xref: /linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 43db1111073049220381944af4a3b8a5400eda71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
__gic_v3_get_lr(unsigned int lr)21 u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
__gic_v3_set_lr(u64 val,int lr)61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
__vgic_v3_write_ap0rn(u32 val,int n)115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
__vgic_v3_write_ap1rn(u32 val,int n)133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
__vgic_v3_read_ap0rn(int n)151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
__vgic_v3_read_ap1rn(int n)175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
__vgic_v3_save_state(struct vgic_v3_cpu_if * cpu_if)199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EL2_En, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
__vgic_v3_restore_state(struct vgic_v3_cpu_if * cpu_if)234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
__vgic_v3_activate_traps(struct vgic_v3_cpu_if * cpu_if)260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 *
272 	 * However, if the vgic is disabled (ICH_HCR_EL2.EN==0), no GIC is
273 	 * provisioned at all. In order to prevent illegal accesses to the
274 	 * system registers to trap to EL1 (duh), force ICC_SRE_EL1.SRE to 1
275 	 * so that the trap bits can take effect. Yes, we *loves* the GIC.
276 	 */
277 	if (!(cpu_if->vgic_hcr & ICH_HCR_EL2_En)) {
278 		write_gicreg(ICC_SRE_EL1_SRE, ICC_SRE_EL1);
279 		isb();
280 	} else if (!cpu_if->vgic_sre) {
281 		write_gicreg(0, ICC_SRE_EL1);
282 		isb();
283 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
284 
285 
286 		if (has_vhe()) {
287 			/*
288 			 * Ensure that the write to the VMCR will have reached
289 			 * the (re)distributors. This ensure the guest will
290 			 * read the correct values from the memory-mapped
291 			 * interface.
292 			 */
293 			isb();
294 			dsb(sy);
295 		}
296 	}
297 
298 	/*
299 	 * Prevent the guest from touching the ICC_SRE_EL1 system
300 	 * register. Note that this may not have any effect, as
301 	 * ICC_SRE_EL2.Enable being RAO/WI is a valid implementation.
302 	 */
303 	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
304 		     ICC_SRE_EL2);
305 
306 	/*
307 	 * If we need to trap system registers, we must write
308 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
309 	 * injected. Note that this also applies if we don't expect
310 	 * any system register access (no vgic at all).
311 	 */
312 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
313 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
314 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
315 }
316 
__vgic_v3_deactivate_traps(struct vgic_v3_cpu_if * cpu_if)317 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
318 {
319 	u64 val;
320 
321 	if (!cpu_if->vgic_sre) {
322 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
323 	}
324 
325 	val = read_gicreg(ICC_SRE_EL2);
326 	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
327 
328 	if (!cpu_if->vgic_sre) {
329 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
330 		isb();
331 		write_gicreg(1, ICC_SRE_EL1);
332 	}
333 
334 	/*
335 	 * If we were trapping system registers, we enabled the VGIC even if
336 	 * no interrupts were being injected, and we disable it again here.
