xref: /linux/include/linux/rculist.h (revision 067610ebaaec53809794807842a2fcf5f1f5b9eb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4 
5 #ifdef __KERNEL__
6 
7 /*
8  * RCU-protected list version
9  */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12 
13 /*
14  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
15  * @list: list to be initialized
16  *
17  * You should instead use INIT_LIST_HEAD() for normal initialization and
18  * cleanup tasks, when readers have no access to the list being initialized.
19  * However, if the list being initialized is visible to readers, you
20  * need to keep the compiler from being too mischievous.
21  */
22 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
23 {
24 	WRITE_ONCE(list->next, list);
25 	WRITE_ONCE(list->prev, list);
26 }
27 
28 /*
29  * return the ->next pointer of a list_head in an rcu safe
30  * way, we must not access it directly
31  */
32 #define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
33 
34 /**
35  * list_tail_rcu - returns the prev pointer of the head of the list
36  * @head: the head of the list
37  *
38  * Note: This should only be used with the list header, and even then
39  * only if list_del() and similar primitives are not also used on the
40  * list header.
41  */
42 #define list_tail_rcu(head)	(*((struct list_head __rcu **)(&(head)->prev)))
43 
44 /*
45  * Check during list traversal that we are within an RCU reader
46  */
47 
48 #define check_arg_count_one(dummy)
49 
50 #ifdef CONFIG_PROVE_RCU_LIST
51 #define __list_check_rcu(dummy, cond, extra...)				\
52 	({								\
53 	check_arg_count_one(extra);					\
54 	RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),		\
55 			 "RCU-list traversed in non-reader section!");	\
56 	})
57 
58 #define __list_check_srcu(cond)					 \
59 	({								 \
60 	RCU_LOCKDEP_WARN(!(cond),					 \
61 		"RCU-list traversed without holding the required lock!");\
62 	})
63 #else
64 #define __list_check_rcu(dummy, cond, extra...)				\
65 	({ check_arg_count_one(extra); })
66 
67 #define __list_check_srcu(cond) ({ })
68 #endif
69 
70 /*
71  * Insert a new entry between two known consecutive entries.
72  *
73  * This is only for internal list manipulation where we know
74  * the prev/next entries already!
75  */
76 static inline void __list_add_rcu(struct list_head *new,
77 		struct list_head *prev, struct list_head *next)
78 {
79 	if (!__list_add_valid(new, prev, next))
80 		return;
81 
82 	new->next = next;
83 	new->prev = prev;
84 	rcu_assign_pointer(list_next_rcu(prev), new);
85 	next->prev = new;
86 }
87 
88 /**
89  * list_add_rcu - add a new entry to rcu-protected list
90  * @new: new entry to be added
91  * @head: list head to add it after
92  *
93  * Insert a new entry after the specified head.
94  * This is good for implementing stacks.
95  *
96  * The caller must take whatever precautions are necessary
97  * (such as holding appropriate locks) to avoid racing
98  * with another list-mutation primitive, such as list_add_rcu()
99  * or list_del_rcu(), running on this same list.
100  * However, it is perfectly legal to run concurrently with
101  * the _rcu list-traversal primitives, such as
102  * list_for_each_entry_rcu().
103  */
104 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
105 {
106 	__list_add_rcu(new, head, head->next);
107 }
108 
109 /**
110  * list_add_tail_rcu - add a new entry to rcu-protected list
111  * @new: new entry to be added
112  * @head: list head to add it before
113  *
114  * Insert a new entry before the specified head.
115  * This is useful for implementing queues.
116  *
117  * The caller must take whatever precautions are necessary
118  * (such as holding appropriate locks) to avoid racing
119  * with another list-mutation primitive, such as list_add_tail_rcu()
120  * or list_del_rcu(), running on this same list.
121  * However, it is perfectly legal to run concurrently with
122  * the _rcu list-traversal primitives, such as
123  * list_for_each_entry_rcu().
124  */
125 static inline void list_add_tail_rcu(struct list_head *new,
126 					struct list_head *head)
127 {
128 	__list_add_rcu(new, head->prev, head);
129 }
130 
131 /**
132  * list_del_rcu - deletes entry from list without re-initialization
133  * @entry: the element to delete from the list.
134  *
135  * Note: list_empty() on entry does not return true after this,
136  * the entry is in an undefined state. It is useful for RCU based
137  * lockfree traversal.
138  *
139  * In particular, it means that we can not poison the forward
140  * pointers that may still be used for walking the list.
