xref: /linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 73d7cf07109e79b093d1a1fb57a88d4048cd9b4b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 struct host_mmu host_mmu;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30 
guest_lock_component(struct pkvm_hyp_vm * vm)31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33 	hyp_spin_lock(&vm->lock);
34 	current_vm = vm;
35 }
36 
guest_unlock_component(struct pkvm_hyp_vm * vm)37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39 	current_vm = NULL;
40 	hyp_spin_unlock(&vm->lock);
41 }
42 
host_lock_component(void)43 static void host_lock_component(void)
44 {
45 	hyp_spin_lock(&host_mmu.lock);
46 }
47 
host_unlock_component(void)48 static void host_unlock_component(void)
49 {
50 	hyp_spin_unlock(&host_mmu.lock);
51 }
52 
hyp_lock_component(void)53 static void hyp_lock_component(void)
54 {
55 	hyp_spin_lock(&pkvm_pgd_lock);
56 }
57 
hyp_unlock_component(void)58 static void hyp_unlock_component(void)
59 {
60 	hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62 
63 #define for_each_hyp_page(__p, __st, __sz)				\
64 	for (struct hyp_page *__p = hyp_phys_to_page(__st),		\
65 			     *__e = __p + ((__sz) >> PAGE_SHIFT);	\
66 	     __p < __e; __p++)
67 
host_s2_zalloc_pages_exact(size_t size)68 static void *host_s2_zalloc_pages_exact(size_t size)
69 {
70 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
71 
72 	hyp_split_page(hyp_virt_to_page(addr));
73 
74 	/*
75 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
76 	 * so there should be no need to free any of the tail pages to make the
77 	 * allocation exact.
78 	 */
79 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
80 
81 	return addr;
82 }
83 
host_s2_zalloc_page(void * pool)84 static void *host_s2_zalloc_page(void *pool)
85 {
86 	return hyp_alloc_pages(pool, 0);
87 }
88 
host_s2_get_page(void * addr)89 static void host_s2_get_page(void *addr)
90 {
91 	hyp_get_page(&host_s2_pool, addr);
92 }
93 
host_s2_put_page(void * addr)94 static void host_s2_put_page(void *addr)
95 {
96 	hyp_put_page(&host_s2_pool, addr);
97 }
98 
host_s2_free_unlinked_table(void * addr,s8 level)99 static void host_s2_free_unlinked_table(void *addr, s8 level)
100 {
101 	kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
102 }
103 
prepare_s2_pool(void * pgt_pool_base)104 static int prepare_s2_pool(void *pgt_pool_base)
105 {
106 	unsigned long nr_pages, pfn;
107 	int ret;
108 
109 	pfn = hyp_virt_to_pfn(pgt_pool_base);
110 	nr_pages = host_s2_pgtable_pages();
111 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
112 	if (ret)
113 		return ret;
114 
115 	host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
116 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
117 		.zalloc_page = host_s2_zalloc_page,
118 		.free_unlinked_table = host_s2_free_unlinked_table,
119 		.phys_to_virt = hyp_phys_to_virt,
120 		.virt_to_phys = hyp_virt_to_phys,
121 		.page_count = hyp_page_count,
122 		.get_page = host_s2_get_page,
123 		.put_page = host_s2_put_page,
124 	};
125 
126 	return 0;
127 }
128 
prepare_host_vtcr(void)129 static void prepare_host_vtcr(void)
130 {
131 	u32 parange, phys_shift;
132 
133 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
134 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
135 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
136 
137 	host_mmu.arch.mmu.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
138 					      id_aa64mmfr1_el1_sys_val, phys_shift);
139 }
140 
141 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
142 
kvm_host_prepare_stage2(void * pgt_pool_base)143 int kvm_host_prepare_stage2(void *pgt_pool_base)
144 {
145 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
146 	int ret;
147 
148 	prepare_host_vtcr();
149 	hyp_spin_lock_init(&host_mmu.lock);
150 	mmu->arch = &host_mmu.arch;
151 
152 	ret = prepare_s2_pool(pgt_pool_base);
153 	if (ret)
154 		return ret;
155 
156 	ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
157 					&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
158 					host_stage2_force_pte_cb);
159 	if (ret)
160 		return ret;
161 
162 	mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
163 	mmu->pgt = &host_mmu.pgt;
164 	atomic64_set(&mmu->vmid.id, 0);
165 
166 	return 0;
167 }
168 
guest_s2_zalloc_pages_exact(size_t size)169 static void *guest_s2_zalloc_pages_exact(size_t size)
170 {
171 	void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
172 
173 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
174 	hyp_split_page(hyp_virt_to_page(addr));
175 
176 	return addr;
177 }
178 
guest_s2_free_pages_exact(void * addr,unsigned long size)179 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
180 {
181 	u8 order = get_order(size);
182 	unsigned int i;
183 
184 	for (i = 0; i < (1 << order); i++)
185 		hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
186 }
187 
guest_s2_zalloc_page(void * mc)188 static void *guest_s2_zalloc_page(void *mc)
189 {
190 	struct hyp_page *p;
191 	void *addr;
192 
193 	addr = hyp_alloc_pages(&current_vm->pool, 0);
194 	if (addr)
195 		return addr;
196 
197 	addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
198 	if (!addr)
199 		return addr;
200 
201 	memset(addr, 0, PAGE_SIZE);
202 	p = hyp_virt_to_page(addr);
203 	p->refcount = 1;
204 	p->order = 0;
205 
206 	return addr;
207 }
208 
guest_s2_get_page(void * addr)209 static void guest_s2_get_page(void *addr)
210 {
211 	hyp_get_page(&current_vm->pool, addr);
212 }
213 
guest_s2_put_page(void * addr)214 static void guest_s2_put_page(void *addr)
215 {
216 	hyp_put_page(&current_vm->pool, addr);
217 }
218 
__apply_guest_page(void * va,size_t size,void (* func)(void * addr,size_t size))219 static void __apply_guest_page(void *va, size_t size,
220 			       void (*func)(void *addr, size_t size))
221 {
222 	size += va - PTR_ALIGN_DOWN(va, PAGE_SIZE);
223 	va = PTR_ALIGN_DOWN(va, PAGE_SIZE);
224 	size = PAGE_ALIGN(size);
225 
226 	while (size) {
227 		size_t map_size = PAGE_SIZE;
