1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Intel IXP4xx Ethernet driver for Linux
4 *
5 * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
6 *
7 * Ethernet port config (0x00 is not present on IXP42X):
8 *
9 * logical port 0x00 0x10 0x20
10 * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
11 * physical PortId 2 0 1
12 * TX queue 23 24 25
13 * RX-free queue 26 27 28
14 * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
15 *
16 * Queue entries:
17 * bits 0 -> 1 - NPE ID (RX and TX-done)
18 * bits 0 -> 2 - priority (TX, per 802.1D)
19 * bits 3 -> 4 - port ID (user-set?)
20 * bits 5 -> 31 - physical descriptor address
21 */
22
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmapool.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_vlan.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/net_tstamp.h>
31 #include <linux/of.h>
32 #include <linux/of_mdio.h>
33 #include <linux/of_net.h>
34 #include <linux/phy.h>
35 #include <linux/platform_device.h>
36 #include <linux/ptp_classify.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <linux/soc/ixp4xx/npe.h>
40 #include <linux/soc/ixp4xx/qmgr.h>
41 #include <linux/soc/ixp4xx/cpu.h>
42 #include <linux/types.h>
43
44 #define IXP4XX_ETH_NPEA 0x00
45 #define IXP4XX_ETH_NPEB 0x10
46 #define IXP4XX_ETH_NPEC 0x20
47
48 #include "ixp46x_ts.h"
49
50 #define DEBUG_DESC 0
51 #define DEBUG_RX 0
52 #define DEBUG_TX 0
53 #define DEBUG_PKT_BYTES 0
54 #define DEBUG_MDIO 0
55 #define DEBUG_CLOSE 0
56
57 #define DRV_NAME "ixp4xx_eth"
58
59 #define MAX_NPES 3
60
61 #define RX_DESCS 64 /* also length of all RX queues */
62 #define TX_DESCS 16 /* also length of all TX queues */
63 #define TXDONE_QUEUE_LEN 64 /* dwords */
64
65 #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
66 #define REGS_SIZE 0x1000
67
68 /* MRU is said to be 14320 in a code dump, the SW manual says that
69 * MRU/MTU is 16320 and includes VLAN and ethernet headers.
70 * See "IXP400 Software Programmer's Guide" section 10.3.2, page 161.
71 *
72 * FIXME: we have chosen the safe default (14320) but if you can test
73 * jumboframes, experiment with 16320 and see what happens!
74 */
75 #define MAX_MRU (14320 - VLAN_ETH_HLEN)
76 #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
77
78 #define NAPI_WEIGHT 16
79 #define MDIO_INTERVAL (3 * HZ)
80 #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
81 #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
82
83 #define NPE_ID(port_id) ((port_id) >> 4)
84 #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
85 #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
86 #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
87 #define TXDONE_QUEUE 31
88
89 #define PTP_SLAVE_MODE 1
90 #define PTP_MASTER_MODE 2
91 #define PORT2CHANNEL(p) NPE_ID(p->id)
92
93 /* TX Control Registers */
94 #define TX_CNTRL0_TX_EN 0x01
95 #define TX_CNTRL0_HALFDUPLEX 0x02
96 #define TX_CNTRL0_RETRY 0x04
97 #define TX_CNTRL0_PAD_EN 0x08
98 #define TX_CNTRL0_APPEND_FCS 0x10
99 #define TX_CNTRL0_2DEFER 0x20
100 #define TX_CNTRL0_RMII 0x40 /* reduced MII */
101 #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
102
103 /* RX Control Registers */
104 #define RX_CNTRL0_RX_EN 0x01
105 #define RX_CNTRL0_PADSTRIP_EN 0x02
106 #define RX_CNTRL0_SEND_FCS 0x04
107 #define RX_CNTRL0_PAUSE_EN 0x08
108 #define RX_CNTRL0_LOOP_EN 0x10
109 #define RX_CNTRL0_ADDR_FLTR_EN 0x20
110 #define RX_CNTRL0_RX_RUNT_EN 0x40
111 #define RX_CNTRL0_BCAST_DIS 0x80
112 #define RX_CNTRL1_DEFER_EN 0x01
113
114 /* Core Control Register */
115 #define CORE_RESET 0x01
116 #define CORE_RX_FIFO_FLUSH 0x02
117 #define CORE_TX_FIFO_FLUSH 0x04
118 #define CORE_SEND_JAM 0x08
119 #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
120
121 #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
122 TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
123 TX_CNTRL0_2DEFER)
124 #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
125 #define DEFAULT_CORE_CNTRL CORE_MDC_EN
126
127
128 /* NPE message codes */
129 #define NPE_GETSTATUS 0x00
130 #define NPE_EDB_SETPORTADDRESS 0x01
131 #define NPE_EDB_GETMACADDRESSDATABASE 0x02
132 #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
133 #define NPE_GETSTATS 0x04
134 #define NPE_RESETSTATS 0x05
135 #define NPE_SETMAXFRAMELENGTHS 0x06
136 #define NPE_VLAN_SETRXTAGMODE 0x07
137 #define NPE_VLAN_SETDEFAULTRXVID 0x08
138 #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
139 #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
140 #define NPE_VLAN_SETRXQOSENTRY 0x0B
141 #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
142 #define NPE_STP_SETBLOCKINGSTATE 0x0D
143 #define NPE_FW_SETFIREWALLMODE 0x0E
144 #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
145 #define NPE_PC_SETAPMACTABLE 0x11
146 #define NPE_SETLOOPBACK_MODE 0x12
147 #define NPE_PC_SETBSSIDTABLE 0x13
148 #define NPE_ADDRESS_FILTER_CONFIG 0x14
149 #define NPE_APPENDFCSCONFIG 0x15
150 #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
151 #define NPE_MAC_RECOVERY_START 0x17
152
153
154 #ifdef __ARMEB__
155 typedef struct sk_buff buffer_t;
156 #define free_buffer dev_kfree_skb
157 #define free_buffer_irq dev_consume_skb_irq
158 #else
159 typedef void buffer_t;
160 #define free_buffer kfree
161 #define free_buffer_irq kfree
162 #endif
163
164 /* Information about built-in Ethernet MAC interfaces */
165 struct eth_plat_info {
166 u8 rxq; /* configurable, currently 0 - 31 only */
167 u8 txreadyq;
168 u8 hwaddr[ETH_ALEN];
169 u8 npe; /* NPE instance used by this interface */
170 bool has_mdio; /* If this instance has an MDIO bus */
171 };
172
173 struct eth_regs {
174 u32 tx_control[2], __res1[2]; /* 000 */
175 u32 rx_control[2], __res2[2]; /* 010 */
176 u32 random_seed, __res3[3]; /* 020 */
