1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/cleanup.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43
44 struct kset *of_kset;
45
46 /*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52 DEFINE_MUTEX(of_mutex);
53
54 /* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88 }
89
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 return NUMA_NO_NODE;
136 }
137 #endif
138
139 #define OF_PHANDLE_CACHE_BITS 7
140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148
149 /*
150 * Caller must hold devtree_lock.
151 */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165 }
166
of_core_init(void)167 void __init of_core_init(void)
168 {
169 struct device_node *np;
170
171 of_platform_register_reconfig_notifier();
172
173 /* Create the kset, and register existing nodes */
174 mutex_lock(&of_mutex);
175 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
176 if (!of_kset) {
177 mutex_unlock(&of_mutex);
178 pr_err("failed to register existing nodes\n");
179 return;
180 }
181 for_each_of_allnodes(np) {
182 __of_attach_node_sysfs(np);
183 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
184 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
185 }
186 mutex_unlock(&of_mutex);
187
188 /* Symlink in /proc as required by userspace ABI */
189 if (of_root)
190 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
191 }
192
__of_find_property(const struct device_node * np,const char * name,int * lenp)193 static struct property *__of_find_property(const struct device_node *np,
194 const char *name, int *lenp)
195 {
196 struct property *pp;
197
198 if (!np)
199 return NULL;
200
201 for (pp = np->properties; pp; pp = pp->next) {
202 if (of_prop_cmp(pp->name, name) == 0) {
203 if (lenp)
204 *lenp = pp->length;
205 break;
206 }
207 }
208
209 return pp;
210 }
211
of_find_property(const struct device_node * np,const char * name,int * lenp)212 struct property *of_find_property(const struct device_node *np,
213 const char *name,
214 int *lenp)
215 {
216 struct property *pp;
217 unsigned long flags;
218
219 raw_spin_lock_irqsave(&devtree_lock, flags);
220 pp = __of_find_property(np, name, lenp);
221 raw_spin_unlock_irqrestore(&devtree_lock, flags);
222
223 return pp;
224 }
225 EXPORT_SYMBOL(of_find_property);
226
__of_find_all_nodes(struct device_node * prev)227 struct device_node *__of_find_all_nodes(struct device_node *prev)
228 {
229 struct device_node *np;
230 if (!prev) {
231 np = of_root;
232 } else if (prev->child) {
233 np = prev->child;
234 } else {
235 /* Walk back up looking for a sibling, or the end of the structure */
236 np = prev;
237 while (np->parent && !np->sibling)
238 np = np->parent;
239 np = np->sibling; /* Might be null at the end of the tree */
240 }
241 return np;
242 }
243
244 /**
245 * of_find_all_nodes - Get next node in global list
246 * @prev: Previous node or NULL to start iteration
247 * of_node_put() will be called on it
248 *
249 * Return: A node pointer with refcount incremented, use
250 * of_node_put() on it when done.
251 */
of_find_all_nodes(struct device_node * prev)252 struct device_node *of_find_all_nodes(struct device_node *prev)
253 {
254 struct device_node *np;
255 unsigned long flags;
256
257 raw_spin_lock_irqsave(&devtree_lock, flags);
258 np = __of_find_all_nodes(prev);
259 of_node_get(np);
260 of_node_put(prev);
261 raw_spin_unlock_irqrestore(&devtree_lock, flags);
262 return np;
263 }
264 EXPORT_SYMBOL(of_find_all_nodes);
265
266 /*
267 * Find a property with a given name for a given node
268 * and return the value.
269 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)270 const void *__of_get_property(const struct device_node *np,
271 const char *name, int *lenp)
272 {
273 struct property *pp = __of_find_property(np, name, lenp);
274
275 return pp ? pp->value : NULL;
276 }
277
278 /*
279 * Find a property with a given name for a given node
280 * and return the value.
281 */
of_get_property(const struct device_node * np,const char * name,int * lenp)282 const void *of_get_property(const struct device_node *np, const char *name,
283 int *lenp)
284 {
285 struct property *pp = of_find_property(np, name, lenp);
286
287 return pp ? pp->value : NULL;
288 }
289 EXPORT_SYMBOL(of_get_property);
290
291 /**
292 * __of_device_is_compatible() - Check if the node matches given constraints
293 * @device: pointer to node
294 * @compat: required compatible string, NULL or "" for any match
295 * @type: required device_type value, NULL or "" for any match
296 * @name: required node name, NULL or "" for any match
297 *
298 * Checks if the given @compat, @type and @name strings match the
299 * properties of the given @device. A constraints can be skipped by
300 * passing NULL or an empty string as the constraint.
301 *
302 * Returns 0 for no match, and a positive integer on match. The return
303 * value is a relative score with larger values indicating better
304 * matches. The score is weighted for the most specific compatible value
305 * to get the highest score. Matching type is next, followed by matching
306 * name. Practically speaking, this results in the following priority
307 * order for matches:
308 *
309 * 1. specific compatible && type && name
310 * 2. specific compatible && type
311 * 3. specific compatible && name
312 * 4. specific compatible
313 * 5. general compatible && type && name
314 * 6. general compatible && type
315 * 7. general compatible && name
316 * 8. general compatible
317 * 9. type && name
318 * 10. type
319 * 11. name
320 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)321 static int __of_device_is_compatible(const struct device_node *device,
322 const char *compat, const char *type, const char *name)
323 {
324 struct property *prop;
325 const char *cp;
326 int index = 0, score = 0;
327
328 /* Compatible match has highest priority */
329 if (compat && compat[0]) {
330 prop = __of_find_property(device, "compatible", NULL);
331 for (cp = of_prop_next_string(prop, NULL); cp;
332 cp = of_prop_next_string(prop, cp), index++) {
333 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
334 score = INT_MAX/2 - (index << 2);
335 break;
336 }
337 }
338 if (!score)
339 return 0;
340 }
341
342 /* Matching type is better than matching name */
343 if (type && type[0]) {
344 if (!__of_node_is_type(device, type))
345 return 0;
346 score += 2;
347 }
348
349 /* Matching name is a bit better than not */
350 if (name && name[0]) {
351 if (!of_node_name_eq(device, name))
352 return 0;
353 score++;
354 }
355
356 return score;
357 }
358
359 /** Checks if the given "compat" string matches one of the strings in
360 * the device's "compatible" property
361 */
of_device_is_compatible(const struct device_node * device,const char * compat)362 int of_device_is_compatible(const struct device_node *device,
363 const char *compat)
364 {
365 unsigned long flags;
366 int res;
367
368 raw_spin_lock_irqsave(&devtree_lock, flags);
369 res = __of_device_is_compatible(device, compat, NULL, NULL);
370 raw_spin_unlock_irqrestore(&devtree_lock, flags);
371 return res;
372 }
373 EXPORT_SYMBOL(of_device_is_compatible);
374
375 /** Checks if the device is compatible with any of the entries in
376 * a NULL terminated array of strings. Returns the best match
377 * score or 0.
378 */
of_device_compatible_match(const struct device_node * device,const char * const * compat)379 int of_device_compatible_match(const struct device_node *device,
380 const char *const *compat)
381 {
382 unsigned int tmp, score = 0;
383
384 if (!compat)
385 return 0;
386
387 while (*compat) {
388 tmp = of_device_is_compatible(device, *compat);
389 if (tmp > score)
390 score = tmp;
391 compat++;
392 }
393
394 return score;
395 }
396 EXPORT_SYMBOL_GPL(of_device_compatible_match);
397
398 /**
399 * of_machine_compatible_match - Test root of device tree against a compatible array
400 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
401 *
402 * Returns true if the root node has any of the given compatible values in its
403 * compatible property.