228 		void *map;
229 
230 		if (IS_ALIGNED((unsigned long)va, PMD_SIZE) && size >= PMD_SIZE)
231 			map = hyp_fixblock_map(__hyp_pa(va), &map_size);
232 		else
233 			map = hyp_fixmap_map(__hyp_pa(va));
234 
235 		func(map, map_size);
236 
237 		if (map_size == PMD_SIZE)
238 			hyp_fixblock_unmap();
239 		else
240 			hyp_fixmap_unmap();
241 
242 		size -= map_size;
243 		va += map_size;
244 	}
245 }
246 
clean_dcache_guest_page(void * va,size_t size)247 static void clean_dcache_guest_page(void *va, size_t size)
248 {
249 	__apply_guest_page(va, size, __clean_dcache_guest_page);
250 }
251 
invalidate_icache_guest_page(void * va,size_t size)252 static void invalidate_icache_guest_page(void *va, size_t size)
253 {
254 	__apply_guest_page(va, size, __invalidate_icache_guest_page);
255 }
256 
kvm_guest_prepare_stage2(struct pkvm_hyp_vm * vm,void * pgd)257 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
258 {
259 	struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
260 	unsigned long nr_pages;
261 	int ret;
262 
263 	nr_pages = kvm_pgtable_stage2_pgd_size(mmu->vtcr) >> PAGE_SHIFT;
264 	ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
265 	if (ret)
266 		return ret;
267 
268 	hyp_spin_lock_init(&vm->lock);
269 	vm->mm_ops = (struct kvm_pgtable_mm_ops) {
270 		.zalloc_pages_exact	= guest_s2_zalloc_pages_exact,
271 		.free_pages_exact	= guest_s2_free_pages_exact,
272 		.zalloc_page		= guest_s2_zalloc_page,
273 		.phys_to_virt		= hyp_phys_to_virt,
274 		.virt_to_phys		= hyp_virt_to_phys,
275 		.page_count		= hyp_page_count,
276 		.get_page		= guest_s2_get_page,
277 		.put_page		= guest_s2_put_page,
278 		.dcache_clean_inval_poc	= clean_dcache_guest_page,
279 		.icache_inval_pou	= invalidate_icache_guest_page,
280 	};
281 
282 	guest_lock_component(vm);
283 	ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0, NULL);
284 	guest_unlock_component(vm);
285 	if (ret)
286 		return ret;
287 
288 	vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
289 
290 	return 0;
291 }
292 
reclaim_pgtable_pages(struct pkvm_hyp_vm * vm,struct kvm_hyp_memcache * mc)293 void reclaim_pgtable_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
294 {
295 	struct hyp_page *page;
296 	void *addr;
297 
298 	/* Dump all pgtable pages in the hyp_pool */
299 	guest_lock_component(vm);
300 	kvm_pgtable_stage2_destroy(&vm->pgt);
301 	vm->kvm.arch.mmu.pgd_phys = 0ULL;
302 	guest_unlock_component(vm);
303 
304 	/* Drain the hyp_pool into the memcache */
305 	addr = hyp_alloc_pages(&vm->pool, 0);
306 	while (addr) {
307 		page = hyp_virt_to_page(addr);
308 		page->refcount = 0;
309 		page->order = 0;
310 		push_hyp_memcache(mc, addr, hyp_virt_to_phys);
311 		WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
312 		addr = hyp_alloc_pages(&vm->pool, 0);
313 	}
314 }
315 
__pkvm_prot_finalize(void)316 int __pkvm_prot_finalize(void)
317 {
318 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
319 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
320 
321 	if (params->hcr_el2 & HCR_VM)
322 		return -EPERM;
323 
324 	params->vttbr = kvm_get_vttbr(mmu);
325 	params->vtcr = mmu->vtcr;
326 	params->hcr_el2 |= HCR_VM;
327 
328 	/*
329 	 * The CMO below not only cleans the updated params to the
330 	 * PoC, but also provides the DSB that ensures ongoing
331 	 * page-table walks that have started before we trapped to EL2
332 	 * have completed.
333 	 */
334 	kvm_flush_dcache_to_poc(params, sizeof(*params));
335 
336 	write_sysreg_hcr(params->hcr_el2);
337 	__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
338 
339 	/*
340 	 * Make sure to have an ISB before the TLB maintenance below but only
341 	 * when __load_stage2() doesn't include one already.
342 	 */
343 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
344 
345 	/* Invalidate stale HCR bits that may be cached in TLBs */
346 	__tlbi(vmalls12e1);
347 	dsb(nsh);
348 	isb();
349 
350 	return 0;
351 }
352 
host_stage2_unmap_dev_all(void)353 static int host_stage2_unmap_dev_all(void)
354 {
355 	struct kvm_pgtable *pgt = &host_mmu.pgt;
356 	struct memblock_region *reg;
357 	u64 addr = 0;
358 	int i, ret;
359 
360 	/* Unmap all non-memory regions to recycle the pages */
361 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
362 		reg = &hyp_memory[i];
363 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
364 		if (ret)
365 			return ret;
366 	}
367 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
368 }
369 
370 struct kvm_mem_range {
371 	u64 start;
372 	u64 end;
373 };
374 
find_mem_range(phys_addr_t addr,struct kvm_mem_range * range)375 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
376 {
377 	int cur, left = 0, right = hyp_memblock_nr;
378 	struct memblock_region *reg;
379 	phys_addr_t end;
380 
381 	range->start = 0;
382 	range->end = ULONG_MAX;
383 
384 	/* The list of memblock regions is sorted, binary search it */
385 	while (left < right) {
386 		cur = (left + right) >> 1;
387 		reg = &hyp_memory[cur];
388 		end = reg->base + reg->size;
389 		if (addr < reg->base) {
390 			right = cur;
391 			range->end = reg->base;
392 		} else if (addr >= end) {
393 			left = cur + 1;
394 			range->start = end;
395 		} else {
396 			range->start = reg->base;
397 			range->end = end;
398 			return reg;
399 		}
400 	}
401 
402 	return NULL;
403 }
404 
addr_is_memory(phys_addr_t phys)405 bool addr_is_memory(phys_addr_t phys)
406 {
407 	struct kvm_mem_range range;
408 
409 	return !!find_mem_range(phys, &range);
410 }
411 
is_in_mem_range(u64 addr,struct kvm_mem_range * range)412 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
413 {
414 	return range->start <= addr && addr < range->end;
415 }
416 
check_range_allowed_memory(u64 start,u64 end)417 static int check_range_allowed_memory(u64 start, u64 end)
418 {
419 	struct memblock_region *reg;
420 	struct kvm_mem_range range;
421 
422 	/*
423 	 * Callers can't check the state of a range that overlaps memory and
424 	 * MMIO regions, so ensure [start, end[ is in the same kvm_mem_range.