177 u32 partial_empty_threshold, __res4; /* 030 */
178 u32 partial_full_threshold, __res5; /* 038 */
179 u32 tx_start_bytes, __res6[3]; /* 040 */
180 u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
181 u32 tx_2part_deferral[2], __res8[2]; /* 060 */
182 u32 slot_time, __res9[3]; /* 070 */
183 u32 mdio_command[4]; /* 080 */
184 u32 mdio_status[4]; /* 090 */
185 u32 mcast_mask[6], __res10[2]; /* 0A0 */
186 u32 mcast_addr[6], __res11[2]; /* 0C0 */
187 u32 int_clock_threshold, __res12[3]; /* 0E0 */
188 u32 hw_addr[6], __res13[61]; /* 0F0 */
189 u32 core_control; /* 1FC */
190 };
191
192 struct port {
193 struct eth_regs __iomem *regs;
194 struct ixp46x_ts_regs __iomem *timesync_regs;
195 int phc_index;
196 struct npe *npe;
197 struct net_device *netdev;
198 struct napi_struct napi;
199 struct eth_plat_info *plat;
200 buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
201 struct desc *desc_tab; /* coherent */
202 dma_addr_t desc_tab_phys;
203 int id; /* logical port ID */
204 int speed, duplex;
205 u8 firmware[4];
206 int hwts_tx_en;
207 int hwts_rx_en;
208 };
209
210 /* NPE message structure */
211 struct msg {
212 #ifdef __ARMEB__
213 u8 cmd, eth_id, byte2, byte3;
214 u8 byte4, byte5, byte6, byte7;
215 #else
216 u8 byte3, byte2, eth_id, cmd;
217 u8 byte7, byte6, byte5, byte4;
218 #endif
219 };
220
221 /* Ethernet packet descriptor */
222 struct desc {
223 u32 next; /* pointer to next buffer, unused */
224
225 #ifdef __ARMEB__
226 u16 buf_len; /* buffer length */
227 u16 pkt_len; /* packet length */
228 u32 data; /* pointer to data buffer in RAM */
229 u8 dest_id;
230 u8 src_id;
231 u16 flags;
232 u8 qos;
233 u8 padlen;
234 u16 vlan_tci;
235 #else
236 u16 pkt_len; /* packet length */
237 u16 buf_len; /* buffer length */
238 u32 data; /* pointer to data buffer in RAM */
239 u16 flags;
240 u8 src_id;
241 u8 dest_id;
242 u16 vlan_tci;
243 u8 padlen;
244 u8 qos;
245 #endif
246
247 #ifdef __ARMEB__
248 u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
249 u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
250 u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
251 #else
252 u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
253 u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
254 u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
255 #endif
256 };
257
258
259 #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
260 (n) * sizeof(struct desc))
261 #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
262
263 #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
264 ((n) + RX_DESCS) * sizeof(struct desc))
265 #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
266
267 #ifndef __ARMEB__
memcpy_swab32(u32 * dest,u32 * src,int cnt)268 static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
269 {
270 int i;
271 for (i = 0; i < cnt; i++)
272 dest[i] = swab32(src[i]);
273 }
274 #endif
275
276 static DEFINE_SPINLOCK(mdio_lock);
277 static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
278 static struct mii_bus *mdio_bus;
279 static struct device_node *mdio_bus_np;
280 static int ports_open;
281 static struct port *npe_port_tab[MAX_NPES];
282 static struct dma_pool *dma_pool;
283
ixp_ptp_match(struct sk_buff * skb,u16 uid_hi,u32 uid_lo,u16 seqid)284 static int ixp_ptp_match(struct sk_buff *skb, u16 uid_hi, u32 uid_lo, u16 seqid)
285 {
286 u8 *data = skb->data;
287 unsigned int offset;
288 u16 *hi, *id;
289 u32 lo;
290
291 if (ptp_classify_raw(skb) != PTP_CLASS_V1_IPV4)
292 return 0;
293
294 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
295
296 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(seqid))
297 return 0;
298
299 hi = (u16 *)(data + offset + OFF_PTP_SOURCE_UUID);
300 id = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
301
302 memcpy(&lo, &hi[1], sizeof(lo));
303
304 return (uid_hi == ntohs(*hi) &&
305 uid_lo == ntohl(lo) &&
306 seqid == ntohs(*id));
307 }
308
ixp_rx_timestamp(struct port * port,struct sk_buff * skb)309 static void ixp_rx_timestamp(struct port *port, struct sk_buff *skb)
310 {
311 struct skb_shared_hwtstamps *shhwtstamps;
312 struct ixp46x_ts_regs *regs;
313 u64 ns;
314 u32 ch, hi, lo, val;
315 u16 uid, seq;
316
317 if (!port->hwts_rx_en)
318 return;
319
320 ch = PORT2CHANNEL(port);
321
322 regs = port->timesync_regs;
323
324 val = __raw_readl(®s->channel[ch].ch_event);
325
326 if (!(val & RX_SNAPSHOT_LOCKED))
327 return;
328
329 lo = __raw_readl(®s->channel[ch].src_uuid_lo);
330 hi = __raw_readl(®s->channel[ch].src_uuid_hi);
331
332 uid = hi & 0xffff;
333 seq = (hi >> 16) & 0xffff;
334
335 if (!ixp_ptp_match(skb, htons(uid), htonl(lo), htons(seq)))
336 goto out;
337
338 lo = __raw_readl(®s->channel[ch].rx_snap_lo);
339 hi = __raw_readl(®s->channel[ch].rx_snap_hi);
340 ns = ((u64) hi) << 32;
341 ns |= lo;
342 ns <<= TICKS_NS_SHIFT;
343
344 shhwtstamps = skb_hwtstamps(skb);
345 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
346 shhwtstamps->hwtstamp = ns_to_ktime(ns);
347 out:
348 __raw_writel(RX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event);
349 }
350
ixp_tx_timestamp(struct port * port,struct sk_buff * skb)351 static void ixp_tx_timestamp(struct port *port, struct sk_buff *skb)
352 {
353 struct skb_shared_hwtstamps shhwtstamps;
354 struct ixp46x_ts_regs *regs;
355 struct skb_shared_info *shtx;
356 u64 ns;
357 u32 ch, cnt, hi, lo, val;
358
359 shtx = skb_shinfo(skb);
360 if (unlikely(shtx->tx_flags & SKBTX_HW_TSTAMP && port->hwts_tx_en))
361 shtx->tx_flags |= SKBTX_IN_PROGRESS;
362 else
363 return;
364
365 ch = PORT2CHANNEL(port);
366
367 regs = port->timesync_regs;
368
369 /*
370 * This really stinks, but we have to poll for the Tx time stamp.
371 * Usually, the time stamp is ready after 4 to 6 microseconds.
