->iopoll_q_start_index;
3374 
3375 
3376 	if (ioc->smp_affinity_enable)
3377 		irq_flags |= PCI_IRQ_AFFINITY | PCI_IRQ_ALL_TYPES;
3378 	else
3379 		descp = NULL;
3380 
3381 	ioc_info(ioc, " %d %d %d\n", ioc->high_iops_queues,
3382 	    ioc->reply_queue_count, nr_msix_vectors);
3383 
3384 	i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3385 	    ioc->high_iops_queues,
3386 	    nr_msix_vectors, irq_flags, descp);
3387 
3388 	return i;
3389 }
3390 
3391 /**
3392  * _base_enable_msix - enables msix, failback to io_apic
3393  * @ioc: per adapter object
3394  *
3395  */
3396 static int
_base_enable_msix(struct MPT3SAS_ADAPTER * ioc)3397 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3398 {
3399 	int r;
3400 	int i, local_max_msix_vectors;
3401 	u8 try_msix = 0;
3402 	int iopoll_q_count = 0;
3403 
3404 	ioc->msix_load_balance = false;
3405 
3406 	if (msix_disable == -1 || msix_disable == 0)
3407 		try_msix = 1;
3408 
3409 	if (!try_msix)
3410 		goto try_ioapic;
3411 
3412 	if (_base_check_enable_msix(ioc) != 0)
3413 		goto try_ioapic;
3414 
3415 	ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3416 	pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3417 		ioc->cpu_count, max_msix_vectors);
3418 
3419 	ioc->reply_queue_count =
3420 		min_t(int, ioc->cpu_count, ioc->msix_vector_count);
3421 
3422 	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3423 		local_max_msix_vectors = (reset_devices) ? 1 : 8;
3424 	else
3425 		local_max_msix_vectors = max_msix_vectors;
3426 
3427 	if (local_max_msix_vectors == 0)
3428 		goto try_ioapic;
3429 
3430 	/*
3431 	 * Enable msix_load_balance only if combined reply queue mode is
3432 	 * disabled on SAS3 & above generation HBA devices.
3433 	 */
3434 	if (!ioc->combined_reply_queue &&
3435 	    ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3436 		ioc_info(ioc,
3437 		    "combined ReplyQueue is off, Enabling msix load balance\n");
3438 		ioc->msix_load_balance = true;
3439 	}
3440 
3441 	/*
3442 	 * smp affinity setting is not need when msix load balance
3443 	 * is enabled.
3444 	 */
3445 	if (ioc->msix_load_balance)
3446 		ioc->smp_affinity_enable = 0;
3447 
3448 	if (!ioc->smp_affinity_enable || ioc->reply_queue_count <= 1)
3449 		ioc->shost->host_tagset = 0;
3450 
3451 	/*
3452 	 * Enable io uring poll queues only if host_tagset is enabled.
3453 	 */
3454 	if (ioc->shost->host_tagset)
3455 		iopoll_q_count = poll_queues;
3456 
3457 	if (iopoll_q_count) {
3458 		ioc->io_uring_poll_queues = kcalloc(iopoll_q_count,
3459 		    sizeof(struct io_uring_poll_queue), GFP_KERNEL);
3460 		if (!ioc->io_uring_poll_queues)
3461 			iopoll_q_count = 0;
3462 	}
3463 
3464 	if (ioc->is_aero_ioc)
3465 		_base_check_and_enable_high_iops_queues(ioc,
3466 		    ioc->msix_vector_count);
3467 
3468 	/*
3469 	 * Add high iops queues count to reply queue count if high iops queues
3470 	 * are enabled.
3471 	 */
3472 	ioc->reply_queue_count = min_t(int,
3473 	    ioc->reply_queue_count + ioc->high_iops_queues,
3474 	    ioc->msix_vector_count);
3475 
3476 	/*
3477 	 * Adjust the reply queue count incase reply queue count
3478 	 * exceeds the user provided MSIx vectors count.
3479 	 */
3480 	if (local_max_msix_vectors > 0)
3481 		ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3482 		    ioc->reply_queue_count);
3483 	/*
3484 	 * Add io uring poll queues count to reply queues count
3485 	 * if io uring is enabled in driver.
3486 	 */
3487 	if (iopoll_q_count) {
3488 		if (ioc->reply_queue_count < (iopoll_q_count + MPT3_MIN_IRQS))
3489 			iopoll_q_count = 0;
3490 		ioc->reply_queue_count = min_t(int,
3491 		    ioc->reply_queue_count + iopoll_q_count,
3492 		    ioc->msix_vector_count);
3493 	}
3494 
3495 	/*
3496 	 * Starting index of io uring poll queues in reply queue list.
3497 	 */
3498 	ioc->iopoll_q_start_index =
3499 	    ioc->reply_queue_count - iopoll_q_count;
3500 
3501 	r = _base_alloc_irq_vectors(ioc);
3502 	if (r < 0) {
3503 		ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3504 		goto try_ioapic;
3505 	}
3506 
3507 	/*
3508 	 * Adjust the reply queue count if the allocated
3509 	 * MSIx vectors is less then the requested number
3510 	 * of MSIx vectors.
3511 	 */
3512 	if (r < ioc->iopoll_q_start_index) {
3513 		ioc->reply_queue_count = r + iopoll_q_count;
3514 		ioc->iopoll_q_start_index =
3515 		    ioc->reply_queue_count - iopoll_q_count;
3516 	}
3517 
3518 	ioc->msix_enable = 1;
3519 	for (i = 0; i < ioc->reply_queue_count; i++) {
3520 		r = _base_request_irq(ioc, i);
3521 		if (r) {
3522 			mpt3sas_base_free_irq(ioc);
3523 			mpt3sas_base_disable_msix(ioc);
3524 			goto try_ioapic;
3525 		}
3526 	}
3527 
3528 	ioc_info(ioc, "High IOPs queues : %s\n",
3529 			ioc->high_iops_queues ? "enabled" : "disabled");
3530 
3531 	return 0;
3532 
3533 /* failback to io_apic interrupt routing */
3534  try_ioapic:
3535 	ioc->high_iops_queues = 0;
3536 	ioc_info(ioc, "High IOPs queues : disabled\n");
3537 	ioc->reply_queue_count = 1;
3538 	ioc->iopoll_q_start_index = ioc->reply_queue_count - 0;
3539 	r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_INTX);
3540 	if (r < 0) {
3541 		dfailprintk(ioc,
3542 			    ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3543 				     r));
3544 	} else
3545 		r = _base_request_irq(ioc, 0);
3546 
3547 	return r;
3548 }
3549 
3550 /**
3551  * mpt3sas_base_unmap_resources - free controller resources
3552  * @ioc: per adapter object
3553  */
3554 static void
mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER * ioc)3555 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3556 {
3557 	struct pci_dev *pdev = ioc->pdev;
3558 
3559 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3560 
3561 	mpt3sas_base_free_irq(ioc);
3562 	mpt3sas_base_disable_msix(ioc);
3563 
3564 	kfree(ioc->replyPostRegisterIndex);
3565 	ioc->replyPostRegisterIndex = NULL;
3566 
3567 
3568 	if (ioc->chip_phys) {
3569 		iounmap(ioc->chip);
3570 		ioc->chip_phys = 0;
3571 	}
3572 
3573 	if (pci_is_enabled(pdev)) {
3574 		pci_release_selected_regions(ioc->pdev, ioc->bars);
3575 		pci_disable_device(pdev);
3576 	}
3577 }
3578 
3579 static int
3580 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3581 
3582 /**
3583  * mpt3sas_base_check_for_fault_and_issue_reset - check if IOC is in fault state
3584  *     and if it is in fault state then issue diag reset.
3585  * @ioc: per adapter object
3586  *
3587  * Return: 0 for success, non-zero for failure.
3588  */
3589 int
mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER * ioc)3590 mpt3sas_base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3591 {
3592 	u32 ioc_state;
3593 	int rc = -EFAULT;
3594 
3595 	dinitprintk(ioc, pr_info("%s\n", __func__));
3596 	if (ioc->pci_error_recovery)
3597 		return 0;
3598 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3599 	dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3600 
3601 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3602 		mpt3sas_print_fault_code(ioc, ioc_state &
3603 		    MPI2_DOORBELL_DATA_MASK);
3604 		mpt3sas_base_mask_interrupts(ioc);
3605 		rc = _base_diag_reset(ioc);
3606 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3607 	    MPI2_IOC_STATE_COREDUMP) {
3608 		mpt3sas_print_coredump_info(ioc, ioc_state &
3609 		     MPI2_DOORBELL_DATA_MASK);
3610 		mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3611 		mpt3sas_base_mask_interrupts(ioc);
3612 		rc = _base_diag_reset(ioc);
3613 	}
3614 
3615 	return rc;
3616 }
3617 
3618 /**
3619  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3620  * @ioc: per adapter object
3621  *
3622  * Return: 0 for success, non-zero for failure.
3623  */
3624 int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER * ioc)3625 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3626 {
3627 	struct pci_dev *pdev = ioc->pdev;
3628 	u32 memap_sz;
3629 	u32 pio_sz;
3630 	int i, r = 0, rc;
3631 	u64 pio_chip = 0;
3632 	phys_addr_t chip_phys = 0;
3633 	struct adapter_reply_queue *reply_q;
3634 	int iopoll_q_count = 0;
3635 
3636 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3637 
3638 	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3639 	if (pci_enable_device_mem(pdev)) {
3640 		ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3641 		ioc->bars = 0;
3642 		return -ENODEV;
3643 	}
3644 
3645 
3646 	if (pci_request_selected_regions(pdev, ioc->bars,
3647 	    ioc->driver_name)) {
3648 		ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3649 		ioc->bars = 0;
3650 		r = -ENODEV;
3651 		goto out_fail;
3652 	}
3653 
3654 	pci_set_master(pdev);
3655 
3656 
3657 	if (_base_config_dma_addressing(ioc, pdev) != 0) {
3658 		ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3659 		r = -ENODEV;
3660 		goto out_fail;
3661 	}
3662 
3663 	for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3664 	     (!memap_sz || !pio_sz); i++) {
3665 		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3666 			if (pio_sz)
3667 				continue;
3668 			pio_chip = (u64)pci_resource_start(pdev, i);
3669 			pio_sz = pci_resource_len(pdev, i);
3670 		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3671 			if (memap_sz)
3672 				continue;
3673 			ioc->chip_phys = pci_resource_start(pdev, i);
3674 			chip_phys = ioc->chip_phys;
3675 			memap_sz = pci_resource_len(pdev, i);
3676 			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3677 		}
3678 	}
3679 
3680 	if (ioc->chip == NULL) {
3681 		ioc_err(ioc,
3682 		    "unable to map adapter memory! or resource not found\n");
3683 		r = -EINVAL;
3684 		goto out_fail;
3685 	}
3686 
3687 	mpt3sas_base_mask_interrupts(ioc);
3688 
3689 	r = _base_get_ioc_facts(ioc);
3690 	if (r) {
3691 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
3692 		if (rc || (_base_get_ioc_facts(ioc)))
3693 			goto out_fail;
3694 	}
3695 
3696 	if (!ioc->rdpq_array_enable_assigned) {
3697 		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3698 		ioc->rdpq_array_enable_assigned = 1;
3699 	}
3700 
3701 	r = _base_enable_msix(ioc);
3702 	if (r)
3703 		goto out_fail;
3704 
3705 	iopoll_q_count = ioc->reply_queue_count - ioc->iopoll_q_start_index;
3706 	for (i = 0; i < iopoll_q_count; i++) {
3707 		atomic_set(&ioc->io_uring_poll_queues[i].busy, 0);
3708 		atomic_set(&ioc->io_uring_poll_queues[i].pause, 0);
3709 	}
3710 
3711 	if (!ioc->is_driver_loading)
3712 		_base_init_irqpolls(ioc);
3713 	/* Use the Combined reply queue feature only for SAS3 C0 & higher
3714 	 * revision HBAs and also only when reply queue count is greater than 8
3715 	 */
3716 	if (ioc->combined_reply_queue) {
3717 		/* Determine the Supplemental Reply Post Host Index Registers
3718 		 * Addresse. Supplemental Reply Post Host Index Registers
3719 		 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3720 		 * each register is at offset bytes of
3721 		 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3722 		 */
3723 		ioc->replyPostRegisterIndex = kcalloc(
3724 		     ioc->combined_reply_index_count,
3725 		     sizeof(resource_size_t *), GFP_KERNEL);
3726 		if (!ioc->replyPostRegisterIndex) {
3727 			ioc_err(ioc,
3728 			    "allocation for replyPostRegisterIndex failed!\n");
3729 			r = -ENOMEM;
3730 			goto out_fail;
3731 		}
3732 
3733 		for (i = 0; i < ioc->combined_reply_index_count; i++) {
3734 			ioc->replyPostRegisterIndex[i] =
3735 				(resource_size_t __iomem *)
3736 				((u8 __force *)&ioc->chip->Doorbell +
3737 				 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3738 				 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3739 		}
3740 	}
3741 
3742 	if (ioc->is_warpdrive) {
3743 		ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3744 		    &ioc->chip->ReplyPostHostIndex;
3745 
3746 		for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3747 			ioc->reply_post_host_index[i] =
3748 			(resource_size_t __iomem *)
3749 			((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3750 			* 4)));
3751 	}
3752 
3753 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3754 		if (reply_q->msix_index >= ioc->iopoll_q_start_index) {
3755 			pr_info("%s: enabled: index: %d\n",
3756 			    reply_q->name, reply_q->msix_index);
3757 			continue;
3758 		}
3759 
3760 		pr_info("%s: %s enabled: IRQ %d\n",
3761 			reply_q->name,
3762 			ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3763 			pci_irq_vector(ioc->pdev, reply_q->msix_index));
3764 	}
3765 
3766 	ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3767 		 &chip_phys, ioc->chip, memap_sz);
3768 	ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3769 		 (unsigned long long)pio_chip, pio_sz);
3770 
3771 	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
3772 	pci_save_state(pdev);
3773 	return 0;
3774 
3775  out_fail:
3776 	mpt3sas_base_unmap_resources(ioc);
3777 	return r;
3778 }
3779 
3780 /**
3781  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3782  * @ioc: per adapter object
3783  * @smid: system request message index(smid zero is invalid)
3784  *
3785  * Return: virt pointer to message frame.
3786  */
3787 void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER * ioc,u16 smid)3788 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3789 {
3790 	return (void *)(ioc->request + (smid * ioc->request_sz));
3791 }
3792 
3793 /**
3794  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3795  * @ioc: per adapter object
3796  * @smid: system request message index
3797  *
3798  * Return: virt pointer to sense buffer.
3799  */
3800 void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER * ioc,u16 smid)3801 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3802 {
3803 	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3804 }
3805 
3806 /**
3807  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3808  * @ioc: per adapter object
3809  * @smid: system request message index
3810  *
3811  * Return: phys pointer to the low 32bit address of the sense buffer.
3812  */
3813 __le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3814 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3815 {
3816 	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3817 	    SCSI_SENSE_BUFFERSIZE));
3818 }
3819 
3820 /**
3821  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3822  * @ioc: per adapter object
3823  * @smid: system request message index
3824  *
3825  * Return: virt pointer to a PCIe SGL.
3826  */
3827 void *
mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER * ioc,u16 smid)3828 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3829 {
3830 	return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3831 }
3832 
3833 /**
3834  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3835  * @ioc: per adapter object
3836  * @smid: system request message index
3837  *
3838  * Return: phys pointer to the address of the PCIe buffer.
3839  */
3840 dma_addr_t
mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER * ioc,u16 smid)3841 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3842 {
3843 	return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3844 }
3845 
3846 /**
3847  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3848  * @ioc: per adapter object
3849  * @phys_addr: lower 32 physical addr of the reply
3850  *
3851  * Converts 32bit lower physical addr into a virt address.
3852  */
3853 void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER * ioc,u32 phys_addr)3854 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3855 {
3856 	if (!phys_addr)
3857 		return NULL;
3858 	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3859 }
3860 
3861 /**
3862  * _base_get_msix_index - get the msix index
3863  * @ioc: per adapter object
3864  * @scmd: scsi_cmnd object
3865  *
3866  * Return: msix index of general reply queues,
3867  * i.e. reply queue on which IO request's reply
3868  * should be posted by the HBA firmware.
3869  */
3870 static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3871 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3872 	struct scsi_cmnd *scmd)
3873 {
3874 	/* Enables reply_queue load balancing */
3875 	if (ioc->msix_load_balance)
3876 		return ioc->reply_queue_count ?
3877 		    base_mod64(atomic64_add_return(1,
3878 		    &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3879 
3880 	if (scmd && ioc->shost->nr_hw_queues > 1) {
3881 		u32 tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3882 
3883 		return blk_mq_unique_tag_to_hwq(tag) +
3884 			ioc->high_iops_queues;
3885 	}
3886 
3887 	return ioc->cpu_msix_table[raw_smp_processor_id()];
3888 }
3889 
3890 /**
3891  * _base_get_high_iops_msix_index - get the msix index of
3892  *				high iops queues
3893  * @ioc: per adapter object
3894  * @scmd: scsi_cmnd object
3895  *
3896  * Return: msix index of high iops reply queues.
3897  * i.e. high iops reply queue on which IO request's
3898  * reply should be posted by the HBA firmware.
3899  */
3900 static inline u8
_base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER * ioc,struct scsi_cmnd * scmd)3901 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3902 	struct scsi_cmnd *scmd)
3903 {
3904 	/**
3905 	 * Round robin the IO interrupts among the high iops
3906 	 * reply queues in terms of batch count 16 when outstanding
3907 	 * IOs on the target device is >=8.
3908 	 */
3909 
3910 	if (scsi_device_busy(scmd->device) > MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3911 		return base_mod64((
3912 		    atomic64_add_return(1, &ioc->high_iops_outstanding) /
3913 		    MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3914 		    MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3915 
3916 	return _base_get_msix_index(ioc, scmd);
3917 }
3918 
3919 /**
3920  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3921  * @ioc: per adapter object
3922  * @cb_idx: callback index
3923  *
3924  * Return: smid (zero is invalid)
3925  */
3926 u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3927 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3928 {
3929 	unsigned long flags;
3930 	struct request_tracker *request;
3931 	u16 smid;
3932 
3933 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3934 	if (list_empty(&ioc->internal_free_list)) {
3935 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3936 		ioc_err(ioc, "%s: smid not available\n", __func__);
3937 		return 0;
3938 	}
3939 
3940 	request = list_entry(ioc->internal_free_list.next,
3941 	    struct request_tracker, tracker_list);
3942 	request->cb_idx = cb_idx;
3943 	smid = request->smid;
3944 	list_del(&request->tracker_list);
3945 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3946 	return smid;
3947 }
3948 
3949 /**
3950  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3951  * @ioc: per adapter object
3952  * @cb_idx: callback index
3953  * @scmd: pointer to scsi command object
3954  *
3955  * Return: smid (zero is invalid)
3956  */
3957 u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx,struct scsi_cmnd * scmd)3958 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3959 	struct scsi_cmnd *scmd)
3960 {
3961 	struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3962 	u16 smid;
3963 	u32 tag, unique_tag;
3964 
3965 	unique_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
3966 	tag = blk_mq_unique_tag_to_tag(unique_tag);
3967 
3968 	/*
3969 	 * Store hw queue number corresponding to the tag.
3970 	 * This hw queue number is used later to determine
3971 	 * the unique_tag using the logic below. This unique_tag
3972 	 * is used to retrieve the scmd pointer corresponding
3973 	 * to tag using scsi_host_find_tag() API.
3974 	 *
3975 	 * tag = smid - 1;
3976 	 * unique_tag = ioc->io_queue_num[tag] << BLK_MQ_UNIQUE_TAG_BITS | tag;
3977 	 */
3978 	ioc->io_queue_num[tag] = blk_mq_unique_tag_to_hwq(unique_tag);
3979 
3980 	smid = tag + 1;
3981 	request->cb_idx = cb_idx;
3982 	request->smid = smid;
3983 	request->scmd = scmd;
3984 	INIT_LIST_HEAD(&request->chain_list);
3985 	return smid;
3986 }
3987 
3988 /**
3989  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3990  * @ioc: per adapter object
3991  * @cb_idx: callback index
3992  *
3993  * Return: smid (zero is invalid)
3994  */
3995 u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER * ioc,u8 cb_idx)3996 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3997 {
3998 	unsigned long flags;
3999 	struct request_tracker *request;
4000 	u16 smid;
4001 
4002 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4003 	if (list_empty(&ioc->hpr_free_list)) {
4004 		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4005 		return 0;
4006 	}
4007 
4008 	request = list_entry(ioc->hpr_free_list.next,
4009 	    struct request_tracker, tracker_list);
4010 	request->cb_idx = cb_idx;
4011 	smid = request->smid;
4012 	list_del(&request->tracker_list);
4013 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4014 	return smid;
4015 }
4016 
4017 static void
_base_recovery_check(struct MPT3SAS_ADAPTER * ioc)4018 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
4019 {
4020 	/*
4021 	 * See _wait_for_commands_to_complete() call with regards to this code.
4022 	 */
4023 	if (ioc->shost_recovery && ioc->pending_io_count) {
4024 		ioc->pending_io_count = scsi_host_busy(ioc->shost);
4025 		if (ioc->pending_io_count == 0)
4026 			wake_up(&ioc->reset_wq);
4027 	}
4028 }
4029 
mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER * ioc,struct scsiio_tracker * st)4030 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
4031 			   struct scsiio_tracker *st)
4032 {
4033 	if (WARN_ON(st->smid == 0))
4034 		return;
4035 	st->cb_idx = 0xFF;
4036 	st->direct_io = 0;
4037 	st->scmd = NULL;
4038 	atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
4039 	st->smid = 0;
4040 }
4041 
4042 /**
4043  * mpt3sas_base_free_smid - put smid back on free_list
4044  * @ioc: per adapter object
4045  * @smid: system request message index
4046  */
4047 void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER * ioc,u16 smid)4048 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4049 {
4050 	unsigned long flags;
4051 	int i;
4052 
4053 	if (smid < ioc->hi_priority_smid) {
4054 		struct scsiio_tracker *st;
4055 		void *request;
4056 
4057 		st = _get_st_from_smid(ioc, smid);
4058 		if (!st) {
4059 			_base_recovery_check(ioc);
4060 			return;
4061 		}
4062 
4063 		/* Clear MPI request frame */
4064 		request = mpt3sas_base_get_msg_frame(ioc, smid);
4065 		memset(request, 0, ioc->request_sz);
4066 
4067 		mpt3sas_base_clear_st(ioc, st);
4068 		_base_recovery_check(ioc);
4069 		ioc->io_queue_num[smid - 1] = 0;
4070 		return;
4071 	}
4072 
4073 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4074 	if (smid < ioc->internal_smid) {
4075 		/* hi-priority */
4076 		i = smid - ioc->hi_priority_smid;
4077 		ioc->hpr_lookup[i].cb_idx = 0xFF;
4078 		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
4079 	} else if (smid <= ioc->hba_queue_depth) {
4080 		/* internal queue */
4081 		i = smid - ioc->internal_smid;
4082 		ioc->internal_lookup[i].cb_idx = 0xFF;
4083 		list_add(&ioc->internal_lookup[i].tracker_list,
4084 		    &ioc->internal_free_list);
4085 	}
4086 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4087 }
4088 
4089 /**
4090  * _base_mpi_ep_writeq - 32 bit write to MMIO
4091  * @b: data payload
4092  * @addr: address in MMIO space
4093  * @writeq_lock: spin lock
4094  *
4095  * This special handling for MPI EP to take care of 32 bit
4096  * environment where its not quarenteed to send the entire word
4097  * in one transfer.
4098  */
4099 static inline void
_base_mpi_ep_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4100 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
4101 					spinlock_t *writeq_lock)
4102 {
4103 	unsigned long flags;
4104 
4105 	spin_lock_irqsave(writeq_lock, flags);
4106 	__raw_writel((u32)(b), addr);
4107 	__raw_writel((u32)(b >> 32), (addr + 4));
4108 	spin_unlock_irqrestore(writeq_lock, flags);
4109 }
4110 
4111 /**
4112  * _base_writeq - 64 bit write to MMIO
4113  * @b: data payload
4114  * @addr: address in MMIO space
4115  * @writeq_lock: spin lock
4116  *
4117  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
4118  * care of 32 bit environment where its not quarenteed to send the entire word
4119  * in one transfer.
