xref: /linux/drivers/infiniband/core/verbs.c (revision 55aa394a5ed871208eac11c5f4677cafd258c4dd)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54 
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57 
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 			       struct rdma_ah_attr *ah_attr);
60 
61 static const char * const ib_events[] = {
62 	[IB_EVENT_CQ_ERR]		= "CQ error",
63 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66 	[IB_EVENT_COMM_EST]		= "communication established",
67 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68 	[IB_EVENT_PATH_MIG]		= "path migration successful",
69 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71 	[IB_EVENT_PORT_ACTIVE]		= "port active",
72 	[IB_EVENT_PORT_ERR]		= "port error",
73 	[IB_EVENT_LID_CHANGE]		= "LID change",
74 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75 	[IB_EVENT_SM_CHANGE]		= "SM change",
76 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80 	[IB_EVENT_GID_CHANGE]		= "GID changed",
81 };
82 
ib_event_msg(enum ib_event_type event)83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 	size_t index = event;
86 
87 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 			ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91 
92 static const char * const wc_statuses[] = {
93 	[IB_WC_SUCCESS]			= "success",
94 	[IB_WC_LOC_LEN_ERR]		= "local length error",
95 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
96 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
97 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
98 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
99 	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
100 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
101 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
102 	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
103 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
104 	[IB_WC_REM_OP_ERR]		= "remote operation error",
105 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
106 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
107 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
108 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
109 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
110 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
111 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
112 	[IB_WC_FATAL_ERR]		= "fatal error",
113 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
114 	[IB_WC_GENERAL_ERR]		= "general error",
115 };
116 
ib_wc_status_msg(enum ib_wc_status status)117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 	size_t index = status;
120 
121 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 			wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125 
ib_rate_to_mult(enum ib_rate rate)126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 	switch (rate) {
129 	case IB_RATE_2_5_GBPS: return   1;
130 	case IB_RATE_5_GBPS:   return   2;
131 	case IB_RATE_10_GBPS:  return   4;
132 	case IB_RATE_20_GBPS:  return   8;
133 	case IB_RATE_30_GBPS:  return  12;
134 	case IB_RATE_40_GBPS:  return  16;
135 	case IB_RATE_60_GBPS:  return  24;
136 	case IB_RATE_80_GBPS:  return  32;
137 	case IB_RATE_120_GBPS: return  48;
138 	case IB_RATE_14_GBPS:  return   6;
139 	case IB_RATE_56_GBPS:  return  22;
140 	case IB_RATE_112_GBPS: return  45;
141 	case IB_RATE_168_GBPS: return  67;
142 	case IB_RATE_25_GBPS:  return  10;
143 	case IB_RATE_100_GBPS: return  40;
144 	case IB_RATE_200_GBPS: return  80;
145 	case IB_RATE_300_GBPS: return 120;
146 	case IB_RATE_28_GBPS:  return  11;
147 	case IB_RATE_50_GBPS:  return  20;
148 	case IB_RATE_400_GBPS: return 160;
149 	case IB_RATE_600_GBPS: return 240;
150 	case IB_RATE_800_GBPS: return 320;
151 	case IB_RATE_1600_GBPS: return 640;
152 	default:	       return  -1;
153 	}
154 }
155 EXPORT_SYMBOL(ib_rate_to_mult);
156 
mult_to_ib_rate(int mult)157 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
158 {
159 	switch (mult) {
160 	case 1:   return IB_RATE_2_5_GBPS;
161 	case 2:   return IB_RATE_5_GBPS;
162 	case 4:   return IB_RATE_10_GBPS;
163 	case 8:   return IB_RATE_20_GBPS;
164 	case 12:  return IB_RATE_30_GBPS;
165 	case 16:  return IB_RATE_40_GBPS;
166 	case 24:  return IB_RATE_60_GBPS;
167 	case 32:  return IB_RATE_80_GBPS;
168 	case 48:  return IB_RATE_120_GBPS;
169 	case 6:   return IB_RATE_14_GBPS;
170 	case 22:  return IB_RATE_56_GBPS;
171 	case 45:  return IB_RATE_112_GBPS;
172 	case 67:  return IB_RATE_168_GBPS;
173 	case 10:  return IB_RATE_25_GBPS;
174 	case 40:  return IB_RATE_100_GBPS;
175 	case 80:  return IB_RATE_200_GBPS;
176 	case 120: return IB_RATE_300_GBPS;
177 	case 11:  return IB_RATE_28_GBPS;
178 	case 20:  return IB_RATE_50_GBPS;
179 	case 160: return IB_RATE_400_GBPS;
180 	case 240: return IB_RATE_600_GBPS;
181 	case 320: return IB_RATE_800_GBPS;
182 	case 640: return IB_RATE_1600_GBPS;
183 	default:  return IB_RATE_PORT_CURRENT;
184 	}
185 }
186 EXPORT_SYMBOL(mult_to_ib_rate);
187 
ib_rate_to_mbps(enum ib_rate rate)188 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
189 {
190 	switch (rate) {
191 	case IB_RATE_2_5_GBPS: return 2500;
192 	case IB_RATE_5_GBPS:   return 5000;
193 	case IB_RATE_10_GBPS:  return 10000;
194 	case IB_RATE_20_GBPS:  return 20000;
195 	case IB_RATE_30_GBPS:  return 30000;
196 	case IB_RATE_40_GBPS:  return 40000;
197 	case IB_RATE_60_GBPS:  return 60000;
198 	case IB_RATE_80_GBPS:  return 80000;
199 	case IB_RATE_120_GBPS: return 120000;
200 	case IB_RATE_14_GBPS:  return 14062;
201 	case IB_RATE_56_GBPS:  return 56250;
202 	case IB_RATE_112_GBPS: return 112500;
203 	case IB_RATE_168_GBPS: return 168750;
204 	case IB_RATE_25_GBPS:  return 25781;
205 	case IB_RATE_100_GBPS: return 103125;
206 	case IB_RATE_200_GBPS: return 206250;
207 	case IB_RATE_300_GBPS: return 309375;
208 	case IB_RATE_28_GBPS:  return 28125;
209 	case IB_RATE_50_GBPS:  return 53125;
210 	case IB_RATE_400_GBPS: return 425000;
211 	case IB_RATE_600_GBPS: return 637500;
212 	case IB_RATE_800_GBPS: return 850000;
213 	case IB_RATE_1600_GBPS: return 1700000;
214 	default:	       return -1;
215 	}
216 }
217 EXPORT_SYMBOL(ib_rate_to_mbps);
218 
219 __attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)220 rdma_node_get_transport(unsigned int node_type)
221 {
222 
223 	if (node_type == RDMA_NODE_USNIC)
224 		return RDMA_TRANSPORT_USNIC;
225 	if (node_type == RDMA_NODE_USNIC_UDP)
226 		return RDMA_TRANSPORT_USNIC_UDP;
227 	if (node_type == RDMA_NODE_RNIC)
228 		return RDMA_TRANSPORT_IWARP;
229 	if (node_type == RDMA_NODE_UNSPECIFIED)
230 		return RDMA_TRANSPORT_UNSPECIFIED;
231 
232 	return RDMA_TRANSPORT_IB;
233 }
234 EXPORT_SYMBOL(rdma_node_get_transport);
235 
rdma_port_get_link_layer(struct ib_device * device,u32 port_num)236 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
237 					      u32 port_num)
238 {
239 	enum rdma_transport_type lt;
240 	if (device->ops.get_link_layer)
241 		return device->ops.get_link_layer(device, port_num);
242 
243 	lt = rdma_node_get_transport(device->node_type);
244 	if (lt == RDMA_TRANSPORT_IB)
245 		return IB_LINK_LAYER_INFINIBAND;
246 
247 	return IB_LINK_LAYER_ETHERNET;
248 }
249 EXPORT_SYMBOL(rdma_port_get_link_layer);
250 
251 /* Protection domains */
252 
253 /**
254  * __ib_alloc_pd - Allocates an unused protection domain.
255  * @device: The device on which to allocate the protection domain.
256  * @flags: protection domain flags
257  * @caller: caller's build-time module name
258  *
259  * A protection domain object provides an association between QPs, shared
260  * receive queues, address handles, memory regions, and memory windows.
261  *
262  * Every PD has a local_dma_lkey which can be used as the lkey value for local
263  * memory operations.
264  */
__ib_alloc_pd(struct ib_device * device,unsigned int flags,const char * caller)265 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
266 		const char *caller)
267 {
268 	struct ib_pd *pd;
269 	int mr_access_flags = 0;
270 	int ret;
271 
272 	pd = rdma_zalloc_drv_obj(device, ib_pd);
273 	if (!pd)
274 		return ERR_PTR(-ENOMEM);
275 
276 	pd->device = device;
277 	pd->flags = flags;
278 
279 	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
280 	rdma_restrack_set_name(&pd->res, caller);
281 
282 	ret = device->ops.alloc_pd(pd, NULL);
283 	if (ret) {
284 		rdma_restrack_put(&pd->res);
285 		kfree(pd);
286 		return ERR_PTR(ret);
287 	}
288 	rdma_restrack_add(&pd->res);
289 
290 	if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)
291 		pd->local_dma_lkey = device->local_dma_lkey;
292 	else
293 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
294 
295 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
296 		pr_warn("%s: enabling unsafe global rkey\n", caller);
297 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
298 	}
299 
300 	if (mr_access_flags) {
301 		struct ib_mr *mr;
302 
303 		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
304 		if (IS_ERR(mr)) {
305 			ib_dealloc_pd(pd);
306 			return ERR_CAST(mr);
307 		}
308 
309 		mr->device	= pd->device;
310 		mr->pd		= pd;
311 		mr->type        = IB_MR_TYPE_DMA;
312 		mr->uobject	= NULL;
313 		mr->need_inval	= false;
314 
315 		pd->__internal_mr = mr;
316 
317 		if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY))
318 			pd->local_dma_lkey = pd->__internal_mr->lkey;
319 
320 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
321 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
322 	}
323 
324 	return pd;
325 }
326 EXPORT_SYMBOL(__ib_alloc_pd);
327 
328 /**
329  * ib_dealloc_pd_user - Deallocates a protection domain.
330  * @pd: The protection domain to deallocate.
331  * @udata: Valid user data or NULL for kernel object
332  *
333  * It is an error to call this function while any resources in the pd still
334  * exist.  The caller is responsible to synchronously destroy them and
335  * guarantee no new allocations will happen.
336  */
ib_dealloc_pd_user(struct ib_pd * pd,struct ib_udata * udata)337 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
338 {
339 	int ret;
340 
341 	if (pd->__internal_mr) {
342 		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
343 		WARN_ON(ret);
344 		pd->__internal_mr = NULL;
345 	}
346 
347 	ret = pd->device->ops.dealloc_pd(pd, udata);
348 	if (ret)
349 		return ret;
350 
351 	rdma_restrack_del(&pd->res);
352 	kfree(pd);
353 	return ret;
354 }
355 EXPORT_SYMBOL(ib_dealloc_pd_user);
356 
357 /* Address handles */
358 
359 /**
360  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
361  * @dest:       Pointer to destination ah_attr. Contents of the destination
362  *              pointer is assumed to be invalid and attribute are overwritten.
363  * @src:        Pointer to source ah_attr.
364  */
rdma_copy_ah_attr(struct rdma_ah_attr * dest,const struct rdma_ah_attr * src)365 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
366 		       const struct rdma_ah_attr *src)
367 {
368 	*dest = *src;
369 	if (dest->grh.sgid_attr)
370 		rdma_hold_gid_attr(dest->grh.sgid_attr);
371 }
372 EXPORT_SYMBOL(rdma_copy_ah_attr);
373 
374 /**
375  * rdma_replace_ah_attr - Replace valid ah_attr with new one.
376  * @old:        Pointer to existing ah_attr which needs to be replaced.
377  *              old is assumed to be valid or zero'd
378  * @new:        Pointer to the new ah_attr.
379  *
380  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
381  * old the ah_attr is valid; after that it copies the new attribute and holds
382  * the reference to the replaced ah_attr.
383  */
rdma_replace_ah_attr(struct rdma_ah_attr * old,const struct rdma_ah_attr * new)384 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
385 			  const struct rdma_ah_attr *new)
386 {
387 	rdma_destroy_ah_attr(old);
388 	*old = *new;
389 	if (old->grh.sgid_attr)
390 		rdma_hold_gid_attr(old->grh.sgid_attr);
391 }
392 EXPORT_SYMBOL(rdma_replace_ah_attr);
393 
394 /**
395  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
396  * @dest:       Pointer to destination ah_attr to copy to.
397  *              dest is assumed to be valid or zero'd
398  * @src:        Pointer to the new ah_attr.
399  *
400  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
401  * if it is valid. This also transfers ownership of internal references from
402  * src to dest, making src invalid in the process. No new reference of the src
403  * ah_attr is taken.
404  */
rdma_move_ah_attr(struct rdma_ah_attr * dest,struct rdma_ah_attr * src)405 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
406 {
407 	rdma_destroy_ah_attr(dest);
408 	*dest = *src;
409 	src->grh.sgid_attr = NULL;
410 }
411 EXPORT_SYMBOL(rdma_move_ah_attr);
412 
413 /*
414  * Validate that the rdma_ah_attr is valid for the device before passing it
415  * off to the driver.
416  */
rdma_check_ah_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr)417 static int rdma_check_ah_attr(struct ib_device *device,
418 			      struct rdma_ah_attr *ah_attr)
419 {
420 	if (!rdma_is_port_valid(device, ah_attr->port_num))
421 		return -EINVAL;
422 
423 	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
424 	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
425 	    !(ah_attr->ah_flags & IB_AH_GRH))
426 		return -EINVAL;
427 
428 	if (ah_attr->grh.sgid_attr) {
429 		/*
430 		 * Make sure the passed sgid_attr is consistent with the
431 		 * parameters
432 		 */
433 		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
434 		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
435 			return -EINVAL;
436 	}
437 	return 0;
438 }
439 
440 /*
441  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
442  * On success the caller is responsible to call rdma_unfill_sgid_attr().