141  *
142  * The caller must take whatever precautions are necessary
143  * (such as holding appropriate locks) to avoid racing
144  * with another list-mutation primitive, such as list_del_rcu()
145  * or list_add_rcu(), running on this same list.
146  * However, it is perfectly legal to run concurrently with
147  * the _rcu list-traversal primitives, such as
148  * list_for_each_entry_rcu().
149  *
150  * Note that the caller is not permitted to immediately free
151  * the newly deleted entry.  Instead, either synchronize_rcu()
152  * or call_rcu() must be used to defer freeing until an RCU
153  * grace period has elapsed.
154  */
155 static inline void list_del_rcu(struct list_head *entry)
156 {
157 	__list_del_entry(entry);
158 	entry->prev = LIST_POISON2;
159 }
160 
161 /**
162  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
163  * @n: the element to delete from the hash list.
164  *
165  * Note: list_unhashed() on the node return true after this. It is
166  * useful for RCU based read lockfree traversal if the writer side
167  * must know if the list entry is still hashed or already unhashed.
168  *
169  * In particular, it means that we can not poison the forward pointers
170  * that may still be used for walking the hash list and we can only
171  * zero the pprev pointer so list_unhashed() will return true after
172  * this.
173  *
174  * The caller must take whatever precautions are necessary (such as
175  * holding appropriate locks) to avoid racing with another
176  * list-mutation primitive, such as hlist_add_head_rcu() or
177  * hlist_del_rcu(), running on this same list.  However, it is
178  * perfectly legal to run concurrently with the _rcu list-traversal
179  * primitives, such as hlist_for_each_entry_rcu().
180  */
181 static inline void hlist_del_init_rcu(struct hlist_node *n)
182 {
183 	if (!hlist_unhashed(n)) {
184 		__hlist_del(n);
185 		WRITE_ONCE(n->pprev, NULL);
186 	}
187 }
188 
189 /**
190  * list_replace_rcu - replace old entry by new one
191  * @old : the element to be replaced
192  * @new : the new element to insert
193  *
194  * The @old entry will be replaced with the @new entry atomically from
195  * the perspective of concurrent readers.  It is the caller's responsibility
196  * to synchronize with concurrent updaters, if any.
197  *
198  * Note: @old should not be empty.
199  */
200 static inline void list_replace_rcu(struct list_head *old,
201 				struct list_head *new)
202 {
203 	new->next = old->next;
204 	new->prev = old->prev;
205 	rcu_assign_pointer(list_next_rcu(new->prev), new);
206 	new->next->prev = new;
207 	old->prev = LIST_POISON2;
208 }
209 
210 /**
211  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
212  * @list:	the RCU-protected list to splice
213  * @prev:	points to the last element of the existing list
214  * @next:	points to the first element of the existing list
215  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
216  *
217  * The list pointed to by @prev and @next can be RCU-read traversed
218  * concurrently with this function.
219  *
220  * Note that this function blocks.
221  *
222  * Important note: the caller must take whatever action is necessary to prevent
223  * any other updates to the existing list.  In principle, it is possible to
224  * modify the list as soon as sync() begins execution. If this sort of thing
225  * becomes necessary, an alternative version based on call_rcu() could be
226  * created.  But only if -really- needed -- there is no shortage of RCU API
227  * members.
228  */
229 static inline void __list_splice_init_rcu(struct list_head *list,
230 					  struct list_head *prev,
231 					  struct list_head *next,
232 					  void (*sync)(void))
233 {
234 	struct list_head *first = list->next;
235 	struct list_head *last = list->prev;
236 
237 	/*
238 	 * "first" and "last" tracking list, so initialize it.  RCU readers
239 	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
240 	 * instead of INIT_LIST_HEAD().
241 	 */
242 
243 	INIT_LIST_HEAD_RCU(list);
244 
245 	/*
246 	 * At this point, the list body still points to the source list.
247 	 * Wait for any readers to finish using the list before splicing
248 	 * the list body into the new list.  Any new readers will see
249 	 * an empty list.
250 	 */
251 
252 	sync();
253 	ASSERT_EXCLUSIVE_ACCESS(*first);
254 	ASSERT_EXCLUSIVE_ACCESS(*last);
255 
256 	/*
257 	 * Readers are finished with the source list, so perform splice.
258 	 * The order is important if the new list is global and accessible
259 	 * to concurrent RCU readers.  Note that RCU readers are not
260 	 * permitted to traverse the prev pointers without excluding
261 	 * this function.