404 */
of_machine_compatible_match(const char * const * compats)405 bool of_machine_compatible_match(const char *const *compats)
406 {
407 struct device_node *root;
408 int rc = 0;
409
410 root = of_find_node_by_path("/");
411 if (root) {
412 rc = of_device_compatible_match(root, compats);
413 of_node_put(root);
414 }
415
416 return rc != 0;
417 }
418 EXPORT_SYMBOL(of_machine_compatible_match);
419
__of_device_is_status(const struct device_node * device,const char * const * strings)420 static bool __of_device_is_status(const struct device_node *device,
421 const char * const*strings)
422 {
423 const char *status;
424 int statlen;
425
426 if (!device)
427 return false;
428
429 status = __of_get_property(device, "status", &statlen);
430 if (status == NULL)
431 return false;
432
433 if (statlen > 0) {
434 while (*strings) {
435 unsigned int len = strlen(*strings);
436
437 if ((*strings)[len - 1] == '-') {
438 if (!strncmp(status, *strings, len))
439 return true;
440 } else {
441 if (!strcmp(status, *strings))
442 return true;
443 }
444 strings++;
445 }
446 }
447
448 return false;
449 }
450
451 /**
452 * __of_device_is_available - check if a device is available for use
453 *
454 * @device: Node to check for availability, with locks already held
455 *
456 * Return: True if the status property is absent or set to "okay" or "ok",
457 * false otherwise
458 */
__of_device_is_available(const struct device_node * device)459 static bool __of_device_is_available(const struct device_node *device)
460 {
461 static const char * const ok[] = {"okay", "ok", NULL};
462
463 if (!device)
464 return false;
465
466 return !__of_get_property(device, "status", NULL) ||
467 __of_device_is_status(device, ok);
468 }
469
470 /**
471 * __of_device_is_reserved - check if a device is reserved
472 *
473 * @device: Node to check for availability, with locks already held
474 *
475 * Return: True if the status property is set to "reserved", false otherwise
476 */
__of_device_is_reserved(const struct device_node * device)477 static bool __of_device_is_reserved(const struct device_node *device)
478 {
479 static const char * const reserved[] = {"reserved", NULL};
480
481 return __of_device_is_status(device, reserved);
482 }
483
484 /**
485 * of_device_is_available - check if a device is available for use
486 *
487 * @device: Node to check for availability
488 *
489 * Return: True if the status property is absent or set to "okay" or "ok",
490 * false otherwise
491 */
of_device_is_available(const struct device_node * device)492 bool of_device_is_available(const struct device_node *device)
493 {
494 unsigned long flags;
495 bool res;
496
497 raw_spin_lock_irqsave(&devtree_lock, flags);
498 res = __of_device_is_available(device);
499 raw_spin_unlock_irqrestore(&devtree_lock, flags);
500 return res;
501
502 }
503 EXPORT_SYMBOL(of_device_is_available);
504
505 /**
506 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
507 *
508 * @device: Node to check status for, with locks already held
509 *
510 * Return: True if the status property is set to "fail" or "fail-..." (for any
511 * error code suffix), false otherwise
512 */
__of_device_is_fail(const struct device_node * device)513 static bool __of_device_is_fail(const struct device_node *device)
514 {
515 static const char * const fail[] = {"fail", "fail-", NULL};
516
517 return __of_device_is_status(device, fail);
518 }
519
520 /**
521 * of_device_is_big_endian - check if a device has BE registers
522 *
523 * @device: Node to check for endianness
524 *
525 * Return: True if the device has a "big-endian" property, or if the kernel
526 * was compiled for BE *and* the device has a "native-endian" property.
527 * Returns false otherwise.
528 *
529 * Callers would nominally use ioread32be/iowrite32be if
530 * of_device_is_big_endian() == true, or readl/writel otherwise.
531 */
of_device_is_big_endian(const struct device_node * device)532 bool of_device_is_big_endian(const struct device_node *device)
533 {
534 if (of_property_read_bool(device, "big-endian"))
535 return true;
536 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
537 of_property_read_bool(device, "native-endian"))
538 return true;
539 return false;
540 }
541 EXPORT_SYMBOL(of_device_is_big_endian);
542
543 /**
544 * of_get_parent - Get a node's parent if any
545 * @node: Node to get parent
546 *
547 * Return: A node pointer with refcount incremented, use
548 * of_node_put() on it when done.
549 */
of_get_parent(const struct device_node * node)550 struct device_node *of_get_parent(const struct device_node *node)
551 {
552 struct device_node *np;
553 unsigned long flags;
554
555 if (!node)
556 return NULL;
557
558 raw_spin_lock_irqsave(&devtree_lock, flags);
559 np = of_node_get(node->parent);
560 raw_spin_unlock_irqrestore(&devtree_lock, flags);
561 return np;
562 }
563 EXPORT_SYMBOL(of_get_parent);
564
565 /**
566 * of_get_next_parent - Iterate to a node's parent
567 * @node: Node to get parent of
568 *
569 * This is like of_get_parent() except that it drops the
570 * refcount on the passed node, making it suitable for iterating
571 * through a node's parents.
572 *
573 * Return: A node pointer with refcount incremented, use
574 * of_node_put() on it when done.
575 */
of_get_next_parent(struct device_node * node)576 struct device_node *of_get_next_parent(struct device_node *node)
577 {
578 struct device_node *parent;
579 unsigned long flags;
580
581 if (!node)
582 return NULL;
583
584 raw_spin_lock_irqsave(&devtree_lock, flags);
585 parent = of_node_get(node->parent);
586 of_node_put(node);
587 raw_spin_unlock_irqrestore(&devtree_lock, flags);
588 return parent;
589 }
590 EXPORT_SYMBOL(of_get_next_parent);
591
__of_get_next_child(const struct device_node * node,struct device_node * prev)592 static struct device_node *__of_get_next_child(const struct device_node *node,
593 struct device_node *prev)
594 {
595 struct device_node *next;
596
597 if (!node)
598 return NULL;
599
600 next = prev ? prev->sibling : node->child;
601 of_node_get(next);
602 of_node_put(prev);
603 return next;
604 }
605 #define __for_each_child_of_node(parent, child) \
606 for (child = __of_get_next_child(parent, NULL); child != NULL; \
607 child = __of_get_next_child(parent, child))
608
609 /**
610 * of_get_next_child - Iterate a node childs
611 * @node: parent node
612 * @prev: previous child of the parent node, or NULL to get first
613 *
614 * Return: A node pointer with refcount incremented, use of_node_put() on
615 * it when done. Returns NULL when prev is the last child. Decrements the
616 * refcount of prev.
617 */
of_get_next_child(const struct device_node * node,struct device_node * prev)618 struct device_node *of_get_next_child(const struct device_node *node,
619 struct device_node *prev)
620 {
621 struct device_node *next;
622 unsigned long flags;
623
624 raw_spin_lock_irqsave(&devtree_lock, flags);
625 next = __of_get_next_child(node, prev);
626 raw_spin_unlock_irqrestore(&devtree_lock, flags);
627 return next;
628 }
629 EXPORT_SYMBOL(of_get_next_child);
630
of_get_next_status_child(const struct device_node * node,struct device_node * prev,bool (* checker)(const struct device_node *))631 static struct device_node *of_get_next_status_child(const struct device_node *node,
632 struct device_node *prev,
633 bool (*checker)(const struct device_node *))
634 {
635 struct device_node *next;
636 unsigned long flags;
637
638 if (!node)
639 return NULL;
640
641 raw_spin_lock_irqsave(&devtree_lock, flags);
642 next = prev ? prev->sibling : node->child;
643 for (; next; next = next->sibling) {
644 if (!checker(next))
645 continue;
646 if (of_node_get(next))
647 break;
648 }
649 of_node_put(prev);
650 raw_spin_unlock_irqrestore(&devtree_lock, flags);
651 return next;
652 }
653
654 /**
655 * of_get_next_available_child - Find the next available child node
656 * @node: parent node
657 * @prev: previous child of the parent node, or NULL to get first
658 *
659 * This function is like of_get_next_child(), except that it
660 * automatically skips any disabled nodes (i.e. status = "disabled").