443  */
rdma_fill_sgid_attr(struct ib_device * device,struct rdma_ah_attr * ah_attr,const struct ib_gid_attr ** old_sgid_attr)444 static int rdma_fill_sgid_attr(struct ib_device *device,
445 			       struct rdma_ah_attr *ah_attr,
446 			       const struct ib_gid_attr **old_sgid_attr)
447 {
448 	const struct ib_gid_attr *sgid_attr;
449 	struct ib_global_route *grh;
450 	int ret;
451 
452 	*old_sgid_attr = ah_attr->grh.sgid_attr;
453 
454 	ret = rdma_check_ah_attr(device, ah_attr);
455 	if (ret)
456 		return ret;
457 
458 	if (!(ah_attr->ah_flags & IB_AH_GRH))
459 		return 0;
460 
461 	grh = rdma_ah_retrieve_grh(ah_attr);
462 	if (grh->sgid_attr)
463 		return 0;
464 
465 	sgid_attr =
466 		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
467 	if (IS_ERR(sgid_attr))
468 		return PTR_ERR(sgid_attr);
469 
470 	/* Move ownerhip of the kref into the ah_attr */
471 	grh->sgid_attr = sgid_attr;
472 	return 0;
473 }
474 
rdma_unfill_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_sgid_attr)475 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
476 				  const struct ib_gid_attr *old_sgid_attr)
477 {
478 	/*
479 	 * Fill didn't change anything, the caller retains ownership of
480 	 * whatever it passed
481 	 */
482 	if (ah_attr->grh.sgid_attr == old_sgid_attr)
483 		return;
484 
485 	/*
486 	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
487 	 * doesn't see any change in the rdma_ah_attr. If we get here
488 	 * old_sgid_attr is NULL.
489 	 */
490 	rdma_destroy_ah_attr(ah_attr);
491 }
492 
493 static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr * ah_attr,const struct ib_gid_attr * old_attr)494 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
495 		      const struct ib_gid_attr *old_attr)
496 {
497 	if (old_attr)
498 		rdma_put_gid_attr(old_attr);
499 	if (ah_attr->ah_flags & IB_AH_GRH) {
500 		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
501 		return ah_attr->grh.sgid_attr;
502 	}
503 	return NULL;
504 }
505 
_rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags,struct ib_udata * udata,struct net_device * xmit_slave)506 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
507 				     struct rdma_ah_attr *ah_attr,
508 				     u32 flags,
509 				     struct ib_udata *udata,
510 				     struct net_device *xmit_slave)
511 {
512 	struct rdma_ah_init_attr init_attr = {};
513 	struct ib_device *device = pd->device;
514 	struct ib_ah *ah;
515 	int ret;
516 
517 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
518 
519 	if (!udata && !device->ops.create_ah)
520 		return ERR_PTR(-EOPNOTSUPP);
521 
522 	ah = rdma_zalloc_drv_obj_gfp(
523 		device, ib_ah,
524 		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
525 	if (!ah)
526 		return ERR_PTR(-ENOMEM);
527 
528 	ah->device = device;
529 	ah->pd = pd;
530 	ah->type = ah_attr->type;
531 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
532 	init_attr.ah_attr = ah_attr;
533 	init_attr.flags = flags;
534 	init_attr.xmit_slave = xmit_slave;
535 
536 	if (udata)
537 		ret = device->ops.create_user_ah(ah, &init_attr, udata);
538 	else
539 		ret = device->ops.create_ah(ah, &init_attr, NULL);
540 	if (ret) {
541 		if (ah->sgid_attr)
542 			rdma_put_gid_attr(ah->sgid_attr);
543 		kfree(ah);
544 		return ERR_PTR(ret);
545 	}
546 
547 	atomic_inc(&pd->usecnt);
548 	return ah;
549 }
550 
551 /**
552  * rdma_create_ah - Creates an address handle for the
553  * given address vector.
554  * @pd: The protection domain associated with the address handle.
555  * @ah_attr: The attributes of the address vector.
556  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
557  *
558  * It returns 0 on success and returns appropriate error code on error.
559  * The address handle is used to reference a local or global destination
560  * in all UD QP post sends.
561  */
rdma_create_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,u32 flags)562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
563 			     u32 flags)
564 {
565 	const struct ib_gid_attr *old_sgid_attr;
566 	struct net_device *slave;
567 	struct ib_ah *ah;
568 	int ret;
569 
570 	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
571 	if (ret)
572 		return ERR_PTR(ret);
573 	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
574 					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
575 					   GFP_KERNEL : GFP_ATOMIC);
576 	if (IS_ERR(slave)) {
577 		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578 		return ERR_CAST(slave);
579 	}
580 	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
581 	rdma_lag_put_ah_roce_slave(slave);
582 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
583 	return ah;
584 }
585 EXPORT_SYMBOL(rdma_create_ah);
586 
587 /**
588  * rdma_create_user_ah - Creates an address handle for the
589  * given address vector.
590  * It resolves destination mac address for ah attribute of RoCE type.
591  * @pd: The protection domain associated with the address handle.
592  * @ah_attr: The attributes of the address vector.
593  * @udata: pointer to user's input output buffer information need by
594  *         provider driver.
595  *
596  * It returns 0 on success and returns appropriate error code on error.
597  * The address handle is used to reference a local or global destination
598  * in all UD QP post sends.
599  */
rdma_create_user_ah(struct ib_pd * pd,struct rdma_ah_attr * ah_attr,struct ib_udata * udata)600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
601 				  struct rdma_ah_attr *ah_attr,
602 				  struct ib_udata *udata)
603 {
604 	const struct ib_gid_attr *old_sgid_attr;
605 	struct ib_ah *ah;
606 	int err;
607 
608 	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
609 	if (err)
610 		return ERR_PTR(err);
611 
612 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
613 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
614 		if (err) {
615 			ah = ERR_PTR(err);
616 			goto out;
617 		}
618 	}
619 
620 	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
621 			     udata, NULL);
622 
623 out:
624 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
625 	return ah;
626 }
627 EXPORT_SYMBOL(rdma_create_user_ah);
628 
ib_get_rdma_header_version(const union rdma_network_hdr * hdr)629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
630 {
631 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
632 	struct iphdr ip4h_checked;
633 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
634 
635 	/* If it's IPv6, the version must be 6, otherwise, the first
636 	 * 20 bytes (before the IPv4 header) are garbled.
637 	 */
638 	if (ip6h->version != 6)
639 		return (ip4h->version == 4) ? 4 : 0;
640 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
641 
642 	/* RoCE v2 requires no options, thus header length
643 	 * must be 5 words
644 	 */
645 	if (ip4h->ihl != 5)
646 		return 6;
647 
648 	/* Verify checksum.
649 	 * We can't write on scattered buffers so we need to copy to
650 	 * temp buffer.
651 	 */
652 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
653 	ip4h_checked.check = 0;
654 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
655 	/* if IPv4 header checksum is OK, believe it */
656 	if (ip4h->check == ip4h_checked.check)
657 		return 4;
658 	return 6;
659 }
660 EXPORT_SYMBOL(ib_get_rdma_header_version);
661 
ib_get_net_type_by_grh(struct ib_device * device,u32 port_num,const struct ib_grh * grh)662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
663 						     u32 port_num,
664 						     const struct ib_grh *grh)
665 {
666 	int grh_version;
667 
668 	if (rdma_protocol_ib(device, port_num))
669 		return RDMA_NETWORK_IB;
670 
671 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
672 
673 	if (grh_version == 4)
674 		return RDMA_NETWORK_IPV4;
675 
676 	if (grh->next_hdr == IPPROTO_UDP)
677 		return RDMA_NETWORK_IPV6;
678 
679 	return RDMA_NETWORK_ROCE_V1;
680 }
681 
682 struct find_gid_index_context {
683 	u16 vlan_id;
684 	enum ib_gid_type gid_type;
685 };
686 
find_gid_index(const union ib_gid * gid,const struct ib_gid_attr * gid_attr,void * context)687 static bool find_gid_index(const union ib_gid *gid,
688 			   const struct ib_gid_attr *gid_attr,
689 			   void *context)
690 {
691 	struct find_gid_index_context *ctx = context;
692 	u16 vlan_id = 0xffff;
693 	int ret;
694 
695 	if (ctx->gid_type != gid_attr->gid_type)
696 		return false;
697 
698 	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
699 	if (ret)
700 		return false;
701 
702 	return ctx->vlan_id == vlan_id;
703 }
704 
705 static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device * device,u32 port_num,u16 vlan_id,const union ib_gid * sgid,enum ib_gid_type gid_type)706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
707 		       u16 vlan_id, const union ib_gid *sgid,
708 		       enum ib_gid_type gid_type)
709 {
710 	struct find_gid_index_context context = {.vlan_id = vlan_id,
711 						 .gid_type = gid_type};
712 
713 	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
714 				       &context);
715 }
716 
ib_get_gids_from_rdma_hdr(const union rdma_network_hdr * hdr,enum rdma_network_type net_type,union ib_gid * sgid,union ib_gid * dgid)717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
718 			      enum rdma_network_type net_type,
719 			      union ib_gid *sgid, union ib_gid *dgid)
720 {
721 	struct sockaddr_in  src_in;
722 	struct sockaddr_in  dst_in;
723 	__be32 src_saddr, dst_saddr;
724 
725 	if (!sgid || !dgid)
726 		return -EINVAL;
727 
728 	if (net_type == RDMA_NETWORK_IPV4) {
729 		memcpy(&src_in.sin_addr.s_addr,
730 		       &hdr->roce4grh.saddr, 4);
731 		memcpy(&dst_in.sin_addr.s_addr,
732 		       &hdr->roce4grh.daddr, 4);
733 		src_saddr = src_in.sin_addr.s_addr;
734 		dst_saddr = dst_in.sin_addr.s_addr;
735 		ipv6_addr_set_v4mapped(src_saddr,
736 				       (struct in6_addr *)sgid);
737 		ipv6_addr_set_v4mapped(dst_saddr,
738 				       (struct in6_addr *)dgid);
739 		return 0;
740 	} else if (net_type == RDMA_NETWORK_IPV6 ||
741 		   net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
742 		*dgid = hdr->ibgrh.dgid;
743 		*sgid = hdr->ibgrh.sgid;
744 		return 0;
745 	} else {
746 		return -EINVAL;
747 	}
748 }
749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
750 
751 /* Resolve destination mac address and hop limit for unicast destination
752  * GID entry, considering the source GID entry as well.
753  * ah_attribute must have valid port_num, sgid_index.
754  */
ib_resolve_unicast_gid_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
756 				       struct rdma_ah_attr *ah_attr)
757 {
758 	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
759 	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
760 	int hop_limit = 0xff;
761 	int ret = 0;
762 
763 	/* If destination is link local and source GID is RoCEv1,
764 	 * IP stack is not used.
765 	 */
766 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
767 	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
768 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
769 				ah_attr->roce.dmac);
770 		return ret;
771 	}
772 
773 	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
774 					   ah_attr->roce.dmac,
775 					   sgid_attr, &hop_limit);
776 
777 	grh->hop_limit = hop_limit;
778 	return ret;
779 }
780 
781 /*
782  * This function initializes address handle attributes from the incoming packet.
783  * Incoming packet has dgid of the receiver node on which this code is
784  * getting executed and, sgid contains the GID of the sender.
785  *
786  * When resolving mac address of destination, the arrived dgid is used
787  * as sgid and, sgid is used as dgid because sgid contains destinations
788  * GID whom to respond to.
789  *
790  * On success the caller is responsible to call rdma_destroy_ah_attr on the
791  * attr.
792  */
ib_init_ah_attr_from_wc(struct ib_device * device,u32 port_num,const struct ib_wc * wc,const struct ib_grh * grh,struct rdma_ah_attr * ah_attr)793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
794 			    const struct ib_wc *wc, const struct ib_grh *grh,
795 			    struct rdma_ah_attr *ah_attr)
796 {
797 	u32 flow_class;
798 	int ret;
799 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
800 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
801 	const struct ib_gid_attr *sgid_attr;
802 	int hoplimit = 0xff;
803 	union ib_gid dgid;
804 	union ib_gid sgid;
805 
806 	might_sleep();
807 
808 	memset(ah_attr, 0, sizeof *ah_attr);
809 	ah_attr->type = rdma_ah_find_type(device, port_num);
810 	if (rdma_cap_eth_ah(device, port_num)) {
811 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
812 			net_type = wc->network_hdr_type;
813 		else
814 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
815 		gid_type = ib_network_to_gid_type(net_type);
816 	}
817 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
818 					&sgid, &dgid);
819 	if (ret)
820 		return ret;
821 
822 	rdma_ah_set_sl(ah_attr, wc->sl);
823 	rdma_ah_set_port_num(ah_attr, port_num);
824 
825 	if (rdma_protocol_roce(device, port_num)) {
826 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
827 				wc->vlan_id : 0xffff;
828 
829 		if (!(wc->wc_flags & IB_WC_GRH))
830 			return -EPROTOTYPE;
831 
832 		sgid_attr = get_sgid_attr_from_eth(device, port_num,
833 						   vlan_id, &dgid,
834 						   gid_type);
835 		if (IS_ERR(sgid_attr))
836 			return PTR_ERR(sgid_attr);
837 
838 		flow_class = be32_to_cpu(grh->version_tclass_flow);
839 		rdma_move_grh_sgid_attr(ah_attr,
840 					&sgid,
841 					flow_class & 0xFFFFF,
842 					hoplimit,
843 					(flow_class >> 20) & 0xFF,
844 					sgid_attr);
845 
846 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
847 		if (ret)
848 			rdma_destroy_ah_attr(ah_attr);
849 
850 		return ret;
851 	} else {
852 		rdma_ah_set_dlid(ah_attr, wc->slid);
853 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
854 
855 		if ((wc->wc_flags & IB_WC_GRH) == 0)
856 			return 0;
857 
858 		if (dgid.global.interface_id !=
859 					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
860 			sgid_attr = rdma_find_gid_by_port(
861 				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
862 		} else
863 			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
864 
865 		if (IS_ERR(sgid_attr))
866 			return PTR_ERR(sgid_attr);
867 		flow_class = be32_to_cpu(grh->version_tclass_flow);
868 		rdma_move_grh_sgid_attr(ah_attr,
869 					&sgid,
870 					flow_class & 0xFFFFF,
871 					hoplimit,
872 					(flow_class >> 20) & 0xFF,
873 					sgid_attr);
874 
875 		return 0;
876 	}
877 }
878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
879 
880 /**
881  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
882  * of the reference
883  *
884  * @attr:	Pointer to AH attribute structure
885  * @dgid:	Destination GID
886  * @flow_label:	Flow label
887  * @hop_limit:	Hop limit
888  * @traffic_class: traffic class
889  * @sgid_attr:	Pointer to SGID attribute
890  *
891  * This takes ownership of the sgid_attr reference. The caller must ensure
892  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
893  * calling this function.