425 	 */
426 	reg = find_mem_range(start, &range);
427 	if (!is_in_mem_range(end - 1, &range))
428 		return -EINVAL;
429 
430 	if (!reg || reg->flags & MEMBLOCK_NOMAP)
431 		return -EPERM;
432 
433 	return 0;
434 }
435 
range_is_memory(u64 start,u64 end)436 static bool range_is_memory(u64 start, u64 end)
437 {
438 	struct kvm_mem_range r;
439 
440 	if (!find_mem_range(start, &r))
441 		return false;
442 
443 	return is_in_mem_range(end - 1, &r);
444 }
445 
__host_stage2_idmap(u64 start,u64 end,enum kvm_pgtable_prot prot)446 static inline int __host_stage2_idmap(u64 start, u64 end,
447 				      enum kvm_pgtable_prot prot)
448 {
449 	return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
450 				      prot, &host_s2_pool, 0);
451 }
452 
453 /*
454  * The pool has been provided with enough pages to cover all of memory with
455  * page granularity, but it is difficult to know how much of the MMIO range
456  * we will need to cover upfront, so we may need to 'recycle' the pages if we
457  * run out.
458  */
459 #define host_stage2_try(fn, ...)					\
460 	({								\
461 		int __ret;						\
462 		hyp_assert_lock_held(&host_mmu.lock);			\
463 		__ret = fn(__VA_ARGS__);				\
464 		if (__ret == -ENOMEM) {					\
465 			__ret = host_stage2_unmap_dev_all();		\
466 			if (!__ret)					\
467 				__ret = fn(__VA_ARGS__);		\
468 		}							\
469 		__ret;							\
470 	 })
471 
range_included(struct kvm_mem_range * child,struct kvm_mem_range * parent)472 static inline bool range_included(struct kvm_mem_range *child,
473 				  struct kvm_mem_range *parent)
474 {
475 	return parent->start <= child->start && child->end <= parent->end;
476 }
477 
host_stage2_adjust_range(u64 addr,struct kvm_mem_range * range)478 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
479 {
480 	struct kvm_mem_range cur;
481 	kvm_pte_t pte;
482 	u64 granule;
483 	s8 level;
484 	int ret;
485 
486 	hyp_assert_lock_held(&host_mmu.lock);
487 	ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
488 	if (ret)
489 		return ret;
490 
491 	if (kvm_pte_valid(pte))
492 		return -EAGAIN;
493 
494 	if (pte) {
495 		WARN_ON(addr_is_memory(addr) &&
496 			get_host_state(hyp_phys_to_page(addr)) != PKVM_NOPAGE);
497 		return -EPERM;
498 	}
499 
500 	for (; level <= KVM_PGTABLE_LAST_LEVEL; level++) {
501 		if (!kvm_level_supports_block_mapping(level))
502 			continue;
503 		granule = kvm_granule_size(level);
504 		cur.start = ALIGN_DOWN(addr, granule);
505 		cur.end = cur.start + granule;
506 		if (!range_included(&cur, range))
507 			continue;
508 		*range = cur;
509 		return 0;
510 	}
511 
512 	WARN_ON(1);
513 
514 	return -EINVAL;
515 }
516 
host_stage2_idmap_locked(phys_addr_t addr,u64 size,enum kvm_pgtable_prot prot)517 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
518 			     enum kvm_pgtable_prot prot)
519 {
520 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
521 }
522 
__host_update_page_state(phys_addr_t addr,u64 size,enum pkvm_page_state state)523 static void __host_update_page_state(phys_addr_t addr, u64 size, enum pkvm_page_state state)
524 {
525 	for_each_hyp_page(page, addr, size)
526 		set_host_state(page, state);
527 }
528 
host_stage2_set_owner_locked(phys_addr_t addr,u64 size,u8 owner_id)529 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
530 {
531 	int ret;
532 
533 	if (!range_is_memory(addr, addr + size))
534 		return -EPERM;
535 
536 	ret = host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
537 			      addr, size, &host_s2_pool, owner_id);
538 	if (ret)
539 		return ret;
540 
541 	/* Don't forget to update the vmemmap tracking for the host */
542 	if (owner_id == PKVM_ID_HOST)
543 		__host_update_page_state(addr, size, PKVM_PAGE_OWNED);
544 	else
545 		__host_update_page_state(addr, size, PKVM_NOPAGE);
546 
547 	return 0;
548 }
549 
host_stage2_force_pte_cb(u64 addr,u64 end,enum kvm_pgtable_prot prot)550 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
551 {
552 	/*
553 	 * Block mappings must be used with care in the host stage-2 as a
554 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
555 	 * an existing block will delete the block under the assumption that
556 	 * mappings in the rest of the block range can always be rebuilt lazily.
557 	 * That assumption is correct for the host stage-2 with RWX mappings
558 	 * targeting memory or RW mappings targeting MMIO ranges (see
559 	 * host_stage2_idmap() below which implements some of the host memory
560 	 * abort logic). However, this is not safe for any other mappings where
561 	 * the host stage-2 page-table is in fact the only place where this
562 	 * state is stored. In all those cases, it is safer to use page-level
563 	 * mappings, hence avoiding to lose the state because of side-effects in
564 	 * kvm_pgtable_stage2_map().
