1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KVM guest address space mapping code
4 *
5 * Copyright IBM Corp. 2007, 2020
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 #include <asm/page-states.h>
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/page.h>
25 #include <asm/tlb.h>
26
27 #define GMAP_SHADOW_FAKE_TABLE 1ULL
28
gmap_alloc_crst(void)29 static struct page *gmap_alloc_crst(void)
30 {
31 struct page *page;
32
33 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
34 if (!page)
35 return NULL;
36 __arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
37 return page;
38 }
39
40 /**
41 * gmap_alloc - allocate and initialize a guest address space
42 * @limit: maximum address of the gmap address space
43 *
44 * Returns a guest address space structure.
45 */
gmap_alloc(unsigned long limit)46 static struct gmap *gmap_alloc(unsigned long limit)
47 {
48 struct gmap *gmap;
49 struct page *page;
50 unsigned long *table;
51 unsigned long etype, atype;
52
53 if (limit < _REGION3_SIZE) {
54 limit = _REGION3_SIZE - 1;
55 atype = _ASCE_TYPE_SEGMENT;
56 etype = _SEGMENT_ENTRY_EMPTY;
57 } else if (limit < _REGION2_SIZE) {
58 limit = _REGION2_SIZE - 1;
59 atype = _ASCE_TYPE_REGION3;
60 etype = _REGION3_ENTRY_EMPTY;
61 } else if (limit < _REGION1_SIZE) {
62 limit = _REGION1_SIZE - 1;
63 atype = _ASCE_TYPE_REGION2;
64 etype = _REGION2_ENTRY_EMPTY;
65 } else {
66 limit = -1UL;
67 atype = _ASCE_TYPE_REGION1;
68 etype = _REGION1_ENTRY_EMPTY;
69 }
70 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
71 if (!gmap)
72 goto out;
73 INIT_LIST_HEAD(&gmap->crst_list);
74 INIT_LIST_HEAD(&gmap->children);
75 INIT_LIST_HEAD(&gmap->pt_list);
76 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
77 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
78 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
79 spin_lock_init(&gmap->guest_table_lock);
80 spin_lock_init(&gmap->shadow_lock);
81 refcount_set(&gmap->ref_count, 1);
82 page = gmap_alloc_crst();
83 if (!page)
84 goto out_free;
85 page->index = 0;
86 list_add(&page->lru, &gmap->crst_list);
87 table = page_to_virt(page);
88 crst_table_init(table, etype);
89 gmap->table = table;
90 gmap->asce = atype | _ASCE_TABLE_LENGTH |
91 _ASCE_USER_BITS | __pa(table);
92 gmap->asce_end = limit;
93 return gmap;
94
95 out_free:
96 kfree(gmap);
97 out:
98 return NULL;
99 }
100
101 /**
102 * gmap_create - create a guest address space
103 * @mm: pointer to the parent mm_struct
104 * @limit: maximum size of the gmap address space
105 *
106 * Returns a guest address space structure.
107 */
gmap_create(struct mm_struct * mm,unsigned long limit)108 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
109 {
110 struct gmap *gmap;
111 unsigned long gmap_asce;
112
113 gmap = gmap_alloc(limit);
114 if (!gmap)
115 return NULL;
116 gmap->mm = mm;
117 spin_lock(&mm->context.lock);
118 list_add_rcu(&gmap->list, &mm->context.gmap_list);
119 if (list_is_singular(&mm->context.gmap_list))
120 gmap_asce = gmap->asce;
121 else
122 gmap_asce = -1UL;
123 WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
124 spin_unlock(&mm->context.lock);
125 return gmap;
126 }
127 EXPORT_SYMBOL_GPL(gmap_create);
128
gmap_flush_tlb(struct gmap * gmap)129 static void gmap_flush_tlb(struct gmap *gmap)
130 {
131 if (MACHINE_HAS_IDTE)
132 __tlb_flush_idte(gmap->asce);
133 else
134 __tlb_flush_global();
135 }
136
gmap_radix_tree_free(struct radix_tree_root * root)137 static void gmap_radix_tree_free(struct radix_tree_root *root)
138 {
139 struct radix_tree_iter iter;
140 unsigned long indices[16];
141 unsigned long index;
142 void __rcu **slot;
143 int i, nr;
144
145 /* A radix tree is freed by deleting all of its entries */
146 index = 0;
147 do {
148 nr = 0;
149 radix_tree_for_each_slot(slot, root, &iter, index) {
150 indices[nr] = iter.index;
151 if (++nr == 16)
152 break;
153 }
154 for (i = 0; i < nr; i++) {
155 index = indices[i];
156 radix_tree_delete(root, index);
157 }
158 } while (nr > 0);
159 }
160
gmap_rmap_radix_tree_free(struct radix_tree_root * root)161 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
162 {
163 struct gmap_rmap *rmap, *rnext, *head;
164 struct radix_tree_iter iter;
165 unsigned long indices[16];
166 unsigned long index;
167 void __rcu **slot;
168 int i, nr;
169
170 /* A radix tree is freed by deleting all of its entries */
171 index = 0;
172 do {
173 nr = 0;
174 radix_tree_for_each_slot(slot, root, &iter, index) {
175 indices[nr] = iter.index;
176 if (++nr == 16)
177 break;
178 }
179 for (i = 0; i < nr; i++) {
180 index = indices[i];
181 head = radix_tree_delete(root, index);
182 gmap_for_each_rmap_safe(rmap, rnext, head)
183 kfree(rmap);
184 }
185 } while (nr > 0);
186 }
187
188 /**
189 * gmap_free - free a guest address space
190 * @gmap: pointer to the guest address space structure
191 *
192 * No locks required. There are no references to this gmap anymore.
193 */
gmap_free(struct gmap * gmap)194 static void gmap_free(struct gmap *gmap)
195 {
196 struct page *page, *next;
197
198 /* Flush tlb of all gmaps (if not already done for shadows) */
199 if (!(gmap_is_shadow(gmap) && gmap->removed))
200 gmap_flush_tlb(gmap);
201 /* Free all segment & region tables. */
202 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
203 __free_pages(page, CRST_ALLOC_ORDER);
204 gmap_radix_tree_free(&gmap->guest_to_host);
205 gmap_radix_tree_free(&gmap->host_to_guest);
206
207 /* Free additional data for a shadow gmap */
208 if (gmap_is_shadow(gmap)) {
209 struct ptdesc *ptdesc, *n;
210
211 /* Free all page tables. */
212 list_for_each_entry_safe(ptdesc, n, &gmap->pt_list, pt_list)
213 page_table_free_pgste(ptdesc);
214 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
215 /* Release reference to the parent */
216 gmap_put(gmap->parent);
217 }
218
219 kfree(gmap);
220 }
221
222 /**
223 * gmap_get - increase reference counter for guest address space
224 * @gmap: pointer to the guest address space structure
225 *
226 * Returns the gmap pointer
227 */
gmap_get(struct gmap * gmap)228 struct gmap *gmap_get(struct gmap *gmap)
229 {
230 refcount_inc(&gmap->ref_count);
231 return gmap;
232 }
233 EXPORT_SYMBOL_GPL(gmap_get);
234
235 /**
236 * gmap_put - decrease reference counter for guest address space
237 * @gmap: pointer to the guest address space structure
238 *
239 * If the reference counter reaches zero the guest address space is freed.
240 */
gmap_put(struct gmap * gmap)241 void gmap_put(struct gmap *gmap)
242 {
243 if (refcount_dec_and_test(&gmap->ref_count))
244 gmap_free(gmap);
245 }
246 EXPORT_SYMBOL_GPL(gmap_put);
247
248 /**
249 * gmap_remove - remove a guest address space but do not free it yet
250 * @gmap: pointer to the guest address space structure
251 */
gmap_remove(struct gmap * gmap)252 void gmap_remove(struct gmap *gmap)
253 {
254 struct gmap *sg, *next;
255 unsigned long gmap_asce;
256
257 /* Remove all shadow gmaps linked to this gmap */
258 if (!list_empty(&gmap->children)) {
259 spin_lock(&gmap->shadow_lock);
260 list_for_each_entry_safe(sg, next, &gmap->children, list) {
261 list_del(&sg->list);
262 gmap_put(sg);
263 }
264 spin_unlock(&gmap->shadow_lock);
265 }
266 /* Remove gmap from the pre-mm list */
267 spin_lock(&gmap->mm->context.lock);
268 list_del_rcu(&gmap->list);
269 if (list_empty(&gmap->mm->context.gmap_list))
270 gmap_asce = 0;
271 else if (list_is_singular(&gmap->mm->context.gmap_list))
272 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
273 struct gmap, list)->asce;
274 else
275 gmap_asce = -1UL;
276 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
277 spin_unlock(&gmap->mm->context.lock);
278 synchronize_rcu();
279 /* Put reference */
280 gmap_put(gmap);
281 }
282 EXPORT_SYMBOL_GPL(gmap_remove);
283
284 /**
285 * gmap_enable - switch primary space to the guest address space
286 * @gmap: pointer to the guest address space structure
287 */
gmap_enable(struct gmap * gmap)288 void gmap_enable(struct gmap *gmap)
289 {
290 get_lowcore()->gmap = (unsigned long)gmap;
291 }
292 EXPORT_SYMBOL_GPL(gmap_enable);
293
294 /**
295 * gmap_disable - switch back to the standard primary address space
296 * @gmap: pointer to the guest address space structure
297 */
gmap_disable(struct gmap * gmap)298 void gmap_disable(struct gmap *gmap)
299 {
300 get_lowcore()->gmap = 0UL;
301 }
302 EXPORT_SYMBOL_GPL(gmap_disable);
303
304 /**
305 * gmap_get_enabled - get a pointer to the currently enabled gmap
306 *
307 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
308 */
gmap_get_enabled(void)309 struct gmap *gmap_get_enabled(void)
310 {
311 return (struct gmap *)get_lowcore()->gmap;
312 }
313 EXPORT_SYMBOL_GPL(gmap_get_enabled);
314
315 /*
316 * gmap_alloc_table is assumed to be called with mmap_lock held
317 */
gmap_alloc_table(struct gmap * gmap,unsigned long * table,unsigned long init,unsigned long gaddr)318 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
319 unsigned long init, unsigned long gaddr)
320 {
321 struct page *page;
322 unsigned long *new;
323
324 /* since we dont free the gmap table until gmap_free we can unlock */
325 page = gmap_alloc_crst();
326 if (!page)
327 return -ENOMEM;
328 new = page_to_virt(page);
329 crst_table_init(new, init);
330 spin_lock(&gmap->guest_table_lock);
331 if (*table & _REGION_ENTRY_INVALID) {
332 list_add(&page->lru, &gmap->crst_list);
333 *table = __pa(new) | _REGION_ENTRY_LENGTH |
334 (*table & _REGION_ENTRY_TYPE_MASK);
335 page->index = gaddr;
336 page = NULL;
337 }
338 spin_unlock(&gmap->guest_table_lock);
339 if (page)
340 __free_pages(page, CRST_ALLOC_ORDER);
341 return 0;
342 }
343
344 /**
345 * __gmap_segment_gaddr - find virtual address from segment pointer
346 * @entry: pointer to a segment table entry in the guest address space
347 *
348 * Returns the virtual address in the guest address space for the segment
349 */
__gmap_segment_gaddr(unsigned long * entry)350 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
351 {
352 struct page *page;
353 unsigned long offset;
354
355 offset = (unsigned long) entry / sizeof(unsigned long);
356 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
357 page = pmd_pgtable_page((pmd_t *) entry);
358 return page->index + offset;
359 }
360
361 /**
362 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
363 * @gmap: pointer to the guest address space structure
364 * @vmaddr: address in the host process address space
365 *
366 * Returns 1 if a TLB flush is required
367 */
__gmap_unlink_by_vmaddr(struct gmap * gmap,unsigned long vmaddr)368 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
369 {
370 unsigned long *entry;
371 int flush = 0;
372
373 BUG_ON(gmap_is_shadow(gmap));
374 spin_lock(&gmap->guest_table_lock);
375 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
376 if (entry) {
377 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
378 *entry = _SEGMENT_ENTRY_EMPTY;
379 }
380 spin_unlock(&gmap->guest_table_lock);
381 return flush;
382 }
383
384 /**
385 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
386 * @gmap: pointer to the guest address space structure
387 * @gaddr: address in the guest address space
388 *
389 * Returns 1 if a TLB flush is required
390 */
__gmap_unmap_by_gaddr(struct gmap * gmap,unsigned long gaddr)391 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
392 {
393 unsigned long vmaddr;
394
395 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
396 gaddr >> PMD_SHIFT);
397 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
398 }
399
400 /**
401 * gmap_unmap_segment - unmap segment from the guest address space
402 * @gmap: pointer to the guest address space structure
403 * @to: address in the guest address space
404 * @len: length of the memory area to unmap
405 *
406 * Returns 0 if the unmap succeeded, -EINVAL if not.