894  */
rdma_move_grh_sgid_attr(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 hop_limit,u8 traffic_class,const struct ib_gid_attr * sgid_attr)895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
896 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
897 			     const struct ib_gid_attr *sgid_attr)
898 {
899 	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
900 			traffic_class);
901 	attr->grh.sgid_attr = sgid_attr;
902 }
903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
904 
905 /**
906  * rdma_destroy_ah_attr - Release reference to SGID attribute of
907  * ah attribute.
908  * @ah_attr: Pointer to ah attribute
909  *
910  * Release reference to the SGID attribute of the ah attribute if it is
911  * non NULL. It is safe to call this multiple times, and safe to call it on
912  * a zero initialized ah_attr.
913  */
rdma_destroy_ah_attr(struct rdma_ah_attr * ah_attr)914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
915 {
916 	if (ah_attr->grh.sgid_attr) {
917 		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
918 		ah_attr->grh.sgid_attr = NULL;
919 	}
920 }
921 EXPORT_SYMBOL(rdma_destroy_ah_attr);
922 
ib_create_ah_from_wc(struct ib_pd * pd,const struct ib_wc * wc,const struct ib_grh * grh,u32 port_num)923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
924 				   const struct ib_grh *grh, u32 port_num)
925 {
926 	struct rdma_ah_attr ah_attr;
927 	struct ib_ah *ah;
928 	int ret;
929 
930 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
931 	if (ret)
932 		return ERR_PTR(ret);
933 
934 	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
935 
936 	rdma_destroy_ah_attr(&ah_attr);
937 	return ah;
938 }
939 EXPORT_SYMBOL(ib_create_ah_from_wc);
940 
rdma_modify_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
942 {
943 	const struct ib_gid_attr *old_sgid_attr;
944 	int ret;
945 
946 	if (ah->type != ah_attr->type)
947 		return -EINVAL;
948 
949 	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
950 	if (ret)
951 		return ret;
952 
953 	ret = ah->device->ops.modify_ah ?
954 		ah->device->ops.modify_ah(ah, ah_attr) :
955 		-EOPNOTSUPP;
956 
957 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
958 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
959 	return ret;
960 }
961 EXPORT_SYMBOL(rdma_modify_ah);
962 
rdma_query_ah(struct ib_ah * ah,struct rdma_ah_attr * ah_attr)963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
964 {
965 	ah_attr->grh.sgid_attr = NULL;
966 
967 	return ah->device->ops.query_ah ?
968 		ah->device->ops.query_ah(ah, ah_attr) :
969 		-EOPNOTSUPP;
970 }
971 EXPORT_SYMBOL(rdma_query_ah);
972 
rdma_destroy_ah_user(struct ib_ah * ah,u32 flags,struct ib_udata * udata)973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
974 {
975 	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
976 	struct ib_pd *pd;
977 	int ret;
978 
979 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
980 
981 	pd = ah->pd;
982 
983 	ret = ah->device->ops.destroy_ah(ah, flags);
984 	if (ret)
985 		return ret;
986 
987 	atomic_dec(&pd->usecnt);
988 	if (sgid_attr)
989 		rdma_put_gid_attr(sgid_attr);
990 
991 	kfree(ah);
992 	return ret;
993 }
994 EXPORT_SYMBOL(rdma_destroy_ah_user);
995 
996 /* Shared receive queues */
997 
998 /**
999  * ib_create_srq_user - Creates a SRQ associated with the specified protection
1000  *   domain.
1001  * @pd: The protection domain associated with the SRQ.
1002  * @srq_init_attr: A list of initial attributes required to create the
1003  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1004  *   the actual capabilities of the created SRQ.
1005  * @uobject: uobject pointer if this is not a kernel SRQ
1006  * @udata: udata pointer if this is not a kernel SRQ
1007  *
1008  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009  * requested size of the SRQ, and set to the actual values allocated
1010  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1011  * will always be at least as large as the requested values.
1012  */
ib_create_srq_user(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr,struct ib_usrq_object * uobject,struct ib_udata * udata)1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014 				  struct ib_srq_init_attr *srq_init_attr,
1015 				  struct ib_usrq_object *uobject,
1016 				  struct ib_udata *udata)
1017 {
1018 	struct ib_srq *srq;
1019 	int ret;
1020 
1021 	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1022 	if (!srq)
1023 		return ERR_PTR(-ENOMEM);
1024 
1025 	srq->device = pd->device;
1026 	srq->pd = pd;
1027 	srq->event_handler = srq_init_attr->event_handler;
1028 	srq->srq_context = srq_init_attr->srq_context;
1029 	srq->srq_type = srq_init_attr->srq_type;
1030 	srq->uobject = uobject;
1031 
1032 	if (ib_srq_has_cq(srq->srq_type)) {
1033 		srq->ext.cq = srq_init_attr->ext.cq;
1034 		atomic_inc(&srq->ext.cq->usecnt);
1035 	}
1036 	if (srq->srq_type == IB_SRQT_XRC) {
1037 		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038 		if (srq->ext.xrc.xrcd)
1039 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1040 	}
1041 	atomic_inc(&pd->usecnt);
1042 
1043 	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1044 	rdma_restrack_parent_name(&srq->res, &pd->res);
1045 
1046 	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1047 	if (ret) {
1048 		rdma_restrack_put(&srq->res);
1049 		atomic_dec(&pd->usecnt);
1050 		if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1051 			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1052 		if (ib_srq_has_cq(srq->srq_type))
1053 			atomic_dec(&srq->ext.cq->usecnt);
1054 		kfree(srq);
1055 		return ERR_PTR(ret);
1056 	}
1057 
1058 	rdma_restrack_add(&srq->res);
1059 
1060 	return srq;
1061 }
1062 EXPORT_SYMBOL(ib_create_srq_user);
1063 
ib_modify_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr,enum ib_srq_attr_mask srq_attr_mask)1064 int ib_modify_srq(struct ib_srq *srq,
1065 		  struct ib_srq_attr *srq_attr,
1066 		  enum ib_srq_attr_mask srq_attr_mask)
1067 {
1068 	return srq->device->ops.modify_srq ?
1069 		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1070 					    NULL) : -EOPNOTSUPP;
1071 }
1072 EXPORT_SYMBOL(ib_modify_srq);
1073 
ib_query_srq(struct ib_srq * srq,struct ib_srq_attr * srq_attr)1074 int ib_query_srq(struct ib_srq *srq,
1075 		 struct ib_srq_attr *srq_attr)
1076 {
1077 	return srq->device->ops.query_srq ?
1078 		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1079 }
1080 EXPORT_SYMBOL(ib_query_srq);
1081 
ib_destroy_srq_user(struct ib_srq * srq,struct ib_udata * udata)1082 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1083 {
1084 	int ret;
1085 
1086 	if (atomic_read(&srq->usecnt))
1087 		return -EBUSY;
1088 
1089 	ret = srq->device->ops.destroy_srq(srq, udata);
1090 	if (ret)
1091 		return ret;
1092 
1093 	atomic_dec(&srq->pd->usecnt);
1094 	if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1095 		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1096 	if (ib_srq_has_cq(srq->srq_type))
1097 		atomic_dec(&srq->ext.cq->usecnt);
1098 	rdma_restrack_del(&srq->res);
1099 	kfree(srq);
1100 
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(ib_destroy_srq_user);
1104 
1105 /* Queue pairs */
1106 
__ib_qp_event_handler(struct ib_event * event,void * context)1107 static void __ib_qp_event_handler(struct ib_event *event, void *context)
1108 {
1109 	struct ib_qp *qp = event->element.qp;
1110 
1111 	if (event->event == IB_EVENT_QP_LAST_WQE_REACHED)
1112 		complete(&qp->srq_completion);
1113 	if (qp->registered_event_handler)
1114 		qp->registered_event_handler(event, qp->qp_context);
1115 }
1116 
__ib_shared_qp_event_handler(struct ib_event * event,void * context)1117 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1118 {
1119 	struct ib_qp *qp = context;
1120 	unsigned long flags;
1121 
1122 	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1123 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1124 		if (event->element.qp->event_handler)
1125 			event->element.qp->event_handler(event, event->element.qp->qp_context);
1126 	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1127 }
1128 
__ib_open_qp(struct ib_qp * real_qp,void (* event_handler)(struct ib_event *,void *),void * qp_context)1129 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1130 				  void (*event_handler)(struct ib_event *, void *),
1131 				  void *qp_context)
1132 {
1133 	struct ib_qp *qp;
1134 	unsigned long flags;
1135 	int err;
1136 
1137 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1138 	if (!qp)
1139 		return ERR_PTR(-ENOMEM);
1140 
1141 	qp->real_qp = real_qp;
1142 	err = ib_open_shared_qp_security(qp, real_qp->device);
1143 	if (err) {
1144 		kfree(qp);
1145 		return ERR_PTR(err);
1146 	}
1147 
1148 	qp->real_qp = real_qp;
1149 	atomic_inc(&real_qp->usecnt);
1150 	qp->device = real_qp->device;
1151 	qp->event_handler = event_handler;
1152 	qp->qp_context = qp_context;
1153 	qp->qp_num = real_qp->qp_num;
1154 	qp->qp_type = real_qp->qp_type;
1155 
1156 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1157 	list_add(&qp->open_list, &real_qp->open_list);
1158 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1159 
1160 	return qp;
1161 }
1162 
ib_open_qp(struct ib_xrcd * xrcd,struct ib_qp_open_attr * qp_open_attr)1163 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1164 			 struct ib_qp_open_attr *qp_open_attr)
1165 {
1166 	struct ib_qp *qp, *real_qp;
1167 
1168 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1169 		return ERR_PTR(-EINVAL);
1170 
1171 	down_read(&xrcd->tgt_qps_rwsem);
1172 	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1173 	if (!real_qp) {
1174 		up_read(&xrcd->tgt_qps_rwsem);
1175 		return ERR_PTR(-EINVAL);
1176 	}
1177 	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1178 			  qp_open_attr->qp_context);
1179 	up_read(&xrcd->tgt_qps_rwsem);
1180 	return qp;
1181 }
1182 EXPORT_SYMBOL(ib_open_qp);
1183 
create_xrc_qp_user(struct ib_qp * qp,struct ib_qp_init_attr * qp_init_attr)1184 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1185 					struct ib_qp_init_attr *qp_init_attr)
1186 {
1187 	struct ib_qp *real_qp = qp;
1188 	int err;
1189 
1190 	qp->event_handler = __ib_shared_qp_event_handler;
1191 	qp->qp_context = qp;
1192 	qp->pd = NULL;
1193 	qp->send_cq = qp->recv_cq = NULL;
1194 	qp->srq = NULL;
1195 	qp->xrcd = qp_init_attr->xrcd;
1196 	atomic_inc(&qp_init_attr->xrcd->usecnt);
1197 	INIT_LIST_HEAD(&qp->open_list);
1198 
1199 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1200 			  qp_init_attr->qp_context);
1201 	if (IS_ERR(qp))
1202 		return qp;
1203 
1204 	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1205 			      real_qp, GFP_KERNEL));
1206 	if (err) {
1207 		ib_close_qp(qp);
1208 		return ERR_PTR(err);
1209 	}
1210 	return qp;
1211 }
1212 
create_qp(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1213 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1214 			       struct ib_qp_init_attr *attr,
1215 			       struct ib_udata *udata,
1216 			       struct ib_uqp_object *uobj, const char *caller)
1217 {
1218 	struct ib_udata dummy = {};
1219 	struct ib_qp *qp;
1220 	int ret;
1221 
1222 	if (!dev->ops.create_qp)
1223 		return ERR_PTR(-EOPNOTSUPP);
1224 
1225 	qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1226 	if (!qp)
1227 		return ERR_PTR(-ENOMEM);
1228 
1229 	qp->device = dev;
1230 	qp->pd = pd;
1231 	qp->uobject = uobj;
1232 	qp->real_qp = qp;
1233 
1234 	qp->qp_type = attr->qp_type;
1235 	qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1236 	qp->srq = attr->srq;
1237 	qp->event_handler = __ib_qp_event_handler;
1238 	qp->registered_event_handler = attr->event_handler;
1239 	qp->port = attr->port_num;
1240 	qp->qp_context = attr->qp_context;
1241 
1242 	spin_lock_init(&qp->mr_lock);
1243 	INIT_LIST_HEAD(&qp->rdma_mrs);
1244 	INIT_LIST_HEAD(&qp->sig_mrs);
1245 	init_completion(&qp->srq_completion);
1246 
1247 	qp->send_cq = attr->send_cq;
1248 	qp->recv_cq = attr->recv_cq;
1249 
1250 	rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1251 	WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1252 	rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1253 	ret = dev->ops.create_qp(qp, attr, udata);
1254 	if (ret)
1255 		goto err_create;
1256 
1257 	/*
1258 	 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1259 	 * Unfortunately, it is not an easy task to fix that driver.