372 */
373 for (cnt = 0; cnt < 100; cnt++) {
374 val = __raw_readl(®s->channel[ch].ch_event);
375 if (val & TX_SNAPSHOT_LOCKED)
376 break;
377 udelay(1);
378 }
379 if (!(val & TX_SNAPSHOT_LOCKED)) {
380 shtx->tx_flags &= ~SKBTX_IN_PROGRESS;
381 return;
382 }
383
384 lo = __raw_readl(®s->channel[ch].tx_snap_lo);
385 hi = __raw_readl(®s->channel[ch].tx_snap_hi);
386 ns = ((u64) hi) << 32;
387 ns |= lo;
388 ns <<= TICKS_NS_SHIFT;
389
390 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
391 shhwtstamps.hwtstamp = ns_to_ktime(ns);
392 skb_tstamp_tx(skb, &shhwtstamps);
393
394 __raw_writel(TX_SNAPSHOT_LOCKED, ®s->channel[ch].ch_event);
395 }
396
hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)397 static int hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
398 {
399 struct hwtstamp_config cfg;
400 struct ixp46x_ts_regs *regs;
401 struct port *port = netdev_priv(netdev);
402 int ret;
403 int ch;
404
405 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
406 return -EFAULT;
407
408 ret = ixp46x_ptp_find(&port->timesync_regs, &port->phc_index);
409 if (ret)
410 return ret;
411
412 ch = PORT2CHANNEL(port);
413 regs = port->timesync_regs;
414
415 if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
416 return -ERANGE;
417
418 switch (cfg.rx_filter) {
419 case HWTSTAMP_FILTER_NONE:
420 port->hwts_rx_en = 0;
421 break;
422 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
423 port->hwts_rx_en = PTP_SLAVE_MODE;
424 __raw_writel(0, ®s->channel[ch].ch_control);
425 break;
426 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
427 port->hwts_rx_en = PTP_MASTER_MODE;
428 __raw_writel(MASTER_MODE, ®s->channel[ch].ch_control);
429 break;
430 default:
431 return -ERANGE;
432 }
433
434 port->hwts_tx_en = cfg.tx_type == HWTSTAMP_TX_ON;
435
436 /* Clear out any old time stamps. */
437 __raw_writel(TX_SNAPSHOT_LOCKED | RX_SNAPSHOT_LOCKED,
438 ®s->channel[ch].ch_event);
439
440 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
441 }
442
hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)443 static int hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
444 {
445 struct hwtstamp_config cfg;
446 struct port *port = netdev_priv(netdev);
447
448 cfg.flags = 0;
449 cfg.tx_type = port->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
450
451 switch (port->hwts_rx_en) {
452 case 0:
453 cfg.rx_filter = HWTSTAMP_FILTER_NONE;
454 break;
455 case PTP_SLAVE_MODE:
456 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
457 break;
458 case PTP_MASTER_MODE:
459 cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
460 break;
461 default:
462 WARN_ON_ONCE(1);
463 return -ERANGE;
464 }
465
466 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
467 }
468
ixp4xx_mdio_cmd(struct mii_bus * bus,int phy_id,int location,int write,u16 cmd)469 static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
470 int write, u16 cmd)
471 {
472 int cycles = 0;
473
474 if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
475 printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
476 return -1;
477 }
478
479 if (write) {
480 __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
481 __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
482 }
483 __raw_writel(((phy_id << 5) | location) & 0xFF,
484 &mdio_regs->mdio_command[2]);
485 __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
486 &mdio_regs->mdio_command[3]);
487
488 while ((cycles < MAX_MDIO_RETRIES) &&
489 (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
490 udelay(1);
491 cycles++;
492 }
493
494 if (cycles == MAX_MDIO_RETRIES) {
495 printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
496 phy_id);
497 return -1;
498 }
499
500 #if DEBUG_MDIO
501 printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
502 phy_id, write ? "write" : "read", cycles);
503 #endif
504
505 if (write)
506 return 0;
507
508 if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
509 #if DEBUG_MDIO
510 printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
511 phy_id);
512 #endif
513 return 0xFFFF; /* don't return error */
514 }
515
516 return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
517 ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
518 }
519
ixp4xx_mdio_read(struct mii_bus * bus,int phy_id,int location)520 static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
521 {
522 unsigned long flags;
523 int ret;
524
525 spin_lock_irqsave(&mdio_lock, flags);
526 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
527 spin_unlock_irqrestore(&mdio_lock, flags);
528 #if DEBUG_MDIO
529 printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
530 phy_id, location, ret);
531 #endif
532 return ret;
533 }
534
ixp4xx_mdio_write(struct mii_bus * bus,int phy_id,int location,u16 val)535 static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
536 u16 val)
537 {
538 unsigned long flags;
539 int ret;
540
541 spin_lock_irqsave(&mdio_lock, flags);
542 ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
543 spin_unlock_irqrestore(&mdio_lock, flags);
544 #if DEBUG_MDIO
545 printk(KERN_DEBUG "%s #%i: MII write [%i] <- 0x%X, err = %i\n",
546 bus->name, phy_id, location, val, ret);
547 #endif
548 return ret;
549 }
550
ixp4xx_mdio_register(struct eth_regs __iomem * regs)551 static int ixp4xx_mdio_register(struct eth_regs __iomem *regs)
552 {
553 int err;
554
555 if (!(mdio_bus = mdiobus_alloc()))
556 return -ENOMEM;
557
558 mdio_regs = regs;
559 __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
560 mdio_bus->name = "IXP4xx MII Bus";
561 mdio_bus->read = &ixp4xx_mdio_read;
562 mdio_bus->write = &ixp4xx_mdio_write;
563 snprintf(mdio_bus->id, MII_BUS_ID_SIZE, "ixp4xx-eth-0");
564
565 err = of_mdiobus_register(mdio_bus, mdio_bus_np);
566 if (err)
567 mdiobus_free(mdio_bus);
568 return err;
569 }
570
ixp4xx_mdio_remove(void)571 static void ixp4xx_mdio_remove(void)
572 {
573 mdiobus_unregister(mdio_bus);
574 mdiobus_free(mdio_bus);
575 }
576
577
ixp4xx_adjust_link(struct net_device * dev)578 static void ixp4xx_adjust_link(struct net_device *dev)
579 {
580 struct port *port = netdev_priv(dev);
581 struct phy_device *phydev = dev->phydev;
582
583 if (!phydev->link) {
584 if (port->speed) {
585 port->speed = 0;
586 printk(KERN_INFO "%s: link down\n", dev->name);
