1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET An implementation of the SOCKET network access protocol. 4 * 5 * Version: @(#)socket.c 1.1.93 18/02/95 6 * 7 * Authors: Orest Zborowski, <obz@Kodak.COM> 8 * Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * 11 * Fixes: 12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 13 * shutdown() 14 * Alan Cox : verify_area() fixes 15 * Alan Cox : Removed DDI 16 * Jonathan Kamens : SOCK_DGRAM reconnect bug 17 * Alan Cox : Moved a load of checks to the very 18 * top level. 19 * Alan Cox : Move address structures to/from user 20 * mode above the protocol layers. 21 * Rob Janssen : Allow 0 length sends. 22 * Alan Cox : Asynchronous I/O support (cribbed from the 23 * tty drivers). 24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 25 * Jeff Uphoff : Made max number of sockets command-line 26 * configurable. 27 * Matti Aarnio : Made the number of sockets dynamic, 28 * to be allocated when needed, and mr. 29 * Uphoff's max is used as max to be 30 * allowed to allocate. 31 * Linus : Argh. removed all the socket allocation 32 * altogether: it's in the inode now. 33 * Alan Cox : Made sock_alloc()/sock_release() public 34 * for NetROM and future kernel nfsd type 35 * stuff. 36 * Alan Cox : sendmsg/recvmsg basics. 37 * Tom Dyas : Export net symbols. 38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 39 * Alan Cox : Added thread locking to sys_* calls 40 * for sockets. May have errors at the 41 * moment. 42 * Kevin Buhr : Fixed the dumb errors in the above. 43 * Andi Kleen : Some small cleanups, optimizations, 44 * and fixed a copy_from_user() bug. 45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 46 * Tigran Aivazian : Made listen(2) backlog sanity checks 47 * protocol-independent 48 * 49 * This module is effectively the top level interface to the BSD socket 50 * paradigm. 51 * 52 * Based upon Swansea University Computer Society NET3.039 53 */ 54 55 #include <linux/bpf-cgroup.h> 56 #include <linux/ethtool.h> 57 #include <linux/mm.h> 58 #include <linux/socket.h> 59 #include <linux/file.h> 60 #include <linux/splice.h> 61 #include <linux/net.h> 62 #include <linux/interrupt.h> 63 #include <linux/thread_info.h> 64 #include <linux/rcupdate.h> 65 #include <linux/netdevice.h> 66 #include <linux/proc_fs.h> 67 #include <linux/seq_file.h> 68 #include <linux/mutex.h> 69 #include <linux/if_bridge.h> 70 #include <linux/if_vlan.h> 71 #include <linux/ptp_classify.h> 72 #include <linux/init.h> 73 #include <linux/poll.h> 74 #include <linux/cache.h> 75 #include <linux/module.h> 76 #include <linux/highmem.h> 77 #include <linux/mount.h> 78 #include <linux/pseudo_fs.h> 79 #include <linux/security.h> 80 #include <linux/syscalls.h> 81 #include <linux/compat.h> 82 #include <linux/kmod.h> 83 #include <linux/audit.h> 84 #include <linux/wireless.h> 85 #include <linux/nsproxy.h> 86 #include <linux/magic.h> 87 #include <linux/slab.h> 88 #include <linux/xattr.h> 89 #include <linux/nospec.h> 90 #include <linux/indirect_call_wrapper.h> 91 #include <linux/io_uring/net.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/termios.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 #include <linux/ptp_clock_kernel.h> 111 #include <trace/events/sock.h> 112 113 #include "core/dev.h" 114 115 #ifdef CONFIG_NET_RX_BUSY_POLL 116 unsigned int sysctl_net_busy_read __read_mostly; 117 unsigned int sysctl_net_busy_poll __read_mostly; 118 #endif 119 120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 122 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 123 124 static int sock_close(struct inode *inode, struct file *file); 125 static __poll_t sock_poll(struct file *file, 126 struct poll_table_struct *wait); 127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 128 #ifdef CONFIG_COMPAT 129 static long compat_sock_ioctl(struct file *file, 130 unsigned int cmd, unsigned long arg); 131 #endif 132 static int sock_fasync(int fd, struct file *filp, int on); 133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 134 struct pipe_inode_info *pipe, size_t len, 135 unsigned int flags); 136 static void sock_splice_eof(struct file *file); 137 138 #ifdef CONFIG_PROC_FS sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f) 140 { 141 struct socket *sock = f->private_data; 142 const struct proto_ops *ops = READ_ONCE(sock->ops); 143 144 if (ops->show_fdinfo) 145 ops->show_fdinfo(m, sock); 146 } 147 #else 148 #define sock_show_fdinfo NULL 149 #endif 150 151 /* 152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 153 * in the operation structures but are done directly via the socketcall() multiplexor. 154 */ 155 156 static const struct file_operations socket_file_ops = { 157 .owner = THIS_MODULE, 158 .read_iter = sock_read_iter, 159 .write_iter = sock_write_iter, 160 .poll = sock_poll, 161 .unlocked_ioctl = sock_ioctl, 162 #ifdef CONFIG_COMPAT 163 .compat_ioctl = compat_sock_ioctl, 164 #endif 165 .uring_cmd = io_uring_cmd_sock, 166 .mmap = sock_mmap, 167 .release = sock_close, 168 .fasync = sock_fasync, 169 .splice_write = splice_to_socket, 170 .splice_read = sock_splice_read, 171 .splice_eof = sock_splice_eof, 172 .show_fdinfo = sock_show_fdinfo, 173 }; 174 175 static const char * const pf_family_names[] = { 176 [PF_UNSPEC] = "PF_UNSPEC", 177 [PF_UNIX] = "PF_UNIX/PF_LOCAL", 178 [PF_INET] = "PF_INET", 179 [PF_AX25] = "PF_AX25", 180 [PF_IPX] = "PF_IPX", 181 [PF_APPLETALK] = "PF_APPLETALK", 182 [PF_NETROM] = "PF_NETROM", 183 [PF_BRIDGE] = "PF_BRIDGE", 184 [PF_ATMPVC] = "PF_ATMPVC", 185 [PF_X25] = "PF_X25", 186 [PF_INET6] = "PF_INET6", 187 [PF_ROSE] = "PF_ROSE", 188 [PF_DECnet] = "PF_DECnet", 189 [PF_NETBEUI] = "PF_NETBEUI", 190 [PF_SECURITY] = "PF_SECURITY", 191 [PF_KEY] = "PF_KEY", 192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE", 193 [PF_PACKET] = "PF_PACKET", 194 [PF_ASH] = "PF_ASH", 195 [PF_ECONET] = "PF_ECONET", 196 [PF_ATMSVC] = "PF_ATMSVC", 197 [PF_RDS] = "PF_RDS", 198 [PF_SNA] = "PF_SNA", 199 [PF_IRDA] = "PF_IRDA", 200 [PF_PPPOX] = "PF_PPPOX", 201 [PF_WANPIPE] = "PF_WANPIPE", 202 [PF_LLC] = "PF_LLC", 203 [PF_IB] = "PF_IB", 204 [PF_MPLS] = "PF_MPLS", 205 [PF_CAN] = "PF_CAN", 206 [PF_TIPC] = "PF_TIPC", 207 [PF_BLUETOOTH] = "PF_BLUETOOTH", 208 [PF_IUCV] = "PF_IUCV", 209 [PF_RXRPC] = "PF_RXRPC", 210 [PF_ISDN] = "PF_ISDN", 211 [PF_PHONET] = "PF_PHONET", 212 [PF_IEEE802154] = "PF_IEEE802154", 213 [PF_CAIF] = "PF_CAIF", 214 [PF_ALG] = "PF_ALG", 215 [PF_NFC] = "PF_NFC", 216 [PF_VSOCK] = "PF_VSOCK", 217 [PF_KCM] = "PF_KCM", 218 [PF_QIPCRTR] = "PF_QIPCRTR", 219 [PF_SMC] = "PF_SMC", 220 [PF_XDP] = "PF_XDP", 221 [PF_MCTP] = "PF_MCTP", 222 }; 223 224 /* 225 * The protocol list. Each protocol is registered in here. 226 */ 227 228 static DEFINE_SPINLOCK(net_family_lock); 229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 230 231 /* 232 * Support routines. 233 * Move socket addresses back and forth across the kernel/user 234 * divide and look after the messy bits. 235 */ 236 237 /** 238 * move_addr_to_kernel - copy a socket address into kernel space 239 * @uaddr: Address in user space 240 * @kaddr: Address in kernel space 241 * @ulen: Length in user space 242 * 243 * The address is copied into kernel space. If the provided address is 244 * too long an error code of -EINVAL is returned. If the copy gives 245 * invalid addresses -EFAULT is returned. On a success 0 is returned. 246 */ 247 move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 249 { 250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 251 return -EINVAL; 252 if (ulen == 0) 253 return 0; 254 if (copy_from_user(kaddr, uaddr, ulen)) 255 return -EFAULT; 256 return audit_sockaddr(ulen, kaddr); 257 } 258 259 /** 260 * move_addr_to_user - copy an address to user space 261 * @kaddr: kernel space address 262 * @klen: length of address in kernel 263 * @uaddr: user space address 264 * @ulen: pointer to user length field 265 * 266 * The value pointed to by ulen on entry is the buffer length available. 267 * This is overwritten with the buffer space used. -EINVAL is returned 268 * if an overlong buffer is specified or a negative buffer size. -EFAULT 269 * is returned if either the buffer or the length field are not 270 * accessible. 271 * After copying the data up to the limit the user specifies, the true 272 * length of the data is written over the length limit the user 273 * specified. Zero is returned for a success. 274 */ 275 move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 277 void __user *uaddr, int __user *ulen) 278 { 279 int err; 280 int len; 281 282 BUG_ON(klen > sizeof(struct sockaddr_storage)); 283 err = get_user(len, ulen); 284 if (err) 285 return err; 286 if (len > klen) 287 len = klen; 288 if (len < 0) 289 return -EINVAL; 290 if (len) { 291 if (audit_sockaddr(klen, kaddr)) 292 return -ENOMEM; 293 if (copy_to_user(uaddr, kaddr, len)) 294 return -EFAULT; 295 } 296 /* 297 * "fromlen shall refer to the value before truncation.." 298 * 1003.1g 299 */ 300 return __put_user(klen, ulen); 301 } 302 303 static struct kmem_cache *sock_inode_cachep __ro_after_init; 304 sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb) 306 { 307 struct socket_alloc *ei; 308 309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL); 310 if (!ei) 311 return NULL; 312 init_waitqueue_head(&ei->socket.wq.wait); 313 ei->socket.wq.fasync_list = NULL; 314 ei->socket.wq.flags = 0; 315 316 ei->socket.state = SS_UNCONNECTED; 317 ei->socket.flags = 0; 318 ei->socket.ops = NULL; 319 ei->socket.sk = NULL; 320 ei->socket.file = NULL; 321 322 return &ei->vfs_inode; 323 } 324 sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode) 326 { 327 struct socket_alloc *ei; 328 329 ei = container_of(inode, struct socket_alloc, vfs_inode); 330 kmem_cache_free(sock_inode_cachep, ei); 331 } 332 init_once(void * foo)333 static void init_once(void *foo) 334 { 335 struct socket_alloc *ei = (struct socket_alloc *)foo; 336 337 inode_init_once(&ei->vfs_inode); 338 } 339 init_inodecache(void)340 static void init_inodecache(void) 341 { 342 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 343 sizeof(struct socket_alloc), 344 0, 345 (SLAB_HWCACHE_ALIGN | 346 SLAB_RECLAIM_ACCOUNT | 347 SLAB_ACCOUNT), 348 init_once); 349 BUG_ON(sock_inode_cachep == NULL); 350 } 351 352 static const struct super_operations sockfs_ops = { 353 .alloc_inode = sock_alloc_inode, 354 .free_inode = sock_free_inode, 355 .statfs = simple_statfs, 356 }; 357 358 /* 359 * sockfs_dname() is called from d_path(). 360 */ sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 362 { 363 return dynamic_dname(buffer, buflen, "socket:[%lu]", 364 d_inode(dentry)->i_ino); 365 } 366 367 static const struct dentry_operations sockfs_dentry_operations = { 368 .d_dname = sockfs_dname, 369 }; 370 sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler, 372 struct dentry *dentry, struct inode *inode, 373 const char *suffix, void *value, size_t size) 374 { 375 if (value) { 376 if (dentry->d_name.len + 1 > size) 377 return -ERANGE; 378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 379 } 380 return dentry->d_name.len + 1; 381 } 382 383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 386 387 static const struct xattr_handler sockfs_xattr_handler = { 388 .name = XATTR_NAME_SOCKPROTONAME, 389 .get = sockfs_xattr_get, 390 }; 391 sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 393 struct mnt_idmap *idmap, 394 struct dentry *dentry, struct inode *inode, 395 const char *suffix, const void *value, 396 size_t size, int flags) 397 { 398 /* Handled by LSM. */ 399 return -EAGAIN; 400 } 401 402 static const struct xattr_handler sockfs_security_xattr_handler = { 403 .prefix = XATTR_SECURITY_PREFIX, 404 .set = sockfs_security_xattr_set, 405 }; 406 407 static const struct xattr_handler * const sockfs_xattr_handlers[] = { 408 &sockfs_xattr_handler, 409 &sockfs_security_xattr_handler, 410 NULL 411 }; 412 sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc) 414 { 415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC); 416 if (!ctx) 417 return -ENOMEM; 418 ctx->ops = &sockfs_ops; 419 ctx->dops = &sockfs_dentry_operations; 420 ctx->xattr = sockfs_xattr_handlers; 421 return 0; 422 } 423 424 static struct vfsmount *sock_mnt __read_mostly; 425 426 static struct file_system_type sock_fs_type = { 427 .name = "sockfs", 428 .init_fs_context = sockfs_init_fs_context, 429 .kill_sb = kill_anon_super, 430 }; 431 432 /* 433 * Obtains the first available file descriptor and sets it up for use. 434 * 435 * These functions create file structures and maps them to fd space 436 * of the current process. On success it returns file descriptor 437 * and file struct implicitly stored in sock->file. 438 * Note that another thread may close file descriptor before we return 439 * from this function. We use the fact that now we do not refer 440 * to socket after mapping. If one day we will need it, this 441 * function will increment ref. count on file by 1. 442 * 443 * In any case returned fd MAY BE not valid! 444 * This race condition is unavoidable 445 * with shared fd spaces, we cannot solve it inside kernel, 446 * but we take care of internal coherence yet. 447 */ 448 449 /** 450 * sock_alloc_file - Bind a &socket to a &file 451 * @sock: socket 452 * @flags: file status flags 453 * @dname: protocol name 454 * 455 * Returns the &file bound with @sock, implicitly storing it 456 * in sock->file. If dname is %NULL, sets to "". 457 * 458 * On failure @sock is released, and an ERR pointer is returned. 459 * 460 * This function uses GFP_KERNEL internally. 