407 */
gmap_unmap_segment(struct gmap * gmap,unsigned long to,unsigned long len)408 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
409 {
410 unsigned long off;
411 int flush;
412
413 BUG_ON(gmap_is_shadow(gmap));
414 if ((to | len) & (PMD_SIZE - 1))
415 return -EINVAL;
416 if (len == 0 || to + len < to)
417 return -EINVAL;
418
419 flush = 0;
420 mmap_write_lock(gmap->mm);
421 for (off = 0; off < len; off += PMD_SIZE)
422 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
423 mmap_write_unlock(gmap->mm);
424 if (flush)
425 gmap_flush_tlb(gmap);
426 return 0;
427 }
428 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
429
430 /**
431 * gmap_map_segment - map a segment to the guest address space
432 * @gmap: pointer to the guest address space structure
433 * @from: source address in the parent address space
434 * @to: target address in the guest address space
435 * @len: length of the memory area to map
436 *
437 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
438 */
gmap_map_segment(struct gmap * gmap,unsigned long from,unsigned long to,unsigned long len)439 int gmap_map_segment(struct gmap *gmap, unsigned long from,
440 unsigned long to, unsigned long len)
441 {
442 unsigned long off;
443 int flush;
444
445 BUG_ON(gmap_is_shadow(gmap));
446 if ((from | to | len) & (PMD_SIZE - 1))
447 return -EINVAL;
448 if (len == 0 || from + len < from || to + len < to ||
449 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
450 return -EINVAL;
451
452 flush = 0;
453 mmap_write_lock(gmap->mm);
454 for (off = 0; off < len; off += PMD_SIZE) {
455 /* Remove old translation */
456 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
457 /* Store new translation */
458 if (radix_tree_insert(&gmap->guest_to_host,
459 (to + off) >> PMD_SHIFT,
460 (void *) from + off))
461 break;
462 }
463 mmap_write_unlock(gmap->mm);
464 if (flush)
465 gmap_flush_tlb(gmap);
466 if (off >= len)
467 return 0;
468 gmap_unmap_segment(gmap, to, len);
469 return -ENOMEM;
470 }
471 EXPORT_SYMBOL_GPL(gmap_map_segment);
472
473 /**
474 * __gmap_translate - translate a guest address to a user space address
475 * @gmap: pointer to guest mapping meta data structure
476 * @gaddr: guest address
477 *
478 * Returns user space address which corresponds to the guest address or
479 * -EFAULT if no such mapping exists.
480 * This function does not establish potentially missing page table entries.
481 * The mmap_lock of the mm that belongs to the address space must be held
482 * when this function gets called.
483 *
484 * Note: Can also be called for shadow gmaps.
485 */
__gmap_translate(struct gmap * gmap,unsigned long gaddr)486 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
487 {
488 unsigned long vmaddr;
489
490 vmaddr = (unsigned long)
491 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
492 /* Note: guest_to_host is empty for a shadow gmap */
493 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
494 }
495 EXPORT_SYMBOL_GPL(__gmap_translate);
496
497 /**
498 * gmap_translate - translate a guest address to a user space address
499 * @gmap: pointer to guest mapping meta data structure
500 * @gaddr: guest address
501 *
502 * Returns user space address which corresponds to the guest address or
503 * -EFAULT if no such mapping exists.
504 * This function does not establish potentially missing page table entries.
505 */
gmap_translate(struct gmap * gmap,unsigned long gaddr)506 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
507 {
508 unsigned long rc;
509
510 mmap_read_lock(gmap->mm);
511 rc = __gmap_translate(gmap, gaddr);
512 mmap_read_unlock(gmap->mm);
513 return rc;
514 }
515 EXPORT_SYMBOL_GPL(gmap_translate);
516
517 /**
518 * gmap_unlink - disconnect a page table from the gmap shadow tables
519 * @mm: pointer to the parent mm_struct
520 * @table: pointer to the host page table
521 * @vmaddr: vm address associated with the host page table
522 */
gmap_unlink(struct mm_struct * mm,unsigned long * table,unsigned long vmaddr)523 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
524 unsigned long vmaddr)
525 {
526 struct gmap *gmap;
527 int flush;
528
529 rcu_read_lock();
530 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
531 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
532 if (flush)
533 gmap_flush_tlb(gmap);
534 }
535 rcu_read_unlock();
536 }
537
538 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
539 unsigned long gaddr);
540
541 /**
542 * __gmap_link - set up shadow page tables to connect a host to a guest address
543 * @gmap: pointer to guest mapping meta data structure
544 * @gaddr: guest address
545 * @vmaddr: vm address
546 *
547 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
548 * if the vm address is already mapped to a different guest segment.
549 * The mmap_lock of the mm that belongs to the address space must be held
550 * when this function gets called.
551 */
__gmap_link(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr)552 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
553 {
554 struct mm_struct *mm;
555 unsigned long *table;
556 spinlock_t *ptl;
557 pgd_t *pgd;
558 p4d_t *p4d;
559 pud_t *pud;
560 pmd_t *pmd;
561 u64 unprot;
562 int rc;
563
564 BUG_ON(gmap_is_shadow(gmap));
565 /* Create higher level tables in the gmap page table */
566 table = gmap->table;
567 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
568 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
569 if ((*table & _REGION_ENTRY_INVALID) &&
570 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
571 gaddr & _REGION1_MASK))
572 return -ENOMEM;
573 table = __va(*table & _REGION_ENTRY_ORIGIN);
574 }
575 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
576 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
577 if ((*table & _REGION_ENTRY_INVALID) &&
578 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
579 gaddr & _REGION2_MASK))
580 return -ENOMEM;
581 table = __va(*table & _REGION_ENTRY_ORIGIN);
582 }
583 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
584 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
585 if ((*table & _REGION_ENTRY_INVALID) &&
586 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
587 gaddr & _REGION3_MASK))
588 return -ENOMEM;
589 table = __va(*table & _REGION_ENTRY_ORIGIN);
590 }
591 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
592 /* Walk the parent mm page table */
593 mm = gmap->mm;
594 pgd = pgd_offset(mm, vmaddr);
595 VM_BUG_ON(pgd_none(*pgd));
596 p4d = p4d_offset(pgd, vmaddr);
597 VM_BUG_ON(p4d_none(*p4d));
598 pud = pud_offset(p4d, vmaddr);
599 VM_BUG_ON(pud_none(*pud));
600 /* large puds cannot yet be handled */
601 if (pud_leaf(*pud))
602 return -EFAULT;
603 pmd = pmd_offset(pud, vmaddr);
604 VM_BUG_ON(pmd_none(*pmd));
605 /* Are we allowed to use huge pages? */
606 if (pmd_leaf(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
607 return -EFAULT;
608 /* Link gmap segment table entry location to page table. */
609 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
610 if (rc)
611 return rc;
612 ptl = pmd_lock(mm, pmd);
613 spin_lock(&gmap->guest_table_lock);
614 if (*table == _SEGMENT_ENTRY_EMPTY) {
615 rc = radix_tree_insert(&gmap->host_to_guest,
616 vmaddr >> PMD_SHIFT, table);
617 if (!rc) {
618 if (pmd_leaf(*pmd)) {
619 *table = (pmd_val(*pmd) &
620 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
621 | _SEGMENT_ENTRY_GMAP_UC;
622 } else
623 *table = pmd_val(*pmd) &
624 _SEGMENT_ENTRY_HARDWARE_BITS;
625 }
626 } else if (*table & _SEGMENT_ENTRY_PROTECT &&
627 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
628 unprot = (u64)*table;
629 unprot &= ~_SEGMENT_ENTRY_PROTECT;
630 unprot |= _SEGMENT_ENTRY_GMAP_UC;
631 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
632 }
633 spin_unlock(&gmap->guest_table_lock);
634 spin_unlock(ptl);
635 radix_tree_preload_end();
636 return rc;
637 }
638
639 /**
640 * gmap_fault - resolve a fault on a guest address
641 * @gmap: pointer to guest mapping meta data structure
642 * @gaddr: guest address
643 * @fault_flags: flags to pass down to handle_mm_fault()
644 *
645 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
646 * if the vm address is already mapped to a different guest segment.
647 */
gmap_fault(struct gmap * gmap,unsigned long gaddr,unsigned int fault_flags)648 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
649 unsigned int fault_flags)
650 {
651 unsigned long vmaddr;
652 int rc;
653 bool unlocked;
654
655 mmap_read_lock(gmap->mm);
656
657 retry:
658 unlocked = false;
659 vmaddr = __gmap_translate(gmap, gaddr);
660 if (IS_ERR_VALUE(vmaddr)) {
661 rc = vmaddr;
662 goto out_up;
663 }
664 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
665 &unlocked)) {
666 rc = -EFAULT;
667 goto out_up;
668 }
669 /*
670 * In the case that fixup_user_fault unlocked the mmap_lock during
671 * faultin redo __gmap_translate to not race with a map/unmap_segment.
672 */
673 if (unlocked)
674 goto retry;
675
676 rc = __gmap_link(gmap, gaddr, vmaddr);
677 out_up:
678 mmap_read_unlock(gmap->mm);
679 return rc;
680 }
681 EXPORT_SYMBOL_GPL(gmap_fault);
682
683 /*
684 * this function is assumed to be called with mmap_lock held
685 */
__gmap_zap(struct gmap * gmap,unsigned long gaddr)686 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
687 {
688 struct vm_area_struct *vma;
689 unsigned long vmaddr;
690 spinlock_t *ptl;
691 pte_t *ptep;
692
693 /* Find the vm address for the guest address */
694 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
695 gaddr >> PMD_SHIFT);
696 if (vmaddr) {
697 vmaddr |= gaddr & ~PMD_MASK;
698
699 vma = vma_lookup(gmap->mm, vmaddr);
700 if (!vma || is_vm_hugetlb_page(vma))
701 return;
702
703 /* Get pointer to the page table entry */
704 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
705 if (likely(ptep)) {
706 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
707 pte_unmap_unlock(ptep, ptl);
708 }
709 }
710 }
711 EXPORT_SYMBOL_GPL(__gmap_zap);
712
gmap_discard(struct gmap * gmap,unsigned long from,unsigned long to)713 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
714 {
715 unsigned long gaddr, vmaddr, size;
716 struct vm_area_struct *vma;
717
718 mmap_read_lock(gmap->mm);
719 for (gaddr = from; gaddr < to;
720 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
721 /* Find the vm address for the guest address */
722 vmaddr = (unsigned long)
723 radix_tree_lookup(&gmap->guest_to_host,
724 gaddr >> PMD_SHIFT);
725 if (!vmaddr)
726 continue;
727 vmaddr |= gaddr & ~PMD_MASK;
728 /* Find vma in the parent mm */
729 vma = find_vma(gmap->mm, vmaddr);
730 if (!vma)
731 continue;
732 /*
733 * We do not discard pages that are backed by
734 * hugetlbfs, so we don't have to refault them.
735 */
736 if (is_vm_hugetlb_page(vma))
737 continue;
738 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
739 zap_page_range_single(vma, vmaddr, size, NULL);
740 }
741 mmap_read_unlock(gmap->mm);
742 }
743 EXPORT_SYMBOL_GPL(gmap_discard);
744
745 static LIST_HEAD(gmap_notifier_list);
746 static DEFINE_SPINLOCK(gmap_notifier_lock);
747
748 /**
749 * gmap_register_pte_notifier - register a pte invalidation callback
750 * @nb: pointer to the gmap notifier block
751 */
gmap_register_pte_notifier(struct gmap_notifier * nb)752 void gmap_register_pte_notifier(struct gmap_notifier *nb)
753 {
754 spin_lock(&gmap_notifier_lock);
755 list_add_rcu(&nb->list, &gmap_notifier_list);
756 spin_unlock(&gmap_notifier_lock);
757 }
758 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
759
760 /**
761 * gmap_unregister_pte_notifier - remove a pte invalidation callback
762 * @nb: pointer to the gmap notifier block
763 */
gmap_unregister_pte_notifier(struct gmap_notifier * nb)764 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
765 {
766 spin_lock(&gmap_notifier_lock);
767 list_del_rcu(&nb->list);
768 spin_unlock(&gmap_notifier_lock);
769 synchronize_rcu();
770 }
771 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
772
773 /**
774 * gmap_call_notifier - call all registered invalidation callbacks
775 * @gmap: pointer to guest mapping meta data structure
776 * @start: start virtual address in the guest address space
777 * @end: end virtual address in the guest address space
778 */
gmap_call_notifier(struct gmap * gmap,unsigned long start,unsigned long end)779 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
780 unsigned long end)
781 {
782 struct gmap_notifier *nb;
783
784 list_for_each_entry(nb, &gmap_notifier_list, list)
785 nb->notifier_call(gmap, start, end);
786 }
787
788 /**
789 * gmap_table_walk - walk the gmap page tables
790 * @gmap: pointer to guest mapping meta data structure
791 * @gaddr: virtual address in the guest address space
792 * @level: page table level to stop at
793 *
794 * Returns a table entry pointer for the given guest address and @level
795 * @level=0 : returns a pointer to a page table table entry (or NULL)
796 * @level=1 : returns a pointer to a segment table entry (or NULL)
797 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
798 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
799 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
800 *
801 * Returns NULL if the gmap page tables could not be walked to the
802 * requested level.