661 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)662 struct device_node *of_get_next_available_child(const struct device_node *node,
663 struct device_node *prev)
664 {
665 return of_get_next_status_child(node, prev, __of_device_is_available);
666 }
667 EXPORT_SYMBOL(of_get_next_available_child);
668
669 /**
670 * of_get_next_reserved_child - Find the next reserved child node
671 * @node: parent node
672 * @prev: previous child of the parent node, or NULL to get first
673 *
674 * This function is like of_get_next_child(), except that it
675 * automatically skips any disabled nodes (i.e. status = "disabled").
676 */
of_get_next_reserved_child(const struct device_node * node,struct device_node * prev)677 struct device_node *of_get_next_reserved_child(const struct device_node *node,
678 struct device_node *prev)
679 {
680 return of_get_next_status_child(node, prev, __of_device_is_reserved);
681 }
682 EXPORT_SYMBOL(of_get_next_reserved_child);
683
684 /**
685 * of_get_next_cpu_node - Iterate on cpu nodes
686 * @prev: previous child of the /cpus node, or NULL to get first
687 *
688 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
689 * will be skipped.
690 *
691 * Return: A cpu node pointer with refcount incremented, use of_node_put()
692 * on it when done. Returns NULL when prev is the last child. Decrements
693 * the refcount of prev.
694 */
of_get_next_cpu_node(struct device_node * prev)695 struct device_node *of_get_next_cpu_node(struct device_node *prev)
696 {
697 struct device_node *next = NULL;
698 unsigned long flags;
699 struct device_node *node;
700
701 if (!prev)
702 node = of_find_node_by_path("/cpus");
703
704 raw_spin_lock_irqsave(&devtree_lock, flags);
705 if (prev)
706 next = prev->sibling;
707 else if (node) {
708 next = node->child;
709 of_node_put(node);
710 }
711 for (; next; next = next->sibling) {
712 if (__of_device_is_fail(next))
713 continue;
714 if (!(of_node_name_eq(next, "cpu") ||
715 __of_node_is_type(next, "cpu")))
716 continue;
717 if (of_node_get(next))
718 break;
719 }
720 of_node_put(prev);
721 raw_spin_unlock_irqrestore(&devtree_lock, flags);
722 return next;
723 }
724 EXPORT_SYMBOL(of_get_next_cpu_node);
725
726 /**
727 * of_get_compatible_child - Find compatible child node
728 * @parent: parent node
729 * @compatible: compatible string
730 *
731 * Lookup child node whose compatible property contains the given compatible
732 * string.
733 *
734 * Return: a node pointer with refcount incremented, use of_node_put() on it
735 * when done; or NULL if not found.
736 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)737 struct device_node *of_get_compatible_child(const struct device_node *parent,
738 const char *compatible)
739 {
740 struct device_node *child;
741
742 for_each_child_of_node(parent, child) {
743 if (of_device_is_compatible(child, compatible))
744 break;
745 }
746
747 return child;
748 }
749 EXPORT_SYMBOL(of_get_compatible_child);
750
751 /**
752 * of_get_child_by_name - Find the child node by name for a given parent
753 * @node: parent node
754 * @name: child name to look for.
755 *
756 * This function looks for child node for given matching name
757 *
758 * Return: A node pointer if found, with refcount incremented, use
759 * of_node_put() on it when done.
760 * Returns NULL if node is not found.
761 */
of_get_child_by_name(const struct device_node * node,const char * name)762 struct device_node *of_get_child_by_name(const struct device_node *node,
763 const char *name)
764 {
765 struct device_node *child;
766
767 for_each_child_of_node(node, child)
768 if (of_node_name_eq(child, name))
769 break;
770 return child;
771 }
772 EXPORT_SYMBOL(of_get_child_by_name);
773
__of_find_node_by_path(struct device_node * parent,const char * path)774 struct device_node *__of_find_node_by_path(struct device_node *parent,
775 const char *path)
776 {
777 struct device_node *child;
778 int len;
779
780 len = strcspn(path, "/:");
781 if (!len)
782 return NULL;
783
784 __for_each_child_of_node(parent, child) {
785 const char *name = kbasename(child->full_name);
786 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
787 return child;
788 }
789 return NULL;
790 }
791
__of_find_node_by_full_path(struct device_node * node,const char * path)792 struct device_node *__of_find_node_by_full_path(struct device_node *node,
793 const char *path)
794 {
795 const char *separator = strchr(path, ':');
796
797 while (node && *path == '/') {
798 struct device_node *tmp = node;
799
800 path++; /* Increment past '/' delimiter */
801 node = __of_find_node_by_path(node, path);
802 of_node_put(tmp);
803 path = strchrnul(path, '/');
804 if (separator && separator < path)
805 break;
806 }
807 return node;
808 }
809
810 /**
811 * of_find_node_opts_by_path - Find a node matching a full OF path
812 * @path: Either the full path to match, or if the path does not
813 * start with '/', the name of a property of the /aliases
814 * node (an alias). In the case of an alias, the node
815 * matching the alias' value will be returned.
816 * @opts: Address of a pointer into which to store the start of
817 * an options string appended to the end of the path with
818 * a ':' separator.
819 *
820 * Valid paths:
821 * * /foo/bar Full path
822 * * foo Valid alias
823 * * foo/bar Valid alias + relative path
824 *
825 * Return: A node pointer with refcount incremented, use
826 * of_node_put() on it when done.
827 */
of_find_node_opts_by_path(const char * path,const char ** opts)828 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
829 {
830 struct device_node *np = NULL;
831 struct property *pp;
832 unsigned long flags;
833 const char *separator = strchr(path, ':');
834
835 if (opts)
836 *opts = separator ? separator + 1 : NULL;
837
838 if (strcmp(path, "/") == 0)
839 return of_node_get(of_root);
840
841 /* The path could begin with an alias */
842 if (*path != '/') {
843 int len;
844 const char *p = separator;
845
846 if (!p)
847 p = strchrnul(path, '/');
848 len = p - path;
849
850 /* of_aliases must not be NULL */
851 if (!of_aliases)
852 return NULL;
853
854 for_each_property_of_node(of_aliases, pp) {
855 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
856 np = of_find_node_by_path(pp->value);
857 break;
858 }
859 }
860 if (!np)
861 return NULL;
862 path = p;
863 }
864
865 /* Step down the tree matching path components */
866 raw_spin_lock_irqsave(&devtree_lock, flags);
867 if (!np)
868 np = of_node_get(of_root);
869 np = __of_find_node_by_full_path(np, path);
870 raw_spin_unlock_irqrestore(&devtree_lock, flags);
871 return np;
872 }
873 EXPORT_SYMBOL(of_find_node_opts_by_path);
874
875 /**
876 * of_find_node_by_name - Find a node by its "name" property
877 * @from: The node to start searching from or NULL; the node
878 * you pass will not be searched, only the next one
879 * will. Typically, you pass what the previous call
880 * returned. of_node_put() will be called on @from.