1260 	 */
1261 	qp->send_cq = attr->send_cq;
1262 	qp->recv_cq = attr->recv_cq;
1263 
1264 	ret = ib_create_qp_security(qp, dev);
1265 	if (ret)
1266 		goto err_security;
1267 
1268 	rdma_restrack_add(&qp->res);
1269 	return qp;
1270 
1271 err_security:
1272 	qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1273 err_create:
1274 	rdma_restrack_put(&qp->res);
1275 	kfree(qp);
1276 	return ERR_PTR(ret);
1277 
1278 }
1279 
1280 /**
1281  * ib_create_qp_user - Creates a QP associated with the specified protection
1282  *   domain.
1283  * @dev: IB device
1284  * @pd: The protection domain associated with the QP.
1285  * @attr: A list of initial attributes required to create the
1286  *   QP.  If QP creation succeeds, then the attributes are updated to
1287  *   the actual capabilities of the created QP.
1288  * @udata: User data
1289  * @uobj: uverbs obect
1290  * @caller: caller's build-time module name
1291  */
ib_create_qp_user(struct ib_device * dev,struct ib_pd * pd,struct ib_qp_init_attr * attr,struct ib_udata * udata,struct ib_uqp_object * uobj,const char * caller)1292 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1293 				struct ib_qp_init_attr *attr,
1294 				struct ib_udata *udata,
1295 				struct ib_uqp_object *uobj, const char *caller)
1296 {
1297 	struct ib_qp *qp, *xrc_qp;
1298 
1299 	if (attr->qp_type == IB_QPT_XRC_TGT)
1300 		qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1301 	else
1302 		qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1303 	if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1304 		return qp;
1305 
1306 	xrc_qp = create_xrc_qp_user(qp, attr);
1307 	if (IS_ERR(xrc_qp)) {
1308 		ib_destroy_qp(qp);
1309 		return xrc_qp;
1310 	}
1311 
1312 	xrc_qp->uobject = uobj;
1313 	return xrc_qp;
1314 }
1315 EXPORT_SYMBOL(ib_create_qp_user);
1316 
ib_qp_usecnt_inc(struct ib_qp * qp)1317 void ib_qp_usecnt_inc(struct ib_qp *qp)
1318 {
1319 	if (qp->pd)
1320 		atomic_inc(&qp->pd->usecnt);
1321 	if (qp->send_cq)
1322 		atomic_inc(&qp->send_cq->usecnt);
1323 	if (qp->recv_cq)
1324 		atomic_inc(&qp->recv_cq->usecnt);
1325 	if (qp->srq)
1326 		atomic_inc(&qp->srq->usecnt);
1327 	if (qp->rwq_ind_tbl)
1328 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1329 }
1330 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1331 
ib_qp_usecnt_dec(struct ib_qp * qp)1332 void ib_qp_usecnt_dec(struct ib_qp *qp)
1333 {
1334 	if (qp->rwq_ind_tbl)
1335 		atomic_dec(&qp->rwq_ind_tbl->usecnt);
1336 	if (qp->srq)
1337 		atomic_dec(&qp->srq->usecnt);
1338 	if (qp->recv_cq)
1339 		atomic_dec(&qp->recv_cq->usecnt);
1340 	if (qp->send_cq)
1341 		atomic_dec(&qp->send_cq->usecnt);
1342 	if (qp->pd)
1343 		atomic_dec(&qp->pd->usecnt);
1344 }
1345 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1346 
ib_create_qp_kernel(struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr,const char * caller)1347 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1348 				  struct ib_qp_init_attr *qp_init_attr,
1349 				  const char *caller)
1350 {
1351 	struct ib_device *device = pd->device;
1352 	struct ib_qp *qp;
1353 	int ret;
1354 
1355 	/*
1356 	 * If the callers is using the RDMA API calculate the resources
1357 	 * needed for the RDMA READ/WRITE operations.
1358 	 *
1359 	 * Note that these callers need to pass in a port number.
1360 	 */
1361 	if (qp_init_attr->cap.max_rdma_ctxs)
1362 		rdma_rw_init_qp(device, qp_init_attr);
1363 
1364 	qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1365 	if (IS_ERR(qp))
1366 		return qp;
1367 
1368 	ib_qp_usecnt_inc(qp);
1369 
1370 	if (qp_init_attr->cap.max_rdma_ctxs) {
1371 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1372 		if (ret)
1373 			goto err;
1374 	}
1375 
1376 	/*
1377 	 * Note: all hw drivers guarantee that max_send_sge is lower than
1378 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1379 	 * max_send_sge <= max_sge_rd.
1380 	 */
1381 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1382 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1383 				 device->attrs.max_sge_rd);
1384 	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1385 		qp->integrity_en = true;
1386 
1387 	return qp;
1388 
1389 err:
1390 	ib_destroy_qp(qp);
1391 	return ERR_PTR(ret);
1392 
1393 }
1394 EXPORT_SYMBOL(ib_create_qp_kernel);
1395 
1396 static const struct {
1397 	int			valid;
1398 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1399 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1400 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1401 	[IB_QPS_RESET] = {
1402 		[IB_QPS_RESET] = { .valid = 1 },
1403 		[IB_QPS_INIT]  = {
1404 			.valid = 1,
1405 			.req_param = {
1406 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1407 						IB_QP_PORT			|
1408 						IB_QP_QKEY),
1409 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1410 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1411 						IB_QP_PORT			|
1412 						IB_QP_ACCESS_FLAGS),
1413 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1414 						IB_QP_PORT			|
1415 						IB_QP_ACCESS_FLAGS),
1416 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1417 						IB_QP_PORT			|
1418 						IB_QP_ACCESS_FLAGS),
1419 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1420 						IB_QP_PORT			|
1421 						IB_QP_ACCESS_FLAGS),
1422 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1423 						IB_QP_QKEY),
1424 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1425 						IB_QP_QKEY),
1426 			}
1427 		},
1428 	},
1429 	[IB_QPS_INIT]  = {
1430 		[IB_QPS_RESET] = { .valid = 1 },
1431 		[IB_QPS_ERR] =   { .valid = 1 },
1432 		[IB_QPS_INIT]  = {
1433 			.valid = 1,
1434 			.opt_param = {
1435 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1436 						IB_QP_PORT			|
1437 						IB_QP_QKEY),
1438 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1439 						IB_QP_PORT			|
1440 						IB_QP_ACCESS_FLAGS),
1441 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1442 						IB_QP_PORT			|
1443 						IB_QP_ACCESS_FLAGS),
1444 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1445 						IB_QP_PORT			|
1446 						IB_QP_ACCESS_FLAGS),
1447 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1448 						IB_QP_PORT			|
1449 						IB_QP_ACCESS_FLAGS),
1450 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1451 						IB_QP_QKEY),
1452 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1453 						IB_QP_QKEY),
1454 			}
1455 		},
1456 		[IB_QPS_RTR]   = {
1457 			.valid = 1,
1458 			.req_param = {
1459 				[IB_QPT_UC]  = (IB_QP_AV			|
1460 						IB_QP_PATH_MTU			|
1461 						IB_QP_DEST_QPN			|
1462 						IB_QP_RQ_PSN),
1463 				[IB_QPT_RC]  = (IB_QP_AV			|
1464 						IB_QP_PATH_MTU			|
1465 						IB_QP_DEST_QPN			|
1466 						IB_QP_RQ_PSN			|
1467 						IB_QP_MAX_DEST_RD_ATOMIC	|
1468 						IB_QP_MIN_RNR_TIMER),
1469 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1470 						IB_QP_PATH_MTU			|
1471 						IB_QP_DEST_QPN			|
1472 						IB_QP_RQ_PSN),
1473 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1474 						IB_QP_PATH_MTU			|
1475 						IB_QP_DEST_QPN			|
1476 						IB_QP_RQ_PSN			|
1477 						IB_QP_MAX_DEST_RD_ATOMIC	|
1478 						IB_QP_MIN_RNR_TIMER),
1479 			},
1480 			.opt_param = {
1481 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1482 						 IB_QP_QKEY),
1483 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1484 						 IB_QP_ACCESS_FLAGS		|
1485 						 IB_QP_PKEY_INDEX),
1486 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1487 						 IB_QP_ACCESS_FLAGS		|
1488 						 IB_QP_PKEY_INDEX),
1489 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1490 						 IB_QP_ACCESS_FLAGS		|
1491 						 IB_QP_PKEY_INDEX),
1492 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1493 						 IB_QP_ACCESS_FLAGS		|
1494 						 IB_QP_PKEY_INDEX),
1495 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1496 						 IB_QP_QKEY),
1497 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1498 						 IB_QP_QKEY),
1499 			 },
1500 		},
1501 	},
1502 	[IB_QPS_RTR]   = {
1503 		[IB_QPS_RESET] = { .valid = 1 },
1504 		[IB_QPS_ERR] =   { .valid = 1 },
1505 		[IB_QPS_RTS]   = {
1506 			.valid = 1,
1507 			.req_param = {
1508 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1509 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1510 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1511 						IB_QP_RETRY_CNT			|
1512 						IB_QP_RNR_RETRY			|
1513 						IB_QP_SQ_PSN			|
1514 						IB_QP_MAX_QP_RD_ATOMIC),
1515 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1516 						IB_QP_RETRY_CNT			|
1517 						IB_QP_RNR_RETRY			|
1518 						IB_QP_SQ_PSN			|
1519 						IB_QP_MAX_QP_RD_ATOMIC),
1520 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1521 						IB_QP_SQ_PSN),
1522 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1523 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1524 			},
1525 			.opt_param = {
1526 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1527 						 IB_QP_QKEY),
1528 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1529 						 IB_QP_ALT_PATH			|
1530 						 IB_QP_ACCESS_FLAGS		|
1531 						 IB_QP_PATH_MIG_STATE),
1532 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1533 						 IB_QP_ALT_PATH			|
1534 						 IB_QP_ACCESS_FLAGS		|
1535 						 IB_QP_MIN_RNR_TIMER		|
1536 						 IB_QP_PATH_MIG_STATE),
1537 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1538 						 IB_QP_ALT_PATH			|
1539 						 IB_QP_ACCESS_FLAGS		|
1540 						 IB_QP_PATH_MIG_STATE),
1541 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1542 						 IB_QP_ALT_PATH			|
1543 						 IB_QP_ACCESS_FLAGS		|
1544 						 IB_QP_MIN_RNR_TIMER		|
1545 						 IB_QP_PATH_MIG_STATE),
1546 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1547 						 IB_QP_QKEY),
1548 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1549 						 IB_QP_QKEY),
1550 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1551 			 }
1552 		}
1553 	},
1554 	[IB_QPS_RTS]   = {
1555 		[IB_QPS_RESET] = { .valid = 1 },
1556 		[IB_QPS_ERR] =   { .valid = 1 },
1557 		[IB_QPS_RTS]   = {
1558 			.valid = 1,
1559 			.opt_param = {
1560 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1561 						IB_QP_QKEY),
1562 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1563 						IB_QP_ACCESS_FLAGS		|
1564 						IB_QP_ALT_PATH			|
1565 						IB_QP_PATH_MIG_STATE),
1566 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1567 						IB_QP_ACCESS_FLAGS		|
1568 						IB_QP_ALT_PATH			|
1569 						IB_QP_PATH_MIG_STATE		|
1570 						IB_QP_MIN_RNR_TIMER),
1571 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1572 						IB_QP_ACCESS_FLAGS		|
1573 						IB_QP_ALT_PATH			|
1574 						IB_QP_PATH_MIG_STATE),
1575 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1576 						IB_QP_ACCESS_FLAGS		|
1577 						IB_QP_ALT_PATH			|
1578 						IB_QP_PATH_MIG_STATE		|
1579 						IB_QP_MIN_RNR_TIMER),
1580 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1581 						IB_QP_QKEY),
1582 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1583 						IB_QP_QKEY),
1584 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1585 			}
1586 		},
1587 		[IB_QPS_SQD]   = {
1588 			.valid = 1,
1589 			.opt_param = {
1590 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1591 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1592 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1593 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1594 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1595 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1596 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1597 			}
1598 		},
1599 	},
1600 	[IB_QPS_SQD]   = {
1601 		[IB_QPS_RESET] = { .valid = 1 },
1602 		[IB_QPS_ERR] =   { .valid = 1 },
1603 		[IB_QPS_RTS]   = {
1604 			.valid = 1,
1605 			.opt_param = {
1606 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1607 						IB_QP_QKEY),
1608 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1609 						IB_QP_ALT_PATH			|
1610 						IB_QP_ACCESS_FLAGS		|
1611 						IB_QP_PATH_MIG_STATE),
1612 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1613 						IB_QP_ALT_PATH			|
1614 						IB_QP_ACCESS_FLAGS		|
1615 						IB_QP_MIN_RNR_TIMER		|
1616 						IB_QP_PATH_MIG_STATE),
1617 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1618 						IB_QP_ALT_PATH			|
1619 						IB_QP_ACCESS_FLAGS		|
1620 						IB_QP_PATH_MIG_STATE),
1621 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1622 						IB_QP_ALT_PATH			|
1623 						IB_QP_ACCESS_FLAGS		|
1624 						IB_QP_MIN_RNR_TIMER		|
1625 						IB_QP_PATH_MIG_STATE),
1626 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1627 						IB_QP_QKEY),
1628 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1629 						IB_QP_QKEY),
1630 			}
1631 		},
1632 		[IB_QPS_SQD]   = {
1633 			.valid = 1,
1634 			.opt_param = {
1635 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1636 						IB_QP_QKEY),
1637 				[IB_QPT_UC]  = (IB_QP_AV			|
1638 						IB_QP_ALT_PATH			|
1639 						IB_QP_ACCESS_FLAGS		|
1640 						IB_QP_PKEY_INDEX		|
1641 						IB_QP_PATH_MIG_STATE),
1642 				[IB_QPT_RC]  = (IB_QP_PORT			|
1643 						IB_QP_AV			|
1644 						IB_QP_TIMEOUT			|
1645 						IB_QP_RETRY_CNT			|
1646 						IB_QP_RNR_RETRY			|
1647 						IB_QP_MAX_QP_RD_ATOMIC		|
1648 						IB_QP_MAX_DEST_RD_ATOMIC	|
1649 						IB_QP_ALT_PATH			|
1650 						IB_QP_ACCESS_FLAGS		|
1651 						IB_QP_PKEY_INDEX		|
1652 						IB_QP_MIN_RNR_TIMER		|
1653 						IB_QP_PATH_MIG_STATE),
1654 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1655 						IB_QP_AV			|
1656 						IB_QP_TIMEOUT			|
1657 						IB_QP_RETRY_CNT			|
1658 						IB_QP_RNR_RETRY			|
1659 						IB_QP_MAX_QP_RD_ATOMIC		|
1660 						IB_QP_ALT_PATH			|
1661 						IB_QP_ACCESS_FLAGS		|
1662 						IB_QP_PKEY_INDEX		|
1663 						IB_QP_PATH_MIG_STATE),
1664 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1665 						IB_QP_AV			|
1666 						IB_QP_TIMEOUT			|
1667 						IB_QP_MAX_DEST_RD_ATOMIC	|
1668 						IB_QP_ALT_PATH			|
1669 						IB_QP_ACCESS_FLAGS		|
1670 						IB_QP_PKEY_INDEX		|
1671 						IB_QP_MIN_RNR_TIMER		|
1672 						IB_QP_PATH_MIG_STATE),
1673 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1674 						IB_QP_QKEY),
1675 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1676 						IB_QP_QKEY),
1677 			}
1678 		}
1679 	},
1680 	[IB_QPS_SQE]   = {
1681 		[IB_QPS_RESET] = { .valid = 1 },
1682 		[IB_QPS_ERR] =   { .valid = 1 },
1683 		[IB_QPS_RTS]   = {
1684 			.valid = 1,
1685 			.opt_param = {
1686 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1687 						IB_QP_QKEY),
1688 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1689 						IB_QP_ACCESS_FLAGS),
1690 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1691 						IB_QP_QKEY),
1692 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1693 						IB_QP_QKEY),
1694 			}
1695 		}
1696 	},
1697 	[IB_QPS_ERR] = {
1698 		[IB_QPS_RESET] = { .valid = 1 },
1699 		[IB_QPS_ERR] =   { .valid = 1 }
1700 	}
1701 };
1702 
ib_modify_qp_is_ok(enum ib_qp_state cur_state,enum ib_qp_state next_state,enum ib_qp_type type,enum ib_qp_attr_mask mask)1703 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1704 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1705 {
1706 	enum ib_qp_attr_mask req_param, opt_param;
1707 
1708 	if (mask & IB_QP_CUR_STATE  &&
1709 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1710 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1711 		return false;
1712 
1713 	if (!qp_state_table[cur_state][next_state].valid)
1714 		return false;
1715 
1716 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1717 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1718 
1719 	if ((mask & req_param) != req_param)
1720 		return false;
1721 
1722 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1723 		return false;
1724 
1725 	return true;
1726 }
1727 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1728 
1729 /**
1730  * ib_resolve_eth_dmac - Resolve destination mac address
1731  * @device:		Device to consider
1732  * @ah_attr:		address handle attribute which describes the
1733  *			source and destination parameters
1734  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1735  * returns 0 on success or appropriate error code. It initializes the
1736  * necessary ah_attr fields when call is successful.