803 *
804 * Note: Can also be called for shadow gmaps.
805 */
gmap_table_walk(struct gmap * gmap,unsigned long gaddr,int level)806 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
807 unsigned long gaddr, int level)
808 {
809 const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
810 unsigned long *table = gmap->table;
811
812 if (gmap_is_shadow(gmap) && gmap->removed)
813 return NULL;
814
815 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
816 return NULL;
817
818 if (asce_type != _ASCE_TYPE_REGION1 &&
819 gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
820 return NULL;
821
822 switch (asce_type) {
823 case _ASCE_TYPE_REGION1:
824 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
825 if (level == 4)
826 break;
827 if (*table & _REGION_ENTRY_INVALID)
828 return NULL;
829 table = __va(*table & _REGION_ENTRY_ORIGIN);
830 fallthrough;
831 case _ASCE_TYPE_REGION2:
832 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
833 if (level == 3)
834 break;
835 if (*table & _REGION_ENTRY_INVALID)
836 return NULL;
837 table = __va(*table & _REGION_ENTRY_ORIGIN);
838 fallthrough;
839 case _ASCE_TYPE_REGION3:
840 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
841 if (level == 2)
842 break;
843 if (*table & _REGION_ENTRY_INVALID)
844 return NULL;
845 table = __va(*table & _REGION_ENTRY_ORIGIN);
846 fallthrough;
847 case _ASCE_TYPE_SEGMENT:
848 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
849 if (level == 1)
850 break;
851 if (*table & _REGION_ENTRY_INVALID)
852 return NULL;
853 table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
854 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
855 }
856 return table;
857 }
858
859 /**
860 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
861 * and return the pte pointer
862 * @gmap: pointer to guest mapping meta data structure
863 * @gaddr: virtual address in the guest address space
864 * @ptl: pointer to the spinlock pointer
865 *
866 * Returns a pointer to the locked pte for a guest address, or NULL
867 */
gmap_pte_op_walk(struct gmap * gmap,unsigned long gaddr,spinlock_t ** ptl)868 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
869 spinlock_t **ptl)
870 {
871 unsigned long *table;
872
873 BUG_ON(gmap_is_shadow(gmap));
874 /* Walk the gmap page table, lock and get pte pointer */
875 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
876 if (!table || *table & _SEGMENT_ENTRY_INVALID)
877 return NULL;
878 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
879 }
880
881 /**
882 * gmap_pte_op_fixup - force a page in and connect the gmap page table
883 * @gmap: pointer to guest mapping meta data structure
884 * @gaddr: virtual address in the guest address space
885 * @vmaddr: address in the host process address space
886 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
887 *
888 * Returns 0 if the caller can retry __gmap_translate (might fail again),
889 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
890 * up or connecting the gmap page table.
891 */
gmap_pte_op_fixup(struct gmap * gmap,unsigned long gaddr,unsigned long vmaddr,int prot)892 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
893 unsigned long vmaddr, int prot)
894 {
895 struct mm_struct *mm = gmap->mm;
896 unsigned int fault_flags;
897 bool unlocked = false;
898
899 BUG_ON(gmap_is_shadow(gmap));
900 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
901 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
902 return -EFAULT;
903 if (unlocked)
904 /* lost mmap_lock, caller has to retry __gmap_translate */
905 return 0;
906 /* Connect the page tables */
907 return __gmap_link(gmap, gaddr, vmaddr);
908 }
909
910 /**
911 * gmap_pte_op_end - release the page table lock
912 * @ptep: pointer to the locked pte
913 * @ptl: pointer to the page table spinlock
914 */
gmap_pte_op_end(pte_t * ptep,spinlock_t * ptl)915 static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
916 {
917 pte_unmap_unlock(ptep, ptl);
918 }
919
920 /**
921 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
922 * and return the pmd pointer
923 * @gmap: pointer to guest mapping meta data structure
924 * @gaddr: virtual address in the guest address space
925 *
926 * Returns a pointer to the pmd for a guest address, or NULL
927 */
gmap_pmd_op_walk(struct gmap * gmap,unsigned long gaddr)928 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
929 {
930 pmd_t *pmdp;
931
932 BUG_ON(gmap_is_shadow(gmap));
933 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
934 if (!pmdp)
935 return NULL;
936
937 /* without huge pages, there is no need to take the table lock */
938 if (!gmap->mm->context.allow_gmap_hpage_1m)
939 return pmd_none(*pmdp) ? NULL : pmdp;
940
941 spin_lock(&gmap->guest_table_lock);
942 if (pmd_none(*pmdp)) {
943 spin_unlock(&gmap->guest_table_lock);
944 return NULL;
945 }
946
947 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
948 if (!pmd_leaf(*pmdp))
949 spin_unlock(&gmap->guest_table_lock);
950 return pmdp;
951 }
952
953 /**
954 * gmap_pmd_op_end - release the guest_table_lock if needed
955 * @gmap: pointer to the guest mapping meta data structure
956 * @pmdp: pointer to the pmd
957 */
gmap_pmd_op_end(struct gmap * gmap,pmd_t * pmdp)958 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
959 {
960 if (pmd_leaf(*pmdp))
961 spin_unlock(&gmap->guest_table_lock);
962 }
963
964 /*
965 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
966 * @pmdp: pointer to the pmd to be protected
967 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
968 * @bits: notification bits to set
969 *
970 * Returns:
971 * 0 if successfully protected
972 * -EAGAIN if a fixup is needed
973 * -EINVAL if unsupported notifier bits have been specified
974 *
975 * Expected to be called with sg->mm->mmap_lock in read and
976 * guest_table_lock held.
977 */
gmap_protect_pmd(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)978 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
979 pmd_t *pmdp, int prot, unsigned long bits)
980 {
981 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
982 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
983 pmd_t new = *pmdp;
984
985 /* Fixup needed */
986 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
987 return -EAGAIN;
988
989 if (prot == PROT_NONE && !pmd_i) {
990 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
991 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
992 }
993
994 if (prot == PROT_READ && !pmd_p) {
995 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
996 new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
997 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
998 }
999
1000 if (bits & GMAP_NOTIFY_MPROT)
1001 set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1002
1003 /* Shadow GMAP protection needs split PMDs */
1004 if (bits & GMAP_NOTIFY_SHADOW)
1005 return -EINVAL;
1006
1007 return 0;
1008 }
1009
1010 /*
1011 * gmap_protect_pte - remove access rights to memory and set pgste bits
1012 * @gmap: pointer to guest mapping meta data structure
1013 * @gaddr: virtual address in the guest address space
1014 * @pmdp: pointer to the pmd associated with the pte
1015 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1016 * @bits: notification bits to set
1017 *
1018 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1019 * -EAGAIN if a fixup is needed.
1020 *
1021 * Expected to be called with sg->mm->mmap_lock in read
1022 */
gmap_protect_pte(struct gmap * gmap,unsigned long gaddr,pmd_t * pmdp,int prot,unsigned long bits)1023 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1024 pmd_t *pmdp, int prot, unsigned long bits)
1025 {
1026 int rc;
1027 pte_t *ptep;
1028 spinlock_t *ptl;
1029 unsigned long pbits = 0;
1030
1031 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1032 return -EAGAIN;
1033
1034 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1035 if (!ptep)
1036 return -ENOMEM;
1037
1038 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1039 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1040 /* Protect and unlock. */
1041 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1042 gmap_pte_op_end(ptep, ptl);
1043 return rc;
1044 }
1045
1046 /*
1047 * gmap_protect_range - remove access rights to memory and set pgste bits
1048 * @gmap: pointer to guest mapping meta data structure
1049 * @gaddr: virtual address in the guest address space
1050 * @len: size of area
1051 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1052 * @bits: pgste notification bits to set
1053 *
1054 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1055 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1056 *
1057 * Called with sg->mm->mmap_lock in read.
1058 */
gmap_protect_range(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot,unsigned long bits)1059 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1060 unsigned long len, int prot, unsigned long bits)
1061 {
1062 unsigned long vmaddr, dist;
1063 pmd_t *pmdp;
1064 int rc;
1065
1066 BUG_ON(gmap_is_shadow(gmap));
1067 while (len) {
1068 rc = -EAGAIN;
1069 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1070 if (pmdp) {
1071 if (!pmd_leaf(*pmdp)) {
1072 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1073 bits);
1074 if (!rc) {
1075 len -= PAGE_SIZE;
1076 gaddr += PAGE_SIZE;
1077 }
1078 } else {
1079 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1080 bits);
1081 if (!rc) {
1082 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1083 len = len < dist ? 0 : len - dist;
1084 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1085 }
1086 }
1087 gmap_pmd_op_end(gmap, pmdp);
1088 }
1089 if (rc) {
1090 if (rc == -EINVAL)
1091 return rc;
1092
1093 /* -EAGAIN, fixup of userspace mm and gmap */
1094 vmaddr = __gmap_translate(gmap, gaddr);
1095 if (IS_ERR_VALUE(vmaddr))
1096 return vmaddr;
1097 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1098 if (rc)
1099 return rc;
1100 }
1101 }
1102 return 0;
1103 }
1104
1105 /**
1106 * gmap_mprotect_notify - change access rights for a range of ptes and
1107 * call the notifier if any pte changes again
1108 * @gmap: pointer to guest mapping meta data structure
1109 * @gaddr: virtual address in the guest address space
1110 * @len: size of area
1111 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1112 *
1113 * Returns 0 if for each page in the given range a gmap mapping exists,
1114 * the new access rights could be set and the notifier could be armed.
1115 * If the gmap mapping is missing for one or more pages -EFAULT is
1116 * returned. If no memory could be allocated -ENOMEM is returned.
1117 * This function establishes missing page table entries.
1118 */
gmap_mprotect_notify(struct gmap * gmap,unsigned long gaddr,unsigned long len,int prot)1119 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1120 unsigned long len, int prot)
1121 {
1122 int rc;
1123
1124 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1125 return -EINVAL;
1126 if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1127 return -EINVAL;
1128 mmap_read_lock(gmap->mm);
1129 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1130 mmap_read_unlock(gmap->mm);
1131 return rc;
1132 }
1133 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1134
1135 /**
1136 * gmap_read_table - get an unsigned long value from a guest page table using
1137 * absolute addressing, without marking the page referenced.
1138 * @gmap: pointer to guest mapping meta data structure
1139 * @gaddr: virtual address in the guest address space
1140 * @val: pointer to the unsigned long value to return
1141 *
1142 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1143 * if reading using the virtual address failed. -EINVAL if called on a gmap
1144 * shadow.
1145 *
1146 * Called with gmap->mm->mmap_lock in read.