565 	 */
566 	if (range_is_memory(addr, end))
567 		return prot != PKVM_HOST_MEM_PROT;
568 	else
569 		return prot != PKVM_HOST_MMIO_PROT;
570 }
571 
host_stage2_idmap(u64 addr)572 static int host_stage2_idmap(u64 addr)
573 {
574 	struct kvm_mem_range range;
575 	bool is_memory = !!find_mem_range(addr, &range);
576 	enum kvm_pgtable_prot prot;
577 	int ret;
578 
579 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
580 
581 	host_lock_component();
582 	ret = host_stage2_adjust_range(addr, &range);
583 	if (ret)
584 		goto unlock;
585 
586 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
587 unlock:
588 	host_unlock_component();
589 
590 	return ret;
591 }
592 
handle_host_mem_abort(struct kvm_cpu_context * host_ctxt)593 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
594 {
595 	struct kvm_vcpu_fault_info fault;
596 	u64 esr, addr;
597 	int ret = 0;
598 
599 	esr = read_sysreg_el2(SYS_ESR);
600 	if (!__get_fault_info(esr, &fault)) {
601 		/*
602 		 * We've presumably raced with a page-table change which caused
603 		 * AT to fail, try again.
604 		 */
605 		return;
606 	}
607 
608 
609 	/*
610 	 * Yikes, we couldn't resolve the fault IPA. This should reinject an
611 	 * abort into the host when we figure out how to do that.
612 	 */
613 	BUG_ON(!(fault.hpfar_el2 & HPFAR_EL2_NS));
614 	addr = FIELD_GET(HPFAR_EL2_FIPA, fault.hpfar_el2) << 12;
615 
616 	ret = host_stage2_idmap(addr);
617 	BUG_ON(ret && ret != -EAGAIN);
618 }
619 
620 struct check_walk_data {
621 	enum pkvm_page_state	desired;
622 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte, u64 addr);
623 };
624 
__check_page_state_visitor(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)625 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
626 				      enum kvm_pgtable_walk_flags visit)
627 {
628 	struct check_walk_data *d = ctx->arg;
629 
630 	return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
631 }
632 
check_page_state_range(struct kvm_pgtable * pgt,u64 addr,u64 size,struct check_walk_data * data)633 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
634 				  struct check_walk_data *data)
635 {
636 	struct kvm_pgtable_walker walker = {
637 		.cb	= __check_page_state_visitor,
638 		.arg	= data,
639 		.flags	= KVM_PGTABLE_WALK_LEAF,
640 	};
641 
642 	return kvm_pgtable_walk(pgt, addr, size, &walker);
643 }
644 
__host_check_page_state_range(u64 addr,u64 size,enum pkvm_page_state state)645 static int __host_check_page_state_range(u64 addr, u64 size,
646 					 enum pkvm_page_state state)
647 {
648 	int ret;
649 
650 	ret = check_range_allowed_memory(addr, addr + size);
651 	if (ret)
652 		return ret;
653 
654 	hyp_assert_lock_held(&host_mmu.lock);
655 
656 	for_each_hyp_page(page, addr, size) {
657 		if (get_host_state(page) != state)
658 			return -EPERM;
659 	}
660 
661 	return 0;
662 }
663 
__host_set_page_state_range(u64 addr,u64 size,enum pkvm_page_state state)664 static int __host_set_page_state_range(u64 addr, u64 size,
665 				       enum pkvm_page_state state)
666 {
667 	if (get_host_state(hyp_phys_to_page(addr)) == PKVM_NOPAGE) {
668 		int ret = host_stage2_idmap_locked(addr, size, PKVM_HOST_MEM_PROT);
669 
670 		if (ret)
671 			return ret;
672 	}
673 
674 	__host_update_page_state(addr, size, state);
675 
676 	return 0;
677 }
678 
__hyp_set_page_state_range(phys_addr_t phys,u64 size,enum pkvm_page_state state)679 static void __hyp_set_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
680 {
681 	for_each_hyp_page(page, phys, size)
682 		set_hyp_state(page, state);
683 }
684 
__hyp_check_page_state_range(phys_addr_t phys,u64 size,enum pkvm_page_state state)685 static int __hyp_check_page_state_range(phys_addr_t phys, u64 size, enum pkvm_page_state state)
686 {
687 	for_each_hyp_page(page, phys, size) {
688 		if (get_hyp_state(page) != state)
689 			return -EPERM;
690 	}
691 
692 	return 0;
693 }
694 
guest_get_page_state(kvm_pte_t pte,u64 addr)695 static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr)
696 {
697 	if (!kvm_pte_valid(pte))
698 		return PKVM_NOPAGE;
699 
700 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
701 }
702 
__guest_check_page_state_range(struct pkvm_hyp_vm * vm,u64 addr,u64 size,enum pkvm_page_state state)703 static int __guest_check_page_state_range(struct pkvm_hyp_vm *vm, u64 addr,
704 					  u64 size, enum pkvm_page_state state)
705 {
706 	struct check_walk_data d = {
707 		.desired	= state,
708 		.get_page_state	= guest_get_page_state,
709 	};
710 
711 	hyp_assert_lock_held(&vm->lock);
712 	return check_page_state_range(&vm->pgt, addr, size, &d);
713 }
714 
__pkvm_host_share_hyp(u64 pfn)715 int __pkvm_host_share_hyp(u64 pfn)
716 {
717 	u64 phys = hyp_pfn_to_phys(pfn);
718 	u64 size = PAGE_SIZE;
719 	int ret;
720 
721 	host_lock_component();
722 	hyp_lock_component();
723 
724 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
725 	if (ret)
726 		goto unlock;
727 	ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
728 	if (ret)
729 		goto unlock;
730 
731 	__hyp_set_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
732 	WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED));