587 }
588 return;
589 }
590
591 if (port->speed == phydev->speed && port->duplex == phydev->duplex)
592 return;
593
594 port->speed = phydev->speed;
595 port->duplex = phydev->duplex;
596
597 if (port->duplex)
598 __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
599 &port->regs->tx_control[0]);
600 else
601 __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
602 &port->regs->tx_control[0]);
603
604 netdev_info(dev, "%s: link up, speed %u Mb/s, %s duplex\n",
605 dev->name, port->speed, port->duplex ? "full" : "half");
606 }
607
608
debug_pkt(struct net_device * dev,const char * func,u8 * data,int len)609 static inline void debug_pkt(struct net_device *dev, const char *func,
610 u8 *data, int len)
611 {
612 #if DEBUG_PKT_BYTES
613 int i;
614
615 netdev_debug(dev, "%s(%i) ", func, len);
616 for (i = 0; i < len; i++) {
617 if (i >= DEBUG_PKT_BYTES)
618 break;
619 printk("%s%02X",
620 ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
621 data[i]);
622 }
623 printk("\n");
624 #endif
625 }
626
627
debug_desc(u32 phys,struct desc * desc)628 static inline void debug_desc(u32 phys, struct desc *desc)
629 {
630 #if DEBUG_DESC
631 printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
632 " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
633 phys, desc->next, desc->buf_len, desc->pkt_len,
634 desc->data, desc->dest_id, desc->src_id, desc->flags,
635 desc->qos, desc->padlen, desc->vlan_tci,
636 desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
637 desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
638 desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
639 desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
640 #endif
641 }
642
queue_get_desc(unsigned int queue,struct port * port,int is_tx)643 static inline int queue_get_desc(unsigned int queue, struct port *port,
644 int is_tx)
645 {
646 u32 phys, tab_phys, n_desc;
647 struct desc *tab;
648
649 if (!(phys = qmgr_get_entry(queue)))
650 return -1;
651
652 phys &= ~0x1F; /* mask out non-address bits */
653 tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
654 tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
655 n_desc = (phys - tab_phys) / sizeof(struct desc);
656 BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
657 debug_desc(phys, &tab[n_desc]);
658 BUG_ON(tab[n_desc].next);
659 return n_desc;
660 }
661
queue_put_desc(unsigned int queue,u32 phys,struct desc * desc)662 static inline void queue_put_desc(unsigned int queue, u32 phys,
663 struct desc *desc)
664 {
665 debug_desc(phys, desc);
666 BUG_ON(phys & 0x1F);
667 qmgr_put_entry(queue, phys);
668 /* Don't check for queue overflow here, we've allocated sufficient
669 length and queues >= 32 don't support this check anyway. */
670 }
671
672
dma_unmap_tx(struct port * port,struct desc * desc)673 static inline void dma_unmap_tx(struct port *port, struct desc *desc)
674 {
675 #ifdef __ARMEB__
676 dma_unmap_single(&port->netdev->dev, desc->data,
677 desc->buf_len, DMA_TO_DEVICE);
678 #else
679 dma_unmap_single(&port->netdev->dev, desc->data & ~3,
680 ALIGN((desc->data & 3) + desc->buf_len, 4),
681 DMA_TO_DEVICE);
682 #endif
683 }
684
685
eth_rx_irq(void * pdev)686 static void eth_rx_irq(void *pdev)
687 {
688 struct net_device *dev = pdev;
689 struct port *port = netdev_priv(dev);
690
691 #if DEBUG_RX
692 printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
693 #endif
694 qmgr_disable_irq(port->plat->rxq);
695 napi_schedule(&port->napi);
696 }
697
eth_poll(struct napi_struct * napi,int budget)698 static int eth_poll(struct napi_struct *napi, int budget)
699 {
700 struct port *port = container_of(napi, struct port, napi);
701 struct net_device *dev = port->netdev;
702 unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
703 int received = 0;
704
705 #if DEBUG_RX
706 netdev_debug(dev, "eth_poll\n");
707 #endif
708
709 while (received < budget) {
710 struct sk_buff *skb;
711 struct desc *desc;
712 int n;
713 #ifdef __ARMEB__
714 struct sk_buff *temp;
715 u32 phys;
716 #endif
717
718 if ((n = queue_get_desc(rxq, port, 0)) < 0) {
719 #if DEBUG_RX
720 netdev_debug(dev, "eth_poll napi_complete\n");
721 #endif
722 napi_complete(napi);
723 qmgr_enable_irq(rxq);
724 if (!qmgr_stat_below_low_watermark(rxq) &&
725 napi_schedule(napi)) { /* not empty again */
726 #if DEBUG_RX
727 netdev_debug(dev, "eth_poll napi_schedule succeeded\n");
728 #endif
729 qmgr_disable_irq(rxq);
730 continue;
731 }
732 #if DEBUG_RX
733 netdev_debug(dev, "eth_poll all done\n");
734 #endif
735 return received; /* all work done */
736 }
737
738 desc = rx_desc_ptr(port, n);
739
740 #ifdef __ARMEB__
741 if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
742 phys = dma_map_single(&dev->dev, skb->data,
743 RX_BUFF_SIZE, DMA_FROM_DEVICE);
744 if (dma_mapping_error(&dev->dev, phys)) {
745 dev_kfree_skb(skb);
746 skb = NULL;
747 }
748 }
749 #else
750 skb = netdev_alloc_skb(dev,
751 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
752 #endif
753
754 if (!skb) {
755 dev->stats.rx_dropped++;
756 /* put the desc back on RX-ready queue */
757 desc->buf_len = MAX_MRU;
758 desc->pkt_len = 0;
759 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
760 continue;
761 }
762
763 /* process received frame */
764 #ifdef __ARMEB__
765 temp = skb;
766 skb = port->rx_buff_tab[n];
767 dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
768 RX_BUFF_SIZE, DMA_FROM_DEVICE);
769 #else
770 dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
771 RX_BUFF_SIZE, DMA_FROM_DEVICE);
772 memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
773 ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
774 #endif
775 skb_reserve(skb, NET_IP_ALIGN);
776 skb_put(skb, desc->pkt_len);
777
778 debug_pkt(dev, "eth_poll", skb->data, skb->len);
779
780 ixp_rx_timestamp(port, skb);
781 skb->protocol = eth_type_trans(skb, dev);
782 dev->stats.rx_packets++;
783 dev->stats.rx_bytes += skb->len;
784 netif_receive_skb(skb);
785
786 /* put the new buffer on RX-free queue */
787 #ifdef __ARMEB__
788 port->rx_buff_tab[n] = temp;
789 desc->data = phys + NET_IP_ALIGN;
790 #endif
791 desc->buf_len = MAX_MRU;
792 desc->pkt_len = 0;
793 queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
794 received++;
795 }
796
797 #if DEBUG_RX