337 	 */
338 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
339 	    cpu_if->its_vpe.its_vm || !cpu_if->vgic_sre)
340 		write_gicreg(0, ICH_HCR_EL2);
341 }
342 
__vgic_v3_save_aprs(struct vgic_v3_cpu_if * cpu_if)343 static void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
344 {
345 	u64 val;
346 	u32 nr_pre_bits;
347 
348 	val = read_gicreg(ICH_VTR_EL2);
349 	nr_pre_bits = vtr_to_nr_pre_bits(val);
350 
351 	switch (nr_pre_bits) {
352 	case 7:
353 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
354 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
355 		fallthrough;
356 	case 6:
357 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
358 		fallthrough;
359 	default:
360 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
361 	}
362 
363 	switch (nr_pre_bits) {
364 	case 7:
365 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
366 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
367 		fallthrough;
368 	case 6:
369 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
370 		fallthrough;
371 	default:
372 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
373 	}
374 }
375 
__vgic_v3_restore_aprs(struct vgic_v3_cpu_if * cpu_if)376 static void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
377 {
378 	u64 val;
379 	u32 nr_pre_bits;
380 
381 	val = read_gicreg(ICH_VTR_EL2);
382 	nr_pre_bits = vtr_to_nr_pre_bits(val);
383 
384 	switch (nr_pre_bits) {
385 	case 7:
386 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
387 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
388 		fallthrough;
389 	case 6:
390 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
391 		fallthrough;
392 	default:
393 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
394 	}
395 
396 	switch (nr_pre_bits) {
397 	case 7:
398 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
399 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
400 		fallthrough;
401 	case 6:
402 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
403 		fallthrough;
404 	default:
405 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
406 	}
407 }
408 
__vgic_v3_init_lrs(void)409 void __vgic_v3_init_lrs(void)
410 {
411 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
412 	int i;
413 
414 	for (i = 0; i <= max_lr_idx; i++)
415 		__gic_v3_set_lr(0, i);
416 }
417 
418 /*
419  * Return the GIC CPU configuration:
420  * - [31:0]  ICH_VTR_EL2
421  * - [62:32] RES0
422  * - [63]    MMIO (GICv2) capable
423  */
__vgic_v3_get_gic_config(void)424 u64 __vgic_v3_get_gic_config(void)
425 {
426 	u64 val, sre = read_gicreg(ICC_SRE_EL1);
427 	unsigned long flags = 0;
428 
429 	/*
430 	 * To check whether we have a MMIO-based (GICv2 compatible)
431 	 * CPU interface, we need to disable the system register
432 	 * view.
433 	 *
434 	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
435 	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
436 	 * interrupt overrides must be set. You've got to love this.
437 	 *
438 	 * As we always run VHE with HCR_xMO set, no extra xMO
439 	 * manipulation is required in that case.
440 	 *
441 	 * To safely disable SRE, we have to prevent any interrupt
442 	 * from firing (which would be deadly). This only makes sense
443 	 * on VHE, as interrupts are already masked for nVHE as part
444 	 * of the exception entry to EL2.
445 	 */
446 	if (has_vhe()) {
447 		flags = local_daif_save();
448 	} else {
449 		sysreg_clear_set_hcr(0, HCR_AMO | HCR_FMO | HCR_IMO);
450 		isb();
451 	}
452 
453 	write_gicreg(0, ICC_SRE_EL1);
454 	isb();
455 
456 	val = read_gicreg(ICC_SRE_EL1);
457 
458 	write_gicreg(sre, ICC_SRE_EL1);
459 	isb();
460 
461 	if (has_vhe()) {
462 		local_daif_restore(flags);
463 	} else {
464 		sysreg_clear_set_hcr(HCR_AMO | HCR_FMO | HCR_IMO, 0);
465 		isb();
466 	}
467 
468 	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
469 	val |= read_gicreg(ICH_VTR_EL2);
470 
471 	return val;
472 }
473 
__vgic_v3_read_vmcr(void)474 static u64 __vgic_v3_read_vmcr(void)
475 {
476 	return read_gicreg(ICH_VMCR_EL2);
477 }
478 
__vgic_v3_write_vmcr(u32 vmcr)479 static void __vgic_v3_write_vmcr(u32 vmcr)
480 {
481 	write_gicreg(vmcr, ICH_VMCR_EL2);
482 }
483 
__vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if * cpu_if)484 void __vgic_v3_save_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
485 {
486 	__vgic_v3_save_aprs(cpu_if);
487 	if (cpu_if->vgic_sre)
488 		cpu_if->vgic_vmcr = __vgic_v3_read_vmcr();
489 }
490 
__vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if * cpu_if)491 void __vgic_v3_restore_vmcr_aprs(struct vgic_v3_cpu_if *cpu_if)
492 {
493 	/*
494 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
495 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
496 	 * VMCR_EL2 save/restore in the world switch.