1737  */
ib_resolve_eth_dmac(struct ib_device * device,struct rdma_ah_attr * ah_attr)1738 static int ib_resolve_eth_dmac(struct ib_device *device,
1739 			       struct rdma_ah_attr *ah_attr)
1740 {
1741 	int ret = 0;
1742 
1743 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1744 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1745 			__be32 addr = 0;
1746 
1747 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1748 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1749 		} else {
1750 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1751 					(char *)ah_attr->roce.dmac);
1752 		}
1753 	} else {
1754 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1755 	}
1756 	return ret;
1757 }
1758 
is_qp_type_connected(const struct ib_qp * qp)1759 static bool is_qp_type_connected(const struct ib_qp *qp)
1760 {
1761 	return (qp->qp_type == IB_QPT_UC ||
1762 		qp->qp_type == IB_QPT_RC ||
1763 		qp->qp_type == IB_QPT_XRC_INI ||
1764 		qp->qp_type == IB_QPT_XRC_TGT);
1765 }
1766 
1767 /*
1768  * IB core internal function to perform QP attributes modification.
1769  */
_ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1770 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1771 			 int attr_mask, struct ib_udata *udata)
1772 {
1773 	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1774 	const struct ib_gid_attr *old_sgid_attr_av;
1775 	const struct ib_gid_attr *old_sgid_attr_alt_av;
1776 	int ret;
1777 
1778 	attr->xmit_slave = NULL;
1779 	if (attr_mask & IB_QP_AV) {
1780 		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1781 					  &old_sgid_attr_av);
1782 		if (ret)
1783 			return ret;
1784 
1785 		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1786 		    is_qp_type_connected(qp)) {
1787 			struct net_device *slave;
1788 
1789 			/*
1790 			 * If the user provided the qp_attr then we have to
1791 			 * resolve it. Kerne users have to provide already
1792 			 * resolved rdma_ah_attr's.
1793 			 */
1794 			if (udata) {
1795 				ret = ib_resolve_eth_dmac(qp->device,
1796 							  &attr->ah_attr);
1797 				if (ret)
1798 					goto out_av;
1799 			}
1800 			slave = rdma_lag_get_ah_roce_slave(qp->device,
1801 							   &attr->ah_attr,
1802 							   GFP_KERNEL);
1803 			if (IS_ERR(slave)) {
1804 				ret = PTR_ERR(slave);
1805 				goto out_av;
1806 			}
1807 			attr->xmit_slave = slave;
1808 		}
1809 	}
1810 	if (attr_mask & IB_QP_ALT_PATH) {
1811 		/*
1812 		 * FIXME: This does not track the migration state, so if the
1813 		 * user loads a new alternate path after the HW has migrated
1814 		 * from primary->alternate we will keep the wrong
1815 		 * references. This is OK for IB because the reference
1816 		 * counting does not serve any functional purpose.
1817 		 */
1818 		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1819 					  &old_sgid_attr_alt_av);
1820 		if (ret)
1821 			goto out_av;
1822 
1823 		/*
1824 		 * Today the core code can only handle alternate paths and APM
1825 		 * for IB. Ban them in roce mode.
1826 		 */
1827 		if (!(rdma_protocol_ib(qp->device,
1828 				       attr->alt_ah_attr.port_num) &&
1829 		      rdma_protocol_ib(qp->device, port))) {
1830 			ret = -EINVAL;
1831 			goto out;
1832 		}
1833 	}
1834 
1835 	if (rdma_ib_or_roce(qp->device, port)) {
1836 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1837 			dev_warn(&qp->device->dev,
1838 				 "%s rq_psn overflow, masking to 24 bits\n",
1839 				 __func__);
1840 			attr->rq_psn &= 0xffffff;
1841 		}
1842 
1843 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1844 			dev_warn(&qp->device->dev,
1845 				 " %s sq_psn overflow, masking to 24 bits\n",
1846 				 __func__);
1847 			attr->sq_psn &= 0xffffff;
1848 		}
1849 	}
1850 
1851 	/*
1852 	 * Bind this qp to a counter automatically based on the rdma counter
1853 	 * rules. This only set in RST2INIT with port specified
1854 	 */
1855 	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1856 	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1857 		rdma_counter_bind_qp_auto(qp, attr->port_num);
1858 
1859 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1860 	if (ret)
1861 		goto out;
1862 
1863 	if (attr_mask & IB_QP_PORT)
1864 		qp->port = attr->port_num;
1865 	if (attr_mask & IB_QP_AV)
1866 		qp->av_sgid_attr =
1867 			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1868 	if (attr_mask & IB_QP_ALT_PATH)
1869 		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1870 			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1871 
1872 out:
1873 	if (attr_mask & IB_QP_ALT_PATH)
1874 		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1875 out_av:
1876 	if (attr_mask & IB_QP_AV) {
1877 		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1878 		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1879 	}
1880 	return ret;
1881 }
1882 
1883 /**
1884  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1885  * @ib_qp: The QP to modify.
1886  * @attr: On input, specifies the QP attributes to modify.  On output,
1887  *   the current values of selected QP attributes are returned.
1888  * @attr_mask: A bit-mask used to specify which attributes of the QP
1889  *   are being modified.
1890  * @udata: pointer to user's input output buffer information
1891  *   are being modified.
1892  * It returns 0 on success and returns appropriate error code on error.
1893  */
ib_modify_qp_with_udata(struct ib_qp * ib_qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)1894 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1895 			    int attr_mask, struct ib_udata *udata)
1896 {
1897 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1898 }
1899 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1900 
ib_get_width_and_speed(u32 netdev_speed,u32 lanes,u16 * speed,u8 * width)1901 static void ib_get_width_and_speed(u32 netdev_speed, u32 lanes,
1902 				   u16 *speed, u8 *width)
1903 {
1904 	if (!lanes) {
1905 		if (netdev_speed <= SPEED_1000) {
1906 			*width = IB_WIDTH_1X;
1907 			*speed = IB_SPEED_SDR;
1908 		} else if (netdev_speed <= SPEED_10000) {
1909 			*width = IB_WIDTH_1X;
1910 			*speed = IB_SPEED_FDR10;
1911 		} else if (netdev_speed <= SPEED_20000) {
1912 			*width = IB_WIDTH_4X;
1913 			*speed = IB_SPEED_DDR;
1914 		} else if (netdev_speed <= SPEED_25000) {
1915 			*width = IB_WIDTH_1X;
1916 			*speed = IB_SPEED_EDR;
1917 		} else if (netdev_speed <= SPEED_40000) {
1918 			*width = IB_WIDTH_4X;
1919 			*speed = IB_SPEED_FDR10;
1920 		} else if (netdev_speed <= SPEED_50000) {
1921 			*width = IB_WIDTH_2X;
1922 			*speed = IB_SPEED_EDR;
1923 		} else if (netdev_speed <= SPEED_100000) {
1924 			*width = IB_WIDTH_4X;
1925 			*speed = IB_SPEED_EDR;
1926 		} else if (netdev_speed <= SPEED_200000) {
1927 			*width = IB_WIDTH_4X;
1928 			*speed = IB_SPEED_HDR;
1929 		} else {
1930 			*width = IB_WIDTH_4X;
1931 			*speed = IB_SPEED_NDR;
1932 		}
1933 
1934 		return;
1935 	}
1936 
1937 	switch (lanes) {
1938 	case 1:
1939 		*width = IB_WIDTH_1X;
1940 		break;
1941 	case 2:
1942 		*width = IB_WIDTH_2X;
1943 		break;
1944 	case 4:
1945 		*width = IB_WIDTH_4X;
1946 		break;
1947 	case 8:
1948 		*width = IB_WIDTH_8X;
1949 		break;
1950 	case 12:
1951 		*width = IB_WIDTH_12X;
1952 		break;
1953 	default:
1954 		*width = IB_WIDTH_1X;
1955 	}
1956 
1957 	switch (netdev_speed / lanes) {
1958 	case SPEED_2500:
1959 		*speed = IB_SPEED_SDR;
1960 		break;
1961 	case SPEED_5000:
1962 		*speed = IB_SPEED_DDR;
1963 		break;
1964 	case SPEED_10000:
1965 		*speed = IB_SPEED_FDR10;
1966 		break;
1967 	case SPEED_14000:
1968 		*speed = IB_SPEED_FDR;
1969 		break;
1970 	case SPEED_25000:
1971 		*speed = IB_SPEED_EDR;
1972 		break;
1973 	case SPEED_50000:
1974 		*speed = IB_SPEED_HDR;
1975 		break;
1976 	case SPEED_100000:
1977 		*speed = IB_SPEED_NDR;
1978 		break;
1979 	default:
1980 		*speed = IB_SPEED_SDR;
1981 	}
1982 }
1983 
ib_get_eth_speed(struct ib_device * dev,u32 port_num,u16 * speed,u8 * width)1984 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1985 {
1986 	int rc;
1987 	u32 netdev_speed;
1988 	struct net_device *netdev;
1989 	struct ethtool_link_ksettings lksettings = {};
1990 
1991 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1992 		return -EINVAL;
1993 
1994 	netdev = ib_device_get_netdev(dev, port_num);
1995 	if (!netdev)
1996 		return -ENODEV;
1997 
1998 	rtnl_lock();
1999 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
2000 	rtnl_unlock();
2001 
2002 	dev_put(netdev);
2003 
2004 	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
2005 		netdev_speed = lksettings.base.speed;
2006 	} else {
2007 		netdev_speed = SPEED_1000;
2008 		if (rc)
2009 			pr_warn("%s speed is unknown, defaulting to %u\n",
2010 				netdev->name, netdev_speed);
2011 	}
2012 
2013 	ib_get_width_and_speed(netdev_speed, lksettings.lanes,
2014 			       speed, width);
2015 
2016 	return 0;
2017 }
2018 EXPORT_SYMBOL(ib_get_eth_speed);
2019 
ib_modify_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask)2020 int ib_modify_qp(struct ib_qp *qp,
2021 		 struct ib_qp_attr *qp_attr,
2022 		 int qp_attr_mask)
2023 {
2024 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
2025 }
2026 EXPORT_SYMBOL(ib_modify_qp);
2027 
ib_query_qp(struct ib_qp * qp,struct ib_qp_attr * qp_attr,int qp_attr_mask,struct ib_qp_init_attr * qp_init_attr)2028 int ib_query_qp(struct ib_qp *qp,
2029 		struct ib_qp_attr *qp_attr,
2030 		int qp_attr_mask,
2031 		struct ib_qp_init_attr *qp_init_attr)
2032 {
2033 	qp_attr->ah_attr.grh.sgid_attr = NULL;
2034 	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
2035 
2036 	return qp->device->ops.query_qp ?
