xref: /linux/net/socket.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * NET		An implementation of the SOCKET network access protocol.
4   *
5   * Version:	@(#)socket.c	1.1.93	18/02/95
6   *
7   * Authors:	Orest Zborowski, <obz@Kodak.COM>
8   *		Ross Biro
9   *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10   *
11   * Fixes:
12   *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13   *					shutdown()
14   *		Alan Cox	:	verify_area() fixes
15   *		Alan Cox	:	Removed DDI
16   *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17   *		Alan Cox	:	Moved a load of checks to the very
18   *					top level.
19   *		Alan Cox	:	Move address structures to/from user
20   *					mode above the protocol layers.
21   *		Rob Janssen	:	Allow 0 length sends.
22   *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23   *					tty drivers).
24   *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25   *		Jeff Uphoff	:	Made max number of sockets command-line
26   *					configurable.
27   *		Matti Aarnio	:	Made the number of sockets dynamic,
28   *					to be allocated when needed, and mr.
29   *					Uphoff's max is used as max to be
30   *					allowed to allocate.
31   *		Linus		:	Argh. removed all the socket allocation
32   *					altogether: it's in the inode now.
33   *		Alan Cox	:	Made sock_alloc()/sock_release() public
34   *					for NetROM and future kernel nfsd type
35   *					stuff.
36   *		Alan Cox	:	sendmsg/recvmsg basics.
37   *		Tom Dyas	:	Export net symbols.
38   *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39   *		Alan Cox	:	Added thread locking to sys_* calls
40   *					for sockets. May have errors at the
41   *					moment.
42   *		Kevin Buhr	:	Fixed the dumb errors in the above.
43   *		Andi Kleen	:	Some small cleanups, optimizations,
44   *					and fixed a copy_from_user() bug.
45   *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46   *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47   *					protocol-independent
48   *
49   *	This module is effectively the top level interface to the BSD socket
50   *	paradigm.
51   *
52   *	Based upon Swansea University Computer Society NET3.039
53   */
54  
55  #include <linux/bpf-cgroup.h>
56  #include <linux/ethtool.h>
57  #include <linux/mm.h>
58  #include <linux/socket.h>
59  #include <linux/file.h>
60  #include <linux/splice.h>
61  #include <linux/net.h>
62  #include <linux/interrupt.h>
63  #include <linux/thread_info.h>
64  #include <linux/rcupdate.h>
65  #include <linux/netdevice.h>
66  #include <linux/proc_fs.h>
67  #include <linux/seq_file.h>
68  #include <linux/mutex.h>
69  #include <linux/if_bridge.h>
70  #include <linux/if_vlan.h>
71  #include <linux/ptp_classify.h>
72  #include <linux/init.h>
73  #include <linux/poll.h>
74  #include <linux/cache.h>
75  #include <linux/module.h>
76  #include <linux/highmem.h>
77  #include <linux/mount.h>
78  #include <linux/pseudo_fs.h>
79  #include <linux/security.h>
80  #include <linux/syscalls.h>
81  #include <linux/compat.h>
82  #include <linux/kmod.h>
83  #include <linux/audit.h>
84  #include <linux/wireless.h>
85  #include <linux/nsproxy.h>
86  #include <linux/magic.h>
87  #include <linux/slab.h>
88  #include <linux/xattr.h>
89  #include <linux/nospec.h>
90  #include <linux/indirect_call_wrapper.h>
91  #include <linux/io_uring/net.h>
92  
93  #include <linux/uaccess.h>
94  #include <asm/unistd.h>
95  
96  #include <net/compat.h>
97  #include <net/wext.h>
98  #include <net/cls_cgroup.h>
99  
100  #include <net/sock.h>
101  #include <linux/netfilter.h>
102  
103  #include <linux/if_tun.h>
104  #include <linux/ipv6_route.h>
105  #include <linux/route.h>
106  #include <linux/termios.h>
107  #include <linux/sockios.h>
108  #include <net/busy_poll.h>
109  #include <linux/errqueue.h>
110  #include <linux/ptp_clock_kernel.h>
111  #include <trace/events/sock.h>
112  
113  #include "core/dev.h"
114  
115  #ifdef CONFIG_NET_RX_BUSY_POLL
116  unsigned int sysctl_net_busy_read __read_mostly;
117  unsigned int sysctl_net_busy_poll __read_mostly;
118  #endif
119  
120  static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121  static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122  static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123  
124  static int sock_close(struct inode *inode, struct file *file);
125  static __poll_t sock_poll(struct file *file,
126  			      struct poll_table_struct *wait);
127  static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128  #ifdef CONFIG_COMPAT
129  static long compat_sock_ioctl(struct file *file,
130  			      unsigned int cmd, unsigned long arg);
131  #endif
132  static int sock_fasync(int fd, struct file *filp, int on);
133  static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134  				struct pipe_inode_info *pipe, size_t len,
135  				unsigned int flags);
136  static void sock_splice_eof(struct file *file);
137  
138  #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139  static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140  {
141  	struct socket *sock = f->private_data;
142  	const struct proto_ops *ops = READ_ONCE(sock->ops);
143  
144  	if (ops->show_fdinfo)
145  		ops->show_fdinfo(m, sock);
146  }
147  #else
148  #define sock_show_fdinfo NULL
149  #endif
150  
151  /*
152   *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153   *	in the operation structures but are done directly via the socketcall() multiplexor.
154   */
155  
156  static const struct file_operations socket_file_ops = {
157  	.owner =	THIS_MODULE,
158  	.read_iter =	sock_read_iter,
159  	.write_iter =	sock_write_iter,
160  	.poll =		sock_poll,
161  	.unlocked_ioctl = sock_ioctl,
162  #ifdef CONFIG_COMPAT
163  	.compat_ioctl = compat_sock_ioctl,
164  #endif
165  	.uring_cmd =    io_uring_cmd_sock,
166  	.mmap =		sock_mmap,
167  	.release =	sock_close,
168  	.fasync =	sock_fasync,
169  	.splice_write = splice_to_socket,
170  	.splice_read =	sock_splice_read,
171  	.splice_eof =	sock_splice_eof,
172  	.show_fdinfo =	sock_show_fdinfo,
173  };
174  
175  static const char * const pf_family_names[] = {
176  	[PF_UNSPEC]	= "PF_UNSPEC",
177  	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178  	[PF_INET]	= "PF_INET",
179  	[PF_AX25]	= "PF_AX25",
180  	[PF_IPX]	= "PF_IPX",
181  	[PF_APPLETALK]	= "PF_APPLETALK",
182  	[PF_NETROM]	= "PF_NETROM",
183  	[PF_BRIDGE]	= "PF_BRIDGE",
184  	[PF_ATMPVC]	= "PF_ATMPVC",
185  	[PF_X25]	= "PF_X25",
186  	[PF_INET6]	= "PF_INET6",
187  	[PF_ROSE]	= "PF_ROSE",
188  	[PF_DECnet]	= "PF_DECnet",
189  	[PF_NETBEUI]	= "PF_NETBEUI",
190  	[PF_SECURITY]	= "PF_SECURITY",
191  	[PF_KEY]	= "PF_KEY",
192  	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193  	[PF_PACKET]	= "PF_PACKET",
194  	[PF_ASH]	= "PF_ASH",
195  	[PF_ECONET]	= "PF_ECONET",
196  	[PF_ATMSVC]	= "PF_ATMSVC",
197  	[PF_RDS]	= "PF_RDS",
198  	[PF_SNA]	= "PF_SNA",
199  	[PF_IRDA]	= "PF_IRDA",
200  	[PF_PPPOX]	= "PF_PPPOX",
201  	[PF_WANPIPE]	= "PF_WANPIPE",
202  	[PF_LLC]	= "PF_LLC",
203  	[PF_IB]		= "PF_IB",
204  	[PF_MPLS]	= "PF_MPLS",
205  	[PF_CAN]	= "PF_CAN",
206  	[PF_TIPC]	= "PF_TIPC",
207  	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208  	[PF_IUCV]	= "PF_IUCV",
209  	[PF_RXRPC]	= "PF_RXRPC",
210  	[PF_ISDN]	= "PF_ISDN",
211  	[PF_PHONET]	= "PF_PHONET",
212  	[PF_IEEE802154]	= "PF_IEEE802154",
213  	[PF_CAIF]	= "PF_CAIF",
214  	[PF_ALG]	= "PF_ALG",
215  	[PF_NFC]	= "PF_NFC",
216  	[PF_VSOCK]	= "PF_VSOCK",
217  	[PF_KCM]	= "PF_KCM",
218  	[PF_QIPCRTR]	= "PF_QIPCRTR",
219  	[PF_SMC]	= "PF_SMC",
220  	[PF_XDP]	= "PF_XDP",
221  	[PF_MCTP]	= "PF_MCTP",
222  };
223  
224  /*
225   *	The protocol list. Each protocol is registered in here.
226   */
227  
228  static DEFINE_SPINLOCK(net_family_lock);
229  static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230  
231  /*
232   * Support routines.
233   * Move socket addresses back and forth across the kernel/user
234   * divide and look after the messy bits.
235   */
236  
237  /**
238   *	move_addr_to_kernel	-	copy a socket address into kernel space
239   *	@uaddr: Address in user space
240   *	@kaddr: Address in kernel space
241   *	@ulen: Length in user space
242   *
243   *	The address is copied into kernel space. If the provided address is
244   *	too long an error code of -EINVAL is returned. If the copy gives
245   *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246   */
247  
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248  int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249  {
250  	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251  		return -EINVAL;
252  	if (ulen == 0)
253  		return 0;
254  	if (copy_from_user(kaddr, uaddr, ulen))
255  		return -EFAULT;
256  	return audit_sockaddr(ulen, kaddr);
257  }
258  
259  /**
260   *	move_addr_to_user	-	copy an address to user space
261   *	@kaddr: kernel space address
262   *	@klen: length of address in kernel
263   *	@uaddr: user space address
264   *	@ulen: pointer to user length field
265   *
266   *	The value pointed to by ulen on entry is the buffer length available.
267   *	This is overwritten with the buffer space used. -EINVAL is returned
268   *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269   *	is returned if either the buffer or the length field are not
270   *	accessible.
271   *	After copying the data up to the limit the user specifies, the true
272   *	length of the data is written over the length limit the user
273   *	specified. Zero is returned for a success.
274   */
275  
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276  static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277  			     void __user *uaddr, int __user *ulen)
278  {
279  	int err;
280  	int len;
281  
282  	BUG_ON(klen > sizeof(struct sockaddr_storage));
283  	err = get_user(len, ulen);
284  	if (err)
285  		return err;
286  	if (len > klen)
287  		len = klen;
288  	if (len < 0)
289  		return -EINVAL;
290  	if (len) {
291  		if (audit_sockaddr(klen, kaddr))
292  			return -ENOMEM;
293  		if (copy_to_user(uaddr, kaddr, len))
294  			return -EFAULT;
295  	}
296  	/*
297  	 *      "fromlen shall refer to the value before truncation.."
298  	 *                      1003.1g
299  	 */
300  	return __put_user(klen, ulen);
301  }
302  
303  static struct kmem_cache *sock_inode_cachep __ro_after_init;
304  
sock_alloc_inode(struct super_block * sb)305  static struct inode *sock_alloc_inode(struct super_block *sb)
306  {
307  	struct socket_alloc *ei;
308  
309  	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310  	if (!ei)
311  		return NULL;
312  	init_waitqueue_head(&ei->socket.wq.wait);
313  	ei->socket.wq.fasync_list = NULL;
314  	ei->socket.wq.flags = 0;
315  
316  	ei->socket.state = SS_UNCONNECTED;
317  	ei->socket.flags = 0;
318  	ei->socket.ops = NULL;
319  	ei->socket.sk = NULL;
320  	ei->socket.file = NULL;
321  
322  	return &ei->vfs_inode;
323  }
324  
sock_free_inode(struct inode * inode)325  static void sock_free_inode(struct inode *inode)
326  {
327  	struct socket_alloc *ei;
328  
329  	ei = container_of(inode, struct socket_alloc, vfs_inode);
330  	kmem_cache_free(sock_inode_cachep, ei);
331  }
332  
init_once(void * foo)333  static void init_once(void *foo)
334  {
335  	struct socket_alloc *ei = (struct socket_alloc *)foo;
336  
337  	inode_init_once(&ei->vfs_inode);
338  }
339  
init_inodecache(void)340  static void init_inodecache(void)
341  {
342  	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343  					      sizeof(struct socket_alloc),
344  					      0,
345  					      (SLAB_HWCACHE_ALIGN |
346  					       SLAB_RECLAIM_ACCOUNT |
347  					       SLAB_ACCOUNT),
348  					      init_once);
349  	BUG_ON(sock_inode_cachep == NULL);
350  }
351  
352  static const struct super_operations sockfs_ops = {
353  	.alloc_inode	= sock_alloc_inode,
354  	.free_inode	= sock_free_inode,
355  	.statfs		= simple_statfs,
356  };
357  
358  /*
359   * sockfs_dname() is called from d_path().
360   */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361  static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362  {
363  	return dynamic_dname(buffer, buflen, "socket:[%lu]",
364  				d_inode(dentry)->i_ino);
365  }
366  
367  static const struct dentry_operations sockfs_dentry_operations = {
368  	.d_dname  = sockfs_dname,
369  };
370  
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371  static int sockfs_xattr_get(const struct xattr_handler *handler,
372  			    struct dentry *dentry, struct inode *inode,
373  			    const char *suffix, void *value, size_t size)
374  {
375  	if (value) {
376  		if (dentry->d_name.len + 1 > size)
377  			return -ERANGE;
378  		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379  	}
380  	return dentry->d_name.len + 1;
381  }
382  
383  #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384  #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385  #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386  
387  static const struct xattr_handler sockfs_xattr_handler = {
388  	.name = XATTR_NAME_SOCKPROTONAME,
389  	.get = sockfs_xattr_get,
390  };
391  
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392  static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393  				     struct mnt_idmap *idmap,
394  				     struct dentry *dentry, struct inode *inode,
395  				     const char *suffix, const void *value,
396  				     size_t size, int flags)
397  {
398  	/* Handled by LSM. */
399  	return -EAGAIN;
400  }
401  
402  static const struct xattr_handler sockfs_security_xattr_handler = {
403  	.prefix = XATTR_SECURITY_PREFIX,
404  	.set = sockfs_security_xattr_set,
405  };
406  
407  static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408  	&sockfs_xattr_handler,
409  	&sockfs_security_xattr_handler,
410  	NULL
411  };
412  
sockfs_init_fs_context(struct fs_context * fc)413  static int sockfs_init_fs_context(struct fs_context *fc)
414  {
415  	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416  	if (!ctx)
417  		return -ENOMEM;
418  	ctx->ops = &sockfs_ops;
419  	ctx->dops = &sockfs_dentry_operations;
420  	ctx->xattr = sockfs_xattr_handlers;
421  	return 0;
422  }
423  
424  static struct vfsmount *sock_mnt __read_mostly;
425  
426  static struct file_system_type sock_fs_type = {
427  	.name =		"sockfs",
428  	.init_fs_context = sockfs_init_fs_context,
429  	.kill_sb =	kill_anon_super,
430  };
431  
432  /*
433   *	Obtains the first available file descriptor and sets it up for use.