1147 */
gmap_read_table(struct gmap * gmap,unsigned long gaddr,unsigned long * val)1148 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1149 {
1150 unsigned long address, vmaddr;
1151 spinlock_t *ptl;
1152 pte_t *ptep, pte;
1153 int rc;
1154
1155 if (gmap_is_shadow(gmap))
1156 return -EINVAL;
1157
1158 while (1) {
1159 rc = -EAGAIN;
1160 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1161 if (ptep) {
1162 pte = *ptep;
1163 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1164 address = pte_val(pte) & PAGE_MASK;
1165 address += gaddr & ~PAGE_MASK;
1166 *val = *(unsigned long *)__va(address);
1167 set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1168 /* Do *NOT* clear the _PAGE_INVALID bit! */
1169 rc = 0;
1170 }
1171 gmap_pte_op_end(ptep, ptl);
1172 }
1173 if (!rc)
1174 break;
1175 vmaddr = __gmap_translate(gmap, gaddr);
1176 if (IS_ERR_VALUE(vmaddr)) {
1177 rc = vmaddr;
1178 break;
1179 }
1180 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1181 if (rc)
1182 break;
1183 }
1184 return rc;
1185 }
1186 EXPORT_SYMBOL_GPL(gmap_read_table);
1187
1188 /**
1189 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1190 * @sg: pointer to the shadow guest address space structure
1191 * @vmaddr: vm address associated with the rmap
1192 * @rmap: pointer to the rmap structure
1193 *
1194 * Called with the sg->guest_table_lock
1195 */
gmap_insert_rmap(struct gmap * sg,unsigned long vmaddr,struct gmap_rmap * rmap)1196 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1197 struct gmap_rmap *rmap)
1198 {
1199 struct gmap_rmap *temp;
1200 void __rcu **slot;
1201
1202 BUG_ON(!gmap_is_shadow(sg));
1203 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1204 if (slot) {
1205 rmap->next = radix_tree_deref_slot_protected(slot,
1206 &sg->guest_table_lock);
1207 for (temp = rmap->next; temp; temp = temp->next) {
1208 if (temp->raddr == rmap->raddr) {
1209 kfree(rmap);
1210 return;
1211 }
1212 }
1213 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1214 } else {
1215 rmap->next = NULL;
1216 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1217 rmap);
1218 }
1219 }
1220
1221 /**
1222 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1223 * @sg: pointer to the shadow guest address space structure
1224 * @raddr: rmap address in the shadow gmap
1225 * @paddr: address in the parent guest address space
1226 * @len: length of the memory area to protect
1227 *
1228 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1229 * if out of memory and -EFAULT if paddr is invalid.
1230 */
gmap_protect_rmap(struct gmap * sg,unsigned long raddr,unsigned long paddr,unsigned long len)1231 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1232 unsigned long paddr, unsigned long len)
1233 {
1234 struct gmap *parent;
1235 struct gmap_rmap *rmap;
1236 unsigned long vmaddr;
1237 spinlock_t *ptl;
1238 pte_t *ptep;
1239 int rc;
1240
1241 BUG_ON(!gmap_is_shadow(sg));
1242 parent = sg->parent;
1243 while (len) {
1244 vmaddr = __gmap_translate(parent, paddr);
1245 if (IS_ERR_VALUE(vmaddr))
1246 return vmaddr;
1247 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1248 if (!rmap)
1249 return -ENOMEM;
1250 rmap->raddr = raddr;
1251 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1252 if (rc) {
1253 kfree(rmap);
1254 return rc;
1255 }
1256 rc = -EAGAIN;
1257 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1258 if (ptep) {
1259 spin_lock(&sg->guest_table_lock);
1260 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1261 PGSTE_VSIE_BIT);
1262 if (!rc)
1263 gmap_insert_rmap(sg, vmaddr, rmap);
1264 spin_unlock(&sg->guest_table_lock);
1265 gmap_pte_op_end(ptep, ptl);
1266 }
1267 radix_tree_preload_end();
1268 if (rc) {
1269 kfree(rmap);
1270 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1271 if (rc)
1272 return rc;
1273 continue;
1274 }
1275 paddr += PAGE_SIZE;
1276 len -= PAGE_SIZE;
1277 }
1278 return 0;
1279 }
1280
1281 #define _SHADOW_RMAP_MASK 0x7
1282 #define _SHADOW_RMAP_REGION1 0x5
1283 #define _SHADOW_RMAP_REGION2 0x4
1284 #define _SHADOW_RMAP_REGION3 0x3
1285 #define _SHADOW_RMAP_SEGMENT 0x2
1286 #define _SHADOW_RMAP_PGTABLE 0x1
1287
1288 /**
1289 * gmap_idte_one - invalidate a single region or segment table entry
1290 * @asce: region or segment table *origin* + table-type bits
1291 * @vaddr: virtual address to identify the table entry to flush
1292 *
1293 * The invalid bit of a single region or segment table entry is set
1294 * and the associated TLB entries depending on the entry are flushed.
1295 * The table-type of the @asce identifies the portion of the @vaddr
1296 * that is used as the invalidation index.
1297 */
gmap_idte_one(unsigned long asce,unsigned long vaddr)1298 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1299 {
1300 asm volatile(
1301 " idte %0,0,%1"
1302 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1303 }
1304
1305 /**
1306 * gmap_unshadow_page - remove a page from a shadow page table
1307 * @sg: pointer to the shadow guest address space structure
1308 * @raddr: rmap address in the shadow guest address space
1309 *
1310 * Called with the sg->guest_table_lock
1311 */
gmap_unshadow_page(struct gmap * sg,unsigned long raddr)1312 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1313 {
1314 unsigned long *table;
1315
1316 BUG_ON(!gmap_is_shadow(sg));
1317 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1318 if (!table || *table & _PAGE_INVALID)
1319 return;
1320 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1321 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1322 }
1323
1324 /**
1325 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1326 * @sg: pointer to the shadow guest address space structure
1327 * @raddr: rmap address in the shadow guest address space
1328 * @pgt: pointer to the start of a shadow page table
1329 *
1330 * Called with the sg->guest_table_lock
1331 */
__gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr,unsigned long * pgt)1332 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1333 unsigned long *pgt)
1334 {
1335 int i;
1336
1337 BUG_ON(!gmap_is_shadow(sg));
1338 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1339 pgt[i] = _PAGE_INVALID;
1340 }
1341
1342 /**
1343 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1344 * @sg: pointer to the shadow guest address space structure
1345 * @raddr: address in the shadow guest address space
1346 *
1347 * Called with the sg->guest_table_lock
1348 */
gmap_unshadow_pgt(struct gmap * sg,unsigned long raddr)1349 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1350 {
1351 unsigned long *ste;
1352 phys_addr_t sto, pgt;
1353 struct ptdesc *ptdesc;
1354
1355 BUG_ON(!gmap_is_shadow(sg));
1356 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1357 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1358 return;
1359 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1360 sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1361 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1362 pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1363 *ste = _SEGMENT_ENTRY_EMPTY;
1364 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1365 /* Free page table */
1366 ptdesc = page_ptdesc(phys_to_page(pgt));
1367 list_del(&ptdesc->pt_list);
1368 page_table_free_pgste(ptdesc);
1369 }
1370
1371 /**
1372 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1373 * @sg: pointer to the shadow guest address space structure
1374 * @raddr: rmap address in the shadow guest address space
1375 * @sgt: pointer to the start of a shadow segment table
1376 *
1377 * Called with the sg->guest_table_lock
1378 */
__gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr,unsigned long * sgt)1379 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1380 unsigned long *sgt)
1381 {
1382 struct ptdesc *ptdesc;
1383 phys_addr_t pgt;
1384 int i;
1385
1386 BUG_ON(!gmap_is_shadow(sg));
1387 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1388 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1389 continue;
1390 pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1391 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1392 __gmap_unshadow_pgt(sg, raddr, __va(pgt));
1393 /* Free page table */
1394 ptdesc = page_ptdesc(phys_to_page(pgt));
1395 list_del(&ptdesc->pt_list);
1396 page_table_free_pgste(ptdesc);
1397 }
1398 }
1399
1400 /**
1401 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1402 * @sg: pointer to the shadow guest address space structure
1403 * @raddr: rmap address in the shadow guest address space
1404 *
1405 * Called with the shadow->guest_table_lock
1406 */
gmap_unshadow_sgt(struct gmap * sg,unsigned long raddr)1407 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1408 {
1409 unsigned long r3o, *r3e;
1410 phys_addr_t sgt;
1411 struct page *page;
1412
1413 BUG_ON(!gmap_is_shadow(sg));
1414 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1415 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1416 return;
1417 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1418 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1419 gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1420 sgt = *r3e & _REGION_ENTRY_ORIGIN;
1421 *r3e = _REGION3_ENTRY_EMPTY;
1422 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1423 /* Free segment table */
1424 page = phys_to_page(sgt);
1425 list_del(&page->lru);
1426 __free_pages(page, CRST_ALLOC_ORDER);
1427 }
1428
1429 /**
1430 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1431 * @sg: pointer to the shadow guest address space structure
1432 * @raddr: address in the shadow guest address space
1433 * @r3t: pointer to the start of a shadow region-3 table
1434 *
1435 * Called with the sg->guest_table_lock
1436 */
__gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr,unsigned long * r3t)1437 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1438 unsigned long *r3t)
1439 {
1440 struct page *page;
1441 phys_addr_t sgt;
1442 int i;
1443
1444 BUG_ON(!gmap_is_shadow(sg));
1445 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1446 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1447 continue;
1448 sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1449 r3t[i] = _REGION3_ENTRY_EMPTY;
1450 __gmap_unshadow_sgt(sg, raddr, __va(sgt));
1451 /* Free segment table */
1452 page = phys_to_page(sgt);
1453 list_del(&page->lru);
1454 __free_pages(page, CRST_ALLOC_ORDER);
1455 }
1456 }
1457
1458 /**
1459 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1460 * @sg: pointer to the shadow guest address space structure
1461 * @raddr: rmap address in the shadow guest address space
1462 *
1463 * Called with the sg->guest_table_lock
1464 */
gmap_unshadow_r3t(struct gmap * sg,unsigned long raddr)1465 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1466 {
1467 unsigned long r2o, *r2e;
1468 phys_addr_t r3t;
1469 struct page *page;
1470
1471 BUG_ON(!gmap_is_shadow(sg));
1472 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1473 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1474 return;
1475 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1476 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1477 gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1478 r3t = *r2e & _REGION_ENTRY_ORIGIN;
1479 *r2e = _REGION2_ENTRY_EMPTY;
1480 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1481 /* Free region 3 table */
1482 page = phys_to_page(r3t);
1483 list_del(&page->lru);
1484 __free_pages(page, CRST_ALLOC_ORDER);
1485 }
1486
1487 /**
1488 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1489 * @sg: pointer to the shadow guest address space structure
1490 * @raddr: rmap address in the shadow guest address space
1491 * @r2t: pointer to the start of a shadow region-2 table
1492 *
1493 * Called with the sg->guest_table_lock
1494 */
__gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr,unsigned long * r2t)1495 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1496 unsigned long *r2t)
1497 {
1498 phys_addr_t r3t;
1499 struct page *page;
1500 int i;
1501
1502 BUG_ON(!gmap_is_shadow(sg));
1503 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1504 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1505 continue;
1506 r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1507 r2t[i] = _REGION2_ENTRY_EMPTY;
1508 __gmap_unshadow_r3t(sg, raddr, __va(r3t));
1509 /* Free region 3 table */
1510 page = phys_to_page(r3t);
1511 list_del(&page->lru);
1512 __free_pages(page, CRST_ALLOC_ORDER);
1513 }
1514 }
1515
1516 /**
1517 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1518 * @sg: pointer to the shadow guest address space structure
1519 * @raddr: rmap address in the shadow guest address space
1520 *
1521 * Called with the sg->guest_table_lock
1522 */
gmap_unshadow_r2t(struct gmap * sg,unsigned long raddr)1523 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1524 {
1525 unsigned long r1o, *r1e;
1526 struct page *page;
1527 phys_addr_t r2t;
1528
1529 BUG_ON(!gmap_is_shadow(sg));
1530 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1531 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1532 return;
1533 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1534 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1535 gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1536 r2t = *r1e & _REGION_ENTRY_ORIGIN;
1537 *r1e = _REGION1_ENTRY_EMPTY;
1538 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1539 /* Free region 2 table */
1540 page = phys_to_page(r2t);
1541 list_del(&page->lru);
1542 __free_pages(page, CRST_ALLOC_ORDER);
1543 }
1544
1545 /**
1546 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1547 * @sg: pointer to the shadow guest address space structure
1548 * @raddr: rmap address in the shadow guest address space
1549 * @r1t: pointer to the start of a shadow region-1 table
1550 *
1551 * Called with the shadow->guest_table_lock
1552 */
__gmap_unshadow_r1t(struct gmap * sg,unsigned long raddr,unsigned long * r1t)1553 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1554 unsigned long *r1t)
1555 {
1556 unsigned long asce;
1557 struct page *page;
1558 phys_addr_t r2t;
1559 int i;
1560
1561 BUG_ON(!gmap_is_shadow(sg));
1562 asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1563 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1564 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1565 continue;
1566 r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1567 __gmap_unshadow_r2t(sg, raddr, __va(r2t));
1568 /* Clear entry and flush translation r1t -> r2t */
1569 gmap_idte_one(asce, raddr);
1570 r1t[i] = _REGION1_ENTRY_EMPTY;
1571 /* Free region 2 table */
1572 page = phys_to_page(r2t);
1573 list_del(&page->lru);
1574 __free_pages(page, CRST_ALLOC_ORDER);
1575 }
1576 }
1577
1578 /**
1579 * gmap_unshadow - remove a shadow page table completely
1580 * @sg: pointer to the shadow guest address space structure
1581 *
1582 * Called with sg->guest_table_lock
1583 */
gmap_unshadow(struct gmap * sg)1584 static void gmap_unshadow(struct gmap *sg)
1585 {
1586 unsigned long *table;
1587
1588 BUG_ON(!gmap_is_shadow(sg));
1589 if (sg->removed)
1590 return;
1591 sg->removed = 1;
1592 gmap_call_notifier(sg, 0, -1UL);
1593 gmap_flush_tlb(sg);
1594 table = __va(sg->asce & _ASCE_ORIGIN);
1595 switch (sg->asce & _ASCE_TYPE_MASK) {
1596 case _ASCE_TYPE_REGION1:
1597 __gmap_unshadow_r1t(sg, 0, table);
1598 break;
1599 case _ASCE_TYPE_REGION2:
1600 __gmap_unshadow_r2t(sg, 0, table);
1601 break;
1602 case _ASCE_TYPE_REGION3:
1603 __gmap_unshadow_r3t(sg, 0, table);
1604 break;
1605 case _ASCE_TYPE_SEGMENT:
1606 __gmap_unshadow_sgt(sg, 0, table);
1607 break;
1608 }
1609 }
1610
1611 /**
1612 * gmap_find_shadow - find a specific asce in the list of shadow tables
1613 * @parent: pointer to the parent gmap
1614 * @asce: ASCE for which the shadow table is created
1615 * @edat_level: edat level to be used for the shadow translation
1616 *
1617 * Returns the pointer to a gmap if a shadow table with the given asce is
1618 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1619 * otherwise NULL
1620 */
gmap_find_shadow(struct gmap * parent,unsigned long asce,int edat_level)1621 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1622 int edat_level)
1623 {
1624 struct gmap *sg;
1625
1626 list_for_each_entry(sg, &parent->children, list) {
1627 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1628 sg->removed)
1629 continue;
1630 if (!sg->initialized)
1631 return ERR_PTR(-EAGAIN);
1632 refcount_inc(&sg->ref_count);
1633 return sg;
1634 }
1635 return NULL;
1636 }
1637
1638 /**
1639 * gmap_shadow_valid - check if a shadow guest address space matches the
1640 * given properties and is still valid
1641 * @sg: pointer to the shadow guest address space structure
1642 * @asce: ASCE for which the shadow table is requested
1643 * @edat_level: edat level to be used for the shadow translation
1644 *
1645 * Returns 1 if the gmap shadow is still valid and matches the given
1646 * properties, the caller can continue using it. Returns 0 otherwise, the
1647 * caller has to request a new shadow gmap in this case.