4120  */
4121 #if defined(writeq) && defined(CONFIG_64BIT)
4122 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4123 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4124 {
4125 	wmb();
4126 	__raw_writeq(b, addr);
4127 	barrier();
4128 }
4129 #else
4130 static inline void
_base_writeq(__u64 b,volatile void __iomem * addr,spinlock_t * writeq_lock)4131 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
4132 {
4133 	_base_mpi_ep_writeq(b, addr, writeq_lock);
4134 }
4135 #endif
4136 
4137 /**
4138  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
4139  *                                variable of scsi tracker
4140  * @ioc: per adapter object
4141  * @smid: system request message index
4142  *
4143  * Return: msix index.
4144  */
4145 static u8
_base_set_and_get_msix_index(struct MPT3SAS_ADAPTER * ioc,u16 smid)4146 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4147 {
4148 	struct scsiio_tracker *st = NULL;
4149 
4150 	if (smid < ioc->hi_priority_smid)
4151 		st = _get_st_from_smid(ioc, smid);
4152 
4153 	if (st == NULL)
4154 		return  _base_get_msix_index(ioc, NULL);
4155 
4156 	st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
4157 	return st->msix_io;
4158 }
4159 
4160 /**
4161  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
4162  * @ioc: per adapter object
4163  * @smid: system request message index
4164  * @handle: device handle
4165  */
4166 static void
_base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4167 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
4168 	u16 smid, u16 handle)
4169 {
4170 	Mpi2RequestDescriptorUnion_t descriptor;
4171 	u64 *request = (u64 *)&descriptor;
4172 	void *mpi_req_iomem;
4173 	__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4174 
4175 	_clone_sg_entries(ioc, (void *) mfp, smid);
4176 	mpi_req_iomem = (void __force *)ioc->chip +
4177 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4178 	_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4179 					ioc->request_sz);
4180 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4181 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4182 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4183 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4184 	descriptor.SCSIIO.LMID = 0;
4185 	_base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4186 	    &ioc->scsi_lookup_lock);
4187 }
4188 
4189 /**
4190  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
4191  * @ioc: per adapter object
4192  * @smid: system request message index
4193  * @handle: device handle
4194  */
4195 static void
_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4196 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
4197 {
4198 	Mpi2RequestDescriptorUnion_t descriptor;
4199 	u64 *request = (u64 *)&descriptor;
4200 
4201 
4202 	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4203 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4204 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4205 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4206 	descriptor.SCSIIO.LMID = 0;
4207 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4208 	    &ioc->scsi_lookup_lock);
4209 }
4210 
4211 /**
4212  * _base_put_smid_fast_path - send fast path request to firmware
4213  * @ioc: per adapter object
4214  * @smid: system request message index
4215  * @handle: device handle
4216  */
4217 static void
_base_put_smid_fast_path(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4218 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4219 	u16 handle)
4220 {
4221 	Mpi2RequestDescriptorUnion_t descriptor;
4222 	u64 *request = (u64 *)&descriptor;
4223 
4224 	descriptor.SCSIIO.RequestFlags =
4225 	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4226 	descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4227 	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
4228 	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
4229 	descriptor.SCSIIO.LMID = 0;
4230 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4231 	    &ioc->scsi_lookup_lock);
4232 }
4233 
4234 /**
4235  * _base_put_smid_hi_priority - send Task Management request to firmware
4236  * @ioc: per adapter object
4237  * @smid: system request message index
4238  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4239  */
4240 static void
_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4241 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4242 	u16 msix_task)
4243 {
4244 	Mpi2RequestDescriptorUnion_t descriptor;
4245 	void *mpi_req_iomem;
4246 	u64 *request;
4247 
4248 	if (ioc->is_mcpu_endpoint) {
4249 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4250 
4251 		/* TBD 256 is offset within sys register. */
4252 		mpi_req_iomem = (void __force *)ioc->chip
4253 					+ MPI_FRAME_START_OFFSET
4254 					+ (smid * ioc->request_sz);
4255 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4256 							ioc->request_sz);
4257 	}
4258 
4259 	request = (u64 *)&descriptor;
4260 
4261 	descriptor.HighPriority.RequestFlags =
4262 	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4263 	descriptor.HighPriority.MSIxIndex =  msix_task;
4264 	descriptor.HighPriority.SMID = cpu_to_le16(smid);
4265 	descriptor.HighPriority.LMID = 0;
4266 	descriptor.HighPriority.Reserved1 = 0;
4267 	if (ioc->is_mcpu_endpoint)
4268 		_base_mpi_ep_writeq(*request,
4269 				&ioc->chip->RequestDescriptorPostLow,
4270 				&ioc->scsi_lookup_lock);
4271 	else
4272 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4273 		    &ioc->scsi_lookup_lock);
4274 }
4275 
4276 /**
4277  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
4278  *  firmware
4279  * @ioc: per adapter object
4280  * @smid: system request message index
4281  */
4282 void
mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER * ioc,u16 smid)4283 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4284 {
4285 	Mpi2RequestDescriptorUnion_t descriptor;
4286 	u64 *request = (u64 *)&descriptor;
4287 
4288 	descriptor.Default.RequestFlags =
4289 		MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
4290 	descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
4291 	descriptor.Default.SMID = cpu_to_le16(smid);
4292 	descriptor.Default.LMID = 0;
4293 	descriptor.Default.DescriptorTypeDependent = 0;
4294 	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4295 	    &ioc->scsi_lookup_lock);
4296 }
4297 
4298 /**
4299  * _base_put_smid_default - Default, primarily used for config pages
4300  * @ioc: per adapter object
4301  * @smid: system request message index
4302  */
4303 static void
_base_put_smid_default(struct MPT3SAS_ADAPTER * ioc,u16 smid)4304 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4305 {
4306 	Mpi2RequestDescriptorUnion_t descriptor;
4307 	void *mpi_req_iomem;
4308 	u64 *request;
4309 
4310 	if (ioc->is_mcpu_endpoint) {
4311 		__le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
4312 
4313 		_clone_sg_entries(ioc, (void *) mfp, smid);
4314 		/* TBD 256 is offset within sys register */
4315 		mpi_req_iomem = (void __force *)ioc->chip +
4316 			MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
4317 		_base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
4318 							ioc->request_sz);
4319 	}
4320 	request = (u64 *)&descriptor;
4321 	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4322 	descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4323 	descriptor.Default.SMID = cpu_to_le16(smid);
4324 	descriptor.Default.LMID = 0;
4325 	descriptor.Default.DescriptorTypeDependent = 0;
4326 	if (ioc->is_mcpu_endpoint)
4327 		_base_mpi_ep_writeq(*request,
4328 				&ioc->chip->RequestDescriptorPostLow,
4329 				&ioc->scsi_lookup_lock);
4330 	else
4331 		_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4332 				&ioc->scsi_lookup_lock);
4333 }
4334 
4335 /**
4336  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4337  *   Atomic Request Descriptor
4338  * @ioc: per adapter object
4339  * @smid: system request message index
4340  * @handle: device handle, unused in this function, for function type match
4341  *
4342  * Return: nothing.
4343  */
4344 static void
_base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4345 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4346 	u16 handle)
4347 {
4348 	Mpi26AtomicRequestDescriptor_t descriptor;
4349 	u32 *request = (u32 *)&descriptor;
4350 
4351 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4352 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4353 	descriptor.SMID = cpu_to_le16(smid);
4354 
4355 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4356 }
4357 
4358 /**
4359  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4360  * using Atomic Request Descriptor
4361  * @ioc: per adapter object
4362  * @smid: system request message index
4363  * @handle: device handle, unused in this function, for function type match
4364  * Return: nothing
4365  */
4366 static void
_base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 handle)4367 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4368 	u16 handle)
4369 {
4370 	Mpi26AtomicRequestDescriptor_t descriptor;
4371 	u32 *request = (u32 *)&descriptor;
4372 
4373 	descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4374 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4375 	descriptor.SMID = cpu_to_le16(smid);
4376 
4377 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4378 }
4379 
4380 /**
4381  * _base_put_smid_hi_priority_atomic - send Task Management request to
4382  * firmware using Atomic Request Descriptor
4383  * @ioc: per adapter object
4384  * @smid: system request message index
4385  * @msix_task: msix_task will be same as msix of IO in case of task abort else 0
4386  *
4387  * Return: nothing.
4388  */
4389 static void
_base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid,u16 msix_task)4390 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4391 	u16 msix_task)
4392 {
4393 	Mpi26AtomicRequestDescriptor_t descriptor;
4394 	u32 *request = (u32 *)&descriptor;
4395 
4396 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4397 	descriptor.MSIxIndex = msix_task;
4398 	descriptor.SMID = cpu_to_le16(smid);
4399 
4400 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4401 }
4402 
4403 /**
4404  * _base_put_smid_default_atomic - Default, primarily used for config pages
4405  * use Atomic Request Descriptor
4406  * @ioc: per adapter object
4407  * @smid: system request message index
4408  *
4409  * Return: nothing.
4410  */
4411 static void
_base_put_smid_default_atomic(struct MPT3SAS_ADAPTER * ioc,u16 smid)4412 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4413 {
4414 	Mpi26AtomicRequestDescriptor_t descriptor;
4415 	u32 *request = (u32 *)&descriptor;
4416 
4417 	descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4418 	descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4419 	descriptor.SMID = cpu_to_le16(smid);
4420 
4421 	writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4422 }
4423 
4424 /**
4425  * _base_display_OEMs_branding - Display branding string
4426  * @ioc: per adapter object
4427  */
4428 static void
_base_display_OEMs_branding(struct MPT3SAS_ADAPTER * ioc)4429 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4430 {
4431 	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4432 		return;
4433 
4434 	switch (ioc->pdev->subsystem_vendor) {
4435 	case PCI_VENDOR_ID_INTEL:
4436 		switch (ioc->pdev->device) {
4437 		case MPI2_MFGPAGE_DEVID_SAS2008:
4438 			switch (ioc->pdev->subsystem_device) {
4439 			case MPT2SAS_INTEL_RMS2LL080_SSDID:
4440 				ioc_info(ioc, "%s\n",
4441 					 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4442 				break;
4443 			case MPT2SAS_INTEL_RMS2LL040_SSDID:
4444 				ioc_info(ioc, "%s\n",
4445 					 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4446 				break;
4447 			case MPT2SAS_INTEL_SSD910_SSDID:
4448 				ioc_info(ioc, "%s\n",
4449 					 MPT2SAS_INTEL_SSD910_BRANDING);
4450 				break;
4451 			default:
4452 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4453 					 ioc->pdev->subsystem_device);
4454 				break;
4455 			}
4456 			break;
4457 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4458 			switch (ioc->pdev->subsystem_device) {
4459 			case MPT2SAS_INTEL_RS25GB008_SSDID:
4460 				ioc_info(ioc, "%s\n",
4461 					 MPT2SAS_INTEL_RS25GB008_BRANDING);
4462 				break;
4463 			case MPT2SAS_INTEL_RMS25JB080_SSDID:
4464 				ioc_info(ioc, "%s\n",
4465 					 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4466 				break;
4467 			case MPT2SAS_INTEL_RMS25JB040_SSDID:
4468 				ioc_info(ioc, "%s\n",
4469 					 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4470 				break;
4471 			case MPT2SAS_INTEL_RMS25KB080_SSDID:
4472 				ioc_info(ioc, "%s\n",
4473 					 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4474 				break;
4475 			case MPT2SAS_INTEL_RMS25KB040_SSDID:
4476 				ioc_info(ioc, "%s\n",
4477 					 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4478 				break;
4479 			case MPT2SAS_INTEL_RMS25LB040_SSDID:
4480 				ioc_info(ioc, "%s\n",
4481 					 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4482 				break;
4483 			case MPT2SAS_INTEL_RMS25LB080_SSDID:
4484 				ioc_info(ioc, "%s\n",
4485 					 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4486 				break;
4487 			default:
4488 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4489 					 ioc->pdev->subsystem_device);
4490 				break;
4491 			}
4492 			break;
4493 		case MPI25_MFGPAGE_DEVID_SAS3008:
4494 			switch (ioc->pdev->subsystem_device) {
4495 			case MPT3SAS_INTEL_RMS3JC080_SSDID:
4496 				ioc_info(ioc, "%s\n",
4497 					 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4498 				break;
4499 
4500 			case MPT3SAS_INTEL_RS3GC008_SSDID:
4501 				ioc_info(ioc, "%s\n",
4502 					 MPT3SAS_INTEL_RS3GC008_BRANDING);
4503 				break;
4504 			case MPT3SAS_INTEL_RS3FC044_SSDID:
4505 				ioc_info(ioc, "%s\n",
4506 					 MPT3SAS_INTEL_RS3FC044_BRANDING);
4507 				break;
4508 			case MPT3SAS_INTEL_RS3UC080_SSDID:
4509 				ioc_info(ioc, "%s\n",
4510 					 MPT3SAS_INTEL_RS3UC080_BRANDING);
4511 				break;
4512 			default:
4513 				ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4514 					 ioc->pdev->subsystem_device);
4515 				break;
4516 			}
4517 			break;
4518 		default:
4519 			ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4520 				 ioc->pdev->subsystem_device);
4521 			break;
4522 		}
4523 		break;
4524 	case PCI_VENDOR_ID_DELL:
4525 		switch (ioc->pdev->device) {
4526 		case MPI2_MFGPAGE_DEVID_SAS2008:
4527 			switch (ioc->pdev->subsystem_device) {
4528 			case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4529 				ioc_info(ioc, "%s\n",
4530 					 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4531 				break;
4532 			case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4533 				ioc_info(ioc, "%s\n",
4534 					 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4535 				break;
4536 			case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4537 				ioc_info(ioc, "%s\n",
4538 					 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4539 				break;
4540 			case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4541 				ioc_info(ioc, "%s\n",
4542 					 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4543 				break;
4544 			case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4545 				ioc_info(ioc, "%s\n",
4546 					 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4547 				break;
4548 			case MPT2SAS_DELL_PERC_H200_SSDID:
4549 				ioc_info(ioc, "%s\n",
4550 					 MPT2SAS_DELL_PERC_H200_BRANDING);
4551 				break;
4552 			case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4553 				ioc_info(ioc, "%s\n",
4554 					 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4555 				break;
4556 			default:
4557 				ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4558 					 ioc->pdev->subsystem_device);
4559 				break;
4560 			}
4561 			break;
4562 		case MPI25_MFGPAGE_DEVID_SAS3008:
4563 			switch (ioc->pdev->subsystem_device) {
4564 			case MPT3SAS_DELL_12G_HBA_SSDID:
4565 				ioc_info(ioc, "%s\n",
4566 					 MPT3SAS_DELL_12G_HBA_BRANDING);
4567 				break;
4568 			default:
4569 				ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4570 					 ioc->pdev->subsystem_device);
4571 				break;
4572 			}
4573 			break;
4574 		default:
4575 			ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4576 				 ioc->pdev->subsystem_device);
4577 			break;
4578 		}
4579 		break;
4580 	case PCI_VENDOR_ID_CISCO:
4581 		switch (ioc->pdev->device) {
4582 		case MPI25_MFGPAGE_DEVID_SAS3008:
4583 			switch (ioc->pdev->subsystem_device) {
4584 			case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4585 				ioc_info(ioc, "%s\n",
4586 					 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4587 				break;
4588 			case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4589 				ioc_info(ioc, "%s\n",
4590 					 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4591 				break;
4592 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4593 				ioc_info(ioc, "%s\n",
4594 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4595 				break;
4596 			default:
4597 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4598 					 ioc->pdev->subsystem_device);
4599 				break;
4600 			}
4601 			break;
4602 		case MPI25_MFGPAGE_DEVID_SAS3108_1:
4603 			switch (ioc->pdev->subsystem_device) {
4604 			case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4605 				ioc_info(ioc, "%s\n",
4606 					 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4607 				break;
4608 			case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4609 				ioc_info(ioc, "%s\n",
4610 					 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4611 				break;
4612 			default:
4613 				ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4614 					 ioc->pdev->subsystem_device);
4615 				break;
4616 			}
4617 			break;
4618 		default:
4619 			ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4620 				 ioc->pdev->subsystem_device);
4621 			break;
4622 		}
4623 		break;
4624 	case MPT2SAS_HP_3PAR_SSVID:
4625 		switch (ioc->pdev->device) {
4626 		case MPI2_MFGPAGE_DEVID_SAS2004:
4627 			switch (ioc->pdev->subsystem_device) {
4628 			case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4629 				ioc_info(ioc, "%s\n",
4630 					 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4631 				break;
4632 			default:
4633 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4634 					 ioc->pdev->subsystem_device);
4635 				break;
4636 			}
4637 			break;
4638 		case MPI2_MFGPAGE_DEVID_SAS2308_2:
4639 			switch (ioc->pdev->subsystem_device) {
4640 			case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4641 				ioc_info(ioc, "%s\n",
4642 					 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4643 				break;
4644 			case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4645 				ioc_info(ioc, "%s\n",
4646 					 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4647 				break;
4648 			case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4649 				ioc_info(ioc, "%s\n",
4650 					 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4651 				break;
4652 			case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4653 				ioc_info(ioc, "%s\n",
4654 					 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4655 				break;
4656 			default:
4657 				ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4658 					 ioc->pdev->subsystem_device);
4659 				break;
4660 			}
4661 			break;
4662 		default:
4663 			ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4664 				 ioc->pdev->subsystem_device);
4665 			break;
4666 		}
4667 		break;
4668 	default:
4669 		break;
4670 	}
4671 }
4672 
4673 /**
4674  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4675  *				version from FW Image Header.
4676  * @ioc: per adapter object
4677  *
4678  * Return: 0 for success, non-zero for failure.
4679  */
4680 	static int
_base_display_fwpkg_version(struct MPT3SAS_ADAPTER * ioc)4681 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4682 {
4683 	Mpi2FWImageHeader_t *fw_img_hdr;
4684 	Mpi26ComponentImageHeader_t *cmp_img_hdr;
4685 	Mpi25FWUploadRequest_t *mpi_request;
4686 	Mpi2FWUploadReply_t mpi_reply;
4687 	int r = 0, issue_diag_reset = 0;
4688 	u32  package_version = 0;
4689 	void *fwpkg_data = NULL;
4690 	dma_addr_t fwpkg_data_dma;
4691 	u16 smid, ioc_status;
4692 	size_t data_length;
4693 
4694 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4695 
4696 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4697 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
4698 		return -EAGAIN;
4699 	}
4700 
4701 	data_length = sizeof(Mpi2FWImageHeader_t);
4702 	fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4703 			&fwpkg_data_dma, GFP_KERNEL);
4704 	if (!fwpkg_data) {
4705 		ioc_err(ioc,
4706 		    "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4707 			__FILE__, __LINE__, __func__);
4708 		return -ENOMEM;
4709 	}
4710 
4711 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4712 	if (!smid) {
4713 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4714 		r = -EAGAIN;
4715 		goto out;
4716 	}
4717 
4718 	ioc->base_cmds.status = MPT3_CMD_PENDING;
4719 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4720 	ioc->base_cmds.smid = smid;
4721 	memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4722 	mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4723 	mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4724 	mpi_request->ImageSize = cpu_to_le32(data_length);
4725 	ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4726 			data_length);
4727 	init_completion(&ioc->base_cmds.done);
4728 	ioc->put_smid_default(ioc, smid);
4729 	/* Wait for 15 seconds */
4730 	wait_for_completion_timeout(&ioc->base_cmds.done,
4731 			FW_IMG_HDR_READ_TIMEOUT*HZ);
4732 	ioc_info(ioc, "%s: complete\n", __func__);
4733 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4734 		ioc_err(ioc, "%s: timeout\n", __func__);
4735 		_debug_dump_mf(mpi_request,
4736 				sizeof(Mpi25FWUploadRequest_t)/4);
4737 		issue_diag_reset = 1;
4738 	} else {
4739 		memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4740 		if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4741 			memcpy(&mpi_reply, ioc->base_cmds.reply,
4742 					sizeof(Mpi2FWUploadReply_t));
4743 			ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4744 						MPI2_IOCSTATUS_MASK;
4745 			if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4746 				fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4747 				if (le32_to_cpu(fw_img_hdr->Signature) ==
4748 				    MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4749 					cmp_img_hdr =
4750 					    (Mpi26ComponentImageHeader_t *)
4751 					    (fwpkg_data);
4752 					package_version =
4753 					    le32_to_cpu(
4754 					    cmp_img_hdr->ApplicationSpecific);
4755 				} else
4756 					package_version =
4757 					    le32_to_cpu(
4758 					    fw_img_hdr->PackageVersion.Word);
4759 				if (package_version)
4760 					ioc_info(ioc,
4761 					"FW Package Ver(%02d.%02d.%02d.%02d)\n",
4762 					((package_version) & 0xFF000000) >> 24,
4763 					((package_version) & 0x00FF0000) >> 16,
4764 					((package_version) & 0x0000FF00) >> 8,
4765 					(package_version) & 0x000000FF);
4766 			} else {
4767 				_debug_dump_mf(&mpi_reply,
4768 						sizeof(Mpi2FWUploadReply_t)/4);
4769 			}
4770 		}
4771 	}
4772 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4773 out:
4774 	if (fwpkg_data)
4775 		dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4776 				fwpkg_data_dma);
4777 	if (issue_diag_reset) {
4778 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
4779 			return -EFAULT;
4780 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
4781 			return -EFAULT;
4782 		r = -EAGAIN;
4783 	}
4784 	return r;
4785 }
4786 
4787 /**
4788  * _base_display_ioc_capabilities - Display IOC's capabilities.
4789  * @ioc: per adapter object
4790  */
4791 static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER * ioc)4792 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4793 {
4794 	int i = 0;
4795 	char desc[17] = {0};
4796 	u32 iounit_pg1_flags;
4797 
4798 	memtostr(desc, ioc->manu_pg0.ChipName);
4799 	ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x)\n",
4800 		 desc,
4801 		 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4802 		 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4803 		 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4804 		 ioc->facts.FWVersion.Word & 0x000000FF,
4805 		 ioc->pdev->revision);
4806 
4807 	_base_display_OEMs_branding(ioc);
4808 
4809 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4810 		pr_info("%sNVMe", i ? "," : "");
4811 		i++;
4812 	}
4813 
4814 	ioc_info(ioc, "Protocol=(");
4815 
4816 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4817 		pr_cont("Initiator");
4818 		i++;
4819 	}
4820 
4821 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4822 		pr_cont("%sTarget", i ? "," : "");
4823 		i++;
4824 	}
4825 
4826 	i = 0;
4827 	pr_cont("), Capabilities=(");
4828 
4829 	if (!ioc->hide_ir_msg) {
4830 		if (ioc->facts.IOCCapabilities &
4831 		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4832 			pr_cont("Raid");
4833 			i++;
4834 		}
4835 	}
4836 
4837 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4838 		pr_cont("%sTLR", i ? "," : "");
4839 		i++;
4840 	}
4841 
4842 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4843 		pr_cont("%sMulticast", i ? "," : "");
4844 		i++;
4845 	}
4846 
4847 	if (ioc->facts.IOCCapabilities &
4848 	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4849 		pr_cont("%sBIDI Target", i ? "," : "");
4850 		i++;
4851 	}
4852 
4853 	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4854 		pr_cont("%sEEDP", i ? "," : "");
4855 		i++;
4856 	}
4857 
4858 	if (ioc->facts.IOCCapabilities &
4859 	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4860 		pr_cont("%sSnapshot Buffer", i ? "," : "");
4861 		i++;
4862 	}
4863 
4864 	if (ioc->facts.IOCCapabilities &
4865 	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4866 		pr_cont("%sDiag Trace Buffer", i ? "," : "");
4867 		i++;
4868 	}
4869 
4870 	if (ioc->facts.IOCCapabilities &
4871 	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4872 		pr_cont("%sDiag Extended Buffer", i ? "," : "");
4873 		i++;
4874 	}
4875 
4876 	if (ioc->facts.IOCCapabilities &
4877 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4878 		pr_cont("%sTask Set Full", i ? "," : "");
4879 		i++;
4880 	}
4881 
4882 	if (ioc->facts.IOCCapabilities &
4883 	    MPI26_IOCFACTS_CAPABILITY_MCTP_PASSTHRU) {
4884 		pr_cont("%sMCTP Passthru", i ? "," : "");
4885 		i++;
4886 	}
4887 
4888 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4889 	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4890 		pr_cont("%sNCQ", i ? "," : "");
4891 		i++;
4892 	}
4893 
4894 	pr_cont(")\n");
4895 }
4896 
4897 /**
4898  * mpt3sas_base_update_missing_delay - change the missing delay timers
4899  * @ioc: per adapter object
4900  * @device_missing_delay: amount of time till device is reported missing
4901  * @io_missing_delay: interval IO is returned when there is a missing device
4902  *
4903  * Passed on the command line, this function will modify the device missing
4904  * delay, as well as the io missing delay. This should be called at driver
4905  * load time.