461 */ 462 sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 464 { 465 struct file *file; 466 467 if (!dname) 468 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 469 470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 471 O_RDWR | (flags & O_NONBLOCK), 472 &socket_file_ops); 473 if (IS_ERR(file)) { 474 sock_release(sock); 475 return file; 476 } 477 478 file->f_mode |= FMODE_NOWAIT; 479 sock->file = file; 480 file->private_data = sock; 481 stream_open(SOCK_INODE(sock), file); 482 /* 483 * Disable permission and pre-content events, but enable legacy 484 * inotify events for legacy users. 485 */ 486 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM); 487 return file; 488 } 489 EXPORT_SYMBOL(sock_alloc_file); 490 sock_map_fd(struct socket * sock,int flags)491 static int sock_map_fd(struct socket *sock, int flags) 492 { 493 struct file *newfile; 494 int fd = get_unused_fd_flags(flags); 495 if (unlikely(fd < 0)) { 496 sock_release(sock); 497 return fd; 498 } 499 500 newfile = sock_alloc_file(sock, flags, NULL); 501 if (!IS_ERR(newfile)) { 502 fd_install(fd, newfile); 503 return fd; 504 } 505 506 put_unused_fd(fd); 507 return PTR_ERR(newfile); 508 } 509 510 /** 511 * sock_from_file - Return the &socket bounded to @file. 512 * @file: file 513 * 514 * On failure returns %NULL. 515 */ 516 sock_from_file(struct file * file)517 struct socket *sock_from_file(struct file *file) 518 { 519 if (likely(file->f_op == &socket_file_ops)) 520 return file->private_data; /* set in sock_alloc_file */ 521 522 return NULL; 523 } 524 EXPORT_SYMBOL(sock_from_file); 525 526 /** 527 * sockfd_lookup - Go from a file number to its socket slot 528 * @fd: file handle 529 * @err: pointer to an error code return 530 * 531 * The file handle passed in is locked and the socket it is bound 532 * to is returned. If an error occurs the err pointer is overwritten 533 * with a negative errno code and NULL is returned. The function checks 534 * for both invalid handles and passing a handle which is not a socket. 535 * 536 * On a success the socket object pointer is returned. 537 */ 538 sockfd_lookup(int fd,int * err)539 struct socket *sockfd_lookup(int fd, int *err) 540 { 541 struct file *file; 542 struct socket *sock; 543 544 file = fget(fd); 545 if (!file) { 546 *err = -EBADF; 547 return NULL; 548 } 549 550 sock = sock_from_file(file); 551 if (!sock) { 552 *err = -ENOTSOCK; 553 fput(file); 554 } 555 return sock; 556 } 557 EXPORT_SYMBOL(sockfd_lookup); 558 sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 560 size_t size) 561 { 562 ssize_t len; 563 ssize_t used = 0; 564 565 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 566 if (len < 0) 567 return len; 568 used += len; 569 if (buffer) { 570 if (size < used) 571 return -ERANGE; 572 buffer += len; 573 } 574 575 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 576 used += len; 577 if (buffer) { 578 if (size < used) 579 return -ERANGE; 580 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 581 buffer += len; 582 } 583 584 return used; 585 } 586 sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587 static int sockfs_setattr(struct mnt_idmap *idmap, 588 struct dentry *dentry, struct iattr *iattr) 589 { 590 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr); 591 592 if (!err && (iattr->ia_valid & ATTR_UID)) { 593 struct socket *sock = SOCKET_I(d_inode(dentry)); 594 595 if (sock->sk) 596 sock->sk->sk_uid = iattr->ia_uid; 597 else 598 err = -ENOENT; 599 } 600 601 return err; 602 } 603 604 static const struct inode_operations sockfs_inode_ops = { 605 .listxattr = sockfs_listxattr, 606 .setattr = sockfs_setattr, 607 }; 608 609 /** 610 * sock_alloc - allocate a socket 611 * 612 * Allocate a new inode and socket object. The two are bound together 613 * and initialised. The socket is then returned. If we are out of inodes 614 * NULL is returned. This functions uses GFP_KERNEL internally. 615 */ 616 sock_alloc(void)617 struct socket *sock_alloc(void) 618 { 619 struct inode *inode; 620 struct socket *sock; 621 622 inode = new_inode_pseudo(sock_mnt->mnt_sb); 623 if (!inode) 624 return NULL; 625 626 sock = SOCKET_I(inode); 627 628 inode->i_ino = get_next_ino(); 629 inode->i_mode = S_IFSOCK | S_IRWXUGO; 630 inode->i_uid = current_fsuid(); 631 inode->i_gid = current_fsgid(); 632 inode->i_op = &sockfs_inode_ops; 633 634 return sock; 635 } 636 EXPORT_SYMBOL(sock_alloc); 637 __sock_release(struct socket * sock,struct inode * inode)638 static void __sock_release(struct socket *sock, struct inode *inode) 639 { 640 const struct proto_ops *ops = READ_ONCE(sock->ops); 641 642 if (ops) { 643 struct module *owner = ops->owner; 644 645 if (inode) 646 inode_lock(inode); 647 ops->release(sock); 648 sock->sk = NULL; 649 if (inode) 650 inode_unlock(inode); 651 sock->ops = NULL; 652 module_put(owner); 653 } 654 655 if (sock->wq.fasync_list) 656 pr_err("%s: fasync list not empty!\n", __func__); 657 658 if (!sock->file) { 659 iput(SOCK_INODE(sock)); 660 return; 661 } 662 sock->file = NULL; 663 } 664 665 /** 666 * sock_release - close a socket 667 * @sock: socket to close 668 * 669 * The socket is released from the protocol stack if it has a release 670 * callback, and the inode is then released if the socket is bound to 671 * an inode not a file. 672 */ sock_release(struct socket * sock)673 void sock_release(struct socket *sock) 674 { 675 __sock_release(sock, NULL); 676 } 677 EXPORT_SYMBOL(sock_release); 678 __sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags) 680 { 681 u8 flags = *tx_flags; 682 683 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 684 flags |= SKBTX_HW_TSTAMP_NOBPF; 685 686 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 687 flags |= SKBTX_SW_TSTAMP; 688 689 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 690 flags |= SKBTX_SCHED_TSTAMP; 691 692 if (tsflags & SOF_TIMESTAMPING_TX_COMPLETION) 693 flags |= SKBTX_COMPLETION_TSTAMP; 694 695 *tx_flags = flags; 696 } 697 EXPORT_SYMBOL(__sock_tx_timestamp); 698 699 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *, 700 size_t)); 701 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *, 702 size_t)); 703 call_trace_sock_send_length(struct sock * sk,int ret,int flags)704 static noinline void call_trace_sock_send_length(struct sock *sk, int ret, 705 int flags) 706 { 707 trace_sock_send_length(sk, ret, 0); 708 } 709 sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)710 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 711 { 712 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg, 713 inet_sendmsg, sock, msg, 714 msg_data_left(msg)); 715 BUG_ON(ret == -EIOCBQUEUED); 716 717 if (trace_sock_send_length_enabled()) 718 call_trace_sock_send_length(sock->sk, ret, 0); 719 return ret; 720 } 721 __sock_sendmsg(struct socket * sock,struct msghdr * msg)722 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg) 723 { 724 int err = security_socket_sendmsg(sock, msg, 725 msg_data_left(msg)); 726 727 return err ?: sock_sendmsg_nosec(sock, msg); 728 } 729 730 /** 731 * sock_sendmsg - send a message through @sock 732 * @sock: socket 733 * @msg: message to send 734 * 735 * Sends @msg through @sock, passing through LSM. 736 * Returns the number of bytes sent, or an error code. 737 */ sock_sendmsg(struct socket * sock,struct msghdr * msg)738 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 739 { 740 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name; 741 struct sockaddr_storage address; 742 int save_len = msg->msg_namelen; 743 int ret; 744 745 if (msg->msg_name) { 746 memcpy(&address, msg->msg_name, msg->msg_namelen); 747 msg->msg_name = &address; 748 } 749 750 ret = __sock_sendmsg(sock, msg); 751 msg->msg_name = save_addr; 752 msg->msg_namelen = save_len; 753 754 return ret; 755 } 756 EXPORT_SYMBOL(sock_sendmsg); 757 758 /** 759 * kernel_sendmsg - send a message through @sock (kernel-space) 760 * @sock: socket 761 * @msg: message header 762 * @vec: kernel vec 763 * @num: vec array length 764 * @size: total message data size 765 * 766 * Builds the message data with @vec and sends it through @sock. 767 * Returns the number of bytes sent, or an error code. 768 */ 769 kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)770 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 771 struct kvec *vec, size_t num, size_t size) 772 { 773 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size); 774 return sock_sendmsg(sock, msg); 775 } 776 EXPORT_SYMBOL(kernel_sendmsg); 777 skb_is_err_queue(const struct sk_buff * skb)778 static bool skb_is_err_queue(const struct sk_buff *skb) 779 { 780 /* pkt_type of skbs enqueued on the error queue are set to 781 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 782 * in recvmsg, since skbs received on a local socket will never 783 * have a pkt_type of PACKET_OUTGOING. 784 */ 785 return skb->pkt_type == PACKET_OUTGOING; 786 } 787 788 /* On transmit, software and hardware timestamps are returned independently. 789 * As the two skb clones share the hardware timestamp, which may be updated 790 * before the software timestamp is received, a hardware TX timestamp may be 791 * returned only if there is no software TX timestamp. Ignore false software 792 * timestamps, which may be made in the __sock_recv_timestamp() call when the 793 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 794 * hardware timestamp. 795 */ skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)796 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 797 { 798 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 799 } 800 get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)801 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index) 802 { 803 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC; 804 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 805 struct net_device *orig_dev; 806 ktime_t hwtstamp; 807 808 rcu_read_lock(); 809 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 810 if (orig_dev) { 811 *if_index = orig_dev->ifindex; 812 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles); 813 } else { 814 hwtstamp = shhwtstamps->hwtstamp; 815 } 816 rcu_read_unlock(); 817 818 return hwtstamp; 819 } 820 put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)821 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb, 822 int if_index) 823 { 824 struct scm_ts_pktinfo ts_pktinfo; 825 struct net_device *orig_dev; 826 827 if (!skb_mac_header_was_set(skb)) 828 return; 829 830 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 831 832 if (!if_index) { 833 rcu_read_lock(); 834 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 835 if (orig_dev) 836 if_index = orig_dev->ifindex; 837 rcu_read_unlock(); 838 } 839 ts_pktinfo.if_index = if_index; 840 841 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 842 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 843 sizeof(ts_pktinfo), &ts_pktinfo); 844 } 845 846 /* 847 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 848 */ __sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)849 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 850 struct sk_buff *skb) 851 { 852 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 853 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 854 struct scm_timestamping_internal tss; 855 int empty = 1, false_tstamp = 0; 856 struct skb_shared_hwtstamps *shhwtstamps = 857 skb_hwtstamps(skb); 858 int if_index; 859 ktime_t hwtstamp; 860 u32 tsflags; 861 862 /* Race occurred between timestamp enabling and packet 863 receiving. Fill in the current time for now. */ 864 if (need_software_tstamp && skb->tstamp == 0) { 865 __net_timestamp(skb); 866 false_tstamp = 1; 867 } 868 869 if (need_software_tstamp) { 870 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 871 if (new_tstamp) { 872 struct __kernel_sock_timeval tv; 873 874 skb_get_new_timestamp(skb, &tv); 875 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 876 sizeof(tv), &tv); 877 } else { 878 struct __kernel_old_timeval tv; 879 880 skb_get_timestamp(skb, &tv); 881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 882 sizeof(tv), &tv); 883 } 884 } else { 885 if (new_tstamp) { 886 struct __kernel_timespec ts; 887 888 skb_get_new_timestampns(skb, &ts); 889 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 890 sizeof(ts), &ts); 891 } else { 892 struct __kernel_old_timespec ts; 893 894 skb_get_timestampns(skb, &ts); 895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 896 sizeof(ts), &ts); 897 } 898 } 899 } 900 901 memset(&tss, 0, sizeof(tss)); 902 tsflags = READ_ONCE(sk->sk_tsflags); 903 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE && 904 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE || 905 skb_is_err_queue(skb) || 906 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 907 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 908 empty = 0; 909 if (shhwtstamps && 910 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE && 911 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE || 912 skb_is_err_queue(skb) || 913 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) && 914 !skb_is_swtx_tstamp(skb, false_tstamp)) { 915 if_index = 0; 916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV) 917 hwtstamp = get_timestamp(sk, skb, &if_index); 918 else 919 hwtstamp = shhwtstamps->hwtstamp; 920 921 if (tsflags & SOF_TIMESTAMPING_BIND_PHC) 922 hwtstamp = ptp_convert_timestamp(&hwtstamp, 923 READ_ONCE(sk->sk_bind_phc)); 924 925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) { 926 