434   *
435   *	These functions create file structures and maps them to fd space
436   *	of the current process. On success it returns file descriptor
437   *	and file struct implicitly stored in sock->file.
438   *	Note that another thread may close file descriptor before we return
439   *	from this function. We use the fact that now we do not refer
440   *	to socket after mapping. If one day we will need it, this
441   *	function will increment ref. count on file by 1.
442   *
443   *	In any case returned fd MAY BE not valid!
444   *	This race condition is unavoidable
445   *	with shared fd spaces, we cannot solve it inside kernel,
446   *	but we take care of internal coherence yet.
447   */
448  
449  /**
450   *	sock_alloc_file - Bind a &socket to a &file
451   *	@sock: socket
452   *	@flags: file status flags
453   *	@dname: protocol name
454   *
455   *	Returns the &file bound with @sock, implicitly storing it
456   *	in sock->file. If dname is %NULL, sets to "".
457   *
458   *	On failure @sock is released, and an ERR pointer is returned.
459   *
460   *	This function uses GFP_KERNEL internally.
461   */
462  
sock_alloc_file(struct socket * sock,int flags,const char * dname)463  struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464  {
465  	struct file *file;
466  
467  	if (!dname)
468  		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469  
470  	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471  				O_RDWR | (flags & O_NONBLOCK),
472  				&socket_file_ops);
473  	if (IS_ERR(file)) {
474  		sock_release(sock);
475  		return file;
476  	}
477  
478  	file->f_mode |= FMODE_NOWAIT;
479  	sock->file = file;
480  	file->private_data = sock;
481  	stream_open(SOCK_INODE(sock), file);
482  	/*
483  	 * Disable permission and pre-content events, but enable legacy
484  	 * inotify events for legacy users.
485  	 */
486  	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487  	return file;
488  }
489  EXPORT_SYMBOL(sock_alloc_file);
490  
sock_map_fd(struct socket * sock,int flags)491  static int sock_map_fd(struct socket *sock, int flags)
492  {
493  	struct file *newfile;
494  	int fd = get_unused_fd_flags(flags);
495  	if (unlikely(fd < 0)) {
496  		sock_release(sock);
497  		return fd;
498  	}
499  
500  	newfile = sock_alloc_file(sock, flags, NULL);
501  	if (!IS_ERR(newfile)) {
502  		fd_install(fd, newfile);
503  		return fd;
504  	}
505  
506  	put_unused_fd(fd);
507  	return PTR_ERR(newfile);
508  }
509  
510  /**
511   *	sock_from_file - Return the &socket bounded to @file.
512   *	@file: file
513   *
514   *	On failure returns %NULL.
515   */
516  
sock_from_file(struct file * file)517  struct socket *sock_from_file(struct file *file)
518  {
519  	if (likely(file->f_op == &socket_file_ops))
520  		return file->private_data;	/* set in sock_alloc_file */
521  
522  	return NULL;
523  }
524  EXPORT_SYMBOL(sock_from_file);
525  
526  /**
527   *	sockfd_lookup - Go from a file number to its socket slot
528   *	@fd: file handle
529   *	@err: pointer to an error code return
530   *
531   *	The file handle passed in is locked and the socket it is bound
532   *	to is returned. If an error occurs the err pointer is overwritten
533   *	with a negative errno code and NULL is returned. The function checks
534   *	for both invalid handles and passing a handle which is not a socket.
535   *
536   *	On a success the socket object pointer is returned.
537   */
538  
sockfd_lookup(int fd,int * err)539  struct socket *sockfd_lookup(int fd, int *err)
540  {
541  	struct file *file;
542  	struct socket *sock;
543  
544  	file = fget(fd);
545  	if (!file) {
546  		*err = -EBADF;
547  		return NULL;
548  	}
549  
550  	sock = sock_from_file(file);
551  	if (!sock) {
552  		*err = -ENOTSOCK;
553  		fput(file);
554  	}
555  	return sock;
556  }
557  EXPORT_SYMBOL(sockfd_lookup);
558  
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559  static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560  				size_t size)
561  {
562  	ssize_t len;
563  	ssize_t used = 0;
564  
565  	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566  	if (len < 0)
567  		return len;
568  	used += len;
569  	if (buffer) {
570  		if (size < used)
571  			return -ERANGE;
572  		buffer += len;
573  	}
574  
575  	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576  	used += len;
577  	if (buffer) {
578  		if (size < used)
579  			return -ERANGE;
580  		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581  		buffer += len;
582  	}
583  
584  	return used;
585  }
586  
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587  static int sockfs_setattr(struct mnt_idmap *idmap,
588  			  struct dentry *dentry, struct iattr *iattr)
589  {
590  	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591  
592  	if (!err && (iattr->ia_valid & ATTR_UID)) {
593  		struct socket *sock = SOCKET_I(d_inode(dentry));
594  
595  		if (sock->sk)
596  			sock->sk->sk_uid = iattr->ia_uid;
597  		else
598  			err = -ENOENT;
599  	}
600  
601  	return err;
602  }
603  
604  static const struct inode_operations sockfs_inode_ops = {
605  	.listxattr = sockfs_listxattr,
606  	.setattr = sockfs_setattr,
607  };
608  
609  /**
610   *	sock_alloc - allocate a socket
611   *
612   *	Allocate a new inode and socket object. The two are bound together
613   *	and initialised. The socket is then returned. If we are out of inodes
614   *	NULL is returned. This functions uses GFP_KERNEL internally.
615   */
616  
sock_alloc(void)617  struct socket *sock_alloc(void)
618  {
619  	struct inode *inode;
620  	struct socket *sock;
621  
622  	inode = new_inode_pseudo(sock_mnt->mnt_sb);
623  	if (!inode)
624  		return NULL;
625  
626  	sock = SOCKET_I(inode);
627  
628  	inode->i_ino = get_next_ino();
629  	inode->i_mode = S_IFSOCK | S_IRWXUGO;
630  	inode->i_uid = current_fsuid();
631  	inode->i_gid = current_fsgid();
632  	inode->i_op = &sockfs_inode_ops;
633  
634  	return sock;
635  }
636  EXPORT_SYMBOL(sock_alloc);
637  
__sock_release(struct socket * sock,struct inode * inode)638  static void __sock_release(struct socket *sock, struct inode *inode)
639  {
640  	const struct proto_ops *ops = READ_ONCE(sock->ops);
641  
642  	if (ops) {
643  		struct module *owner = ops->owner;
644  
645  		if (inode)
646  			inode_lock(inode);
647  		ops->release(sock);
648  		sock->sk = NULL;
649  		if (inode)
650  			inode_unlock(inode);
651  		sock->ops = NULL;
652  		module_put(owner);
653  	}
654  
655  	if (sock->wq.fasync_list)
656  		pr_err("%s: fasync list not empty!\n", __func__);
657  
658  	if (!sock->file) {
659  		iput(SOCK_INODE(sock));
660  		return;
661  	}
662  	sock->file = NULL;
663  }
664  
665  /**
666   *	sock_release - close a socket
667   *	@sock: socket to close
668   *
669   *	The socket is released from the protocol stack if it has a release
670   *	callback, and the inode is then released if the socket is bound to
671   *	an inode not a file.
672   */
sock_release(struct socket * sock)673  void sock_release(struct socket *sock)
674  {
675  	__sock_release(sock, NULL);
676  }
677  EXPORT_SYMBOL(sock_release);
678  
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679  void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680  {
681  	u8 flags = *tx_flags;
682  
683  	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
684  		flags |= SKBTX_HW_TSTAMP_NOBPF;
685  
686  	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
687  		flags |= SKBTX_SW_TSTAMP;
688  
689  	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
690  		flags |= SKBTX_SCHED_TSTAMP;
691  
692  	if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION)
693  		flags |= SKBTX_COMPLETION_TSTAMP;
694  
695  	*tx_flags = flags;
696  }
697  EXPORT_SYMBOL(__sock_tx_timestamp);
698  
699  INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
700  					   size_t));
701  INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
702  					    size_t));
703  
call_trace_sock_send_length(struct sock * sk,int ret,int flags)704  static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
705  						 int flags)
706  {
707  	trace_sock_send_length(sk, ret, 0);
708  }
709  
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)710  static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
711  {
712  	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
713  				     inet_sendmsg, sock, msg,
714  				     msg_data_left(msg));
715  	BUG_ON(ret == -EIOCBQUEUED);
716  
717  	if (trace_sock_send_length_enabled())
718  		call_trace_sock_send_length(sock->sk, ret, 0);
719  	return ret;
720  }
721  
__sock_sendmsg(struct socket * sock,struct msghdr * msg)722  static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
723  {
724  	int err = security_socket_sendmsg(sock, msg,
725  					  msg_data_left(msg));
726  
727  	return err ?: sock_sendmsg_nosec(sock, msg);
728  }
729  
730  /**
731   *	sock_sendmsg - send a message through @sock
732   *	@sock: socket
733   *	@msg: message to send
734   *
735   *	Sends @msg through @sock, passing through LSM.
736   *	Returns the number of bytes sent, or an error code.
737   */
sock_sendmsg(struct socket * sock,struct msghdr * msg)738  int sock_sendmsg(struct socket *sock, struct msghdr *msg)
739  {
740  	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
741  	struct sockaddr_storage address;
742  	int save_len = msg->msg_namelen;
743  	int ret;
744  
745  	if (msg->msg_name) {
746  		memcpy(&address, msg->msg_name, msg->msg_namelen);
747  		msg->msg_name = &address;
748  	}
749  
750  	ret = __sock_sendmsg(sock, msg);
751  	msg->msg_name = save_addr;
752  	msg->msg_namelen = save_len;
753  
754  	return ret;
755  }
756  EXPORT_SYMBOL(sock_sendmsg);
757  
758  /**
759   *	kernel_sendmsg - send a message through @sock (kernel-space)
760   *	@sock: socket
761   *	@msg: message header
762   *	@vec: kernel vec
763   *	@num: vec array length
764   *	@size: total message data size
765   *
766   *	Builds the message data with @vec and sends it through @sock.
767   *	Returns the number of bytes sent, or an error code.
768   */
769  
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)770  int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
771  		   struct kvec *vec, size_t num, size_t size)
772  {
773  	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
774  	return sock_sendmsg(sock, msg);
775  }
776  EXPORT_SYMBOL(kernel_sendmsg);
777  
skb_is_err_queue(const struct sk_buff * skb)778  static bool skb_is_err_queue(const struct sk_buff *skb)
779  {
780  	/* pkt_type of skbs enqueued on the error queue are set to
781  	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
782  	 * in recvmsg, since skbs received on a local socket will never
783  	 * have a pkt_type of PACKET_OUTGOING.
784  	 */
785  	return skb->pkt_type == PACKET_OUTGOING;
786  }
787  
788  /* On transmit, software and hardware timestamps are returned independently.
789   * As the two skb clones share the hardware timestamp, which may be updated
790   * before the software timestamp is received, a hardware TX timestamp may be
791   * returned only if there is no software TX timestamp. Ignore false software
792   * timestamps, which may be made in the __sock_recv_timestamp() call when the
793   * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
794   * hardware timestamp.