733 
734 unlock:
735 	hyp_unlock_component();
736 	host_unlock_component();
737 
738 	return ret;
739 }
740 
__pkvm_host_unshare_hyp(u64 pfn)741 int __pkvm_host_unshare_hyp(u64 pfn)
742 {
743 	u64 phys = hyp_pfn_to_phys(pfn);
744 	u64 virt = (u64)__hyp_va(phys);
745 	u64 size = PAGE_SIZE;
746 	int ret;
747 
748 	host_lock_component();
749 	hyp_lock_component();
750 
751 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
752 	if (ret)
753 		goto unlock;
754 	ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
755 	if (ret)
756 		goto unlock;
757 	if (hyp_page_count((void *)virt)) {
758 		ret = -EBUSY;
759 		goto unlock;
760 	}
761 
762 	__hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
763 	WARN_ON(__host_set_page_state_range(phys, size, PKVM_PAGE_OWNED));
764 
765 unlock:
766 	hyp_unlock_component();
767 	host_unlock_component();
768 
769 	return ret;
770 }
771 
__pkvm_host_donate_hyp(u64 pfn,u64 nr_pages)772 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
773 {
774 	u64 phys = hyp_pfn_to_phys(pfn);
775 	u64 size = PAGE_SIZE * nr_pages;
776 	void *virt = __hyp_va(phys);
777 	int ret;
778 
779 	host_lock_component();
780 	hyp_lock_component();
781 
782 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
783 	if (ret)
784 		goto unlock;
785 	ret = __hyp_check_page_state_range(phys, size, PKVM_NOPAGE);
786 	if (ret)
787 		goto unlock;
788 
789 	__hyp_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
790 	WARN_ON(pkvm_create_mappings_locked(virt, virt + size, PAGE_HYP));
791 	WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HYP));
792 
793 unlock:
794 	hyp_unlock_component();
795 	host_unlock_component();
796 
797 	return ret;
798 }
799 
__pkvm_hyp_donate_host(u64 pfn,u64 nr_pages)800 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
801 {
802 	u64 phys = hyp_pfn_to_phys(pfn);
803 	u64 size = PAGE_SIZE * nr_pages;
804 	u64 virt = (u64)__hyp_va(phys);
805 	int ret;
806 
807 	host_lock_component();
808 	hyp_lock_component();
809 
810 	ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
811 	if (ret)
812 		goto unlock;
813 	ret = __host_check_page_state_range(phys, size, PKVM_NOPAGE);
814 	if (ret)
815 		goto unlock;
816 
817 	__hyp_set_page_state_range(phys, size, PKVM_NOPAGE);
818 	WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, virt, size) != size);
819 	WARN_ON(host_stage2_set_owner_locked(phys, size, PKVM_ID_HOST));
820 
821 unlock:
822 	hyp_unlock_component();
823 	host_unlock_component();
824 
825 	return ret;
826 }
827 
hyp_pin_shared_mem(void * from,void * to)828 int hyp_pin_shared_mem(void *from, void *to)
829 {
830 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
831 	u64 end = PAGE_ALIGN((u64)to);
832 	u64 phys = __hyp_pa(start);
833 	u64 size = end - start;
834 	struct hyp_page *p;
835 	int ret;
836 
837 	host_lock_component();
838 	hyp_lock_component();
839 
840 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
841 	if (ret)
842 		goto unlock;
843 
844 	ret = __hyp_check_page_state_range(phys, size, PKVM_PAGE_SHARED_BORROWED);
845 	if (ret)
846 		goto unlock;
847 
848 	for (cur = start; cur < end; cur += PAGE_SIZE) {
849 		p = hyp_virt_to_page(cur);
850 		hyp_page_ref_inc(p);
851 		if (p->refcount == 1)
852 			WARN_ON(pkvm_create_mappings_locked((void *)cur,
853 							    (void *)cur + PAGE_SIZE,
854 							    PAGE_HYP));
855 	}
856 
857 unlock:
858 	hyp_unlock_component();
859 	host_unlock_component();
860 
861 	return ret;
862 }
863 
hyp_unpin_shared_mem(void * from,void * to)864 void hyp_unpin_shared_mem(void *from, void *to)
865 {
866 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
867 	u64 end = PAGE_ALIGN((u64)to);
868 	struct hyp_page *p;
869 
870 	host_lock_component();
871 	hyp_lock_component();
872 
873 	for (cur = start; cur < end; cur += PAGE_SIZE) {
874 		p = hyp_virt_to_page(cur);
875 		if (p->refcount == 1)
876 			WARN_ON(kvm_pgtable_hyp_unmap(&pkvm_pgtable, cur, PAGE_SIZE) != PAGE_SIZE);
877 		hyp_page_ref_dec(p);
878 	}
879 
880 	hyp_unlock_component();
881 	host_unlock_component();
882 }
883 
__pkvm_host_share_ffa(u64 pfn,u64 nr_pages)884 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
885 {
886 	u64 phys = hyp_pfn_to_phys(pfn);
887 	u64 size = PAGE_SIZE * nr_pages;
888 	int ret;
889 
890 	host_lock_component();
891 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_OWNED);
892 	if (!ret)
893 		ret = __host_set_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
894 	host_unlock_component();
895 
896 	return ret;
897 }
898 
__pkvm_host_unshare_ffa(u64 pfn,u64 nr_pages)899 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
900 {
901 	u64 phys = hyp_pfn_to_phys(pfn);
902 	u64 size = PAGE_SIZE * nr_pages;
903 	int ret;
904 
905 	host_lock_component();
906 	ret = __host_check_page_state_range(phys, size, PKVM_PAGE_SHARED_OWNED);
907 	if (!ret)
908 		ret = __host_set_page_state_range(phys, size, PKVM_PAGE_OWNED);
909 	host_unlock_component();
910 
911 	return ret;
912 }
913 
__guest_check_transition_size(u64 phys,u64 ipa,u64 nr_pages,u64 * size)914 static int __guest_check_transition_size(u64 phys, u64 ipa, u64 nr_pages, u64 *size)
915 {