1648 *
1649 */
gmap_shadow_valid(struct gmap * sg,unsigned long asce,int edat_level)1650 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1651 {
1652 if (sg->removed)
1653 return 0;
1654 return sg->orig_asce == asce && sg->edat_level == edat_level;
1655 }
1656 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1657
1658 /**
1659 * gmap_shadow - create/find a shadow guest address space
1660 * @parent: pointer to the parent gmap
1661 * @asce: ASCE for which the shadow table is created
1662 * @edat_level: edat level to be used for the shadow translation
1663 *
1664 * The pages of the top level page table referred by the asce parameter
1665 * will be set to read-only and marked in the PGSTEs of the kvm process.
1666 * The shadow table will be removed automatically on any change to the
1667 * PTE mapping for the source table.
1668 *
1669 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1670 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1671 * parent gmap table could not be protected.
1672 */
gmap_shadow(struct gmap * parent,unsigned long asce,int edat_level)1673 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1674 int edat_level)
1675 {
1676 struct gmap *sg, *new;
1677 unsigned long limit;
1678 int rc;
1679
1680 BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1681 BUG_ON(gmap_is_shadow(parent));
1682 spin_lock(&parent->shadow_lock);
1683 sg = gmap_find_shadow(parent, asce, edat_level);
1684 spin_unlock(&parent->shadow_lock);
1685 if (sg)
1686 return sg;
1687 /* Create a new shadow gmap */
1688 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1689 if (asce & _ASCE_REAL_SPACE)
1690 limit = -1UL;
1691 new = gmap_alloc(limit);
1692 if (!new)
1693 return ERR_PTR(-ENOMEM);
1694 new->mm = parent->mm;
1695 new->parent = gmap_get(parent);
1696 new->private = parent->private;
1697 new->orig_asce = asce;
1698 new->edat_level = edat_level;
1699 new->initialized = false;
1700 spin_lock(&parent->shadow_lock);
1701 /* Recheck if another CPU created the same shadow */
1702 sg = gmap_find_shadow(parent, asce, edat_level);
1703 if (sg) {
1704 spin_unlock(&parent->shadow_lock);
1705 gmap_free(new);
1706 return sg;
1707 }
1708 if (asce & _ASCE_REAL_SPACE) {
1709 /* only allow one real-space gmap shadow */
1710 list_for_each_entry(sg, &parent->children, list) {
1711 if (sg->orig_asce & _ASCE_REAL_SPACE) {
1712 spin_lock(&sg->guest_table_lock);
1713 gmap_unshadow(sg);
1714 spin_unlock(&sg->guest_table_lock);
1715 list_del(&sg->list);
1716 gmap_put(sg);
1717 break;
1718 }
1719 }
1720 }
1721 refcount_set(&new->ref_count, 2);
1722 list_add(&new->list, &parent->children);
1723 if (asce & _ASCE_REAL_SPACE) {
1724 /* nothing to protect, return right away */
1725 new->initialized = true;
1726 spin_unlock(&parent->shadow_lock);
1727 return new;
1728 }
1729 spin_unlock(&parent->shadow_lock);
1730 /* protect after insertion, so it will get properly invalidated */
1731 mmap_read_lock(parent->mm);
1732 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1733 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1734 PROT_READ, GMAP_NOTIFY_SHADOW);
1735 mmap_read_unlock(parent->mm);
1736 spin_lock(&parent->shadow_lock);
1737 new->initialized = true;
1738 if (rc) {
1739 list_del(&new->list);
1740 gmap_free(new);
1741 new = ERR_PTR(rc);
1742 }
1743 spin_unlock(&parent->shadow_lock);
1744 return new;
1745 }
1746 EXPORT_SYMBOL_GPL(gmap_shadow);
1747
1748 /**
1749 * gmap_shadow_r2t - create an empty shadow region 2 table
1750 * @sg: pointer to the shadow guest address space structure
1751 * @saddr: faulting address in the shadow gmap
1752 * @r2t: parent gmap address of the region 2 table to get shadowed
1753 * @fake: r2t references contiguous guest memory block, not a r2t
1754 *
1755 * The r2t parameter specifies the address of the source table. The
1756 * four pages of the source table are made read-only in the parent gmap
1757 * address space. A write to the source table area @r2t will automatically
1758 * remove the shadow r2 table and all of its descendants.
1759 *
1760 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1761 * shadow table structure is incomplete, -ENOMEM if out of memory and
1762 * -EFAULT if an address in the parent gmap could not be resolved.
1763 *
1764 * Called with sg->mm->mmap_lock in read.
1765 */
gmap_shadow_r2t(struct gmap * sg,unsigned long saddr,unsigned long r2t,int fake)1766 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1767 int fake)
1768 {
1769 unsigned long raddr, origin, offset, len;
1770 unsigned long *table;
1771 phys_addr_t s_r2t;
1772 struct page *page;
1773 int rc;
1774
1775 BUG_ON(!gmap_is_shadow(sg));
1776 /* Allocate a shadow region second table */
1777 page = gmap_alloc_crst();
1778 if (!page)
1779 return -ENOMEM;
1780 page->index = r2t & _REGION_ENTRY_ORIGIN;
1781 if (fake)
1782 page->index |= GMAP_SHADOW_FAKE_TABLE;
1783 s_r2t = page_to_phys(page);
1784 /* Install shadow region second table */
1785 spin_lock(&sg->guest_table_lock);
1786 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1787 if (!table) {
1788 rc = -EAGAIN; /* Race with unshadow */
1789 goto out_free;
1790 }
1791 if (!(*table & _REGION_ENTRY_INVALID)) {
1792 rc = 0; /* Already established */
1793 goto out_free;
1794 } else if (*table & _REGION_ENTRY_ORIGIN) {
1795 rc = -EAGAIN; /* Race with shadow */
1796 goto out_free;
1797 }
1798 crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1799 /* mark as invalid as long as the parent table is not protected */
1800 *table = s_r2t | _REGION_ENTRY_LENGTH |
1801 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1802 if (sg->edat_level >= 1)
1803 *table |= (r2t & _REGION_ENTRY_PROTECT);
1804 list_add(&page->lru, &sg->crst_list);
1805 if (fake) {
1806 /* nothing to protect for fake tables */
1807 *table &= ~_REGION_ENTRY_INVALID;
1808 spin_unlock(&sg->guest_table_lock);
1809 return 0;
1810 }
1811 spin_unlock(&sg->guest_table_lock);
1812 /* Make r2t read-only in parent gmap page table */
1813 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1814 origin = r2t & _REGION_ENTRY_ORIGIN;
1815 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1816 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1817 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1818 spin_lock(&sg->guest_table_lock);
1819 if (!rc) {
1820 table = gmap_table_walk(sg, saddr, 4);
1821 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1822 rc = -EAGAIN; /* Race with unshadow */
1823 else
1824 *table &= ~_REGION_ENTRY_INVALID;
1825 } else {
1826 gmap_unshadow_r2t(sg, raddr);
1827 }
1828 spin_unlock(&sg->guest_table_lock);
1829 return rc;
1830 out_free:
1831 spin_unlock(&sg->guest_table_lock);
1832 __free_pages(page, CRST_ALLOC_ORDER);
1833 return rc;
1834 }
1835 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1836
1837 /**
1838 * gmap_shadow_r3t - create a shadow region 3 table
1839 * @sg: pointer to the shadow guest address space structure
1840 * @saddr: faulting address in the shadow gmap
1841 * @r3t: parent gmap address of the region 3 table to get shadowed
1842 * @fake: r3t references contiguous guest memory block, not a r3t
1843 *
1844 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1845 * shadow table structure is incomplete, -ENOMEM if out of memory and
1846 * -EFAULT if an address in the parent gmap could not be resolved.
1847 *
1848 * Called with sg->mm->mmap_lock in read.
1849 */
gmap_shadow_r3t(struct gmap * sg,unsigned long saddr,unsigned long r3t,int fake)1850 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1851 int fake)
1852 {
1853 unsigned long raddr, origin, offset, len;
1854 unsigned long *table;
1855 phys_addr_t s_r3t;
1856 struct page *page;
1857 int rc;
1858
1859 BUG_ON(!gmap_is_shadow(sg));
1860 /* Allocate a shadow region second table */
1861 page = gmap_alloc_crst();
1862 if (!page)
1863 return -ENOMEM;
1864 page->index = r3t & _REGION_ENTRY_ORIGIN;
1865 if (fake)
1866 page->index |= GMAP_SHADOW_FAKE_TABLE;
1867 s_r3t = page_to_phys(page);
1868 /* Install shadow region second table */
1869 spin_lock(&sg->guest_table_lock);
1870 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1871 if (!table) {
1872 rc = -EAGAIN; /* Race with unshadow */
1873 goto out_free;
1874 }
1875 if (!(*table & _REGION_ENTRY_INVALID)) {
1876 rc = 0; /* Already established */
1877 goto out_free;
1878 } else if (*table & _REGION_ENTRY_ORIGIN) {
1879 rc = -EAGAIN; /* Race with shadow */
1880 goto out_free;
1881 }
1882 crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1883 /* mark as invalid as long as the parent table is not protected */
1884 *table = s_r3t | _REGION_ENTRY_LENGTH |
1885 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1886 if (sg->edat_level >= 1)
1887 *table |= (r3t & _REGION_ENTRY_PROTECT);
1888 list_add(&page->lru, &sg->crst_list);
1889 if (fake) {
1890 /* nothing to protect for fake tables */
1891 *table &= ~_REGION_ENTRY_INVALID;
1892 spin_unlock(&sg->guest_table_lock);
1893 return 0;
1894 }
1895 spin_unlock(&sg->guest_table_lock);
1896 /* Make r3t read-only in parent gmap page table */
1897 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1898 origin = r3t & _REGION_ENTRY_ORIGIN;
1899 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1900 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1901 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1902 spin_lock(&sg->guest_table_lock);
1903 if (!rc) {
1904 table = gmap_table_walk(sg, saddr, 3);
1905 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1906 rc = -EAGAIN; /* Race with unshadow */
1907 else
1908 *table &= ~_REGION_ENTRY_INVALID;
1909 } else {
1910 gmap_unshadow_r3t(sg, raddr);
1911 }
1912 spin_unlock(&sg->guest_table_lock);
1913 return rc;
1914 out_free:
1915 spin_unlock(&sg->guest_table_lock);
1916 __free_pages(page, CRST_ALLOC_ORDER);
1917 return rc;
1918 }
1919 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1920
1921 /**
1922 * gmap_shadow_sgt - create a shadow segment table
1923 * @sg: pointer to the shadow guest address space structure
1924 * @saddr: faulting address in the shadow gmap
1925 * @sgt: parent gmap address of the segment table to get shadowed
1926 * @fake: sgt references contiguous guest memory block, not a sgt
1927 *
1928 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1929 * shadow table structure is incomplete, -ENOMEM if out of memory and
1930 * -EFAULT if an address in the parent gmap could not be resolved.