795   */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)796  static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
797  {
798  	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
799  }
800  
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)801  static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
802  {
803  	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
804  	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
805  	struct net_device *orig_dev;
806  	ktime_t hwtstamp;
807  
808  	rcu_read_lock();
809  	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
810  	if (orig_dev) {
811  		*if_index = orig_dev->ifindex;
812  		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
813  	} else {
814  		hwtstamp = shhwtstamps->hwtstamp;
815  	}
816  	rcu_read_unlock();
817  
818  	return hwtstamp;
819  }
820  
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)821  static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
822  			   int if_index)
823  {
824  	struct scm_ts_pktinfo ts_pktinfo;
825  	struct net_device *orig_dev;
826  
827  	if (!skb_mac_header_was_set(skb))
828  		return;
829  
830  	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
831  
832  	if (!if_index) {
833  		rcu_read_lock();
834  		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
835  		if (orig_dev)
836  			if_index = orig_dev->ifindex;
837  		rcu_read_unlock();
838  	}
839  	ts_pktinfo.if_index = if_index;
840  
841  	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
842  	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
843  		 sizeof(ts_pktinfo), &ts_pktinfo);
844  }
845  
846  /*
847   * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
848   */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)849  void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
850  	struct sk_buff *skb)
851  {
852  	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
853  	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
854  	struct scm_timestamping_internal tss;
855  	int empty = 1, false_tstamp = 0;
856  	struct skb_shared_hwtstamps *shhwtstamps =
857  		skb_hwtstamps(skb);
858  	int if_index;
859  	ktime_t hwtstamp;
860  	u32 tsflags;
861  
862  	/* Race occurred between timestamp enabling and packet
863  	   receiving.  Fill in the current time for now. */
864  	if (need_software_tstamp && skb->tstamp == 0) {
865  		__net_timestamp(skb);
866  		false_tstamp = 1;
867  	}
868  
869  	if (need_software_tstamp) {
870  		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
871  			if (new_tstamp) {
872  				struct __kernel_sock_timeval tv;
873  
874  				skb_get_new_timestamp(skb, &tv);
875  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
876  					 sizeof(tv), &tv);
877  			} else {
878  				struct __kernel_old_timeval tv;
879  
880  				skb_get_timestamp(skb, &tv);
881  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
882  					 sizeof(tv), &tv);
883  			}
884  		} else {
885  			if (new_tstamp) {
886  				struct __kernel_timespec ts;
887  
888  				skb_get_new_timestampns(skb, &ts);
889  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
890  					 sizeof(ts), &ts);
891  			} else {
892  				struct __kernel_old_timespec ts;
893  
894  				skb_get_timestampns(skb, &ts);
895  				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
896  					 sizeof(ts), &ts);
897  			}
898  		}
899  	}
900  
901  	memset(&tss, 0, sizeof(tss));
902  	tsflags = READ_ONCE(sk->sk_tsflags);
903  	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
904  	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
905  	      skb_is_err_queue(skb) ||
906  	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
907  	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
908  		empty = 0;
909  	if (shhwtstamps &&
910  	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
911  	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
912  	      skb_is_err_queue(skb) ||
913  	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
914  	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
915  		if_index = 0;
916  		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917  			hwtstamp = get_timestamp(sk, skb, &if_index);
918  		else
919  			hwtstamp = shhwtstamps->hwtstamp;
920  
921  		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
922  			hwtstamp = ptp_convert_timestamp(&hwtstamp,
923  							 READ_ONCE(sk->sk_bind_phc));
924  
925  		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
926  			empty = 0;
927  
928  			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929  			    !skb_is_err_queue(skb))
930  				put_ts_pktinfo(msg, skb, if_index);
931  		}
932  	}
933  	if (!empty) {
934  		if (sock_flag(sk, SOCK_TSTAMP_NEW))
935  			put_cmsg_scm_timestamping64(msg, &tss);
936  		else
937  			put_cmsg_scm_timestamping(msg, &tss);
938  
939  		if (skb_is_err_queue(skb) && skb->len &&
940  		    SKB_EXT_ERR(skb)->opt_stats)
941  			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942  				 skb->len, skb->data);
943  	}
944  }
945  EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
946  
947  #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)948  void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
949  	struct sk_buff *skb)
950  {
951  	int ack;
952  
953  	if (!sock_flag(sk, SOCK_WIFI_STATUS))
954  		return;
955  	if (!skb->wifi_acked_valid)
956  		return;
957  
958  	ack = skb->wifi_acked;
959  
960  	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
961  }
962  EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
963  #endif
964  
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)965  static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
966  				   struct sk_buff *skb)
967  {
968  	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
969  		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
970  			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
971  }
972  
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)973  static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
974  			   struct sk_buff *skb)
975  {
976  	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
977  		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
978  		__u32 mark = skb->mark;
979  
980  		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
981  	}
982  }
983  
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)984  static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
985  			       struct sk_buff *skb)
986  {
987  	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
988  		__u32 priority = skb->priority;
989  
990  		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
991  	}
992  }
993  
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)994  void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
995  		       struct sk_buff *skb)
996  {
997  	sock_recv_timestamp(msg, sk, skb);
998  	sock_recv_drops(msg, sk, skb);
999  	sock_recv_mark(msg, sk, skb);
1000  	sock_recv_priority(msg, sk, skb);
1001  }
1002  EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1003  
1004  INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1005  					   size_t, int));
1006  INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1007  					    size_t, int));
1008  
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1009  static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1010  {
1011  	trace_sock_recv_length(sk, ret, flags);
1012  }
1013  
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1014  static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1015  				     int flags)
1016  {
1017  	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1018  				     inet6_recvmsg,
1019  				     inet_recvmsg, sock, msg,
1020  				     msg_data_left(msg), flags);
1021  	if (trace_sock_recv_length_enabled())
1022  		call_trace_sock_recv_length(sock->sk, ret, flags);
1023  	return ret;
1024  }
1025  
1026  /**
1027   *	sock_recvmsg - receive a message from @sock
1028   *	@sock: socket
1029   *	@msg: message to receive
1030   *	@flags: message flags
1031   *
1032   *	Receives @msg from @sock, passing through LSM. Returns the total number
1033   *	of bytes received, or an error.
1034   */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1035  int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1036  {
1037  	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1038  
1039  	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1040  }
1041  EXPORT_SYMBOL(sock_recvmsg);
1042  
1043  /**
1044   *	kernel_recvmsg - Receive a message from a socket (kernel space)
1045   *	@sock: The socket to receive the message from
1046   *	@msg: Received message
1047   *	@vec: Input s/g array for message data
1048   *	@num: Size of input s/g array
1049   *	@size: Number of bytes to read
1050   *	@flags: Message flags (MSG_DONTWAIT, etc...)
1051   *
1052   *	On return the msg structure contains the scatter/gather array passed in the
1053   *	vec argument. The array is modified so that it consists of the unfilled
1054   *	portion of the original array.
1055   *
1056   *	The returned value is the total number of bytes received, or an error.
1057   */
1058  
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1059  int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1060  		   struct kvec *vec, size_t num, size_t size, int flags)
1061  {
1062  	msg->msg_control_is_user = false;
1063  	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1064  	return sock_recvmsg(sock, msg, flags);
1065  }
1066  EXPORT_SYMBOL(kernel_recvmsg);
1067  
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1068  static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1069  				struct pipe_inode_info *pipe, size_t len,
1070  				unsigned int flags)
1071  {
1072  	struct socket *sock = file->private_data;
1073  	const struct proto_ops *ops;
1074  
1075  	ops = READ_ONCE(sock->ops);
1076  	if (unlikely(!ops->splice_read))
1077  		return copy_splice_read(file, ppos, pipe, len, flags);
1078  
1079  	return ops->splice_read(sock, ppos, pipe, len, flags);
1080  }
1081  
sock_splice_eof(struct file * file)1082  static void sock_splice_eof(struct file *file)
1083  {
1084  	struct socket *sock = file->private_data;
1085  	const struct proto_ops *ops;
1086  
1087  	ops = READ_ONCE(sock->ops);
1088  	if (ops->splice_eof)
1089  		ops->splice_eof(sock);
1090  }
1091  
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1092  static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1093  {
1094  	struct file *file = iocb->ki_filp;
1095  	struct socket *sock = file->private_data;
1096  	struct msghdr msg = {.msg_iter = *to,
1097  			     .msg_iocb = iocb};
1098  	ssize_t res;
1099  
1100  	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1101  		msg.msg_flags = MSG_DONTWAIT;
1102  
1103  	if (iocb->ki_pos != 0)
1104  		return -ESPIPE;
1105  
1106  	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1107  		return 0;
1108  
1109  	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1110  	*to = msg.msg_iter;
1111  	return res;
1112  }
1113  
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1114  static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1115  {
1116  	struct file *file = iocb->ki_filp;
1117  	struct socket *sock = file->private_data;
1118  	struct msghdr msg = {.msg_iter = *from,
1119  			     .msg_iocb = iocb};
1120  	ssize_t res;
1121  
1122  	if (iocb->ki_pos != 0)
1123  		return -ESPIPE;
1124  
1125  	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1126  		msg.msg_flags = MSG_DONTWAIT;
1127  
1128  	if (sock->type == SOCK_SEQPACKET)
1129  		msg.msg_flags |= MSG_EOR;
1130  
1131  	res = __sock_sendmsg(sock, &msg);
1132  	*from = msg.msg_iter;
1133  	return res;
1134  }
1135  
1136  /*
1137   * Atomic setting of ioctl hooks to avoid race
1138   * with module unload.
1139   */
1140  
1141  static DEFINE_MUTEX(br_ioctl_mutex);
1142  static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1143  			    void __user *uarg);
1144  
brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1145  void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1146  			     void __user *uarg))
1147  {
1148  	mutex_lock(&br_ioctl_mutex);
1149  	br_ioctl_hook = hook;
1150  	mutex_unlock(&br_ioctl_mutex);
1151  }
1152  EXPORT_SYMBOL(brioctl_set);
1153  
br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1154  int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1155  {
1156  	int err = -ENOPKG;
1157  
1158  	if (!br_ioctl_hook)
1159  		request_module("bridge");
1160  
1161  	mutex_lock(&br_ioctl_mutex);
1162  	if (br_ioctl_hook)
1163  		err = br_ioctl_hook(net, cmd, uarg);
1164  	mutex_unlock(&br_ioctl_mutex);
1165  
1166  	return err;
1167  }
1168  
1169  static DEFINE_MUTEX(vlan_ioctl_mutex);
1170  static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1171  
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1172  void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1173  {
1174  	mutex_lock(&vlan_ioctl_mutex);
1175  	vlan_ioctl_hook = hook;
1176  	mutex_unlock(&vlan_ioctl_mutex);
1177  }
1178  EXPORT_SYMBOL(vlan_ioctl_set);
1179  
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1180  static long sock_do_ioctl(struct net *net, struct socket *sock,
1181  			  unsigned int cmd, unsigned long arg)
1182  {
1183  	const struct proto_ops *ops = READ_ONCE(sock->ops);
1184  	struct ifreq ifr;
1185  	bool need_copyout;
1186  	int err;
1187  	void __user *argp = (void __user *)arg;
1188  	void __user *data;
1189  
1190  	err = ops->ioctl(sock, cmd, arg);
1191  
1192  	/*
1193  	 * If this ioctl is unknown try to hand it down
1194  	 * to the NIC driver.
1195  	 */
1196  	if (err != -ENOIOCTLCMD)
1197  		return err;
1198  
1199  	if (!is_socket_ioctl_cmd(cmd))
1200  		return -ENOTTY;
1201  
1202  	if (get_user_ifreq(&ifr, &data, argp))
1203  		return -EFAULT;
1204  	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1205  	if (!err && need_copyout)
1206  		if (put_user_ifreq(&ifr, argp))
1207  			return -EFAULT;
1208  
1209  	return err;
1210  }
1211  
1212  /*
1213   *	With an ioctl, arg may well be a user mode pointer, but we don't know
1214   *	what to do with it - that's up to the protocol still.
1215   */
1216  
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1217  static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1218  {
1219  	const struct proto_ops  *ops;
1220  	struct socket *sock;
1221  	struct sock *sk;
1222  	void __user *argp = (void __user *)arg;
1223  	int pid, err;
1224  	struct net *net;
1225  
1226  	sock = file->private_data;
1227  	ops = READ_ONCE(sock->ops);
1228  	sk = sock->sk;
1229  	net = sock_net(sk);
1230  	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1231  		struct ifreq ifr;
1232  		void __user *data;
1233  		bool need_copyout;
1234  		if (get_user_ifreq(&ifr, &data, argp))
1235  			return -EFAULT;
1236  		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237  		if (!err && need_copyout)
1238  			if (put_user_ifreq(&ifr, argp))
1239  				return -EFAULT;
1240  	} else
1241  #ifdef CONFIG_WEXT_CORE
1242  	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1243  		err = wext_handle_ioctl(net, cmd, argp);
1244  	} else
1245  #endif
1246  		switch (cmd) {
1247  		case FIOSETOWN:
1248  		case SIOCSPGRP:
1249  			err = -EFAULT;
1250  			if (get_user(pid, (int __user *)argp))
1251  				break;
1252  			err = f_setown(sock->file, pid, 1);
1253  			break;
1254  		case FIOGETOWN:
1255  		case SIOCGPGRP:
1256  			err = put_user(f_getown(sock->file),
1257  				       (int __user *)argp);
1258  			break;
1259  		case SIOCGIFBR:
1260  		case SIOCSIFBR:
1261  		case SIOCBRADDBR:
1262  		case SIOCBRDELBR:
1263  		case SIOCBRADDIF:
1264  		case SIOCBRDELIF:
1265  			err = br_ioctl_call(net, cmd, argp);
1266  			break;
1267  		case SIOCGIFVLAN:
1268  		case SIOCSIFVLAN:
1269  			err = -ENOPKG;
1270  			if (!vlan_ioctl_hook)
1271  				request_module("8021q");
1272  
1273  			mutex_lock(&vlan_ioctl_mutex);
1274  			if (vlan_ioctl_hook)
1275  				err = vlan_ioctl_hook(net, argp);
1276  			mutex_unlock(&vlan_ioctl_mutex);
1277  			break;
1278  		case SIOCGSKNS:
1279  			err = -EPERM;
1280  			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1281  				break;
1282  
1283  			err = open_related_ns(&net->ns, get_net_ns);
1284  			break;
1285  		case SIOCGSTAMP_OLD:
1286  		case SIOCGSTAMPNS_OLD:
1287  			if (!ops->gettstamp) {
1288  				err = -ENOIOCTLCMD;
1289  				break;
1290  			}
1291  			err = ops->gettstamp(sock, argp,
1292  					     cmd == SIOCGSTAMP_OLD,
1293  					     !IS_ENABLED(CONFIG_64BIT));
1294  			break;
1295  		case SIOCGSTAMP_NEW:
1296  		case SIOCGSTAMPNS_NEW:
1297  			if (!ops->gettstamp) {
1298  				err = -ENOIOCTLCMD;
1299  				break;
1300  			}
1301  			err = ops->gettstamp(sock, argp,
1302  					     cmd == SIOCGSTAMP_NEW,
1303  					     false);
1304  			break;
1305  
1306  		case SIOCGIFCONF:
1307  			err = dev_ifconf(net, argp);
1308  			break;
1309  
1310  		default:
1311  			err = sock_do_ioctl(net, sock, cmd, arg);
1312  			break;
1313  		}
1314  	return err;
1315  }
1316  
1317  /**
1318   *	sock_create_lite - creates a socket
1319   *	@family: protocol family (AF_INET, ...)
1320   *	@type: communication type (SOCK_STREAM, ...)
1321   *	@protocol: protocol (0, ...)
1322   *	@res: new socket
1323   *
1324   *	Creates a new socket and assigns it to @res, passing through LSM.
1325   *	The new socket initialization is not complete, see kernel_accept().
1326   *	Returns 0 or an error. On failure @res is set to %NULL.
1327   *	This function internally uses GFP_KERNEL.