2037 		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
2038 					 qp_init_attr) : -EOPNOTSUPP;
2039 }
2040 EXPORT_SYMBOL(ib_query_qp);
2041 
ib_close_qp(struct ib_qp * qp)2042 int ib_close_qp(struct ib_qp *qp)
2043 {
2044 	struct ib_qp *real_qp;
2045 	unsigned long flags;
2046 
2047 	real_qp = qp->real_qp;
2048 	if (real_qp == qp)
2049 		return -EINVAL;
2050 
2051 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
2052 	list_del(&qp->open_list);
2053 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
2054 
2055 	atomic_dec(&real_qp->usecnt);
2056 	if (qp->qp_sec)
2057 		ib_close_shared_qp_security(qp->qp_sec);
2058 	kfree(qp);
2059 
2060 	return 0;
2061 }
2062 EXPORT_SYMBOL(ib_close_qp);
2063 
__ib_destroy_shared_qp(struct ib_qp * qp)2064 static int __ib_destroy_shared_qp(struct ib_qp *qp)
2065 {
2066 	struct ib_xrcd *xrcd;
2067 	struct ib_qp *real_qp;
2068 	int ret;
2069 
2070 	real_qp = qp->real_qp;
2071 	xrcd = real_qp->xrcd;
2072 	down_write(&xrcd->tgt_qps_rwsem);
2073 	ib_close_qp(qp);
2074 	if (atomic_read(&real_qp->usecnt) == 0)
2075 		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
2076 	else
2077 		real_qp = NULL;
2078 	up_write(&xrcd->tgt_qps_rwsem);
2079 
2080 	if (real_qp) {
2081 		ret = ib_destroy_qp(real_qp);
2082 		if (!ret)
2083 			atomic_dec(&xrcd->usecnt);
2084 	}
2085 
2086 	return 0;
2087 }
2088 
ib_destroy_qp_user(struct ib_qp * qp,struct ib_udata * udata)2089 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2090 {
2091 	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2092 	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2093 	struct ib_qp_security *sec;
2094 	int ret;
2095 
2096 	WARN_ON_ONCE(qp->mrs_used > 0);
2097 
2098 	if (atomic_read(&qp->usecnt))
2099 		return -EBUSY;
2100 
2101 	if (qp->real_qp != qp)
2102 		return __ib_destroy_shared_qp(qp);
2103 
2104 	sec  = qp->qp_sec;
2105 	if (sec)
2106 		ib_destroy_qp_security_begin(sec);
2107 
2108 	if (!qp->uobject)
2109 		rdma_rw_cleanup_mrs(qp);
2110 
2111 	rdma_counter_unbind_qp(qp, qp->port, true);
2112 	ret = qp->device->ops.destroy_qp(qp, udata);
2113 	if (ret) {
2114 		if (sec)
2115 			ib_destroy_qp_security_abort(sec);
2116 		return ret;
2117 	}
2118 
2119 	if (alt_path_sgid_attr)
2120 		rdma_put_gid_attr(alt_path_sgid_attr);
2121 	if (av_sgid_attr)
2122 		rdma_put_gid_attr(av_sgid_attr);
2123 
2124 	ib_qp_usecnt_dec(qp);
2125 	if (sec)
2126 		ib_destroy_qp_security_end(sec);
2127 
2128 	rdma_restrack_del(&qp->res);
2129 	kfree(qp);
2130 	return ret;
2131 }
2132 EXPORT_SYMBOL(ib_destroy_qp_user);
2133 
2134 /* Completion queues */
2135 
__ib_create_cq(struct ib_device * device,ib_comp_handler comp_handler,void (* event_handler)(struct ib_event *,void *),void * cq_context,const struct ib_cq_init_attr * cq_attr,const char * caller)2136 struct ib_cq *__ib_create_cq(struct ib_device *device,
2137 			     ib_comp_handler comp_handler,
2138 			     void (*event_handler)(struct ib_event *, void *),
2139 			     void *cq_context,
2140 			     const struct ib_cq_init_attr *cq_attr,
2141 			     const char *caller)
2142 {
2143 	struct ib_cq *cq;
2144 	int ret;
2145 
2146 	cq = rdma_zalloc_drv_obj(device, ib_cq);
2147 	if (!cq)
2148 		return ERR_PTR(-ENOMEM);
2149 
2150 	cq->device = device;
2151 	cq->uobject = NULL;
2152 	cq->comp_handler = comp_handler;
2153 	cq->event_handler = event_handler;
2154 	cq->cq_context = cq_context;
2155 	atomic_set(&cq->usecnt, 0);
2156 
2157 	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2158 	rdma_restrack_set_name(&cq->res, caller);
2159 
2160 	ret = device->ops.create_cq(cq, cq_attr, NULL);
2161 	if (ret) {
2162 		rdma_restrack_put(&cq->res);
2163 		kfree(cq);
2164 		return ERR_PTR(ret);
2165 	}
2166 
2167 	rdma_restrack_add(&cq->res);
2168 	return cq;
2169 }
2170 EXPORT_SYMBOL(__ib_create_cq);
2171 
rdma_set_cq_moderation(struct ib_cq * cq,u16 cq_count,u16 cq_period)2172 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2173 {
2174 	if (cq->shared)
2175 		return -EOPNOTSUPP;
2176 
2177 	return cq->device->ops.modify_cq ?
2178 		cq->device->ops.modify_cq(cq, cq_count,
2179 					  cq_period) : -EOPNOTSUPP;
2180 }
2181 EXPORT_SYMBOL(rdma_set_cq_moderation);
2182 
ib_destroy_cq_user(struct ib_cq * cq,struct ib_udata * udata)2183 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2184 {
2185 	int ret;
2186 
2187 	if (WARN_ON_ONCE(cq->shared))
2188 		return -EOPNOTSUPP;
2189 
2190 	if (atomic_read(&cq->usecnt))
2191 		return -EBUSY;
2192 
2193 	ret = cq->device->ops.destroy_cq(cq, udata);
2194 	if (ret)
2195 		return ret;
2196 
2197 	rdma_restrack_del(&cq->res);
2198 	kfree(cq);
2199 	return ret;
2200 }
2201 EXPORT_SYMBOL(ib_destroy_cq_user);
2202 
ib_resize_cq(struct ib_cq * cq,int cqe)2203 int ib_resize_cq(struct ib_cq *cq, int cqe)
2204 {
2205 	if (cq->shared)
2206 		return -EOPNOTSUPP;
2207 
2208 	return cq->device->ops.resize_cq ?
2209 		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2210 }
2211 EXPORT_SYMBOL(ib_resize_cq);
2212 
2213 /* Memory regions */
2214 
ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int access_flags)2215 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2216 			     u64 virt_addr, int access_flags)
2217 {
2218 	struct ib_mr *mr;
2219 
2220 	if (access_flags & IB_ACCESS_ON_DEMAND) {
2221 		if (!(pd->device->attrs.kernel_cap_flags &
2222 		      IBK_ON_DEMAND_PAGING)) {
2223 			pr_debug("ODP support not available\n");
2224 			return ERR_PTR(-EINVAL);
2225 		}
2226 	}
2227 
2228 	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2229 					 access_flags, NULL, NULL);
2230 
2231 	if (IS_ERR(mr))
2232 		return mr;
2233 
2234 	mr->device = pd->device;
2235 	mr->type = IB_MR_TYPE_USER;
2236 	mr->pd = pd;
2237 	mr->dm = NULL;
2238 	atomic_inc(&pd->usecnt);
2239 	mr->iova =  virt_addr;
2240 	mr->length = length;
2241 
2242 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2243 	rdma_restrack_parent_name(&mr->res, &pd->res);
2244 	rdma_restrack_add(&mr->res);
2245 
2246 	return mr;
2247 }
2248 EXPORT_SYMBOL(ib_reg_user_mr);
2249 
ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge)2250 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2251 		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2252 {
2253 	if (!pd->device->ops.advise_mr)
2254 		return -EOPNOTSUPP;
2255 
2256 	if (!num_sge)
2257 		return 0;
2258 
2259 	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2260 					 NULL);
2261 }
2262 EXPORT_SYMBOL(ib_advise_mr);
2263 
ib_dereg_mr_user(struct ib_mr * mr,struct ib_udata * udata)2264 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2265 {
2266 	struct ib_pd *pd = mr->pd;
2267 	struct ib_dm *dm = mr->dm;
2268 	struct ib_dmah *dmah = mr->dmah;
2269 	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2270 	int ret;
2271 
2272 	trace_mr_dereg(mr);
2273 	rdma_restrack_del(&mr->res);
2274 	ret = mr->device->ops.dereg_mr(mr, udata);
2275 	if (!ret) {
2276 		atomic_dec(&pd->usecnt);
2277 		if (dm)
2278 			atomic_dec(&dm->usecnt);
2279 		if (dmah)
2280 			atomic_dec(&dmah->usecnt);
2281 		kfree(sig_attrs);
2282 	}
2283 
2284 	return ret;
2285 }
2286 EXPORT_SYMBOL(ib_dereg_mr_user);
2287 
2288 /**
2289  * ib_alloc_mr() - Allocates a memory region
2290  * @pd:            protection domain associated with the region
2291  * @mr_type:       memory region type
2292  * @max_num_sg:    maximum sg entries available for registration.
2293  *
2294  * Notes:
2295  * Memory registeration page/sg lists must not exceed max_num_sg.
2296  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2297  * max_num_sg * used_page_size.
2298  *
2299  */
ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)2300 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2301 			  u32 max_num_sg)
2302 {
2303 	struct ib_mr *mr;
2304 
2305 	if (!pd->device->ops.alloc_mr) {
2306 		mr = ERR_PTR(-EOPNOTSUPP);
2307 		goto out;
2308 	}
2309 
2310 	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2311 		WARN_ON_ONCE(1);
2312 		mr = ERR_PTR(-EINVAL);
2313 		goto out;
2314 	}
2315 
2316 	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2317 	if (IS_ERR(mr))
2318 		goto out;
2319 
2320 	mr->device = pd->device;
2321 	mr->pd = pd;
2322 	mr->dm = NULL;
2323 	mr->uobject = NULL;
2324 	atomic_inc(&pd->usecnt);
2325 	mr->need_inval = false;
2326 	mr->type = mr_type;
2327 	mr->sig_attrs = NULL;
2328 
2329 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2330 	rdma_restrack_parent_name(&mr->res, &pd->res);
2331 	rdma_restrack_add(&mr->res);
2332 out:
2333 	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2334 	return mr;
2335 }
2336 EXPORT_SYMBOL(ib_alloc_mr);
2337 
2338 /**
2339  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2340  * @pd:                      protection domain associated with the region
2341  * @max_num_data_sg:         maximum data sg entries available for registration
2342  * @max_num_meta_sg:         maximum metadata sg entries available for
2343  *                           registration
2344  *
2345  * Notes:
2346  * Memory registration page/sg lists must not exceed max_num_sg,
2347  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2348  *
2349  */
ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_data_sg,u32 max_num_meta_sg)2350 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2351 				    u32 max_num_data_sg,
2352 				    u32 max_num_meta_sg)
2353 {
2354 	struct ib_mr *mr;
2355 	struct ib_sig_attrs *sig_attrs;
2356 
2357 	if (!pd->device->ops.alloc_mr_integrity ||
2358 	    !pd->device->ops.map_mr_sg_pi) {
2359 		mr = ERR_PTR(-EOPNOTSUPP);
2360 		goto out;
2361 	}
2362 
2363 	if (!max_num_meta_sg) {
2364 		mr = ERR_PTR(-EINVAL);
2365 		goto out;
2366 	}
2367 
2368 	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2369 	if (!sig_attrs) {
2370 		mr = ERR_PTR(-ENOMEM);
2371 		goto out;
2372 	}
2373 
2374 	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2375 						max_num_meta_sg);
2376 	if (IS_ERR(mr)) {
2377 		kfree(sig_attrs);
2378 		goto out;
2379 	}
2380 
2381 	mr->device = pd->device;
2382 	mr->pd = pd;
2383 	mr->dm = NULL;
2384 	mr->uobject = NULL;
2385 	atomic_inc(&pd->usecnt);
2386 	mr->need_inval = false;
2387 	mr->type = IB_MR_TYPE_INTEGRITY;
2388 	mr->sig_attrs = sig_attrs;
2389 
2390 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2391 	rdma_restrack_parent_name(&mr->res, &pd->res);
2392 	rdma_restrack_add(&mr->res);
2393 out:
2394 	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2395 	return mr;
2396 }
2397 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2398 
2399 /* Multicast groups */
2400 
is_valid_mcast_lid(struct ib_qp * qp,u16 lid)2401 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2402 {
2403 	struct ib_qp_init_attr init_attr = {};
2404 	struct ib_qp_attr attr = {};
2405 	int num_eth_ports = 0;
2406 	unsigned int port;
2407 
2408 	/* If QP state >= init, it is assigned to a port and we can check this
2409 	 * port only.