881 * @name: The name string to match against
882 *
883 * Return: A node pointer with refcount incremented, use
884 * of_node_put() on it when done.
885 */
of_find_node_by_name(struct device_node * from,const char * name)886 struct device_node *of_find_node_by_name(struct device_node *from,
887 const char *name)
888 {
889 struct device_node *np;
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&devtree_lock, flags);
893 for_each_of_allnodes_from(from, np)
894 if (of_node_name_eq(np, name) && of_node_get(np))
895 break;
896 of_node_put(from);
897 raw_spin_unlock_irqrestore(&devtree_lock, flags);
898 return np;
899 }
900 EXPORT_SYMBOL(of_find_node_by_name);
901
902 /**
903 * of_find_node_by_type - Find a node by its "device_type" property
904 * @from: The node to start searching from, or NULL to start searching
905 * the entire device tree. The node you pass will not be
906 * searched, only the next one will; typically, you pass
907 * what the previous call returned. of_node_put() will be
908 * called on from for you.
909 * @type: The type string to match against
910 *
911 * Return: A node pointer with refcount incremented, use
912 * of_node_put() on it when done.
913 */
of_find_node_by_type(struct device_node * from,const char * type)914 struct device_node *of_find_node_by_type(struct device_node *from,
915 const char *type)
916 {
917 struct device_node *np;
918 unsigned long flags;
919
920 raw_spin_lock_irqsave(&devtree_lock, flags);
921 for_each_of_allnodes_from(from, np)
922 if (__of_node_is_type(np, type) && of_node_get(np))
923 break;
924 of_node_put(from);
925 raw_spin_unlock_irqrestore(&devtree_lock, flags);
926 return np;
927 }
928 EXPORT_SYMBOL(of_find_node_by_type);
929
930 /**
931 * of_find_compatible_node - Find a node based on type and one of the
932 * tokens in its "compatible" property
933 * @from: The node to start searching from or NULL, the node
934 * you pass will not be searched, only the next one
935 * will; typically, you pass what the previous call
936 * returned. of_node_put() will be called on it
937 * @type: The type string to match "device_type" or NULL to ignore
938 * @compatible: The string to match to one of the tokens in the device
939 * "compatible" list.
940 *
941 * Return: A node pointer with refcount incremented, use
942 * of_node_put() on it when done.
943 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)944 struct device_node *of_find_compatible_node(struct device_node *from,
945 const char *type, const char *compatible)
946 {
947 struct device_node *np;
948 unsigned long flags;
949
950 raw_spin_lock_irqsave(&devtree_lock, flags);
951 for_each_of_allnodes_from(from, np)
952 if (__of_device_is_compatible(np, compatible, type, NULL) &&
953 of_node_get(np))
954 break;
955 of_node_put(from);
956 raw_spin_unlock_irqrestore(&devtree_lock, flags);
957 return np;
958 }
959 EXPORT_SYMBOL(of_find_compatible_node);
960
961 /**
962 * of_find_node_with_property - Find a node which has a property with
963 * the given name.
964 * @from: The node to start searching from or NULL, the node
965 * you pass will not be searched, only the next one
966 * will; typically, you pass what the previous call
967 * returned. of_node_put() will be called on it
968 * @prop_name: The name of the property to look for.
969 *
970 * Return: A node pointer with refcount incremented, use
971 * of_node_put() on it when done.
972 */
of_find_node_with_property(struct device_node * from,const char * prop_name)973 struct device_node *of_find_node_with_property(struct device_node *from,
974 const char *prop_name)
975 {
976 struct device_node *np;
977 struct property *pp;
978 unsigned long flags;
979
980 raw_spin_lock_irqsave(&devtree_lock, flags);
981 for_each_of_allnodes_from(from, np) {
982 for (pp = np->properties; pp; pp = pp->next) {
983 if (of_prop_cmp(pp->name, prop_name) == 0) {
984 of_node_get(np);
985 goto out;
986 }
987 }
988 }
989 out:
990 of_node_put(from);
991 raw_spin_unlock_irqrestore(&devtree_lock, flags);
992 return np;
993 }
994 EXPORT_SYMBOL(of_find_node_with_property);
995
996 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)997 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
998 const struct device_node *node)
999 {
1000 const struct of_device_id *best_match = NULL;
1001 int score, best_score = 0;
1002
1003 if (!matches)
1004 return NULL;
1005
1006 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1007 score = __of_device_is_compatible(node, matches->compatible,
1008 matches->type, matches->name);
1009 if (score > best_score) {
1010 best_match = matches;
1011 best_score = score;
1012 }
1013 }
1014
1015 return best_match;
1016 }
1017
1018 /**
1019 * of_match_node - Tell if a device_node has a matching of_match structure
1020 * @matches: array of of device match structures to search in
1021 * @node: the of device structure to match against
1022 *
1023 * Low level utility function used by device matching.
1024 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1025 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1026 const struct device_node *node)
1027 {
1028 const struct of_device_id *match;
1029 unsigned long flags;
1030
1031 raw_spin_lock_irqsave(&devtree_lock, flags);
1032 match = __of_match_node(matches, node);
1033 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1034 return match;
1035 }
1036 EXPORT_SYMBOL(of_match_node);
1037
1038 /**
1039 * of_find_matching_node_and_match - Find a node based on an of_device_id
1040 * match table.
1041 * @from: The node to start searching from or NULL, the node
1042 * you pass will not be searched, only the next one
1043 * will; typically, you pass what the previous call
1044 * returned. of_node_put() will be called on it
1045 * @matches: array of of device match structures to search in
1046 * @match: Updated to point at the matches entry which matched
1047 *
1048 * Return: A node pointer with refcount incremented, use
1049 * of_node_put() on it when done.
1050 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1051 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1052 const struct of_device_id *matches,
1053 const struct of_device_id **match)
1054 {
1055 struct device_node *np;
1056 const struct of_device_id *m;
1057 unsigned long flags;
1058
1059 if (match)
1060 *match = NULL;
1061
1062 raw_spin_lock_irqsave(&devtree_lock, flags);
1063 for_each_of_allnodes_from(from, np) {
1064 m = __of_match_node(matches, np);
1065 if (m && of_node_get(np)) {
1066 if (match)
1067 *match = m;
1068 break;
1069 }
1070 }
1071 of_node_put(from);
1072 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1073 return np;
1074 }
1075 EXPORT_SYMBOL(of_find_matching_node_and_match);
1076
1077 /**
1078 * of_alias_from_compatible - Lookup appropriate alias for a device node
1079 * depending on compatible
1080 * @node: pointer to a device tree node
1081 * @alias: Pointer to buffer that alias value will be copied into
1082 * @len: Length of alias value
1083 *
1084 * Based on the value of the compatible property, this routine will attempt
1085 * to choose an appropriate alias value for a particular device tree node.
1086 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1087 * from the first entry in the compatible list property.
1088 *
1089 * Note: The matching on just the "product" side of the compatible is a relic
1090 * from I2C and SPI. Please do not add any new user.
1091 *
1092 * Return: This routine returns 0 on success, <0 on failure.