1328   */
1329  
sock_create_lite(int family,int type,int protocol,struct socket ** res)1330  int sock_create_lite(int family, int type, int protocol, struct socket **res)
1331  {
1332  	int err;
1333  	struct socket *sock = NULL;
1334  
1335  	err = security_socket_create(family, type, protocol, 1);
1336  	if (err)
1337  		goto out;
1338  
1339  	sock = sock_alloc();
1340  	if (!sock) {
1341  		err = -ENOMEM;
1342  		goto out;
1343  	}
1344  
1345  	sock->type = type;
1346  	err = security_socket_post_create(sock, family, type, protocol, 1);
1347  	if (err)
1348  		goto out_release;
1349  
1350  out:
1351  	*res = sock;
1352  	return err;
1353  out_release:
1354  	sock_release(sock);
1355  	sock = NULL;
1356  	goto out;
1357  }
1358  EXPORT_SYMBOL(sock_create_lite);
1359  
1360  /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1361  static __poll_t sock_poll(struct file *file, poll_table *wait)
1362  {
1363  	struct socket *sock = file->private_data;
1364  	const struct proto_ops *ops = READ_ONCE(sock->ops);
1365  	__poll_t events = poll_requested_events(wait), flag = 0;
1366  
1367  	if (!ops->poll)
1368  		return 0;
1369  
1370  	if (sk_can_busy_loop(sock->sk)) {
1371  		/* poll once if requested by the syscall */
1372  		if (events & POLL_BUSY_LOOP)
1373  			sk_busy_loop(sock->sk, 1);
1374  
1375  		/* if this socket can poll_ll, tell the system call */
1376  		flag = POLL_BUSY_LOOP;
1377  	}
1378  
1379  	return ops->poll(file, sock, wait) | flag;
1380  }
1381  
sock_mmap(struct file * file,struct vm_area_struct * vma)1382  static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1383  {
1384  	struct socket *sock = file->private_data;
1385  
1386  	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1387  }
1388  
sock_close(struct inode * inode,struct file * filp)1389  static int sock_close(struct inode *inode, struct file *filp)
1390  {
1391  	__sock_release(SOCKET_I(inode), inode);
1392  	return 0;
1393  }
1394  
1395  /*
1396   *	Update the socket async list
1397   *
1398   *	Fasync_list locking strategy.
1399   *
1400   *	1. fasync_list is modified only under process context socket lock
1401   *	   i.e. under semaphore.
1402   *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1403   *	   or under socket lock
1404   */
1405  
sock_fasync(int fd,struct file * filp,int on)1406  static int sock_fasync(int fd, struct file *filp, int on)
1407  {
1408  	struct socket *sock = filp->private_data;
1409  	struct sock *sk = sock->sk;
1410  	struct socket_wq *wq = &sock->wq;
1411  
1412  	if (sk == NULL)
1413  		return -EINVAL;
1414  
1415  	lock_sock(sk);
1416  	fasync_helper(fd, filp, on, &wq->fasync_list);
1417  
1418  	if (!wq->fasync_list)
1419  		sock_reset_flag(sk, SOCK_FASYNC);
1420  	else
1421  		sock_set_flag(sk, SOCK_FASYNC);
1422  
1423  	release_sock(sk);
1424  	return 0;
1425  }
1426  
1427  /* This function may be called only under rcu_lock */
1428  
sock_wake_async(struct socket_wq * wq,int how,int band)1429  int sock_wake_async(struct socket_wq *wq, int how, int band)
1430  {
1431  	if (!wq || !wq->fasync_list)
1432  		return -1;
1433  
1434  	switch (how) {
1435  	case SOCK_WAKE_WAITD:
1436  		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1437  			break;
1438  		goto call_kill;
1439  	case SOCK_WAKE_SPACE:
1440  		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1441  			break;
1442  		fallthrough;
1443  	case SOCK_WAKE_IO:
1444  call_kill:
1445  		kill_fasync(&wq->fasync_list, SIGIO, band);
1446  		break;
1447  	case SOCK_WAKE_URG:
1448  		kill_fasync(&wq->fasync_list, SIGURG, band);
1449  	}
1450  
1451  	return 0;
1452  }
1453  EXPORT_SYMBOL(sock_wake_async);
1454  
1455  /**
1456   *	__sock_create - creates a socket
1457   *	@net: net namespace
1458   *	@family: protocol family (AF_INET, ...)
1459   *	@type: communication type (SOCK_STREAM, ...)
1460   *	@protocol: protocol (0, ...)
1461   *	@res: new socket
1462   *	@kern: boolean for kernel space sockets
1463   *
1464   *	Creates a new socket and assigns it to @res, passing through LSM.
1465   *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1466   *	be set to true if the socket resides in kernel space.
1467   *	This function internally uses GFP_KERNEL.
1468   */
1469  
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1470  int __sock_create(struct net *net, int family, int type, int protocol,
1471  			 struct socket **res, int kern)
1472  {
1473  	int err;
1474  	struct socket *sock;
1475  	const struct net_proto_family *pf;
1476  
1477  	/*
1478  	 *      Check protocol is in range
1479  	 */
1480  	if (family < 0 || family >= NPROTO)
1481  		return -EAFNOSUPPORT;
1482  	if (type < 0 || type >= SOCK_MAX)
1483  		return -EINVAL;
1484  
1485  	/* Compatibility.
1486  
1487  	   This uglymoron is moved from INET layer to here to avoid
1488  	   deadlock in module load.
1489  	 */
1490  	if (family == PF_INET && type == SOCK_PACKET) {
1491  		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1492  			     current->comm);
1493  		family = PF_PACKET;
1494  	}
1495  
1496  	err = security_socket_create(family, type, protocol, kern);
1497  	if (err)
1498  		return err;
1499  
1500  	/*
1501  	 *	Allocate the socket and allow the family to set things up. if
1502  	 *	the protocol is 0, the family is instructed to select an appropriate
1503  	 *	default.
1504  	 */
1505  	sock = sock_alloc();
1506  	if (!sock) {
1507  		net_warn_ratelimited("socket: no more sockets\n");
1508  		return -ENFILE;	/* Not exactly a match, but its the
1509  				   closest posix thing */
1510  	}
1511  
1512  	sock->type = type;
1513  
1514  #ifdef CONFIG_MODULES
1515  	/* Attempt to load a protocol module if the find failed.
1516  	 *
1517  	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1518  	 * requested real, full-featured networking support upon configuration.
1519  	 * Otherwise module support will break!
1520  	 */
1521  	if (rcu_access_pointer(net_families[family]) == NULL)
1522  		request_module("net-pf-%d", family);
1523  #endif
1524  
1525  	rcu_read_lock();
1526  	pf = rcu_dereference(net_families[family]);
1527  	err = -EAFNOSUPPORT;
1528  	if (!pf)
1529  		goto out_release;
1530  
1531  	/*
1532  	 * We will call the ->create function, that possibly is in a loadable
1533  	 * module, so we have to bump that loadable module refcnt first.
1534  	 */
1535  	if (!try_module_get(pf->owner))
1536  		goto out_release;
1537  
1538  	/* Now protected by module ref count */
1539  	rcu_read_unlock();
1540  
1541  	err = pf->create(net, sock, protocol, kern);
1542  	if (err < 0) {
1543  		/* ->create should release the allocated sock->sk object on error
1544  		 * and make sure sock->sk is set to NULL to avoid use-after-free
1545  		 */
1546  		DEBUG_NET_WARN_ONCE(sock->sk,
1547  				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1548  				    pf->create, family, type, protocol);
1549  		goto out_module_put;
1550  	}
1551  
1552  	/*
1553  	 * Now to bump the refcnt of the [loadable] module that owns this
1554  	 * socket at sock_release time we decrement its refcnt.
1555  	 */
1556  	if (!try_module_get(sock->ops->owner))
1557  		goto out_module_busy;
1558  
1559  	/*
1560  	 * Now that we're done with the ->create function, the [loadable]
1561  	 * module can have its refcnt decremented
1562  	 */
1563  	module_put(pf->owner);
1564  	err = security_socket_post_create(sock, family, type, protocol, kern);
1565  	if (err)
1566  		goto out_sock_release;
1567  	*res = sock;
1568  
1569  	return 0;
1570  
1571  out_module_busy:
1572  	err = -EAFNOSUPPORT;
1573  out_module_put:
1574  	sock->ops = NULL;
1575  	module_put(pf->owner);
1576  out_sock_release:
1577  	sock_release(sock);
1578  	return err;
1579  
1580  out_release:
1581  	rcu_read_unlock();
1582  	goto out_sock_release;
1583  }
1584  EXPORT_SYMBOL(__sock_create);
1585  
1586  /**
1587   *	sock_create - creates a socket
1588   *	@family: protocol family (AF_INET, ...)
1589   *	@type: communication type (SOCK_STREAM, ...)
1590   *	@protocol: protocol (0, ...)
1591   *	@res: new socket
1592   *
1593   *	A wrapper around __sock_create().
1594   *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1595   */
1596  
sock_create(int family,int type,int protocol,struct socket ** res)1597  int sock_create(int family, int type, int protocol, struct socket **res)
1598  {
1599  	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1600  }
1601  EXPORT_SYMBOL(sock_create);
1602  
1603  /**
1604   *	sock_create_kern - creates a socket (kernel space)
1605   *	@net: net namespace
1606   *	@family: protocol family (AF_INET, ...)
1607   *	@type: communication type (SOCK_STREAM, ...)
1608   *	@protocol: protocol (0, ...)
1609   *	@res: new socket
1610   *
1611   *	A wrapper around __sock_create().
1612   *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1613   */
1614  
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1615  int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1616  {
1617  	return __sock_create(net, family, type, protocol, res, 1);
1618  }
1619  EXPORT_SYMBOL(sock_create_kern);
1620  
__sys_socket_create(int family,int type,int protocol)1621  static struct socket *__sys_socket_create(int family, int type, int protocol)
1622  {
1623  	struct socket *sock;
1624  	int retval;
1625  
1626  	/* Check the SOCK_* constants for consistency.  */
1627  	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1628  	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1629  	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1630  	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1631  
1632  	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1633  		return ERR_PTR(-EINVAL);
1634  	type &= SOCK_TYPE_MASK;
1635  
1636  	retval = sock_create(family, type, protocol, &sock);
1637  	if (retval < 0)
1638  		return ERR_PTR(retval);
1639  
1640  	return sock;
1641  }
1642  
__sys_socket_file(int family,int type,int protocol)1643  struct file *__sys_socket_file(int family, int type, int protocol)
1644  {
1645  	struct socket *sock;
1646  	int flags;
1647  
1648  	sock = __sys_socket_create(family, type, protocol);
1649  	if (IS_ERR(sock))
1650  		return ERR_CAST(sock);
1651  
1652  	flags = type & ~SOCK_TYPE_MASK;
1653  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1654  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1655  
1656  	return sock_alloc_file(sock, flags, NULL);
1657  }
1658  
1659  /*	A hook for bpf progs to attach to and update socket protocol.
1660   *
1661   *	A static noinline declaration here could cause the compiler to
1662   *	optimize away the function. A global noinline declaration will
1663   *	keep the definition, but may optimize away the callsite.
1664   *	Therefore, __weak is needed to ensure that the call is still
1665   *	emitted, by telling the compiler that we don't know what the
1666   *	function might eventually be.
1667   */
1668  
1669  __bpf_hook_start();
1670  
update_socket_protocol(int family,int type,int protocol)1671  __weak noinline int update_socket_protocol(int family, int type, int protocol)
1672  {
1673  	return protocol;
1674  }
1675  
1676  __bpf_hook_end();
1677  
__sys_socket(int family,int type,int protocol)1678  int __sys_socket(int family, int type, int protocol)
1679  {
1680  	struct socket *sock;
1681  	int flags;
1682  
1683  	sock = __sys_socket_create(family, type,
1684  				   update_socket_protocol(family, type, protocol));
1685  	if (IS_ERR(sock))
1686  		return PTR_ERR(sock);
1687  
1688  	flags = type & ~SOCK_TYPE_MASK;
1689  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1690  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1691  
1692  	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1693  }
1694  
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1695  SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1696  {
1697  	return __sys_socket(family, type, protocol);
1698  }
1699  
1700  /*
1701   *	Create a pair of connected sockets.
1702   */
1703  
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1704  int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1705  {
1706  	struct socket *sock1, *sock2;
1707  	int fd1, fd2, err;
1708  	struct file *newfile1, *newfile2;
1709  	int flags;
1710  
1711  	flags = type & ~SOCK_TYPE_MASK;
1712  	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1713  		return -EINVAL;
1714  	type &= SOCK_TYPE_MASK;
1715  
1716  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718  
1719  	/*
1720  	 * reserve descriptors and make sure we won't fail
1721  	 * to return them to userland.
1722  	 */
1723  	fd1 = get_unused_fd_flags(flags);
1724  	if (unlikely(fd1 < 0))
1725  		return fd1;
1726  
1727  	fd2 = get_unused_fd_flags(flags);
1728  	if (unlikely(fd2 < 0)) {
1729  		put_unused_fd(fd1);
1730  		return fd2;
1731  	}
1732  
1733  	err = put_user(fd1, &usockvec[0]);
1734  	if (err)
1735  		goto out;
1736  
1737  	err = put_user(fd2, &usockvec[1]);
1738  	if (err)
1739  		goto out;
1740  
1741  	/*
1742  	 * Obtain the first socket and check if the underlying protocol
1743  	 * supports the socketpair call.
1744  	 */
1745  
1746  	err = sock_create(family, type, protocol, &sock1);
1747  	if (unlikely(err < 0))
1748  		goto out;
1749  
1750  	err = sock_create(family, type, protocol, &sock2);
1751  	if (unlikely(err < 0)) {
1752  		sock_release(sock1);
1753  		goto out;
1754  	}
1755  
1756  	err = security_socket_socketpair(sock1, sock2);
1757  	if (unlikely(err)) {
1758  		sock_release(sock2);
1759  		sock_release(sock1);
1760  		goto out;
1761  	}
1762  
1763  	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1764  	if (unlikely(err < 0)) {
1765  		sock_release(sock2);
1766  		sock_release(sock1);
1767  		goto out;
1768  	}
1769  
1770  	newfile1 = sock_alloc_file(sock1, flags, NULL);
1771  	if (IS_ERR(newfile1)) {
1772  		err = PTR_ERR(newfile1);
1773  		sock_release(sock2);
1774  		goto out;
1775  	}
1776  
1777  	newfile2 = sock_alloc_file(sock2, flags, NULL);
1778  	if (IS_ERR(newfile2)) {
1779  		err = PTR_ERR(newfile2);
1780  		fput(newfile1);
1781  		goto out;
1782  	}
1783  
1784  	audit_fd_pair(fd1, fd2);
1785  
1786  	fd_install(fd1, newfile1);
1787  	fd_install(fd2, newfile2);
1788  	return 0;
1789  
1790  out:
1791  	put_unused_fd(fd2);
1792  	put_unused_fd(fd1);
1793  	return err;
1794  }
1795  
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1796  SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1797  		int __user *, usockvec)
1798  {
1799  	return __sys_socketpair(family, type, protocol, usockvec);
1800  }
1801  
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1802  int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1803  		      int addrlen)
1804  {
1805  	int err;
1806  
1807  	err = security_socket_bind(sock, (struct sockaddr *)address,
1808  				   addrlen);
1809  	if (!err)
1810  		err = READ_ONCE(sock->ops)->bind(sock,
1811  						 (struct sockaddr *)address,
1812  						 addrlen);
1813  	return err;
1814  }
1815  
1816  /*
1817   *	Bind a name to a socket. Nothing much to do here since it's
1818   *	the protocol's responsibility to handle the local address.