empty = 0; 927 928 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 929 !skb_is_err_queue(skb)) 930 put_ts_pktinfo(msg, skb, if_index); 931 } 932 } 933 if (!empty) { 934 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 935 put_cmsg_scm_timestamping64(msg, &tss); 936 else 937 put_cmsg_scm_timestamping(msg, &tss); 938 939 if (skb_is_err_queue(skb) && skb->len && 940 SKB_EXT_ERR(skb)->opt_stats) 941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 942 skb->len, skb->data); 943 } 944 } 945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 946 947 #ifdef CONFIG_WIRELESS __sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)948 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 949 struct sk_buff *skb) 950 { 951 int ack; 952 953 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 954 return; 955 if (!skb->wifi_acked_valid) 956 return; 957 958 ack = skb->wifi_acked; 959 960 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 961 } 962 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 963 #endif 964 sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)965 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 966 struct sk_buff *skb) 967 { 968 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 969 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 970 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 971 } 972 sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)973 static void sock_recv_mark(struct msghdr *msg, struct sock *sk, 974 struct sk_buff *skb) 975 { 976 if (sock_flag(sk, SOCK_RCVMARK) && skb) { 977 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */ 978 __u32 mark = skb->mark; 979 980 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark); 981 } 982 } 983 sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)984 static void sock_recv_priority(struct msghdr *msg, struct sock *sk, 985 struct sk_buff *skb) 986 { 987 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) { 988 __u32 priority = skb->priority; 989 990 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority); 991 } 992 } 993 __sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)994 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk, 995 struct sk_buff *skb) 996 { 997 sock_recv_timestamp(msg, sk, skb); 998 sock_recv_drops(msg, sk, skb); 999 sock_recv_mark(msg, sk, skb); 1000 sock_recv_priority(msg, sk, skb); 1001 } 1002 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs); 1003 1004 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *, 1005 size_t, int)); 1006 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *, 1007 size_t, int)); 1008 call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1009 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags) 1010 { 1011 trace_sock_recv_length(sk, ret, flags); 1012 } 1013 sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1014 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 1015 int flags) 1016 { 1017 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg, 1018 inet6_recvmsg, 1019 inet_recvmsg, sock, msg, 1020 msg_data_left(msg), flags); 1021 if (trace_sock_recv_length_enabled()) 1022 call_trace_sock_recv_length(sock->sk, ret, flags); 1023 return ret; 1024 } 1025 1026 /** 1027 * sock_recvmsg - receive a message from @sock 1028 * @sock: socket 1029 * @msg: message to receive 1030 * @flags: message flags 1031 * 1032 * Receives @msg from @sock, passing through LSM. Returns the total number 1033 * of bytes received, or an error. 1034 */ sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1035 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 1036 { 1037 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 1038 1039 return err ?: sock_recvmsg_nosec(sock, msg, flags); 1040 } 1041 EXPORT_SYMBOL(sock_recvmsg); 1042 1043 /** 1044 * kernel_recvmsg - Receive a message from a socket (kernel space) 1045 * @sock: The socket to receive the message from 1046 * @msg: Received message 1047 * @vec: Input s/g array for message data 1048 * @num: Size of input s/g array 1049 * @size: Number of bytes to read 1050 * @flags: Message flags (MSG_DONTWAIT, etc...) 1051 * 1052 * On return the msg structure contains the scatter/gather array passed in the 1053 * vec argument. The array is modified so that it consists of the unfilled 1054 * portion of the original array. 1055 * 1056 * The returned value is the total number of bytes received, or an error. 1057 */ 1058 kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1059 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 1060 struct kvec *vec, size_t num, size_t size, int flags) 1061 { 1062 msg->msg_control_is_user = false; 1063 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size); 1064 return sock_recvmsg(sock, msg, flags); 1065 } 1066 EXPORT_SYMBOL(kernel_recvmsg); 1067 sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1068 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 1069 struct pipe_inode_info *pipe, size_t len, 1070 unsigned int flags) 1071 { 1072 struct socket *sock = file->private_data; 1073 const struct proto_ops *ops; 1074 1075 ops = READ_ONCE(sock->ops); 1076 if (unlikely(!ops->splice_read)) 1077 return copy_splice_read(file, ppos, pipe, len, flags); 1078 1079 return ops->splice_read(sock, ppos, pipe, len, flags); 1080 } 1081 sock_splice_eof(struct file * file)1082 static void sock_splice_eof(struct file *file) 1083 { 1084 struct socket *sock = file->private_data; 1085 const struct proto_ops *ops; 1086 1087 ops = READ_ONCE(sock->ops); 1088 if (ops->splice_eof) 1089 ops->splice_eof(sock); 1090 } 1091 sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1092 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 1093 { 1094 struct file *file = iocb->ki_filp; 1095 struct socket *sock = file->private_data; 1096 struct msghdr msg = {.msg_iter = *to, 1097 .msg_iocb = iocb}; 1098 ssize_t res; 1099 1100 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1101 msg.msg_flags = MSG_DONTWAIT; 1102 1103 if (iocb->ki_pos != 0) 1104 return -ESPIPE; 1105 1106 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 1107 return 0; 1108 1109 res = sock_recvmsg(sock, &msg, msg.msg_flags); 1110 *to = msg.msg_iter; 1111 return res; 1112 } 1113 sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1114 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 1115 { 1116 struct file *file = iocb->ki_filp; 1117 struct socket *sock = file->private_data; 1118 struct msghdr msg = {.msg_iter = *from, 1119 .msg_iocb = iocb}; 1120 ssize_t res; 1121 1122 if (iocb->ki_pos != 0) 1123 return -ESPIPE; 1124 1125 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT)) 1126 msg.msg_flags = MSG_DONTWAIT; 1127 1128 if (sock->type == SOCK_SEQPACKET) 1129 msg.msg_flags |= MSG_EOR; 1130 1131 res = __sock_sendmsg(sock, &msg); 1132 *from = msg.msg_iter; 1133 return res; 1134 } 1135 1136 /* 1137 * Atomic setting of ioctl hooks to avoid race 1138 * with module unload. 1139 */ 1140 1141 static DEFINE_MUTEX(br_ioctl_mutex); 1142 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd, 1143 void __user *uarg); 1144 brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1145 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd, 1146 void __user *uarg)) 1147 { 1148 mutex_lock(&br_ioctl_mutex); 1149 br_ioctl_hook = hook; 1150 mutex_unlock(&br_ioctl_mutex); 1151 } 1152 EXPORT_SYMBOL(brioctl_set); 1153 br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1154 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg) 1155 { 1156 int err = -ENOPKG; 1157 1158 if (!br_ioctl_hook) 1159 request_module("bridge"); 1160 1161 mutex_lock(&br_ioctl_mutex); 1162 if (br_ioctl_hook) 1163 err = br_ioctl_hook(net, cmd, uarg); 1164 mutex_unlock(&br_ioctl_mutex); 1165 1166 return err; 1167 } 1168 1169 static DEFINE_MUTEX(vlan_ioctl_mutex); 1170 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1171 vlan_ioctl_set(int (* hook)(struct net *,void __user *))1172 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1173 { 1174 mutex_lock(&vlan_ioctl_mutex); 1175 vlan_ioctl_hook = hook; 1176 mutex_unlock(&vlan_ioctl_mutex); 1177 } 1178 EXPORT_SYMBOL(vlan_ioctl_set); 1179 sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1180 static long sock_do_ioctl(struct net *net, struct socket *sock, 1181 unsigned int cmd, unsigned long arg) 1182 { 1183 const struct proto_ops *ops = READ_ONCE(sock->ops); 1184 struct ifreq ifr; 1185 bool need_copyout; 1186 int err; 1187 void __user *argp = (void __user *)arg; 1188 void __user *data; 1189 1190 err = ops->ioctl(sock, cmd, arg); 1191 1192 /* 1193 * If this ioctl is unknown try to hand it down 1194 * to the NIC driver. 1195 */ 1196 if (err != -ENOIOCTLCMD) 1197 return err; 1198 1199 if (!is_socket_ioctl_cmd(cmd)) 1200 return -ENOTTY; 1201 1202 if (get_user_ifreq(&ifr, &data, argp)) 1203 return -EFAULT; 1204 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1205 if (!err && need_copyout) 1206 if (put_user_ifreq(&ifr, argp)) 1207 return -EFAULT; 1208 1209 return err; 1210 } 1211 1212 /* 1213 * With an ioctl, arg may well be a user mode pointer, but we don't know 1214 * what to do with it - that's up to the protocol still. 1215 */ 1216 sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1217 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1218 { 1219 const struct proto_ops *ops; 1220 struct socket *sock; 1221 struct sock *sk; 1222 void __user *argp = (void __user *)arg; 1223 int pid, err; 1224 struct net *net; 1225 1226 sock = file->private_data; 1227 ops = READ_ONCE(sock->ops); 1228 sk = sock->sk; 1229 net = sock_net(sk); 1230 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1231 struct ifreq ifr; 1232 void __user *data; 1233 bool need_copyout; 1234 if (get_user_ifreq(&ifr, &data, argp)) 1235 return -EFAULT; 1236 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout); 1237 if (!err && need_copyout) 1238 if (put_user_ifreq(&ifr, argp)) 1239 return -EFAULT; 1240 } else 1241 #ifdef CONFIG_WEXT_CORE 1242 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1243 err = wext_handle_ioctl(net, cmd, argp); 1244 } else 1245 #endif 1246 switch (cmd) { 1247 case FIOSETOWN: 1248 case SIOCSPGRP: 1249 err = -EFAULT; 1250 if (get_user(pid, (int __user *)argp)) 1251 break; 1252 err = f_setown(sock->file, pid, 1); 1253 break; 1254 case FIOGETOWN: 1255 case SIOCGPGRP: 1256 err = put_user(f_getown(sock->file), 1257 (int __user *)argp); 1258 break; 1259 case SIOCGIFBR: 1260 case SIOCSIFBR: 1261 case SIOCBRADDBR: 1262 case SIOCBRDELBR: 1263 case SIOCBRADDIF: 1264 case SIOCBRDELIF: 1265 err = br_ioctl_call(net, cmd, argp); 1266 break; 1267 case SIOCGIFVLAN: 1268 case SIOCSIFVLAN: 1269 err = -ENOPKG; 1270 if (!vlan_ioctl_hook) 1271 request_module("8021q"); 1272 1273 mutex_lock(&vlan_ioctl_mutex); 1274 if (vlan_ioctl_hook) 1275 err = vlan_ioctl_hook(net, argp); 1276 mutex_unlock(&vlan_ioctl_mutex); 1277 break; 1278 case SIOCGSKNS: 1279 err = -EPERM; 1280 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1281 break; 1282 1283 err = open_related_ns(&net->ns, get_net_ns); 1284 break; 1285 case SIOCGSTAMP_OLD: 1286 case SIOCGSTAMPNS_OLD: 1287 if (!ops->gettstamp) { 1288 err = -ENOIOCTLCMD; 1289 break; 1290 } 1291 err = ops->gettstamp(sock, argp, 1292 cmd == SIOCGSTAMP_OLD, 1293 !IS_ENABLED(CONFIG_64BIT)); 1294 break; 1295 case SIOCGSTAMP_NEW: 1296 case SIOCGSTAMPNS_NEW: 1297 if (!ops->gettstamp) { 1298 err = -ENOIOCTLCMD; 1299 break; 1300 } 1301 err = ops->gettstamp(sock, argp, 1302 cmd == SIOCGSTAMP_NEW, 1303 false); 1304 break; 1305 1306 case SIOCGIFCONF: 1307 err = dev_ifconf(net, argp); 1308 break; 1309 1310 default: 1311 err = sock_do_ioctl(net, sock, cmd, arg); 1312 break; 1313 } 1314 return err; 1315 } 1316 1317 /** 1318 * sock_create_lite - creates a socket 1319 * @family: protocol family (AF_INET, ...) 1320 * @type: communication type (SOCK_STREAM, ...) 1321 * @protocol: protocol (0, ...) 1322 * @res: new socket 1323 * 1324 * Creates a new socket and assigns it to @res, passing through LSM. 1325 * The new socket initialization is not complete, see kernel_accept(). 1326 * Returns 0 or an error. On failure @res is set to %NULL. 1327 * This function internally uses GFP_KERNEL. 1328 */ 1329 sock_create_lite(int family,int type,int protocol,struct socket ** res)1330 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1331 { 1332 int err; 1333 struct socket *sock = NULL; 1334 1335 err = security_socket_create(family, type, protocol, 1); 1336 if (err) 1337 goto out; 1338 1339 sock = sock_alloc(); 1340 if (!sock) { 1341 err = -ENOMEM; 1342 goto out; 1343 } 1344 1345 sock->type = type; 1346 err = security_socket_post_create(sock, family, type, protocol, 1); 1347 if (err) 1348 goto out_release; 1349 1350 out: 1351 *res = sock; 1352 return err; 1353 out_release: 1354 sock_release(sock); 1355 sock = NULL; 1356 goto out; 1357 } 1358 EXPORT_SYMBOL(sock_create_lite); 1359 1360 /* No kernel lock held - perfect */ sock_poll(struct file * file,poll_table * wait)1361 static __poll_t sock_poll(struct file *file, poll_table *wait) 1362 { 1363 struct socket *sock = file->private_data; 1364 const struct proto_ops *ops = READ_ONCE(sock->ops); 1365 __poll_t events = poll_requested_events(wait), flag = 0; 1366 1367 if (!ops->poll) 1368 return 0; 1369 1370 if (sk_can_busy_loop(sock->sk)) { 1371 /* poll once if requested by the syscall */ 1372 if (events & POLL_BUSY_LOOP) 1373 sk_busy_loop(sock->sk, 1); 1374 1375 /* if this socket can poll_ll, tell the system call */ 1376 flag = POLL_BUSY_LOOP; 1377 } 1378 1379 return ops->poll(file, sock, wait) | flag; 1380 } 1381 sock_mmap(struct file * file,struct vm_area_struct * vma)1382 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1383 { 1384 struct socket *sock = file->private_data; 1385 1386 return READ_ONCE(sock->ops)->mmap(file, sock, vma); 1387 } 1388 sock_close(struct inode * inode,struct file * filp)1389 static int sock_close(struct inode *inode, struct file *filp) 1390 { 1391 __sock_release(SOCKET_I(inode), inode); 1392 return 0; 1393 } 1394 1395 /* 1396 * Update the socket async list 1397 * 1398 * Fasync_list locking strategy. 