916 	size_t block_size;
917 
918 	if (nr_pages == 1) {
919 		*size = PAGE_SIZE;
920 		return 0;
921 	}
922 
923 	/* We solely support second to last level huge mapping */
924 	block_size = kvm_granule_size(KVM_PGTABLE_LAST_LEVEL - 1);
925 
926 	if (nr_pages != block_size >> PAGE_SHIFT)
927 		return -EINVAL;
928 
929 	if (!IS_ALIGNED(phys | ipa, block_size))
930 		return -EINVAL;
931 
932 	*size = block_size;
933 	return 0;
934 }
935 
__pkvm_host_share_guest(u64 pfn,u64 gfn,u64 nr_pages,struct pkvm_hyp_vcpu * vcpu,enum kvm_pgtable_prot prot)936 int __pkvm_host_share_guest(u64 pfn, u64 gfn, u64 nr_pages, struct pkvm_hyp_vcpu *vcpu,
937 			    enum kvm_pgtable_prot prot)
938 {
939 	struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
940 	u64 phys = hyp_pfn_to_phys(pfn);
941 	u64 ipa = hyp_pfn_to_phys(gfn);
942 	u64 size;
943 	int ret;
944 
945 	if (prot & ~KVM_PGTABLE_PROT_RWX)
946 		return -EINVAL;
947 
948 	ret = __guest_check_transition_size(phys, ipa, nr_pages, &size);
949 	if (ret)
950 		return ret;
951 
952 	ret = check_range_allowed_memory(phys, phys + size);
953 	if (ret)
954 		return ret;
955 
956 	host_lock_component();
957 	guest_lock_component(vm);
958 
959 	ret = __guest_check_page_state_range(vm, ipa, size, PKVM_NOPAGE);
960 	if (ret)
961 		goto unlock;
962 
963 	for_each_hyp_page(page, phys, size) {
964 		switch (get_host_state(page)) {
965 		case PKVM_PAGE_OWNED:
966 			continue;
967 		case PKVM_PAGE_SHARED_OWNED:
968 			if (page->host_share_guest_count == U32_MAX) {
969 				ret = -EBUSY;
970 				goto unlock;
971 			}
972 
973 			/* Only host to np-guest multi-sharing is tolerated */
974 			if (page->host_share_guest_count)
975 				continue;
976 
977 			fallthrough;
978 		default:
979 			ret = -EPERM;
980 			goto unlock;
981 		}
982 	}
983 
984 	for_each_hyp_page(page, phys, size) {
985 		set_host_state(page, PKVM_PAGE_SHARED_OWNED);
986 		page->host_share_guest_count++;
987 	}
988 
989 	WARN_ON(kvm_pgtable_stage2_map(&vm->pgt, ipa, size, phys,
990 				       pkvm_mkstate(prot, PKVM_PAGE_SHARED_BORROWED),
991 				       &vcpu->vcpu.arch.pkvm_memcache, 0));
992 
993 unlock:
994 	guest_unlock_component(vm);
995 	host_unlock_component();
996 
997 	return ret;
998 }
999 
__check_host_shared_guest(struct pkvm_hyp_vm * vm,u64 * __phys,u64 ipa,u64 size)1000 static int __check_host_shared_guest(struct pkvm_hyp_vm *vm, u64 *__phys, u64 ipa, u64 size)
1001 {
1002 	enum pkvm_page_state state;
1003 	kvm_pte_t pte;
1004 	u64 phys;
1005 	s8 level;
1006 	int ret;
1007 
1008 	ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
1009 	if (ret)
1010 		return ret;
1011 	if (!kvm_pte_valid(pte))
1012 		return -ENOENT;
1013 	if (kvm_granule_size(level) != size)
1014 		return -E2BIG;
1015 
1016 	state = guest_get_page_state(pte, ipa);
1017 	if (state != PKVM_PAGE_SHARED_BORROWED)
1018 		return -EPERM;
1019 
1020 	phys = kvm_pte_to_phys(pte);
1021 	ret = check_range_allowed_memory(phys, phys + size);
1022 	if (WARN_ON(ret))
1023 		return ret;
1024 
1025 	for_each_hyp_page(page, phys, size) {
1026 		if (get_host_state(page) != PKVM_PAGE_SHARED_OWNED)
1027 			return -EPERM;
1028 		if (WARN_ON(!page->host_share_guest_count))
1029 			return -EINVAL;
1030 	}
1031 
1032 	*__phys = phys;
1033 
1034 	return 0;
1035 }
1036 
__pkvm_host_unshare_guest(u64 gfn,u64 nr_pages,struct pkvm_hyp_vm * vm)1037 int __pkvm_host_unshare_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1038 {
1039 	u64 ipa = hyp_pfn_to_phys(gfn);
1040 	u64 size, phys;
1041 	int ret;
1042 
1043 	ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1044 	if (ret)
1045 		return ret;
1046 
1047 	host_lock_component();
1048 	guest_lock_component(vm);
1049 
1050 	ret = __check_host_shared_guest(vm, &phys, ipa, size);
1051 	if (ret)
1052 		goto unlock;
1053 
1054 	ret = kvm_pgtable_stage2_unmap(&vm->pgt, ipa, size);
1055 	if (ret)
1056 		goto unlock;
1057 
1058 	for_each_hyp_page(page, phys, size) {
1059 		/* __check_host_shared_guest() protects against underflow */
1060 		page->host_share_guest_count--;
1061 		if (!page->host_share_guest_count)
1062 			set_host_state(page, PKVM_PAGE_OWNED);
1063 	}
1064 
1065 unlock:
1066 	guest_unlock_component(vm);
1067 	host_unlock_component();
1068 
1069 	return ret;
1070 }
1071 
assert_host_shared_guest(struct pkvm_hyp_vm * vm,u64 ipa,u64 size)1072 static void assert_host_shared_guest(struct pkvm_hyp_vm *vm, u64 ipa, u64 size)
1073 {
1074 	u64 phys;
1075 	int ret;
1076 
1077 	if (!IS_ENABLED(CONFIG_NVHE_EL2_DEBUG))
1078 		return;
1079 
1080 	host_lock_component();
1081 	guest_lock_component(vm);
1082 
1083 	ret = __check_host_shared_guest(vm, &phys, ipa, size);
1084 
1085 	guest_unlock_component(vm);
1086 	host_unlock_component();
1087 
1088 	WARN_ON(ret && ret != -ENOENT);
1089 }
1090 
__pkvm_host_relax_perms_guest(u64 gfn,struct pkvm_hyp_vcpu * vcpu,enum kvm_pgtable_prot prot)1091 int __pkvm_host_relax_perms_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu, enum kvm_pgtable_prot prot)
1092 {
1093 	struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1094 	u64 ipa = hyp_pfn_to_phys(gfn);
1095 	int ret;
1096 