1819   *
1820   *	We move the socket address to kernel space before we call
1821   *	the protocol layer (having also checked the address is ok).
1822   */
1823  
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1824  int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1825  {
1826  	struct socket *sock;
1827  	struct sockaddr_storage address;
1828  	CLASS(fd, f)(fd);
1829  	int err;
1830  
1831  	if (fd_empty(f))
1832  		return -EBADF;
1833  	sock = sock_from_file(fd_file(f));
1834  	if (unlikely(!sock))
1835  		return -ENOTSOCK;
1836  
1837  	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1838  	if (unlikely(err))
1839  		return err;
1840  
1841  	return __sys_bind_socket(sock, &address, addrlen);
1842  }
1843  
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1844  SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1845  {
1846  	return __sys_bind(fd, umyaddr, addrlen);
1847  }
1848  
1849  /*
1850   *	Perform a listen. Basically, we allow the protocol to do anything
1851   *	necessary for a listen, and if that works, we mark the socket as
1852   *	ready for listening.
1853   */
__sys_listen_socket(struct socket * sock,int backlog)1854  int __sys_listen_socket(struct socket *sock, int backlog)
1855  {
1856  	int somaxconn, err;
1857  
1858  	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1859  	if ((unsigned int)backlog > somaxconn)
1860  		backlog = somaxconn;
1861  
1862  	err = security_socket_listen(sock, backlog);
1863  	if (!err)
1864  		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1865  	return err;
1866  }
1867  
__sys_listen(int fd,int backlog)1868  int __sys_listen(int fd, int backlog)
1869  {
1870  	CLASS(fd, f)(fd);
1871  	struct socket *sock;
1872  
1873  	if (fd_empty(f))
1874  		return -EBADF;
1875  	sock = sock_from_file(fd_file(f));
1876  	if (unlikely(!sock))
1877  		return -ENOTSOCK;
1878  
1879  	return __sys_listen_socket(sock, backlog);
1880  }
1881  
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1882  SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1883  {
1884  	return __sys_listen(fd, backlog);
1885  }
1886  
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1887  struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1888  		       struct sockaddr __user *upeer_sockaddr,
1889  		       int __user *upeer_addrlen, int flags)
1890  {
1891  	struct socket *sock, *newsock;
1892  	struct file *newfile;
1893  	int err, len;
1894  	struct sockaddr_storage address;
1895  	const struct proto_ops *ops;
1896  
1897  	sock = sock_from_file(file);
1898  	if (!sock)
1899  		return ERR_PTR(-ENOTSOCK);
1900  
1901  	newsock = sock_alloc();
1902  	if (!newsock)
1903  		return ERR_PTR(-ENFILE);
1904  	ops = READ_ONCE(sock->ops);
1905  
1906  	newsock->type = sock->type;
1907  	newsock->ops = ops;
1908  
1909  	/*
1910  	 * We don't need try_module_get here, as the listening socket (sock)
1911  	 * has the protocol module (sock->ops->owner) held.
1912  	 */
1913  	__module_get(ops->owner);
1914  
1915  	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1916  	if (IS_ERR(newfile))
1917  		return newfile;
1918  
1919  	err = security_socket_accept(sock, newsock);
1920  	if (err)
1921  		goto out_fd;
1922  
1923  	arg->flags |= sock->file->f_flags;
1924  	err = ops->accept(sock, newsock, arg);
1925  	if (err < 0)
1926  		goto out_fd;
1927  
1928  	if (upeer_sockaddr) {
1929  		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1930  		if (len < 0) {
1931  			err = -ECONNABORTED;
1932  			goto out_fd;
1933  		}
1934  		err = move_addr_to_user(&address,
1935  					len, upeer_sockaddr, upeer_addrlen);
1936  		if (err < 0)
1937  			goto out_fd;
1938  	}
1939  
1940  	/* File flags are not inherited via accept() unlike another OSes. */
1941  	return newfile;
1942  out_fd:
1943  	fput(newfile);
1944  	return ERR_PTR(err);
1945  }
1946  
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1947  static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1948  			      int __user *upeer_addrlen, int flags)
1949  {
1950  	struct proto_accept_arg arg = { };
1951  	struct file *newfile;
1952  	int newfd;
1953  
1954  	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1955  		return -EINVAL;
1956  
1957  	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1958  		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1959  
1960  	newfd = get_unused_fd_flags(flags);
1961  	if (unlikely(newfd < 0))
1962  		return newfd;
1963  
1964  	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1965  			    flags);
1966  	if (IS_ERR(newfile)) {
1967  		put_unused_fd(newfd);
1968  		return PTR_ERR(newfile);
1969  	}
1970  	fd_install(newfd, newfile);
1971  	return newfd;
1972  }
1973  
1974  /*
1975   *	For accept, we attempt to create a new socket, set up the link
1976   *	with the client, wake up the client, then return the new
1977   *	connected fd. We collect the address of the connector in kernel
1978   *	space and move it to user at the very end. This is unclean because
1979   *	we open the socket then return an error.
1980   *
1981   *	1003.1g adds the ability to recvmsg() to query connection pending
1982   *	status to recvmsg. We need to add that support in a way thats
1983   *	clean when we restructure accept also.
1984   */
1985  
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1986  int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1987  		  int __user *upeer_addrlen, int flags)
1988  {
1989  	CLASS(fd, f)(fd);
1990  
1991  	if (fd_empty(f))
1992  		return -EBADF;
1993  	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
1994  					 upeer_addrlen, flags);
1995  }
1996  
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1997  SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1998  		int __user *, upeer_addrlen, int, flags)
1999  {
2000  	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2001  }
2002  
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2003  SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2004  		int __user *, upeer_addrlen)
2005  {
2006  	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2007  }
2008  
2009  /*
2010   *	Attempt to connect to a socket with the server address.  The address
2011   *	is in user space so we verify it is OK and move it to kernel space.
2012   *
2013   *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2014   *	break bindings
2015   *
2016   *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2017   *	other SEQPACKET protocols that take time to connect() as it doesn't
2018   *	include the -EINPROGRESS status for such sockets.
2019   */
2020  
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2021  int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2022  		       int addrlen, int file_flags)
2023  {
2024  	struct socket *sock;
2025  	int err;
2026  
2027  	sock = sock_from_file(file);
2028  	if (!sock) {
2029  		err = -ENOTSOCK;
2030  		goto out;
2031  	}
2032  
2033  	err =
2034  	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2035  	if (err)
2036  		goto out;
2037  
2038  	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2039  				addrlen, sock->file->f_flags | file_flags);
2040  out:
2041  	return err;
2042  }
2043  
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2044  int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2045  {
2046  	struct sockaddr_storage address;
2047  	CLASS(fd, f)(fd);
2048  	int ret;
2049  
2050  	if (fd_empty(f))
2051  		return -EBADF;
2052  
2053  	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2054  	if (ret)
2055  		return ret;
2056  
2057  	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2058  }
2059  
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2060  SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2061  		int, addrlen)
2062  {
2063  	return __sys_connect(fd, uservaddr, addrlen);
2064  }
2065  
2066  /*
2067   *	Get the local address ('name') of a socket object. Move the obtained
2068   *	name to user space.
2069   */
2070  
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2071  int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2072  		      int __user *usockaddr_len)
2073  {
2074  	struct socket *sock;
2075  	struct sockaddr_storage address;
2076  	CLASS(fd, f)(fd);
2077  	int err;
2078  
2079  	if (fd_empty(f))
2080  		return -EBADF;
2081  	sock = sock_from_file(fd_file(f));
2082  	if (unlikely(!sock))
2083  		return -ENOTSOCK;
2084  
2085  	err = security_socket_getsockname(sock);
2086  	if (err)
2087  		return err;
2088  
2089  	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2090  	if (err < 0)
2091  		return err;
2092  
2093  	/* "err" is actually length in this case */
2094  	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2095  }
2096  
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2097  SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2098  		int __user *, usockaddr_len)
2099  {
2100  	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2101  }
2102  
2103  /*
2104   *	Get the remote address ('name') of a socket object. Move the obtained
2105   *	name to user space.
2106   */
2107  
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2108  int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2109  		      int __user *usockaddr_len)
2110  {
2111  	struct socket *sock;
2112  	struct sockaddr_storage address;
2113  	CLASS(fd, f)(fd);
2114  	int err;
2115  
2116  	if (fd_empty(f))
2117  		return -EBADF;
2118  	sock = sock_from_file(fd_file(f));
2119  	if (unlikely(!sock))
2120  		return -ENOTSOCK;
2121  
2122  	err = security_socket_getpeername(sock);
2123  	if (err)
2124  		return err;
2125  
2126  	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2127  	if (err < 0)
2128  		return err;
2129  
2130  	/* "err" is actually length in this case */
2131  	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2132  }
2133  
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2134  SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2135  		int __user *, usockaddr_len)
2136  {
2137  	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2138  }
2139  
2140  /*
2141   *	Send a datagram to a given address. We move the address into kernel
2142   *	space and check the user space data area is readable before invoking
2143   *	the protocol.
2144   */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2145  int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2146  		 struct sockaddr __user *addr,  int addr_len)
2147  {
2148  	struct socket *sock;
2149  	struct sockaddr_storage address;
2150  	int err;
2151  	struct msghdr msg;
2152  
2153  	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2154  	if (unlikely(err))
2155  		return err;
2156  
2157  	CLASS(fd, f)(fd);
2158  	if (fd_empty(f))
2159  		return -EBADF;
2160  	sock = sock_from_file(fd_file(f));
2161  	if (unlikely(!sock))
2162  		return -ENOTSOCK;
2163  
2164  	msg.msg_name = NULL;
2165  	msg.msg_control = NULL;
2166  	msg.msg_controllen = 0;
2167  	msg.msg_namelen = 0;
2168  	msg.msg_ubuf = NULL;
2169  	if (addr) {
2170  		err = move_addr_to_kernel(addr, addr_len, &address);
2171  		if (err < 0)
2172  			return err;
2173  		msg.msg_name = (struct sockaddr *)&address;
2174  		msg.msg_namelen = addr_len;
2175  	}
2176  	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2177  	if (sock->file->f_flags & O_NONBLOCK)
2178  		flags |= MSG_DONTWAIT;
2179  	msg.msg_flags = flags;
2180  	return __sock_sendmsg(sock, &msg);
2181  }
2182  
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2183  SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2184  		unsigned int, flags, struct sockaddr __user *, addr,
2185  		int, addr_len)
2186  {
2187  	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2188  }
2189  
2190  /*
2191   *	Send a datagram down a socket.
2192   */
2193  
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2194  SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2195  		unsigned int, flags)
2196  {
2197  	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2198  }
2199  
2200  /*
2201   *	Receive a frame from the socket and optionally record the address of the
2202   *	sender. We verify the buffers are writable and if needed move the
2203   *	sender address from kernel to user space.
2204   */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2205  int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2206  		   struct sockaddr __user *addr, int __user *addr_len)
2207  {
2208  	struct sockaddr_storage address;
2209  	struct msghdr msg = {
2210  		/* Save some cycles and don't copy the address if not needed */
2211  		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2212  	};
2213  	struct socket *sock;
2214  	int err, err2;
2215  
2216  	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2217  	if (unlikely(err))
2218  		return err;
2219  
2220  	CLASS(fd, f)(fd);
2221  
2222  	if (fd_empty(f))
2223  		return -EBADF;
2224  	sock = sock_from_file(fd_file(f));
2225  	if (unlikely(!sock))
2226  		return -ENOTSOCK;
2227  
2228  	if (sock->file->f_flags & O_NONBLOCK)
2229  		flags |= MSG_DONTWAIT;
2230  	err = sock_recvmsg(sock, &msg, flags);
2231  
2232  	if (err >= 0 && addr != NULL) {
2233  		err2 = move_addr_to_user(&address,
2234  					 msg.msg_namelen, addr, addr_len);
2235  		if (err2 < 0)
2236  			err = err2;
2237  	}
2238  	return err;
2239  }
2240  
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2241  SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2242  		unsigned int, flags, struct sockaddr __user *, addr,
2243  		int __user *, addr_len)
2244  {
2245  	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2246  }
2247  
2248  /*
2249   *	Receive a datagram from a socket.
2250   */
2251  
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2252  SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2253  		unsigned int, flags)
2254  {
2255  	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2256  }
2257  
sock_use_custom_sol_socket(const struct socket * sock)2258  static bool sock_use_custom_sol_socket(const struct socket *sock)
2259  {
2260  	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2261  }
2262  
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2263  int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2264  		       int optname, sockptr_t optval, int optlen)
2265  {
2266  	const struct proto_ops *ops;
2267  	char *kernel_optval = NULL;
2268  	int err;
2269  
2270  	if (optlen < 0)
2271  		return -EINVAL;
2272  
2273  	err = security_socket_setsockopt(sock, level, optname);
2274  	if (err)
2275  		goto out_put;
2276  
2277  	if (!compat)
2278  		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2279  						     optval, &optlen,
2280  						     &kernel_optval);
2281  	if (err < 0)
2282  		goto out_put;
2283  	if (err > 0) {
2284  		err = 0;
2285  		goto out_put;
2286  	}
2287  
2288  	if (kernel_optval)
2289  		optval = KERNEL_SOCKPTR(kernel_optval);
2290  	ops = READ_ONCE(sock->ops);
2291  	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2292  		err = sock_setsockopt(sock, level, optname, optval, optlen);
2293  	else if (unlikely(!ops->setsockopt))
2294  		err = -EOPNOTSUPP;
2295  	else
2296  		err = ops->setsockopt(sock, level, optname, optval,
2297  					    optlen);
2298  	kfree(kernel_optval);
2299  out_put:
2300  	return err;
2301  }
2302  EXPORT_SYMBOL(do_sock_setsockopt);
2303  
2304  /* Set a socket option. Because we don't know the option lengths we have
2305   * to pass the user mode parameter for the protocols to sort out.