1093 */
of_alias_from_compatible(const struct device_node * node,char * alias,int len)1094 int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1095 {
1096 const char *compatible, *p;
1097 int cplen;
1098
1099 compatible = of_get_property(node, "compatible", &cplen);
1100 if (!compatible || strlen(compatible) > cplen)
1101 return -ENODEV;
1102 p = strchr(compatible, ',');
1103 strscpy(alias, p ? p + 1 : compatible, len);
1104 return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1107
1108 /**
1109 * of_find_node_by_phandle - Find a node given a phandle
1110 * @handle: phandle of the node to find
1111 *
1112 * Return: A node pointer with refcount incremented, use
1113 * of_node_put() on it when done.
1114 */
of_find_node_by_phandle(phandle handle)1115 struct device_node *of_find_node_by_phandle(phandle handle)
1116 {
1117 struct device_node *np = NULL;
1118 unsigned long flags;
1119 u32 handle_hash;
1120
1121 if (!handle)
1122 return NULL;
1123
1124 handle_hash = of_phandle_cache_hash(handle);
1125
1126 raw_spin_lock_irqsave(&devtree_lock, flags);
1127
1128 if (phandle_cache[handle_hash] &&
1129 handle == phandle_cache[handle_hash]->phandle)
1130 np = phandle_cache[handle_hash];
1131
1132 if (!np) {
1133 for_each_of_allnodes(np)
1134 if (np->phandle == handle &&
1135 !of_node_check_flag(np, OF_DETACHED)) {
1136 phandle_cache[handle_hash] = np;
1137 break;
1138 }
1139 }
1140
1141 of_node_get(np);
1142 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1143 return np;
1144 }
1145 EXPORT_SYMBOL(of_find_node_by_phandle);
1146
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1147 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1148 {
1149 int i;
1150 printk("%s %pOF", msg, args->np);
1151 for (i = 0; i < args->args_count; i++) {
1152 const char delim = i ? ',' : ':';
1153
1154 pr_cont("%c%08x", delim, args->args[i]);
1155 }
1156 pr_cont("\n");
1157 }
1158
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1159 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1160 const struct device_node *np,
1161 const char *list_name,
1162 const char *cells_name,
1163 int cell_count)
1164 {
1165 const __be32 *list;
1166 int size;
1167
1168 memset(it, 0, sizeof(*it));
1169
1170 /*
1171 * one of cell_count or cells_name must be provided to determine the
1172 * argument length.
1173 */
1174 if (cell_count < 0 && !cells_name)
1175 return -EINVAL;
1176
1177 list = of_get_property(np, list_name, &size);
1178 if (!list)
1179 return -ENOENT;
1180
1181 it->cells_name = cells_name;
1182 it->cell_count = cell_count;
1183 it->parent = np;
1184 it->list_end = list + size / sizeof(*list);
1185 it->phandle_end = list;
1186 it->cur = list;
1187
1188 return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1191
of_phandle_iterator_next(struct of_phandle_iterator * it)1192 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1193 {
1194 uint32_t count = 0;
1195
1196 if (it->node) {
1197 of_node_put(it->node);
1198 it->node = NULL;
1199 }
1200
1201 if (!it->cur || it->phandle_end >= it->list_end)
1202 return -ENOENT;
1203
1204 it->cur = it->phandle_end;
1205
1206 /* If phandle is 0, then it is an empty entry with no arguments. */
1207 it->phandle = be32_to_cpup(it->cur++);
1208
1209 if (it->phandle) {
1210
1211 /*
1212 * Find the provider node and parse the #*-cells property to
1213 * determine the argument length.
1214 */
1215 it->node = of_find_node_by_phandle(it->phandle);
1216
1217 if (it->cells_name) {
1218 if (!it->node) {
1219 pr_err("%pOF: could not find phandle %d\n",
1220 it->parent, it->phandle);
1221 goto err;
1222 }
1223
1224 if (of_property_read_u32(it->node, it->cells_name,
1225 &count)) {
1226 /*
1227 * If both cell_count and cells_name is given,
1228 * fall back to cell_count in absence
1229 * of the cells_name property
1230 */
1231 if (it->cell_count >= 0) {
1232 count = it->cell_count;
1233 } else {
1234 pr_err("%pOF: could not get %s for %pOF\n",
1235 it->parent,
1236 it->cells_name,
1237 it->node);
1238 goto err;
1239 }
1240 }
1241 } else {
1242 count = it->cell_count;
1243 }
1244
1245 /*
1246 * Make sure that the arguments actually fit in the remaining
1247 * property data length
1248 */
1249 if (it->cur + count > it->list_end) {
1250 if (it->cells_name)
1251 pr_err("%pOF: %s = %d found %td\n",
1252 it->parent, it->cells_name,
1253 count, it->list_end - it->cur);
1254 else
1255 pr_err("%pOF: phandle %s needs %d, found %td\n",
1256 it->parent, of_node_full_name(it->node),
1257 count, it->list_end - it->cur);
1258 goto err;
1259 }
1260 }
1261
1262 it->phandle_end = it->cur + count;
1263 it->cur_count = count;
1264
1265 return 0;
1266
1267 err:
1268 if (it->node) {
1269 of_node_put(it->node);
1270 it->node = NULL;
1271 }
1272
1273 return -EINVAL;
1274 }
1275 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1276
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1277 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1278 uint32_t *args,
1279 int size)
1280 {
1281 int i, count;
1282
1283 count = it->cur_count;
1284
1285 if (WARN_ON(size < count))
1286 count = size;
1287
1288 for (i = 0; i < count; i++)
1289 args[i] = be32_to_cpup(it->cur++);
1290
1291 return count;
1292 }
1293
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1294 int __of_parse_phandle_with_args(const struct device_node *np,
1295 const char *list_name,
1296 const char *cells_name,
1297 int cell_count, int index,
1298 struct of_phandle_args *out_args)
1299 {
1300 struct of_phandle_iterator it;
1301 int rc, cur_index = 0;
1302
1303 if (index < 0)
1304 return -EINVAL;
1305
1306 /* Loop over the phandles until all the requested entry is found */
1307 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1308 /*
1309 * All of the error cases bail out of the loop, so at
1310 * this point, the parsing is successful. If the requested
1311 * index matches, then fill the out_args structure and return,
1312 * or return -ENOENT for an empty entry.
1313 */
1314 rc = -ENOENT;
1315 if (cur_index == index) {
1316 if (!it.phandle)
1317 goto err;
1318
1319 if (out_args) {
1320 int c;
1321
1322 c = of_phandle_iterator_args(&it,
1323 out_args->args,
1324 MAX_PHANDLE_ARGS);
1325 out_args->np = it.node;
1326 out_args->args_count = c;
1327 } else {
1328 of_node_put(it.node);
1329 }
1330
1331 /* Found it! return success */
1332 return 0;
1333 }
1334
1335 cur_index++;
1336 }
1337
1338 /*
1339 * Unlock node before returning result; will be one of:
1340 * -ENOENT : index is for empty phandle
1341 * -EINVAL : parsing error on data
1342 */
1343
1344 err:
1345 of_node_put(it.node);
1346 return rc;
1347 }
1348 EXPORT_SYMBOL(__of_parse_phandle_with_args);
1349
1350 /**
1351 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1352 * @np: pointer to a device tree node containing a list
1353 * @list_name: property name that contains a list
1354 * @stem_name: stem of property names that specify phandles' arguments count
1355 * @index: index of a phandle to parse out
1356 * @out_args: optional pointer to output arguments structure (will be filled)
1357 *
1358 * This function is useful to parse lists of phandles and their arguments.
1359 * Returns 0 on success and fills out_args, on error returns appropriate errno
1360 * value. The difference between this function and of_parse_phandle_with_args()
1361 * is that this API remaps a phandle if the node the phandle points to has
1362 * a <@stem_name>-map property.