4906  */
4907 void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER * ioc,u16 device_missing_delay,u8 io_missing_delay)4908 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4909 	u16 device_missing_delay, u8 io_missing_delay)
4910 {
4911 	u16 dmd, dmd_new, dmd_orignal;
4912 	u8 io_missing_delay_original;
4913 	u16 sz;
4914 	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4915 	Mpi2ConfigReply_t mpi_reply;
4916 	u8 num_phys = 0;
4917 	u16 ioc_status;
4918 
4919 	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4920 	if (!num_phys)
4921 		return;
4922 
4923 	sz = struct_size(sas_iounit_pg1, PhyData, num_phys);
4924 	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4925 	if (!sas_iounit_pg1) {
4926 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4927 			__FILE__, __LINE__, __func__);
4928 		goto out;
4929 	}
4930 	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4931 	    sas_iounit_pg1, sz))) {
4932 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4933 			__FILE__, __LINE__, __func__);
4934 		goto out;
4935 	}
4936 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4937 	    MPI2_IOCSTATUS_MASK;
4938 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4939 		ioc_err(ioc, "failure at %s:%d/%s()!\n",
4940 			__FILE__, __LINE__, __func__);
4941 		goto out;
4942 	}
4943 
4944 	/* device missing delay */
4945 	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4946 	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4947 		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4948 	else
4949 		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4950 	dmd_orignal = dmd;
4951 	if (device_missing_delay > 0x7F) {
4952 		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4953 		    device_missing_delay;
4954 		dmd = dmd / 16;
4955 		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4956 	} else
4957 		dmd = device_missing_delay;
4958 	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4959 
4960 	/* io missing delay */
4961 	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4962 	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4963 
4964 	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4965 	    sz)) {
4966 		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4967 			dmd_new = (dmd &
4968 			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4969 		else
4970 			dmd_new =
4971 		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4972 		ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4973 			 dmd_orignal, dmd_new);
4974 		ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4975 			 io_missing_delay_original,
4976 			 io_missing_delay);
4977 		ioc->device_missing_delay = dmd_new;
4978 		ioc->io_missing_delay = io_missing_delay;
4979 	}
4980 
4981 out:
4982 	kfree(sas_iounit_pg1);
4983 }
4984 
4985 /**
4986  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4987  *    according to performance mode.
4988  * @ioc : per adapter object
4989  *
4990  * Return: zero on success; otherwise return EAGAIN error code asking the
4991  * caller to retry.
4992  */
4993 static int
_base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER * ioc)4994 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4995 {
4996 	Mpi2IOCPage1_t ioc_pg1;
4997 	Mpi2ConfigReply_t mpi_reply;
4998 	int rc;
4999 
5000 	rc = mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
5001 	if (rc)
5002 		return rc;
5003 	memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
5004 
5005 	switch (perf_mode) {
5006 	case MPT_PERF_MODE_DEFAULT:
5007 	case MPT_PERF_MODE_BALANCED:
5008 		if (ioc->high_iops_queues) {
5009 			ioc_info(ioc,
5010 				"Enable interrupt coalescing only for first\t"
5011 				"%d reply queues\n",
5012 				MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
5013 			/*
5014 			 * If 31st bit is zero then interrupt coalescing is
5015 			 * enabled for all reply descriptor post queues.
5016 			 * If 31st bit is set to one then user can
5017 			 * enable/disable interrupt coalescing on per reply
5018 			 * descriptor post queue group(8) basis. So to enable
5019 			 * interrupt coalescing only on first reply descriptor
5020 			 * post queue group 31st bit and zero th bit is enabled.
5021 			 */
5022 			ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
5023 			    ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
5024 			rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5025 			if (rc)
5026 				return rc;
5027 			ioc_info(ioc, "performance mode: balanced\n");
5028 			return 0;
5029 		}
5030 		fallthrough;
5031 	case MPT_PERF_MODE_LATENCY:
5032 		/*
5033 		 * Enable interrupt coalescing on all reply queues
5034 		 * with timeout value 0xA
5035 		 */
5036 		ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
5037 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5038 		ioc_pg1.ProductSpecific = 0;
5039 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5040 		if (rc)
5041 			return rc;
5042 		ioc_info(ioc, "performance mode: latency\n");
5043 		break;
5044 	case MPT_PERF_MODE_IOPS:
5045 		/*
5046 		 * Enable interrupt coalescing on all reply queues.
5047 		 */
5048 		ioc_info(ioc,
5049 		    "performance mode: iops with coalescing timeout: 0x%x\n",
5050 		    le32_to_cpu(ioc_pg1.CoalescingTimeout));
5051 		ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
5052 		ioc_pg1.ProductSpecific = 0;
5053 		rc = mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
5054 		if (rc)
5055 			return rc;
5056 		break;
5057 	}
5058 	return 0;
5059 }
5060 
5061 /**
5062  * _base_get_event_diag_triggers - get event diag trigger values from
5063  *				persistent pages
5064  * @ioc : per adapter object
5065  *
5066  * Return: nothing.
5067  */
5068 static int
_base_get_event_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5069 _base_get_event_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5070 {
5071 	Mpi26DriverTriggerPage2_t trigger_pg2;
5072 	struct SL_WH_EVENT_TRIGGER_T *event_tg;
5073 	MPI26_DRIVER_MPI_EVENT_TRIGGER_ENTRY *mpi_event_tg;
5074 	Mpi2ConfigReply_t mpi_reply;
5075 	int r = 0, i = 0;
5076 	u16 count = 0;
5077 	u16 ioc_status;
5078 
5079 	r = mpt3sas_config_get_driver_trigger_pg2(ioc, &mpi_reply,
5080 	    &trigger_pg2);
5081 	if (r)
5082 		return r;
5083 
5084 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5085 	    MPI2_IOCSTATUS_MASK;
5086 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5087 		dinitprintk(ioc,
5088 		    ioc_err(ioc,
5089 		    "%s: Failed to get trigger pg2, ioc_status(0x%04x)\n",
5090 		   __func__, ioc_status));
5091 		return 0;
5092 	}
5093 
5094 	if (le16_to_cpu(trigger_pg2.NumMPIEventTrigger)) {
5095 		count = le16_to_cpu(trigger_pg2.NumMPIEventTrigger);
5096 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5097 		ioc->diag_trigger_event.ValidEntries = count;
5098 
5099 		event_tg = &ioc->diag_trigger_event.EventTriggerEntry[0];
5100 		mpi_event_tg = &trigger_pg2.MPIEventTriggers[0];
5101 		for (i = 0; i < count; i++) {
5102 			event_tg->EventValue = le16_to_cpu(
5103 			    mpi_event_tg->MPIEventCode);
5104 			event_tg->LogEntryQualifier = le16_to_cpu(
5105 			    mpi_event_tg->MPIEventCodeSpecific);
5106 			event_tg++;
5107 			mpi_event_tg++;
5108 		}
5109 	}
5110 	return 0;
5111 }
5112 
5113 /**
5114  * _base_get_scsi_diag_triggers - get scsi diag trigger values from
5115  *				persistent pages
5116  * @ioc : per adapter object
5117  *
5118  * Return: 0 on success; otherwise return failure status.
5119  */
5120 static int
_base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5121 _base_get_scsi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5122 {
5123 	Mpi26DriverTriggerPage3_t trigger_pg3;
5124 	struct SL_WH_SCSI_TRIGGER_T *scsi_tg;
5125 	MPI26_DRIVER_SCSI_SENSE_TRIGGER_ENTRY *mpi_scsi_tg;
5126 	Mpi2ConfigReply_t mpi_reply;
5127 	int r = 0, i = 0;
5128 	u16 count = 0;
5129 	u16 ioc_status;
5130 
5131 	r = mpt3sas_config_get_driver_trigger_pg3(ioc, &mpi_reply,
5132 	    &trigger_pg3);
5133 	if (r)
5134 		return r;
5135 
5136 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5137 	    MPI2_IOCSTATUS_MASK;
5138 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5139 		dinitprintk(ioc,
5140 		    ioc_err(ioc,
5141 		    "%s: Failed to get trigger pg3, ioc_status(0x%04x)\n",
5142 		    __func__, ioc_status));
5143 		return 0;
5144 	}
5145 
5146 	if (le16_to_cpu(trigger_pg3.NumSCSISenseTrigger)) {
5147 		count = le16_to_cpu(trigger_pg3.NumSCSISenseTrigger);
5148 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5149 		ioc->diag_trigger_scsi.ValidEntries = count;
5150 
5151 		scsi_tg = &ioc->diag_trigger_scsi.SCSITriggerEntry[0];
5152 		mpi_scsi_tg = &trigger_pg3.SCSISenseTriggers[0];
5153 		for (i = 0; i < count; i++) {
5154 			scsi_tg->ASCQ = mpi_scsi_tg->ASCQ;
5155 			scsi_tg->ASC = mpi_scsi_tg->ASC;
5156 			scsi_tg->SenseKey = mpi_scsi_tg->SenseKey;
5157 
5158 			scsi_tg++;
5159 			mpi_scsi_tg++;
5160 		}
5161 	}
5162 	return 0;
5163 }
5164 
5165 /**
5166  * _base_get_mpi_diag_triggers - get mpi diag trigger values from
5167  *				persistent pages
5168  * @ioc : per adapter object
5169  *
5170  * Return: 0 on success; otherwise return failure status.
5171  */
5172 static int
_base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5173 _base_get_mpi_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5174 {
5175 	Mpi26DriverTriggerPage4_t trigger_pg4;
5176 	struct SL_WH_MPI_TRIGGER_T *status_tg;
5177 	MPI26_DRIVER_IOCSTATUS_LOGINFO_TRIGGER_ENTRY *mpi_status_tg;
5178 	Mpi2ConfigReply_t mpi_reply;
5179 	int r = 0, i = 0;
5180 	u16 count = 0;
5181 	u16 ioc_status;
5182 
5183 	r = mpt3sas_config_get_driver_trigger_pg4(ioc, &mpi_reply,
5184 	    &trigger_pg4);
5185 	if (r)
5186 		return r;
5187 
5188 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5189 	    MPI2_IOCSTATUS_MASK;
5190 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5191 		dinitprintk(ioc,
5192 		    ioc_err(ioc,
5193 		    "%s: Failed to get trigger pg4, ioc_status(0x%04x)\n",
5194 		    __func__, ioc_status));
5195 		return 0;
5196 	}
5197 
5198 	if (le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger)) {
5199 		count = le16_to_cpu(trigger_pg4.NumIOCStatusLogInfoTrigger);
5200 		count = min_t(u16, NUM_VALID_ENTRIES, count);
5201 		ioc->diag_trigger_mpi.ValidEntries = count;
5202 
5203 		status_tg = &ioc->diag_trigger_mpi.MPITriggerEntry[0];
5204 		mpi_status_tg = &trigger_pg4.IOCStatusLoginfoTriggers[0];
5205 
5206 		for (i = 0; i < count; i++) {
5207 			status_tg->IOCStatus = le16_to_cpu(
5208 			    mpi_status_tg->IOCStatus);
5209 			status_tg->IocLogInfo = le32_to_cpu(
5210 			    mpi_status_tg->LogInfo);
5211 
5212 			status_tg++;
5213 			mpi_status_tg++;
5214 		}
5215 	}
5216 	return 0;
5217 }
5218 
5219 /**
5220  * _base_get_master_diag_triggers - get master diag trigger values from
5221  *				persistent pages
5222  * @ioc : per adapter object
5223  *
5224  * Return: nothing.
5225  */
5226 static int
_base_get_master_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5227 _base_get_master_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5228 {
5229 	Mpi26DriverTriggerPage1_t trigger_pg1;
5230 	Mpi2ConfigReply_t mpi_reply;
5231 	int r;
5232 	u16 ioc_status;
5233 
5234 	r = mpt3sas_config_get_driver_trigger_pg1(ioc, &mpi_reply,
5235 	    &trigger_pg1);
5236 	if (r)
5237 		return r;
5238 
5239 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5240 	    MPI2_IOCSTATUS_MASK;
5241 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
5242 		dinitprintk(ioc,
5243 		    ioc_err(ioc,
5244 		    "%s: Failed to get trigger pg1, ioc_status(0x%04x)\n",
5245 		   __func__, ioc_status));
5246 		return 0;
5247 	}
5248 
5249 	if (le16_to_cpu(trigger_pg1.NumMasterTrigger))
5250 		ioc->diag_trigger_master.MasterData |=
5251 		    le32_to_cpu(
5252 		    trigger_pg1.MasterTriggers[0].MasterTriggerFlags);
5253 	return 0;
5254 }
5255 
5256 /**
5257  * _base_check_for_trigger_pages_support - checks whether HBA FW supports
5258  *					driver trigger pages or not
5259  * @ioc : per adapter object
5260  * @trigger_flags : address where trigger page0's TriggerFlags value is copied
5261  *
5262  * Return: trigger flags mask if HBA FW supports driver trigger pages;
5263  * otherwise returns %-EFAULT if driver trigger pages are not supported by FW or
5264  * return EAGAIN if diag reset occurred due to FW fault and asking the
5265  * caller to retry the command.
5266  *
5267  */
5268 static int
_base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER * ioc,u32 * trigger_flags)5269 _base_check_for_trigger_pages_support(struct MPT3SAS_ADAPTER *ioc, u32 *trigger_flags)
5270 {
5271 	Mpi26DriverTriggerPage0_t trigger_pg0;
5272 	int r = 0;
5273 	Mpi2ConfigReply_t mpi_reply;
5274 	u16 ioc_status;
5275 
5276 	r = mpt3sas_config_get_driver_trigger_pg0(ioc, &mpi_reply,
5277 	    &trigger_pg0);
5278 	if (r)
5279 		return r;
5280 
5281 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
5282 	    MPI2_IOCSTATUS_MASK;
5283 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
5284 		return -EFAULT;
5285 
5286 	*trigger_flags = le16_to_cpu(trigger_pg0.TriggerFlags);
5287 	return 0;
5288 }
5289 
5290 /**
5291  * _base_get_diag_triggers - Retrieve diag trigger values from
5292  *				persistent pages.
5293  * @ioc : per adapter object
5294  *
5295  * Return: zero on success; otherwise return EAGAIN error codes
5296  * asking the caller to retry.
5297  */
5298 static int
_base_get_diag_triggers(struct MPT3SAS_ADAPTER * ioc)5299 _base_get_diag_triggers(struct MPT3SAS_ADAPTER *ioc)
5300 {
5301 	int trigger_flags;
5302 	int r;
5303 
5304 	/*
5305 	 * Default setting of master trigger.
5306 	 */
5307 	ioc->diag_trigger_master.MasterData =
5308 	    (MASTER_TRIGGER_FW_FAULT + MASTER_TRIGGER_ADAPTER_RESET);
5309 
5310 	r = _base_check_for_trigger_pages_support(ioc, &trigger_flags);
5311 	if (r) {
5312 		if (r == -EAGAIN)
5313 			return r;
5314 		/*
5315 		 * Don't go for error handling when FW doesn't support
5316 		 * driver trigger pages.
5317 		 */
5318 		return 0;
5319 	}
5320 
5321 	ioc->supports_trigger_pages = 1;
5322 
5323 	/*
5324 	 * Retrieve master diag trigger values from driver trigger pg1
5325 	 * if master trigger bit enabled in TriggerFlags.
5326 	 */
5327 	if ((u16)trigger_flags &
5328 	    MPI26_DRIVER_TRIGGER0_FLAG_MASTER_TRIGGER_VALID) {
5329 		r = _base_get_master_diag_triggers(ioc);
5330 		if (r)
5331 			return r;
5332 	}
5333 
5334 	/*
5335 	 * Retrieve event diag trigger values from driver trigger pg2
5336 	 * if event trigger bit enabled in TriggerFlags.
5337 	 */
5338 	if ((u16)trigger_flags &
5339 	    MPI26_DRIVER_TRIGGER0_FLAG_MPI_EVENT_TRIGGER_VALID) {
5340 		r = _base_get_event_diag_triggers(ioc);
5341 		if (r)
5342 			return r;
5343 	}
5344 
5345 	/*
5346 	 * Retrieve scsi diag trigger values from driver trigger pg3
5347 	 * if scsi trigger bit enabled in TriggerFlags.
5348 	 */
5349 	if ((u16)trigger_flags &
5350 	    MPI26_DRIVER_TRIGGER0_FLAG_SCSI_SENSE_TRIGGER_VALID) {
5351 		r = _base_get_scsi_diag_triggers(ioc);
5352 		if (r)
5353 			return r;
5354 	}
5355 	/*
5356 	 * Retrieve mpi error diag trigger values from driver trigger pg4
5357 	 * if loginfo trigger bit enabled in TriggerFlags.
5358 	 */
5359 	if ((u16)trigger_flags &
5360 	    MPI26_DRIVER_TRIGGER0_FLAG_LOGINFO_TRIGGER_VALID) {
5361 		r = _base_get_mpi_diag_triggers(ioc);
5362 		if (r)
5363 			return r;
5364 	}
5365 	return 0;
5366 }
5367 
5368 /**
5369  * _base_update_diag_trigger_pages - Update the driver trigger pages after
5370  *			online FW update, in case updated FW supports driver
5371  *			trigger pages.
5372  * @ioc : per adapter object
5373  *
5374  * Return: nothing.
5375  */
5376 static void
_base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER * ioc)5377 _base_update_diag_trigger_pages(struct MPT3SAS_ADAPTER *ioc)
5378 {
5379 
5380 	if (ioc->diag_trigger_master.MasterData)
5381 		mpt3sas_config_update_driver_trigger_pg1(ioc,
5382 		    &ioc->diag_trigger_master, 1);
5383 
5384 	if (ioc->diag_trigger_event.ValidEntries)
5385 		mpt3sas_config_update_driver_trigger_pg2(ioc,
5386 		    &ioc->diag_trigger_event, 1);
5387 
5388 	if (ioc->diag_trigger_scsi.ValidEntries)
5389 		mpt3sas_config_update_driver_trigger_pg3(ioc,
5390 		    &ioc->diag_trigger_scsi, 1);
5391 
5392 	if (ioc->diag_trigger_mpi.ValidEntries)
5393 		mpt3sas_config_update_driver_trigger_pg4(ioc,
5394 		    &ioc->diag_trigger_mpi, 1);
5395 }
5396 
5397 /**
5398  * _base_assign_fw_reported_qd	- Get FW reported QD for SAS/SATA devices.
5399  *				- On failure set default QD values.
5400  * @ioc : per adapter object
5401  *
5402  * Returns 0 for success, non-zero for failure.
5403  *
5404  */
_base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER * ioc)5405 static int _base_assign_fw_reported_qd(struct MPT3SAS_ADAPTER *ioc)
5406 {
5407 	Mpi2ConfigReply_t mpi_reply;
5408 	Mpi2SasIOUnitPage1_t sas_iounit_pg1;
5409 	Mpi26PCIeIOUnitPage1_t pcie_iounit_pg1;
5410 	u16 depth;
5411 	int rc = 0;
5412 
5413 	ioc->max_wideport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5414 	ioc->max_narrowport_qd = MPT3SAS_SAS_QUEUE_DEPTH;
5415 	ioc->max_sata_qd = MPT3SAS_SATA_QUEUE_DEPTH;
5416 	ioc->max_nvme_qd = MPT3SAS_NVME_QUEUE_DEPTH;
5417 	if (!ioc->is_gen35_ioc)
5418 		goto out;
5419 	/* sas iounit page 1 */
5420 	rc = mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
5421 	    &sas_iounit_pg1, sizeof(Mpi2SasIOUnitPage1_t));
5422 	if (rc) {
5423 		pr_err("%s: failure at %s:%d/%s()!\n",
5424 		    ioc->name, __FILE__, __LINE__, __func__);
5425 		goto out;
5426 	}
5427 
5428 	depth = le16_to_cpu(sas_iounit_pg1.SASWideMaxQueueDepth);
5429 	ioc->max_wideport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5430 
5431 	depth = le16_to_cpu(sas_iounit_pg1.SASNarrowMaxQueueDepth);
5432 	ioc->max_narrowport_qd = (depth ? depth : MPT3SAS_SAS_QUEUE_DEPTH);
5433 
5434 	depth = sas_iounit_pg1.SATAMaxQDepth;
5435 	ioc->max_sata_qd = (depth ? depth : MPT3SAS_SATA_QUEUE_DEPTH);
5436 
5437 	/* pcie iounit page 1 */
5438 	rc = mpt3sas_config_get_pcie_iounit_pg1(ioc, &mpi_reply,
5439 	    &pcie_iounit_pg1, sizeof(Mpi26PCIeIOUnitPage1_t));
5440 	if (rc) {
5441 		pr_err("%s: failure at %s:%d/%s()!\n",
5442 		    ioc->name, __FILE__, __LINE__, __func__);
5443 		goto out;
5444 	}
5445 	ioc->max_nvme_qd = (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) ?
5446 	    (le16_to_cpu(pcie_iounit_pg1.NVMeMaxQueueDepth)) :
5447 	    MPT3SAS_NVME_QUEUE_DEPTH;
5448 out:
5449 	dinitprintk(ioc, pr_err(
5450 	    "MaxWidePortQD: 0x%x MaxNarrowPortQD: 0x%x MaxSataQD: 0x%x MaxNvmeQD: 0x%x\n",
5451 	    ioc->max_wideport_qd, ioc->max_narrowport_qd,
5452 	    ioc->max_sata_qd, ioc->max_nvme_qd));
5453 	return rc;
5454 }
5455 
5456 /**
5457  * mpt3sas_atto_validate_nvram - validate the ATTO nvram read from mfg pg1
5458  *
5459  * @ioc : per adapter object
5460  * @n   : ptr to the ATTO nvram structure
5461  * Return: 0 for success, non-zero for failure.
5462  */
5463 static int
mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER * ioc,struct ATTO_SAS_NVRAM * n)5464 mpt3sas_atto_validate_nvram(struct MPT3SAS_ADAPTER *ioc,
5465 			    struct ATTO_SAS_NVRAM *n)
5466 {
5467 	int r = -EINVAL;
5468 	union ATTO_SAS_ADDRESS *s1;
5469 	u32 len;
5470 	u8 *pb;
5471 	u8 ckSum;
5472 
5473 	/* validate nvram checksum */
5474 	pb = (u8 *) n;
5475 	ckSum = ATTO_SASNVR_CKSUM_SEED;
5476 	len = sizeof(struct ATTO_SAS_NVRAM);
5477 
5478 	while (len--)
5479 		ckSum = ckSum + pb[len];
5480 
5481 	if (ckSum) {
5482 		ioc_err(ioc, "Invalid ATTO NVRAM checksum\n");
5483 		return r;
5484 	}
5485 
5486 	s1 = (union ATTO_SAS_ADDRESS *) n->SasAddr;
5487 
5488 	if (n->Signature[0] != 'E'
5489 	|| n->Signature[1] != 'S'
5490 	|| n->Signature[2] != 'A'
5491 	|| n->Signature[3] != 'S')
5492 		ioc_err(ioc, "Invalid ATTO NVRAM signature\n");
5493 	else if (n->Version > ATTO_SASNVR_VERSION)
5494 		ioc_info(ioc, "Invalid ATTO NVRAM version");
5495 	else if ((n->SasAddr[7] & (ATTO_SAS_ADDR_ALIGN - 1))
5496 			|| s1->b[0] != 0x50
5497 			|| s1->b[1] != 0x01
5498 			|| s1->b[2] != 0x08
5499 			|| (s1->b[3] & 0xF0) != 0x60
5500 			|| ((s1->b[3] & 0x0F) | le32_to_cpu(s1->d[1])) == 0) {
5501 		ioc_err(ioc, "Invalid ATTO SAS address\n");
5502 	} else
5503 		r = 0;
5504 	return r;
5505 }
5506 
5507 /**
5508  * mpt3sas_atto_get_sas_addr - get the ATTO SAS address from mfg page 1
5509  *
5510  * @ioc : per adapter object
5511  * @sas_addr : return sas address
5512  * Return: 0 for success, non-zero for failure.