1097 	if (pkvm_hyp_vm_is_protected(vm))
1098 		return -EPERM;
1099 
1100 	if (prot & ~KVM_PGTABLE_PROT_RWX)
1101 		return -EINVAL;
1102 
1103 	assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1104 	guest_lock_component(vm);
1105 	ret = kvm_pgtable_stage2_relax_perms(&vm->pgt, ipa, prot, 0);
1106 	guest_unlock_component(vm);
1107 
1108 	return ret;
1109 }
1110 
__pkvm_host_wrprotect_guest(u64 gfn,u64 nr_pages,struct pkvm_hyp_vm * vm)1111 int __pkvm_host_wrprotect_guest(u64 gfn, u64 nr_pages, struct pkvm_hyp_vm *vm)
1112 {
1113 	u64 size, ipa = hyp_pfn_to_phys(gfn);
1114 	int ret;
1115 
1116 	if (pkvm_hyp_vm_is_protected(vm))
1117 		return -EPERM;
1118 
1119 	ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1120 	if (ret)
1121 		return ret;
1122 
1123 	assert_host_shared_guest(vm, ipa, size);
1124 	guest_lock_component(vm);
1125 	ret = kvm_pgtable_stage2_wrprotect(&vm->pgt, ipa, size);
1126 	guest_unlock_component(vm);
1127 
1128 	return ret;
1129 }
1130 
__pkvm_host_test_clear_young_guest(u64 gfn,u64 nr_pages,bool mkold,struct pkvm_hyp_vm * vm)1131 int __pkvm_host_test_clear_young_guest(u64 gfn, u64 nr_pages, bool mkold, struct pkvm_hyp_vm *vm)
1132 {
1133 	u64 size, ipa = hyp_pfn_to_phys(gfn);
1134 	int ret;
1135 
1136 	if (pkvm_hyp_vm_is_protected(vm))
1137 		return -EPERM;
1138 
1139 	ret = __guest_check_transition_size(0, ipa, nr_pages, &size);
1140 	if (ret)
1141 		return ret;
1142 
1143 	assert_host_shared_guest(vm, ipa, size);
1144 	guest_lock_component(vm);
1145 	ret = kvm_pgtable_stage2_test_clear_young(&vm->pgt, ipa, size, mkold);
1146 	guest_unlock_component(vm);
1147 
1148 	return ret;
1149 }
1150 
__pkvm_host_mkyoung_guest(u64 gfn,struct pkvm_hyp_vcpu * vcpu)1151 int __pkvm_host_mkyoung_guest(u64 gfn, struct pkvm_hyp_vcpu *vcpu)
1152 {
1153 	struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1154 	u64 ipa = hyp_pfn_to_phys(gfn);
1155 
1156 	if (pkvm_hyp_vm_is_protected(vm))
1157 		return -EPERM;
1158 
1159 	assert_host_shared_guest(vm, ipa, PAGE_SIZE);
1160 	guest_lock_component(vm);
1161 	kvm_pgtable_stage2_mkyoung(&vm->pgt, ipa, 0);
1162 	guest_unlock_component(vm);
1163 
1164 	return 0;
1165 }
1166 
1167 #ifdef CONFIG_NVHE_EL2_DEBUG
1168 struct pkvm_expected_state {
1169 	enum pkvm_page_state host;
1170 	enum pkvm_page_state hyp;
1171 	enum pkvm_page_state guest[2]; /* [ gfn, gfn + 1 ] */
1172 };
1173 
1174 static struct pkvm_expected_state selftest_state;
1175 static struct hyp_page *selftest_page;
1176 
1177 static struct pkvm_hyp_vm selftest_vm = {
1178 	.kvm = {
1179 		.arch = {
1180 			.mmu = {
1181 				.arch = &selftest_vm.kvm.arch,
1182 				.pgt = &selftest_vm.pgt,
1183 			},
1184 		},
1185 	},
1186 };
1187 
1188 static struct pkvm_hyp_vcpu selftest_vcpu = {
1189 	.vcpu = {
1190 		.arch = {
1191 			.hw_mmu = &selftest_vm.kvm.arch.mmu,
1192 		},
1193 		.kvm = &selftest_vm.kvm,
1194 	},
1195 };
1196 
init_selftest_vm(void * virt)1197 static void init_selftest_vm(void *virt)
1198 {
1199 	struct hyp_page *p = hyp_virt_to_page(virt);
1200 	int i;
1201 
1202 	selftest_vm.kvm.arch.mmu.vtcr = host_mmu.arch.mmu.vtcr;
1203 	WARN_ON(kvm_guest_prepare_stage2(&selftest_vm, virt));
1204 
1205 	for (i = 0; i < pkvm_selftest_pages(); i++) {
1206 		if (p[i].refcount)
1207 			continue;
1208 		p[i].refcount = 1;
1209 		hyp_put_page(&selftest_vm.pool, hyp_page_to_virt(&p[i]));
1210 	}
1211 }
1212 
selftest_ipa(void)1213 static u64 selftest_ipa(void)
1214 {
1215 	return BIT(selftest_vm.pgt.ia_bits - 1);
1216 }
1217 
assert_page_state(void)1218 static void assert_page_state(void)
1219 {
1220 	void *virt = hyp_page_to_virt(selftest_page);
1221 	u64 size = PAGE_SIZE << selftest_page->order;
1222 	struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1223 	u64 phys = hyp_virt_to_phys(virt);
1224 	u64 ipa[2] = { selftest_ipa(), selftest_ipa() + PAGE_SIZE };
1225 	struct pkvm_hyp_vm *vm;
1226 
1227 	vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
1228 
1229 	host_lock_component();
1230 	WARN_ON(__host_check_page_state_range(phys, size, selftest_state.host));
1231 	host_unlock_component();
1232 
1233 	hyp_lock_component();
1234 	WARN_ON(__hyp_check_page_state_range(phys, size, selftest_state.hyp));
1235 	hyp_unlock_component();
1236 
1237 	guest_lock_component(&selftest_vm);
1238 	WARN_ON(__guest_check_page_state_range(vm, ipa[0], size, selftest_state.guest[0]));
1239 	WARN_ON(__guest_check_page_state_range(vm, ipa[1], size, selftest_state.guest[1]));
1240 	guest_unlock_component(&selftest_vm);
1241 }
1242 
1243 #define assert_transition_res(res, fn, ...)		\
1244 	do {						\
1245 		WARN_ON(fn(__VA_ARGS__) != res);	\
1246 		assert_page_state();			\
1247 	} while (0)
1248 
pkvm_ownership_selftest(void * base)1249 void pkvm_ownership_selftest(void *base)
1250 {
1251 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_RWX;
1252 	void *virt = hyp_alloc_pages(&host_s2_pool, 0);
1253 	struct pkvm_hyp_vcpu *vcpu = &selftest_vcpu;
1254 	struct pkvm_hyp_vm *vm = &selftest_vm;
1255 	u64 phys, size, pfn, gfn;
1256 
1257 	WARN_ON(!virt);
1258 	selftest_page = hyp_virt_to_page(virt);
1259 	selftest_page->refcount = 0;