262 	 */
263 
264 	last->next = next;
265 	rcu_assign_pointer(list_next_rcu(prev), first);
266 	first->prev = prev;
267 	next->prev = last;
268 }
269 
270 /**
271  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
272  *                        designed for stacks.
273  * @list:	the RCU-protected list to splice
274  * @head:	the place in the existing list to splice the first list into
275  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
276  */
277 static inline void list_splice_init_rcu(struct list_head *list,
278 					struct list_head *head,
279 					void (*sync)(void))
280 {
281 	if (!list_empty(list))
282 		__list_splice_init_rcu(list, head, head->next, sync);
283 }
284 
285 /**
286  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
287  *                             list, designed for queues.
288  * @list:	the RCU-protected list to splice
289  * @head:	the place in the existing list to splice the first list into
290  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
291  */
292 static inline void list_splice_tail_init_rcu(struct list_head *list,
293 					     struct list_head *head,
294 					     void (*sync)(void))
295 {
296 	if (!list_empty(list))
297 		__list_splice_init_rcu(list, head->prev, head, sync);
298 }
299 
300 /**
301  * list_entry_rcu - get the struct for this entry
302  * @ptr:        the &struct list_head pointer.
303  * @type:       the type of the struct this is embedded in.
304  * @member:     the name of the list_head within the struct.
305  *
306  * This primitive may safely run concurrently with the _rcu list-mutation
307  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
308  */
309 #define list_entry_rcu(ptr, type, member) \
310 	container_of(READ_ONCE(ptr), type, member)
311 
312 /*
313  * Where are list_empty_rcu() and list_first_entry_rcu()?
314  *
315  * They do not exist because they would lead to subtle race conditions:
316  *
317  * if (!list_empty_rcu(mylist)) {
318  *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
319  *	do_something(bar);
320  * }
321  *
322  * The list might be non-empty when list_empty_rcu() checks it, but it
323  * might have become empty by the time that list_first_entry_rcu() rereads
324  * the ->next pointer, which would result in a SEGV.
325  *
326  * When not using RCU, it is OK for list_first_entry() to re-read that
327  * pointer because both functions should be protected by some lock that
328  * blocks writers.
329  *
330  * When using RCU, list_empty() uses READ_ONCE() to fetch the
331  * RCU-protected ->next pointer and then compares it to the address of the
332  * list head.  However, it neither dereferences this pointer nor provides
333  * this pointer to its caller.  Thus, READ_ONCE() suffices (that is,
334  * rcu_dereference() is not needed), which means that list_empty() can be
335  * used anywhere you would want to use list_empty_rcu().  Just don't
336  * expect anything useful to happen if you do a subsequent lockless
337  * call to list_first_entry_rcu()!!!
338  *
339  * See list_first_or_null_rcu for an alternative.
340  */
341 
342 /**
343  * list_first_or_null_rcu - get the first element from a list
344  * @ptr:        the list head to take the element from.
345  * @type:       the type of the struct this is embedded in.
346  * @member:     the name of the list_head within the struct.
347  *
348  * Note that if the list is empty, it returns NULL.
349  *
350  * This primitive may safely run concurrently with the _rcu list-mutation
351  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
352  */
353 #define list_first_or_null_rcu(ptr, type, member) \
354 ({ \
355 	struct list_head *__ptr = (ptr); \
356 	struct list_head *__next = READ_ONCE(__ptr->next); \
357 	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
358 })
359 
360 /**
361  * list_next_or_null_rcu - get the next element from a list
362  * @head:	the head for the list.
363  * @ptr:        the list head to take the next element from.
364  * @type:       the type of the struct this is embedded in.
365  * @member:     the name of the list_head within the struct.
366  *
367  * Note that if the ptr is at the end of the list, NULL is returned.
368  *
369  * This primitive may safely run concurrently with the _rcu list-mutation
370  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
371  */
372 #define list_next_or_null_rcu(head, ptr, type, member) \
373 ({ \
374 	struct list_head *__head = (head); \
375 	struct list_head *__ptr = (ptr); \
376 	struct list_head *__next = READ_ONCE(__ptr->next); \
377 	likely(__next != __head) ? list_entry_rcu(__next, type, \
378 						  member) : NULL; \
379 })
380 
381 /**
382  * list_for_each_entry_rcu	-	iterate over rcu list of given type
383  * @pos:	the type * to use as a loop cursor.
384  * @head:	the head for your list.
385  * @member:	the name of the list_head within the struct.
386  * @cond:	optional lockdep expression if called from non-RCU protection.