1363 *
1364 * Caller is responsible to call of_node_put() on the returned out_args->np
1365 * pointer.
1366 *
1367 * Example::
1368 *
1369 * phandle1: node1 {
1370 * #list-cells = <2>;
1371 * };
1372 *
1373 * phandle2: node2 {
1374 * #list-cells = <1>;
1375 * };
1376 *
1377 * phandle3: node3 {
1378 * #list-cells = <1>;
1379 * list-map = <0 &phandle2 3>,
1380 * <1 &phandle2 2>,
1381 * <2 &phandle1 5 1>;
1382 * list-map-mask = <0x3>;
1383 * };
1384 *
1385 * node4 {
1386 * list = <&phandle1 1 2 &phandle3 0>;
1387 * };
1388 *
1389 * To get a device_node of the ``node2`` node you may call this:
1390 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1391 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1392 int of_parse_phandle_with_args_map(const struct device_node *np,
1393 const char *list_name,
1394 const char *stem_name,
1395 int index, struct of_phandle_args *out_args)
1396 {
1397 char *cells_name __free(kfree) = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1398 char *map_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1399 char *mask_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1400 char *pass_name __free(kfree) = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1401 struct device_node *cur, *new = NULL;
1402 const __be32 *map, *mask, *pass;
1403 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1404 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1405 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1406 const __be32 *match_array = initial_match_array;
1407 int i, ret, map_len, match;
1408 u32 list_size, new_size;
1409
1410 if (index < 0)
1411 return -EINVAL;
1412
1413 if (!cells_name || !map_name || !mask_name || !pass_name)
1414 return -ENOMEM;
1415
1416 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1417 out_args);
1418 if (ret)
1419 return ret;
1420
1421 /* Get the #<list>-cells property */
1422 cur = out_args->np;
1423 ret = of_property_read_u32(cur, cells_name, &list_size);
1424 if (ret < 0)
1425 goto put;
1426
1427 /* Precalculate the match array - this simplifies match loop */
1428 for (i = 0; i < list_size; i++)
1429 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1430
1431 ret = -EINVAL;
1432 while (cur) {
1433 /* Get the <list>-map property */
1434 map = of_get_property(cur, map_name, &map_len);
1435 if (!map) {
1436 return 0;
1437 }
1438 map_len /= sizeof(u32);
1439
1440 /* Get the <list>-map-mask property (optional) */
1441 mask = of_get_property(cur, mask_name, NULL);
1442 if (!mask)
1443 mask = dummy_mask;
1444 /* Iterate through <list>-map property */
1445 match = 0;
1446 while (map_len > (list_size + 1) && !match) {
1447 /* Compare specifiers */
1448 match = 1;
1449 for (i = 0; i < list_size; i++, map_len--)
1450 match &= !((match_array[i] ^ *map++) & mask[i]);
1451
1452 of_node_put(new);
1453 new = of_find_node_by_phandle(be32_to_cpup(map));
1454 map++;
1455 map_len--;
1456
1457 /* Check if not found */
1458 if (!new)
1459 goto put;
1460
1461 if (!of_device_is_available(new))
1462 match = 0;
1463
1464 ret = of_property_read_u32(new, cells_name, &new_size);
1465 if (ret)
1466 goto put;
1467
1468 /* Check for malformed properties */
1469 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1470 goto put;
1471 if (map_len < new_size)
1472 goto put;
1473
1474 /* Move forward by new node's #<list>-cells amount */
1475 map += new_size;
1476 map_len -= new_size;
1477 }
1478 if (!match)
1479 goto put;
1480
1481 /* Get the <list>-map-pass-thru property (optional) */
1482 pass = of_get_property(cur, pass_name, NULL);
1483 if (!pass)
1484 pass = dummy_pass;
1485
1486 /*
1487 * Successfully parsed a <list>-map translation; copy new
1488 * specifier into the out_args structure, keeping the
1489 * bits specified in <list>-map-pass-thru.
1490 */
1491 match_array = map - new_size;
1492 for (i = 0; i < new_size; i++) {
1493 __be32 val = *(map - new_size + i);
1494
1495 if (i < list_size) {
1496 val &= ~pass[i];
1497 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1498 }
1499
1500 out_args->args[i] = be32_to_cpu(val);
1501 }
1502 out_args->args_count = list_size = new_size;
1503 /* Iterate again with new provider */
1504 out_args->np = new;
1505 of_node_put(cur);
1506 cur = new;
1507 new = NULL;
1508 }
1509 put:
1510 of_node_put(cur);
1511 of_node_put(new);
1512 return ret;
1513 }
1514 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1515
1516 /**
1517 * of_count_phandle_with_args() - Find the number of phandles references in a property
1518 * @np: pointer to a device tree node containing a list
1519 * @list_name: property name that contains a list
1520 * @cells_name: property name that specifies phandles' arguments count
1521 *
1522 * Return: The number of phandle + argument tuples within a property. It
1523 * is a typical pattern to encode a list of phandle and variable
1524 * arguments into a single property. The number of arguments is encoded
1525 * by a property in the phandle-target node. For example, a gpios
1526 * property would contain a list of GPIO specifies consisting of a
1527 * phandle and 1 or more arguments. The number of arguments are
1528 * determined by the #gpio-cells property in the node pointed to by the
1529 * phandle.
1530 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1531 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1532 const char *cells_name)
1533 {
1534 struct of_phandle_iterator it;
1535 int rc, cur_index = 0;
1536
1537 /*
1538 * If cells_name is NULL we assume a cell count of 0. This makes
1539 * counting the phandles trivial as each 32bit word in the list is a
1540 * phandle and no arguments are to consider. So we don't iterate through
1541 * the list but just use the length to determine the phandle count.
1542 */
1543 if (!cells_name) {
1544 const __be32 *list;
1545 int size;
1546
1547 list = of_get_property(np, list_name, &size);
1548 if (!list)
1549 return -ENOENT;
1550
1551 return size / sizeof(*list);
1552 }
1553
1554 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1555 if (rc)
1556 return rc;
1557
1558 while ((rc = of_phandle_iterator_next(&it)) == 0)
1559 cur_index += 1;
1560
1561 if (rc != -ENOENT)
1562 return rc;
1563
1564 return cur_index;
1565 }
1566 EXPORT_SYMBOL(of_count_phandle_with_args);
1567
__of_remove_property_from_list(struct property ** list,struct property * prop)1568 static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1569 {
1570 struct property **next;
1571
1572 for (next = list; *next; next = &(*next)->next) {
1573 if (*next == prop) {
1574 *next = prop->next;
1575 prop->next = NULL;
1576 return prop;
1577 }
1578 }
1579 return NULL;
1580 }
1581
1582 /**
1583 * __of_add_property - Add a property to a node without lock operations
1584 * @np: Caller's Device Node
1585 * @prop: Property to add
1586 */
__of_add_property(struct device_node * np,struct property * prop)1587 int __of_add_property(struct device_node *np, struct property *prop)
1588 {
1589 int rc = 0;
1590 unsigned long flags;
1591 struct property **next;
1592
1593 raw_spin_lock_irqsave(&devtree_lock, flags);
1594
1595 __of_remove_property_from_list(&np->deadprops, prop);
1596
1597 prop->next = NULL;
1598 next = &np->properties;
1599 while (*next) {
1600 if (strcmp(prop->name, (*next)->name) == 0) {
1601 /* duplicate ! don't insert it */
1602 rc = -EEXIST;
1603 goto out_unlock;
1604 }
1605 next = &(*next)->next;
1606 }
1607 *next = prop;
1608
1609 out_unlock:
1610 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1611 if (rc)
1612 return rc;
1613
1614 __of_add_property_sysfs(np, prop);
1615 return 0;
1616 }
1617
1618 /**
1619 * of_add_property - Add a property to a node
1620 * @np: Caller's Device Node
1621 * @prop: Property to add
1622 */
of_add_property(struct device_node * np,struct property * prop)1623 int of_add_property(struct device_node *np, struct property *prop)
1624 {
1625 int rc;
1626
1627 mutex_lock(&of_mutex);
1628 rc = __of_add_property(np, prop);
1629 mutex_unlock(&of_mutex);
1630
1631 if (!rc)
1632 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1633
1634 return rc;
1635 }
1636 EXPORT_SYMBOL_GPL(of_add_property);
1637
__of_remove_property(struct device_node * np,struct property * prop)1638 int __of_remove_property(struct device_node *np, struct property *prop)
1639 {
1640 unsigned long flags;
1641 int rc = -ENODEV;
1642
1643 raw_spin_lock_irqsave(&devtree_lock, flags);
1644
1645 if (__of_remove_property_from_list(&np->properties, prop)) {
1646 /* Found the property, add it to deadprops list */
1647 prop->next = np->deadprops;
1648 np->deadprops = prop;
1649 rc = 0;
1650 }
1651
1652 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1653 if (rc)
1654 return rc;
1655
1656 __of_remove_property_sysfs(np, prop);
1657 return 0;
1658 }
1659
1660 /**
1661 * of_remove_property - Remove a property from a node.