2410 	 */
2411 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2412 		if (attr.qp_state >= IB_QPS_INIT) {
2413 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2414 			    IB_LINK_LAYER_INFINIBAND)
2415 				return true;
2416 			goto lid_check;
2417 		}
2418 	}
2419 
2420 	/* Can't get a quick answer, iterate over all ports */
2421 	rdma_for_each_port(qp->device, port)
2422 		if (rdma_port_get_link_layer(qp->device, port) !=
2423 		    IB_LINK_LAYER_INFINIBAND)
2424 			num_eth_ports++;
2425 
2426 	/* If we have at lease one Ethernet port, RoCE annex declares that
2427 	 * multicast LID should be ignored. We can't tell at this step if the
2428 	 * QP belongs to an IB or Ethernet port.
2429 	 */
2430 	if (num_eth_ports)
2431 		return true;
2432 
2433 	/* If all the ports are IB, we can check according to IB spec. */
2434 lid_check:
2435 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2436 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2437 }
2438 
ib_attach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2439 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2440 {
2441 	int ret;
2442 
2443 	if (!qp->device->ops.attach_mcast)
2444 		return -EOPNOTSUPP;
2445 
2446 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2447 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2448 		return -EINVAL;
2449 
2450 	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2451 	if (!ret)
2452 		atomic_inc(&qp->usecnt);
2453 	return ret;
2454 }
2455 EXPORT_SYMBOL(ib_attach_mcast);
2456 
ib_detach_mcast(struct ib_qp * qp,union ib_gid * gid,u16 lid)2457 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2458 {
2459 	int ret;
2460 
2461 	if (!qp->device->ops.detach_mcast)
2462 		return -EOPNOTSUPP;
2463 
2464 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2465 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2466 		return -EINVAL;
2467 
2468 	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2469 	if (!ret)
2470 		atomic_dec(&qp->usecnt);
2471 	return ret;
2472 }
2473 EXPORT_SYMBOL(ib_detach_mcast);
2474 
2475 /**
2476  * ib_alloc_xrcd_user - Allocates an XRC domain.
2477  * @device: The device on which to allocate the XRC domain.
2478  * @inode: inode to connect XRCD
2479  * @udata: Valid user data or NULL for kernel object
2480  */
ib_alloc_xrcd_user(struct ib_device * device,struct inode * inode,struct ib_udata * udata)2481 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2482 				   struct inode *inode, struct ib_udata *udata)
2483 {
2484 	struct ib_xrcd *xrcd;
2485 	int ret;
2486 
2487 	if (!device->ops.alloc_xrcd)
2488 		return ERR_PTR(-EOPNOTSUPP);
2489 
2490 	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2491 	if (!xrcd)
2492 		return ERR_PTR(-ENOMEM);
2493 
2494 	xrcd->device = device;
2495 	xrcd->inode = inode;
2496 	atomic_set(&xrcd->usecnt, 0);
2497 	init_rwsem(&xrcd->tgt_qps_rwsem);
2498 	xa_init(&xrcd->tgt_qps);
2499 
2500 	ret = device->ops.alloc_xrcd(xrcd, udata);
2501 	if (ret)
2502 		goto err;
2503 	return xrcd;
2504 err:
2505 	kfree(xrcd);
2506 	return ERR_PTR(ret);
2507 }
2508 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2509 
2510 /**
2511  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2512  * @xrcd: The XRC domain to deallocate.
2513  * @udata: Valid user data or NULL for kernel object
2514  */
ib_dealloc_xrcd_user(struct ib_xrcd * xrcd,struct ib_udata * udata)2515 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2516 {
2517 	int ret;
2518 
2519 	if (atomic_read(&xrcd->usecnt))
2520 		return -EBUSY;
2521 
2522 	WARN_ON(!xa_empty(&xrcd->tgt_qps));
2523 	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2524 	if (ret)
2525 		return ret;
2526 	kfree(xrcd);
2527 	return ret;
2528 }
2529 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2530 
2531 /**
2532  * ib_create_wq - Creates a WQ associated with the specified protection
2533  * domain.
2534  * @pd: The protection domain associated with the WQ.
2535  * @wq_attr: A list of initial attributes required to create the
2536  * WQ. If WQ creation succeeds, then the attributes are updated to
2537  * the actual capabilities of the created WQ.
2538  *
2539  * wq_attr->max_wr and wq_attr->max_sge determine
2540  * the requested size of the WQ, and set to the actual values allocated
2541  * on return.
2542  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2543  * at least as large as the requested values.
2544  */
ib_create_wq(struct ib_pd * pd,struct ib_wq_init_attr * wq_attr)2545 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2546 			   struct ib_wq_init_attr *wq_attr)
2547 {
2548 	struct ib_wq *wq;
2549 
2550 	if (!pd->device->ops.create_wq)
2551 		return ERR_PTR(-EOPNOTSUPP);
2552 
2553 	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2554 	if (!IS_ERR(wq)) {
2555 		wq->event_handler = wq_attr->event_handler;
2556 		wq->wq_context = wq_attr->wq_context;
2557 		wq->wq_type = wq_attr->wq_type;
2558 		wq->cq = wq_attr->cq;
2559 		wq->device = pd->device;
2560 		wq->pd = pd;
2561 		wq->uobject = NULL;
2562 		atomic_inc(&pd->usecnt);
2563 		atomic_inc(&wq_attr->cq->usecnt);
2564 		atomic_set(&wq->usecnt, 0);
2565 	}
2566 	return wq;
2567 }
2568 EXPORT_SYMBOL(ib_create_wq);
2569 
2570 /**
2571  * ib_destroy_wq_user - Destroys the specified user WQ.
2572  * @wq: The WQ to destroy.
2573  * @udata: Valid user data
2574  */
ib_destroy_wq_user(struct ib_wq * wq,struct ib_udata * udata)2575 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2576 {
2577 	struct ib_cq *cq = wq->cq;
2578 	struct ib_pd *pd = wq->pd;
2579 	int ret;
2580 
2581 	if (atomic_read(&wq->usecnt))
2582 		return -EBUSY;
2583 
2584 	ret = wq->device->ops.destroy_wq(wq, udata);
2585 	if (ret)
2586 		return ret;
2587 
2588 	atomic_dec(&pd->usecnt);
2589 	atomic_dec(&cq->usecnt);
2590 	return ret;
2591 }
2592 EXPORT_SYMBOL(ib_destroy_wq_user);
2593 
ib_check_mr_status(struct ib_mr * mr,u32 check_mask,struct ib_mr_status * mr_status)2594 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2595 		       struct ib_mr_status *mr_status)
2596 {
2597 	if (!mr->device->ops.check_mr_status)
2598 		return -EOPNOTSUPP;
2599 
2600 	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2601 }
2602 EXPORT_SYMBOL(ib_check_mr_status);
2603 
ib_set_vf_link_state(struct ib_device * device,int vf,u32 port,int state)2604 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2605 			 int state)
2606 {
2607 	if (!device->ops.set_vf_link_state)
2608 		return -EOPNOTSUPP;
2609 
2610 	return device->ops.set_vf_link_state(device, vf, port, state);
2611 }
2612 EXPORT_SYMBOL(ib_set_vf_link_state);
2613 
ib_get_vf_config(struct ib_device * device,int vf,u32 port,struct ifla_vf_info * info)2614 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2615 		     struct ifla_vf_info *info)
2616 {
2617 	if (!device->ops.get_vf_config)
2618 		return -EOPNOTSUPP;
2619 
2620 	return device->ops.get_vf_config(device, vf, port, info);
2621 }
2622 EXPORT_SYMBOL(ib_get_vf_config);
2623 
ib_get_vf_stats(struct ib_device * device,int vf,u32 port,struct ifla_vf_stats * stats)2624 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2625 		    struct ifla_vf_stats *stats)
2626 {
2627 	if (!device->ops.get_vf_stats)
2628 		return -EOPNOTSUPP;
2629 
2630 	return device->ops.get_vf_stats(device, vf, port, stats);
2631 }
2632 EXPORT_SYMBOL(ib_get_vf_stats);
2633 
ib_set_vf_guid(struct ib_device * device,int vf,u32 port,u64 guid,int type)2634 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2635 		   int type)
2636 {
2637 	if (!device->ops.set_vf_guid)
2638 		return -EOPNOTSUPP;
2639 
2640 	return device->ops.set_vf_guid(device, vf, port, guid, type);
2641 }
2642 EXPORT_SYMBOL(ib_set_vf_guid);
2643 
ib_get_vf_guid(struct ib_device * device,int vf,u32 port,struct ifla_vf_guid * node_guid,struct ifla_vf_guid * port_guid)2644 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2645 		   struct ifla_vf_guid *node_guid,
2646 		   struct ifla_vf_guid *port_guid)
2647 {
2648 	if (!device->ops.get_vf_guid)
2649 		return -EOPNOTSUPP;
2650 
2651 	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2652 }
2653 EXPORT_SYMBOL(ib_get_vf_guid);
2654 /**
2655  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2656  *     information) and set an appropriate memory region for registration.
2657  * @mr:             memory region
2658  * @data_sg:        dma mapped scatterlist for data
2659  * @data_sg_nents:  number of entries in data_sg
2660  * @data_sg_offset: offset in bytes into data_sg
2661  * @meta_sg:        dma mapped scatterlist for metadata
2662  * @meta_sg_nents:  number of entries in meta_sg
2663  * @meta_sg_offset: offset in bytes into meta_sg
2664  * @page_size:      page vector desired page size
2665  *
2666  * Constraints:
2667  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2668  *
2669  * Return: 0 on success.
2670  *
2671  * After this completes successfully, the  memory region
2672  * is ready for registration.
2673  */
ib_map_mr_sg_pi(struct ib_mr * mr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset,unsigned int page_size)2674 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2675 		    int data_sg_nents, unsigned int *data_sg_offset,
2676 		    struct scatterlist *meta_sg, int meta_sg_nents,
2677 		    unsigned int *meta_sg_offset, unsigned int page_size)
2678 {
2679 	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2680 		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2681 		return -EOPNOTSUPP;
2682 
2683 	mr->page_size = page_size;
2684 
2685 	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2686 					    data_sg_offset, meta_sg,
2687 					    meta_sg_nents, meta_sg_offset);
2688 }
2689 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2690 
2691 /**
2692  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2693  *     and set it the memory region.
2694  * @mr:            memory region
2695  * @sg:            dma mapped scatterlist
2696  * @sg_nents:      number of entries in sg
2697  * @sg_offset:     offset in bytes into sg
2698  * @page_size:     page vector desired page size
2699  *
2700  * Constraints:
2701  *
2702  * - The first sg element is allowed to have an offset.
2703  * - Each sg element must either be aligned to page_size or virtually
2704  *   contiguous to the previous element. In case an sg element has a
2705  *   non-contiguous offset, the mapping prefix will not include it.
2706  * - The last sg element is allowed to have length less than page_size.
2707  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2708  *   then only max_num_sg entries will be mapped.
2709  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2710  *   constraints holds and the page_size argument is ignored.
2711  *
2712  * Returns the number of sg elements that were mapped to the memory region.
2713  *
2714  * After this completes successfully, the  memory region
2715  * is ready for registration.
2716  */
ib_map_mr_sg(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)2717 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2718 		 unsigned int *sg_offset, unsigned int page_size)
2719 {
2720 	if (unlikely(!mr->device->ops.map_mr_sg))
2721 		return -EOPNOTSUPP;
2722 
2723 	mr->page_size = page_size;
2724 
2725 	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2726 }
2727 EXPORT_SYMBOL(ib_map_mr_sg);
2728 
2729 /**
2730  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2731  *     to a page vector
2732  * @mr:            memory region
2733  * @sgl:           dma mapped scatterlist
2734  * @sg_nents:      number of entries in sg
2735  * @sg_offset_p:   ==== =======================================================
2736  *                 IN   start offset in bytes into sg
2737  *                 OUT  offset in bytes for element n of the sg of the first
2738  *                      byte that has not been processed where n is the return
2739  *                      value of this function.
2740  *                 ==== =======================================================
2741  * @set_page:      driver page assignment function pointer
2742  *
2743  * Core service helper for drivers to convert the largest
2744  * prefix of given sg list to a page vector. The sg list
2745  * prefix converted is the prefix that meet the requirements
2746  * of ib_map_mr_sg.
2747  *
2748  * Returns the number of sg elements that were assigned to
2749  * a page vector.
2750  */
ib_sg_to_pages(struct ib_mr * mr,struct scatterlist * sgl,int sg_nents,unsigned int * sg_offset_p,int (* set_page)(struct ib_mr *,u64))2751 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2752 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2753 {
2754 	struct scatterlist *sg;
2755 	u64 last_end_dma_addr = 0;
2756 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2757 	unsigned int last_page_off = 0;
2758 	u64 page_mask = ~((u64)mr->page_size - 1);
2759 	int i, ret;
2760 
2761 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2762 		return -EINVAL;
2763 
2764 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2765 	mr->length = 0;
2766 
2767 	for_each_sg(sgl, sg, sg_nents, i) {
2768 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2769 		u64 prev_addr = dma_addr;
2770 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2771 		u64 end_dma_addr = dma_addr + dma_len;
2772 		u64 page_addr = dma_addr & page_mask;
2773 
2774 		/*
2775 		 * For the second and later elements, check whether either the
2776 		 * end of element i-1 or the start of element i is not aligned
2777 		 * on a page boundary.
2778 		 */
2779 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2780 			/* Stop mapping if there is a gap. */
2781 			if (last_end_dma_addr != dma_addr)
2782 				break;
2783 
2784 			/*
2785 			 * Coalesce this element with the last. If it is small
2786 			 * enough just update mr->length. Otherwise start
2787 			 * mapping from the next page.