5513  */
5514 static int
mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER * ioc,union ATTO_SAS_ADDRESS * sas_addr)5515 mpt3sas_atto_get_sas_addr(struct MPT3SAS_ADAPTER *ioc, union ATTO_SAS_ADDRESS *sas_addr)
5516 {
5517 	Mpi2ManufacturingPage1_t mfg_pg1;
5518 	Mpi2ConfigReply_t mpi_reply;
5519 	struct ATTO_SAS_NVRAM *nvram;
5520 	int r;
5521 	__be64 addr;
5522 
5523 	r = mpt3sas_config_get_manufacturing_pg1(ioc, &mpi_reply, &mfg_pg1);
5524 	if (r) {
5525 		ioc_err(ioc, "Failed to read manufacturing page 1\n");
5526 		return r;
5527 	}
5528 
5529 	/* validate nvram */
5530 	nvram = (struct ATTO_SAS_NVRAM *) mfg_pg1.VPD;
5531 	r = mpt3sas_atto_validate_nvram(ioc, nvram);
5532 	if (r)
5533 		return r;
5534 
5535 	addr = *((__be64 *) nvram->SasAddr);
5536 	sas_addr->q = cpu_to_le64(be64_to_cpu(addr));
5537 	return r;
5538 }
5539 
5540 /**
5541  * mpt3sas_atto_init - perform initializaion for ATTO branded
5542  *					adapter.
5543  * @ioc : per adapter object
5544  *5
5545  * Return: 0 for success, non-zero for failure.
5546  */
5547 static int
mpt3sas_atto_init(struct MPT3SAS_ADAPTER * ioc)5548 mpt3sas_atto_init(struct MPT3SAS_ADAPTER *ioc)
5549 {
5550 	int sz = 0;
5551 	Mpi2BiosPage4_t *bios_pg4 = NULL;
5552 	Mpi2ConfigReply_t mpi_reply;
5553 	int r;
5554 	int ix;
5555 	union ATTO_SAS_ADDRESS sas_addr;
5556 	union ATTO_SAS_ADDRESS temp;
5557 	union ATTO_SAS_ADDRESS bias;
5558 
5559 	r = mpt3sas_atto_get_sas_addr(ioc, &sas_addr);
5560 	if (r)
5561 		return r;
5562 
5563 	/* get header first to get size */
5564 	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, NULL, 0);
5565 	if (r) {
5566 		ioc_err(ioc, "Failed to read ATTO bios page 4 header.\n");
5567 		return r;
5568 	}
5569 
5570 	sz = mpi_reply.Header.PageLength * sizeof(u32);
5571 	bios_pg4 = kzalloc(sz, GFP_KERNEL);
5572 	if (!bios_pg4) {
5573 		ioc_err(ioc, "Failed to allocate memory for ATTO bios page.\n");
5574 		return -ENOMEM;
5575 	}
5576 
5577 	/* read bios page 4 */
5578 	r = mpt3sas_config_get_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5579 	if (r) {
5580 		ioc_err(ioc, "Failed to read ATTO bios page 4\n");
5581 		goto out;
5582 	}
5583 
5584 	/* Update bios page 4 with the ATTO WWID */
5585 	bias.q = sas_addr.q;
5586 	bias.b[7] += ATTO_SAS_ADDR_DEVNAME_BIAS;
5587 
5588 	for (ix = 0; ix < bios_pg4->NumPhys; ix++) {
5589 		temp.q = sas_addr.q;
5590 		temp.b[7] += ix;
5591 		bios_pg4->Phy[ix].ReassignmentWWID = temp.q;
5592 		bios_pg4->Phy[ix].ReassignmentDeviceName = bias.q;
5593 	}
5594 	r = mpt3sas_config_set_bios_pg4(ioc, &mpi_reply, bios_pg4, sz);
5595 
5596 out:
5597 	kfree(bios_pg4);
5598 	return r;
5599 }
5600 
5601 /**
5602  * _base_static_config_pages - static start of day config pages
5603  * @ioc: per adapter object
5604  */
5605 static int
_base_static_config_pages(struct MPT3SAS_ADAPTER * ioc)5606 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
5607 {
5608 	Mpi2IOUnitPage8_t iounit_pg8;
5609 	Mpi2ConfigReply_t mpi_reply;
5610 	u32 iounit_pg1_flags;
5611 	int tg_flags = 0;
5612 	int rc;
5613 	ioc->nvme_abort_timeout = 30;
5614 
5615 	rc = mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply,
5616 	    &ioc->manu_pg0);
5617 	if (rc)
5618 		return rc;
5619 	if (ioc->ir_firmware) {
5620 		rc = mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
5621 		    &ioc->manu_pg10);
5622 		if (rc)
5623 			return rc;
5624 	}
5625 
5626 	if (ioc->pdev->vendor == MPI2_MFGPAGE_VENDORID_ATTO) {
5627 		rc = mpt3sas_atto_init(ioc);
5628 		if (rc)
5629 			return rc;
5630 	}
5631 
5632 	/*
5633 	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
5634 	 * flag unset in NVDATA.
5635 	 */
5636 	rc = mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply,
5637 	    &ioc->manu_pg11);
5638 	if (rc)
5639 		return rc;
5640 	if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
5641 		pr_err("%s: overriding NVDATA EEDPTagMode setting from 0 to 1\n",
5642 		    ioc->name);
5643 		ioc->manu_pg11.EEDPTagMode = 0x1;
5644 		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
5645 		    &ioc->manu_pg11);
5646 	}
5647 	if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
5648 		ioc->tm_custom_handling = 1;
5649 	else {
5650 		ioc->tm_custom_handling = 0;
5651 		if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
5652 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
5653 		else if (ioc->manu_pg11.NVMeAbortTO >
5654 					NVME_TASK_ABORT_MAX_TIMEOUT)
5655 			ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
5656 		else
5657 			ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
5658 	}
5659 	ioc->time_sync_interval =
5660 	    ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_MASK;
5661 	if (ioc->time_sync_interval) {
5662 		if (ioc->manu_pg11.TimeSyncInterval & MPT3SAS_TIMESYNC_UNIT_MASK)
5663 			ioc->time_sync_interval =
5664 			    ioc->time_sync_interval * SECONDS_PER_HOUR;
5665 		else
5666 			ioc->time_sync_interval =
5667 			    ioc->time_sync_interval * SECONDS_PER_MIN;
5668 		dinitprintk(ioc, ioc_info(ioc,
5669 		    "Driver-FW TimeSync interval is %d seconds. ManuPg11 TimeSync Unit is in %s\n",
5670 		    ioc->time_sync_interval, (ioc->manu_pg11.TimeSyncInterval &
5671 		    MPT3SAS_TIMESYNC_UNIT_MASK) ? "Hour" : "Minute"));
5672 	} else {
5673 		if (ioc->is_gen35_ioc)
5674 			ioc_warn(ioc,
5675 			    "TimeSync Interval in Manuf page-11 is not enabled. Periodic Time-Sync will be disabled\n");
5676 	}
5677 	rc = _base_assign_fw_reported_qd(ioc);
5678 	if (rc)
5679 		return rc;
5680 
5681 	/*
5682 	 * ATTO doesn't use bios page 2 and 3 for bios settings.
5683 	 */
5684 	if (ioc->pdev->vendor ==  MPI2_MFGPAGE_VENDORID_ATTO)
5685 		ioc->bios_pg3.BiosVersion = 0;
5686 	else {
5687 		rc = mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
5688 		if (rc)
5689 			return rc;
5690 		rc = mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
5691 		if (rc)
5692 			return rc;
5693 	}
5694 
5695 	rc = mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
5696 	if (rc)
5697 		return rc;
5698 	rc = mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
5699 	if (rc)
5700 		return rc;
5701 	rc = mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5702 	if (rc)
5703 		return rc;
5704 	rc = mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &iounit_pg8);
5705 	if (rc)
5706 		return rc;
5707 	_base_display_ioc_capabilities(ioc);
5708 
5709 	/*
5710 	 * Enable task_set_full handling in iounit_pg1 when the
5711 	 * facts capabilities indicate that its supported.
5712 	 */
5713 	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
5714 	if ((ioc->facts.IOCCapabilities &
5715 	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
5716 		iounit_pg1_flags &=
5717 		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5718 	else
5719 		iounit_pg1_flags |=
5720 		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
5721 	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
5722 	rc = mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
5723 	if (rc)
5724 		return rc;
5725 
5726 	if (iounit_pg8.NumSensors)
5727 		ioc->temp_sensors_count = iounit_pg8.NumSensors;
5728 	if (ioc->is_aero_ioc) {
5729 		rc = _base_update_ioc_page1_inlinewith_perf_mode(ioc);
5730 		if (rc)
5731 			return rc;
5732 	}
5733 	if (ioc->is_gen35_ioc) {
5734 		if (ioc->is_driver_loading) {
5735 			rc = _base_get_diag_triggers(ioc);
5736 			if (rc)
5737 				return rc;
5738 		} else {
5739 			/*
5740 			 * In case of online HBA FW update operation,
5741 			 * check whether updated FW supports the driver trigger
5742 			 * pages or not.
5743 			 * - If previous FW has not supported driver trigger
5744 			 *   pages and newer FW supports them then update these
5745 			 *   pages with current diag trigger values.
5746 			 * - If previous FW has supported driver trigger pages
5747 			 *   and new FW doesn't support them then disable
5748 			 *   support_trigger_pages flag.
5749 			 */
5750 			_base_check_for_trigger_pages_support(ioc, &tg_flags);
5751 			if (!ioc->supports_trigger_pages && tg_flags != -EFAULT)
5752 				_base_update_diag_trigger_pages(ioc);
5753 			else if (ioc->supports_trigger_pages &&
5754 			    tg_flags == -EFAULT)
5755 				ioc->supports_trigger_pages = 0;
5756 		}
5757 	}
5758 	return 0;
5759 }
5760 
5761 /**
5762  * mpt3sas_free_enclosure_list - release memory
5763  * @ioc: per adapter object
5764  *
5765  * Free memory allocated during enclosure add.
5766  */
5767 void
mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER * ioc)5768 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
5769 {
5770 	struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
5771 
5772 	/* Free enclosure list */
5773 	list_for_each_entry_safe(enclosure_dev,
5774 			enclosure_dev_next, &ioc->enclosure_list, list) {
5775 		list_del(&enclosure_dev->list);
5776 		kfree(enclosure_dev);
5777 	}
5778 }
5779 
5780 /**
5781  * _base_release_memory_pools - release memory
5782  * @ioc: per adapter object
5783  *
5784  * Free memory allocated from _base_allocate_memory_pools.
5785  */
5786 static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER * ioc)5787 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5788 {
5789 	int i = 0;
5790 	int j = 0;
5791 	int dma_alloc_count = 0;
5792 	struct chain_tracker *ct;
5793 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
5794 
5795 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5796 
5797 	if (ioc->request) {
5798 		dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
5799 		    ioc->request,  ioc->request_dma);
5800 		dexitprintk(ioc,
5801 			    ioc_info(ioc, "request_pool(0x%p): free\n",
5802 				     ioc->request));
5803 		ioc->request = NULL;
5804 	}
5805 
5806 	if (ioc->sense) {
5807 		dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5808 		dma_pool_destroy(ioc->sense_dma_pool);
5809 		dexitprintk(ioc,
5810 			    ioc_info(ioc, "sense_pool(0x%p): free\n",
5811 				     ioc->sense));
5812 		ioc->sense = NULL;
5813 	}
5814 
5815 	if (ioc->reply) {
5816 		dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
5817 		dma_pool_destroy(ioc->reply_dma_pool);
5818 		dexitprintk(ioc,
5819 			    ioc_info(ioc, "reply_pool(0x%p): free\n",
5820 				     ioc->reply));
5821 		ioc->reply = NULL;
5822 	}
5823 
5824 	if (ioc->reply_free) {
5825 		dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
5826 		    ioc->reply_free_dma);
5827 		dma_pool_destroy(ioc->reply_free_dma_pool);
5828 		dexitprintk(ioc,
5829 			    ioc_info(ioc, "reply_free_pool(0x%p): free\n",
5830 				     ioc->reply_free));
5831 		ioc->reply_free = NULL;
5832 	}
5833 
5834 	if (ioc->reply_post) {
5835 		dma_alloc_count = DIV_ROUND_UP(count,
5836 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
5837 		for (i = 0; i < count; i++) {
5838 			if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
5839 			    && dma_alloc_count) {
5840 				if (ioc->reply_post[i].reply_post_free) {
5841 					dma_pool_free(
5842 					    ioc->reply_post_free_dma_pool,
5843 					    ioc->reply_post[i].reply_post_free,
5844 					ioc->reply_post[i].reply_post_free_dma);
5845 					dexitprintk(ioc, ioc_info(ioc,
5846 					   "reply_post_free_pool(0x%p): free\n",
5847 					   ioc->reply_post[i].reply_post_free));
5848 					ioc->reply_post[i].reply_post_free =
5849 									NULL;
5850 				}
5851 				--dma_alloc_count;
5852 			}
5853 		}
5854 		dma_pool_destroy(ioc->reply_post_free_dma_pool);
5855 		if (ioc->reply_post_free_array &&
5856 			ioc->rdpq_array_enable) {
5857 			dma_pool_free(ioc->reply_post_free_array_dma_pool,
5858 			    ioc->reply_post_free_array,
5859 			    ioc->reply_post_free_array_dma);
5860 			ioc->reply_post_free_array = NULL;
5861 		}
5862 		dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
5863 		kfree(ioc->reply_post);
5864 	}
5865 
5866 	if (ioc->pcie_sgl_dma_pool) {
5867 		for (i = 0; i < ioc->scsiio_depth; i++) {
5868 			dma_pool_free(ioc->pcie_sgl_dma_pool,
5869 					ioc->pcie_sg_lookup[i].pcie_sgl,
5870 					ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5871 			ioc->pcie_sg_lookup[i].pcie_sgl = NULL;
5872 		}
5873 		dma_pool_destroy(ioc->pcie_sgl_dma_pool);
5874 	}
5875 	kfree(ioc->pcie_sg_lookup);
5876 	ioc->pcie_sg_lookup = NULL;
5877 
5878 	if (ioc->config_page) {
5879 		dexitprintk(ioc,
5880 			    ioc_info(ioc, "config_page(0x%p): free\n",
5881 				     ioc->config_page));
5882 		dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
5883 		    ioc->config_page, ioc->config_page_dma);
5884 	}
5885 
5886 	kfree(ioc->hpr_lookup);
5887 	ioc->hpr_lookup = NULL;
5888 	kfree(ioc->internal_lookup);
5889 	ioc->internal_lookup = NULL;
5890 	if (ioc->chain_lookup) {
5891 		for (i = 0; i < ioc->scsiio_depth; i++) {
5892 			for (j = ioc->chains_per_prp_buffer;
5893 			    j < ioc->chains_needed_per_io; j++) {
5894 				ct = &ioc->chain_lookup[i].chains_per_smid[j];
5895 				if (ct && ct->chain_buffer)
5896 					dma_pool_free(ioc->chain_dma_pool,
5897 						ct->chain_buffer,
5898 						ct->chain_buffer_dma);
5899 			}
5900 			kfree(ioc->chain_lookup[i].chains_per_smid);
5901 		}
5902 		dma_pool_destroy(ioc->chain_dma_pool);
5903 		kfree(ioc->chain_lookup);
5904 		ioc->chain_lookup = NULL;
5905 	}
5906 
5907 	kfree(ioc->io_queue_num);
5908 	ioc->io_queue_num = NULL;
5909 }
5910 
5911 /**
5912  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
5913  *	having same upper 32bits in their base memory address.
5914  * @start_address: Base address of a reply queue set
5915  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
5916  *
5917  * Return: 1 if reply queues in a set have a same upper 32bits in their base
5918  * memory address, else 0.
5919  */
5920 static int
mpt3sas_check_same_4gb_region(dma_addr_t start_address,u32 pool_sz)5921 mpt3sas_check_same_4gb_region(dma_addr_t start_address, u32 pool_sz)
5922 {
5923 	dma_addr_t end_address;
5924 
5925 	end_address = start_address + pool_sz - 1;
5926 
5927 	if (upper_32_bits(start_address) == upper_32_bits(end_address))
5928 		return 1;
5929 	else
5930 		return 0;
5931 }
5932 
5933 /**
5934  * _base_reduce_hba_queue_depth- Retry with reduced queue depth
5935  * @ioc: Adapter object
5936  *
5937  * Return: 0 for success, non-zero for failure.
5938  **/
5939 static inline int
_base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER * ioc)5940 _base_reduce_hba_queue_depth(struct MPT3SAS_ADAPTER *ioc)
5941 {
5942 	int reduce_sz = 64;
5943 
5944 	if ((ioc->hba_queue_depth - reduce_sz) >
5945 	    (ioc->internal_depth + INTERNAL_SCSIIO_CMDS_COUNT)) {
5946 		ioc->hba_queue_depth -= reduce_sz;
5947 		return 0;
5948 	} else
5949 		return -ENOMEM;
5950 }
5951 
5952 /**
5953  * _base_allocate_pcie_sgl_pool - Allocating DMA'able memory
5954  *			for pcie sgl pools.
5955  * @ioc: Adapter object
5956  * @sz: DMA Pool size
5957  *
5958  * Return: 0 for success, non-zero for failure.
5959  */
5960 
5961 static int
_base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)5962 _base_allocate_pcie_sgl_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
5963 {
5964 	int i = 0, j = 0;
5965 	struct chain_tracker *ct;
5966 
5967 	ioc->pcie_sgl_dma_pool =
5968 	    dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz,
5969 	    ioc->page_size, 0);
5970 	if (!ioc->pcie_sgl_dma_pool) {
5971 		ioc_err(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5972 		return -ENOMEM;
5973 	}
5974 
5975 	ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5976 	ioc->chains_per_prp_buffer =
5977 	    min(ioc->chains_per_prp_buffer, ioc->chains_needed_per_io);
5978 	for (i = 0; i < ioc->scsiio_depth; i++) {
5979 		ioc->pcie_sg_lookup[i].pcie_sgl =
5980 		    dma_pool_alloc(ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5981 		    &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5982 		if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5983 			ioc_err(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5984 			return -EAGAIN;
5985 		}
5986 
5987 		if (!mpt3sas_check_same_4gb_region(
5988 		    ioc->pcie_sg_lookup[i].pcie_sgl_dma, sz)) {
5989 			ioc_err(ioc, "PCIE SGLs are not in same 4G !! pcie sgl (0x%p) dma = (0x%llx)\n",
5990 			    ioc->pcie_sg_lookup[i].pcie_sgl,
5991 			    (unsigned long long)
5992 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5993 			ioc->use_32bit_dma = true;
5994 			return -EAGAIN;
5995 		}
5996 
5997 		for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5998 			ct = &ioc->chain_lookup[i].chains_per_smid[j];
5999 			ct->chain_buffer =
6000 			    ioc->pcie_sg_lookup[i].pcie_sgl +
6001 			    (j * ioc->chain_segment_sz);
6002 			ct->chain_buffer_dma =
6003 			    ioc->pcie_sg_lookup[i].pcie_sgl_dma +
6004 			    (j * ioc->chain_segment_sz);
6005 		}
6006 	}
6007 	dinitprintk(ioc, ioc_info(ioc,
6008 	    "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
6009 	    ioc->scsiio_depth, sz, (sz * ioc->scsiio_depth)/1024));
6010 	dinitprintk(ioc, ioc_info(ioc,
6011 	    "Number of chains can fit in a PRP page(%d)\n",
6012 	    ioc->chains_per_prp_buffer));
6013 	return 0;
6014 }
6015 
6016 /**
6017  * _base_allocate_chain_dma_pool - Allocating DMA'able memory
6018  *			for chain dma pool.
6019  * @ioc: Adapter object
6020  * @sz: DMA Pool size
6021  *
6022  * Return: 0 for success, non-zero for failure.
6023  */
6024 static int
_base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6025 _base_allocate_chain_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6026 {
6027 	int i = 0, j = 0;
6028 	struct chain_tracker *ctr;
6029 
6030 	ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
6031 	    ioc->chain_segment_sz, 16, 0);
6032 	if (!ioc->chain_dma_pool)
6033 		return -ENOMEM;
6034 
6035 	for (i = 0; i < ioc->scsiio_depth; i++) {
6036 		for (j = ioc->chains_per_prp_buffer;
6037 		    j < ioc->chains_needed_per_io; j++) {
6038 			ctr = &ioc->chain_lookup[i].chains_per_smid[j];
6039 			ctr->chain_buffer = dma_pool_alloc(ioc->chain_dma_pool,
6040 			    GFP_KERNEL, &ctr->chain_buffer_dma);
6041 			if (!ctr->chain_buffer)
6042 				return -EAGAIN;
6043 			if (!mpt3sas_check_same_4gb_region(
6044 			    ctr->chain_buffer_dma, ioc->chain_segment_sz)) {
6045 				ioc_err(ioc,
6046 				    "Chain buffers are not in same 4G !!! Chain buff (0x%p) dma = (0x%llx)\n",
6047 				    ctr->chain_buffer,
6048 				    (unsigned long long)ctr->chain_buffer_dma);
6049 				ioc->use_32bit_dma = true;
6050 				return -EAGAIN;
6051 			}
6052 		}
6053 	}
6054 	dinitprintk(ioc, ioc_info(ioc,
6055 	    "chain_lookup depth (%d), frame_size(%d), pool_size(%d kB)\n",
6056 	    ioc->scsiio_depth, ioc->chain_segment_sz, ((ioc->scsiio_depth *
6057 	    (ioc->chains_needed_per_io - ioc->chains_per_prp_buffer) *
6058 	    ioc->chain_segment_sz))/1024));
6059 	return 0;
6060 }
6061 
6062 /**
6063  * _base_allocate_sense_dma_pool - Allocating DMA'able memory
6064  *			for sense dma pool.
6065  * @ioc: Adapter object
6066  * @sz: DMA Pool size
6067  * Return: 0 for success, non-zero for failure.
6068  */
6069 static int
_base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6070 _base_allocate_sense_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6071 {
6072 	ioc->sense_dma_pool =
6073 	    dma_pool_create("sense pool", &ioc->pdev->dev, sz, 4, 0);
6074 	if (!ioc->sense_dma_pool)
6075 		return -ENOMEM;
6076 	ioc->sense = dma_pool_alloc(ioc->sense_dma_pool,
6077 	    GFP_KERNEL, &ioc->sense_dma);
6078 	if (!ioc->sense)
6079 		return -EAGAIN;
6080 	if (!mpt3sas_check_same_4gb_region(ioc->sense_dma, sz)) {
6081 		dinitprintk(ioc, pr_err(
6082 		    "Bad Sense Pool! sense (0x%p) sense_dma = (0x%llx)\n",
6083 		    ioc->sense, (unsigned long long) ioc->sense_dma));
6084 		ioc->use_32bit_dma = true;
6085 		return -EAGAIN;
6086 	}
6087 	ioc_info(ioc,
6088 	    "sense pool(0x%p) - dma(0x%llx): depth(%d), element_size(%d), pool_size (%d kB)\n",
6089 	    ioc->sense, (unsigned long long)ioc->sense_dma,
6090 	    ioc->scsiio_depth, SCSI_SENSE_BUFFERSIZE, sz/1024);
6091 	return 0;
6092 }
6093 
6094 /**
6095  * _base_allocate_reply_pool - Allocating DMA'able memory
6096  *			for reply pool.
6097  * @ioc: Adapter object
6098  * @sz: DMA Pool size
6099  * Return: 0 for success, non-zero for failure.
6100  */
6101 static int
_base_allocate_reply_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6102 _base_allocate_reply_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6103 {
6104 	/* reply pool, 4 byte align */
6105 	ioc->reply_dma_pool = dma_pool_create("reply pool",
6106 	    &ioc->pdev->dev, sz, 4, 0);
6107 	if (!ioc->reply_dma_pool)
6108 		return -ENOMEM;
6109 	ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
6110 	    &ioc->reply_dma);
6111 	if (!ioc->reply)
6112 		return -EAGAIN;
6113 	if (!mpt3sas_check_same_4gb_region(ioc->reply_dma, sz)) {
6114 		dinitprintk(ioc, pr_err(
6115 		    "Bad Reply Pool! Reply (0x%p) Reply dma = (0x%llx)\n",
6116 		    ioc->reply, (unsigned long long) ioc->reply_dma));
6117 		ioc->use_32bit_dma = true;
6118 		return -EAGAIN;
6119 	}
6120 	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
6121 	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
6122 	ioc_info(ioc,
6123 	    "reply pool(0x%p) - dma(0x%llx): depth(%d), frame_size(%d), pool_size(%d kB)\n",
6124 	    ioc->reply, (unsigned long long)ioc->reply_dma,
6125 	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024);
6126 	return 0;
6127 }
6128 
6129 /**
6130  * _base_allocate_reply_free_dma_pool - Allocating DMA'able memory
6131  *			for reply free dma pool.