1931 *
1932 * Called with sg->mm->mmap_lock in read.
1933 */
gmap_shadow_sgt(struct gmap * sg,unsigned long saddr,unsigned long sgt,int fake)1934 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1935 int fake)
1936 {
1937 unsigned long raddr, origin, offset, len;
1938 unsigned long *table;
1939 phys_addr_t s_sgt;
1940 struct page *page;
1941 int rc;
1942
1943 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1944 /* Allocate a shadow segment table */
1945 page = gmap_alloc_crst();
1946 if (!page)
1947 return -ENOMEM;
1948 page->index = sgt & _REGION_ENTRY_ORIGIN;
1949 if (fake)
1950 page->index |= GMAP_SHADOW_FAKE_TABLE;
1951 s_sgt = page_to_phys(page);
1952 /* Install shadow region second table */
1953 spin_lock(&sg->guest_table_lock);
1954 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1955 if (!table) {
1956 rc = -EAGAIN; /* Race with unshadow */
1957 goto out_free;
1958 }
1959 if (!(*table & _REGION_ENTRY_INVALID)) {
1960 rc = 0; /* Already established */
1961 goto out_free;
1962 } else if (*table & _REGION_ENTRY_ORIGIN) {
1963 rc = -EAGAIN; /* Race with shadow */
1964 goto out_free;
1965 }
1966 crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1967 /* mark as invalid as long as the parent table is not protected */
1968 *table = s_sgt | _REGION_ENTRY_LENGTH |
1969 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1970 if (sg->edat_level >= 1)
1971 *table |= sgt & _REGION_ENTRY_PROTECT;
1972 list_add(&page->lru, &sg->crst_list);
1973 if (fake) {
1974 /* nothing to protect for fake tables */
1975 *table &= ~_REGION_ENTRY_INVALID;
1976 spin_unlock(&sg->guest_table_lock);
1977 return 0;
1978 }
1979 spin_unlock(&sg->guest_table_lock);
1980 /* Make sgt read-only in parent gmap page table */
1981 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1982 origin = sgt & _REGION_ENTRY_ORIGIN;
1983 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1984 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1985 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1986 spin_lock(&sg->guest_table_lock);
1987 if (!rc) {
1988 table = gmap_table_walk(sg, saddr, 2);
1989 if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1990 rc = -EAGAIN; /* Race with unshadow */
1991 else
1992 *table &= ~_REGION_ENTRY_INVALID;
1993 } else {
1994 gmap_unshadow_sgt(sg, raddr);
1995 }
1996 spin_unlock(&sg->guest_table_lock);
1997 return rc;
1998 out_free:
1999 spin_unlock(&sg->guest_table_lock);
2000 __free_pages(page, CRST_ALLOC_ORDER);
2001 return rc;
2002 }
2003 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
2004
2005 /**
2006 * gmap_shadow_pgt_lookup - find a shadow page table
2007 * @sg: pointer to the shadow guest address space structure
2008 * @saddr: the address in the shadow aguest address space
2009 * @pgt: parent gmap address of the page table to get shadowed
2010 * @dat_protection: if the pgtable is marked as protected by dat
2011 * @fake: pgt references contiguous guest memory block, not a pgtable
2012 *
2013 * Returns 0 if the shadow page table was found and -EAGAIN if the page
2014 * table was not found.
2015 *
2016 * Called with sg->mm->mmap_lock in read.
2017 */
gmap_shadow_pgt_lookup(struct gmap * sg,unsigned long saddr,unsigned long * pgt,int * dat_protection,int * fake)2018 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2019 unsigned long *pgt, int *dat_protection,
2020 int *fake)
2021 {
2022 unsigned long *table;
2023 struct page *page;
2024 int rc;
2025
2026 BUG_ON(!gmap_is_shadow(sg));
2027 spin_lock(&sg->guest_table_lock);
2028 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2029 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2030 /* Shadow page tables are full pages (pte+pgste) */
2031 page = pfn_to_page(*table >> PAGE_SHIFT);
2032 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2033 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2034 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2035 rc = 0;
2036 } else {
2037 rc = -EAGAIN;
2038 }
2039 spin_unlock(&sg->guest_table_lock);
2040 return rc;
2041
2042 }
2043 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2044
2045 /**
2046 * gmap_shadow_pgt - instantiate a shadow page table
2047 * @sg: pointer to the shadow guest address space structure
2048 * @saddr: faulting address in the shadow gmap
2049 * @pgt: parent gmap address of the page table to get shadowed
2050 * @fake: pgt references contiguous guest memory block, not a pgtable
2051 *
2052 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2053 * shadow table structure is incomplete, -ENOMEM if out of memory,
2054 * -EFAULT if an address in the parent gmap could not be resolved and
2055 *
2056 * Called with gmap->mm->mmap_lock in read
2057 */
gmap_shadow_pgt(struct gmap * sg,unsigned long saddr,unsigned long pgt,int fake)2058 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2059 int fake)
2060 {
2061 unsigned long raddr, origin;
2062 unsigned long *table;
2063 struct ptdesc *ptdesc;
2064 phys_addr_t s_pgt;
2065 int rc;
2066
2067 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2068 /* Allocate a shadow page table */
2069 ptdesc = page_table_alloc_pgste(sg->mm);
2070 if (!ptdesc)
2071 return -ENOMEM;
2072 ptdesc->pt_index = pgt & _SEGMENT_ENTRY_ORIGIN;
2073 if (fake)
2074 ptdesc->pt_index |= GMAP_SHADOW_FAKE_TABLE;
2075 s_pgt = page_to_phys(ptdesc_page(ptdesc));
2076 /* Install shadow page table */
2077 spin_lock(&sg->guest_table_lock);
2078 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2079 if (!table) {
2080 rc = -EAGAIN; /* Race with unshadow */
2081 goto out_free;
2082 }
2083 if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2084 rc = 0; /* Already established */
2085 goto out_free;
2086 } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2087 rc = -EAGAIN; /* Race with shadow */
2088 goto out_free;
2089 }
2090 /* mark as invalid as long as the parent table is not protected */
2091 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2092 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2093 list_add(&ptdesc->pt_list, &sg->pt_list);
2094 if (fake) {
2095 /* nothing to protect for fake tables */
2096 *table &= ~_SEGMENT_ENTRY_INVALID;
2097 spin_unlock(&sg->guest_table_lock);
2098 return 0;
2099 }
2100 spin_unlock(&sg->guest_table_lock);
2101 /* Make pgt read-only in parent gmap page table (not the pgste) */
2102 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2103 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2104 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2105 spin_lock(&sg->guest_table_lock);
2106 if (!rc) {
2107 table = gmap_table_walk(sg, saddr, 1);
2108 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2109 rc = -EAGAIN; /* Race with unshadow */
2110 else
2111 *table &= ~_SEGMENT_ENTRY_INVALID;
2112 } else {
2113 gmap_unshadow_pgt(sg, raddr);
2114 }
2115 spin_unlock(&sg->guest_table_lock);
2116 return rc;
2117 out_free:
2118 spin_unlock(&sg->guest_table_lock);
2119 page_table_free_pgste(ptdesc);
2120 return rc;
2121
2122 }
2123 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2124
2125 /**
2126 * gmap_shadow_page - create a shadow page mapping
2127 * @sg: pointer to the shadow guest address space structure
2128 * @saddr: faulting address in the shadow gmap
2129 * @pte: pte in parent gmap address space to get shadowed
2130 *
2131 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2132 * shadow table structure is incomplete, -ENOMEM if out of memory and
2133 * -EFAULT if an address in the parent gmap could not be resolved.
2134 *
2135 * Called with sg->mm->mmap_lock in read.
2136 */
gmap_shadow_page(struct gmap * sg,unsigned long saddr,pte_t pte)2137 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2138 {
2139 struct gmap *parent;
2140 struct gmap_rmap *rmap;
2141 unsigned long vmaddr, paddr;
2142 spinlock_t *ptl;
2143 pte_t *sptep, *tptep;
2144 int prot;
2145 int rc;
2146
2147 BUG_ON(!gmap_is_shadow(sg));
2148 parent = sg->parent;
2149 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2150
2151 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2152 if (!rmap)
2153 return -ENOMEM;
2154 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2155
2156 while (1) {
2157 paddr = pte_val(pte) & PAGE_MASK;
2158 vmaddr = __gmap_translate(parent, paddr);
2159 if (IS_ERR_VALUE(vmaddr)) {
2160 rc = vmaddr;
2161 break;
2162 }
2163 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2164 if (rc)
2165 break;
2166 rc = -EAGAIN;
2167 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2168 if (sptep) {
2169 spin_lock(&sg->guest_table_lock);
2170 /* Get page table pointer */
2171 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2172 if (!tptep) {
2173 spin_unlock(&sg->guest_table_lock);
2174 gmap_pte_op_end(sptep, ptl);
2175 radix_tree_preload_end();
2176 break;
2177 }
2178 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2179 if (rc > 0) {
2180 /* Success and a new mapping */
2181 gmap_insert_rmap(sg, vmaddr, rmap);
2182 rmap = NULL;
2183 rc = 0;
2184 }
2185 gmap_pte_op_end(sptep, ptl);
2186 spin_unlock(&sg->guest_table_lock);
2187 }
2188 radix_tree_preload_end();
2189 if (!rc)
2190 break;
2191 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2192 if (rc)
2193 break;
2194 }
2195 kfree(rmap);
2196 return rc;
2197 }
2198 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2199
2200 /*
2201 * gmap_shadow_notify - handle notifications for shadow gmap
2202 *
2203 * Called with sg->parent->shadow_lock.
2204 */
gmap_shadow_notify(struct gmap * sg,unsigned long vmaddr,unsigned long gaddr)2205 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2206 unsigned long gaddr)
2207 {
2208 struct gmap_rmap *rmap, *rnext, *head;
2209 unsigned long start, end, bits, raddr;
2210
2211 BUG_ON(!gmap_is_shadow(sg));
2212
2213 spin_lock(&sg->guest_table_lock);
2214 if (sg->removed) {
2215 spin_unlock(&sg->guest_table_lock);
2216 return;
2217 }
2218 /* Check for top level table */
2219 start = sg->orig_asce & _ASCE_ORIGIN;
2220 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2221 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2222 gaddr < end) {
2223 /* The complete shadow table has to go */
2224 gmap_unshadow(sg);
2225 spin_unlock(&sg->guest_table_lock);
2226 list_del(&sg->list);
2227 gmap_put(sg);
2228 return;
2229 }
2230 /* Remove the page table tree from on specific entry */
2231 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2232 gmap_for_each_rmap_safe(rmap, rnext, head) {
2233 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2234 raddr = rmap->raddr ^ bits;
2235 switch (bits) {
2236 case _SHADOW_RMAP_REGION1:
2237 gmap_unshadow_r2t(sg, raddr);
2238 break;
2239 case _SHADOW_RMAP_REGION2:
2240 gmap_unshadow_r3t(sg, raddr);
2241 break;
2242 case _SHADOW_RMAP_REGION3:
2243 gmap_unshadow_sgt(sg, raddr);
2244 break;
2245 case _SHADOW_RMAP_SEGMENT:
2246 gmap_unshadow_pgt(sg, raddr);
2247 break;
2248 case _SHADOW_RMAP_PGTABLE:
2249 gmap_unshadow_page(sg, raddr);
2250 break;
2251 }
2252 kfree(rmap);
2253 }
2254 spin_unlock(&sg->guest_table_lock);
2255 }
2256
2257 /**
2258 * ptep_notify - call all invalidation callbacks for a specific pte.
2259 * @mm: pointer to the process mm_struct
2260 * @vmaddr: virtual address in the process address space
2261 * @pte: pointer to the page table entry
2262 * @bits: bits from the pgste that caused the notify call
2263 *
2264 * This function is assumed to be called with the page table lock held
2265 * for the pte to notify.