1399 * 1400 * 1. fasync_list is modified only under process context socket lock 1401 * i.e. under semaphore. 1402 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1403 * or under socket lock 1404 */ 1405 sock_fasync(int fd,struct file * filp,int on)1406 static int sock_fasync(int fd, struct file *filp, int on) 1407 { 1408 struct socket *sock = filp->private_data; 1409 struct sock *sk = sock->sk; 1410 struct socket_wq *wq = &sock->wq; 1411 1412 if (sk == NULL) 1413 return -EINVAL; 1414 1415 lock_sock(sk); 1416 fasync_helper(fd, filp, on, &wq->fasync_list); 1417 1418 if (!wq->fasync_list) 1419 sock_reset_flag(sk, SOCK_FASYNC); 1420 else 1421 sock_set_flag(sk, SOCK_FASYNC); 1422 1423 release_sock(sk); 1424 return 0; 1425 } 1426 1427 /* This function may be called only under rcu_lock */ 1428 sock_wake_async(struct socket_wq * wq,int how,int band)1429 int sock_wake_async(struct socket_wq *wq, int how, int band) 1430 { 1431 if (!wq || !wq->fasync_list) 1432 return -1; 1433 1434 switch (how) { 1435 case SOCK_WAKE_WAITD: 1436 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1437 break; 1438 goto call_kill; 1439 case SOCK_WAKE_SPACE: 1440 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1441 break; 1442 fallthrough; 1443 case SOCK_WAKE_IO: 1444 call_kill: 1445 kill_fasync(&wq->fasync_list, SIGIO, band); 1446 break; 1447 case SOCK_WAKE_URG: 1448 kill_fasync(&wq->fasync_list, SIGURG, band); 1449 } 1450 1451 return 0; 1452 } 1453 EXPORT_SYMBOL(sock_wake_async); 1454 1455 /** 1456 * __sock_create - creates a socket 1457 * @net: net namespace 1458 * @family: protocol family (AF_INET, ...) 1459 * @type: communication type (SOCK_STREAM, ...) 1460 * @protocol: protocol (0, ...) 1461 * @res: new socket 1462 * @kern: boolean for kernel space sockets 1463 * 1464 * Creates a new socket and assigns it to @res, passing through LSM. 1465 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1466 * be set to true if the socket resides in kernel space. 1467 * This function internally uses GFP_KERNEL. 1468 */ 1469 __sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1470 int __sock_create(struct net *net, int family, int type, int protocol, 1471 struct socket **res, int kern) 1472 { 1473 int err; 1474 struct socket *sock; 1475 const struct net_proto_family *pf; 1476 1477 /* 1478 * Check protocol is in range 1479 */ 1480 if (family < 0 || family >= NPROTO) 1481 return -EAFNOSUPPORT; 1482 if (type < 0 || type >= SOCK_MAX) 1483 return -EINVAL; 1484 1485 /* Compatibility. 1486 1487 This uglymoron is moved from INET layer to here to avoid 1488 deadlock in module load. 1489 */ 1490 if (family == PF_INET && type == SOCK_PACKET) { 1491 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1492 current->comm); 1493 family = PF_PACKET; 1494 } 1495 1496 err = security_socket_create(family, type, protocol, kern); 1497 if (err) 1498 return err; 1499 1500 /* 1501 * Allocate the socket and allow the family to set things up. if 1502 * the protocol is 0, the family is instructed to select an appropriate 1503 * default. 1504 */ 1505 sock = sock_alloc(); 1506 if (!sock) { 1507 net_warn_ratelimited("socket: no more sockets\n"); 1508 return -ENFILE; /* Not exactly a match, but its the 1509 closest posix thing */ 1510 } 1511 1512 sock->type = type; 1513 1514 #ifdef CONFIG_MODULES 1515 /* Attempt to load a protocol module if the find failed. 1516 * 1517 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1518 * requested real, full-featured networking support upon configuration. 1519 * Otherwise module support will break! 1520 */ 1521 if (rcu_access_pointer(net_families[family]) == NULL) 1522 request_module("net-pf-%d", family); 1523 #endif 1524 1525 rcu_read_lock(); 1526 pf = rcu_dereference(net_families[family]); 1527 err = -EAFNOSUPPORT; 1528 if (!pf) 1529 goto out_release; 1530 1531 /* 1532 * We will call the ->create function, that possibly is in a loadable 1533 * module, so we have to bump that loadable module refcnt first. 1534 */ 1535 if (!try_module_get(pf->owner)) 1536 goto out_release; 1537 1538 /* Now protected by module ref count */ 1539 rcu_read_unlock(); 1540 1541 err = pf->create(net, sock, protocol, kern); 1542 if (err < 0) { 1543 /* ->create should release the allocated sock->sk object on error 1544 * and make sure sock->sk is set to NULL to avoid use-after-free 1545 */ 1546 DEBUG_NET_WARN_ONCE(sock->sk, 1547 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n", 1548 pf->create, family, type, protocol); 1549 goto out_module_put; 1550 } 1551 1552 /* 1553 * Now to bump the refcnt of the [loadable] module that owns this 1554 * socket at sock_release time we decrement its refcnt. 1555 */ 1556 if (!try_module_get(sock->ops->owner)) 1557 goto out_module_busy; 1558 1559 /* 1560 * Now that we're done with the ->create function, the [loadable] 1561 * module can have its refcnt decremented 1562 */ 1563 module_put(pf->owner); 1564 err = security_socket_post_create(sock, family, type, protocol, kern); 1565 if (err) 1566 goto out_sock_release; 1567 *res = sock; 1568 1569 return 0; 1570 1571 out_module_busy: 1572 err = -EAFNOSUPPORT; 1573 out_module_put: 1574 sock->ops = NULL; 1575 module_put(pf->owner); 1576 out_sock_release: 1577 sock_release(sock); 1578 return err; 1579 1580 out_release: 1581 rcu_read_unlock(); 1582 goto out_sock_release; 1583 } 1584 EXPORT_SYMBOL(__sock_create); 1585 1586 /** 1587 * sock_create - creates a socket 1588 * @family: protocol family (AF_INET, ...) 1589 * @type: communication type (SOCK_STREAM, ...) 1590 * @protocol: protocol (0, ...) 1591 * @res: new socket 1592 * 1593 * A wrapper around __sock_create(). 1594 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1595 */ 1596 sock_create(int family,int type,int protocol,struct socket ** res)1597 int sock_create(int family, int type, int protocol, struct socket **res) 1598 { 1599 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1600 } 1601 EXPORT_SYMBOL(sock_create); 1602 1603 /** 1604 * sock_create_kern - creates a socket (kernel space) 1605 * @net: net namespace 1606 * @family: protocol family (AF_INET, ...) 1607 * @type: communication type (SOCK_STREAM, ...) 1608 * @protocol: protocol (0, ...) 1609 * @res: new socket 1610 * 1611 * A wrapper around __sock_create(). 1612 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1613 */ 1614 sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1615 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1616 { 1617 return __sock_create(net, family, type, protocol, res, 1); 1618 } 1619 EXPORT_SYMBOL(sock_create_kern); 1620 __sys_socket_create(int family,int type,int protocol)1621 static struct socket *__sys_socket_create(int family, int type, int protocol) 1622 { 1623 struct socket *sock; 1624 int retval; 1625 1626 /* Check the SOCK_* constants for consistency. */ 1627 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1628 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1629 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1630 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1631 1632 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1633 return ERR_PTR(-EINVAL); 1634 type &= SOCK_TYPE_MASK; 1635 1636 retval = sock_create(family, type, protocol, &sock); 1637 if (retval < 0) 1638 return ERR_PTR(retval); 1639 1640 return sock; 1641 } 1642 __sys_socket_file(int family,int type,int protocol)1643 struct file *__sys_socket_file(int family, int type, int protocol) 1644 { 1645 struct socket *sock; 1646 int flags; 1647 1648 sock = __sys_socket_create(family, type, protocol); 1649 if (IS_ERR(sock)) 1650 return ERR_CAST(sock); 1651 1652 flags = type & ~SOCK_TYPE_MASK; 1653 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1654 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1655 1656 return sock_alloc_file(sock, flags, NULL); 1657 } 1658 1659 /* A hook for bpf progs to attach to and update socket protocol. 1660 * 1661 * A static noinline declaration here could cause the compiler to 1662 * optimize away the function. A global noinline declaration will 1663 * keep the definition, but may optimize away the callsite. 1664 * Therefore, __weak is needed to ensure that the call is still 1665 * emitted, by telling the compiler that we don't know what the 1666 * function might eventually be. 1667 */ 1668 1669 __bpf_hook_start(); 1670 update_socket_protocol(int family,int type,int protocol)1671 __weak noinline int update_socket_protocol(int family, int type, int protocol) 1672 { 1673 return protocol; 1674 } 1675 1676 __bpf_hook_end(); 1677 __sys_socket(int family,int type,int protocol)1678 int __sys_socket(int family, int type, int protocol) 1679 { 1680 struct socket *sock; 1681 int flags; 1682 1683 sock = __sys_socket_create(family, type, 1684 update_socket_protocol(family, type, protocol)); 1685 if (IS_ERR(sock)) 1686 return PTR_ERR(sock); 1687 1688 flags = type & ~SOCK_TYPE_MASK; 1689 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1690 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1691 1692 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1693 } 1694 SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1695 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1696 { 1697 return __sys_socket(family, type, protocol); 1698 } 1699 1700 /* 1701 * Create a pair of connected sockets. 1702 */ 1703 __sys_socketpair(int family,int type,int protocol,int __user * usockvec)1704 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1705 { 1706 struct socket *sock1, *sock2; 1707 int fd1, fd2, err; 1708 struct file *newfile1, *newfile2; 1709 int flags; 1710 1711 flags = type & ~SOCK_TYPE_MASK; 1712 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1713 return -EINVAL; 1714 type &= SOCK_TYPE_MASK; 1715 1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1718 1719 /* 1720 * reserve descriptors and make sure we won't fail 1721 * to return them to userland. 1722 */ 1723 fd1 = get_unused_fd_flags(flags); 1724 if (unlikely(fd1 < 0)) 1725 return fd1; 1726 1727 fd2 = get_unused_fd_flags(flags); 1728 if (unlikely(fd2 < 0)) { 1729 put_unused_fd(fd1); 1730 return fd2; 1731 } 1732 1733 err = put_user(fd1, &usockvec[0]); 1734 if (err) 1735 goto out; 1736 1737 err = put_user(fd2, &usockvec[1]); 1738 if (err) 1739 goto out; 1740 1741 /* 1742 * Obtain the first socket and check if the underlying protocol 1743 * supports the socketpair call. 1744 */ 1745 1746 err = sock_create(family, type, protocol, &sock1); 1747 if (unlikely(err < 0)) 1748 goto out; 1749 1750 err = sock_create(family, type, protocol, &sock2); 1751 if (unlikely(err < 0)) { 1752 sock_release(sock1); 1753 goto out; 1754 } 1755 1756 err = security_socket_socketpair(sock1, sock2); 1757 if (unlikely(err)) { 1758 sock_release(sock2); 1759 sock_release(sock1); 1760 goto out; 1761 } 1762 1763 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2); 1764 if (unlikely(err < 0)) { 1765 sock_release(sock2); 1766 sock_release(sock1); 1767 goto out; 1768 } 1769 1770 newfile1 = sock_alloc_file(sock1, flags, NULL); 1771 if (IS_ERR(newfile1)) { 1772 err = PTR_ERR(newfile1); 1773 sock_release(sock2); 1774 goto out; 1775 } 1776 1777 newfile2 = sock_alloc_file(sock2, flags, NULL); 1778 if (IS_ERR(newfile2)) { 1779 err = PTR_ERR(newfile2); 1780 fput(newfile1); 1781 goto out; 1782 } 1783 1784 audit_fd_pair(fd1, fd2); 1785 1786 fd_install(fd1, newfile1); 1787 fd_install(fd2, newfile2); 1788 return 0; 1789 1790 out: 1791 put_unused_fd(fd2); 1792 put_unused_fd(fd1); 1793 return err; 1794 } 1795 SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1796 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1797 int __user *, usockvec) 1798 { 1799 return __sys_socketpair(family, type, protocol, usockvec); 1800 } 1801 __sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1802 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address, 1803 int addrlen) 1804 { 1805 int err; 1806 1807 err = security_socket_bind(sock, (struct sockaddr *)address, 1808 addrlen); 1809 if (!err) 1810 err = READ_ONCE(sock->ops)->bind(sock, 1811 (struct sockaddr *)address, 1812 addrlen); 1813 return err; 1814 } 1815 1816 /* 1817 * Bind a name to a socket. Nothing much to do here since it's 1818 * the protocol's responsibility to handle the local address. 1819 * 1820 * We move the socket address to kernel space before we call 1821 * the protocol layer (having also checked the address is ok). 1822 */ 1823 __sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1824 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1825 { 1826 struct socket *sock; 1827 struct sockaddr_storage address; 1828 CLASS(fd, f)(fd); 1829 int err; 1830 1831 if (fd_empty(f)) 1832 return -EBADF; 1833 sock = sock_from_file(fd_file(f)); 1834 if (unlikely(!sock)) 1835 return -ENOTSOCK; 1836 1837 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1838 if (unlikely(err)) 1839 return err; 1840 1841 return __sys_bind_socket(sock, &address, addrlen); 1842 } 1843 SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1844 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1845 { 1846 return __sys_bind(fd, umyaddr, addrlen); 1847 } 1848 1849 /* 1850 * Perform a listen. Basically, we allow the protocol to do anything 1851 * necessary for a listen, and if that works, we mark the socket as 1852 * ready for listening. 