497 	 */
498 	if (cpu_if->vgic_sre)
499 		__vgic_v3_write_vmcr(cpu_if->vgic_vmcr);
500 	__vgic_v3_restore_aprs(cpu_if);
501 }
502 
__vgic_v3_bpr_min(void)503 static int __vgic_v3_bpr_min(void)
504 {
505 	/* See Pseudocode for VPriorityGroup */
506 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
507 }
508 
__vgic_v3_get_group(struct kvm_vcpu * vcpu)509 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
510 {
511 	u64 esr = kvm_vcpu_get_esr(vcpu);
512 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
513 
514 	return crm != 8;
515 }
516 
517 #define GICv3_IDLE_PRIORITY	0xff
518 
__vgic_v3_highest_priority_lr(struct kvm_vcpu * vcpu,u32 vmcr,u64 * lr_val)519 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
520 					 u64 *lr_val)
521 {
522 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
523 	u8 priority = GICv3_IDLE_PRIORITY;
524 	int i, lr = -1;
525 
526 	for (i = 0; i < used_lrs; i++) {
527 		u64 val = __gic_v3_get_lr(i);
528 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
529 
530 		/* Not pending in the state? */
531 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
532 			continue;
533 
534 		/* Group-0 interrupt, but Group-0 disabled? */
535 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
536 			continue;
537 
538 		/* Group-1 interrupt, but Group-1 disabled? */
539 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
540 			continue;
541 
542 		/* Not the highest priority? */
543 		if (lr_prio >= priority)
544 			continue;
545 
546 		/* This is a candidate */
547 		priority = lr_prio;
548 		*lr_val = val;
549 		lr = i;
550 	}
551 
552 	if (lr == -1)
553 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
554 
555 	return lr;
556 }
557 
__vgic_v3_find_active_lr(struct kvm_vcpu * vcpu,int intid,u64 * lr_val)558 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
559 				    u64 *lr_val)
560 {
561 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
562 	int i;
563 
564 	for (i = 0; i < used_lrs; i++) {
565 		u64 val = __gic_v3_get_lr(i);
566 
567 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
568 		    (val & ICH_LR_ACTIVE_BIT)) {
569 			*lr_val = val;
570 			return i;
571 		}
572 	}
573 
574 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
575 	return -1;
576 }
577 
__vgic_v3_get_highest_active_priority(void)578 static int __vgic_v3_get_highest_active_priority(void)
579 {
580 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
581 	u32 hap = 0;
582 	int i;
583 
584 	for (i = 0; i < nr_apr_regs; i++) {
585 		u32 val;
586 
587 		/*
588 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
589 		 * contain the active priority levels for this VCPU
590 		 * for the maximum number of supported priority
591 		 * levels, and we return the full priority level only
592 		 * if the BPR is programmed to its minimum, otherwise
593 		 * we return a combination of the priority level and
594 		 * subpriority, as determined by the setting of the
595 		 * BPR, but without the full subpriority.
596 		 */
597 		val  = __vgic_v3_read_ap0rn(i);
598 		val |= __vgic_v3_read_ap1rn(i);
599 		if (!val) {
600 			hap += 32;
601 			continue;
602 		}
603 
604 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
605 	}
606 
607 	return GICv3_IDLE_PRIORITY;
608 }
609 
__vgic_v3_get_bpr0(u32 vmcr)610 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
611 {
612 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
613 }
614 
__vgic_v3_get_bpr1(u32 vmcr)615 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
616 {
617 	unsigned int bpr;
618 
619 	if (vmcr & ICH_VMCR_CBPR_MASK) {
620 		bpr = __vgic_v3_get_bpr0(vmcr);
621 		if (bpr < 7)
622 			bpr++;
623 	} else {
624 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
625 	}
626 
627 	return bpr;
628 }
629 
630 /*
631  * Convert a priority to a preemption level, taking the relevant BPR
632  * into account by zeroing the sub-priority bits.
633  */
__vgic_v3_pri_to_pre(u8 pri,u32 vmcr,int grp)634 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
635 {
636 	unsigned int bpr;
637 
638 	if (!grp)
639 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
640 	else
641 		bpr = __vgic_v3_get_bpr1(vmcr);
642 
643 	return pri & (GENMASK(7, 0) << bpr);
644 }
645 
646 /*
647  * The priority value is independent of any of the BPR values, so we
648  * normalize it using the minimal BPR value. This guarantees that no
649  * matter what the guest does with its BPR, we can always set/get the
650  * same value of a priority.