1662 * @np: Caller's Device Node
1663 * @prop: Property to remove
1664 *
1665 * Note that we don't actually remove it, since we have given out
1666 * who-knows-how-many pointers to the data using get-property.
1667 * Instead we just move the property to the "dead properties"
1668 * list, so it won't be found any more.
1669 */
of_remove_property(struct device_node * np,struct property * prop)1670 int of_remove_property(struct device_node *np, struct property *prop)
1671 {
1672 int rc;
1673
1674 if (!prop)
1675 return -ENODEV;
1676
1677 mutex_lock(&of_mutex);
1678 rc = __of_remove_property(np, prop);
1679 mutex_unlock(&of_mutex);
1680
1681 if (!rc)
1682 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1683
1684 return rc;
1685 }
1686 EXPORT_SYMBOL_GPL(of_remove_property);
1687
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1688 int __of_update_property(struct device_node *np, struct property *newprop,
1689 struct property **oldpropp)
1690 {
1691 struct property **next, *oldprop;
1692 unsigned long flags;
1693
1694 raw_spin_lock_irqsave(&devtree_lock, flags);
1695
1696 __of_remove_property_from_list(&np->deadprops, newprop);
1697
1698 for (next = &np->properties; *next; next = &(*next)->next) {
1699 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1700 break;
1701 }
1702 *oldpropp = oldprop = *next;
1703
1704 if (oldprop) {
1705 /* replace the node */
1706 newprop->next = oldprop->next;
1707 *next = newprop;
1708 oldprop->next = np->deadprops;
1709 np->deadprops = oldprop;
1710 } else {
1711 /* new node */
1712 newprop->next = NULL;
1713 *next = newprop;
1714 }
1715
1716 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1717
1718 __of_update_property_sysfs(np, newprop, oldprop);
1719
1720 return 0;
1721 }
1722
1723 /*
1724 * of_update_property - Update a property in a node, if the property does
1725 * not exist, add it.
1726 *
1727 * Note that we don't actually remove it, since we have given out
1728 * who-knows-how-many pointers to the data using get-property.
1729 * Instead we just move the property to the "dead properties" list,
1730 * and add the new property to the property list
1731 */
of_update_property(struct device_node * np,struct property * newprop)1732 int of_update_property(struct device_node *np, struct property *newprop)
1733 {
1734 struct property *oldprop;
1735 int rc;
1736
1737 if (!newprop->name)
1738 return -EINVAL;
1739
1740 mutex_lock(&of_mutex);
1741 rc = __of_update_property(np, newprop, &oldprop);
1742 mutex_unlock(&of_mutex);
1743
1744 if (!rc)
1745 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1746
1747 return rc;
1748 }
1749
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1750 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1751 int id, const char *stem, int stem_len)
1752 {
1753 ap->np = np;
1754 ap->id = id;
1755 strscpy(ap->stem, stem, stem_len + 1);
1756 list_add_tail(&ap->link, &aliases_lookup);
1757 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1758 ap->alias, ap->stem, ap->id, np);
1759 }
1760
1761 /**
1762 * of_alias_scan - Scan all properties of the 'aliases' node
1763 * @dt_alloc: An allocator that provides a virtual address to memory
1764 * for storing the resulting tree
1765 *
1766 * The function scans all the properties of the 'aliases' node and populates
1767 * the global lookup table with the properties. It returns the
1768 * number of alias properties found, or an error code in case of failure.
1769 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1770 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1771 {
1772 struct property *pp;
1773
1774 of_aliases = of_find_node_by_path("/aliases");
1775 of_chosen = of_find_node_by_path("/chosen");
1776 if (of_chosen == NULL)
1777 of_chosen = of_find_node_by_path("/chosen@0");
1778
1779 if (of_chosen) {
1780 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1781 const char *name = NULL;
1782
1783 if (of_property_read_string(of_chosen, "stdout-path", &name))
1784 of_property_read_string(of_chosen, "linux,stdout-path",
1785 &name);
1786 if (IS_ENABLED(CONFIG_PPC) && !name)
1787 of_property_read_string(of_aliases, "stdout", &name);
1788 if (name)
1789 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1790 if (of_stdout)
1791 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1792 }
1793
1794 if (!of_aliases)
1795 return;
1796
1797 for_each_property_of_node(of_aliases, pp) {
1798 const char *start = pp->name;
1799 const char *end = start + strlen(start);
1800 struct device_node *np;
1801 struct alias_prop *ap;
1802 int id, len;
1803
1804 /* Skip those we do not want to proceed */
1805 if (!strcmp(pp->name, "name") ||
1806 !strcmp(pp->name, "phandle") ||
1807 !strcmp(pp->name, "linux,phandle"))
1808 continue;
1809
1810 np = of_find_node_by_path(pp->value);
1811 if (!np)
1812 continue;
1813
1814 /* walk the alias backwards to extract the id and work out
1815 * the 'stem' string */
1816 while (isdigit(*(end-1)) && end > start)
1817 end--;
1818 len = end - start;
1819
1820 if (kstrtoint(end, 10, &id) < 0)
1821 continue;
1822
1823 /* Allocate an alias_prop with enough space for the stem */
1824 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1825 if (!ap)
1826 continue;
1827 memset(ap, 0, sizeof(*ap) + len + 1);
1828 ap->alias = start;
1829 of_alias_add(ap, np, id, start, len);
1830 }
1831 }
1832
1833 /**
1834 * of_alias_get_id - Get alias id for the given device_node
1835 * @np: Pointer to the given device_node
1836 * @stem: Alias stem of the given device_node
1837 *
1838 * The function travels the lookup table to get the alias id for the given
1839 * device_node and alias stem.
1840 *
1841 * Return: The alias id if found.