1853 */ __sys_listen_socket(struct socket * sock,int backlog)1854 int __sys_listen_socket(struct socket *sock, int backlog) 1855 { 1856 int somaxconn, err; 1857 1858 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn); 1859 if ((unsigned int)backlog > somaxconn) 1860 backlog = somaxconn; 1861 1862 err = security_socket_listen(sock, backlog); 1863 if (!err) 1864 err = READ_ONCE(sock->ops)->listen(sock, backlog); 1865 return err; 1866 } 1867 __sys_listen(int fd,int backlog)1868 int __sys_listen(int fd, int backlog) 1869 { 1870 CLASS(fd, f)(fd); 1871 struct socket *sock; 1872 1873 if (fd_empty(f)) 1874 return -EBADF; 1875 sock = sock_from_file(fd_file(f)); 1876 if (unlikely(!sock)) 1877 return -ENOTSOCK; 1878 1879 return __sys_listen_socket(sock, backlog); 1880 } 1881 SYSCALL_DEFINE2(listen,int,fd,int,backlog)1882 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1883 { 1884 return __sys_listen(fd, backlog); 1885 } 1886 do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1887 struct file *do_accept(struct file *file, struct proto_accept_arg *arg, 1888 struct sockaddr __user *upeer_sockaddr, 1889 int __user *upeer_addrlen, int flags) 1890 { 1891 struct socket *sock, *newsock; 1892 struct file *newfile; 1893 int err, len; 1894 struct sockaddr_storage address; 1895 const struct proto_ops *ops; 1896 1897 sock = sock_from_file(file); 1898 if (!sock) 1899 return ERR_PTR(-ENOTSOCK); 1900 1901 newsock = sock_alloc(); 1902 if (!newsock) 1903 return ERR_PTR(-ENFILE); 1904 ops = READ_ONCE(sock->ops); 1905 1906 newsock->type = sock->type; 1907 newsock->ops = ops; 1908 1909 /* 1910 * We don't need try_module_get here, as the listening socket (sock) 1911 * has the protocol module (sock->ops->owner) held. 1912 */ 1913 __module_get(ops->owner); 1914 1915 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1916 if (IS_ERR(newfile)) 1917 return newfile; 1918 1919 err = security_socket_accept(sock, newsock); 1920 if (err) 1921 goto out_fd; 1922 1923 arg->flags |= sock->file->f_flags; 1924 err = ops->accept(sock, newsock, arg); 1925 if (err < 0) 1926 goto out_fd; 1927 1928 if (upeer_sockaddr) { 1929 len = ops->getname(newsock, (struct sockaddr *)&address, 2); 1930 if (len < 0) { 1931 err = -ECONNABORTED; 1932 goto out_fd; 1933 } 1934 err = move_addr_to_user(&address, 1935 len, upeer_sockaddr, upeer_addrlen); 1936 if (err < 0) 1937 goto out_fd; 1938 } 1939 1940 /* File flags are not inherited via accept() unlike another OSes. */ 1941 return newfile; 1942 out_fd: 1943 fput(newfile); 1944 return ERR_PTR(err); 1945 } 1946 __sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1947 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr, 1948 int __user *upeer_addrlen, int flags) 1949 { 1950 struct proto_accept_arg arg = { }; 1951 struct file *newfile; 1952 int newfd; 1953 1954 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1955 return -EINVAL; 1956 1957 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1958 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1959 1960 newfd = get_unused_fd_flags(flags); 1961 if (unlikely(newfd < 0)) 1962 return newfd; 1963 1964 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen, 1965 flags); 1966 if (IS_ERR(newfile)) { 1967 put_unused_fd(newfd); 1968 return PTR_ERR(newfile); 1969 } 1970 fd_install(newfd, newfile); 1971 return newfd; 1972 } 1973 1974 /* 1975 * For accept, we attempt to create a new socket, set up the link 1976 * with the client, wake up the client, then return the new 1977 * connected fd. We collect the address of the connector in kernel 1978 * space and move it to user at the very end. This is unclean because 1979 * we open the socket then return an error. 1980 * 1981 * 1003.1g adds the ability to recvmsg() to query connection pending 1982 * status to recvmsg. We need to add that support in a way thats 1983 * clean when we restructure accept also. 1984 */ 1985 __sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1986 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1987 int __user *upeer_addrlen, int flags) 1988 { 1989 CLASS(fd, f)(fd); 1990 1991 if (fd_empty(f)) 1992 return -EBADF; 1993 return __sys_accept4_file(fd_file(f), upeer_sockaddr, 1994 upeer_addrlen, flags); 1995 } 1996 SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1997 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1998 int __user *, upeer_addrlen, int, flags) 1999 { 2000 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 2001 } 2002 SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2003 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 2004 int __user *, upeer_addrlen) 2005 { 2006 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 2007 } 2008 2009 /* 2010 * Attempt to connect to a socket with the server address. The address 2011 * is in user space so we verify it is OK and move it to kernel space. 2012 * 2013 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 2014 * break bindings 2015 * 2016 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 2017 * other SEQPACKET protocols that take time to connect() as it doesn't 2018 * include the -EINPROGRESS status for such sockets. 2019 */ 2020 __sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2021 int __sys_connect_file(struct file *file, struct sockaddr_storage *address, 2022 int addrlen, int file_flags) 2023 { 2024 struct socket *sock; 2025 int err; 2026 2027 sock = sock_from_file(file); 2028 if (!sock) { 2029 err = -ENOTSOCK; 2030 goto out; 2031 } 2032 2033 err = 2034 security_socket_connect(sock, (struct sockaddr *)address, addrlen); 2035 if (err) 2036 goto out; 2037 2038 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address, 2039 addrlen, sock->file->f_flags | file_flags); 2040 out: 2041 return err; 2042 } 2043 __sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2044 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 2045 { 2046 struct sockaddr_storage address; 2047 CLASS(fd, f)(fd); 2048 int ret; 2049 2050 if (fd_empty(f)) 2051 return -EBADF; 2052 2053 ret = move_addr_to_kernel(uservaddr, addrlen, &address); 2054 if (ret) 2055 return ret; 2056 2057 return __sys_connect_file(fd_file(f), &address, addrlen, 0); 2058 } 2059 SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2060 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 2061 int, addrlen) 2062 { 2063 return __sys_connect(fd, uservaddr, addrlen); 2064 } 2065 2066 /* 2067 * Get the local address ('name') of a socket object. Move the obtained 2068 * name to user space. 2069 */ 2070 __sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2071 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 2072 int __user *usockaddr_len) 2073 { 2074 struct socket *sock; 2075 struct sockaddr_storage address; 2076 CLASS(fd, f)(fd); 2077 int err; 2078 2079 if (fd_empty(f)) 2080 return -EBADF; 2081 sock = sock_from_file(fd_file(f)); 2082 if (unlikely(!sock)) 2083 return -ENOTSOCK; 2084 2085 err = security_socket_getsockname(sock); 2086 if (err) 2087 return err; 2088 2089 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0); 2090 if (err < 0) 2091 return err; 2092 2093 /* "err" is actually length in this case */ 2094 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2095 } 2096 SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2097 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 2098 int __user *, usockaddr_len) 2099 { 2100 return __sys_getsockname(fd, usockaddr, usockaddr_len); 2101 } 2102 2103 /* 2104 * Get the remote address ('name') of a socket object. Move the obtained 2105 * name to user space. 2106 */ 2107 __sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2108 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 2109 int __user *usockaddr_len) 2110 { 2111 struct socket *sock; 2112 struct sockaddr_storage address; 2113 CLASS(fd, f)(fd); 2114 int err; 2115 2116 if (fd_empty(f)) 2117 return -EBADF; 2118 sock = sock_from_file(fd_file(f)); 2119 if (unlikely(!sock)) 2120 return -ENOTSOCK; 2121 2122 err = security_socket_getpeername(sock); 2123 if (err) 2124 return err; 2125 2126 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1); 2127 if (err < 0) 2128 return err; 2129 2130 /* "err" is actually length in this case */ 2131 return move_addr_to_user(&address, err, usockaddr, usockaddr_len); 2132 } 2133 SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2134 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 2135 int __user *, usockaddr_len) 2136 { 2137 return __sys_getpeername(fd, usockaddr, usockaddr_len); 2138 } 2139 2140 /* 2141 * Send a datagram to a given address. We move the address into kernel 2142 * space and check the user space data area is readable before invoking 2143 * the protocol. 2144 */ __sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2145 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 2146 struct sockaddr __user *addr, int addr_len) 2147 { 2148 struct socket *sock; 2149 struct sockaddr_storage address; 2150 int err; 2151 struct msghdr msg; 2152 2153 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter); 2154 if (unlikely(err)) 2155 return err; 2156 2157 CLASS(fd, f)(fd); 2158 if (fd_empty(f)) 2159 return -EBADF; 2160 sock = sock_from_file(fd_file(f)); 2161 if (unlikely(!sock)) 2162 return -ENOTSOCK; 2163 2164 msg.msg_name = NULL; 2165 msg.msg_control = NULL; 2166 msg.msg_controllen = 0; 2167 msg.msg_namelen = 0; 2168 msg.msg_ubuf = NULL; 2169 if (addr) { 2170 err = move_addr_to_kernel(addr, addr_len, &address); 2171 if (err < 0) 2172 return err; 2173 msg.msg_name = (struct sockaddr *)&address; 2174 msg.msg_namelen = addr_len; 2175 } 2176 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2177 if (sock->file->f_flags & O_NONBLOCK) 2178 flags |= MSG_DONTWAIT; 2179 msg.msg_flags = flags; 2180 return __sock_sendmsg(sock, &msg); 2181 } 2182 SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2183 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 2184 unsigned int, flags, struct sockaddr __user *, addr, 2185 int, addr_len) 2186 { 2187 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 2188 } 2189 2190 /* 2191 * Send a datagram down a socket. 2192 */ 2193 SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2194 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 2195 unsigned int, flags) 2196 { 2197 return __sys_sendto(fd, buff, len, flags, NULL, 0); 2198 } 2199 2200 /* 2201 * Receive a frame from the socket and optionally record the address of the 2202 * sender. We verify the buffers are writable and if needed move the 2203 * sender address from kernel to user space. 2204 */ __sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2205 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 2206 struct sockaddr __user *addr, int __user *addr_len) 2207 { 2208 struct sockaddr_storage address; 2209 struct msghdr msg = { 2210 /* Save some cycles and don't copy the address if not needed */ 2211 .msg_name = addr ? (struct sockaddr *)&address : NULL, 2212 }; 2213 struct socket *sock; 2214 int err, err2; 2215 2216 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter); 2217 if (unlikely(err)) 2218 return err; 2219 2220 CLASS(fd, f)(fd); 2221 2222 if (fd_empty(f)) 2223 return -EBADF; 2224 sock = sock_from_file(fd_file(f)); 2225 if (unlikely(!sock)) 2226 return -ENOTSOCK; 2227 2228 if (sock->file->f_flags & O_NONBLOCK) 2229 flags |= MSG_DONTWAIT; 2230 err = sock_recvmsg(sock, &msg, flags); 2231 2232 if (err >= 0 && addr != NULL) { 2233 err2 = move_addr_to_user(&address, 2234 msg.msg_namelen, addr, addr_len); 2235 if (err2 < 0) 2236 err = err2; 2237 } 2238 return err; 2239 } 2240 SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2241 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2242 unsigned int, flags, struct sockaddr __user *, addr, 2243 int __user *, addr_len) 2244 { 2245 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2246 } 2247 2248 /* 2249 * Receive a datagram from a socket. 