798 netdev_debug(dev, "eth_poll(): end, not all work done\n");
799 #endif
800 return received; /* not all work done */
801 }
802
803
eth_txdone_irq(void * unused)804 static void eth_txdone_irq(void *unused)
805 {
806 u32 phys;
807
808 #if DEBUG_TX
809 printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
810 #endif
811 while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
812 u32 npe_id, n_desc;
813 struct port *port;
814 struct desc *desc;
815 int start;
816
817 npe_id = phys & 3;
818 BUG_ON(npe_id >= MAX_NPES);
819 port = npe_port_tab[npe_id];
820 BUG_ON(!port);
821 phys &= ~0x1F; /* mask out non-address bits */
822 n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
823 BUG_ON(n_desc >= TX_DESCS);
824 desc = tx_desc_ptr(port, n_desc);
825 debug_desc(phys, desc);
826
827 if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
828 port->netdev->stats.tx_packets++;
829 port->netdev->stats.tx_bytes += desc->pkt_len;
830
831 dma_unmap_tx(port, desc);
832 #if DEBUG_TX
833 printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
834 port->netdev->name, port->tx_buff_tab[n_desc]);
835 #endif
836 free_buffer_irq(port->tx_buff_tab[n_desc]);
837 port->tx_buff_tab[n_desc] = NULL;
838 }
839
840 start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
841 queue_put_desc(port->plat->txreadyq, phys, desc);
842 if (start) { /* TX-ready queue was empty */
843 #if DEBUG_TX
844 printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
845 port->netdev->name);
846 #endif
847 netif_wake_queue(port->netdev);
848 }
849 }
850 }
851
eth_xmit(struct sk_buff * skb,struct net_device * dev)852 static netdev_tx_t eth_xmit(struct sk_buff *skb, struct net_device *dev)
853 {
854 struct port *port = netdev_priv(dev);
855 unsigned int txreadyq = port->plat->txreadyq;
856 int len, offset, bytes, n;
857 void *mem;
858 u32 phys;
859 struct desc *desc;
860
861 #if DEBUG_TX
862 netdev_debug(dev, "eth_xmit\n");
863 #endif
864
865 if (unlikely(skb->len > MAX_MRU)) {
866 dev_kfree_skb(skb);
867 dev->stats.tx_errors++;
868 return NETDEV_TX_OK;
869 }
870
871 debug_pkt(dev, "eth_xmit", skb->data, skb->len);
872
873 len = skb->len;
874 #ifdef __ARMEB__
875 offset = 0; /* no need to keep alignment */
876 bytes = len;
877 mem = skb->data;
878 #else
879 offset = (uintptr_t)skb->data & 3; /* keep 32-bit alignment */
880 bytes = ALIGN(offset + len, 4);
881 if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
882 dev_kfree_skb(skb);
883 dev->stats.tx_dropped++;
884 return NETDEV_TX_OK;
885 }
886 memcpy_swab32(mem, (u32 *)((uintptr_t)skb->data & ~3), bytes / 4);
887 #endif
888
889 phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
890 if (dma_mapping_error(&dev->dev, phys)) {
891 dev_kfree_skb(skb);
892 #ifndef __ARMEB__
893 kfree(mem);
894 #endif
895 dev->stats.tx_dropped++;
896 return NETDEV_TX_OK;
897 }
898
899 n = queue_get_desc(txreadyq, port, 1);
900 BUG_ON(n < 0);
901 desc = tx_desc_ptr(port, n);
902
903 #ifdef __ARMEB__
904 port->tx_buff_tab[n] = skb;
905 #else
906 port->tx_buff_tab[n] = mem;
907 #endif
908 desc->data = phys + offset;
909 desc->buf_len = desc->pkt_len = len;
910
911 /* NPE firmware pads short frames with zeros internally */
912 wmb();
913 queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
914
915 if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
916 #if DEBUG_TX
917 netdev_debug(dev, "eth_xmit queue full\n");
918 #endif
919 netif_stop_queue(dev);
920 /* we could miss TX ready interrupt */
921 /* really empty in fact */
922 if (!qmgr_stat_below_low_watermark(txreadyq)) {
923 #if DEBUG_TX
924 netdev_debug(dev, "eth_xmit ready again\n");
925 #endif
926 netif_wake_queue(dev);
927 }
928 }
929
930 #if DEBUG_TX
931 netdev_debug(dev, "eth_xmit end\n");
932 #endif
933
934 ixp_tx_timestamp(port, skb);
935 skb_tx_timestamp(skb);
936
937 #ifndef __ARMEB__
938 dev_kfree_skb(skb);
939 #endif
940 return NETDEV_TX_OK;
941 }
942
943
eth_set_mcast_list(struct net_device * dev)944 static void eth_set_mcast_list(struct net_device *dev)
945 {
946 struct port *port = netdev_priv(dev);
947 struct netdev_hw_addr *ha;
948 u8 diffs[ETH_ALEN], *addr;
949 int i;
950 static const u8 allmulti[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
951
952 if ((dev->flags & IFF_ALLMULTI) && !(dev->flags & IFF_PROMISC)) {
953 for (i = 0; i < ETH_ALEN; i++) {
954 __raw_writel(allmulti[i], &port->regs->mcast_addr[i]);
955 __raw_writel(allmulti[i], &port->regs->mcast_mask[i]);
956 }
957 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
958 &port->regs->rx_control[0]);
959 return;
960 }
961
962 if ((dev->flags & IFF_PROMISC) || netdev_mc_empty(dev)) {
963 __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
964 &port->regs->rx_control[0]);
965 return;
966 }
967
968 eth_zero_addr(diffs);
969
970 addr = NULL;
971 netdev_for_each_mc_addr(ha, dev) {
972 if (!addr)
973 addr = ha->addr; /* first MAC address */
974 for (i = 0; i < ETH_ALEN; i++)
975 diffs[i] |= addr[i] ^ ha->addr[i];
976 }
977
978 for (i = 0; i < ETH_ALEN; i++) {
979 __raw_writel(addr[i], &port->regs->mcast_addr[i]);
980 __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
981 }
982
983 __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
984 &port->regs->rx_control[0]);
985 }
986
987
eth_ioctl(struct net_device * dev,struct ifreq * req,int cmd)988 static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
989 {
990 if (!netif_running(dev))
991 return -EINVAL;
992
993 if (cpu_is_ixp46x()) {
994 if (cmd == SIOCSHWTSTAMP)
995 return hwtstamp_set(dev, req);
996 if (cmd == SIOCGHWTSTAMP)
997 return hwtstamp_get(dev, req);
998 }
999
1000 return phy_mii_ioctl(dev->phydev, req, cmd);
1001 }
1002
1003 /* ethtool support */
1004
ixp4xx_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1005 static void ixp4xx_get_drvinfo(struct net_device *dev,
1006 struct ethtool_drvinfo *info)
1007 {
1008 struct port *port = netdev_priv(dev);
1009
1010 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1011 snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
1012 port->firmware[0], port->firmware[1],
1013 port->firmware[2], port->firmware[3]);
1014 strscpy(info->bus_info, "internal", sizeof(info->bus_info));
1015 }
1016
ixp4xx_get_ts_info(struct net_device * dev,struct kernel_ethtool_ts_info * info)1017 static int ixp4xx_get_ts_info(struct net_device *dev,