6132  * @ioc: Adapter object
6133  * @sz: DMA Pool size
6134  * Return: 0 for success, non-zero for failure.
6135  */
6136 static int
_base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER * ioc,u32 sz)6137 _base_allocate_reply_free_dma_pool(struct MPT3SAS_ADAPTER *ioc, u32 sz)
6138 {
6139 	/* reply free queue, 16 byte align */
6140 	ioc->reply_free_dma_pool = dma_pool_create(
6141 	    "reply_free pool", &ioc->pdev->dev, sz, 16, 0);
6142 	if (!ioc->reply_free_dma_pool)
6143 		return -ENOMEM;
6144 	ioc->reply_free = dma_pool_alloc(ioc->reply_free_dma_pool,
6145 	    GFP_KERNEL, &ioc->reply_free_dma);
6146 	if (!ioc->reply_free)
6147 		return -EAGAIN;
6148 	if (!mpt3sas_check_same_4gb_region(ioc->reply_free_dma, sz)) {
6149 		dinitprintk(ioc,
6150 		    pr_err("Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6151 		    ioc->reply_free, (unsigned long long) ioc->reply_free_dma));
6152 		ioc->use_32bit_dma = true;
6153 		return -EAGAIN;
6154 	}
6155 	memset(ioc->reply_free, 0, sz);
6156 	dinitprintk(ioc, ioc_info(ioc,
6157 	    "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
6158 	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
6159 	dinitprintk(ioc, ioc_info(ioc,
6160 	    "reply_free_dma (0x%llx)\n",
6161 	    (unsigned long long)ioc->reply_free_dma));
6162 	return 0;
6163 }
6164 
6165 /**
6166  * _base_allocate_reply_post_free_array - Allocating DMA'able memory
6167  *			for reply post free array.
6168  * @ioc: Adapter object
6169  * @reply_post_free_array_sz: DMA Pool size
6170  * Return: 0 for success, non-zero for failure.
6171  */
6172 
6173 static int
_base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER * ioc,u32 reply_post_free_array_sz)6174 _base_allocate_reply_post_free_array(struct MPT3SAS_ADAPTER *ioc,
6175 	u32 reply_post_free_array_sz)
6176 {
6177 	ioc->reply_post_free_array_dma_pool =
6178 	    dma_pool_create("reply_post_free_array pool",
6179 	    &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
6180 	if (!ioc->reply_post_free_array_dma_pool)
6181 		return -ENOMEM;
6182 	ioc->reply_post_free_array =
6183 	    dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
6184 	    GFP_KERNEL, &ioc->reply_post_free_array_dma);
6185 	if (!ioc->reply_post_free_array)
6186 		return -EAGAIN;
6187 	if (!mpt3sas_check_same_4gb_region(ioc->reply_post_free_array_dma,
6188 	    reply_post_free_array_sz)) {
6189 		dinitprintk(ioc, pr_err(
6190 		    "Bad Reply Free Pool! Reply Free (0x%p) Reply Free dma = (0x%llx)\n",
6191 		    ioc->reply_free,
6192 		    (unsigned long long) ioc->reply_free_dma));
6193 		ioc->use_32bit_dma = true;
6194 		return -EAGAIN;
6195 	}
6196 	return 0;
6197 }
6198 /**
6199  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
6200  *                     for reply queues.
6201  * @ioc: per adapter object
6202  * @sz: DMA Pool size
6203  * Return: 0 for success, non-zero for failure.
6204  */
6205 static int
base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER * ioc,int sz)6206 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
6207 {
6208 	int i = 0;
6209 	u32 dma_alloc_count = 0;
6210 	int reply_post_free_sz = ioc->reply_post_queue_depth *
6211 		sizeof(Mpi2DefaultReplyDescriptor_t);
6212 	int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
6213 
6214 	ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
6215 			GFP_KERNEL);
6216 	if (!ioc->reply_post)
6217 		return -ENOMEM;
6218 	/*
6219 	 *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
6220 	 *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
6221 	 *  be within 4GB boundary i.e reply queues in a set must have same
6222 	 *  upper 32-bits in their memory address. so here driver is allocating
6223 	 *  the DMA'able memory for reply queues according.
6224 	 *  Driver uses limitation of
6225 	 *  VENTURA_SERIES to manage INVADER_SERIES as well.
6226 	 */
6227 	dma_alloc_count = DIV_ROUND_UP(count,
6228 				RDPQ_MAX_INDEX_IN_ONE_CHUNK);
6229 	ioc->reply_post_free_dma_pool =
6230 		dma_pool_create("reply_post_free pool",
6231 		    &ioc->pdev->dev, sz, 16, 0);
6232 	if (!ioc->reply_post_free_dma_pool)
6233 		return -ENOMEM;
6234 	for (i = 0; i < count; i++) {
6235 		if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
6236 			ioc->reply_post[i].reply_post_free =
6237 			    dma_pool_zalloc(ioc->reply_post_free_dma_pool,
6238 				GFP_KERNEL,
6239 				&ioc->reply_post[i].reply_post_free_dma);
6240 			if (!ioc->reply_post[i].reply_post_free)
6241 				return -ENOMEM;
6242 			/*
6243 			 * Each set of RDPQ pool must satisfy 4gb boundary
6244 			 * restriction.
6245 			 * 1) Check if allocated resources for RDPQ pool are in
6246 			 *	the same 4GB range.
6247 			 * 2) If #1 is true, continue with 64 bit DMA.
6248 			 * 3) If #1 is false, return 1. which means free all the
6249 			 * resources and set DMA mask to 32 and allocate.
6250 			 */
6251 			if (!mpt3sas_check_same_4gb_region(
6252 				ioc->reply_post[i].reply_post_free_dma, sz)) {
6253 				dinitprintk(ioc,
6254 				    ioc_err(ioc, "bad Replypost free pool(0x%p)"
6255 				    "reply_post_free_dma = (0x%llx)\n",
6256 				    ioc->reply_post[i].reply_post_free,
6257 				    (unsigned long long)
6258 				    ioc->reply_post[i].reply_post_free_dma));
6259 				return -EAGAIN;
6260 			}
6261 			dma_alloc_count--;
6262 
6263 		} else {
6264 			ioc->reply_post[i].reply_post_free =
6265 			    (Mpi2ReplyDescriptorsUnion_t *)
6266 			    ((long)ioc->reply_post[i-1].reply_post_free
6267 			    + reply_post_free_sz);
6268 			ioc->reply_post[i].reply_post_free_dma =
6269 			    (dma_addr_t)
6270 			    (ioc->reply_post[i-1].reply_post_free_dma +
6271 			    reply_post_free_sz);
6272 		}
6273 	}
6274 	return 0;
6275 }
6276 
6277 /**
6278  * _base_allocate_memory_pools - allocate start of day memory pools
6279  * @ioc: per adapter object
6280  *
6281  * Return: 0 success, anything else error.
6282  */
6283 static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER * ioc)6284 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
6285 {
6286 	struct mpt3sas_facts *facts;
6287 	u16 max_sge_elements;
6288 	u16 chains_needed_per_io;
6289 	u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
6290 	u32 retry_sz;
6291 	u32 rdpq_sz = 0, sense_sz = 0;
6292 	u16 max_request_credit, nvme_blocks_needed;
6293 	unsigned short sg_tablesize;
6294 	u16 sge_size;
6295 	int i;
6296 	int ret = 0, rc = 0;
6297 
6298 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6299 
6300 
6301 	retry_sz = 0;
6302 	facts = &ioc->facts;
6303 
6304 	/* command line tunables for max sgl entries */
6305 	if (max_sgl_entries != -1)
6306 		sg_tablesize = max_sgl_entries;
6307 	else {
6308 		if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
6309 			sg_tablesize = MPT2SAS_SG_DEPTH;
6310 		else
6311 			sg_tablesize = MPT3SAS_SG_DEPTH;
6312 	}
6313 
6314 	/* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
6315 	if (reset_devices)
6316 		sg_tablesize = min_t(unsigned short, sg_tablesize,
6317 		   MPT_KDUMP_MIN_PHYS_SEGMENTS);
6318 
6319 	if (ioc->is_mcpu_endpoint)
6320 		ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6321 	else {
6322 		if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
6323 			sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
6324 		else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
6325 			sg_tablesize = min_t(unsigned short, sg_tablesize,
6326 					SG_MAX_SEGMENTS);
6327 			ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
6328 				 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
6329 		}
6330 		ioc->shost->sg_tablesize = sg_tablesize;
6331 	}
6332 
6333 	ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
6334 		(facts->RequestCredit / 4));
6335 	if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
6336 		if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
6337 				INTERNAL_SCSIIO_CMDS_COUNT)) {
6338 			ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
6339 				facts->RequestCredit);
6340 			return -ENOMEM;
6341 		}
6342 		ioc->internal_depth = 10;
6343 	}
6344 
6345 	ioc->hi_priority_depth = ioc->internal_depth - (5);
6346 	/* command line tunables  for max controller queue depth */
6347 	if (max_queue_depth != -1 && max_queue_depth != 0) {
6348 		max_request_credit = min_t(u16, max_queue_depth +
6349 			ioc->internal_depth, facts->RequestCredit);
6350 		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
6351 			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
6352 	} else if (reset_devices)
6353 		max_request_credit = min_t(u16, facts->RequestCredit,
6354 		    (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
6355 	else
6356 		max_request_credit = min_t(u16, facts->RequestCredit,
6357 		    MAX_HBA_QUEUE_DEPTH);
6358 
6359 	/* Firmware maintains additional facts->HighPriorityCredit number of
6360 	 * credits for HiPriprity Request messages, so hba queue depth will be
6361 	 * sum of max_request_credit and high priority queue depth.
6362 	 */
6363 	ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
6364 
6365 	/* request frame size */
6366 	ioc->request_sz = facts->IOCRequestFrameSize * 4;
6367 
6368 	/* reply frame size */
6369 	ioc->reply_sz = facts->ReplyFrameSize * 4;
6370 
6371 	/* chain segment size */
6372 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6373 		if (facts->IOCMaxChainSegmentSize)
6374 			ioc->chain_segment_sz =
6375 					facts->IOCMaxChainSegmentSize *
6376 					MAX_CHAIN_ELEMT_SZ;
6377 		else
6378 		/* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
6379 			ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
6380 						    MAX_CHAIN_ELEMT_SZ;
6381 	} else
6382 		ioc->chain_segment_sz = ioc->request_sz;
6383 
6384 	/* calculate the max scatter element size */
6385 	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
6386 
6387  retry_allocation:
6388 	total_sz = 0;
6389 	/* calculate number of sg elements left over in the 1st frame */
6390 	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
6391 	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
6392 	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
6393 
6394 	/* now do the same for a chain buffer */
6395 	max_sge_elements = ioc->chain_segment_sz - sge_size;
6396 	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
6397 
6398 	/*
6399 	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
6400 	 */
6401 	chains_needed_per_io = ((ioc->shost->sg_tablesize -
6402 	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
6403 	    + 1;
6404 	if (chains_needed_per_io > facts->MaxChainDepth) {
6405 		chains_needed_per_io = facts->MaxChainDepth;
6406 		ioc->shost->sg_tablesize = min_t(u16,
6407 		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
6408 		* chains_needed_per_io), ioc->shost->sg_tablesize);
6409 	}
6410 	ioc->chains_needed_per_io = chains_needed_per_io;
6411 
6412 	/* reply free queue sizing - taking into account for 64 FW events */
6413 	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6414 
6415 	/* mCPU manage single counters for simplicity */
6416 	if (ioc->is_mcpu_endpoint)
6417 		ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
6418 	else {
6419 		/* calculate reply descriptor post queue depth */
6420 		ioc->reply_post_queue_depth = ioc->hba_queue_depth +
6421 			ioc->reply_free_queue_depth +  1;
6422 		/* align the reply post queue on the next 16 count boundary */
6423 		if (ioc->reply_post_queue_depth % 16)
6424 			ioc->reply_post_queue_depth += 16 -
6425 				(ioc->reply_post_queue_depth % 16);
6426 	}
6427 
6428 	if (ioc->reply_post_queue_depth >
6429 	    facts->MaxReplyDescriptorPostQueueDepth) {
6430 		ioc->reply_post_queue_depth =
6431 				facts->MaxReplyDescriptorPostQueueDepth -
6432 		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
6433 		ioc->hba_queue_depth =
6434 				((ioc->reply_post_queue_depth - 64) / 2) - 1;
6435 		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
6436 	}
6437 
6438 	ioc_info(ioc,
6439 	    "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
6440 	    "sge_per_io(%d), chains_per_io(%d)\n",
6441 	    ioc->max_sges_in_main_message,
6442 	    ioc->max_sges_in_chain_message,
6443 	    ioc->shost->sg_tablesize,
6444 	    ioc->chains_needed_per_io);
6445 
6446 	/* reply post queue, 16 byte align */
6447 	reply_post_free_sz = ioc->reply_post_queue_depth *
6448 	    sizeof(Mpi2DefaultReplyDescriptor_t);
6449 	rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
6450 	if ((_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
6451 	    || (ioc->reply_queue_count < RDPQ_MAX_INDEX_IN_ONE_CHUNK))
6452 		rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
6453 	ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
6454 	if (ret == -EAGAIN) {
6455 		/*
6456 		 * Free allocated bad RDPQ memory pools.
6457 		 * Change dma coherent mask to 32 bit and reallocate RDPQ
6458 		 */
6459 		_base_release_memory_pools(ioc);
6460 		ioc->use_32bit_dma = true;
6461 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6462 			ioc_err(ioc,
6463 			    "32 DMA mask failed %s\n", pci_name(ioc->pdev));
6464 			return -ENODEV;
6465 		}
6466 		if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
6467 			return -ENOMEM;
6468 	} else if (ret == -ENOMEM)
6469 		return -ENOMEM;
6470 	total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
6471 	    DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
6472 	ioc->scsiio_depth = ioc->hba_queue_depth -
6473 	    ioc->hi_priority_depth - ioc->internal_depth;
6474 
6475 	/* set the scsi host can_queue depth
6476 	 * with some internal commands that could be outstanding
6477 	 */
6478 	ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
6479 	dinitprintk(ioc,
6480 		    ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
6481 			     ioc->shost->can_queue));
6482 
6483 	/* contiguous pool for request and chains, 16 byte align, one extra "
6484 	 * "frame for smid=0
6485 	 */
6486 	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
6487 	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
6488 
6489 	/* hi-priority queue */
6490 	sz += (ioc->hi_priority_depth * ioc->request_sz);
6491 
6492 	/* internal queue */
6493 	sz += (ioc->internal_depth * ioc->request_sz);
6494 
6495 	ioc->request_dma_sz = sz;
6496 	ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
6497 			&ioc->request_dma, GFP_KERNEL);
6498 	if (!ioc->request) {
6499 		ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
6500 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6501 			ioc->request_sz, sz / 1024);
6502 		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
6503 			goto out;
6504 		retry_sz = 64;
6505 		ioc->hba_queue_depth -= retry_sz;
6506 		_base_release_memory_pools(ioc);
6507 		goto retry_allocation;
6508 	}
6509 
6510 	if (retry_sz)
6511 		ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
6512 			ioc->hba_queue_depth, ioc->chains_needed_per_io,
6513 			ioc->request_sz, sz / 1024);
6514 
6515 	/* hi-priority queue */
6516 	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
6517 	    ioc->request_sz);
6518 	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
6519 	    ioc->request_sz);
6520 
6521 	/* internal queue */
6522 	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
6523 	    ioc->request_sz);
6524 	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
6525 	    ioc->request_sz);
6526 
6527 	ioc_info(ioc,
6528 	    "request pool(0x%p) - dma(0x%llx): "
6529 	    "depth(%d), frame_size(%d), pool_size(%d kB)\n",
6530 	    ioc->request, (unsigned long long) ioc->request_dma,
6531 	    ioc->hba_queue_depth, ioc->request_sz,
6532 	    (ioc->hba_queue_depth * ioc->request_sz) / 1024);
6533 
6534 	total_sz += sz;
6535 
6536 	dinitprintk(ioc,
6537 		    ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
6538 			     ioc->request, ioc->scsiio_depth));
6539 
6540 	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
6541 	sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
6542 	ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
6543 	if (!ioc->chain_lookup) {
6544 		ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
6545 		goto out;
6546 	}
6547 
6548 	sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
6549 	for (i = 0; i < ioc->scsiio_depth; i++) {
6550 		ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
6551 		if (!ioc->chain_lookup[i].chains_per_smid) {
6552 			ioc_err(ioc, "chain_lookup: kzalloc failed\n");
6553 			goto out;
6554 		}
6555 	}
6556 
6557 	/* initialize hi-priority queue smid's */
6558 	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
6559 	    sizeof(struct request_tracker), GFP_KERNEL);
6560 	if (!ioc->hpr_lookup) {
6561 		ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
6562 		goto out;
6563 	}
6564 	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
6565 	dinitprintk(ioc,
6566 		    ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
6567 			     ioc->hi_priority,
6568 			     ioc->hi_priority_depth, ioc->hi_priority_smid));
6569 
6570 	/* initialize internal queue smid's */
6571 	ioc->internal_lookup = kcalloc(ioc->internal_depth,
6572 	    sizeof(struct request_tracker), GFP_KERNEL);
6573 	if (!ioc->internal_lookup) {
6574 		ioc_err(ioc, "internal_lookup: kcalloc failed\n");
6575 		goto out;
6576 	}
6577 	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
6578 	dinitprintk(ioc,
6579 		    ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
6580 			     ioc->internal,
6581 			     ioc->internal_depth, ioc->internal_smid));
6582 
6583 	ioc->io_queue_num = kcalloc(ioc->scsiio_depth,
6584 	    sizeof(u16), GFP_KERNEL);
6585 	if (!ioc->io_queue_num)
6586 		goto out;
6587 	/*
6588 	 * The number of NVMe page sized blocks needed is:
6589 	 *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
6590 	 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
6591 	 * that is placed in the main message frame.  8 is the size of each PRP
6592 	 * entry or PRP list pointer entry.  8 is subtracted from page_size
6593 	 * because of the PRP list pointer entry at the end of a page, so this
6594 	 * is not counted as a PRP entry.  The 1 added page is a round up.
6595 	 *
6596 	 * To avoid allocation failures due to the amount of memory that could
6597 	 * be required for NVMe PRP's, only each set of NVMe blocks will be
6598 	 * contiguous, so a new set is allocated for each possible I/O.
6599 	 */
6600 
6601 	ioc->chains_per_prp_buffer = 0;
6602 	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
6603 		nvme_blocks_needed =
6604 			(ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
6605 		nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
6606 		nvme_blocks_needed++;
6607 
6608 		sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
6609 		ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
6610 		if (!ioc->pcie_sg_lookup) {
6611 			ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
6612 			goto out;
6613 		}
6614 		sz = nvme_blocks_needed * ioc->page_size;
6615 		rc = _base_allocate_pcie_sgl_pool(ioc, sz);
6616 		if (rc == -ENOMEM)
6617 			return -ENOMEM;
6618 		else if (rc == -EAGAIN)
6619 			goto try_32bit_dma;
6620 		total_sz += sz * ioc->scsiio_depth;
6621 	}
6622 
6623 	rc = _base_allocate_chain_dma_pool(ioc, ioc->chain_segment_sz);
6624 	if (rc == -ENOMEM)
6625 		return -ENOMEM;
6626 	else if (rc == -EAGAIN)
6627 		goto try_32bit_dma;
6628 	total_sz += ioc->chain_segment_sz * ((ioc->chains_needed_per_io -
6629 		ioc->chains_per_prp_buffer) * ioc->scsiio_depth);
6630 	dinitprintk(ioc,
6631 	    ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
6632 	    ioc->chain_depth, ioc->chain_segment_sz,
6633 	    (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
6634 	/* sense buffers, 4 byte align */
6635 	sense_sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
6636 	rc = _base_allocate_sense_dma_pool(ioc, sense_sz);
6637 	if (rc  == -ENOMEM)
6638 		return -ENOMEM;
6639 	else if (rc == -EAGAIN)
6640 		goto try_32bit_dma;
6641 	total_sz += sense_sz;
6642 	/* reply pool, 4 byte align */
6643 	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
6644 	rc = _base_allocate_reply_pool(ioc, sz);
6645 	if (rc == -ENOMEM)
6646 		return -ENOMEM;
6647 	else if (rc == -EAGAIN)
6648 		goto try_32bit_dma;
6649 	total_sz += sz;
6650 
6651 	/* reply free queue, 16 byte align */
6652 	sz = ioc->reply_free_queue_depth * 4;
6653 	rc = _base_allocate_reply_free_dma_pool(ioc, sz);
6654 	if (rc  == -ENOMEM)
6655 		return -ENOMEM;
6656 	else if (rc == -EAGAIN)
6657 		goto try_32bit_dma;
6658 	dinitprintk(ioc,
6659 		    ioc_info(ioc, "reply_free_dma (0x%llx)\n",
6660 			     (unsigned long long)ioc->reply_free_dma));
6661 	total_sz += sz;
6662 	if (ioc->rdpq_array_enable) {
6663 		reply_post_free_array_sz = ioc->reply_queue_count *
6664 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
6665 		rc = _base_allocate_reply_post_free_array(ioc,
6666 		    reply_post_free_array_sz);
6667 		if (rc == -ENOMEM)
6668 			return -ENOMEM;
6669 		else if (rc == -EAGAIN)
6670 			goto try_32bit_dma;
6671 	}
6672 	ioc->config_page_sz = 512;
6673 	ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
6674 			ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
6675 	if (!ioc->config_page) {
6676 		ioc_err(ioc, "config page: dma_pool_alloc failed\n");
6677 		goto out;
6678 	}
6679 
6680 	ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
6681 	    ioc->config_page, (unsigned long long)ioc->config_page_dma,
6682 	    ioc->config_page_sz);
6683 	total_sz += ioc->config_page_sz;
6684 
6685 	ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
6686 		 total_sz / 1024);
6687 	ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
6688 		 ioc->shost->can_queue, facts->RequestCredit);
6689 	ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
6690 		 ioc->shost->sg_tablesize);
6691 	return 0;
6692 
6693 try_32bit_dma:
6694 	_base_release_memory_pools(ioc);
6695 	if (ioc->use_32bit_dma && (ioc->dma_mask > 32)) {
6696 		/* Change dma coherent mask to 32 bit and reallocate */
6697 		if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
6698 			pr_err("Setting 32 bit coherent DMA mask Failed %s\n",
6699 			    pci_name(ioc->pdev));
6700 			return -ENODEV;
6701 		}
6702 	} else if (_base_reduce_hba_queue_depth(ioc) != 0)
6703 		return -ENOMEM;
6704 	goto retry_allocation;
6705 
6706  out:
6707 	return -ENOMEM;
6708 }
6709 
6710 /**
6711  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
6712  * @ioc: Pointer to MPT_ADAPTER structure
6713  * @cooked: Request raw or cooked IOC state
6714  *
6715  * Return: all IOC Doorbell register bits if cooked==0, else just the
6716  * Doorbell bits in MPI_IOC_STATE_MASK.
6717  */
6718 u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER * ioc,int cooked)6719 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
6720 {
6721 	u32 s, sc;
6722 
6723 	s = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6724 	sc = s & MPI2_IOC_STATE_MASK;
6725 	return cooked ? sc : s;
6726 }
6727 
6728 /**
6729  * _base_wait_on_iocstate - waiting on a particular ioc state
6730  * @ioc: ?
6731  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
6732  * @timeout: timeout in second
6733  *
6734  * Return: 0 for success, non-zero for failure.
6735  */
6736 static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER * ioc,u32 ioc_state,int timeout)6737 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
6738 {
6739 	u32 count, cntdn;
6740 	u32 current_state;
6741 
6742 	count = 0;
6743 	cntdn = 1000 * timeout;
6744 	do {
6745 		current_state = mpt3sas_base_get_iocstate(ioc, 1);
6746 		if (current_state == ioc_state)
6747 			return 0;
6748 		if (count && current_state == MPI2_IOC_STATE_FAULT)
6749 			break;
6750 		if (count && current_state == MPI2_IOC_STATE_COREDUMP)
6751 			break;
6752 
6753 		usleep_range(1000, 1500);
6754 		count++;
6755 	} while (--cntdn);
6756 
6757 	return current_state;
6758 }
6759 
6760 /**
6761  * _base_dump_reg_set -	This function will print hexdump of register set.
6762  * @ioc: per adapter object
6763  *
6764  * Return: nothing.