2250 */ 2251 SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2252 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2253 unsigned int, flags) 2254 { 2255 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2256 } 2257 sock_use_custom_sol_socket(const struct socket * sock)2258 static bool sock_use_custom_sol_socket(const struct socket *sock) 2259 { 2260 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags); 2261 } 2262 do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2263 int do_sock_setsockopt(struct socket *sock, bool compat, int level, 2264 int optname, sockptr_t optval, int optlen) 2265 { 2266 const struct proto_ops *ops; 2267 char *kernel_optval = NULL; 2268 int err; 2269 2270 if (optlen < 0) 2271 return -EINVAL; 2272 2273 err = security_socket_setsockopt(sock, level, optname); 2274 if (err) 2275 goto out_put; 2276 2277 if (!compat) 2278 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname, 2279 optval, &optlen, 2280 &kernel_optval); 2281 if (err < 0) 2282 goto out_put; 2283 if (err > 0) { 2284 err = 0; 2285 goto out_put; 2286 } 2287 2288 if (kernel_optval) 2289 optval = KERNEL_SOCKPTR(kernel_optval); 2290 ops = READ_ONCE(sock->ops); 2291 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock)) 2292 err = sock_setsockopt(sock, level, optname, optval, optlen); 2293 else if (unlikely(!ops->setsockopt)) 2294 err = -EOPNOTSUPP; 2295 else 2296 err = ops->setsockopt(sock, level, optname, optval, 2297 optlen); 2298 kfree(kernel_optval); 2299 out_put: 2300 return err; 2301 } 2302 EXPORT_SYMBOL(do_sock_setsockopt); 2303 2304 /* Set a socket option. Because we don't know the option lengths we have 2305 * to pass the user mode parameter for the protocols to sort out. 2306 */ __sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2307 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval, 2308 int optlen) 2309 { 2310 sockptr_t optval = USER_SOCKPTR(user_optval); 2311 bool compat = in_compat_syscall(); 2312 struct socket *sock; 2313 CLASS(fd, f)(fd); 2314 2315 if (fd_empty(f)) 2316 return -EBADF; 2317 sock = sock_from_file(fd_file(f)); 2318 if (unlikely(!sock)) 2319 return -ENOTSOCK; 2320 2321 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen); 2322 } 2323 SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2324 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2325 char __user *, optval, int, optlen) 2326 { 2327 return __sys_setsockopt(fd, level, optname, optval, optlen); 2328 } 2329 2330 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level, 2331 int optname)); 2332 do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2333 int do_sock_getsockopt(struct socket *sock, bool compat, int level, 2334 int optname, sockptr_t optval, sockptr_t optlen) 2335 { 2336 int max_optlen __maybe_unused = 0; 2337 const struct proto_ops *ops; 2338 int err; 2339 2340 err = security_socket_getsockopt(sock, level, optname); 2341 if (err) 2342 return err; 2343 2344 if (!compat) 2345 copy_from_sockptr(&max_optlen, optlen, sizeof(int)); 2346 2347 ops = READ_ONCE(sock->ops); 2348 if (level == SOL_SOCKET) { 2349 err = sk_getsockopt(sock->sk, level, optname, optval, optlen); 2350 } else if (unlikely(!ops->getsockopt)) { 2351 err = -EOPNOTSUPP; 2352 } else { 2353 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel, 2354 "Invalid argument type")) 2355 return -EOPNOTSUPP; 2356 2357 err = ops->getsockopt(sock, level, optname, optval.user, 2358 optlen.user); 2359 } 2360 2361 if (!compat) 2362 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname, 2363 optval, optlen, max_optlen, 2364 err); 2365 2366 return err; 2367 } 2368 EXPORT_SYMBOL(do_sock_getsockopt); 2369 2370 /* 2371 * Get a socket option. Because we don't know the option lengths we have 2372 * to pass a user mode parameter for the protocols to sort out. 2373 */ __sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2374 int __sys_getsockopt(int fd, int level, int optname, char __user *optval, 2375 int __user *optlen) 2376 { 2377 struct socket *sock; 2378 CLASS(fd, f)(fd); 2379 2380 if (fd_empty(f)) 2381 return -EBADF; 2382 sock = sock_from_file(fd_file(f)); 2383 if (unlikely(!sock)) 2384 return -ENOTSOCK; 2385 2386 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname, 2387 USER_SOCKPTR(optval), USER_SOCKPTR(optlen)); 2388 } 2389 SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2390 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2391 char __user *, optval, int __user *, optlen) 2392 { 2393 return __sys_getsockopt(fd, level, optname, optval, optlen); 2394 } 2395 2396 /* 2397 * Shutdown a socket. 2398 */ 2399 __sys_shutdown_sock(struct socket * sock,int how)2400 int __sys_shutdown_sock(struct socket *sock, int how) 2401 { 2402 int err; 2403 2404 err = security_socket_shutdown(sock, how); 2405 if (!err) 2406 err = READ_ONCE(sock->ops)->shutdown(sock, how); 2407 2408 return err; 2409 } 2410 __sys_shutdown(int fd,int how)2411 int __sys_shutdown(int fd, int how) 2412 { 2413 struct socket *sock; 2414 CLASS(fd, f)(fd); 2415 2416 if (fd_empty(f)) 2417 return -EBADF; 2418 sock = sock_from_file(fd_file(f)); 2419 if (unlikely(!sock)) 2420 return -ENOTSOCK; 2421 2422 return __sys_shutdown_sock(sock, how); 2423 } 2424 SYSCALL_DEFINE2(shutdown,int,fd,int,how)2425 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2426 { 2427 return __sys_shutdown(fd, how); 2428 } 2429 2430 /* A couple of helpful macros for getting the address of the 32/64 bit 2431 * fields which are the same type (int / unsigned) on our platforms. 2432 */ 2433 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2434 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2435 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2436 2437 struct used_address { 2438 struct sockaddr_storage name; 2439 unsigned int name_len; 2440 }; 2441 __copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2442 int __copy_msghdr(struct msghdr *kmsg, 2443 struct user_msghdr *msg, 2444 struct sockaddr __user **save_addr) 2445 { 2446 ssize_t err; 2447 2448 kmsg->msg_control_is_user = true; 2449 kmsg->msg_get_inq = 0; 2450 kmsg->msg_control_user = msg->msg_control; 2451 kmsg->msg_controllen = msg->msg_controllen; 2452 kmsg->msg_flags = msg->msg_flags; 2453 2454 kmsg->msg_namelen = msg->msg_namelen; 2455 if (!msg->msg_name) 2456 kmsg->msg_namelen = 0; 2457 2458 if (kmsg->msg_namelen < 0) 2459 return -EINVAL; 2460 2461 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2462 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2463 2464 if (save_addr) 2465 *save_addr = msg->msg_name; 2466 2467 if (msg->msg_name && kmsg->msg_namelen) { 2468 if (!save_addr) { 2469 err = move_addr_to_kernel(msg->msg_name, 2470 kmsg->msg_namelen, 2471 kmsg->msg_name); 2472 if (err < 0) 2473 return err; 2474 } 2475 } else { 2476 kmsg->msg_name = NULL; 2477 kmsg->msg_namelen = 0; 2478 } 2479 2480 if (msg->msg_iovlen > UIO_MAXIOV) 2481 return -EMSGSIZE; 2482 2483 kmsg->msg_iocb = NULL; 2484 kmsg->msg_ubuf = NULL; 2485 return 0; 2486 } 2487 copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2488 static int copy_msghdr_from_user(struct msghdr *kmsg, 2489 struct user_msghdr __user *umsg, 2490 struct sockaddr __user **save_addr, 2491 struct iovec **iov) 2492 { 2493 struct user_msghdr msg; 2494 ssize_t err; 2495 2496 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2497 return -EFAULT; 2498 2499 err = __copy_msghdr(kmsg, &msg, save_addr); 2500 if (err) 2501 return err; 2502 2503 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE, 2504 msg.msg_iov, msg.msg_iovlen, 2505 UIO_FASTIOV, iov, &kmsg->msg_iter); 2506 return err < 0 ? err : 0; 2507 } 2508 ____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2509 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys, 2510 unsigned int flags, struct used_address *used_address, 2511 unsigned int allowed_msghdr_flags) 2512 { 2513 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2514 __aligned(sizeof(__kernel_size_t)); 2515 /* 20 is size of ipv6_pktinfo */ 2516 unsigned char *ctl_buf = ctl; 2517 int ctl_len; 2518 ssize_t err; 2519 2520 err = -ENOBUFS; 2521 2522 if (msg_sys->msg_controllen > INT_MAX) 2523 goto out; 2524 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2525 ctl_len = msg_sys->msg_controllen; 2526 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2527 err = 2528 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2529 sizeof(ctl)); 2530 if (err) 2531 goto out; 2532 ctl_buf = msg_sys->msg_control; 2533 ctl_len = msg_sys->msg_controllen; 2534 } else if (ctl_len) { 2535 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2536 CMSG_ALIGN(sizeof(struct cmsghdr))); 2537 if (ctl_len > sizeof(ctl)) { 2538 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2539 if (ctl_buf == NULL) 2540 goto out; 2541 } 2542 err = -EFAULT; 2543 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len)) 2544 goto out_freectl; 2545 msg_sys->msg_control = ctl_buf; 2546 msg_sys->msg_control_is_user = false; 2547 } 2548 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS; 2549 msg_sys->msg_flags = flags; 2550 2551 if (sock->file->f_flags & O_NONBLOCK) 2552 msg_sys->msg_flags |= MSG_DONTWAIT; 2553 /* 2554 * If this is sendmmsg() and current destination address is same as 2555 * previously succeeded address, omit asking LSM's decision. 2556 * used_address->name_len is initialized to UINT_MAX so that the first 2557 * destination address never matches. 2558 */ 2559 if (used_address && msg_sys->msg_name && 2560 used_address->name_len == msg_sys->msg_namelen && 2561 !memcmp(&used_address->name, msg_sys->msg_name, 2562 used_address->name_len)) { 2563 err = sock_sendmsg_nosec(sock, msg_sys); 2564 goto out_freectl; 2565 } 2566 err = __sock_sendmsg(sock, msg_sys); 2567 /* 2568 * If this is sendmmsg() and sending to current destination address was 2569 * successful, remember it. 2570 */ 2571 if (used_address && err >= 0) { 2572 used_address->name_len = msg_sys->msg_namelen; 2573 if (msg_sys->msg_name) 2574 memcpy(&used_address->name, msg_sys->msg_name, 2575 used_address->name_len); 2576 } 2577 2578 out_freectl: 2579 if (ctl_buf != ctl) 2580 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2581 out: 2582 return err; 2583 } 2584 sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2585 static int sendmsg_copy_msghdr(struct msghdr *msg, 2586 struct user_msghdr __user *umsg, unsigned flags, 2587 struct iovec **iov) 2588 { 2589 int err; 2590 2591 if (flags & MSG_CMSG_COMPAT) { 2592 struct compat_msghdr __user *msg_compat; 2593 2594 msg_compat = (struct compat_msghdr __user *) umsg; 2595 err = get_compat_msghdr(msg, msg_compat, NULL, iov); 2596 } else { 2597 err = copy_msghdr_from_user(msg, umsg, NULL, iov); 2598 } 2599 if (err < 0) 2600 return err; 2601 2602 return 0; 2603 } 2604 ___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2605 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2606 struct msghdr *msg_sys, unsigned int flags, 2607 struct used_address *used_address, 2608 unsigned int allowed_msghdr_flags) 2609 { 2610 struct sockaddr_storage address; 2611 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2612 ssize_t err; 2613 2614 msg_sys->msg_name = &address; 2615 2616 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov); 2617 if (err < 0) 2618 return err; 2619 2620 err = ____sys_sendmsg(sock, msg_sys, flags, used_address, 2621 allowed_msghdr_flags); 2622 kfree(iov); 2623 return err; 2624 } 2625 2626 /* 2627 * BSD sendmsg interface 2628 */ __sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2629 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg, 2630 unsigned int flags) 2631 { 2632 return ____sys_sendmsg(sock, msg, flags, NULL, 0); 2633 } 2634 __sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2635 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2636 bool forbid_cmsg_compat) 2637 { 2638 struct msghdr msg_sys; 2639 struct socket *sock; 2640 2641 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2642 return -EINVAL; 2643 2644 CLASS(fd, f)(fd); 2645 2646 if (fd_empty(f)) 2647 return -EBADF; 2648 sock = sock_from_file(fd_file(f)); 2649 if (unlikely(!sock)) 2650 return -ENOTSOCK; 2651 2652 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2653 } 2654 SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2655 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2656 { 2657 return __sys_sendmsg(fd, msg, flags, true); 2658 } 2659 2660 /* 2661 * Linux sendmmsg interface 2662 */ 2663 __sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2664 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2665 unsigned int flags, bool forbid_cmsg_compat) 2666 { 2667 int err, datagrams; 2668 struct socket *sock; 2669 struct mmsghdr __user *entry; 2670 struct compat_mmsghdr __user *compat_entry; 2671 struct msghdr msg_sys; 2672 struct used_address used_address; 2673 unsigned int oflags = flags; 2674 2675 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2676 return -EINVAL; 2677 2678 if (vlen > UIO_MAXIOV) 2679 vlen = UIO_MAXIOV; 2680 2681 datagrams = 0; 2682 2683 CLASS(fd, f)(fd); 2684 2685 if (fd_empty(f)) 2686 return -EBADF; 2687 sock = sock_from_file(fd_file(f)); 2688 if (unlikely(!sock)) 2689 return -ENOTSOCK; 2690 2691 used_address.name_len = UINT_MAX; 2692 entry = mmsg; 2693 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2694 err = 0; 2695 flags |= MSG_BATCH; 2696 2697 while (datagrams < vlen) { 2698 if (datagrams == vlen - 1) 2699 flags = oflags; 2700 2701 if (MSG_CMSG_COMPAT & flags) { 2702 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2703 &msg_sys, flags, &used_address, MSG_EOR); 2704 if (err < 0) 2705 break; 2706 err = __put_user(err, &compat_entry->msg_len); 2707 ++compat_entry; 2708 } else { 2709 err = ___sys_sendmsg(sock, 2710 (struct user_msghdr __user *)entry, 2711 &msg_sys, flags, &used_address, MSG_EOR); 2712 if (err < 0) 2713 break; 2714 err = put_user(err, &entry->msg_len); 2715 ++entry; 2716 } 2717 2718 if (err) 2719 break; 2720 ++datagrams; 2721 if (msg_data_left(&msg_sys)) 2722 break; 2723 cond_resched(); 2724 } 2725 2726 /* We only return an error if no datagrams were able to be sent */ 2727 if (datagrams != 0) 2728 return datagrams; 2729 2730 return err; 2731 } 2732 SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2733 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2734 unsigned int, vlen, unsigned int, flags) 2735 { 2736 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2737 } 2738 recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2739 static int recvmsg_copy_msghdr(struct msghdr *msg, 2740 struct user_msghdr __user *umsg, unsigned flags, 2741 struct sockaddr __user **uaddr, 2742 struct iovec **iov) 2743 { 2744 ssize_t err; 2745 2746 if (MSG_CMSG_COMPAT & flags) { 2747 struct compat_msghdr __user *msg_compat; 2748 2749 msg_compat = (struct compat_msghdr __user *) umsg; 2750 err = get_compat_msghdr(msg, msg_compat, uaddr, iov); 2751 } else { 2752 err = copy_msghdr_from_user(msg, umsg, uaddr, iov); 2753 } 2754 if (err < 0) 2755 return err; 2756 2757 return 0; 2758 } 2759 ____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2760 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys, 2761 struct user_msghdr __user *msg, 2762 struct sockaddr __user *uaddr, 2763 unsigned int flags, int nosec) 2764 { 2765 struct compat_msghdr __user *msg_compat = 2766 (struct compat_msghdr __user *) msg; 2767 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2768 struct sockaddr_storage addr; 2769 unsigned long cmsg_ptr; 2770 int len; 2771 ssize_t err; 2772 2773 msg_sys->msg_name = &addr; 2774 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2775 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2776 2777 /* We assume all kernel code knows the size of sockaddr_storage */ 2778 msg_sys->msg_namelen = 0; 2779 2780 if (sock->file->f_flags & O_NONBLOCK) 2781 flags |= MSG_DONTWAIT; 2782 2783 if (unlikely(nosec)) 2784 err = sock_recvmsg_nosec(sock, msg_sys, flags); 2785 else 2786 err = sock_recvmsg(sock, msg_sys, flags); 2787 2788 if (err < 0) 2789 goto out; 2790 len = err; 2791 2792 if (uaddr != NULL) { 2793 err = move_addr_to_user(&addr, 2794 msg_sys->msg_namelen, uaddr, 2795 uaddr_len); 2796 if (err < 0) 2797 goto out; 2798 } 2799 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2800 COMPAT_FLAGS(msg)); 2801 if (err) 2802 goto out; 2803 if (MSG_CMSG_COMPAT & flags) 2804 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2805 &msg_compat->msg_controllen); 2806 else 2807 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2808 &msg->msg_controllen); 2809 if (err) 2810 goto out; 2811 err = len; 2812 out: 2813 return err; 2814 } 2815 ___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2816 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2817 struct msghdr *msg_sys, unsigned int flags, int nosec) 2818 { 2819 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2820 /* user mode address pointers */ 2821 struct sockaddr __user *uaddr; 2822 ssize_t err; 2823 2824 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov); 2825 if (err < 0) 2826 return err; 2827 2828 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec); 2829 kfree(iov); 2830 return err; 2831 } 2832 2833 /* 2834 * BSD recvmsg interface 2835 */ 2836 __sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2837 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg, 2838 struct user_msghdr __user *umsg, 2839 struct sockaddr __user *uaddr, unsigned int flags) 2840 { 2841 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0); 2842 } 2843 __sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2844 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2845 bool forbid_cmsg_compat) 2846 { 2847 struct msghdr msg_sys; 2848 struct socket *sock; 2849 2850 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2851 return -EINVAL; 2852 2853 CLASS(fd, f)(fd); 2854 2855 if (fd_empty(f)) 2856 return -EBADF; 2857 sock = sock_from_file(fd_file(f)); 2858 if (unlikely(!sock)) 2859 return -ENOTSOCK; 2860 2861 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2862 } 2863 SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2864 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2865 unsigned int, flags) 2866 { 2867 return __sys_recvmsg(fd, msg, flags, true); 2868 } 2869 2870 /* 2871 * Linux recvmmsg interface 2872 */ 2873 do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2874 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2875 unsigned int vlen, unsigned int flags, 2876 struct timespec64 *timeout) 2877 { 2878 int err = 0, datagrams; 2879 struct socket *sock; 2880 struct mmsghdr __user *entry; 2881 struct compat_mmsghdr __user *compat_entry; 2882 struct msghdr msg_sys; 2883 struct timespec64 end_time; 2884 struct timespec64 timeout64; 2885 2886 if (timeout && 2887 poll_select_set_timeout(&end_time, timeout->tv_sec, 2888 timeout->tv_nsec)) 2889 return -EINVAL; 2890 2891 datagrams = 0; 2892 2893 CLASS(fd, f)(fd); 2894 2895 if (fd_empty(f)) 2896 return -EBADF; 2897 sock = sock_from_file(fd_file(f)); 2898 if (unlikely(!sock)) 2899 return -ENOTSOCK; 2900 2901 if (likely(!(flags & MSG_ERRQUEUE))) { 2902 err = sock_error(sock->sk); 2903 if (err) 2904 return err; 2905 } 2906 2907 entry = mmsg; 2908 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2909 2910 while (datagrams < vlen) { 2911 /* 2912 * No need to ask LSM for more than the first datagram. 2913 */ 2914 if (MSG_CMSG_COMPAT & flags) { 2915 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2916 &msg_sys, flags & ~MSG_WAITFORONE, 2917 datagrams); 2918 if (err < 0) 2919 break; 2920 err = __put_user(err, &compat_entry->msg_len); 2921 ++compat_entry; 2922 } else { 2923 err = ___sys_recvmsg(sock, 2924 (struct user_msghdr __user *)entry, 2925 &msg_sys, flags & ~MSG_WAITFORONE, 2926 datagrams); 2927 if (err < 0) 2928 break; 2929 err = put_user(err, &entry->msg_len); 2930 ++entry; 2931 } 2932 2933 if (err) 2934 break; 2935 ++datagrams; 2936 2937 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2938 if (flags & MSG_WAITFORONE) 2939 flags |= MSG_DONTWAIT; 2940 2941 if (timeout) { 2942 ktime_get_ts64(&timeout64); 2943 *timeout = timespec64_sub(end_time, timeout64); 2944 if (timeout->tv_sec < 0) { 2945 timeout->tv_sec = timeout->tv_nsec = 0; 2946 break; 2947 } 2948 2949 /* Timeout, return less than vlen datagrams */ 2950 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2951 break; 2952 } 2953 2954 /* Out of band data, return right away */ 2955 if (msg_sys.msg_flags & MSG_OOB) 2956 break; 2957 cond_resched(); 2958 } 2959 2960 if (err == 0) 2961 return datagrams; 2962 2963 if (datagrams == 0) 2964 return err; 2965 2966 /* 2967 * We may return less entries than requested (vlen) if the 2968 * sock is non block and there aren't enough datagrams... 2969 */ 2970 if (err != -EAGAIN) { 2971 /* 2972 * ... or if recvmsg returns an error after we 2973 * received some datagrams, where we record the 2974 * error to return on the next call or if the 2975 * app asks about it using getsockopt(SO_ERROR). 2976 */ 2977 WRITE_ONCE(sock->sk->sk_err, -err); 2978 } 2979 return datagrams; 2980 } 2981 __sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2982 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2983 unsigned int vlen, unsigned int flags, 2984 struct __kernel_timespec __user *timeout, 2985 struct old_timespec32 __user *timeout32) 2986 { 2987 int datagrams; 2988 struct timespec64 timeout_sys; 2989 2990 if (timeout && get_timespec64(&timeout_sys, timeout)) 2991 return -EFAULT; 2992 2993 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2994 return -EFAULT; 2995 2996 if (!timeout && !timeout32) 2997 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2998 2999 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 3000 3001 if (datagrams <= 0) 3002 return datagrams; 3003 3004 if (timeout && put_timespec64(&timeout_sys, timeout)) 3005 datagrams = -EFAULT; 3006 3007 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 3008 datagrams = -EFAULT; 3009 3010 return datagrams; 3011 } 3012 SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3013 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 3014 unsigned int, vlen, unsigned int, flags, 3015 struct __kernel_timespec __user *, timeout) 3016 { 3017 if (flags & MSG_CMSG_COMPAT) 3018 return -EINVAL; 3019 3020 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 3021 } 3022 3023 #ifdef CONFIG_COMPAT_32BIT_TIME SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3024 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 3025 unsigned int, vlen, unsigned int, flags, 3026 struct old_timespec32 __user *, timeout) 3027 { 3028 if (flags & MSG_CMSG_COMPAT) 3029 return -EINVAL; 3030 3031 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 3032 } 3033 #endif 3034 3035 #ifdef __ARCH_WANT_SYS_SOCKETCALL 3036 /* Argument list sizes for sys_socketcall */ 3037 #define AL(x) ((x) * sizeof(unsigned long)) 3038 static const unsigned char nargs[21] = { 3039 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 3040 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 3041 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 3042 AL(4), AL(5), AL(4) 3043 }; 3044 3045 #undef AL 3046 3047 /* 3048 * System call vectors. 3049 * 3050 * Argument checking cleaned up. Saved 20% in size. 3051 * This function doesn't need to set the kernel lock because 3052 * it is set by the callees. 3053 */ 3054 SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3055 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 3056 { 3057 unsigned long a[AUDITSC_ARGS]; 3058 unsigned long a0, a1; 3059 int err; 3060 unsigned int len; 3061 3062 if (call < 1 || call > SYS_SENDMMSG) 3063 return -EINVAL; 3064 call = array_index_nospec(call, SYS_SENDMMSG + 1); 3065 3066 len = nargs[call]; 3067 if (len > sizeof(a)) 3068 return -EINVAL; 3069 3070 /* copy_from_user should be SMP safe. */ 3071 if (copy_from_user(a, args, len)) 3072 return -EFAULT; 3073 3074 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 3075 if (err) 3076 return err; 3077 3078 a0 = a[0]; 3079 a1 = a[1]; 3080 3081 switch (call) { 3082 case SYS_SOCKET: 3083 err = __sys_socket(a0, a1, a[2]); 3084 break; 3085 case SYS_BIND: 3086 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 3087 break; 3088 case SYS_CONNECT: 3089 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 3090 break; 3091 case SYS_LISTEN: 3092 err = __sys_listen(a0, a1); 3093 break; 3094 case SYS_ACCEPT: 3095 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3096 (int __user *)a[2], 0); 3097 break; 3098 case SYS_GETSOCKNAME: 3099 err = 3100 __sys_getsockname(a0, (struct sockaddr __user *)a1, 3101 (int __user *)a[2]); 3102 break; 3103 case SYS_GETPEERNAME: 3104 err = 3105 __sys_getpeername(a0, (struct sockaddr __user *)a1, 3106 (int __user *)a[2]); 3107 break; 3108 case SYS_SOCKETPAIR: 3109 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 3110 break; 3111 case SYS_SEND: 3112 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3113 NULL, 0); 3114 break; 3115 case SYS_SENDTO: 3116 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 3117 (struct sockaddr __user *)a[4], a[5]); 3118 break; 3119 case SYS_RECV: 3120 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3121 NULL, NULL); 3122 break; 3123 case SYS_RECVFROM: 3124 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 3125 (struct sockaddr __user *)a[4], 3126 (int __user *)a[5]); 3127 break; 3128 case SYS_SHUTDOWN: 3129 err = __sys_shutdown(a0, a1); 3130 break; 3131 case SYS_SETSOCKOPT: 3132 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 3133 a[4]); 3134 break; 3135 case SYS_GETSOCKOPT: 3136 err = 3137 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 3138 (int __user *)a[4]); 3139 break; 3140 case SYS_SENDMSG: 3141 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 3142 a[2], true); 3143 break; 3144 case SYS_SENDMMSG: 3145 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 3146 a[3], true); 3147 break; 3148 case SYS_RECVMSG: 3149 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 3150 a[2], true); 3151 break; 3152 case SYS_RECVMMSG: 3153 if (IS_ENABLED(CONFIG_64BIT)) 3154 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3155 a[2], a[3], 3156 (struct __kernel_timespec __user *)a[4], 3157 NULL); 3158 else 3159 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 3160 a[2], a[3], NULL, 3161 (struct old_timespec32 __user *)a[4]); 3162 break; 3163 case SYS_ACCEPT4: 3164 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 3165 (int __user *)a[2], a[3]); 3166 break; 3167 default: 3168 err = -EINVAL; 3169 break; 3170 } 3171 return err; 3172 } 3173 3174 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 3175 3176 /** 3177 * sock_register - add a socket protocol handler 3178 * @ops: description of protocol 3179 * 3180 * This function is called by a protocol handler that wants to 3181 * advertise its address family, and have it linked into the 3182 * socket interface. The value ops->family corresponds to the 3183 * socket system call protocol family. 3184 */ sock_register(const struct net_proto_family * ops)3185 int sock_register(const struct net_proto_family *ops) 3186 { 3187 int err; 3188 3189 if (ops->family >= NPROTO) { 3190 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 3191 return -ENOBUFS; 3192 } 3193 3194 spin_lock(&net_family_lock); 3195 if (rcu_dereference_protected(net_families[ops->family], 3196 lockdep_is_held(&net_family_lock))) 3197 err = -EEXIST; 3198 else { 3199 rcu_assign_pointer(net_families[ops->family], ops); 3200 err = 0; 3201 } 3202 spin_unlock(&net_family_lock); 3203 3204 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]); 3205 return err; 3206 } 3207 EXPORT_SYMBOL(sock_register); 3208 3209 /** 3210 * sock_unregister - remove a protocol handler 3211 * @family: protocol family to remove 3212 * 3213 * This function is called by a protocol handler that wants to 3214 * remove its address family, and have it unlinked from the 3215 * new socket creation. 3216 * 3217 * If protocol handler is a module, then it can use module reference 3218 * counts to protect against new references. If protocol handler is not 3219 * a module then it needs to provide its own protection in 3220 * the ops->create routine. 