2266 */
ptep_notify(struct mm_struct * mm,unsigned long vmaddr,pte_t * pte,unsigned long bits)2267 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2268 pte_t *pte, unsigned long bits)
2269 {
2270 unsigned long offset, gaddr = 0;
2271 unsigned long *table;
2272 struct gmap *gmap, *sg, *next;
2273
2274 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2275 offset = offset * (PAGE_SIZE / sizeof(pte_t));
2276 rcu_read_lock();
2277 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2278 spin_lock(&gmap->guest_table_lock);
2279 table = radix_tree_lookup(&gmap->host_to_guest,
2280 vmaddr >> PMD_SHIFT);
2281 if (table)
2282 gaddr = __gmap_segment_gaddr(table) + offset;
2283 spin_unlock(&gmap->guest_table_lock);
2284 if (!table)
2285 continue;
2286
2287 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2288 spin_lock(&gmap->shadow_lock);
2289 list_for_each_entry_safe(sg, next,
2290 &gmap->children, list)
2291 gmap_shadow_notify(sg, vmaddr, gaddr);
2292 spin_unlock(&gmap->shadow_lock);
2293 }
2294 if (bits & PGSTE_IN_BIT)
2295 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2296 }
2297 rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL_GPL(ptep_notify);
2300
pmdp_notify_gmap(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2301 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2302 unsigned long gaddr)
2303 {
2304 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2305 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2306 }
2307
2308 /**
2309 * gmap_pmdp_xchg - exchange a gmap pmd with another
2310 * @gmap: pointer to the guest address space structure
2311 * @pmdp: pointer to the pmd entry
2312 * @new: replacement entry
2313 * @gaddr: the affected guest address
2314 *
2315 * This function is assumed to be called with the guest_table_lock
2316 * held.
2317 */
gmap_pmdp_xchg(struct gmap * gmap,pmd_t * pmdp,pmd_t new,unsigned long gaddr)2318 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2319 unsigned long gaddr)
2320 {
2321 gaddr &= HPAGE_MASK;
2322 pmdp_notify_gmap(gmap, pmdp, gaddr);
2323 new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2324 if (MACHINE_HAS_TLB_GUEST)
2325 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2326 IDTE_GLOBAL);
2327 else if (MACHINE_HAS_IDTE)
2328 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2329 else
2330 __pmdp_csp(pmdp);
2331 set_pmd(pmdp, new);
2332 }
2333
gmap_pmdp_clear(struct mm_struct * mm,unsigned long vmaddr,int purge)2334 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2335 int purge)
2336 {
2337 pmd_t *pmdp;
2338 struct gmap *gmap;
2339 unsigned long gaddr;
2340
2341 rcu_read_lock();
2342 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2343 spin_lock(&gmap->guest_table_lock);
2344 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2345 vmaddr >> PMD_SHIFT);
2346 if (pmdp) {
2347 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2348 pmdp_notify_gmap(gmap, pmdp, gaddr);
2349 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2350 _SEGMENT_ENTRY_GMAP_UC));
2351 if (purge)
2352 __pmdp_csp(pmdp);
2353 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2354 }
2355 spin_unlock(&gmap->guest_table_lock);
2356 }
2357 rcu_read_unlock();
2358 }
2359
2360 /**
2361 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2362 * flushing
2363 * @mm: pointer to the process mm_struct
2364 * @vmaddr: virtual address in the process address space
2365 */
gmap_pmdp_invalidate(struct mm_struct * mm,unsigned long vmaddr)2366 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2367 {
2368 gmap_pmdp_clear(mm, vmaddr, 0);
2369 }
2370 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2371
2372 /**
2373 * gmap_pmdp_csp - csp all affected guest pmd entries
2374 * @mm: pointer to the process mm_struct
2375 * @vmaddr: virtual address in the process address space
2376 */
gmap_pmdp_csp(struct mm_struct * mm,unsigned long vmaddr)2377 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2378 {
2379 gmap_pmdp_clear(mm, vmaddr, 1);
2380 }
2381 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2382
2383 /**
2384 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2385 * @mm: pointer to the process mm_struct
2386 * @vmaddr: virtual address in the process address space
2387 */
gmap_pmdp_idte_local(struct mm_struct * mm,unsigned long vmaddr)2388 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2389 {
2390 unsigned long *entry, gaddr;
2391 struct gmap *gmap;
2392 pmd_t *pmdp;
2393
2394 rcu_read_lock();
2395 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2396 spin_lock(&gmap->guest_table_lock);
2397 entry = radix_tree_delete(&gmap->host_to_guest,
2398 vmaddr >> PMD_SHIFT);
2399 if (entry) {
2400 pmdp = (pmd_t *)entry;
2401 gaddr = __gmap_segment_gaddr(entry);
2402 pmdp_notify_gmap(gmap, pmdp, gaddr);
2403 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2404 _SEGMENT_ENTRY_GMAP_UC));
2405 if (MACHINE_HAS_TLB_GUEST)
2406 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2407 gmap->asce, IDTE_LOCAL);
2408 else if (MACHINE_HAS_IDTE)
2409 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2410 *entry = _SEGMENT_ENTRY_EMPTY;
2411 }
2412 spin_unlock(&gmap->guest_table_lock);
2413 }
2414 rcu_read_unlock();
2415 }
2416 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2417
2418 /**
2419 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2420 * @mm: pointer to the process mm_struct
2421 * @vmaddr: virtual address in the process address space
2422 */
gmap_pmdp_idte_global(struct mm_struct * mm,unsigned long vmaddr)2423 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2424 {
2425 unsigned long *entry, gaddr;
2426 struct gmap *gmap;
2427 pmd_t *pmdp;
2428
2429 rcu_read_lock();
2430 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2431 spin_lock(&gmap->guest_table_lock);
2432 entry = radix_tree_delete(&gmap->host_to_guest,
2433 vmaddr >> PMD_SHIFT);
2434 if (entry) {
2435 pmdp = (pmd_t *)entry;
2436 gaddr = __gmap_segment_gaddr(entry);
2437 pmdp_notify_gmap(gmap, pmdp, gaddr);
2438 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2439 _SEGMENT_ENTRY_GMAP_UC));
2440 if (MACHINE_HAS_TLB_GUEST)
2441 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2442 gmap->asce, IDTE_GLOBAL);
2443 else if (MACHINE_HAS_IDTE)
2444 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2445 else
2446 __pmdp_csp(pmdp);
2447 *entry = _SEGMENT_ENTRY_EMPTY;
2448 }
2449 spin_unlock(&gmap->guest_table_lock);
2450 }
2451 rcu_read_unlock();
2452 }
2453 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2454
2455 /**
2456 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2457 * @gmap: pointer to guest address space
2458 * @pmdp: pointer to the pmd to be tested
2459 * @gaddr: virtual address in the guest address space
2460 *
2461 * This function is assumed to be called with the guest_table_lock
2462 * held.
2463 */
gmap_test_and_clear_dirty_pmd(struct gmap * gmap,pmd_t * pmdp,unsigned long gaddr)2464 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2465 unsigned long gaddr)
2466 {
2467 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2468 return false;
2469
2470 /* Already protected memory, which did not change is clean */
2471 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2472 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2473 return false;
2474
2475 /* Clear UC indication and reset protection */
2476 set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2477 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2478 return true;
2479 }
2480
2481 /**
2482 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2483 * @gmap: pointer to guest address space
2484 * @bitmap: dirty bitmap for this pmd
2485 * @gaddr: virtual address in the guest address space
2486 * @vmaddr: virtual address in the host address space
2487 *
2488 * This function is assumed to be called with the guest_table_lock
2489 * held.
2490 */
gmap_sync_dirty_log_pmd(struct gmap * gmap,unsigned long bitmap[4],unsigned long gaddr,unsigned long vmaddr)2491 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2492 unsigned long gaddr, unsigned long vmaddr)
2493 {
2494 int i;
2495 pmd_t *pmdp;
2496 pte_t *ptep;
2497 spinlock_t *ptl;
2498
2499 pmdp = gmap_pmd_op_walk(gmap, gaddr);
2500 if (!pmdp)
2501 return;
2502
2503 if (pmd_leaf(*pmdp)) {
2504 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2505 bitmap_fill(bitmap, _PAGE_ENTRIES);
2506 } else {
2507 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2508 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2509 if (!ptep)
2510 continue;
2511 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2512 set_bit(i, bitmap);
2513 pte_unmap_unlock(ptep, ptl);
2514 }
2515 }
2516 gmap_pmd_op_end(gmap, pmdp);
2517 }
2518 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2519
2520 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
thp_split_walk_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)2521 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2522 unsigned long end, struct mm_walk *walk)
2523 {
2524 struct vm_area_struct *vma = walk->vma;
2525
2526 split_huge_pmd(vma, pmd, addr);
2527 return 0;
2528 }
2529
2530 static const struct mm_walk_ops thp_split_walk_ops = {
2531 .pmd_entry = thp_split_walk_pmd_entry,
2532 .walk_lock = PGWALK_WRLOCK_VERIFY,
2533 };
2534
thp_split_mm(struct mm_struct * mm)2535 static inline void thp_split_mm(struct mm_struct *mm)
2536 {
2537 struct vm_area_struct *vma;
2538 VMA_ITERATOR(vmi, mm, 0);
2539
2540 for_each_vma(vmi, vma) {
2541 vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2542 walk_page_vma(vma, &thp_split_walk_ops, NULL);
2543 }
2544 mm->def_flags |= VM_NOHUGEPAGE;
2545 }
2546 #else
thp_split_mm(struct mm_struct * mm)2547 static inline void thp_split_mm(struct mm_struct *mm)
2548 {
2549 }
2550 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2551
2552 /*
2553 * switch on pgstes for its userspace process (for kvm)
2554 */
s390_enable_sie(void)2555 int s390_enable_sie(void)
2556 {
2557 struct mm_struct *mm = current->mm;
2558
2559 /* Do we have pgstes? if yes, we are done */
2560 if (mm_has_pgste(mm))
2561 return 0;
2562 /* Fail if the page tables are 2K */
2563 if (!mm_alloc_pgste(mm))
2564 return -EINVAL;
2565 mmap_write_lock(mm);
2566 mm->context.has_pgste = 1;
2567 /* split thp mappings and disable thp for future mappings */
2568 thp_split_mm(mm);
2569 mmap_write_unlock(mm);
2570 return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(s390_enable_sie);
2573
find_zeropage_pte_entry(pte_t * pte,unsigned long addr,unsigned long end,struct mm_walk * walk)2574 static int find_zeropage_pte_entry(pte_t *pte, unsigned long addr,
2575 unsigned long end, struct mm_walk *walk)
2576 {
2577 unsigned long *found_addr = walk->private;
2578
2579 /* Return 1 of the page is a zeropage. */
2580 if (is_zero_pfn(pte_pfn(*pte))) {
2581 /*
2582 * Shared zeropage in e.g., a FS DAX mapping? We cannot do the
2583 * right thing and likely don't care: FAULT_FLAG_UNSHARE
2584 * currently only works in COW mappings, which is also where
2585 * mm_forbids_zeropage() is checked.
2586 */
2587 if (!is_cow_mapping(walk->vma->vm_flags))
2588 return -EFAULT;
2589
2590 *found_addr = addr;
2591 return 1;
2592 }
2593 return 0;
2594 }
2595
2596 static const struct mm_walk_ops find_zeropage_ops = {
2597 .pte_entry = find_zeropage_pte_entry,
2598 .walk_lock = PGWALK_WRLOCK,
2599 };
2600
2601 /*
2602 * Unshare all shared zeropages, replacing them by anonymous pages. Note that
2603 * we cannot simply zap all shared zeropages, because this could later
2604 * trigger unexpected userfaultfd missing events.
2605 *
2606 * This must be called after mm->context.allow_cow_sharing was
2607 * set to 0, to avoid future mappings of shared zeropages.
2608 *
2609 * mm contracts with s390, that even if mm were to remove a page table,
2610 * and racing with walk_page_range_vma() calling pte_offset_map_lock()
2611 * would fail, it will never insert a page table containing empty zero
2612 * pages once mm_forbids_zeropage(mm) i.e.
2613 * mm->context.allow_cow_sharing is set to 0.
2614 */
__s390_unshare_zeropages(struct mm_struct * mm)2615 static int __s390_unshare_zeropages(struct mm_struct *mm)
2616 {
2617 struct vm_area_struct *vma;
2618 VMA_ITERATOR(vmi, mm, 0);
2619 unsigned long addr;
2620 vm_fault_t fault;
2621 int rc;
2622
2623 for_each_vma(vmi, vma) {
2624 /*
2625 * We could only look at COW mappings, but it's more future
2626 * proof to catch unexpected zeropages in other mappings and
2627 * fail.