6765  */
6766 static inline void
_base_dump_reg_set(struct MPT3SAS_ADAPTER * ioc)6767 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
6768 {
6769 	unsigned int i, sz = 256;
6770 	u32 __iomem *reg = (u32 __iomem *)ioc->chip;
6771 
6772 	ioc_info(ioc, "System Register set:\n");
6773 	for (i = 0; i < (sz / sizeof(u32)); i++)
6774 		pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
6775 }
6776 
6777 /**
6778  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
6779  * a write to the doorbell)
6780  * @ioc: per adapter object
6781  * @timeout: timeout in seconds
6782  *
6783  * Return: 0 for success, non-zero for failure.
6784  *
6785  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
6786  */
6787 
6788 static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6789 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6790 {
6791 	u32 cntdn, count;
6792 	u32 int_status;
6793 
6794 	count = 0;
6795 	cntdn = 1000 * timeout;
6796 	do {
6797 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6798 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6799 			dhsprintk(ioc,
6800 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6801 					   __func__, count, timeout));
6802 			return 0;
6803 		}
6804 
6805 		usleep_range(1000, 1500);
6806 		count++;
6807 	} while (--cntdn);
6808 
6809 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6810 		__func__, count, int_status);
6811 	return -EFAULT;
6812 }
6813 
6814 static int
_base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER * ioc,int timeout)6815 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
6816 {
6817 	u32 cntdn, count;
6818 	u32 int_status;
6819 
6820 	count = 0;
6821 	cntdn = 2000 * timeout;
6822 	do {
6823 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6824 		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6825 			dhsprintk(ioc,
6826 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6827 					   __func__, count, timeout));
6828 			return 0;
6829 		}
6830 
6831 		udelay(500);
6832 		count++;
6833 	} while (--cntdn);
6834 
6835 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6836 		__func__, count, int_status);
6837 	return -EFAULT;
6838 
6839 }
6840 
6841 /**
6842  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
6843  * @ioc: per adapter object
6844  * @timeout: timeout in second
6845  *
6846  * Return: 0 for success, non-zero for failure.
6847  *
6848  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
6849  * doorbell.
6850  */
6851 static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER * ioc,int timeout)6852 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
6853 {
6854 	u32 cntdn, count;
6855 	u32 int_status;
6856 	u32 doorbell;
6857 
6858 	count = 0;
6859 	cntdn = 1000 * timeout;
6860 	do {
6861 		int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
6862 		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
6863 			dhsprintk(ioc,
6864 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6865 					   __func__, count, timeout));
6866 			return 0;
6867 		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
6868 			doorbell = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6869 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6870 			    MPI2_IOC_STATE_FAULT) {
6871 				mpt3sas_print_fault_code(ioc, doorbell);
6872 				return -EFAULT;
6873 			}
6874 			if ((doorbell & MPI2_IOC_STATE_MASK) ==
6875 			    MPI2_IOC_STATE_COREDUMP) {
6876 				mpt3sas_print_coredump_info(ioc, doorbell);
6877 				return -EFAULT;
6878 			}
6879 		} else if (int_status == 0xFFFFFFFF)
6880 			goto out;
6881 
6882 		usleep_range(1000, 1500);
6883 		count++;
6884 	} while (--cntdn);
6885 
6886  out:
6887 	ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
6888 		__func__, count, int_status);
6889 	return -EFAULT;
6890 }
6891 
6892 /**
6893  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
6894  * @ioc: per adapter object
6895  * @timeout: timeout in second
6896  *
6897  * Return: 0 for success, non-zero for failure.
6898  */
6899 static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER * ioc,int timeout)6900 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
6901 {
6902 	u32 cntdn, count;
6903 	u32 doorbell_reg;
6904 
6905 	count = 0;
6906 	cntdn = 1000 * timeout;
6907 	do {
6908 		doorbell_reg = ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
6909 		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
6910 			dhsprintk(ioc,
6911 				  ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
6912 					   __func__, count, timeout));
6913 			return 0;
6914 		}
6915 
6916 		usleep_range(1000, 1500);
6917 		count++;
6918 	} while (--cntdn);
6919 
6920 	ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
6921 		__func__, count, doorbell_reg);
6922 	return -EFAULT;
6923 }
6924 
6925 /**
6926  * _base_send_ioc_reset - send doorbell reset
6927  * @ioc: per adapter object
6928  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
6929  * @timeout: timeout in second
6930  *
6931  * Return: 0 for success, non-zero for failure.
6932  */
6933 static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER * ioc,u8 reset_type,int timeout)6934 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
6935 {
6936 	u32 ioc_state;
6937 	int r = 0;
6938 	unsigned long flags;
6939 
6940 	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
6941 		ioc_err(ioc, "%s: unknown reset_type\n", __func__);
6942 		return -EFAULT;
6943 	}
6944 
6945 	if (!(ioc->facts.IOCCapabilities &
6946 	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
6947 		return -EFAULT;
6948 
6949 	ioc_info(ioc, "sending message unit reset !!\n");
6950 
6951 	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
6952 	    &ioc->chip->Doorbell);
6953 	if ((_base_wait_for_doorbell_ack(ioc, 15))) {
6954 		r = -EFAULT;
6955 		goto out;
6956 	}
6957 
6958 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6959 	if (ioc_state) {
6960 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6961 			__func__, ioc_state);
6962 		r = -EFAULT;
6963 		goto out;
6964 	}
6965  out:
6966 	if (r != 0) {
6967 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6968 		spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
6969 		/*
6970 		 * Wait for IOC state CoreDump to clear only during
6971 		 * HBA initialization & release time.
6972 		 */
6973 		if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6974 		    MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
6975 		    ioc->fault_reset_work_q == NULL)) {
6976 			spin_unlock_irqrestore(
6977 			    &ioc->ioc_reset_in_progress_lock, flags);
6978 			mpt3sas_print_coredump_info(ioc, ioc_state);
6979 			mpt3sas_base_wait_for_coredump_completion(ioc,
6980 			    __func__);
6981 			spin_lock_irqsave(
6982 			    &ioc->ioc_reset_in_progress_lock, flags);
6983 		}
6984 		spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
6985 	}
6986 	ioc_info(ioc, "message unit reset: %s\n",
6987 		 r == 0 ? "SUCCESS" : "FAILED");
6988 	return r;
6989 }
6990 
6991 /**
6992  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
6993  * @ioc: per adapter object
6994  * @timeout: timeout in seconds
6995  *
6996  * Return: Waits up to timeout seconds for the IOC to
6997  * become operational. Returns 0 if IOC is present
6998  * and operational; otherwise returns %-EFAULT.
6999  */
7000 
7001 int
mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER * ioc,int timeout)7002 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
7003 {
7004 	int wait_state_count = 0;
7005 	u32 ioc_state;
7006 
7007 	do {
7008 		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
7009 		if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
7010 			break;
7011 
7012 		/*
7013 		 * Watchdog thread will be started after IOC Initialization, so
7014 		 * no need to wait here for IOC state to become operational
7015 		 * when IOC Initialization is on. Instead the driver will
7016 		 * return ETIME status, so that calling function can issue
7017 		 * diag reset operation and retry the command.
7018 		 */
7019 		if (ioc->is_driver_loading)
7020 			return -ETIME;
7021 
7022 		ssleep(1);
7023 		ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
7024 				__func__, ++wait_state_count);
7025 	} while (--timeout);
7026 	if (!timeout) {
7027 		ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
7028 		return -EFAULT;
7029 	}
7030 	if (wait_state_count)
7031 		ioc_info(ioc, "ioc is operational\n");
7032 	return 0;
7033 }
7034 
7035 /**
7036  * _base_handshake_req_reply_wait - send request thru doorbell interface
7037  * @ioc: per adapter object
7038  * @request_bytes: request length
7039  * @request: pointer having request payload
7040  * @reply_bytes: reply length
7041  * @reply: pointer to reply payload
7042  * @timeout: timeout in second
7043  *
7044  * Return: 0 for success, non-zero for failure.
7045  */
7046 static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER * ioc,int request_bytes,u32 * request,int reply_bytes,u16 * reply,int timeout)7047 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
7048 	u32 *request, int reply_bytes, u16 *reply, int timeout)
7049 {
7050 	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
7051 	int i;
7052 	u8 failed;
7053 	__le32 *mfp;
7054 	int ret_val;
7055 
7056 	/* make sure doorbell is not in use */
7057 	if ((ioc->base_readl_ext_retry(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
7058 		ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
7059 		goto doorbell_diag_reset;
7060 	}
7061 
7062 	/* clear pending doorbell interrupts from previous state changes */
7063 	if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
7064 	    MPI2_HIS_IOC2SYS_DB_STATUS)
7065 		writel(0, &ioc->chip->HostInterruptStatus);
7066 
7067 	/* send message to ioc */
7068 	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
7069 	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
7070 	    &ioc->chip->Doorbell);
7071 
7072 	if ((_base_spin_on_doorbell_int(ioc, 5))) {
7073 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7074 			__LINE__);
7075 		return -EFAULT;
7076 	}
7077 	writel(0, &ioc->chip->HostInterruptStatus);
7078 
7079 	if ((_base_wait_for_doorbell_ack(ioc, 5))) {
7080 		ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
7081 			__LINE__);
7082 		return -EFAULT;
7083 	}
7084 
7085 	/* send message 32-bits at a time */
7086 	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
7087 		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
7088 		if ((_base_wait_for_doorbell_ack(ioc, 5)))
7089 			failed = 1;
7090 	}
7091 
7092 	if (failed) {
7093 		ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
7094 			__LINE__);
7095 		return -EFAULT;
7096 	}
7097 
7098 	/* now wait for the reply */
7099 	if ((_base_wait_for_doorbell_int(ioc, timeout))) {
7100 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7101 			__LINE__);
7102 		return -EFAULT;
7103 	}
7104 
7105 	/* read the first two 16-bits, it gives the total length of the reply */
7106 	reply[0] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7107 	    & MPI2_DOORBELL_DATA_MASK);
7108 	writel(0, &ioc->chip->HostInterruptStatus);
7109 	if ((_base_wait_for_doorbell_int(ioc, 5))) {
7110 		ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7111 			__LINE__);
7112 		return -EFAULT;
7113 	}
7114 	reply[1] = le16_to_cpu(ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7115 	    & MPI2_DOORBELL_DATA_MASK);
7116 	writel(0, &ioc->chip->HostInterruptStatus);
7117 
7118 	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
7119 		if ((_base_wait_for_doorbell_int(ioc, 5))) {
7120 			ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
7121 				__LINE__);
7122 			return -EFAULT;
7123 		}
7124 		if (i >=  reply_bytes/2) /* overflow case */
7125 			ioc->base_readl_ext_retry(&ioc->chip->Doorbell);
7126 		else
7127 			reply[i] = le16_to_cpu(
7128 			    ioc->base_readl_ext_retry(&ioc->chip->Doorbell)
7129 			    & MPI2_DOORBELL_DATA_MASK);
7130 		writel(0, &ioc->chip->HostInterruptStatus);
7131 	}
7132 
7133 	_base_wait_for_doorbell_int(ioc, 5);
7134 	if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
7135 		dhsprintk(ioc,
7136 			  ioc_info(ioc, "doorbell is in use (line=%d)\n",
7137 				   __LINE__));
7138 	}
7139 	writel(0, &ioc->chip->HostInterruptStatus);
7140 
7141 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7142 		mfp = (__le32 *)reply;
7143 		pr_info("\toffset:data\n");
7144 		for (i = 0; i < reply_bytes/4; i++)
7145 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7146 			    le32_to_cpu(mfp[i]));
7147 	}
7148 	return 0;
7149 
7150 doorbell_diag_reset:
7151 	ret_val = _base_diag_reset(ioc);
7152 	return ret_val;
7153 }
7154 
7155 /**
7156  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
7157  * @ioc: per adapter object
7158  * @mpi_reply: the reply payload from FW
7159  * @mpi_request: the request payload sent to FW
7160  *
7161  * The SAS IO Unit Control Request message allows the host to perform low-level
7162  * operations, such as resets on the PHYs of the IO Unit, also allows the host
7163  * to obtain the IOC assigned device handles for a device if it has other
7164  * identifying information about the device, in addition allows the host to
7165  * remove IOC resources associated with the device.
7166  *
7167  * Return: 0 for success, non-zero for failure.
7168  */
7169 int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER * ioc,Mpi2SasIoUnitControlReply_t * mpi_reply,Mpi2SasIoUnitControlRequest_t * mpi_request)7170 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
7171 	Mpi2SasIoUnitControlReply_t *mpi_reply,
7172 	Mpi2SasIoUnitControlRequest_t *mpi_request)
7173 {
7174 	u16 smid;
7175 	u8 issue_reset = 0;
7176 	int rc;
7177 	void *request;
7178 
7179 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7180 
7181 	mutex_lock(&ioc->base_cmds.mutex);
7182 
7183 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7184 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7185 		rc = -EAGAIN;
7186 		goto out;
7187 	}
7188 
7189 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7190 	if (rc)
7191 		goto out;
7192 
7193 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7194 	if (!smid) {
7195 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7196 		rc = -EAGAIN;
7197 		goto out;
7198 	}
7199 
7200 	rc = 0;
7201 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7202 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7203 	ioc->base_cmds.smid = smid;
7204 	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
7205 	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7206 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
7207 		ioc->ioc_link_reset_in_progress = 1;
7208 	init_completion(&ioc->base_cmds.done);
7209 	ioc->put_smid_default(ioc, smid);
7210 	wait_for_completion_timeout(&ioc->base_cmds.done,
7211 	    msecs_to_jiffies(10000));
7212 	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
7213 	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
7214 	    ioc->ioc_link_reset_in_progress)
7215 		ioc->ioc_link_reset_in_progress = 0;
7216 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7217 		mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
7218 		    mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
7219 		    issue_reset);
7220 		goto issue_host_reset;
7221 	}
7222 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7223 		memcpy(mpi_reply, ioc->base_cmds.reply,
7224 		    sizeof(Mpi2SasIoUnitControlReply_t));
7225 	else
7226 		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
7227 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7228 	goto out;
7229 
7230  issue_host_reset:
7231 	if (issue_reset)
7232 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7233 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7234 	rc = -EFAULT;
7235  out:
7236 	mutex_unlock(&ioc->base_cmds.mutex);
7237 	return rc;
7238 }
7239 
7240 /**
7241  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
7242  * @ioc: per adapter object
7243  * @mpi_reply: the reply payload from FW
7244  * @mpi_request: the request payload sent to FW
7245  *
7246  * The SCSI Enclosure Processor request message causes the IOC to
7247  * communicate with SES devices to control LED status signals.
7248  *
7249  * Return: 0 for success, non-zero for failure.
7250  */
7251 int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER * ioc,Mpi2SepReply_t * mpi_reply,Mpi2SepRequest_t * mpi_request)7252 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
7253 	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
7254 {
7255 	u16 smid;
7256 	u8 issue_reset = 0;
7257 	int rc;
7258 	void *request;
7259 
7260 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7261 
7262 	mutex_lock(&ioc->base_cmds.mutex);
7263 
7264 	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
7265 		ioc_err(ioc, "%s: base_cmd in use\n", __func__);
7266 		rc = -EAGAIN;
7267 		goto out;
7268 	}
7269 
7270 	rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
7271 	if (rc)
7272 		goto out;
7273 
7274 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7275 	if (!smid) {
7276 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7277 		rc = -EAGAIN;
7278 		goto out;
7279 	}
7280 
7281 	rc = 0;
7282 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7283 	request = mpt3sas_base_get_msg_frame(ioc, smid);
7284 	ioc->base_cmds.smid = smid;
7285 	memset(request, 0, ioc->request_sz);
7286 	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
7287 	init_completion(&ioc->base_cmds.done);
7288 	ioc->put_smid_default(ioc, smid);
7289 	wait_for_completion_timeout(&ioc->base_cmds.done,
7290 	    msecs_to_jiffies(10000));
7291 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7292 		mpt3sas_check_cmd_timeout(ioc,
7293 		    ioc->base_cmds.status, mpi_request,
7294 		    sizeof(Mpi2SepRequest_t)/4, issue_reset);
7295 		goto issue_host_reset;
7296 	}
7297 	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
7298 		memcpy(mpi_reply, ioc->base_cmds.reply,
7299 		    sizeof(Mpi2SepReply_t));
7300 	else
7301 		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
7302 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7303 	goto out;
7304 
7305  issue_host_reset:
7306 	if (issue_reset)
7307 		mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
7308 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7309 	rc = -EFAULT;
7310  out:
7311 	mutex_unlock(&ioc->base_cmds.mutex);
7312 	return rc;
7313 }
7314 
7315 /**
7316  * _base_get_port_facts - obtain port facts reply and save in ioc
7317  * @ioc: per adapter object
7318  * @port: ?
7319  *
7320  * Return: 0 for success, non-zero for failure.
7321  */
7322 static int
_base_get_port_facts(struct MPT3SAS_ADAPTER * ioc,int port)7323 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
7324 {
7325 	Mpi2PortFactsRequest_t mpi_request;
7326 	Mpi2PortFactsReply_t mpi_reply;
7327 	struct mpt3sas_port_facts *pfacts;
7328 	int mpi_reply_sz, mpi_request_sz, r;
7329 
7330 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7331 
7332 	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
7333 	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
7334 	memset(&mpi_request, 0, mpi_request_sz);
7335 	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
7336 	mpi_request.PortNumber = port;
7337 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7338 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7339 
7340 	if (r != 0) {
7341 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7342 		return r;
7343 	}
7344 
7345 	pfacts = &ioc->pfacts[port];
7346 	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
7347 	pfacts->PortNumber = mpi_reply.PortNumber;
7348 	pfacts->VP_ID = mpi_reply.VP_ID;
7349 	pfacts->VF_ID = mpi_reply.VF_ID;
7350 	pfacts->MaxPostedCmdBuffers =
7351 	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
7352 
7353 	return 0;
7354 }
7355 
7356 /**
7357  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
7358  * @ioc: per adapter object
7359  * @timeout:
7360  *
7361  * Return: 0 for success, non-zero for failure.
7362  */
7363 static int
_base_wait_for_iocstate(struct MPT3SAS_ADAPTER * ioc,int timeout)7364 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
7365 {
7366 	u32 ioc_state;
7367 	int rc;
7368 
7369 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7370 
7371 	if (ioc->pci_error_recovery) {
7372 		dfailprintk(ioc,
7373 			    ioc_info(ioc, "%s: host in pci error recovery\n",
7374 				     __func__));
7375 		return -EFAULT;
7376 	}
7377 
7378 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7379 	dhsprintk(ioc,
7380 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
7381 			   __func__, ioc_state));
7382 
7383 	if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
7384 	    (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
7385 		return 0;
7386 
7387 	if (ioc_state & MPI2_DOORBELL_USED) {
7388 		dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
7389 		goto issue_diag_reset;
7390 	}
7391 
7392 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
7393 		mpt3sas_print_fault_code(ioc, ioc_state &
7394 		    MPI2_DOORBELL_DATA_MASK);
7395 		goto issue_diag_reset;
7396 	} else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
7397 	    MPI2_IOC_STATE_COREDUMP) {
7398 		ioc_info(ioc,
7399 		    "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
7400 		    __func__, ioc_state);
7401 		return -EFAULT;
7402 	}
7403 
7404 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
7405 	if (ioc_state) {
7406 		dfailprintk(ioc,
7407 			    ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
7408 				     __func__, ioc_state));
7409 		return -EFAULT;
7410 	}
7411 
7412 	return 0;
7413 
7414 issue_diag_reset:
7415 	rc = _base_diag_reset(ioc);
7416 	return rc;
7417 }
7418 
7419 /**
7420  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
7421  * @ioc: per adapter object
7422  *
7423  * Return: 0 for success, non-zero for failure.
7424  */
7425 static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER * ioc)7426 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
7427 {
7428 	Mpi2IOCFactsRequest_t mpi_request;
7429 	Mpi2IOCFactsReply_t mpi_reply;
7430 	struct mpt3sas_facts *facts;
7431 	int mpi_reply_sz, mpi_request_sz, r;
7432 
7433 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7434 
7435 	r = _base_wait_for_iocstate(ioc, 10);
7436 	if (r) {
7437 		dfailprintk(ioc,
7438 			    ioc_info(ioc, "%s: failed getting to correct state\n",
7439 				     __func__));
7440 		return r;
7441 	}
7442 	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
7443 	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
7444 	memset(&mpi_request, 0, mpi_request_sz);
7445 	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
7446 	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
7447 	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
7448 
7449 	if (r != 0) {
7450 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7451 		return r;
7452 	}
7453 
7454 	facts = &ioc->facts;
7455 	memset(facts, 0, sizeof(struct mpt3sas_facts));
7456 	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
7457 	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
7458 	facts->VP_ID = mpi_reply.VP_ID;
7459 	facts->VF_ID = mpi_reply.VF_ID;
7460 	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
7461 	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
7462 	facts->WhoInit = mpi_reply.WhoInit;
7463 	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
7464 	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
7465 	if (ioc->msix_enable && (facts->MaxMSIxVectors <=
7466 	    MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
7467 		ioc->combined_reply_queue = 0;
7468 	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
7469 	facts->MaxReplyDescriptorPostQueueDepth =
7470 	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
7471 	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
7472 	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
7473 	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
7474 		ioc->ir_firmware = 1;
7475 	if ((facts->IOCCapabilities &
7476 	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
7477 		ioc->rdpq_array_capable = 1;
7478 	if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
7479 	    && ioc->is_aero_ioc)
7480 		ioc->atomic_desc_capable = 1;
7481 	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
7482 	facts->IOCRequestFrameSize =
7483 	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
7484 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7485 		facts->IOCMaxChainSegmentSize =
7486 			le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
7487 	}
7488 	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
7489 	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
7490 	ioc->shost->max_id = -1;
7491 	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
7492 	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
7493 	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
7494 	facts->HighPriorityCredit =
7495 	    le16_to_cpu(mpi_reply.HighPriorityCredit);
7496 	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
7497 	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
7498 	facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
7499 
7500 	/*
7501 	 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
7502 	 */
7503 	ioc->page_size = 1 << facts->CurrentHostPageSize;
7504 	if (ioc->page_size == 1) {
7505 		ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
7506 		ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
7507 	}
7508 	dinitprintk(ioc,
7509 		    ioc_info(ioc, "CurrentHostPageSize(%d)\n",
7510 			     facts->CurrentHostPageSize));
7511 
7512 	dinitprintk(ioc,
7513 		    ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
7514 			     facts->RequestCredit, facts->MaxChainDepth));
7515 	dinitprintk(ioc,
7516 		    ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
7517 			     facts->IOCRequestFrameSize * 4,
7518 			     facts->ReplyFrameSize * 4));
7519 	return 0;
7520 }
7521 
7522 /**
7523  * _base_send_ioc_init - send ioc_init to firmware
7524  * @ioc: per adapter object
7525  *
7526  * Return: 0 for success, non-zero for failure.
7527  */
7528 static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER * ioc)7529 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
7530 {
7531 	Mpi2IOCInitRequest_t mpi_request;
7532 	Mpi2IOCInitReply_t mpi_reply;
7533 	int i, r = 0;
7534 	ktime_t current_time;
7535 	u16 ioc_status;
7536 	u32 reply_post_free_array_sz = 0;
7537 
7538 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7539 
7540 	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
7541 	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
7542 	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
7543 	mpi_request.VF_ID = 0; /* TODO */
7544 	mpi_request.VP_ID = 0;
7545 	mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
7546 	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
7547 	mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
7548 
7549 	if (_base_is_controller_msix_enabled(ioc))
7550 		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
7551 	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
7552 	mpi_request.ReplyDescriptorPostQueueDepth =
7553 	    cpu_to_le16(ioc->reply_post_queue_depth);
7554 	mpi_request.ReplyFreeQueueDepth =
7555 	    cpu_to_le16(ioc->reply_free_queue_depth);
7556 
7557 	mpi_request.SenseBufferAddressHigh =
7558 	    cpu_to_le32((u64)ioc->sense_dma >> 32);
7559 	mpi_request.SystemReplyAddressHigh =
7560 	    cpu_to_le32((u64)ioc->reply_dma >> 32);
7561 	mpi_request.SystemRequestFrameBaseAddress =
7562 	    cpu_to_le64((u64)ioc->request_dma);
7563 	mpi_request.ReplyFreeQueueAddress =
7564 	    cpu_to_le64((u64)ioc->reply_free_dma);
7565 
7566 	if (ioc->rdpq_array_enable) {
7567 		reply_post_free_array_sz = ioc->reply_queue_count *
7568 		    sizeof(Mpi2IOCInitRDPQArrayEntry);
7569 		memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
7570 		for (i = 0; i < ioc->reply_queue_count; i++)
7571 			ioc->reply_post_free_array[i].RDPQBaseAddress =
7572 			    cpu_to_le64(
7573 				(u64)ioc->reply_post[i].reply_post_free_dma);
7574 		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
7575 		mpi_request.ReplyDescriptorPostQueueAddress =
7576 		    cpu_to_le64((u64)ioc->reply_post_free_array_dma);
7577 	} else {
7578 		mpi_request.ReplyDescriptorPostQueueAddress =
7579 		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
7580 	}
7581 
7582 	/*
7583 	 * Set the flag to enable CoreDump state feature in IOC firmware.