1842 */
of_alias_get_id(struct device_node * np,const char * stem)1843 int of_alias_get_id(struct device_node *np, const char *stem)
1844 {
1845 struct alias_prop *app;
1846 int id = -ENODEV;
1847
1848 mutex_lock(&of_mutex);
1849 list_for_each_entry(app, &aliases_lookup, link) {
1850 if (strcmp(app->stem, stem) != 0)
1851 continue;
1852
1853 if (np == app->np) {
1854 id = app->id;
1855 break;
1856 }
1857 }
1858 mutex_unlock(&of_mutex);
1859
1860 return id;
1861 }
1862 EXPORT_SYMBOL_GPL(of_alias_get_id);
1863
1864 /**
1865 * of_alias_get_highest_id - Get highest alias id for the given stem
1866 * @stem: Alias stem to be examined
1867 *
1868 * The function travels the lookup table to get the highest alias id for the
1869 * given alias stem. It returns the alias id if found.
1870 */
of_alias_get_highest_id(const char * stem)1871 int of_alias_get_highest_id(const char *stem)
1872 {
1873 struct alias_prop *app;
1874 int id = -ENODEV;
1875
1876 mutex_lock(&of_mutex);
1877 list_for_each_entry(app, &aliases_lookup, link) {
1878 if (strcmp(app->stem, stem) != 0)
1879 continue;
1880
1881 if (app->id > id)
1882 id = app->id;
1883 }
1884 mutex_unlock(&of_mutex);
1885
1886 return id;
1887 }
1888 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1889
1890 /**
1891 * of_console_check() - Test and setup console for DT setup
1892 * @dn: Pointer to device node
1893 * @name: Name to use for preferred console without index. ex. "ttyS"
1894 * @index: Index to use for preferred console.
1895 *
1896 * Check if the given device node matches the stdout-path property in the
1897 * /chosen node. If it does then register it as the preferred console.
1898 *
1899 * Return: TRUE if console successfully setup. Otherwise return FALSE.
1900 */
of_console_check(struct device_node * dn,char * name,int index)1901 bool of_console_check(struct device_node *dn, char *name, int index)
1902 {
1903 if (!dn || dn != of_stdout || console_set_on_cmdline)
1904 return false;
1905
1906 /*
1907 * XXX: cast `options' to char pointer to suppress complication
1908 * warnings: printk, UART and console drivers expect char pointer.
1909 */
1910 return !add_preferred_console(name, index, (char *)of_stdout_options);
1911 }
1912 EXPORT_SYMBOL_GPL(of_console_check);
1913
1914 /**
1915 * of_find_next_cache_node - Find a node's subsidiary cache
1916 * @np: node of type "cpu" or "cache"
1917 *
1918 * Return: A node pointer with refcount incremented, use
1919 * of_node_put() on it when done. Caller should hold a reference
1920 * to np.
1921 */
of_find_next_cache_node(const struct device_node * np)1922 struct device_node *of_find_next_cache_node(const struct device_node *np)
1923 {
1924 struct device_node *child, *cache_node;
1925
1926 cache_node = of_parse_phandle(np, "l2-cache", 0);
1927 if (!cache_node)
1928 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1929
1930 if (cache_node)
1931 return cache_node;
1932
1933 /* OF on pmac has nodes instead of properties named "l2-cache"
1934 * beneath CPU nodes.
1935 */
1936 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1937 for_each_child_of_node(np, child)
1938 if (of_node_is_type(child, "cache"))
1939 return child;
1940
1941 return NULL;
1942 }
1943
1944 /**
1945 * of_find_last_cache_level - Find the level at which the last cache is
1946 * present for the given logical cpu
1947 *
1948 * @cpu: cpu number(logical index) for which the last cache level is needed
1949 *
1950 * Return: The level at which the last cache is present. It is exactly
1951 * same as the total number of cache levels for the given logical cpu.
1952 */
of_find_last_cache_level(unsigned int cpu)1953 int of_find_last_cache_level(unsigned int cpu)
1954 {
1955 u32 cache_level = 0;
1956 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1957
1958 while (np) {
1959 of_node_put(prev);
1960 prev = np;
1961 np = of_find_next_cache_node(np);
1962 }
1963
1964 of_property_read_u32(prev, "cache-level", &cache_level);
1965 of_node_put(prev);
1966
1967 return cache_level;
1968 }
1969
1970 /**
1971 * of_map_id - Translate an ID through a downstream mapping.
1972 * @np: root complex device node.
1973 * @id: device ID to map.
1974 * @map_name: property name of the map to use.
1975 * @map_mask_name: optional property name of the mask to use.
1976 * @target: optional pointer to a target device node.
1977 * @id_out: optional pointer to receive the translated ID.
1978 *
1979 * Given a device ID, look up the appropriate implementation-defined
1980 * platform ID and/or the target device which receives transactions on that
1981 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1982 * @id_out may be NULL if only the other is required. If @target points to
1983 * a non-NULL device node pointer, only entries targeting that node will be
1984 * matched; if it points to a NULL value, it will receive the device node of
1985 * the first matching target phandle, with a reference held.
1986 *
1987 * Return: 0 on success or a standard error code on failure.
1988 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)1989 int of_map_id(struct device_node *np, u32 id,
1990 const char *map_name, const char *map_mask_name,
1991 struct device_node **target, u32 *id_out)
1992 {
1993 u32 map_mask, masked_id;
1994 int map_len;
1995 const __be32 *map = NULL;
1996
1997 if (!np || !map_name || (!target && !id_out))
1998 return -EINVAL;
1999
2000 map = of_get_property(np, map_name, &map_len);
2001 if (!map) {
2002 if (target)
2003 return -ENODEV;
2004 /* Otherwise, no map implies no translation */
2005 *id_out = id;
2006 return 0;
2007 }
2008
2009 if (!map_len || map_len % (4 * sizeof(*map))) {
2010 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2011 map_name, map_len);
2012 return -EINVAL;
2013 }
2014
2015 /* The default is to select all bits. */
2016 map_mask = 0xffffffff;
2017
2018 /*
2019 * Can be overridden by "{iommu,msi}-map-mask" property.
2020 * If of_property_read_u32() fails, the default is used.
2021 */
2022 if (map_mask_name)
2023 of_property_read_u32(np, map_mask_name, &map_mask);
2024
2025 masked_id = map_mask & id;
2026 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2027 struct device_node *phandle_node;
2028 u32 id_base = be32_to_cpup(map + 0);
2029 u32 phandle = be32_to_cpup(map + 1);
2030 u32 out_base = be32_to_cpup(map + 2);
2031 u32 id_len = be32_to_cpup(map + 3);
2032
2033 if (id_base & ~map_mask) {
2034 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2035 np, map_name, map_name,
2036 map_mask, id_base);
2037 return -EFAULT;
2038 }
2039
2040 if (masked_id < id_base || masked_id >= id_base + id_len)
2041 continue;
2042
2043 phandle_node = of_find_node_by_phandle(phandle);
2044 if (!phandle_node)
2045 return -ENODEV;
2046
2047 if (target) {
2048 if (*target)
2049 of_node_put(phandle_node);
2050 else
2051 *target = phandle_node;
2052
2053 if (*target != phandle_node)
2054 continue;
2055 }
2056
2057 if (id_out)
2058 *id_out = masked_id - id_base + out_base;
2059
2060 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2061 np, map_name, map_mask, id_base, out_base,
2062 id_len, id, masked_id - id_base + out_base);
2063 return 0;
2064 }
2065
2066 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2067 id, target && *target ? *target : NULL);
2068
2069 /* Bypasses translation */
2070 if (id_out)
2071 *id_out = id;
2072 return 0;
2073 }
2074 EXPORT_SYMBOL_GPL(of_map_id);
2075