1018 struct kernel_ethtool_ts_info *info)
1019 {
1020 struct port *port = netdev_priv(dev);
1021
1022 if (port->phc_index < 0)
1023 ixp46x_ptp_find(&port->timesync_regs, &port->phc_index);
1024
1025 info->phc_index = port->phc_index;
1026
1027 if (info->phc_index < 0) {
1028 info->so_timestamping =
1029 SOF_TIMESTAMPING_TX_SOFTWARE;
1030 return 0;
1031 }
1032 info->so_timestamping =
1033 SOF_TIMESTAMPING_TX_HARDWARE |
1034 SOF_TIMESTAMPING_RX_HARDWARE |
1035 SOF_TIMESTAMPING_RAW_HARDWARE;
1036 info->tx_types =
1037 (1 << HWTSTAMP_TX_OFF) |
1038 (1 << HWTSTAMP_TX_ON);
1039 info->rx_filters =
1040 (1 << HWTSTAMP_FILTER_NONE) |
1041 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1042 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ);
1043 return 0;
1044 }
1045
1046 static const struct ethtool_ops ixp4xx_ethtool_ops = {
1047 .get_drvinfo = ixp4xx_get_drvinfo,
1048 .nway_reset = phy_ethtool_nway_reset,
1049 .get_link = ethtool_op_get_link,
1050 .get_ts_info = ixp4xx_get_ts_info,
1051 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1052 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1053 };
1054
1055
request_queues(struct port * port)1056 static int request_queues(struct port *port)
1057 {
1058 int err;
1059
1060 err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
1061 "%s:RX-free", port->netdev->name);
1062 if (err)
1063 return err;
1064
1065 err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
1066 "%s:RX", port->netdev->name);
1067 if (err)
1068 goto rel_rxfree;
1069
1070 err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
1071 "%s:TX", port->netdev->name);
1072 if (err)
1073 goto rel_rx;
1074
1075 err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
1076 "%s:TX-ready", port->netdev->name);
1077 if (err)
1078 goto rel_tx;
1079
1080 /* TX-done queue handles skbs sent out by the NPEs */
1081 if (!ports_open) {
1082 err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
1083 "%s:TX-done", DRV_NAME);
1084 if (err)
1085 goto rel_txready;
1086 }
1087 return 0;
1088
1089 rel_txready:
1090 qmgr_release_queue(port->plat->txreadyq);
1091 rel_tx:
1092 qmgr_release_queue(TX_QUEUE(port->id));
1093 rel_rx:
1094 qmgr_release_queue(port->plat->rxq);
1095 rel_rxfree:
1096 qmgr_release_queue(RXFREE_QUEUE(port->id));
1097 printk(KERN_DEBUG "%s: unable to request hardware queues\n",
1098 port->netdev->name);
1099 return err;
1100 }
1101
release_queues(struct port * port)1102 static void release_queues(struct port *port)
1103 {
1104 qmgr_release_queue(RXFREE_QUEUE(port->id));
1105 qmgr_release_queue(port->plat->rxq);
1106 qmgr_release_queue(TX_QUEUE(port->id));
1107 qmgr_release_queue(port->plat->txreadyq);
1108
1109 if (!ports_open)
1110 qmgr_release_queue(TXDONE_QUEUE);
1111 }
1112
init_queues(struct port * port)1113 static int init_queues(struct port *port)
1114 {
1115 int i;
1116
1117 if (!ports_open) {
1118 dma_pool = dma_pool_create(DRV_NAME, &port->netdev->dev,
1119 POOL_ALLOC_SIZE, 32, 0);
1120 if (!dma_pool)
1121 return -ENOMEM;
1122 }
1123
1124 port->desc_tab = dma_pool_zalloc(dma_pool, GFP_KERNEL, &port->desc_tab_phys);
1125 if (!port->desc_tab)
1126 return -ENOMEM;
1127 memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
1128 memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
1129
1130 /* Setup RX buffers */
1131 for (i = 0; i < RX_DESCS; i++) {
1132 struct desc *desc = rx_desc_ptr(port, i);
1133 buffer_t *buff; /* skb or kmalloc()ated memory */
1134 void *data;
1135 #ifdef __ARMEB__
1136 if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
1137 return -ENOMEM;
1138 data = buff->data;
1139 #else
1140 if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
1141 return -ENOMEM;
1142 data = buff;
1143 #endif
1144 desc->buf_len = MAX_MRU;
1145 desc->data = dma_map_single(&port->netdev->dev, data,
1146 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1147 if (dma_mapping_error(&port->netdev->dev, desc->data)) {
1148 free_buffer(buff);
1149 return -EIO;
1150 }
1151 desc->data += NET_IP_ALIGN;
1152 port->rx_buff_tab[i] = buff;
1153 }
1154
1155 return 0;
1156 }
1157
destroy_queues(struct port * port)1158 static void destroy_queues(struct port *port)
1159 {
1160 int i;
1161
1162 if (port->desc_tab) {
1163 for (i = 0; i < RX_DESCS; i++) {
1164 struct desc *desc = rx_desc_ptr(port, i);
1165 buffer_t *buff = port->rx_buff_tab[i];
1166 if (buff) {
1167 dma_unmap_single(&port->netdev->dev,
1168 desc->data - NET_IP_ALIGN,
1169 RX_BUFF_SIZE, DMA_FROM_DEVICE);
1170 free_buffer(buff);
1171 }
1172 }
1173 for (i = 0; i < TX_DESCS; i++) {
1174 struct desc *desc = tx_desc_ptr(port, i);
1175 buffer_t *buff = port->tx_buff_tab[i];
1176 if (buff) {
1177 dma_unmap_tx(port, desc);
1178 free_buffer(buff);
1179 }
1180 }
1181 dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
1182 port->desc_tab = NULL;
1183 }
1184
1185 if (!ports_open && dma_pool) {
1186 dma_pool_destroy(dma_pool);
1187 dma_pool = NULL;
1188 }
1189 }
1190
ixp4xx_do_change_mtu(struct net_device * dev,int new_mtu)1191 static int ixp4xx_do_change_mtu(struct net_device *dev, int new_mtu)
1192 {
1193 struct port *port = netdev_priv(dev);
1194 struct npe *npe = port->npe;
1195 int framesize, chunks;
1196 struct msg msg = {};
1197
1198 /* adjust for ethernet headers */
1199 framesize = new_mtu + VLAN_ETH_HLEN;
1200 /* max rx/tx 64 byte chunks */
1201 chunks = DIV_ROUND_UP(framesize, 64);
1202
1203 msg.cmd = NPE_SETMAXFRAMELENGTHS;
1204 msg.eth_id = port->id;
1205
1206 /* Firmware wants to know buffer size in 64 byte chunks */
1207 msg.byte2 = chunks << 8;
1208 msg.byte3 = chunks << 8;
1209
1210 msg.byte4 = msg.byte6 = framesize >> 8;
1211 msg.byte5 = msg.byte7 = framesize & 0xff;
1212
1213 if (npe_send_recv_message(npe, &msg, "ETH_SET_MAX_FRAME_LENGTH"))
1214 return -EIO;
1215 netdev_dbg(dev, "set MTU on NPE %s to %d bytes\n",
1216 npe_name(npe), new_mtu);
1217
1218 return 0;
1219 }
1220
ixp4xx_eth_change_mtu(struct net_device * dev,int new_mtu)1221 static int ixp4xx_eth_change_mtu(struct net_device *dev, int new_mtu)
1222 {
1223 int ret;
1224
1225 /* MTU can only be changed when the interface is up. We also
1226 * set the MTU from dev->mtu when opening the device.