651  */
__vgic_v3_set_active_priority(u8 pri,u32 vmcr,int grp)652 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
653 {
654 	u8 pre, ap;
655 	u32 val;
656 	int apr;
657 
658 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
659 	ap = pre >> __vgic_v3_bpr_min();
660 	apr = ap / 32;
661 
662 	if (!grp) {
663 		val = __vgic_v3_read_ap0rn(apr);
664 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
665 	} else {
666 		val = __vgic_v3_read_ap1rn(apr);
667 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
668 	}
669 }
670 
__vgic_v3_clear_highest_active_priority(void)671 static int __vgic_v3_clear_highest_active_priority(void)
672 {
673 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
674 	u32 hap = 0;
675 	int i;
676 
677 	for (i = 0; i < nr_apr_regs; i++) {
678 		u32 ap0, ap1;
679 		int c0, c1;
680 
681 		ap0 = __vgic_v3_read_ap0rn(i);
682 		ap1 = __vgic_v3_read_ap1rn(i);
683 		if (!ap0 && !ap1) {
684 			hap += 32;
685 			continue;
686 		}
687 
688 		c0 = ap0 ? __ffs(ap0) : 32;
689 		c1 = ap1 ? __ffs(ap1) : 32;
690 
691 		/* Always clear the LSB, which is the highest priority */
692 		if (c0 < c1) {
693 			ap0 &= ~BIT(c0);
694 			__vgic_v3_write_ap0rn(ap0, i);
695 			hap += c0;
696 		} else {
697 			ap1 &= ~BIT(c1);
698 			__vgic_v3_write_ap1rn(ap1, i);
699 			hap += c1;
700 		}
701 
702 		/* Rescale to 8 bits of priority */
703 		return hap << __vgic_v3_bpr_min();
704 	}
705 
706 	return GICv3_IDLE_PRIORITY;
707 }
708 
__vgic_v3_read_iar(struct kvm_vcpu * vcpu,u32 vmcr,int rt)709 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
710 {
711 	u64 lr_val;
712 	u8 lr_prio, pmr;
713 	int lr, grp;
714 
715 	grp = __vgic_v3_get_group(vcpu);
716 
717 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
718 	if (lr < 0)
719 		goto spurious;
720 
721 	if (grp != !!(lr_val & ICH_LR_GROUP))
722 		goto spurious;
723 
724 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
725 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
726 	if (pmr <= lr_prio)
727 		goto spurious;
728 
729 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
730 		goto spurious;
731 
732 	lr_val &= ~ICH_LR_STATE;
733 	lr_val |= ICH_LR_ACTIVE_BIT;
734 	__gic_v3_set_lr(lr_val, lr);
735 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
736 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
737 	return;
738 
739 spurious:
740 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
741 }
742 
__vgic_v3_clear_active_lr(int lr,u64 lr_val)743 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
744 {
745 	lr_val &= ~ICH_LR_ACTIVE_BIT;
746 	if (lr_val & ICH_LR_HW) {
747 		u32 pid;
748 
749 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
750 		gic_write_dir(pid);
751 	}
752 
753 	__gic_v3_set_lr(lr_val, lr);
754 }
755 
__vgic_v3_bump_eoicount(void)756 static void __vgic_v3_bump_eoicount(void)
757 {
758 	u32 hcr;
759 
760 	hcr = read_gicreg(ICH_HCR_EL2);
761 	hcr += 1 << ICH_HCR_EL2_EOIcount_SHIFT;
762 	write_gicreg(hcr, ICH_HCR_EL2);
763 }
764 
__vgic_v3_write_dir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)765 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
766 {
767 	u32 vid = vcpu_get_reg(vcpu, rt);
768 	u64 lr_val;
769 	int lr;
770 
771 	/* EOImode == 0, nothing to be done here */
772 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
773 		return;
774 
775 	/* No deactivate to be performed on an LPI */
776 	if (vid >= VGIC_MIN_LPI)
777 		return;