7584 	 */
7585 	mpi_request.ConfigurationFlags |=
7586 	    cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
7587 
7588 	/* This time stamp specifies number of milliseconds
7589 	 * since epoch ~ midnight January 1, 1970.
7590 	 */
7591 	current_time = ktime_get_real();
7592 	mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
7593 
7594 	if (ioc->logging_level & MPT_DEBUG_INIT) {
7595 		__le32 *mfp;
7596 		int i;
7597 
7598 		mfp = (__le32 *)&mpi_request;
7599 		ioc_info(ioc, "\toffset:data\n");
7600 		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
7601 			ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
7602 			    le32_to_cpu(mfp[i]));
7603 	}
7604 
7605 	r = _base_handshake_req_reply_wait(ioc,
7606 	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
7607 	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
7608 
7609 	if (r != 0) {
7610 		ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
7611 		return r;
7612 	}
7613 
7614 	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
7615 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
7616 	    mpi_reply.IOCLogInfo) {
7617 		ioc_err(ioc, "%s: failed\n", __func__);
7618 		r = -EIO;
7619 	}
7620 
7621 	/* Reset TimeSync Counter*/
7622 	ioc->timestamp_update_count = 0;
7623 	return r;
7624 }
7625 
7626 /**
7627  * mpt3sas_port_enable_done - command completion routine for port enable
7628  * @ioc: per adapter object
7629  * @smid: system request message index
7630  * @msix_index: MSIX table index supplied by the OS
7631  * @reply: reply message frame(lower 32bit addr)
7632  *
7633  * Return: 1 meaning mf should be freed from _base_interrupt
7634  *          0 means the mf is freed from this function.
7635  */
7636 u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER * ioc,u16 smid,u8 msix_index,u32 reply)7637 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
7638 	u32 reply)
7639 {
7640 	MPI2DefaultReply_t *mpi_reply;
7641 	u16 ioc_status;
7642 
7643 	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
7644 		return 1;
7645 
7646 	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
7647 	if (!mpi_reply)
7648 		return 1;
7649 
7650 	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
7651 		return 1;
7652 
7653 	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
7654 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
7655 	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
7656 	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
7657 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7658 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
7659 		ioc->port_enable_failed = 1;
7660 
7661 	if (ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE_ASYNC) {
7662 		ioc->port_enable_cmds.status &= ~MPT3_CMD_COMPLETE_ASYNC;
7663 		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
7664 			mpt3sas_port_enable_complete(ioc);
7665 			return 1;
7666 		} else {
7667 			ioc->start_scan_failed = ioc_status;
7668 			ioc->start_scan = 0;
7669 			return 1;
7670 		}
7671 	}
7672 	complete(&ioc->port_enable_cmds.done);
7673 	return 1;
7674 }
7675 
7676 /**
7677  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
7678  * @ioc: per adapter object
7679  *
7680  * Return: 0 for success, non-zero for failure.
7681  */
7682 static int
_base_send_port_enable(struct MPT3SAS_ADAPTER * ioc)7683 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
7684 {
7685 	Mpi2PortEnableRequest_t *mpi_request;
7686 	Mpi2PortEnableReply_t *mpi_reply;
7687 	int r = 0;
7688 	u16 smid;
7689 	u16 ioc_status;
7690 
7691 	ioc_info(ioc, "sending port enable !!\n");
7692 
7693 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7694 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7695 		return -EAGAIN;
7696 	}
7697 
7698 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7699 	if (!smid) {
7700 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7701 		return -EAGAIN;
7702 	}
7703 
7704 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7705 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7706 	ioc->port_enable_cmds.smid = smid;
7707 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7708 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7709 
7710 	init_completion(&ioc->port_enable_cmds.done);
7711 	ioc->put_smid_default(ioc, smid);
7712 	wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
7713 	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
7714 		ioc_err(ioc, "%s: timeout\n", __func__);
7715 		_debug_dump_mf(mpi_request,
7716 		    sizeof(Mpi2PortEnableRequest_t)/4);
7717 		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
7718 			r = -EFAULT;
7719 		else
7720 			r = -ETIME;
7721 		goto out;
7722 	}
7723 
7724 	mpi_reply = ioc->port_enable_cmds.reply;
7725 	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
7726 	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
7727 		ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
7728 			__func__, ioc_status);
7729 		r = -EFAULT;
7730 		goto out;
7731 	}
7732 
7733  out:
7734 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7735 	ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
7736 	return r;
7737 }
7738 
7739 /**
7740  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
7741  * @ioc: per adapter object
7742  *
7743  * Return: 0 for success, non-zero for failure.
7744  */
7745 int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER * ioc)7746 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
7747 {
7748 	Mpi2PortEnableRequest_t *mpi_request;
7749 	u16 smid;
7750 
7751 	ioc_info(ioc, "sending port enable !!\n");
7752 
7753 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7754 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7755 		return -EAGAIN;
7756 	}
7757 
7758 	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
7759 	if (!smid) {
7760 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7761 		return -EAGAIN;
7762 	}
7763 	ioc->drv_internal_flags |= MPT_DRV_INTERNAL_FIRST_PE_ISSUED;
7764 	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
7765 	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE_ASYNC;
7766 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7767 	ioc->port_enable_cmds.smid = smid;
7768 	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
7769 	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
7770 
7771 	ioc->put_smid_default(ioc, smid);
7772 	return 0;
7773 }
7774 
7775 /**
7776  * _base_determine_wait_on_discovery - desposition
7777  * @ioc: per adapter object
7778  *
7779  * Decide whether to wait on discovery to complete. Used to either
7780  * locate boot device, or report volumes ahead of physical devices.
7781  *
7782  * Return: 1 for wait, 0 for don't wait.
7783  */
7784 static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER * ioc)7785 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
7786 {
7787 	/* We wait for discovery to complete if IR firmware is loaded.
7788 	 * The sas topology events arrive before PD events, so we need time to
7789 	 * turn on the bit in ioc->pd_handles to indicate PD
7790 	 * Also, it maybe required to report Volumes ahead of physical
7791 	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
7792 	 */
7793 	if (ioc->ir_firmware)
7794 		return 1;
7795 
7796 	/* if no Bios, then we don't need to wait */
7797 	if (!ioc->bios_pg3.BiosVersion)
7798 		return 0;
7799 
7800 	/* Bios is present, then we drop down here.
7801 	 *
7802 	 * If there any entries in the Bios Page 2, then we wait
7803 	 * for discovery to complete.
7804 	 */
7805 
7806 	/* Current Boot Device */
7807 	if ((ioc->bios_pg2.CurrentBootDeviceForm &
7808 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7809 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7810 	/* Request Boot Device */
7811 	   (ioc->bios_pg2.ReqBootDeviceForm &
7812 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7813 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
7814 	/* Alternate Request Boot Device */
7815 	   (ioc->bios_pg2.ReqAltBootDeviceForm &
7816 	    MPI2_BIOSPAGE2_FORM_MASK) ==
7817 	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
7818 		return 0;
7819 
7820 	return 1;
7821 }
7822 
7823 /**
7824  * _base_unmask_events - turn on notification for this event
7825  * @ioc: per adapter object
7826  * @event: firmware event
7827  *
7828  * The mask is stored in ioc->event_masks.
7829  */
7830 static void
_base_unmask_events(struct MPT3SAS_ADAPTER * ioc,u16 event)7831 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
7832 {
7833 	u32 desired_event;
7834 
7835 	if (event >= 128)
7836 		return;
7837 
7838 	desired_event = (1 << (event % 32));
7839 
7840 	if (event < 32)
7841 		ioc->event_masks[0] &= ~desired_event;
7842 	else if (event < 64)
7843 		ioc->event_masks[1] &= ~desired_event;
7844 	else if (event < 96)
7845 		ioc->event_masks[2] &= ~desired_event;
7846 	else if (event < 128)
7847 		ioc->event_masks[3] &= ~desired_event;
7848 }
7849 
7850 /**
7851  * _base_event_notification - send event notification
7852  * @ioc: per adapter object
7853  *
7854  * Return: 0 for success, non-zero for failure.
7855  */
7856 static int
_base_event_notification(struct MPT3SAS_ADAPTER * ioc)7857 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
7858 {
7859 	Mpi2EventNotificationRequest_t *mpi_request;
7860 	u16 smid;
7861 	int r = 0;
7862 	int i, issue_diag_reset = 0;
7863 
7864 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7865 
7866 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7867 		ioc_err(ioc, "%s: internal command already in use\n", __func__);
7868 		return -EAGAIN;
7869 	}
7870 
7871 	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
7872 	if (!smid) {
7873 		ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
7874 		return -EAGAIN;
7875 	}
7876 	ioc->base_cmds.status = MPT3_CMD_PENDING;
7877 	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
7878 	ioc->base_cmds.smid = smid;
7879 	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
7880 	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
7881 	mpi_request->VF_ID = 0; /* TODO */
7882 	mpi_request->VP_ID = 0;
7883 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7884 		mpi_request->EventMasks[i] =
7885 		    cpu_to_le32(ioc->event_masks[i]);
7886 	init_completion(&ioc->base_cmds.done);
7887 	ioc->put_smid_default(ioc, smid);
7888 	wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
7889 	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
7890 		ioc_err(ioc, "%s: timeout\n", __func__);
7891 		_debug_dump_mf(mpi_request,
7892 		    sizeof(Mpi2EventNotificationRequest_t)/4);
7893 		if (ioc->base_cmds.status & MPT3_CMD_RESET)
7894 			r = -EFAULT;
7895 		else
7896 			issue_diag_reset = 1;
7897 
7898 	} else
7899 		dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
7900 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7901 
7902 	if (issue_diag_reset) {
7903 		if (ioc->drv_internal_flags & MPT_DRV_INTERNAL_FIRST_PE_ISSUED)
7904 			return -EFAULT;
7905 		if (mpt3sas_base_check_for_fault_and_issue_reset(ioc))
7906 			return -EFAULT;
7907 		r = -EAGAIN;
7908 	}
7909 	return r;
7910 }
7911 
7912 /**
7913  * mpt3sas_base_validate_event_type - validating event types
7914  * @ioc: per adapter object
7915  * @event_type: firmware event
7916  *
7917  * This will turn on firmware event notification when application
7918  * ask for that event. We don't mask events that are already enabled.
7919  */
7920 void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER * ioc,u32 * event_type)7921 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
7922 {
7923 	int i, j;
7924 	u32 event_mask, desired_event;
7925 	u8 send_update_to_fw;
7926 
7927 	for (i = 0, send_update_to_fw = 0; i <
7928 	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
7929 		event_mask = ~event_type[i];
7930 		desired_event = 1;
7931 		for (j = 0; j < 32; j++) {
7932 			if (!(event_mask & desired_event) &&
7933 			    (ioc->event_masks[i] & desired_event)) {
7934 				ioc->event_masks[i] &= ~desired_event;
7935 				send_update_to_fw = 1;
7936 			}
7937 			desired_event = (desired_event << 1);
7938 		}
7939 	}
7940 
7941 	if (!send_update_to_fw)
7942 		return;
7943 
7944 	mutex_lock(&ioc->base_cmds.mutex);
7945 	_base_event_notification(ioc);
7946 	mutex_unlock(&ioc->base_cmds.mutex);
7947 }
7948 
7949 /**
7950 * mpt3sas_base_unlock_and_get_host_diagnostic- enable Host Diagnostic Register writes
7951 * @ioc: per adapter object
7952 * @host_diagnostic: host diagnostic register content
7953 *
7954 * Return: 0 for success, non-zero for failure.
7955 */
7956 
7957 int
mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER * ioc,u32 * host_diagnostic)7958 mpt3sas_base_unlock_and_get_host_diagnostic(struct MPT3SAS_ADAPTER *ioc,
7959 	u32 *host_diagnostic)
7960 {
7961 
7962 	u32 count;
7963 	*host_diagnostic = 0;
7964 	count = 0;
7965 
7966 	do {
7967 		/* Write magic sequence to WriteSequence register
7968 		 * Loop until in diagnostic mode
7969 		 */
7970 		drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
7971 		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
7972 		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
7973 		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
7974 		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
7975 		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
7976 		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
7977 		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
7978 
7979 		/* wait 100 msec */
7980 		msleep(100);
7981 
7982 		if (count++ > 20) {
7983 			ioc_info(ioc,
7984 				    "Stop writing magic sequence after 20 retries\n");
7985 			_base_dump_reg_set(ioc);
7986 			return -EFAULT;
7987 		}
7988 
7989 		*host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
7990 		drsprintk(ioc,
7991 			     ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
7992 				     count, *host_diagnostic));
7993 
7994 	} while ((*host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
7995 	return 0;
7996 }
7997 
7998 /**
7999  * mpt3sas_base_lock_host_diagnostic: Disable Host Diagnostic Register writes
8000  * @ioc: per adapter object
8001  */
8002 
8003 void
mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER * ioc)8004 mpt3sas_base_lock_host_diagnostic(struct MPT3SAS_ADAPTER *ioc)
8005 {
8006 	drsprintk(ioc, ioc_info(ioc, "disable writes to the diagnostic register\n"));
8007 	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
8008 }
8009 
8010 /**
8011  * _base_diag_reset - the "big hammer" start of day reset
8012  * @ioc: per adapter object
8013  *
8014  * Return: 0 for success, non-zero for failure.
8015  */
8016 static int
_base_diag_reset(struct MPT3SAS_ADAPTER * ioc)8017 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
8018 {
8019 	u32 host_diagnostic;
8020 	u32 ioc_state;
8021 	u32 count;
8022 	u32 hcb_size;
8023 
8024 	ioc_info(ioc, "sending diag reset !!\n");
8025 
8026 	pci_cfg_access_lock(ioc->pdev);
8027 
8028 	drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
8029 
8030 	mutex_lock(&ioc->hostdiag_unlock_mutex);
8031 	if (mpt3sas_base_unlock_and_get_host_diagnostic(ioc, &host_diagnostic))
8032 		goto unlock;
8033 
8034 	hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
8035 	drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
8036 	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
8037 	     &ioc->chip->HostDiagnostic);
8038 
8039 	/* This delay allows the chip PCIe hardware time to finish reset tasks */
8040 	msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
8041 
8042 	/* Approximately 300 second max wait */
8043 	for (count = 0; count < (300000000 /
8044 	    MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
8045 
8046 		host_diagnostic = ioc->base_readl_ext_retry(&ioc->chip->HostDiagnostic);
8047 
8048 		if (host_diagnostic == 0xFFFFFFFF) {
8049 			ioc_info(ioc,
8050 			    "Invalid host diagnostic register value\n");
8051 			_base_dump_reg_set(ioc);
8052 			goto unlock;
8053 		}
8054 		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
8055 			break;
8056 
8057 		/* Wait to pass the second read delay window */
8058 		msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC/1000);
8059 	}
8060 
8061 	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
8062 
8063 		drsprintk(ioc,
8064 			ioc_info(ioc, "restart the adapter assuming the\n"
8065 					"HCB Address points to good F/W\n"));
8066 		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
8067 		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
8068 		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
8069 
8070 		drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
8071 		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
8072 		    &ioc->chip->HCBSize);
8073 	}
8074 
8075 	drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
8076 	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
8077 	    &ioc->chip->HostDiagnostic);
8078 
8079 	mpt3sas_base_lock_host_diagnostic(ioc);
8080 	mutex_unlock(&ioc->hostdiag_unlock_mutex);
8081 
8082 	drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
8083 	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
8084 	if (ioc_state) {
8085 		ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8086 			__func__, ioc_state);
8087 		_base_dump_reg_set(ioc);
8088 		goto fail;
8089 	}
8090 
8091 	pci_cfg_access_unlock(ioc->pdev);
8092 	ioc_info(ioc, "diag reset: SUCCESS\n");
8093 	return 0;
8094 
8095 unlock:
8096 	mutex_unlock(&ioc->hostdiag_unlock_mutex);
8097 
8098 fail:
8099 	pci_cfg_access_unlock(ioc->pdev);
8100 	ioc_err(ioc, "diag reset: FAILED\n");
8101 	return -EFAULT;
8102 }
8103 
8104 /**
8105  * mpt3sas_base_make_ioc_ready - put controller in READY state
8106  * @ioc: per adapter object
8107  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8108  *
8109  * Return: 0 for success, non-zero for failure.
8110  */
8111 int
mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8112 mpt3sas_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
8113 {
8114 	u32 ioc_state;
8115 	int rc;
8116 	int count;
8117 
8118 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8119 
8120 	if (ioc->pci_error_recovery)
8121 		return 0;
8122 
8123 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8124 	dhsprintk(ioc,
8125 		  ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
8126 			   __func__, ioc_state));
8127 
8128 	/* if in RESET state, it should move to READY state shortly */
8129 	count = 0;
8130 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
8131 		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
8132 		    MPI2_IOC_STATE_READY) {
8133 			if (count++ == 10) {
8134 				ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
8135 					__func__, ioc_state);
8136 				return -EFAULT;
8137 			}
8138 			ssleep(1);
8139 			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8140 		}
8141 	}
8142 
8143 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
8144 		return 0;
8145 
8146 	if (ioc_state & MPI2_DOORBELL_USED) {
8147 		ioc_info(ioc, "unexpected doorbell active!\n");
8148 		goto issue_diag_reset;
8149 	}
8150 
8151 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
8152 		mpt3sas_print_fault_code(ioc, ioc_state &
8153 		    MPI2_DOORBELL_DATA_MASK);
8154 		goto issue_diag_reset;
8155 	}
8156 
8157 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
8158 		/*
8159 		 * if host reset is invoked while watch dog thread is waiting
8160 		 * for IOC state to be changed to Fault state then driver has
8161 		 * to wait here for CoreDump state to clear otherwise reset
8162 		 * will be issued to the FW and FW move the IOC state to
8163 		 * reset state without copying the FW logs to coredump region.
8164 		 */
8165 		if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
8166 			mpt3sas_print_coredump_info(ioc, ioc_state &
8167 			    MPI2_DOORBELL_DATA_MASK);
8168 			mpt3sas_base_wait_for_coredump_completion(ioc,
8169 			    __func__);
8170 		}
8171 		goto issue_diag_reset;
8172 	}
8173 
8174 	if (type == FORCE_BIG_HAMMER)
8175 		goto issue_diag_reset;
8176 
8177 	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
8178 		if (!(_base_send_ioc_reset(ioc,
8179 		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
8180 			return 0;
8181 	}
8182 
8183  issue_diag_reset:
8184 	rc = _base_diag_reset(ioc);
8185 	return rc;
8186 }
8187 
8188 /**
8189  * _base_make_ioc_operational - put controller in OPERATIONAL state
8190  * @ioc: per adapter object
8191  *
8192  * Return: 0 for success, non-zero for failure.
8193  */
8194 static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER * ioc)8195 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
8196 {
8197 	int r, i, index, rc;
8198 	unsigned long	flags;
8199 	u32 reply_address;
8200 	u16 smid;
8201 	struct _tr_list *delayed_tr, *delayed_tr_next;
8202 	struct _sc_list *delayed_sc, *delayed_sc_next;
8203 	struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
8204 	u8 hide_flag;
8205 	struct adapter_reply_queue *reply_q;
8206 	Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
8207 
8208 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8209 
8210 	/* clean the delayed target reset list */
8211 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8212 	    &ioc->delayed_tr_list, list) {
8213 		list_del(&delayed_tr->list);
8214 		kfree(delayed_tr);
8215 	}
8216 
8217 
8218 	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
8219 	    &ioc->delayed_tr_volume_list, list) {
8220 		list_del(&delayed_tr->list);
8221 		kfree(delayed_tr);
8222 	}
8223 
8224 	list_for_each_entry_safe(delayed_sc, delayed_sc_next,
8225 	    &ioc->delayed_sc_list, list) {
8226 		list_del(&delayed_sc->list);
8227 		kfree(delayed_sc);
8228 	}
8229 
8230 	list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
8231 	    &ioc->delayed_event_ack_list, list) {
8232 		list_del(&delayed_event_ack->list);
8233 		kfree(delayed_event_ack);
8234 	}
8235 
8236 	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
8237 
8238 	/* hi-priority queue */
8239 	INIT_LIST_HEAD(&ioc->hpr_free_list);
8240 	smid = ioc->hi_priority_smid;
8241 	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
8242 		ioc->hpr_lookup[i].cb_idx = 0xFF;
8243 		ioc->hpr_lookup[i].smid = smid;
8244 		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
8245 		    &ioc->hpr_free_list);
8246 	}
8247 
8248 	/* internal queue */
8249 	INIT_LIST_HEAD(&ioc->internal_free_list);
8250 	smid = ioc->internal_smid;
8251 	for (i = 0; i < ioc->internal_depth; i++, smid++) {
8252 		ioc->internal_lookup[i].cb_idx = 0xFF;
8253 		ioc->internal_lookup[i].smid = smid;
8254 		list_add_tail(&ioc->internal_lookup[i].tracker_list,
8255 		    &ioc->internal_free_list);
8256 	}
8257 
8258 	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
8259 
8260 	/* initialize Reply Free Queue */
8261 	for (i = 0, reply_address = (u32)ioc->reply_dma ;
8262 	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
8263 	    ioc->reply_sz) {
8264 		ioc->reply_free[i] = cpu_to_le32(reply_address);
8265 		if (ioc->is_mcpu_endpoint)
8266 			_base_clone_reply_to_sys_mem(ioc,
8267 					reply_address, i);
8268 	}
8269 
8270 	/* initialize reply queues */
8271 	if (ioc->is_driver_loading)
8272 		_base_assign_reply_queues(ioc);
8273 
8274 	/* initialize Reply Post Free Queue */
8275 	index = 0;
8276 	reply_post_free_contig = ioc->reply_post[0].reply_post_free;
8277 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8278 		/*
8279 		 * If RDPQ is enabled, switch to the next allocation.
8280 		 * Otherwise advance within the contiguous region.
8281 		 */
8282 		if (ioc->rdpq_array_enable) {
8283 			reply_q->reply_post_free =
8284 				ioc->reply_post[index++].reply_post_free;
8285 		} else {
8286 			reply_q->reply_post_free = reply_post_free_contig;
8287 			reply_post_free_contig += ioc->reply_post_queue_depth;
8288 		}
8289 
8290 		reply_q->reply_post_host_index = 0;
8291 		for (i = 0; i < ioc->reply_post_queue_depth; i++)
8292 			reply_q->reply_post_free[i].Words =
8293 			    cpu_to_le64(ULLONG_MAX);
8294 		if (!_base_is_controller_msix_enabled(ioc))
8295 			goto skip_init_reply_post_free_queue;
8296 	}
8297  skip_init_reply_post_free_queue:
8298 
8299 	r = _base_send_ioc_init(ioc);
8300 	if (r) {
8301 		/*
8302 		 * No need to check IOC state for fault state & issue
8303 		 * diag reset during host reset. This check is need
8304 		 * only during driver load time.