2306   */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2307  int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2308  		     int optlen)
2309  {
2310  	sockptr_t optval = USER_SOCKPTR(user_optval);
2311  	bool compat = in_compat_syscall();
2312  	struct socket *sock;
2313  	CLASS(fd, f)(fd);
2314  
2315  	if (fd_empty(f))
2316  		return -EBADF;
2317  	sock = sock_from_file(fd_file(f));
2318  	if (unlikely(!sock))
2319  		return -ENOTSOCK;
2320  
2321  	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2322  }
2323  
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2324  SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2325  		char __user *, optval, int, optlen)
2326  {
2327  	return __sys_setsockopt(fd, level, optname, optval, optlen);
2328  }
2329  
2330  INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2331  							 int optname));
2332  
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2333  int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2334  		       int optname, sockptr_t optval, sockptr_t optlen)
2335  {
2336  	int max_optlen __maybe_unused = 0;
2337  	const struct proto_ops *ops;
2338  	int err;
2339  
2340  	err = security_socket_getsockopt(sock, level, optname);
2341  	if (err)
2342  		return err;
2343  
2344  	if (!compat)
2345  		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2346  
2347  	ops = READ_ONCE(sock->ops);
2348  	if (level == SOL_SOCKET) {
2349  		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2350  	} else if (unlikely(!ops->getsockopt)) {
2351  		err = -EOPNOTSUPP;
2352  	} else {
2353  		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2354  			      "Invalid argument type"))
2355  			return -EOPNOTSUPP;
2356  
2357  		err = ops->getsockopt(sock, level, optname, optval.user,
2358  				      optlen.user);
2359  	}
2360  
2361  	if (!compat)
2362  		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2363  						     optval, optlen, max_optlen,
2364  						     err);
2365  
2366  	return err;
2367  }
2368  EXPORT_SYMBOL(do_sock_getsockopt);
2369  
2370  /*
2371   *	Get a socket option. Because we don't know the option lengths we have
2372   *	to pass a user mode parameter for the protocols to sort out.
2373   */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2374  int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2375  		int __user *optlen)
2376  {
2377  	struct socket *sock;
2378  	CLASS(fd, f)(fd);
2379  
2380  	if (fd_empty(f))
2381  		return -EBADF;
2382  	sock = sock_from_file(fd_file(f));
2383  	if (unlikely(!sock))
2384  		return -ENOTSOCK;
2385  
2386  	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2387  				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2388  }
2389  
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2390  SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2391  		char __user *, optval, int __user *, optlen)
2392  {
2393  	return __sys_getsockopt(fd, level, optname, optval, optlen);
2394  }
2395  
2396  /*
2397   *	Shutdown a socket.
2398   */
2399  
__sys_shutdown_sock(struct socket * sock,int how)2400  int __sys_shutdown_sock(struct socket *sock, int how)
2401  {
2402  	int err;
2403  
2404  	err = security_socket_shutdown(sock, how);
2405  	if (!err)
2406  		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2407  
2408  	return err;
2409  }
2410  
__sys_shutdown(int fd,int how)2411  int __sys_shutdown(int fd, int how)
2412  {
2413  	struct socket *sock;
2414  	CLASS(fd, f)(fd);
2415  
2416  	if (fd_empty(f))
2417  		return -EBADF;
2418  	sock = sock_from_file(fd_file(f));
2419  	if (unlikely(!sock))
2420  		return -ENOTSOCK;
2421  
2422  	return __sys_shutdown_sock(sock, how);
2423  }
2424  
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2425  SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2426  {
2427  	return __sys_shutdown(fd, how);
2428  }
2429  
2430  /* A couple of helpful macros for getting the address of the 32/64 bit
2431   * fields which are the same type (int / unsigned) on our platforms.
2432   */
2433  #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2434  #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2435  #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2436  
2437  struct used_address {
2438  	struct sockaddr_storage name;
2439  	unsigned int name_len;
2440  };
2441  
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2442  int __copy_msghdr(struct msghdr *kmsg,
2443  		  struct user_msghdr *msg,
2444  		  struct sockaddr __user **save_addr)
2445  {
2446  	ssize_t err;
2447  
2448  	kmsg->msg_control_is_user = true;
2449  	kmsg->msg_get_inq = 0;
2450  	kmsg->msg_control_user = msg->msg_control;
2451  	kmsg->msg_controllen = msg->msg_controllen;
2452  	kmsg->msg_flags = msg->msg_flags;
2453  
2454  	kmsg->msg_namelen = msg->msg_namelen;
2455  	if (!msg->msg_name)
2456  		kmsg->msg_namelen = 0;
2457  
2458  	if (kmsg->msg_namelen < 0)
2459  		return -EINVAL;
2460  
2461  	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2462  		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2463  
2464  	if (save_addr)
2465  		*save_addr = msg->msg_name;
2466  
2467  	if (msg->msg_name && kmsg->msg_namelen) {
2468  		if (!save_addr) {
2469  			err = move_addr_to_kernel(msg->msg_name,
2470  						  kmsg->msg_namelen,
2471  						  kmsg->msg_name);
2472  			if (err < 0)
2473  				return err;
2474  		}
2475  	} else {
2476  		kmsg->msg_name = NULL;
2477  		kmsg->msg_namelen = 0;
2478  	}
2479  
2480  	if (msg->msg_iovlen > UIO_MAXIOV)
2481  		return -EMSGSIZE;
2482  
2483  	kmsg->msg_iocb = NULL;
2484  	kmsg->msg_ubuf = NULL;
2485  	return 0;
2486  }
2487  
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2488  static int copy_msghdr_from_user(struct msghdr *kmsg,
2489  				 struct user_msghdr __user *umsg,
2490  				 struct sockaddr __user **save_addr,
2491  				 struct iovec **iov)
2492  {
2493  	struct user_msghdr msg;
2494  	ssize_t err;
2495  
2496  	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2497  		return -EFAULT;
2498  
2499  	err = __copy_msghdr(kmsg, &msg, save_addr);
2500  	if (err)
2501  		return err;
2502  
2503  	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2504  			    msg.msg_iov, msg.msg_iovlen,
2505  			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2506  	return err < 0 ? err : 0;
2507  }
2508  
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2509  static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2510  			   unsigned int flags, struct used_address *used_address,
2511  			   unsigned int allowed_msghdr_flags)
2512  {
2513  	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2514  				__aligned(sizeof(__kernel_size_t));
2515  	/* 20 is size of ipv6_pktinfo */
2516  	unsigned char *ctl_buf = ctl;
2517  	int ctl_len;
2518  	ssize_t err;
2519  
2520  	err = -ENOBUFS;
2521  
2522  	if (msg_sys->msg_controllen > INT_MAX)
2523  		goto out;
2524  	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2525  	ctl_len = msg_sys->msg_controllen;
2526  	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2527  		err =
2528  		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2529  						     sizeof(ctl));
2530  		if (err)
2531  			goto out;
2532  		ctl_buf = msg_sys->msg_control;
2533  		ctl_len = msg_sys->msg_controllen;
2534  	} else if (ctl_len) {
2535  		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2536  			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2537  		if (ctl_len > sizeof(ctl)) {
2538  			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2539  			if (ctl_buf == NULL)
2540  				goto out;
2541  		}
2542  		err = -EFAULT;
2543  		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2544  			goto out_freectl;
2545  		msg_sys->msg_control = ctl_buf;
2546  		msg_sys->msg_control_is_user = false;
2547  	}
2548  	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2549  	msg_sys->msg_flags = flags;
2550  
2551  	if (sock->file->f_flags & O_NONBLOCK)
2552  		msg_sys->msg_flags |= MSG_DONTWAIT;
2553  	/*
2554  	 * If this is sendmmsg() and current destination address is same as
2555  	 * previously succeeded address, omit asking LSM's decision.
2556  	 * used_address->name_len is initialized to UINT_MAX so that the first
2557  	 * destination address never matches.
2558  	 */
2559  	if (used_address && msg_sys->msg_name &&
2560  	    used_address->name_len == msg_sys->msg_namelen &&
2561  	    !memcmp(&used_address->name, msg_sys->msg_name,
2562  		    used_address->name_len)) {
2563  		err = sock_sendmsg_nosec(sock, msg_sys);
2564  		goto out_freectl;
2565  	}
2566  	err = __sock_sendmsg(sock, msg_sys);
2567  	/*
2568  	 * If this is sendmmsg() and sending to current destination address was
2569  	 * successful, remember it.
2570  	 */
2571  	if (used_address && err >= 0) {
2572  		used_address->name_len = msg_sys->msg_namelen;
2573  		if (msg_sys->msg_name)
2574  			memcpy(&used_address->name, msg_sys->msg_name,
2575  			       used_address->name_len);
2576  	}
2577  
2578  out_freectl:
2579  	if (ctl_buf != ctl)
2580  		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2581  out:
2582  	return err;
2583  }
2584  
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2585  static int sendmsg_copy_msghdr(struct msghdr *msg,
2586  			       struct user_msghdr __user *umsg, unsigned flags,
2587  			       struct iovec **iov)
2588  {
2589  	int err;
2590  
2591  	if (flags & MSG_CMSG_COMPAT) {
2592  		struct compat_msghdr __user *msg_compat;
2593  
2594  		msg_compat = (struct compat_msghdr __user *) umsg;
2595  		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2596  	} else {
2597  		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2598  	}
2599  	if (err < 0)
2600  		return err;
2601  
2602  	return 0;
2603  }
2604  
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2605  static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2606  			 struct msghdr *msg_sys, unsigned int flags,
2607  			 struct used_address *used_address,
2608  			 unsigned int allowed_msghdr_flags)
2609  {
2610  	struct sockaddr_storage address;
2611  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2612  	ssize_t err;
2613  
2614  	msg_sys->msg_name = &address;
2615  
2616  	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2617  	if (err < 0)
2618  		return err;
2619  
2620  	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2621  				allowed_msghdr_flags);
2622  	kfree(iov);
2623  	return err;
2624  }
2625  
2626  /*
2627   *	BSD sendmsg interface
2628   */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2629  long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2630  			unsigned int flags)
2631  {
2632  	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2633  }
2634  
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2635  long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2636  		   bool forbid_cmsg_compat)
2637  {
2638  	struct msghdr msg_sys;
2639  	struct socket *sock;
2640  
2641  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2642  		return -EINVAL;
2643  
2644  	CLASS(fd, f)(fd);
2645  
2646  	if (fd_empty(f))
2647  		return -EBADF;
2648  	sock = sock_from_file(fd_file(f));
2649  	if (unlikely(!sock))
2650  		return -ENOTSOCK;
2651  
2652  	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2653  }
2654  
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2655  SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2656  {
2657  	return __sys_sendmsg(fd, msg, flags, true);
2658  }
2659  
2660  /*
2661   *	Linux sendmmsg interface
2662   */
2663  
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2664  int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2665  		   unsigned int flags, bool forbid_cmsg_compat)
2666  {
2667  	int err, datagrams;
2668  	struct socket *sock;
2669  	struct mmsghdr __user *entry;
2670  	struct compat_mmsghdr __user *compat_entry;
2671  	struct msghdr msg_sys;
2672  	struct used_address used_address;
2673  	unsigned int oflags = flags;
2674  
2675  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2676  		return -EINVAL;
2677  
2678  	if (vlen > UIO_MAXIOV)
2679  		vlen = UIO_MAXIOV;
2680  
2681  	datagrams = 0;
2682  
2683  	CLASS(fd, f)(fd);
2684  
2685  	if (fd_empty(f))
2686  		return -EBADF;
2687  	sock = sock_from_file(fd_file(f));
2688  	if (unlikely(!sock))
2689  		return -ENOTSOCK;
2690  
2691  	used_address.name_len = UINT_MAX;
2692  	entry = mmsg;
2693  	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2694  	err = 0;
2695  	flags |= MSG_BATCH;
2696  
2697  	while (datagrams < vlen) {
2698  		if (datagrams == vlen - 1)
2699  			flags = oflags;
2700  
2701  		if (MSG_CMSG_COMPAT & flags) {
2702  			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2703  					     &msg_sys, flags, &used_address, MSG_EOR);
2704  			if (err < 0)
2705  				break;
2706  			err = __put_user(err, &compat_entry->msg_len);
2707  			++compat_entry;
2708  		} else {
2709  			err = ___sys_sendmsg(sock,
2710  					     (struct user_msghdr __user *)entry,
2711  					     &msg_sys, flags, &used_address, MSG_EOR);
2712  			if (err < 0)
2713  				break;
2714  			err = put_user(err, &entry->msg_len);
2715  			++entry;
2716  		}
2717  
2718  		if (err)
2719  			break;
2720  		++datagrams;
2721  		if (msg_data_left(&msg_sys))
2722  			break;
2723  		cond_resched();
2724  	}
2725  
2726  	/* We only return an error if no datagrams were able to be sent */
2727  	if (datagrams != 0)
2728  		return datagrams;
2729  
2730  	return err;
2731  }
2732  
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2733  SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2734  		unsigned int, vlen, unsigned int, flags)
2735  {
2736  	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2737  }
2738  
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2739  static int recvmsg_copy_msghdr(struct msghdr *msg,
2740  			       struct user_msghdr __user *umsg, unsigned flags,
2741  			       struct sockaddr __user **uaddr,
2742  			       struct iovec **iov)
2743  {
2744  	ssize_t err;
2745  
2746  	if (MSG_CMSG_COMPAT & flags) {
2747  		struct compat_msghdr __user *msg_compat;
2748  
2749  		msg_compat = (struct compat_msghdr __user *) umsg;
2750  		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2751  	} else {
2752  		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2753  	}
2754  	if (err < 0)
2755  		return err;
2756  
2757  	return 0;
2758  }
2759  
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2760  static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2761  			   struct user_msghdr __user *msg,
2762  			   struct sockaddr __user *uaddr,
2763  			   unsigned int flags, int nosec)
2764  {
2765  	struct compat_msghdr __user *msg_compat =
2766  					(struct compat_msghdr __user *) msg;
2767  	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2768  	struct sockaddr_storage addr;
2769  	unsigned long cmsg_ptr;
2770  	int len;
2771  	ssize_t err;
2772  
2773  	msg_sys->msg_name = &addr;
2774  	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2775  	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2776  
2777  	/* We assume all kernel code knows the size of sockaddr_storage */
2778  	msg_sys->msg_namelen = 0;
2779  
2780  	if (sock->file->f_flags & O_NONBLOCK)
2781  		flags |= MSG_DONTWAIT;
2782  
2783  	if (unlikely(nosec))
2784  		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2785  	else
2786  		err = sock_recvmsg(sock, msg_sys, flags);
2787  
2788  	if (err < 0)
2789  		goto out;
2790  	len = err;
2791  
2792  	if (uaddr != NULL) {
2793  		err = move_addr_to_user(&addr,
2794  					msg_sys->msg_namelen, uaddr,
2795  					uaddr_len);
2796  		if (err < 0)
2797  			goto out;
2798  	}
2799  	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2800  			 COMPAT_FLAGS(msg));
2801  	if (err)
2802  		goto out;
2803  	if (MSG_CMSG_COMPAT & flags)
2804  		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2805  				 &msg_compat->msg_controllen);
2806  	else
2807  		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2808  				 &msg->msg_controllen);
2809  	if (err)
2810  		goto out;
2811  	err = len;
2812  out:
2813  	return err;
2814  }
2815  
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2816  static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2817  			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2818  {
2819  	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2820  	/* user mode address pointers */
2821  	struct sockaddr __user *uaddr;
2822  	ssize_t err;
2823  
2824  	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2825  	if (err < 0)
2826  		return err;
2827  
2828  	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2829  	kfree(iov);
2830  	return err;
2831  }
2832  
2833  /*
2834   *	BSD recvmsg interface
2835   */
2836  
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2837  long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2838  			struct user_msghdr __user *umsg,
2839  			struct sockaddr __user *uaddr, unsigned int flags)
2840  {
2841  	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2842  }
2843  
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2844  long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2845  		   bool forbid_cmsg_compat)
2846  {
2847  	struct msghdr msg_sys;
2848  	struct socket *sock;
2849  
2850  	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2851  		return -EINVAL;
2852  
2853  	CLASS(fd, f)(fd);
2854  
2855  	if (fd_empty(f))
2856  		return -EBADF;
2857  	sock = sock_from_file(fd_file(f));
2858  	if (unlikely(!sock))
2859  		return -ENOTSOCK;
2860  
2861  	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2862  }
2863  
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2864  SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2865  		unsigned int, flags)
2866  {
2867  	return __sys_recvmsg(fd, msg, flags, true);
2868  }
2869  
2870  /*
2871   *     Linux recvmmsg interface
2872   */
2873  
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2874  static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2875  			  unsigned int vlen, unsigned int flags,
2876  			  struct timespec64 *timeout)
2877  {
2878  	int err = 0, datagrams;
2879  	struct socket *sock;
2880  	struct mmsghdr __user *entry;
2881  	struct compat_mmsghdr __user *compat_entry;
2882  	struct msghdr msg_sys;
2883  	struct timespec64 end_time;
2884  	struct timespec64 timeout64;
2885  
2886  	if (timeout &&
2887  	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2888  				    timeout->tv_nsec))
2889  		return -EINVAL;
2890  
2891  	datagrams = 0;
2892  
2893  	CLASS(fd, f)(fd);
2894  
2895  	if (fd_empty(f))
2896  		return -EBADF;
2897  	sock = sock_from_file(fd_file(f));
2898  	if (unlikely(!sock))
2899  		return -ENOTSOCK;
2900  
2901  	if (likely(!(flags & MSG_ERRQUEUE))) {
2902  		err = sock_error(sock->sk);
2903  		if (err)
2904  			return err;
2905  	}
2906  
2907  	entry = mmsg;
2908  	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2909  
2910  	while (datagrams < vlen) {
2911  		/*
2912  		 * No need to ask LSM for more than the first datagram.