778 
779 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
780 	if (lr == -1) {
781 		__vgic_v3_bump_eoicount();
782 		return;
783 	}
784 
785 	__vgic_v3_clear_active_lr(lr, lr_val);
786 }
787 
__vgic_v3_write_eoir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)788 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
789 {
790 	u32 vid = vcpu_get_reg(vcpu, rt);
791 	u64 lr_val;
792 	u8 lr_prio, act_prio;
793 	int lr, grp;
794 
795 	grp = __vgic_v3_get_group(vcpu);
796 
797 	/* Drop priority in any case */
798 	act_prio = __vgic_v3_clear_highest_active_priority();
799 
800 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
801 	if (lr == -1) {
802 		/* Do not bump EOIcount for LPIs that aren't in the LRs */
803 		if (!(vid >= VGIC_MIN_LPI))
804 			__vgic_v3_bump_eoicount();
805 		return;
806 	}
807 
808 	/* EOImode == 1 and not an LPI, nothing to be done here */
809 	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
810 		return;
811 
812 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
813 
814 	/* If priorities or group do not match, the guest has fscked-up. */
815 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
816 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
817 		return;
818 
819 	/* Let's now perform the deactivation */
820 	__vgic_v3_clear_active_lr(lr, lr_val);
821 }
822 
__vgic_v3_read_igrpen0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)823 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
824 {
825 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
826 }
827 
__vgic_v3_read_igrpen1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)828 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
829 {
830 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
831 }
832 
__vgic_v3_write_igrpen0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)833 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
834 {
835 	u64 val = vcpu_get_reg(vcpu, rt);
836 
837 	if (val & 1)
838 		vmcr |= ICH_VMCR_ENG0_MASK;
839 	else
840 		vmcr &= ~ICH_VMCR_ENG0_MASK;
841 
842 	__vgic_v3_write_vmcr(vmcr);
843 }
844 
__vgic_v3_write_igrpen1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)845 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
846 {
847 	u64 val = vcpu_get_reg(vcpu, rt);
848 
849 	if (val & 1)
850 		vmcr |= ICH_VMCR_ENG1_MASK;
851 	else
852 		vmcr &= ~ICH_VMCR_ENG1_MASK;
853 
854 	__vgic_v3_write_vmcr(vmcr);
855 }
856 
__vgic_v3_read_bpr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)857 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
858 {
859 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
860 }
861 
__vgic_v3_read_bpr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)862 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
863 {
864 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
865 }
866 
__vgic_v3_write_bpr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)867 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
868 {
869 	u64 val = vcpu_get_reg(vcpu, rt);
870 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
871 
872 	/* Enforce BPR limiting */
873 	if (val < bpr_min)
874 		val = bpr_min;
875 
876 	val <<= ICH_VMCR_BPR0_SHIFT;
877 	val &= ICH_VMCR_BPR0_MASK;
878 	vmcr &= ~ICH_VMCR_BPR0_MASK;
879 	vmcr |= val;
880 
881 	__vgic_v3_write_vmcr(vmcr);
882 }
883 
__vgic_v3_write_bpr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)884 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
885 {