1260 	init_selftest_vm(base);
1261 
1262 	size = PAGE_SIZE << selftest_page->order;
1263 	phys = hyp_virt_to_phys(virt);
1264 	pfn = hyp_phys_to_pfn(phys);
1265 	gfn = hyp_phys_to_pfn(selftest_ipa());
1266 
1267 	selftest_state.host = PKVM_NOPAGE;
1268 	selftest_state.hyp = PKVM_PAGE_OWNED;
1269 	selftest_state.guest[0] = selftest_state.guest[1] = PKVM_NOPAGE;
1270 	assert_page_state();
1271 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1272 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1273 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1274 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1275 	assert_transition_res(-EPERM,	__pkvm_host_unshare_ffa, pfn, 1);
1276 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1277 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1278 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1279 
1280 	selftest_state.host = PKVM_PAGE_OWNED;
1281 	selftest_state.hyp = PKVM_NOPAGE;
1282 	assert_transition_res(0,	__pkvm_hyp_donate_host, pfn, 1);
1283 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1284 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1285 	assert_transition_res(-EPERM,	__pkvm_host_unshare_ffa, pfn, 1);
1286 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1287 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1288 
1289 	selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1290 	selftest_state.hyp = PKVM_PAGE_SHARED_BORROWED;
1291 	assert_transition_res(0,	__pkvm_host_share_hyp, pfn);
1292 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1293 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1294 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1295 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1296 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1297 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1298 
1299 	assert_transition_res(0,	hyp_pin_shared_mem, virt, virt + size);
1300 	assert_transition_res(0,	hyp_pin_shared_mem, virt, virt + size);
1301 	hyp_unpin_shared_mem(virt, virt + size);
1302 	WARN_ON(hyp_page_count(virt) != 1);
1303 	assert_transition_res(-EBUSY,	__pkvm_host_unshare_hyp, pfn);
1304 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1305 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1306 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1307 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1308 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1309 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1310 
1311 	hyp_unpin_shared_mem(virt, virt + size);
1312 	assert_page_state();
1313 	WARN_ON(hyp_page_count(virt));
1314 
1315 	selftest_state.host = PKVM_PAGE_OWNED;
1316 	selftest_state.hyp = PKVM_NOPAGE;
1317 	assert_transition_res(0,	__pkvm_host_unshare_hyp, pfn);
1318 
1319 	selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1320 	selftest_state.hyp = PKVM_NOPAGE;
1321 	assert_transition_res(0,	__pkvm_host_share_ffa, pfn, 1);
1322 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1323 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1324 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1325 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1326 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1327 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1328 	assert_transition_res(-ENOENT,	__pkvm_host_unshare_guest, gfn, 1, vm);
1329 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1330 
1331 	selftest_state.host = PKVM_PAGE_OWNED;
1332 	selftest_state.hyp = PKVM_NOPAGE;
1333 	assert_transition_res(0,	__pkvm_host_unshare_ffa, pfn, 1);
1334 	assert_transition_res(-EPERM,	__pkvm_host_unshare_ffa, pfn, 1);
1335 
1336 	selftest_state.host = PKVM_PAGE_SHARED_OWNED;
1337 	selftest_state.guest[0] = PKVM_PAGE_SHARED_BORROWED;
1338 	assert_transition_res(0,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1339 	assert_transition_res(-EPERM,	__pkvm_host_share_guest, pfn, gfn, 1, vcpu, prot);
1340 	assert_transition_res(-EPERM,	__pkvm_host_share_ffa, pfn, 1);
1341 	assert_transition_res(-EPERM,	__pkvm_host_donate_hyp, pfn, 1);
1342 	assert_transition_res(-EPERM,	__pkvm_host_share_hyp, pfn);
1343 	assert_transition_res(-EPERM,	__pkvm_host_unshare_hyp, pfn);
1344 	assert_transition_res(-EPERM,	__pkvm_hyp_donate_host, pfn, 1);
1345 	assert_transition_res(-EPERM,	hyp_pin_shared_mem, virt, virt + size);
1346 
1347 	selftest_state.guest[1] = PKVM_PAGE_SHARED_BORROWED;
1348 	assert_transition_res(0,	__pkvm_host_share_guest, pfn, gfn + 1, 1, vcpu, prot);
1349 	WARN_ON(hyp_virt_to_page(virt)->host_share_guest_count != 2);
1350 
1351 	selftest_state.guest[0] = PKVM_NOPAGE;
1352 	assert_transition_res(0,	__pkvm_host_unshare_guest, gfn, 1, vm);
1353 
1354 	selftest_state.guest[1] = PKVM_NOPAGE;
1355 	selftest_state.host = PKVM_PAGE_OWNED;
1356 	assert_transition_res(0,	__pkvm_host_unshare_guest, gfn + 1, 1, vm);
1357 
1358 	selftest_state.host = PKVM_NOPAGE;
1359 	selftest_state.hyp = PKVM_PAGE_OWNED;
1360 	assert_transition_res(0,	__pkvm_host_donate_hyp, pfn, 1);
1361 
1362 	selftest_page->refcount = 1;
1363 	hyp_put_page(&host_s2_pool, virt);
1364 }
1365 #endif
1366