3221 */ sock_unregister(int family)3222 void sock_unregister(int family) 3223 { 3224 BUG_ON(family < 0 || family >= NPROTO); 3225 3226 spin_lock(&net_family_lock); 3227 RCU_INIT_POINTER(net_families[family], NULL); 3228 spin_unlock(&net_family_lock); 3229 3230 synchronize_rcu(); 3231 3232 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]); 3233 } 3234 EXPORT_SYMBOL(sock_unregister); 3235 sock_is_registered(int family)3236 bool sock_is_registered(int family) 3237 { 3238 return family < NPROTO && rcu_access_pointer(net_families[family]); 3239 } 3240 sock_init(void)3241 static int __init sock_init(void) 3242 { 3243 int err; 3244 /* 3245 * Initialize the network sysctl infrastructure. 3246 */ 3247 err = net_sysctl_init(); 3248 if (err) 3249 goto out; 3250 3251 /* 3252 * Initialize skbuff SLAB cache 3253 */ 3254 skb_init(); 3255 3256 /* 3257 * Initialize the protocols module. 3258 */ 3259 3260 init_inodecache(); 3261 3262 err = register_filesystem(&sock_fs_type); 3263 if (err) 3264 goto out; 3265 sock_mnt = kern_mount(&sock_fs_type); 3266 if (IS_ERR(sock_mnt)) { 3267 err = PTR_ERR(sock_mnt); 3268 goto out_mount; 3269 } 3270 3271 /* The real protocol initialization is performed in later initcalls. 3272 */ 3273 3274 #ifdef CONFIG_NETFILTER 3275 err = netfilter_init(); 3276 if (err) 3277 goto out; 3278 #endif 3279 3280 ptp_classifier_init(); 3281 3282 out: 3283 return err; 3284 3285 out_mount: 3286 unregister_filesystem(&sock_fs_type); 3287 goto out; 3288 } 3289 3290 core_initcall(sock_init); /* early initcall */ 3291 3292 #ifdef CONFIG_PROC_FS socket_seq_show(struct seq_file * seq)3293 void socket_seq_show(struct seq_file *seq) 3294 { 3295 seq_printf(seq, "sockets: used %d\n", 3296 sock_inuse_get(seq->private)); 3297 } 3298 #endif /* CONFIG_PROC_FS */ 3299 3300 /* Handle the fact that while struct ifreq has the same *layout* on 3301 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3302 * which are handled elsewhere, it still has different *size* due to 3303 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3304 * resulting in struct ifreq being 32 and 40 bytes respectively). 3305 * As a result, if the struct happens to be at the end of a page and 3306 * the next page isn't readable/writable, we get a fault. To prevent 3307 * that, copy back and forth to the full size. 3308 */ get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3309 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg) 3310 { 3311 if (in_compat_syscall()) { 3312 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr; 3313 3314 memset(ifr, 0, sizeof(*ifr)); 3315 if (copy_from_user(ifr32, arg, sizeof(*ifr32))) 3316 return -EFAULT; 3317 3318 if (ifrdata) 3319 *ifrdata = compat_ptr(ifr32->ifr_data); 3320 3321 return 0; 3322 } 3323 3324 if (copy_from_user(ifr, arg, sizeof(*ifr))) 3325 return -EFAULT; 3326 3327 if (ifrdata) 3328 *ifrdata = ifr->ifr_data; 3329 3330 return 0; 3331 } 3332 EXPORT_SYMBOL(get_user_ifreq); 3333 put_user_ifreq(struct ifreq * ifr,void __user * arg)3334 int put_user_ifreq(struct ifreq *ifr, void __user *arg) 3335 { 3336 size_t size = sizeof(*ifr); 3337 3338 if (in_compat_syscall()) 3339 size = sizeof(struct compat_ifreq); 3340 3341 if (copy_to_user(arg, ifr, size)) 3342 return -EFAULT; 3343 3344 return 0; 3345 } 3346 EXPORT_SYMBOL(put_user_ifreq); 3347 3348 #ifdef CONFIG_COMPAT compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3349 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3350 { 3351 compat_uptr_t uptr32; 3352 struct ifreq ifr; 3353 void __user *saved; 3354 int err; 3355 3356 if (get_user_ifreq(&ifr, NULL, uifr32)) 3357 return -EFAULT; 3358 3359 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3360 return -EFAULT; 3361 3362 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3363 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3364 3365 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL); 3366 if (!err) { 3367 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3368 if (put_user_ifreq(&ifr, uifr32)) 3369 err = -EFAULT; 3370 } 3371 return err; 3372 } 3373 3374 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3375 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3376 struct compat_ifreq __user *u_ifreq32) 3377 { 3378 struct ifreq ifreq; 3379 void __user *data; 3380 3381 if (!is_socket_ioctl_cmd(cmd)) 3382 return -ENOTTY; 3383 if (get_user_ifreq(&ifreq, &data, u_ifreq32)) 3384 return -EFAULT; 3385 ifreq.ifr_data = data; 3386 3387 return dev_ioctl(net, cmd, &ifreq, data, NULL); 3388 } 3389 compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3390 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3391 unsigned int cmd, unsigned long arg) 3392 { 3393 void __user *argp = compat_ptr(arg); 3394 struct sock *sk = sock->sk; 3395 struct net *net = sock_net(sk); 3396 const struct proto_ops *ops; 3397 3398 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3399 return sock_ioctl(file, cmd, (unsigned long)argp); 3400 3401 switch (cmd) { 3402 case SIOCWANDEV: 3403 return compat_siocwandev(net, argp); 3404 case SIOCGSTAMP_OLD: 3405 case SIOCGSTAMPNS_OLD: 3406 ops = READ_ONCE(sock->ops); 3407 if (!ops->gettstamp) 3408 return -ENOIOCTLCMD; 3409 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3410 !COMPAT_USE_64BIT_TIME); 3411 3412 case SIOCETHTOOL: 3413 case SIOCBONDSLAVEINFOQUERY: 3414 case SIOCBONDINFOQUERY: 3415 case SIOCSHWTSTAMP: 3416 case SIOCGHWTSTAMP: 3417 return compat_ifr_data_ioctl(net, cmd, argp); 3418 3419 case FIOSETOWN: 3420 case SIOCSPGRP: 3421 case FIOGETOWN: 3422 case SIOCGPGRP: 3423 case SIOCBRADDBR: 3424 case SIOCBRDELBR: 3425 case SIOCBRADDIF: 3426 case SIOCBRDELIF: 3427 case SIOCGIFVLAN: 3428 case SIOCSIFVLAN: 3429 case SIOCGSKNS: 3430 case SIOCGSTAMP_NEW: 3431 case SIOCGSTAMPNS_NEW: 3432 case SIOCGIFCONF: 3433 case SIOCSIFBR: 3434 case SIOCGIFBR: 3435 return sock_ioctl(file, cmd, arg); 3436 3437 case SIOCGIFFLAGS: 3438 case SIOCSIFFLAGS: 3439 case SIOCGIFMAP: 3440 case SIOCSIFMAP: 3441 case SIOCGIFMETRIC: 3442 case SIOCSIFMETRIC: 3443 case SIOCGIFMTU: 3444 case SIOCSIFMTU: 3445 case SIOCGIFMEM: 3446 case SIOCSIFMEM: 3447 case SIOCGIFHWADDR: 3448 case SIOCSIFHWADDR: 3449 case SIOCADDMULTI: 3450 case SIOCDELMULTI: 3451 case SIOCGIFINDEX: 3452 case SIOCGIFADDR: 3453 case SIOCSIFADDR: 3454 case SIOCSIFHWBROADCAST: 3455 case SIOCDIFADDR: 3456 case SIOCGIFBRDADDR: 3457 case SIOCSIFBRDADDR: 3458 case SIOCGIFDSTADDR: 3459 case SIOCSIFDSTADDR: 3460 case SIOCGIFNETMASK: 3461 case SIOCSIFNETMASK: 3462 case SIOCSIFPFLAGS: 3463 case SIOCGIFPFLAGS: 3464 case SIOCGIFTXQLEN: 3465 case SIOCSIFTXQLEN: 3466 case SIOCGIFNAME: 3467 case SIOCSIFNAME: 3468 case SIOCGMIIPHY: 3469 case SIOCGMIIREG: 3470 case SIOCSMIIREG: 3471 case SIOCBONDENSLAVE: 3472 case SIOCBONDRELEASE: 3473 case SIOCBONDSETHWADDR: 3474 case SIOCBONDCHANGEACTIVE: 3475 case SIOCSARP: 3476 case SIOCGARP: 3477 case SIOCDARP: 3478 case SIOCOUTQ: 3479 case SIOCOUTQNSD: 3480 case SIOCATMARK: 3481 return sock_do_ioctl(net, sock, cmd, arg); 3482 } 3483 3484 return -ENOIOCTLCMD; 3485 } 3486 compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3487 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3488 unsigned long arg) 3489 { 3490 struct socket *sock = file->private_data; 3491 const struct proto_ops *ops = READ_ONCE(sock->ops); 3492 int ret = -ENOIOCTLCMD; 3493 struct sock *sk; 3494 struct net *net; 3495 3496 sk = sock->sk; 3497 net = sock_net(sk); 3498 3499 if (ops->compat_ioctl) 3500 ret = ops->compat_ioctl(sock, cmd, arg); 3501 3502 if (ret == -ENOIOCTLCMD && 3503 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3504 ret = compat_wext_handle_ioctl(net, cmd, arg); 3505 3506 if (ret == -ENOIOCTLCMD) 3507 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3508 3509 return ret; 3510 } 3511 #endif 3512 3513 /** 3514 * kernel_bind - bind an address to a socket (kernel space) 3515 * @sock: socket 3516 * @addr: address 3517 * @addrlen: length of address 3518 * 3519 * Returns 0 or an error. 3520 */ 3521 kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3522 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3523 { 3524 struct sockaddr_storage address; 3525 3526 memcpy(&address, addr, addrlen); 3527 3528 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address, 3529 addrlen); 3530 } 3531 EXPORT_SYMBOL(kernel_bind); 3532 3533 /** 3534 * kernel_listen - move socket to listening state (kernel space) 3535 * @sock: socket 3536 * @backlog: pending connections queue size 3537 * 3538 * Returns 0 or an error. 3539 */ 3540 kernel_listen(struct socket * sock,int backlog)3541 int kernel_listen(struct socket *sock, int backlog) 3542 { 3543 return READ_ONCE(sock->ops)->listen(sock, backlog); 3544 } 3545 EXPORT_SYMBOL(kernel_listen); 3546 3547 /** 3548 * kernel_accept - accept a connection (kernel space) 3549 * @sock: listening socket 3550 * @newsock: new connected socket 3551 * @flags: flags 3552 * 3553 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3554 * If it fails, @newsock is guaranteed to be %NULL. 3555 * Returns 0 or an error. 3556 */ 3557 kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3558 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3559 { 3560 struct sock *sk = sock->sk; 3561 const struct proto_ops *ops = READ_ONCE(sock->ops); 3562 struct proto_accept_arg arg = { 3563 .flags = flags, 3564 .kern = true, 3565 }; 3566 int err; 3567 3568 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3569 newsock); 3570 if (err < 0) 3571 goto done; 3572 3573 err = ops->accept(sock, *newsock, &arg); 3574 if (err < 0) { 3575 sock_release(*newsock); 3576 *newsock = NULL; 3577 goto done; 3578 } 3579 3580 (*newsock)->ops = ops; 3581 __module_get(ops->owner); 3582 3583 done: 3584 return err; 3585 } 3586 EXPORT_SYMBOL(kernel_accept); 3587 3588 /** 3589 * kernel_connect - connect a socket (kernel space) 3590 * @sock: socket 3591 * @addr: address 3592 * @addrlen: address length 3593 * @flags: flags (O_NONBLOCK, ...) 3594 * 3595 * For datagram sockets, @addr is the address to which datagrams are sent 3596 * by default, and the only address from which datagrams are received. 3597 * For stream sockets, attempts to connect to @addr. 3598 * Returns 0 or an error code. 3599 */ 3600 kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3601 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3602 int flags) 3603 { 3604 struct sockaddr_storage address; 3605 3606 memcpy(&address, addr, addrlen); 3607 3608 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address, 3609 addrlen, flags); 3610 } 3611 EXPORT_SYMBOL(kernel_connect); 3612 3613 /** 3614 * kernel_getsockname - get the address which the socket is bound (kernel space) 3615 * @sock: socket 3616 * @addr: address holder 3617 * 3618 * Fills the @addr pointer with the address which the socket is bound. 3619 * Returns the length of the address in bytes or an error code. 3620 */ 3621 kernel_getsockname(struct socket * sock,struct sockaddr * addr)3622 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3623 { 3624 return READ_ONCE(sock->ops)->getname(sock, addr, 0); 3625 } 3626 EXPORT_SYMBOL(kernel_getsockname); 3627 3628 /** 3629 * kernel_getpeername - get the address which the socket is connected (kernel space) 3630 * @sock: socket 3631 * @addr: address holder 3632 * 3633 * Fills the @addr pointer with the address which the socket is connected. 3634 * Returns the length of the address in bytes or an error code. 3635 */ 3636 kernel_getpeername(struct socket * sock,struct sockaddr * addr)3637 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3638 { 3639 return READ_ONCE(sock->ops)->getname(sock, addr, 1); 3640 } 3641 EXPORT_SYMBOL(kernel_getpeername); 3642 3643 /** 3644 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space) 3645 * @sock: socket 3646 * @how: connection part 3647 * 3648 * Returns 0 or an error. 3649 */ 3650 kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3651 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3652 { 3653 return READ_ONCE(sock->ops)->shutdown(sock, how); 3654 } 3655 EXPORT_SYMBOL(kernel_sock_shutdown); 3656 3657 /** 3658 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3659 * @sk: socket 3660 * 3661 * This routine returns the IP overhead imposed by a socket i.e. 3662 * the length of the underlying IP header, depending on whether 3663 * this is an IPv4 or IPv6 socket and the length from IP options turned 3664 * on at the socket. Assumes that the caller has a lock on the socket. 3665 */ 3666 kernel_sock_ip_overhead(struct sock * sk)3667 u32 kernel_sock_ip_overhead(struct sock *sk) 3668 { 3669 struct inet_sock *inet; 3670 struct ip_options_rcu *opt; 3671 u32 overhead = 0; 3672 #if IS_ENABLED(CONFIG_IPV6) 3673 struct ipv6_pinfo *np; 3674 struct ipv6_txoptions *optv6 = NULL; 3675 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3676 3677 if (!sk) 3678 return overhead; 3679 3680 switch (sk->sk_family) { 3681 case AF_INET: 3682 inet = inet_sk(sk); 3683 overhead += sizeof(struct iphdr); 3684 opt = rcu_dereference_protected(inet->inet_opt, 3685 sock_owned_by_user(sk)); 3686 if (opt) 3687 overhead += opt->opt.optlen; 3688 return overhead; 3689 #if IS_ENABLED(CONFIG_IPV6) 3690 case AF_INET6: 3691 np = inet6_sk(sk); 3692 overhead += sizeof(struct ipv6hdr); 3693 if (np) 3694 optv6 = rcu_dereference_protected(np->opt, 3695 sock_owned_by_user(sk)); 3696 if (optv6) 3697 overhead += (optv6->opt_flen + optv6->opt_nflen); 3698 return overhead; 3699 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3700 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3701 return overhead; 3702 } 3703 } 3704 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3705