886 	u64 val = vcpu_get_reg(vcpu, rt);
887 	u8 bpr_min = __vgic_v3_bpr_min();
888 
889 	if (vmcr & ICH_VMCR_CBPR_MASK)
890 		return;
891 
892 	/* Enforce BPR limiting */
893 	if (val < bpr_min)
894 		val = bpr_min;
895 
896 	val <<= ICH_VMCR_BPR1_SHIFT;
897 	val &= ICH_VMCR_BPR1_MASK;
898 	vmcr &= ~ICH_VMCR_BPR1_MASK;
899 	vmcr |= val;
900 
901 	__vgic_v3_write_vmcr(vmcr);
902 }
903 
__vgic_v3_read_apxrn(struct kvm_vcpu * vcpu,int rt,int n)904 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
905 {
906 	u32 val;
907 
908 	if (!__vgic_v3_get_group(vcpu))
909 		val = __vgic_v3_read_ap0rn(n);
910 	else
911 		val = __vgic_v3_read_ap1rn(n);
912 
913 	vcpu_set_reg(vcpu, rt, val);
914 }
915 
__vgic_v3_write_apxrn(struct kvm_vcpu * vcpu,int rt,int n)916 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
917 {
918 	u32 val = vcpu_get_reg(vcpu, rt);
919 
920 	if (!__vgic_v3_get_group(vcpu))
921 		__vgic_v3_write_ap0rn(val, n);
922 	else
923 		__vgic_v3_write_ap1rn(val, n);
924 }
925 
__vgic_v3_read_apxr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)926 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
927 					    u32 vmcr, int rt)
928 {
929 	__vgic_v3_read_apxrn(vcpu, rt, 0);
930 }
931 
__vgic_v3_read_apxr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)932 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
933 					    u32 vmcr, int rt)
934 {
935 	__vgic_v3_read_apxrn(vcpu, rt, 1);
936 }
937 
__vgic_v3_read_apxr2(struct kvm_vcpu * vcpu,u32 vmcr,int rt)938 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
939 {
940 	__vgic_v3_read_apxrn(vcpu, rt, 2);
941 }
942 
__vgic_v3_read_apxr3(struct kvm_vcpu * vcpu,u32 vmcr,int rt)943 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
944 {
945 	__vgic_v3_read_apxrn(vcpu, rt, 3);
946 }
947 
__vgic_v3_write_apxr0(struct kvm_vcpu * vcpu,u32 vmcr,int rt)948 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
949 {
950 	__vgic_v3_write_apxrn(vcpu, rt, 0);
951 }
952 
__vgic_v3_write_apxr1(struct kvm_vcpu * vcpu,u32 vmcr,int rt)953 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
954 {
955 	__vgic_v3_write_apxrn(vcpu, rt, 1);
956 }
957 
__vgic_v3_write_apxr2(struct kvm_vcpu * vcpu,u32 vmcr,int rt)958 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
959 {
960 	__vgic_v3_write_apxrn(vcpu, rt, 2);
961 }
962 
__vgic_v3_write_apxr3(struct kvm_vcpu * vcpu,u32 vmcr,int rt)963 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
964 {
965 	__vgic_v3_write_apxrn(vcpu, rt, 3);
966 }
967 
__vgic_v3_read_hppir(struct kvm_vcpu * vcpu,u32 vmcr,int rt)968 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
969 {
970 	u64 lr_val;
971 	int lr, lr_grp, grp;
972 
973 	grp = __vgic_v3_get_group(vcpu);
974 
975 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
976 	if (lr == -1)
977 		goto spurious;
978 
979 	lr_grp = !!(lr_val & ICH_LR_GROUP);
980 	if (lr_grp != grp)
981 		lr_val = ICC_IAR1_EL1_SPURIOUS;
982 
983 spurious:
984 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
985 }
986 
__vgic_v3_read_pmr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)987 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
988 {
989 	vmcr &= ICH_VMCR_PMR_MASK;
990 	vmcr >>= ICH_VMCR_PMR_SHIFT;
991 	vcpu_set_reg(vcpu, rt, vmcr);
992 }
993 
__vgic_v3_write_pmr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)994 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
995 {