2628 */
2629 if ((vma->vm_flags & VM_PFNMAP) || is_vm_hugetlb_page(vma))
2630 continue;
2631 addr = vma->vm_start;
2632
2633 retry:
2634 rc = walk_page_range_vma(vma, addr, vma->vm_end,
2635 &find_zeropage_ops, &addr);
2636 if (rc < 0)
2637 return rc;
2638 else if (!rc)
2639 continue;
2640
2641 /* addr was updated by find_zeropage_pte_entry() */
2642 fault = handle_mm_fault(vma, addr,
2643 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
2644 NULL);
2645 if (fault & VM_FAULT_OOM)
2646 return -ENOMEM;
2647 /*
2648 * See break_ksm(): even after handle_mm_fault() returned 0, we
2649 * must start the lookup from the current address, because
2650 * handle_mm_fault() may back out if there's any difficulty.
2651 *
2652 * VM_FAULT_SIGBUS and VM_FAULT_SIGSEGV are unexpected but
2653 * maybe they could trigger in the future on concurrent
2654 * truncation. In that case, the shared zeropage would be gone
2655 * and we can simply retry and make progress.
2656 */
2657 cond_resched();
2658 goto retry;
2659 }
2660
2661 return 0;
2662 }
2663
__s390_disable_cow_sharing(struct mm_struct * mm)2664 static int __s390_disable_cow_sharing(struct mm_struct *mm)
2665 {
2666 int rc;
2667
2668 if (!mm->context.allow_cow_sharing)
2669 return 0;
2670
2671 mm->context.allow_cow_sharing = 0;
2672
2673 /* Replace all shared zeropages by anonymous pages. */
2674 rc = __s390_unshare_zeropages(mm);
2675 /*
2676 * Make sure to disable KSM (if enabled for the whole process or
2677 * individual VMAs). Note that nothing currently hinders user space
2678 * from re-enabling it.
2679 */
2680 if (!rc)
2681 rc = ksm_disable(mm);
2682 if (rc)
2683 mm->context.allow_cow_sharing = 1;
2684 return rc;
2685 }
2686
2687 /*
2688 * Disable most COW-sharing of memory pages for the whole process:
2689 * (1) Disable KSM and unmerge/unshare any KSM pages.
2690 * (2) Disallow shared zeropages and unshare any zerpages that are mapped.
2691 *
2692 * Not that we currently don't bother with COW-shared pages that are shared
2693 * with parent/child processes due to fork().
2694 */
s390_disable_cow_sharing(void)2695 int s390_disable_cow_sharing(void)
2696 {
2697 int rc;
2698
2699 mmap_write_lock(current->mm);
2700 rc = __s390_disable_cow_sharing(current->mm);
2701 mmap_write_unlock(current->mm);
2702 return rc;
2703 }
2704 EXPORT_SYMBOL_GPL(s390_disable_cow_sharing);
2705
2706 /*
2707 * Enable storage key handling from now on and initialize the storage
2708 * keys with the default key.
2709 */
__s390_enable_skey_pte(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2710 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2711 unsigned long next, struct mm_walk *walk)
2712 {
2713 /* Clear storage key */
2714 ptep_zap_key(walk->mm, addr, pte);
2715 return 0;
2716 }
2717
2718 /*
2719 * Give a chance to schedule after setting a key to 256 pages.
2720 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2721 * Both can sleep.
2722 */
__s390_enable_skey_pmd(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)2723 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2724 unsigned long next, struct mm_walk *walk)
2725 {
2726 cond_resched();
2727 return 0;
2728 }
2729
__s390_enable_skey_hugetlb(pte_t * pte,unsigned long addr,unsigned long hmask,unsigned long next,struct mm_walk * walk)2730 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2731 unsigned long hmask, unsigned long next,
2732 struct mm_walk *walk)
2733 {
2734 pmd_t *pmd = (pmd_t *)pte;
2735 unsigned long start, end;
2736 struct folio *folio = page_folio(pmd_page(*pmd));
2737
2738 /*
2739 * The write check makes sure we do not set a key on shared
2740 * memory. This is needed as the walker does not differentiate
2741 * between actual guest memory and the process executable or
2742 * shared libraries.
2743 */
2744 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2745 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2746 return 0;
2747
2748 start = pmd_val(*pmd) & HPAGE_MASK;
2749 end = start + HPAGE_SIZE;
2750 __storage_key_init_range(start, end);
2751 set_bit(PG_arch_1, &folio->flags);
2752 cond_resched();
2753 return 0;
2754 }
2755
2756 static const struct mm_walk_ops enable_skey_walk_ops = {
2757 .hugetlb_entry = __s390_enable_skey_hugetlb,
2758 .pte_entry = __s390_enable_skey_pte,
2759 .pmd_entry = __s390_enable_skey_pmd,
2760 .walk_lock = PGWALK_WRLOCK,
2761 };
2762
s390_enable_skey(void)2763 int s390_enable_skey(void)
2764 {
2765 struct mm_struct *mm = current->mm;
2766 int rc = 0;
2767
2768 mmap_write_lock(mm);
2769 if (mm_uses_skeys(mm))
2770 goto out_up;
2771
2772 mm->context.uses_skeys = 1;
2773 rc = __s390_disable_cow_sharing(mm);
2774 if (rc) {
2775 mm->context.uses_skeys = 0;
2776 goto out_up;
2777 }
2778 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2779
2780 out_up:
2781 mmap_write_unlock(mm);
2782 return rc;
2783 }
2784 EXPORT_SYMBOL_GPL(s390_enable_skey);
2785
2786 /*
2787 * Reset CMMA state, make all pages stable again.
2788 */
__s390_reset_cmma(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)2789 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2790 unsigned long next, struct mm_walk *walk)
2791 {
2792 ptep_zap_unused(walk->mm, addr, pte, 1);
2793 return 0;
2794 }
2795
2796 static const struct mm_walk_ops reset_cmma_walk_ops = {
2797 .pte_entry = __s390_reset_cmma,
2798 .walk_lock = PGWALK_WRLOCK,
2799 };
2800
s390_reset_cmma(struct mm_struct * mm)2801 void s390_reset_cmma(struct mm_struct *mm)
2802 {
2803 mmap_write_lock(mm);
2804 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2805 mmap_write_unlock(mm);
2806 }
2807 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2808
2809 #define GATHER_GET_PAGES 32
2810
2811 struct reset_walk_state {
2812 unsigned long next;
2813 unsigned long count;
2814 unsigned long pfns[GATHER_GET_PAGES];
2815 };
2816
s390_gather_pages(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)2817 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2818 unsigned long next, struct mm_walk *walk)
2819 {
2820 struct reset_walk_state *p = walk->private;
2821 pte_t pte = READ_ONCE(*ptep);
2822
2823 if (pte_present(pte)) {
2824 /* we have a reference from the mapping, take an extra one */
2825 get_page(phys_to_page(pte_val(pte)));
2826 p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2827 p->next = next;
2828 p->count++;
2829 }
2830 return p->count >= GATHER_GET_PAGES;
2831 }
2832
2833 static const struct mm_walk_ops gather_pages_ops = {
2834 .pte_entry = s390_gather_pages,
2835 .walk_lock = PGWALK_RDLOCK,
2836 };
2837
2838 /*
2839 * Call the Destroy secure page UVC on each page in the given array of PFNs.
2840 * Each page needs to have an extra reference, which will be released here.
2841 */
s390_uv_destroy_pfns(unsigned long count,unsigned long * pfns)2842 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2843 {
2844 struct folio *folio;
2845 unsigned long i;
2846
2847 for (i = 0; i < count; i++) {
2848 folio = pfn_folio(pfns[i]);
2849 /* we always have an extra reference */
2850 uv_destroy_folio(folio);
2851 /* get rid of the extra reference */
2852 folio_put(folio);
2853 cond_resched();
2854 }
2855 }
2856 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2857
2858 /**
2859 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2860 * in the given range of the given address space.
2861 * @mm: the mm to operate on
2862 * @start: the start of the range
2863 * @end: the end of the range
2864 * @interruptible: if not 0, stop when a fatal signal is received
2865 *
2866 * Walk the given range of the given address space and call the destroy
2867 * secure page UVC on each page. Optionally exit early if a fatal signal is
2868 * pending.
2869 *
2870 * Return: 0 on success, -EINTR if the function stopped before completing
2871 */
__s390_uv_destroy_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool interruptible)2872 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2873 unsigned long end, bool interruptible)
2874 {
2875 struct reset_walk_state state = { .next = start };
2876 int r = 1;
2877
2878 while (r > 0) {
2879 state.count = 0;
2880 mmap_read_lock(mm);
2881 r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2882 mmap_read_unlock(mm);
2883 cond_resched();
2884 s390_uv_destroy_pfns(state.count, state.pfns);
2885 if (interruptible && fatal_signal_pending(current))
2886 return -EINTR;
2887 }
2888 return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2891
2892 /**
2893 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2894 * list of page tables of the gmap.
2895 * @gmap: the gmap whose table is to be removed
2896 *
2897 * On s390x, KVM keeps a list of all pages containing the page tables of the
2898 * gmap (the CRST list). This list is used at tear down time to free all
2899 * pages that are now not needed anymore.
2900 *
2901 * This function removes the topmost page of the tree (the one pointed to by
2902 * the ASCE) from the CRST list.
2903 *
2904 * This means that it will not be freed when the VM is torn down, and needs
2905 * to be handled separately by the caller, unless a leak is actually
2906 * intended. Notice that this function will only remove the page from the
2907 * list, the page will still be used as a top level page table (and ASCE).
2908 */
s390_unlist_old_asce(struct gmap * gmap)2909 void s390_unlist_old_asce(struct gmap *gmap)
2910 {
2911 struct page *old;
2912
2913 old = virt_to_page(gmap->table);
2914 spin_lock(&gmap->guest_table_lock);
2915 list_del(&old->lru);
2916 /*
2917 * Sometimes the topmost page might need to be "removed" multiple
2918 * times, for example if the VM is rebooted into secure mode several
2919 * times concurrently, or if s390_replace_asce fails after calling
2920 * s390_remove_old_asce and is attempted again later. In that case
2921 * the old asce has been removed from the list, and therefore it
2922 * will not be freed when the VM terminates, but the ASCE is still
2923 * in use and still pointed to.
2924 * A subsequent call to replace_asce will follow the pointer and try
2925 * to remove the same page from the list again.
2926 * Therefore it's necessary that the page of the ASCE has valid
2927 * pointers, so list_del can work (and do nothing) without
2928 * dereferencing stale or invalid pointers.
2929 */
2930 INIT_LIST_HEAD(&old->lru);
2931 spin_unlock(&gmap->guest_table_lock);
2932 }
2933 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2934
2935 /**
2936 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2937 * @gmap: the gmap whose ASCE needs to be replaced
2938 *
2939 * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2940 * otherwise the pointers in the host_to_guest radix tree will keep pointing
2941 * to the wrong pages, causing use-after-free and memory corruption.
2942 * If the allocation of the new top level page table fails, the ASCE is not
2943 * replaced.
2944 * In any case, the old ASCE is always removed from the gmap CRST list.
2945 * Therefore the caller has to make sure to save a pointer to it
2946 * beforehand, unless a leak is actually intended.
2947 */
s390_replace_asce(struct gmap * gmap)2948 int s390_replace_asce(struct gmap *gmap)
2949 {
2950 unsigned long asce;
2951 struct page *page;
2952 void *table;
2953
2954 s390_unlist_old_asce(gmap);
2955
2956 /* Replacing segment type ASCEs would cause serious issues */
2957 if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2958 return -EINVAL;
2959
2960 page = gmap_alloc_crst();
2961 if (!page)
2962 return -ENOMEM;
2963 page->index = 0;
2964 table = page_to_virt(page);
2965 memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2966
2967 /*
2968 * The caller has to deal with the old ASCE, but here we make sure
2969 * the new one is properly added to the CRST list, so that
2970 * it will be freed when the VM is torn down.
2971 */
2972 spin_lock(&gmap->guest_table_lock);
2973 list_add(&page->lru, &gmap->crst_list);
2974 spin_unlock(&gmap->guest_table_lock);
2975
2976 /* Set new table origin while preserving existing ASCE control bits */
2977 asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2978 WRITE_ONCE(gmap->asce, asce);
2979 WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2980 WRITE_ONCE(gmap->table, table);
2981
2982 return 0;
2983 }
2984 EXPORT_SYMBOL_GPL(s390_replace_asce);
2985