2788 			 */
2789 			goto next_page;
2790 		}
2791 
2792 		do {
2793 			ret = set_page(mr, page_addr);
2794 			if (unlikely(ret < 0)) {
2795 				sg_offset = prev_addr - sg_dma_address(sg);
2796 				mr->length += prev_addr - dma_addr;
2797 				if (sg_offset_p)
2798 					*sg_offset_p = sg_offset;
2799 				return i || sg_offset ? i : ret;
2800 			}
2801 			prev_addr = page_addr;
2802 next_page:
2803 			page_addr += mr->page_size;
2804 		} while (page_addr < end_dma_addr);
2805 
2806 		mr->length += dma_len;
2807 		last_end_dma_addr = end_dma_addr;
2808 		last_page_off = end_dma_addr & ~page_mask;
2809 
2810 		sg_offset = 0;
2811 	}
2812 
2813 	if (sg_offset_p)
2814 		*sg_offset_p = 0;
2815 	return i;
2816 }
2817 EXPORT_SYMBOL(ib_sg_to_pages);
2818 
2819 struct ib_drain_cqe {
2820 	struct ib_cqe cqe;
2821 	struct completion done;
2822 };
2823 
ib_drain_qp_done(struct ib_cq * cq,struct ib_wc * wc)2824 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2825 {
2826 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2827 						cqe);
2828 
2829 	complete(&cqe->done);
2830 }
2831 
2832 /*
2833  * Post a WR and block until its completion is reaped for the SQ.
2834  */
__ib_drain_sq(struct ib_qp * qp)2835 static void __ib_drain_sq(struct ib_qp *qp)
2836 {
2837 	struct ib_cq *cq = qp->send_cq;
2838 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2839 	struct ib_drain_cqe sdrain;
2840 	struct ib_rdma_wr swr = {
2841 		.wr = {
2842 			.next = NULL,
2843 			{ .wr_cqe	= &sdrain.cqe, },
2844 			.opcode	= IB_WR_RDMA_WRITE,
2845 		},
2846 	};
2847 	int ret;
2848 
2849 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2850 	if (ret) {
2851 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2852 		return;
2853 	}
2854 
2855 	sdrain.cqe.done = ib_drain_qp_done;
2856 	init_completion(&sdrain.done);
2857 
2858 	ret = ib_post_send(qp, &swr.wr, NULL);
2859 	if (ret) {
2860 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2861 		return;
2862 	}
2863 
2864 	if (cq->poll_ctx == IB_POLL_DIRECT)
2865 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2866 			ib_process_cq_direct(cq, -1);
2867 	else
2868 		wait_for_completion(&sdrain.done);
2869 }
2870 
2871 /*
2872  * Post a WR and block until its completion is reaped for the RQ.
2873  */
__ib_drain_rq(struct ib_qp * qp)2874 static void __ib_drain_rq(struct ib_qp *qp)
2875 {
2876 	struct ib_cq *cq = qp->recv_cq;
2877 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2878 	struct ib_drain_cqe rdrain;
2879 	struct ib_recv_wr rwr = {};
2880 	int ret;
2881 
2882 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2883 	if (ret) {
2884 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2885 		return;
2886 	}
2887 
2888 	rwr.wr_cqe = &rdrain.cqe;
2889 	rdrain.cqe.done = ib_drain_qp_done;
2890 	init_completion(&rdrain.done);
2891 
2892 	ret = ib_post_recv(qp, &rwr, NULL);
2893 	if (ret) {
2894 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2895 		return;
2896 	}
2897 
2898 	if (cq->poll_ctx == IB_POLL_DIRECT)
2899 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2900 			ib_process_cq_direct(cq, -1);
2901 	else
2902 		wait_for_completion(&rdrain.done);
2903 }
2904 
2905 /*
2906  * __ib_drain_srq() - Block until Last WQE Reached event arrives, or timeout
2907  *                    expires.
2908  * @qp:               queue pair associated with SRQ to drain
2909  *
2910  * Quoting 10.3.1 Queue Pair and EE Context States:
2911  *
2912  * Note, for QPs that are associated with an SRQ, the Consumer should take the
2913  * QP through the Error State before invoking a Destroy QP or a Modify QP to the
2914  * Reset State.  The Consumer may invoke the Destroy QP without first performing
2915  * a Modify QP to the Error State and waiting for the Affiliated Asynchronous
2916  * Last WQE Reached Event. However, if the Consumer does not wait for the
2917  * Affiliated Asynchronous Last WQE Reached Event, then WQE and Data Segment
2918  * leakage may occur. Therefore, it is good programming practice to tear down a
2919  * QP that is associated with an SRQ by using the following process:
2920  *
2921  * - Put the QP in the Error State
2922  * - Wait for the Affiliated Asynchronous Last WQE Reached Event;
2923  * - either:
2924  *       drain the CQ by invoking the Poll CQ verb and either wait for CQ
2925  *       to be empty or the number of Poll CQ operations has exceeded
2926  *       CQ capacity size;
2927  * - or
2928  *       post another WR that completes on the same CQ and wait for this
2929  *       WR to return as a WC;
2930  * - and then invoke a Destroy QP or Reset QP.
2931  *
2932  * We use the first option.
2933  */
__ib_drain_srq(struct ib_qp * qp)2934 static void __ib_drain_srq(struct ib_qp *qp)
2935 {
2936 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2937 	struct ib_cq *cq;
2938 	int n, polled = 0;
2939 	int ret;
2940 
2941 	if (!qp->srq) {
2942 		WARN_ONCE(1, "QP 0x%p is not associated with SRQ\n", qp);
2943 		return;
2944 	}
2945 
2946 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2947 	if (ret) {
2948 		WARN_ONCE(ret, "failed to drain shared recv queue: %d\n", ret);
2949 		return;
2950 	}
2951 
2952 	if (ib_srq_has_cq(qp->srq->srq_type)) {
2953 		cq = qp->srq->ext.cq;
2954 	} else if (qp->recv_cq) {
2955 		cq = qp->recv_cq;
2956 	} else {
2957 		WARN_ONCE(1, "QP 0x%p has no CQ associated with SRQ\n", qp);
2958 		return;
2959 	}
2960 
2961 	if (wait_for_completion_timeout(&qp->srq_completion, 60 * HZ) > 0) {
2962 		while (polled != cq->cqe) {
2963 			n = ib_process_cq_direct(cq, cq->cqe - polled);
2964 			if (!n)
2965 				return;
2966 			polled += n;
2967 		}
2968 	}
2969 }
2970 
2971 /**
2972  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2973  *		   application.
2974  * @qp:            queue pair to drain
2975  *
2976  * If the device has a provider-specific drain function, then
2977  * call that.  Otherwise call the generic drain function
2978  * __ib_drain_sq().
2979  *
2980  * The caller must:
2981  *
2982  * ensure there is room in the CQ and SQ for the drain work request and
2983  * completion.
2984  *
2985  * allocate the CQ using ib_alloc_cq().
2986  *
2987  * ensure that there are no other contexts that are posting WRs concurrently.
2988  * Otherwise the drain is not guaranteed.
2989  */
ib_drain_sq(struct ib_qp * qp)2990 void ib_drain_sq(struct ib_qp *qp)
2991 {
2992 	if (qp->device->ops.drain_sq)
2993 		qp->device->ops.drain_sq(qp);
2994 	else
2995 		__ib_drain_sq(qp);
2996 	trace_cq_drain_complete(qp->send_cq);
2997 }
2998 EXPORT_SYMBOL(ib_drain_sq);
2999 
3000 /**
3001  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
3002  *		   application.
3003  * @qp:            queue pair to drain
3004  *
3005  * If the device has a provider-specific drain function, then
3006  * call that.  Otherwise call the generic drain function
3007  * __ib_drain_rq().
3008  *
3009  * The caller must:
3010  *
3011  * ensure there is room in the CQ and RQ for the drain work request and
3012  * completion.
3013  *
3014  * allocate the CQ using ib_alloc_cq().
3015  *
3016  * ensure that there are no other contexts that are posting WRs concurrently.
3017  * Otherwise the drain is not guaranteed.
3018  */
ib_drain_rq(struct ib_qp * qp)3019 void ib_drain_rq(struct ib_qp *qp)
3020 {
3021 	if (qp->device->ops.drain_rq)
3022 		qp->device->ops.drain_rq(qp);
3023 	else
3024 		__ib_drain_rq(qp);
3025 	trace_cq_drain_complete(qp->recv_cq);
3026 }
3027 EXPORT_SYMBOL(ib_drain_rq);
3028 
3029 /**
3030  * ib_drain_qp() - Block until all CQEs have been consumed by the
3031  *		   application on both the RQ and SQ.
3032  * @qp:            queue pair to drain
3033  *
3034  * The caller must:
3035  *
3036  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
3037  * and completions.
3038  *
3039  * allocate the CQs using ib_alloc_cq().
3040  *
3041  * ensure that there are no other contexts that are posting WRs concurrently.
3042  * Otherwise the drain is not guaranteed.
3043  */
ib_drain_qp(struct ib_qp * qp)3044 void ib_drain_qp(struct ib_qp *qp)
3045 {
3046 	ib_drain_sq(qp);
3047 	if (!qp->srq)
3048 		ib_drain_rq(qp);
3049 	else
3050 		__ib_drain_srq(qp);
3051 }
3052 EXPORT_SYMBOL(ib_drain_qp);
3053 
rdma_alloc_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *))3054 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
3055 				     enum rdma_netdev_t type, const char *name,
3056 				     unsigned char name_assign_type,
3057 				     void (*setup)(struct net_device *))
3058 {
3059 	struct rdma_netdev_alloc_params params;
3060 	struct net_device *netdev;
3061 	int rc;
3062 
3063 	if (!device->ops.rdma_netdev_get_params)
3064 		return ERR_PTR(-EOPNOTSUPP);
3065 
3066 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3067 						&params);
3068 	if (rc)
3069 		return ERR_PTR(rc);
3070 
3071 	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
3072 				  setup, params.txqs, params.rxqs);
3073 	if (!netdev)
3074 		return ERR_PTR(-ENOMEM);
3075 
3076 	return netdev;
3077 }
3078 EXPORT_SYMBOL(rdma_alloc_netdev);
3079 
rdma_init_netdev(struct ib_device * device,u32 port_num,enum rdma_netdev_t type,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),struct net_device * netdev)3080 int rdma_init_netdev(struct ib_device *device, u32 port_num,
3081 		     enum rdma_netdev_t type, const char *name,
3082 		     unsigned char name_assign_type,
3083 		     void (*setup)(struct net_device *),
3084 		     struct net_device *netdev)
3085 {
3086 	struct rdma_netdev_alloc_params params;
3087 	int rc;
3088 
3089 	if (!device->ops.rdma_netdev_get_params)
3090 		return -EOPNOTSUPP;
3091 
3092 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
3093 						&params);
3094 	if (rc)
3095 		return rc;
3096 
3097 	return params.initialize_rdma_netdev(device, port_num,
3098 					     netdev, params.param);
3099 }
3100 EXPORT_SYMBOL(rdma_init_netdev);
3101 
__rdma_block_iter_start(struct ib_block_iter * biter,struct scatterlist * sglist,unsigned int nents,unsigned long pgsz)3102 void __rdma_block_iter_start(struct ib_block_iter *biter,
3103 			     struct scatterlist *sglist, unsigned int nents,
3104 			     unsigned long pgsz)
3105 {
3106 	memset(biter, 0, sizeof(struct ib_block_iter));
3107 	biter->__sg = sglist;
3108 	biter->__sg_nents = nents;
3109 
3110 	/* Driver provides best block size to use */
3111 	biter->__pg_bit = __fls(pgsz);
3112 }
3113 EXPORT_SYMBOL(__rdma_block_iter_start);
3114 
__rdma_block_iter_next(struct ib_block_iter * biter)3115 bool __rdma_block_iter_next(struct ib_block_iter *biter)
3116 {
3117 	unsigned int block_offset;
3118 	unsigned int delta;
3119 
3120 	if (!biter->__sg_nents || !biter->__sg)
3121 		return false;
3122 
3123 	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
3124 	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
3125 	delta = BIT_ULL(biter->__pg_bit) - block_offset;
3126 
3127 	while (biter->__sg_nents && biter->__sg &&
3128 	       sg_dma_len(biter->__sg) - biter->__sg_advance <= delta) {
3129 		delta -= sg_dma_len(biter->__sg) - biter->__sg_advance;
3130 		biter->__sg_advance = 0;
3131 		biter->__sg = sg_next(biter->__sg);
3132 		biter->__sg_nents--;
3133 	}
3134 	biter->__sg_advance += delta;
3135 
3136 	return true;
3137 }
3138 EXPORT_SYMBOL(__rdma_block_iter_next);
3139 
3140 /**
3141  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
3142  *   for the drivers.
3143  * @descs: array of static descriptors
3144  * @num_counters: number of elements in array
3145  * @lifespan: milliseconds between updates
3146  */
rdma_alloc_hw_stats_struct(const struct rdma_stat_desc * descs,int num_counters,unsigned long lifespan)3147 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
3148 	const struct rdma_stat_desc *descs, int num_counters,
3149 	unsigned long lifespan)
3150 {
3151 	struct rdma_hw_stats *stats;
3152 
3153 	stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL);
3154 	if (!stats)
3155 		return NULL;
3156 
3157 	stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters),
3158 				     sizeof(*stats->is_disabled), GFP_KERNEL);
3159 	if (!stats->is_disabled)
3160 		goto err;
3161 
3162 	stats->descs = descs;
3163 	stats->num_counters = num_counters;
3164 	stats->lifespan = msecs_to_jiffies(lifespan);
3165 	mutex_init(&stats->lock);
3166 
3167 	return stats;
3168 
3169 err:
3170 	kfree(stats);
3171 	return NULL;
3172 }
3173 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct);
3174 
3175 /**
3176  * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats
3177  * @stats: statistics to release
3178  */
rdma_free_hw_stats_struct(struct rdma_hw_stats * stats)3179 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats)
3180 {
3181 	if (!stats)
3182 		return;
3183 
3184 	kfree(stats->is_disabled);
3185 	kfree(stats);
3186 }
3187 EXPORT_SYMBOL(rdma_free_hw_stats_struct);
3188