996 	u32 val = vcpu_get_reg(vcpu, rt);
997 
998 	val <<= ICH_VMCR_PMR_SHIFT;
999 	val &= ICH_VMCR_PMR_MASK;
1000 	vmcr &= ~ICH_VMCR_PMR_MASK;
1001 	vmcr |= val;
1002 
1003 	write_gicreg(vmcr, ICH_VMCR_EL2);
1004 }
1005 
__vgic_v3_read_rpr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1006 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1007 {
1008 	u32 val = __vgic_v3_get_highest_active_priority();
1009 	vcpu_set_reg(vcpu, rt, val);
1010 }
1011 
__vgic_v3_read_ctlr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1012 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1013 {
1014 	u32 vtr, val;
1015 
1016 	vtr = read_gicreg(ICH_VTR_EL2);
1017 	/* PRIbits */
1018 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
1019 	/* IDbits */
1020 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
1021 	/* A3V */
1022 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
1023 	/* EOImode */
1024 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
1025 	/* CBPR */
1026 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
1027 
1028 	vcpu_set_reg(vcpu, rt, val);
1029 }
1030 
__vgic_v3_write_ctlr(struct kvm_vcpu * vcpu,u32 vmcr,int rt)1031 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1032 {
1033 	u32 val = vcpu_get_reg(vcpu, rt);
1034 
1035 	if (val & ICC_CTLR_EL1_CBPR_MASK)
1036 		vmcr |= ICH_VMCR_CBPR_MASK;
1037 	else
1038 		vmcr &= ~ICH_VMCR_CBPR_MASK;
1039 
1040 	if (val & ICC_CTLR_EL1_EOImode_MASK)
1041 		vmcr |= ICH_VMCR_EOIM_MASK;
1042 	else
1043 		vmcr &= ~ICH_VMCR_EOIM_MASK;
1044 
1045 	write_gicreg(vmcr, ICH_VMCR_EL2);
1046 }
1047 
__vgic_v3_check_trap_forwarding(struct kvm_vcpu * vcpu,u32 sysreg,bool is_read)1048 static bool __vgic_v3_check_trap_forwarding(struct kvm_vcpu *vcpu,
1049 					    u32 sysreg, bool is_read)
1050 {
1051 	u64 ich_hcr;
1052 
1053 	if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
1054 		return false;
1055 
1056 	ich_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2);
1057 
1058 	switch (sysreg) {
1059 	case SYS_ICC_IGRPEN0_EL1:
1060 		if (is_read &&
1061 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1062 			return true;
1063 
1064 		if (!is_read &&
1065 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1066 			return true;
1067 
1068 		fallthrough;
1069 
1070 	case SYS_ICC_AP0Rn_EL1(0):
1071 	case SYS_ICC_AP0Rn_EL1(1):
1072 	case SYS_ICC_AP0Rn_EL1(2):
1073 	case SYS_ICC_AP0Rn_EL1(3):
1074 	case SYS_ICC_BPR0_EL1:
1075 	case SYS_ICC_EOIR0_EL1:
1076 	case SYS_ICC_HPPIR0_EL1:
1077 	case SYS_ICC_IAR0_EL1:
1078 		return ich_hcr & ICH_HCR_EL2_TALL0;
1079 
1080 	case SYS_ICC_IGRPEN1_EL1:
1081 		if (is_read &&
1082 		    (__vcpu_sys_reg(vcpu, HFGRTR_EL2) & HFGRTR_EL2_ICC_IGRPENn_EL1))
1083 			return true;
1084 
1085 		if (!is_read &&
1086 		    (__vcpu_sys_reg(vcpu, HFGWTR_EL2) & HFGWTR_EL2_ICC_IGRPENn_EL1))
1087 			return true;
1088 
1089 		fallthrough;
1090 
1091 	case SYS_ICC_AP1Rn_EL1(0):
1092 	case SYS_ICC_AP1Rn_EL1(1):
1093 	case SYS_ICC_AP1Rn_EL1(2):
1094 	case SYS_ICC_AP1Rn_EL1(3):
1095 	case SYS_ICC_BPR1_EL1:
1096 	case SYS_ICC_EOIR1_EL1:
1097 	case SYS_ICC_HPPIR1_EL1:
1098 	case SYS_ICC_IAR1_EL1:
1099 		return ich_hcr & ICH_HCR_EL2_TALL1;
1100 
1101 	case SYS_ICC_DIR_EL1:
1102 		if (ich_hcr & ICH_HCR_EL2_TDIR)
1103 			return true;
1104 
1105 		fallthrough;
1106 
1107 	case SYS_ICC_RPR_EL1:
1108 	case SYS_ICC_CTLR_EL1:
1109 	case SYS_ICC_PMR_EL1:
1110 		return ich_hcr & ICH_HCR_EL2_TC;
1111 
1112 	default:
1113 		return false;
1114 	}
1115 }
1116 
__vgic_v3_perform_cpuif_access(struct kvm_vcpu * vcpu)1117 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1118 {
1119 	int rt;
1120 	u64 esr;
1121 	u32 vmcr;
1122 	void (*fn)(struct kvm_vcpu *, u32, int);
1123 	bool is_read;
1124 	u32 sysreg;
1125 
1126 	if (kern_hyp_va(vcpu->kvm)->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
1127 		return 0;
1128 
1129 	esr = kvm_vcpu_get_esr(vcpu);
1130 	if (vcpu_mode_is_32bit(vcpu)) {
1131 		if (!kvm_condition_valid(vcpu)) {
1132 			__kvm_skip_instr(vcpu);
1133 			return 1;
1134 		}
1135 
1136 		sysreg = esr_cp15_to_sysreg(esr);
1137 	} else {
1138 		sysreg = esr_sys64_to_sysreg(esr);
1139 	}
1140 
1141 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1142 
1143 	if (__vgic_v3_check_trap_forwarding(vcpu, sysreg, is_read))
1144 		return 0;
1145 
1146 	switch (sysreg) {
1147 	case SYS_ICC_IAR0_EL1:
1148 	case SYS_ICC_IAR1_EL1:
1149 		if (unlikely(!is_read))
1150 			return 0;
1151 		fn = __vgic_v3_read_iar;
1152 		break;
1153 	case SYS_ICC_EOIR0_EL1:
1154 	case SYS_ICC_EOIR1_EL1:
1155 		if (unlikely(is_read))
1156 			return 0;
1157 		fn = __vgic_v3_write_eoir;
1158 		break;
1159 	case SYS_ICC_IGRPEN1_EL1:
1160 		if (is_read)
1161 			fn = __vgic_v3_read_igrpen1;
1162 		else
1163 			fn = __vgic_v3_write_igrpen1;
1164 		break;
1165 	case SYS_ICC_BPR1_EL1:
1166 		if (is_read)
1167 			fn = __vgic_v3_read_bpr1;
1168 		else
1169 			fn = __vgic_v3_write_bpr1;
1170 		break;
1171 	case SYS_ICC_AP0Rn_EL1(0):
1172 	case SYS_ICC_AP1Rn_EL1(0):
1173 		if (is_read)
1174 			fn = __vgic_v3_read_apxr0;
1175 		else
1176 			fn = __vgic_v3_write_apxr0;
1177 		break;
1178 	case SYS_ICC_AP0Rn_EL1(1):
1179 	case SYS_ICC_AP1Rn_EL1(1):
1180 		if (is_read)
1181 			fn = __vgic_v3_read_apxr1;
1182 		else
1183 			fn = __vgic_v3_write_apxr1;
1184 		break;
1185 	case SYS_ICC_AP0Rn_EL1(2):
1186 	case SYS_ICC_AP1Rn_EL1(2):
1187 		if (is_read)
1188 			fn = __vgic_v3_read_apxr2;
1189 		else
1190 			fn = __vgic_v3_write_apxr2;
1191 		break;
1192 	case SYS_ICC_AP0Rn_EL1(3):
1193 	case SYS_ICC_AP1Rn_EL1(3):
1194 		if (is_read)
1195 			fn = __vgic_v3_read_apxr3;
1196 		else
1197 			fn = __vgic_v3_write_apxr3;
1198 		break;
1199 	case SYS_ICC_HPPIR0_EL1:
1200 	case SYS_ICC_HPPIR1_EL1:
1201 		if (unlikely(!is_read))
1202 			return 0;
1203 		fn = __vgic_v3_read_hppir;
1204 		break;
1205 	case SYS_ICC_IGRPEN0_EL1:
1206 		if (is_read)
1207 			fn = __vgic_v3_read_igrpen0;
1208 		else
1209 			fn = __vgic_v3_write_igrpen0;
1210 		break;
1211 	case SYS_ICC_BPR0_EL1:
1212 		if (is_read)
1213 			fn = __vgic_v3_read_bpr0;
1214 		else
1215 			fn = __vgic_v3_write_bpr0;
1216 		break;
1217 	case SYS_ICC_DIR_EL1:
1218 		if (unlikely(is_read))
1219 			return 0;
1220 		fn = __vgic_v3_write_dir;
1221 		break;
1222 	case SYS_ICC_RPR_EL1:
1223 		if (unlikely(!is_read))
1224 			return 0;
1225 		fn = __vgic_v3_read_rpr;
1226 		break;
1227 	case SYS_ICC_CTLR_EL1:
1228 		if (is_read)
1229 			fn = __vgic_v3_read_ctlr;
1230 		else
1231 			fn = __vgic_v3_write_ctlr;
1232 		break;
1233 	case SYS_ICC_PMR_EL1:
1234 		if (is_read)
1235 			fn = __vgic_v3_read_pmr;
1236 		else
1237 			fn = __vgic_v3_write_pmr;
1238 		break;
1239 	default:
1240 		return 0;
1241 	}
1242 
1243 	vmcr = __vgic_v3_read_vmcr();
1244 	rt = kvm_vcpu_sys_get_rt(vcpu);
1245 	fn(vcpu, vmcr, rt);
1246 
1247 	__kvm_skip_instr(vcpu);
1248 
1249 	return 1;
1250 }
1251