8305 		 */
8306 		if (!ioc->is_driver_loading)
8307 			return r;
8308 
8309 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8310 		if (rc || (_base_send_ioc_init(ioc)))
8311 			return r;
8312 	}
8313 
8314 	/* initialize reply free host index */
8315 	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
8316 	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
8317 
8318 	/* initialize reply post host index */
8319 	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
8320 		if (ioc->combined_reply_queue)
8321 			writel((reply_q->msix_index & 7)<<
8322 			   MPI2_RPHI_MSIX_INDEX_SHIFT,
8323 			   ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
8324 		else
8325 			writel(reply_q->msix_index <<
8326 				MPI2_RPHI_MSIX_INDEX_SHIFT,
8327 				&ioc->chip->ReplyPostHostIndex);
8328 
8329 		if (!_base_is_controller_msix_enabled(ioc))
8330 			goto skip_init_reply_post_host_index;
8331 	}
8332 
8333  skip_init_reply_post_host_index:
8334 
8335 	mpt3sas_base_unmask_interrupts(ioc);
8336 
8337 	if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
8338 		r = _base_display_fwpkg_version(ioc);
8339 		if (r)
8340 			return r;
8341 	}
8342 
8343 	r = _base_static_config_pages(ioc);
8344 	if (r)
8345 		return r;
8346 
8347 	r = _base_event_notification(ioc);
8348 	if (r)
8349 		return r;
8350 
8351 	if (!ioc->shost_recovery) {
8352 
8353 		if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
8354 		    == 0x80) {
8355 			hide_flag = (u8) (
8356 			    le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
8357 			    MFG_PAGE10_HIDE_SSDS_MASK);
8358 			if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
8359 				ioc->mfg_pg10_hide_flag = hide_flag;
8360 		}
8361 
8362 		ioc->wait_for_discovery_to_complete =
8363 		    _base_determine_wait_on_discovery(ioc);
8364 
8365 		return r; /* scan_start and scan_finished support */
8366 	}
8367 
8368 	r = _base_send_port_enable(ioc);
8369 	if (r)
8370 		return r;
8371 
8372 	return r;
8373 }
8374 
8375 /**
8376  * mpt3sas_base_free_resources - free resources controller resources
8377  * @ioc: per adapter object
8378  */
8379 void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER * ioc)8380 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
8381 {
8382 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8383 
8384 	/* synchronizing freeing resource with pci_access_mutex lock */
8385 	mutex_lock(&ioc->pci_access_mutex);
8386 	if (ioc->chip_phys && ioc->chip) {
8387 		mpt3sas_base_mask_interrupts(ioc);
8388 		ioc->shost_recovery = 1;
8389 		mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8390 		ioc->shost_recovery = 0;
8391 	}
8392 
8393 	mpt3sas_base_unmap_resources(ioc);
8394 	mutex_unlock(&ioc->pci_access_mutex);
8395 	return;
8396 }
8397 
8398 /**
8399  * mpt3sas_base_attach - attach controller instance
8400  * @ioc: per adapter object
8401  *
8402  * Return: 0 for success, non-zero for failure.
8403  */
8404 int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER * ioc)8405 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
8406 {
8407 	int r, i, rc;
8408 	int cpu_id, last_cpu_id = 0;
8409 
8410 	dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8411 
8412 	/* setup cpu_msix_table */
8413 	ioc->cpu_count = num_online_cpus();
8414 	for_each_online_cpu(cpu_id)
8415 		last_cpu_id = cpu_id;
8416 	ioc->cpu_msix_table_sz = last_cpu_id + 1;
8417 	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
8418 	ioc->reply_queue_count = 1;
8419 	if (!ioc->cpu_msix_table) {
8420 		ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
8421 		r = -ENOMEM;
8422 		goto out_free_resources;
8423 	}
8424 
8425 	if (ioc->is_warpdrive) {
8426 		ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
8427 		    sizeof(resource_size_t *), GFP_KERNEL);
8428 		if (!ioc->reply_post_host_index) {
8429 			ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
8430 			r = -ENOMEM;
8431 			goto out_free_resources;
8432 		}
8433 	}
8434 
8435 	ioc->smp_affinity_enable = smp_affinity_enable;
8436 
8437 	ioc->rdpq_array_enable_assigned = 0;
8438 	ioc->use_32bit_dma = false;
8439 	ioc->dma_mask = 64;
8440 	if (ioc->is_aero_ioc) {
8441 		ioc->base_readl = &_base_readl_aero;
8442 		ioc->base_readl_ext_retry = &_base_readl_ext_retry;
8443 	} else {
8444 		ioc->base_readl = &_base_readl;
8445 		ioc->base_readl_ext_retry = &_base_readl;
8446 	}
8447 	r = mpt3sas_base_map_resources(ioc);
8448 	if (r)
8449 		goto out_free_resources;
8450 
8451 	pci_set_drvdata(ioc->pdev, ioc->shost);
8452 	r = _base_get_ioc_facts(ioc);
8453 	if (r) {
8454 		rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8455 		if (rc || (_base_get_ioc_facts(ioc)))
8456 			goto out_free_resources;
8457 	}
8458 
8459 	switch (ioc->hba_mpi_version_belonged) {
8460 	case MPI2_VERSION:
8461 		ioc->build_sg_scmd = &_base_build_sg_scmd;
8462 		ioc->build_sg = &_base_build_sg;
8463 		ioc->build_zero_len_sge = &_base_build_zero_len_sge;
8464 		ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8465 		break;
8466 	case MPI25_VERSION:
8467 	case MPI26_VERSION:
8468 		/*
8469 		 * In SAS3.0,
8470 		 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
8471 		 * Target Status - all require the IEEE formatted scatter gather
8472 		 * elements.
8473 		 */
8474 		ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
8475 		ioc->build_sg = &_base_build_sg_ieee;
8476 		ioc->build_nvme_prp = &_base_build_nvme_prp;
8477 		ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
8478 		ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
8479 		if (ioc->high_iops_queues)
8480 			ioc->get_msix_index_for_smlio =
8481 					&_base_get_high_iops_msix_index;
8482 		else
8483 			ioc->get_msix_index_for_smlio = &_base_get_msix_index;
8484 		break;
8485 	}
8486 	if (ioc->atomic_desc_capable) {
8487 		ioc->put_smid_default = &_base_put_smid_default_atomic;
8488 		ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
8489 		ioc->put_smid_fast_path =
8490 				&_base_put_smid_fast_path_atomic;
8491 		ioc->put_smid_hi_priority =
8492 				&_base_put_smid_hi_priority_atomic;
8493 	} else {
8494 		ioc->put_smid_default = &_base_put_smid_default;
8495 		ioc->put_smid_fast_path = &_base_put_smid_fast_path;
8496 		ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
8497 		if (ioc->is_mcpu_endpoint)
8498 			ioc->put_smid_scsi_io =
8499 				&_base_put_smid_mpi_ep_scsi_io;
8500 		else
8501 			ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
8502 	}
8503 	/*
8504 	 * These function pointers for other requests that don't
8505 	 * the require IEEE scatter gather elements.
8506 	 *
8507 	 * For example Configuration Pages and SAS IOUNIT Control don't.
8508 	 */
8509 	ioc->build_sg_mpi = &_base_build_sg;
8510 	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
8511 
8512 	r = mpt3sas_base_make_ioc_ready(ioc, SOFT_RESET);
8513 	if (r)
8514 		goto out_free_resources;
8515 
8516 	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
8517 	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
8518 	if (!ioc->pfacts) {
8519 		r = -ENOMEM;
8520 		goto out_free_resources;
8521 	}
8522 
8523 	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
8524 		r = _base_get_port_facts(ioc, i);
8525 		if (r) {
8526 			rc = mpt3sas_base_check_for_fault_and_issue_reset(ioc);
8527 			if (rc || (_base_get_port_facts(ioc, i)))
8528 				goto out_free_resources;
8529 		}
8530 	}
8531 
8532 	r = _base_allocate_memory_pools(ioc);
8533 	if (r)
8534 		goto out_free_resources;
8535 
8536 	if (irqpoll_weight > 0)
8537 		ioc->thresh_hold = irqpoll_weight;
8538 	else
8539 		ioc->thresh_hold = ioc->hba_queue_depth/4;
8540 
8541 	_base_init_irqpolls(ioc);
8542 	init_waitqueue_head(&ioc->reset_wq);
8543 
8544 	/* allocate memory pd handle bitmask list */
8545 	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8546 	if (ioc->facts.MaxDevHandle % 8)
8547 		ioc->pd_handles_sz++;
8548 	/*
8549 	 * pd_handles_sz should have, at least, the minimal room for
8550 	 * set_bit()/test_bit(), otherwise out-of-memory touch may occur.
8551 	 */
8552 	ioc->pd_handles_sz = ALIGN(ioc->pd_handles_sz, sizeof(unsigned long));
8553 
8554 	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
8555 	    GFP_KERNEL);
8556 	if (!ioc->pd_handles) {
8557 		r = -ENOMEM;
8558 		goto out_free_resources;
8559 	}
8560 	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
8561 	    GFP_KERNEL);
8562 	if (!ioc->blocking_handles) {
8563 		r = -ENOMEM;
8564 		goto out_free_resources;
8565 	}
8566 
8567 	/* allocate memory for pending OS device add list */
8568 	ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
8569 	if (ioc->facts.MaxDevHandle % 8)
8570 		ioc->pend_os_device_add_sz++;
8571 
8572 	/*
8573 	 * pend_os_device_add_sz should have, at least, the minimal room for
8574 	 * set_bit()/test_bit(), otherwise out-of-memory may occur.
8575 	 */
8576 	ioc->pend_os_device_add_sz = ALIGN(ioc->pend_os_device_add_sz,
8577 					   sizeof(unsigned long));
8578 	ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
8579 	    GFP_KERNEL);
8580 	if (!ioc->pend_os_device_add) {
8581 		r = -ENOMEM;
8582 		goto out_free_resources;
8583 	}
8584 
8585 	ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
8586 	ioc->device_remove_in_progress =
8587 		kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
8588 	if (!ioc->device_remove_in_progress) {
8589 		r = -ENOMEM;
8590 		goto out_free_resources;
8591 	}
8592 
8593 	ioc->fwfault_debug = mpt3sas_fwfault_debug;
8594 
8595 	/* base internal command bits */
8596 	mutex_init(&ioc->base_cmds.mutex);
8597 	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8598 	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
8599 
8600 	/* port_enable command bits */
8601 	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8602 	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
8603 
8604 	/* transport internal command bits */
8605 	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8606 	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
8607 	mutex_init(&ioc->transport_cmds.mutex);
8608 
8609 	/* scsih internal command bits */
8610 	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8611 	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
8612 	mutex_init(&ioc->scsih_cmds.mutex);
8613 
8614 	/* task management internal command bits */
8615 	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8616 	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
8617 	mutex_init(&ioc->tm_cmds.mutex);
8618 
8619 	/* config page internal command bits */
8620 	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8621 	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
8622 	mutex_init(&ioc->config_cmds.mutex);
8623 
8624 	/* ctl module internal command bits */
8625 	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
8626 	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
8627 	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
8628 	mutex_init(&ioc->ctl_cmds.mutex);
8629 
8630 	if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
8631 	    !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
8632 	    !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
8633 	    !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
8634 		r = -ENOMEM;
8635 		goto out_free_resources;
8636 	}
8637 
8638 	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
8639 		ioc->event_masks[i] = -1;
8640 
8641 	/* here we enable the events we care about */
8642 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
8643 	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
8644 	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
8645 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
8646 	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
8647 	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
8648 	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
8649 	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
8650 	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
8651 	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
8652 	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
8653 	_base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
8654 	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
8655 	if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
8656 		if (ioc->is_gen35_ioc) {
8657 			_base_unmask_events(ioc,
8658 				MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
8659 			_base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
8660 			_base_unmask_events(ioc,
8661 				MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
8662 		}
8663 	}
8664 	r = _base_make_ioc_operational(ioc);
8665 	if (r == -EAGAIN) {
8666 		r = _base_make_ioc_operational(ioc);
8667 		if (r)
8668 			goto out_free_resources;
8669 	}
8670 
8671 	/*
8672 	 * Copy current copy of IOCFacts in prev_fw_facts
8673 	 * and it will be used during online firmware upgrade.
8674 	 */
8675 	memcpy(&ioc->prev_fw_facts, &ioc->facts,
8676 	    sizeof(struct mpt3sas_facts));
8677 
8678 	ioc->non_operational_loop = 0;
8679 	ioc->ioc_coredump_loop = 0;
8680 	ioc->got_task_abort_from_ioctl = 0;
8681 	return 0;
8682 
8683  out_free_resources:
8684 
8685 	ioc->remove_host = 1;
8686 
8687 	mpt3sas_base_free_resources(ioc);
8688 	_base_release_memory_pools(ioc);
8689 	pci_set_drvdata(ioc->pdev, NULL);
8690 	kfree(ioc->cpu_msix_table);
8691 	if (ioc->is_warpdrive)
8692 		kfree(ioc->reply_post_host_index);
8693 	kfree(ioc->pd_handles);
8694 	kfree(ioc->blocking_handles);
8695 	kfree(ioc->device_remove_in_progress);
8696 	kfree(ioc->pend_os_device_add);
8697 	kfree(ioc->tm_cmds.reply);
8698 	kfree(ioc->transport_cmds.reply);
8699 	kfree(ioc->scsih_cmds.reply);
8700 	kfree(ioc->config_cmds.reply);
8701 	kfree(ioc->base_cmds.reply);
8702 	kfree(ioc->port_enable_cmds.reply);
8703 	kfree(ioc->ctl_cmds.reply);
8704 	kfree(ioc->ctl_cmds.sense);
8705 	kfree(ioc->pfacts);
8706 	ioc->ctl_cmds.reply = NULL;
8707 	ioc->base_cmds.reply = NULL;
8708 	ioc->tm_cmds.reply = NULL;
8709 	ioc->scsih_cmds.reply = NULL;
8710 	ioc->transport_cmds.reply = NULL;
8711 	ioc->config_cmds.reply = NULL;
8712 	ioc->pfacts = NULL;
8713 	return r;
8714 }
8715 
8716 
8717 /**
8718  * mpt3sas_base_detach - remove controller instance
8719  * @ioc: per adapter object
8720  */
8721 void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER * ioc)8722 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
8723 {
8724 	dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
8725 
8726 	mpt3sas_base_stop_watchdog(ioc);
8727 	mpt3sas_base_free_resources(ioc);
8728 	_base_release_memory_pools(ioc);
8729 	mpt3sas_free_enclosure_list(ioc);
8730 	pci_set_drvdata(ioc->pdev, NULL);
8731 	kfree(ioc->cpu_msix_table);
8732 	if (ioc->is_warpdrive)
8733 		kfree(ioc->reply_post_host_index);
8734 	kfree(ioc->pd_handles);
8735 	kfree(ioc->blocking_handles);
8736 	kfree(ioc->device_remove_in_progress);
8737 	kfree(ioc->pend_os_device_add);
8738 	kfree(ioc->pfacts);
8739 	kfree(ioc->ctl_cmds.reply);
8740 	kfree(ioc->ctl_cmds.sense);
8741 	kfree(ioc->base_cmds.reply);
8742 	kfree(ioc->port_enable_cmds.reply);
8743 	kfree(ioc->tm_cmds.reply);
8744 	kfree(ioc->transport_cmds.reply);
8745 	kfree(ioc->scsih_cmds.reply);
8746 	kfree(ioc->config_cmds.reply);
8747 }
8748 
8749 /**
8750  * _base_pre_reset_handler - pre reset handler
8751  * @ioc: per adapter object
8752  */
_base_pre_reset_handler(struct MPT3SAS_ADAPTER * ioc)8753 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
8754 {
8755 	mpt3sas_scsih_pre_reset_handler(ioc);
8756 	mpt3sas_ctl_pre_reset_handler(ioc);
8757 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
8758 }
8759 
8760 /**
8761  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
8762  * @ioc: per adapter object
8763  */
8764 static void
_base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER * ioc)8765 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
8766 {
8767 	dtmprintk(ioc,
8768 	    ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
8769 	if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
8770 		ioc->transport_cmds.status |= MPT3_CMD_RESET;
8771 		mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
8772 		complete(&ioc->transport_cmds.done);
8773 	}
8774 	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
8775 		ioc->base_cmds.status |= MPT3_CMD_RESET;
8776 		mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
8777 		complete(&ioc->base_cmds.done);
8778 	}
8779 	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
8780 		ioc->port_enable_failed = 1;
8781 		ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
8782 		mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
8783 		if (ioc->is_driver_loading) {
8784 			ioc->start_scan_failed =
8785 				MPI2_IOCSTATUS_INTERNAL_ERROR;
8786 			ioc->start_scan = 0;
8787 		} else {
8788 			complete(&ioc->port_enable_cmds.done);
8789 		}
8790 	}
8791 	if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
8792 		ioc->config_cmds.status |= MPT3_CMD_RESET;
8793 		mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
8794 		ioc->config_cmds.smid = USHRT_MAX;
8795 		complete(&ioc->config_cmds.done);
8796 	}
8797 }
8798 
8799 /**
8800  * _base_clear_outstanding_commands - clear all outstanding commands
8801  * @ioc: per adapter object
8802  */
_base_clear_outstanding_commands(struct MPT3SAS_ADAPTER * ioc)8803 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
8804 {
8805 	mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
8806 	mpt3sas_ctl_clear_outstanding_ioctls(ioc);
8807 	_base_clear_outstanding_mpt_commands(ioc);
8808 }
8809 
8810 /**
8811  * _base_reset_done_handler - reset done handler
8812  * @ioc: per adapter object
8813  */
_base_reset_done_handler(struct MPT3SAS_ADAPTER * ioc)8814 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
8815 {
8816 	mpt3sas_scsih_reset_done_handler(ioc);
8817 	mpt3sas_ctl_reset_done_handler(ioc);
8818 	dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
8819 }
8820 
8821 /**
8822  * mpt3sas_wait_for_commands_to_complete - reset controller
8823  * @ioc: Pointer to MPT_ADAPTER structure
8824  *
8825  * This function is waiting 10s for all pending commands to complete
8826  * prior to putting controller in reset.
8827  */
8828 void
mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER * ioc)8829 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
8830 {
8831 	u32 ioc_state;
8832 
8833 	ioc->pending_io_count = 0;
8834 
8835 	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8836 	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
8837 		return;
8838 
8839 	/* pending command count */
8840 	ioc->pending_io_count = scsi_host_busy(ioc->shost);
8841 
8842 	if (!ioc->pending_io_count)
8843 		return;
8844 
8845 	/* wait for pending commands to complete */
8846 	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
8847 }
8848 
8849 /**
8850  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
8851  *     attributes during online firmware upgrade and update the corresponding
8852  *     IOC variables accordingly.
8853  *
8854  * @ioc: Pointer to MPT_ADAPTER structure
8855  */
8856 static int
_base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER * ioc)8857 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
8858 {
8859 	u16 pd_handles_sz;
8860 	void *pd_handles = NULL, *blocking_handles = NULL;
8861 	void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
8862 	struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
8863 
8864 	if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
8865 		pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
8866 		if (ioc->facts.MaxDevHandle % 8)
8867 			pd_handles_sz++;
8868 
8869 		/*
8870 		 * pd_handles should have, at least, the minimal room for
8871 		 * set_bit()/test_bit(), otherwise out-of-memory touch may
8872 		 * occur.
8873 		 */
8874 		pd_handles_sz = ALIGN(pd_handles_sz, sizeof(unsigned long));
8875 		pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
8876 		    GFP_KERNEL);
8877 		if (!pd_handles) {
8878 			ioc_info(ioc,
8879 			    "Unable to allocate the memory for pd_handles of sz: %d\n",
8880 			    pd_handles_sz);
8881 			return -ENOMEM;
8882 		}
8883 		memset(pd_handles + ioc->pd_handles_sz, 0,
8884 		    (pd_handles_sz - ioc->pd_handles_sz));
8885 		ioc->pd_handles = pd_handles;
8886 
8887 		blocking_handles = krealloc(ioc->blocking_handles,
8888 		    pd_handles_sz, GFP_KERNEL);
8889 		if (!blocking_handles) {
8890 			ioc_info(ioc,
8891 			    "Unable to allocate the memory for "
8892 			    "blocking_handles of sz: %d\n",
8893 			    pd_handles_sz);
8894 			return -ENOMEM;
8895 		}
8896 		memset(blocking_handles + ioc->pd_handles_sz, 0,
8897 		    (pd_handles_sz - ioc->pd_handles_sz));
8898 		ioc->blocking_handles = blocking_handles;
8899 		ioc->pd_handles_sz = pd_handles_sz;
8900 
8901 		pend_os_device_add = krealloc(ioc->pend_os_device_add,
8902 		    pd_handles_sz, GFP_KERNEL);
8903 		if (!pend_os_device_add) {
8904 			ioc_info(ioc,
8905 			    "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
8906 			    pd_handles_sz);
8907 			return -ENOMEM;
8908 		}
8909 		memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
8910 		    (pd_handles_sz - ioc->pend_os_device_add_sz));
8911 		ioc->pend_os_device_add = pend_os_device_add;
8912 		ioc->pend_os_device_add_sz = pd_handles_sz;
8913 
8914 		device_remove_in_progress = krealloc(
8915 		    ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
8916 		if (!device_remove_in_progress) {
8917 			ioc_info(ioc,
8918 			    "Unable to allocate the memory for device_remove_in_progress of sz: %d\n",
8919 			    pd_handles_sz);
8920 			return -ENOMEM;
8921 		}
8922 		memset(device_remove_in_progress +
8923 		    ioc->device_remove_in_progress_sz, 0,
8924 		    (pd_handles_sz - ioc->device_remove_in_progress_sz));
8925 		ioc->device_remove_in_progress = device_remove_in_progress;
8926 		ioc->device_remove_in_progress_sz = pd_handles_sz;
8927 	}
8928 
8929 	memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
8930 	return 0;
8931 }
8932 
8933 /**
8934  * mpt3sas_base_hard_reset_handler - reset controller
8935  * @ioc: Pointer to MPT_ADAPTER structure
8936  * @type: FORCE_BIG_HAMMER or SOFT_RESET
8937  *
8938  * Return: 0 for success, non-zero for failure.
8939  */
8940 int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER * ioc,enum reset_type type)8941 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
8942 	enum reset_type type)
8943 {
8944 	int r;
8945 	unsigned long flags;
8946 	u32 ioc_state;
8947 	u8 is_fault = 0, is_trigger = 0;
8948 
8949 	dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
8950 
8951 	if (ioc->pci_error_recovery) {
8952 		ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
8953 		r = 0;
8954 		goto out_unlocked;
8955 	}
8956 
8957 	if (mpt3sas_fwfault_debug)
8958 		mpt3sas_halt_firmware(ioc);
8959 
8960 	/* wait for an active reset in progress to complete */
8961 	mutex_lock(&ioc->reset_in_progress_mutex);
8962 
8963 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
8964 	ioc->shost_recovery = 1;
8965 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
8966 
8967 	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8968 	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
8969 	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
8970 	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
8971 		is_trigger = 1;
8972 		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
8973 		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
8974 		    (ioc_state & MPI2_IOC_STATE_MASK) ==
8975 		    MPI2_IOC_STATE_COREDUMP) {
8976 			is_fault = 1;
8977 			ioc->htb_rel.trigger_info_dwords[1] =
8978 			    (ioc_state & MPI2_DOORBELL_DATA_MASK);
8979 		}
8980 	}
8981 	_base_pre_reset_handler(ioc);
8982 	mpt3sas_wait_for_commands_to_complete(ioc);
8983 	mpt3sas_base_mask_interrupts(ioc);
8984 	mpt3sas_base_pause_mq_polling(ioc);
8985 	r = mpt3sas_base_make_ioc_ready(ioc, type);
8986 	if (r)
8987 		goto out;
8988 	_base_clear_outstanding_commands(ioc);
8989 
8990 	/* If this hard reset is called while port enable is active, then
8991 	 * there is no reason to call make_ioc_operational
8992 	 */
8993 	if (ioc->is_driver_loading && ioc->port_enable_failed) {
8994 		ioc->remove_host = 1;
8995 		r = -EFAULT;
8996 		goto out;
8997 	}
8998 	r = _base_get_ioc_facts(ioc);
8999 	if (r)
9000 		goto out;
9001 
9002 	r = _base_check_ioc_facts_changes(ioc);
9003 	if (r) {
9004 		ioc_info(ioc,
9005 		    "Some of the parameters got changed in this new firmware"
9006 		    " image and it requires system reboot\n");
9007 		goto out;
9008 	}
9009 	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
9010 		panic("%s: Issue occurred with flashing controller firmware."
9011 		      "Please reboot the system and ensure that the correct"
9012 		      " firmware version is running\n", ioc->name);
9013 
9014 	r = _base_make_ioc_operational(ioc);
9015 	if (!r)
9016 		_base_reset_done_handler(ioc);
9017 
9018  out:
9019 	ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
9020 
9021 	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
9022 	ioc->shost_recovery = 0;
9023 	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
9024 	ioc->ioc_reset_count++;
9025 	mutex_unlock(&ioc->reset_in_progress_mutex);
9026 	mpt3sas_base_resume_mq_polling(ioc);
9027 
9028  out_unlocked:
9029 	if ((r == 0) && is_trigger) {
9030 		if (is_fault)
9031 			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
9032 		else
9033 			mpt3sas_trigger_master(ioc,
9034 			    MASTER_TRIGGER_ADAPTER_RESET);
9035 	}
9036 	dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
9037 	return r;
9038 }
9039