2913  		 */
2914  		if (MSG_CMSG_COMPAT & flags) {
2915  			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2916  					     &msg_sys, flags & ~MSG_WAITFORONE,
2917  					     datagrams);
2918  			if (err < 0)
2919  				break;
2920  			err = __put_user(err, &compat_entry->msg_len);
2921  			++compat_entry;
2922  		} else {
2923  			err = ___sys_recvmsg(sock,
2924  					     (struct user_msghdr __user *)entry,
2925  					     &msg_sys, flags & ~MSG_WAITFORONE,
2926  					     datagrams);
2927  			if (err < 0)
2928  				break;
2929  			err = put_user(err, &entry->msg_len);
2930  			++entry;
2931  		}
2932  
2933  		if (err)
2934  			break;
2935  		++datagrams;
2936  
2937  		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2938  		if (flags & MSG_WAITFORONE)
2939  			flags |= MSG_DONTWAIT;
2940  
2941  		if (timeout) {
2942  			ktime_get_ts64(&timeout64);
2943  			*timeout = timespec64_sub(end_time, timeout64);
2944  			if (timeout->tv_sec < 0) {
2945  				timeout->tv_sec = timeout->tv_nsec = 0;
2946  				break;
2947  			}
2948  
2949  			/* Timeout, return less than vlen datagrams */
2950  			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2951  				break;
2952  		}
2953  
2954  		/* Out of band data, return right away */
2955  		if (msg_sys.msg_flags & MSG_OOB)
2956  			break;
2957  		cond_resched();
2958  	}
2959  
2960  	if (err == 0)
2961  		return datagrams;
2962  
2963  	if (datagrams == 0)
2964  		return err;
2965  
2966  	/*
2967  	 * We may return less entries than requested (vlen) if the
2968  	 * sock is non block and there aren't enough datagrams...
2969  	 */
2970  	if (err != -EAGAIN) {
2971  		/*
2972  		 * ... or  if recvmsg returns an error after we
2973  		 * received some datagrams, where we record the
2974  		 * error to return on the next call or if the
2975  		 * app asks about it using getsockopt(SO_ERROR).
2976  		 */
2977  		WRITE_ONCE(sock->sk->sk_err, -err);
2978  	}
2979  	return datagrams;
2980  }
2981  
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2982  int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2983  		   unsigned int vlen, unsigned int flags,
2984  		   struct __kernel_timespec __user *timeout,
2985  		   struct old_timespec32 __user *timeout32)
2986  {
2987  	int datagrams;
2988  	struct timespec64 timeout_sys;
2989  
2990  	if (timeout && get_timespec64(&timeout_sys, timeout))
2991  		return -EFAULT;
2992  
2993  	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2994  		return -EFAULT;
2995  
2996  	if (!timeout && !timeout32)
2997  		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2998  
2999  	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3000  
3001  	if (datagrams <= 0)
3002  		return datagrams;
3003  
3004  	if (timeout && put_timespec64(&timeout_sys, timeout))
3005  		datagrams = -EFAULT;
3006  
3007  	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3008  		datagrams = -EFAULT;
3009  
3010  	return datagrams;
3011  }
3012  
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3013  SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3014  		unsigned int, vlen, unsigned int, flags,
3015  		struct __kernel_timespec __user *, timeout)
3016  {
3017  	if (flags & MSG_CMSG_COMPAT)
3018  		return -EINVAL;
3019  
3020  	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3021  }
3022  
3023  #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3024  SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3025  		unsigned int, vlen, unsigned int, flags,
3026  		struct old_timespec32 __user *, timeout)
3027  {
3028  	if (flags & MSG_CMSG_COMPAT)
3029  		return -EINVAL;
3030  
3031  	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3032  }
3033  #endif
3034  
3035  #ifdef __ARCH_WANT_SYS_SOCKETCALL
3036  /* Argument list sizes for sys_socketcall */
3037  #define AL(x) ((x) * sizeof(unsigned long))
3038  static const unsigned char nargs[21] = {
3039  	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3040  	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3041  	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3042  	AL(4), AL(5), AL(4)
3043  };
3044  
3045  #undef AL
3046  
3047  /*
3048   *	System call vectors.
3049   *
3050   *	Argument checking cleaned up. Saved 20% in size.
3051   *  This function doesn't need to set the kernel lock because
3052   *  it is set by the callees.
3053   */
3054  
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3055  SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3056  {
3057  	unsigned long a[AUDITSC_ARGS];
3058  	unsigned long a0, a1;
3059  	int err;
3060  	unsigned int len;
3061  
3062  	if (call < 1 || call > SYS_SENDMMSG)
3063  		return -EINVAL;
3064  	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3065  
3066  	len = nargs[call];
3067  	if (len > sizeof(a))
3068  		return -EINVAL;
3069  
3070  	/* copy_from_user should be SMP safe. */
3071  	if (copy_from_user(a, args, len))
3072  		return -EFAULT;
3073  
3074  	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3075  	if (err)
3076  		return err;
3077  
3078  	a0 = a[0];
3079  	a1 = a[1];
3080  
3081  	switch (call) {
3082  	case SYS_SOCKET:
3083  		err = __sys_socket(a0, a1, a[2]);
3084  		break;
3085  	case SYS_BIND:
3086  		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3087  		break;
3088  	case SYS_CONNECT:
3089  		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3090  		break;
3091  	case SYS_LISTEN:
3092  		err = __sys_listen(a0, a1);
3093  		break;
3094  	case SYS_ACCEPT:
3095  		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3096  				    (int __user *)a[2], 0);
3097  		break;
3098  	case SYS_GETSOCKNAME:
3099  		err =
3100  		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3101  				      (int __user *)a[2]);
3102  		break;
3103  	case SYS_GETPEERNAME:
3104  		err =
3105  		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3106  				      (int __user *)a[2]);
3107  		break;
3108  	case SYS_SOCKETPAIR:
3109  		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3110  		break;
3111  	case SYS_SEND:
3112  		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3113  				   NULL, 0);
3114  		break;
3115  	case SYS_SENDTO:
3116  		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3117  				   (struct sockaddr __user *)a[4], a[5]);
3118  		break;
3119  	case SYS_RECV:
3120  		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3121  				     NULL, NULL);
3122  		break;
3123  	case SYS_RECVFROM:
3124  		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3125  				     (struct sockaddr __user *)a[4],
3126  				     (int __user *)a[5]);
3127  		break;
3128  	case SYS_SHUTDOWN:
3129  		err = __sys_shutdown(a0, a1);
3130  		break;
3131  	case SYS_SETSOCKOPT:
3132  		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3133  				       a[4]);
3134  		break;
3135  	case SYS_GETSOCKOPT:
3136  		err =
3137  		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3138  				     (int __user *)a[4]);
3139  		break;
3140  	case SYS_SENDMSG:
3141  		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3142  				    a[2], true);
3143  		break;
3144  	case SYS_SENDMMSG:
3145  		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3146  				     a[3], true);
3147  		break;
3148  	case SYS_RECVMSG:
3149  		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3150  				    a[2], true);
3151  		break;
3152  	case SYS_RECVMMSG:
3153  		if (IS_ENABLED(CONFIG_64BIT))
3154  			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3155  					     a[2], a[3],
3156  					     (struct __kernel_timespec __user *)a[4],
3157  					     NULL);
3158  		else
3159  			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3160  					     a[2], a[3], NULL,
3161  					     (struct old_timespec32 __user *)a[4]);
3162  		break;
3163  	case SYS_ACCEPT4:
3164  		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3165  				    (int __user *)a[2], a[3]);
3166  		break;
3167  	default:
3168  		err = -EINVAL;
3169  		break;
3170  	}
3171  	return err;
3172  }
3173  
3174  #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3175  
3176  /**
3177   *	sock_register - add a socket protocol handler
3178   *	@ops: description of protocol
3179   *
3180   *	This function is called by a protocol handler that wants to
3181   *	advertise its address family, and have it linked into the
3182   *	socket interface. The value ops->family corresponds to the
3183   *	socket system call protocol family.
3184   */
sock_register(const struct net_proto_family * ops)3185  int sock_register(const struct net_proto_family *ops)
3186  {
3187  	int err;
3188  
3189  	if (ops->family >= NPROTO) {
3190  		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3191  		return -ENOBUFS;
3192  	}
3193  
3194  	spin_lock(&net_family_lock);
3195  	if (rcu_dereference_protected(net_families[ops->family],
3196  				      lockdep_is_held(&net_family_lock)))
3197  		err = -EEXIST;
3198  	else {
3199  		rcu_assign_pointer(net_families[ops->family], ops);
3200  		err = 0;
3201  	}
3202  	spin_unlock(&net_family_lock);
3203  
3204  	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3205  	return err;
3206  }
3207  EXPORT_SYMBOL(sock_register);
3208  
3209  /**
3210   *	sock_unregister - remove a protocol handler
3211   *	@family: protocol family to remove
3212   *
3213   *	This function is called by a protocol handler that wants to
3214   *	remove its address family, and have it unlinked from the
3215   *	new socket creation.
3216   *
3217   *	If protocol handler is a module, then it can use module reference
3218   *	counts to protect against new references. If protocol handler is not
3219   *	a module then it needs to provide its own protection in
3220   *	the ops->create routine.
3221   */
sock_unregister(int family)3222  void sock_unregister(int family)
3223  {
3224  	BUG_ON(family < 0 || family >= NPROTO);
3225  
3226  	spin_lock(&net_family_lock);
3227  	RCU_INIT_POINTER(net_families[family], NULL);
3228  	spin_unlock(&net_family_lock);
3229  
3230  	synchronize_rcu();
3231  
3232  	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3233  }
3234  EXPORT_SYMBOL(sock_unregister);
3235  
sock_is_registered(int family)3236  bool sock_is_registered(int family)
3237  {
3238  	return family < NPROTO && rcu_access_pointer(net_families[family]);
3239  }
3240  
sock_init(void)3241  static int __init sock_init(void)
3242  {
3243  	int err;
3244  	/*
3245  	 *      Initialize the network sysctl infrastructure.
3246  	 */
3247  	err = net_sysctl_init();
3248  	if (err)
3249  		goto out;
3250  
3251  	/*
3252  	 *      Initialize skbuff SLAB cache
3253  	 */
3254  	skb_init();
3255  
3256  	/*
3257  	 *      Initialize the protocols module.
3258  	 */
3259  
3260  	init_inodecache();
3261  
3262  	err = register_filesystem(&sock_fs_type);
3263  	if (err)
3264  		goto out;
3265  	sock_mnt = kern_mount(&sock_fs_type);
3266  	if (IS_ERR(sock_mnt)) {
3267  		err = PTR_ERR(sock_mnt);
3268  		goto out_mount;
3269  	}
3270  
3271  	/* The real protocol initialization is performed in later initcalls.