1227 */
1228 if (dev->flags & IFF_UP) {
1229 ret = ixp4xx_do_change_mtu(dev, new_mtu);
1230 if (ret < 0)
1231 return ret;
1232 }
1233
1234 WRITE_ONCE(dev->mtu, new_mtu);
1235
1236 return 0;
1237 }
1238
eth_open(struct net_device * dev)1239 static int eth_open(struct net_device *dev)
1240 {
1241 struct port *port = netdev_priv(dev);
1242 struct npe *npe = port->npe;
1243 struct msg msg;
1244 int i, err;
1245
1246 if (!npe_running(npe)) {
1247 err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
1248 if (err)
1249 return err;
1250
1251 if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
1252 netdev_err(dev, "%s not responding\n", npe_name(npe));
1253 return -EIO;
1254 }
1255 port->firmware[0] = msg.byte4;
1256 port->firmware[1] = msg.byte5;
1257 port->firmware[2] = msg.byte6;
1258 port->firmware[3] = msg.byte7;
1259 }
1260
1261 memset(&msg, 0, sizeof(msg));
1262 msg.cmd = NPE_VLAN_SETRXQOSENTRY;
1263 msg.eth_id = port->id;
1264 msg.byte5 = port->plat->rxq | 0x80;
1265 msg.byte7 = port->plat->rxq << 4;
1266 for (i = 0; i < 8; i++) {
1267 msg.byte3 = i;
1268 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
1269 return -EIO;
1270 }
1271
1272 msg.cmd = NPE_EDB_SETPORTADDRESS;
1273 msg.eth_id = PHYSICAL_ID(port->id);
1274 msg.byte2 = dev->dev_addr[0];
1275 msg.byte3 = dev->dev_addr[1];
1276 msg.byte4 = dev->dev_addr[2];
1277 msg.byte5 = dev->dev_addr[3];
1278 msg.byte6 = dev->dev_addr[4];
1279 msg.byte7 = dev->dev_addr[5];
1280 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
1281 return -EIO;
1282
1283 memset(&msg, 0, sizeof(msg));
1284 msg.cmd = NPE_FW_SETFIREWALLMODE;
1285 msg.eth_id = port->id;
1286 if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
1287 return -EIO;
1288
1289 ixp4xx_do_change_mtu(dev, dev->mtu);
1290
1291 if ((err = request_queues(port)) != 0)
1292 return err;
1293
1294 if ((err = init_queues(port)) != 0) {
1295 destroy_queues(port);
1296 release_queues(port);
1297 return err;
1298 }
1299
1300 port->speed = 0; /* force "link up" message */
1301 phy_start(dev->phydev);
1302
1303 for (i = 0; i < ETH_ALEN; i++)
1304 __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
1305 __raw_writel(0x08, &port->regs->random_seed);
1306 __raw_writel(0x12, &port->regs->partial_empty_threshold);
1307 __raw_writel(0x30, &port->regs->partial_full_threshold);
1308 __raw_writel(0x08, &port->regs->tx_start_bytes);
1309 __raw_writel(0x15, &port->regs->tx_deferral);
1310 __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
1311 __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
1312 __raw_writel(0x80, &port->regs->slot_time);
1313 __raw_writel(0x01, &port->regs->int_clock_threshold);
1314
1315 /* Populate queues with buffers, no failure after this point */
1316 for (i = 0; i < TX_DESCS; i++)
1317 queue_put_desc(port->plat->txreadyq,
1318 tx_desc_phys(port, i), tx_desc_ptr(port, i));
1319
1320 for (i = 0; i < RX_DESCS; i++)
1321 queue_put_desc(RXFREE_QUEUE(port->id),
1322 rx_desc_phys(port, i), rx_desc_ptr(port, i));
1323
1324 __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
1325 __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
1326 __raw_writel(0, &port->regs->rx_control[1]);
1327 __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
1328
1329 napi_enable(&port->napi);
1330 eth_set_mcast_list(dev);
1331 netif_start_queue(dev);
1332
1333 qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
1334 eth_rx_irq, dev);
1335 if (!ports_open) {
1336 qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
1337 eth_txdone_irq, NULL);
1338 qmgr_enable_irq(TXDONE_QUEUE);
1339 }
1340 ports_open++;
1341 /* we may already have RX data, enables IRQ */
1342 napi_schedule(&port->napi);
1343 return 0;
1344 }
1345
eth_close(struct net_device * dev)1346 static int eth_close(struct net_device *dev)
1347 {
1348 struct port *port = netdev_priv(dev);
1349 struct msg msg;
1350 int buffs = RX_DESCS; /* allocated RX buffers */
1351 int i;
1352
1353 ports_open--;
1354 qmgr_disable_irq(port->plat->rxq);
1355 napi_disable(&port->napi);
1356 netif_stop_queue(dev);
1357
1358 while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
1359 buffs--;
1360
1361 memset(&msg, 0, sizeof(msg));
1362 msg.cmd = NPE_SETLOOPBACK_MODE;
1363 msg.eth_id = port->id;
1364 msg.byte3 = 1;
1365 if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
1366 netdev_crit(dev, "unable to enable loopback\n");
1367
1368 i = 0;
1369 do { /* drain RX buffers */
1370 while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
1371 buffs--;
1372 if (!buffs)
1373 break;
1374 if (qmgr_stat_empty(TX_QUEUE(port->id))) {
1375 /* we have to inject some packet */
1376 struct desc *desc;
1377 u32 phys;
1378 int n = queue_get_desc(port->plat->txreadyq, port, 1);
1379 BUG_ON(n < 0);
1380 desc = tx_desc_ptr(port, n);
1381 phys = tx_desc_phys(port, n);
1382 desc->buf_len = desc->pkt_len = 1;
1383 wmb();
1384 queue_put_desc(TX_QUEUE(port->id), phys, desc);
1385 }
1386 udelay(1);
1387 } while (++i < MAX_CLOSE_WAIT);
1388
1389 if (buffs)
1390 netdev_crit(dev, "unable to drain RX queue, %i buffer(s)"
1391 " left in NPE\n", buffs);
1392 #if DEBUG_CLOSE
1393 if (!buffs)
1394 netdev_debug(dev, "draining RX queue took %i cycles\n", i);
1395 #endif
1396
1397 buffs = TX_DESCS;
1398 while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
1399 buffs--; /* cancel TX */
1400
1401 i = 0;
1402 do {
1403 while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
1404 buffs--;
1405 if (!buffs)
1406 break;
1407 } while (++i < MAX_CLOSE_WAIT);
1408
1409 if (buffs)
1410 netdev_crit(dev, "unable to drain TX queue, %i buffer(s) "
1411 "left in NPE\n", buffs);
1412 #if DEBUG_CLOSE
1413 if (!buffs)
1414 netdev_debug(dev, "draining TX queues took %i cycles\n", i);
1415 #endif
1416
1417 msg.byte3 = 0;
1418 if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
1419 netdev_crit(dev, "unable to disable loopback\n");
1420
1421 phy_stop(dev->phydev);
1422
1423 if (!ports_open)
1424 qmgr_disable_irq(TXDONE_QUEUE);
1425 destroy_queues(port);
1426 release_queues(port);
1427 return 0;
1428 }
1429
1430 static const struct net_device_ops ixp4xx_netdev_ops = {
1431 .ndo_open = eth_open,
1432 .ndo_stop = eth_close,
1433 .ndo_change_mtu = ixp4xx_eth_change_mtu,
1434 .ndo_start_xmit = eth_xmit,
1435 .ndo_set_rx_mode = eth_set_mcast_list,
1436 .ndo_eth_ioctl = eth_ioctl,
1437 .ndo_set_mac_address = eth_mac_addr,
1438 .ndo_validate_addr = eth_validate_addr,
1439 };
1440
ixp4xx_of_get_platdata(struct device * dev)1441 static struct eth_plat_info *ixp4xx_of_get_platdata(struct device *dev)
1442 {
1443 struct device_node *np = dev->of_node;
1444 struct of_phandle_args queue_spec;
1445 struct of_phandle_args npe_spec;
1446 struct device_node *mdio_np;
1447 struct eth_plat_info *plat;
1448 u8 mac[ETH_ALEN];
1449 int ret;
1450
1451 plat = devm_kzalloc(dev, sizeof(*plat), GFP_KERNEL);
1452 if (!plat)
1453 return NULL;
1454
1455 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle", 1, 0,
1456 &npe_spec);
1457 if (ret) {
1458 dev_err(dev, "no NPE engine specified\n");
1459 return NULL;
1460 }
1461 /* NPE ID 0x00, 0x10, 0x20... */
1462 plat->npe = (npe_spec.args[0] << 4);
1463
1464 /* Check if this device has an MDIO bus */
1465 mdio_np = of_get_child_by_name(np, "mdio");
1466 if (mdio_np) {
1467 plat->has_mdio = true;
1468 mdio_bus_np = mdio_np;
1469 /* DO NOT put the mdio_np, it will be used */
1470 }
1471
1472 /* Get the rx queue as a resource from queue manager */
1473 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
1474 &queue_spec);
1475 if (ret) {
1476 dev_err(dev, "no rx queue phandle\n");
1477 return NULL;
1478 }
1479 plat->rxq = queue_spec.args[0];
1480
1481 /* Get the txready queue as resource from queue manager */
1482 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
1483 &queue_spec);
1484 if (ret) {
1485 dev_err(dev, "no txready queue phandle\n");
1486 return NULL;
1487 }
1488 plat->txreadyq = queue_spec.args[0];
1489
1490 ret = of_get_mac_address(np, mac);
1491 if (!ret) {
1492 dev_info(dev, "Setting macaddr from DT %pM\n", mac);
1493 memcpy(plat->hwaddr, mac, ETH_ALEN);
1494 }
1495
1496 return plat;
1497 }
1498
ixp4xx_eth_probe(struct platform_device * pdev)1499 static int ixp4xx_eth_probe(struct platform_device *pdev)
1500 {
1501 struct phy_device *phydev = NULL;
1502 struct device *dev = &pdev->dev;
1503 struct device_node *np = dev->of_node;
1504 struct eth_plat_info *plat;
1505 struct net_device *ndev;
1506 struct port *port;
1507 int err;
1508
1509 plat = ixp4xx_of_get_platdata(dev);
1510 if (!plat)
1511 return -ENODEV;
1512
1513 if (!(ndev = devm_alloc_etherdev(dev, sizeof(struct port))))
1514 return -ENOMEM;
1515
1516 SET_NETDEV_DEV(ndev, dev);
1517 port = netdev_priv(ndev);
1518 port->netdev = ndev;
1519 port->id = plat->npe;
1520 port->phc_index = -1;
1521
1522 /* Get the port resource and remap */
1523 port->regs = devm_platform_get_and_ioremap_resource(pdev, 0, NULL);
1524 if (IS_ERR(port->regs))
1525 return PTR_ERR(port->regs);
1526
1527 /* Register the MDIO bus if we have it */
1528 if (plat->has_mdio) {
1529 err = ixp4xx_mdio_register(port->regs);
1530 if (err) {
1531 dev_err(dev, "failed to register MDIO bus\n");
1532 return err;
1533 }
1534 }
1535 /* If the instance with the MDIO bus has not yet appeared,
1536 * defer probing until it gets probed.
1537 */
1538 if (!mdio_bus)
1539 return -EPROBE_DEFER;
1540
1541 ndev->netdev_ops = &ixp4xx_netdev_ops;
1542 ndev->ethtool_ops = &ixp4xx_ethtool_ops;
1543 ndev->tx_queue_len = 100;
1544 /* Inherit the DMA masks from the platform device */
1545 ndev->dev.dma_mask = dev->dma_mask;
1546 ndev->dev.coherent_dma_mask = dev->coherent_dma_mask;
1547
1548 ndev->min_mtu = ETH_MIN_MTU;
1549 ndev->max_mtu = MAX_MRU;
1550
1551 netif_napi_add_weight(ndev, &port->napi, eth_poll, NAPI_WEIGHT);
1552
1553 if (!(port->npe = npe_request(NPE_ID(port->id))))
1554 return -EIO;
1555
1556 port->plat = plat;
1557 npe_port_tab[NPE_ID(port->id)] = port;
1558 if (is_valid_ether_addr(plat->hwaddr))
1559 eth_hw_addr_set(ndev, plat->hwaddr);
1560 else
1561 eth_hw_addr_random(ndev);
1562
1563 platform_set_drvdata(pdev, ndev);
1564
1565 __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
1566 &port->regs->core_control);
1567 udelay(50);
1568 __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
1569 udelay(50);
1570
1571 phydev = of_phy_get_and_connect(ndev, np, ixp4xx_adjust_link);
1572 if (!phydev) {
1573 err = -ENODEV;
1574 dev_err(dev, "no phydev\n");
1575 goto err_free_mem;
1576 }
1577
1578 phydev->irq = PHY_POLL;
1579
1580 if ((err = register_netdev(ndev)))
1581 goto err_phy_dis;
1582
1583 netdev_info(ndev, "%s: MII PHY %s on %s\n", ndev->name, phydev_name(phydev),
1584 npe_name(port->npe));
1585
1586 return 0;
1587
1588 err_phy_dis:
1589 phy_disconnect(phydev);
1590 err_free_mem:
1591 npe_port_tab[NPE_ID(port->id)] = NULL;
1592 npe_release(port->npe);
1593 return err;
1594 }
1595
ixp4xx_eth_remove(struct platform_device * pdev)1596 static void ixp4xx_eth_remove(struct platform_device *pdev)
1597 {
1598 struct net_device *ndev = platform_get_drvdata(pdev);
1599 struct phy_device *phydev = ndev->phydev;
1600 struct port *port = netdev_priv(ndev);
1601
1602 unregister_netdev(ndev);
1603 phy_disconnect(phydev);
1604 ixp4xx_mdio_remove();
1605 npe_port_tab[NPE_ID(port->id)] = NULL;
1606 npe_release(port->npe);
1607 }
1608
1609 static const struct of_device_id ixp4xx_eth_of_match[] = {
1610 {
1611 .compatible = "intel,ixp4xx-ethernet",
1612 },
1613 { },
1614 };
1615
1616 static struct platform_driver ixp4xx_eth_driver = {
1617 .driver = {
1618 .name = DRV_NAME,
1619 .of_match_table = of_match_ptr(ixp4xx_eth_of_match),
1620 },
1621 .probe = ixp4xx_eth_probe,
1622 .remove = ixp4xx_eth_remove,
1623 };
1624 module_platform_driver(ixp4xx_eth_driver);
1625
1626 MODULE_AUTHOR("Krzysztof Halasa");
1627 MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
1628 MODULE_LICENSE("GPL v2");
1629 MODULE_ALIAS("platform:ixp4xx_eth");
1630