3272  	 */
3273  
3274  #ifdef CONFIG_NETFILTER
3275  	err = netfilter_init();
3276  	if (err)
3277  		goto out;
3278  #endif
3279  
3280  	ptp_classifier_init();
3281  
3282  out:
3283  	return err;
3284  
3285  out_mount:
3286  	unregister_filesystem(&sock_fs_type);
3287  	goto out;
3288  }
3289  
3290  core_initcall(sock_init);	/* early initcall */
3291  
3292  #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3293  void socket_seq_show(struct seq_file *seq)
3294  {
3295  	seq_printf(seq, "sockets: used %d\n",
3296  		   sock_inuse_get(seq->private));
3297  }
3298  #endif				/* CONFIG_PROC_FS */
3299  
3300  /* Handle the fact that while struct ifreq has the same *layout* on
3301   * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3302   * which are handled elsewhere, it still has different *size* due to
3303   * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3304   * resulting in struct ifreq being 32 and 40 bytes respectively).
3305   * As a result, if the struct happens to be at the end of a page and
3306   * the next page isn't readable/writable, we get a fault. To prevent
3307   * that, copy back and forth to the full size.
3308   */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3309  int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3310  {
3311  	if (in_compat_syscall()) {
3312  		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3313  
3314  		memset(ifr, 0, sizeof(*ifr));
3315  		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3316  			return -EFAULT;
3317  
3318  		if (ifrdata)
3319  			*ifrdata = compat_ptr(ifr32->ifr_data);
3320  
3321  		return 0;
3322  	}
3323  
3324  	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3325  		return -EFAULT;
3326  
3327  	if (ifrdata)
3328  		*ifrdata = ifr->ifr_data;
3329  
3330  	return 0;
3331  }
3332  EXPORT_SYMBOL(get_user_ifreq);
3333  
put_user_ifreq(struct ifreq * ifr,void __user * arg)3334  int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3335  {
3336  	size_t size = sizeof(*ifr);
3337  
3338  	if (in_compat_syscall())
3339  		size = sizeof(struct compat_ifreq);
3340  
3341  	if (copy_to_user(arg, ifr, size))
3342  		return -EFAULT;
3343  
3344  	return 0;
3345  }
3346  EXPORT_SYMBOL(put_user_ifreq);
3347  
3348  #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3349  static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3350  {
3351  	compat_uptr_t uptr32;
3352  	struct ifreq ifr;
3353  	void __user *saved;
3354  	int err;
3355  
3356  	if (get_user_ifreq(&ifr, NULL, uifr32))
3357  		return -EFAULT;
3358  
3359  	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3360  		return -EFAULT;
3361  
3362  	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3363  	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3364  
3365  	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3366  	if (!err) {
3367  		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3368  		if (put_user_ifreq(&ifr, uifr32))
3369  			err = -EFAULT;
3370  	}
3371  	return err;
3372  }
3373  
3374  /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3375  static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3376  				 struct compat_ifreq __user *u_ifreq32)
3377  {
3378  	struct ifreq ifreq;
3379  	void __user *data;
3380  
3381  	if (!is_socket_ioctl_cmd(cmd))
3382  		return -ENOTTY;
3383  	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3384  		return -EFAULT;
3385  	ifreq.ifr_data = data;
3386  
3387  	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3388  }
3389  
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3390  static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3391  			 unsigned int cmd, unsigned long arg)
3392  {
3393  	void __user *argp = compat_ptr(arg);
3394  	struct sock *sk = sock->sk;
3395  	struct net *net = sock_net(sk);
3396  	const struct proto_ops *ops;
3397  
3398  	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3399  		return sock_ioctl(file, cmd, (unsigned long)argp);
3400  
3401  	switch (cmd) {
3402  	case SIOCWANDEV:
3403  		return compat_siocwandev(net, argp);
3404  	case SIOCGSTAMP_OLD:
3405  	case SIOCGSTAMPNS_OLD:
3406  		ops = READ_ONCE(sock->ops);
3407  		if (!ops->gettstamp)
3408  			return -ENOIOCTLCMD;
3409  		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3410  				      !COMPAT_USE_64BIT_TIME);
3411  
3412  	case SIOCETHTOOL:
3413  	case SIOCBONDSLAVEINFOQUERY:
3414  	case SIOCBONDINFOQUERY:
3415  	case SIOCSHWTSTAMP:
3416  	case SIOCGHWTSTAMP:
3417  		return compat_ifr_data_ioctl(net, cmd, argp);
3418  
3419  	case FIOSETOWN:
3420  	case SIOCSPGRP:
3421  	case FIOGETOWN:
3422  	case SIOCGPGRP:
3423  	case SIOCBRADDBR:
3424  	case SIOCBRDELBR:
3425  	case SIOCBRADDIF:
3426  	case SIOCBRDELIF:
3427  	case SIOCGIFVLAN:
3428  	case SIOCSIFVLAN:
3429  	case SIOCGSKNS:
3430  	case SIOCGSTAMP_NEW:
3431  	case SIOCGSTAMPNS_NEW:
3432  	case SIOCGIFCONF:
3433  	case SIOCSIFBR:
3434  	case SIOCGIFBR:
3435  		return sock_ioctl(file, cmd, arg);
3436  
3437  	case SIOCGIFFLAGS:
3438  	case SIOCSIFFLAGS:
3439  	case SIOCGIFMAP:
3440  	case SIOCSIFMAP:
3441  	case SIOCGIFMETRIC:
3442  	case SIOCSIFMETRIC:
3443  	case SIOCGIFMTU:
3444  	case SIOCSIFMTU:
3445  	case SIOCGIFMEM:
3446  	case SIOCSIFMEM:
3447  	case SIOCGIFHWADDR:
3448  	case SIOCSIFHWADDR:
3449  	case SIOCADDMULTI:
3450  	case SIOCDELMULTI:
3451  	case SIOCGIFINDEX:
3452  	case SIOCGIFADDR:
3453  	case SIOCSIFADDR:
3454  	case SIOCSIFHWBROADCAST:
3455  	case SIOCDIFADDR:
3456  	case SIOCGIFBRDADDR:
3457  	case SIOCSIFBRDADDR:
3458  	case SIOCGIFDSTADDR:
3459  	case SIOCSIFDSTADDR:
3460  	case SIOCGIFNETMASK:
3461  	case SIOCSIFNETMASK:
3462  	case SIOCSIFPFLAGS:
3463  	case SIOCGIFPFLAGS:
3464  	case SIOCGIFTXQLEN:
3465  	case SIOCSIFTXQLEN:
3466  	case SIOCGIFNAME:
3467  	case SIOCSIFNAME:
3468  	case SIOCGMIIPHY:
3469  	case SIOCGMIIREG:
3470  	case SIOCSMIIREG:
3471  	case SIOCBONDENSLAVE:
3472  	case SIOCBONDRELEASE:
3473  	case SIOCBONDSETHWADDR:
3474  	case SIOCBONDCHANGEACTIVE:
3475  	case SIOCSARP:
3476  	case SIOCGARP:
3477  	case SIOCDARP:
3478  	case SIOCOUTQ:
3479  	case SIOCOUTQNSD:
3480  	case SIOCATMARK:
3481  		return sock_do_ioctl(net, sock, cmd, arg);
3482  	}
3483  
3484  	return -ENOIOCTLCMD;
3485  }
3486  
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3487  static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3488  			      unsigned long arg)
3489  {
3490  	struct socket *sock = file->private_data;
3491  	const struct proto_ops *ops = READ_ONCE(sock->ops);
3492  	int ret = -ENOIOCTLCMD;
3493  	struct sock *sk;
3494  	struct net *net;
3495  
3496  	sk = sock->sk;
3497  	net = sock_net(sk);
3498  
3499  	if (ops->compat_ioctl)
3500  		ret = ops->compat_ioctl(sock, cmd, arg);
3501  
3502  	if (ret == -ENOIOCTLCMD &&
3503  	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3504  		ret = compat_wext_handle_ioctl(net, cmd, arg);
3505  
3506  	if (ret == -ENOIOCTLCMD)
3507  		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3508  
3509  	return ret;
3510  }
3511  #endif
3512  
3513  /**
3514   *	kernel_bind - bind an address to a socket (kernel space)
3515   *	@sock: socket
3516   *	@addr: address
3517   *	@addrlen: length of address
3518   *
3519   *	Returns 0 or an error.
3520   */
3521  
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3522  int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3523  {
3524  	struct sockaddr_storage address;
3525  
3526  	memcpy(&address, addr, addrlen);
3527  
3528  	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3529  					  addrlen);
3530  }
3531  EXPORT_SYMBOL(kernel_bind);
3532  
3533  /**
3534   *	kernel_listen - move socket to listening state (kernel space)
3535   *	@sock: socket
3536   *	@backlog: pending connections queue size
3537   *
3538   *	Returns 0 or an error.
3539   */
3540  
kernel_listen(struct socket * sock,int backlog)3541  int kernel_listen(struct socket *sock, int backlog)
3542  {
3543  	return READ_ONCE(sock->ops)->listen(sock, backlog);
3544  }
3545  EXPORT_SYMBOL(kernel_listen);
3546  
3547  /**
3548   *	kernel_accept - accept a connection (kernel space)
3549   *	@sock: listening socket
3550   *	@newsock: new connected socket
3551   *	@flags: flags
3552   *
3553   *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3554   *	If it fails, @newsock is guaranteed to be %NULL.
3555   *	Returns 0 or an error.
3556   */
3557  
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3558  int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3559  {
3560  	struct sock *sk = sock->sk;
3561  	const struct proto_ops *ops = READ_ONCE(sock->ops);
3562  	struct proto_accept_arg arg = {
3563  		.flags = flags,
3564  		.kern = true,
3565  	};
3566  	int err;
3567  
3568  	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3569  			       newsock);
3570  	if (err < 0)
3571  		goto done;
3572  
3573  	err = ops->accept(sock, *newsock, &arg);
3574  	if (err < 0) {
3575  		sock_release(*newsock);
3576  		*newsock = NULL;
3577  		goto done;
3578  	}
3579  
3580  	(*newsock)->ops = ops;
3581  	__module_get(ops->owner);
3582  
3583  done:
3584  	return err;
3585  }
3586  EXPORT_SYMBOL(kernel_accept);
3587  
3588  /**
3589   *	kernel_connect - connect a socket (kernel space)
3590   *	@sock: socket
3591   *	@addr: address
3592   *	@addrlen: address length
3593   *	@flags: flags (O_NONBLOCK, ...)
3594   *
3595   *	For datagram sockets, @addr is the address to which datagrams are sent
3596   *	by default, and the only address from which datagrams are received.
3597   *	For stream sockets, attempts to connect to @addr.
3598   *	Returns 0 or an error code.
3599   */
3600  
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3601  int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3602  		   int flags)
3603  {
3604  	struct sockaddr_storage address;
3605  
3606  	memcpy(&address, addr, addrlen);
3607  
3608  	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3609  					     addrlen, flags);
3610  }
3611  EXPORT_SYMBOL(kernel_connect);
3612  
3613  /**
3614   *	kernel_getsockname - get the address which the socket is bound (kernel space)
3615   *	@sock: socket
3616   *	@addr: address holder
3617   *
3618   * 	Fills the @addr pointer with the address which the socket is bound.
3619   *	Returns the length of the address in bytes or an error code.
3620   */
3621  
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3622  int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3623  {
3624  	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3625  }
3626  EXPORT_SYMBOL(kernel_getsockname);
3627  
3628  /**
3629   *	kernel_getpeername - get the address which the socket is connected (kernel space)
3630   *	@sock: socket
3631   *	@addr: address holder
3632   *
3633   * 	Fills the @addr pointer with the address which the socket is connected.
3634   *	Returns the length of the address in bytes or an error code.
3635   */
3636  
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3637  int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3638  {
3639  	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3640  }
3641  EXPORT_SYMBOL(kernel_getpeername);
3642  
3643  /**
3644   *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3645   *	@sock: socket
3646   *	@how: connection part
3647   *
3648   *	Returns 0 or an error.
3649   */
3650  
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3651  int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3652  {
3653  	return READ_ONCE(sock->ops)->shutdown(sock, how);
3654  }
3655  EXPORT_SYMBOL(kernel_sock_shutdown);
3656  
3657  /**
3658   *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3659   *	@sk: socket
3660   *
3661   *	This routine returns the IP overhead imposed by a socket i.e.
3662   *	the length of the underlying IP header, depending on whether
3663   *	this is an IPv4 or IPv6 socket and the length from IP options turned
3664   *	on at the socket. Assumes that the caller has a lock on the socket.
3665   */
3666  
kernel_sock_ip_overhead(struct sock * sk)3667  u32 kernel_sock_ip_overhead(struct sock *sk)
3668  {
3669  	struct inet_sock *inet;
3670  	struct ip_options_rcu *opt;
3671  	u32 overhead = 0;
3672  #if IS_ENABLED(CONFIG_IPV6)
3673  	struct ipv6_pinfo *np;
3674  	struct ipv6_txoptions *optv6 = NULL;
3675  #endif /* IS_ENABLED(CONFIG_IPV6) */
3676  
3677  	if (!sk)
3678  		return overhead;
3679  
3680  	switch (sk->sk_family) {
3681  	case AF_INET:
3682  		inet = inet_sk(sk);
3683  		overhead += sizeof(struct iphdr);
3684  		opt = rcu_dereference_protected(inet->inet_opt,
3685  						sock_owned_by_user(sk));
3686  		if (opt)
3687  			overhead += opt->opt.optlen;
3688  		return overhead;
3689  #if IS_ENABLED(CONFIG_IPV6)
3690  	case AF_INET6:
3691  		np = inet6_sk(sk);
3692  		overhead += sizeof(struct ipv6hdr);
3693  		if (np)
3694  			optv6 = rcu_dereference_protected(np->opt,
3695  							  sock_owned_by_user(sk));
3696  		if (optv6)
3697  			overhead += (optv6->opt_flen + optv6->opt_nflen);
3698  		return overhead;
3699  #endif /* IS_ENABLED(CONFIG_IPV6) */
3700  	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3701  		return overhead;
3702  	}
3703  }
3704  EXPORT_SYMBOL(kernel_sock_ip_overhead);
3705