387  *
388  * This list-traversal primitive may safely run concurrently with
389  * the _rcu list-mutation primitives such as list_add_rcu()
390  * as long as the traversal is guarded by rcu_read_lock().
391  */
392 #define list_for_each_entry_rcu(pos, head, member, cond...)		\
393 	for (__list_check_rcu(dummy, ## cond, 0),			\
394 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
395 		&pos->member != (head);					\
396 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
397 
398 /**
399  * list_for_each_entry_srcu	-	iterate over rcu list of given type
400  * @pos:	the type * to use as a loop cursor.
401  * @head:	the head for your list.
402  * @member:	the name of the list_head within the struct.
403  * @cond:	lockdep expression for the lock required to traverse the list.
404  *
405  * This list-traversal primitive may safely run concurrently with
406  * the _rcu list-mutation primitives such as list_add_rcu()
407  * as long as the traversal is guarded by srcu_read_lock().
408  * The lockdep expression srcu_read_lock_held() can be passed as the
409  * cond argument from read side.
410  */
411 #define list_for_each_entry_srcu(pos, head, member, cond)		\
412 	for (__list_check_srcu(cond),					\
413 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
414 		&pos->member != (head);					\
415 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
416 
417 /**
418  * list_entry_lockless - get the struct for this entry
419  * @ptr:        the &struct list_head pointer.
420  * @type:       the type of the struct this is embedded in.
421  * @member:     the name of the list_head within the struct.
422  *
423  * This primitive may safely run concurrently with the _rcu
424  * list-mutation primitives such as list_add_rcu(), but requires some
425  * implicit RCU read-side guarding.  One example is running within a special
426  * exception-time environment where preemption is disabled and where lockdep
427  * cannot be invoked.  Another example is when items are added to the list,
428  * but never deleted.
429  */
430 #define list_entry_lockless(ptr, type, member) \
431 	container_of((typeof(ptr))READ_ONCE(ptr), type, member)
432 
433 /**
434  * list_for_each_entry_lockless - iterate over rcu list of given type
435  * @pos:	the type * to use as a loop cursor.
436  * @head:	the head for your list.
437  * @member:	the name of the list_struct within the struct.
438  *
439  * This primitive may safely run concurrently with the _rcu
440  * list-mutation primitives such as list_add_rcu(), but requires some
441  * implicit RCU read-side guarding.  One example is running within a special
442  * exception-time environment where preemption is disabled and where lockdep
443  * cannot be invoked.  Another example is when items are added to the list,
444  * but never deleted.
445  */
446 #define list_for_each_entry_lockless(pos, head, member) \
447 	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
448 	     &pos->member != (head); \
449 	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
450 
451 /**
452  * list_for_each_entry_continue_rcu - continue iteration over list of given type
453  * @pos:	the type * to use as a loop cursor.
454  * @head:	the head for your list.
455  * @member:	the name of the list_head within the struct.
456  *
457  * Continue to iterate over list of given type, continuing after
458  * the current position which must have been in the list when the RCU read
459  * lock was taken.
460  * This would typically require either that you obtained the node from a
461  * previous walk of the list in the same RCU read-side critical section, or
462  * that you held some sort of non-RCU reference (such as a reference count)
463  * to keep the node alive *and* in the list.
464  *
465  * This iterator is similar to list_for_each_entry_from_rcu() except
466  * this starts after the given position and that one starts at the given
467  * position.
468  */
469 #define list_for_each_entry_continue_rcu(pos, head, member) 		\
470 	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
471 	     &pos->member != (head);	\
472 	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
473 
474 /**
475  * list_for_each_entry_from_rcu - iterate over a list from current point
476  * @pos:	the type * to use as a loop cursor.
477  * @head:	the head for your list.
478  * @member:	the name of the list_node within the struct.
479  *
480  * Iterate over the tail of a list starting from a given position,
481  * which must have been in the list when the RCU read lock was taken.
482  * This would typically require either that you obtained the node from a
483  * previous walk of the list in the same RCU read-side critical section, or
484  * that you held some sort of non-RCU reference (such as a reference count)
485  * to keep the node alive *and* in the list.
486  *
487  * This iterator is similar to list_for_each_entry_continue_rcu() except
488  * this starts from the given position and that one starts from the position
489  * after the given position.
490  */
491 #define list_for_each_entry_from_rcu(pos, head, member)			\
492 	for (; &(pos)->member != (head);					\
493 		pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
494 
495 /**
496  * hlist_del_rcu - deletes entry from hash list without re-initialization
497  * @n: the element to delete from the hash list.
498  *
499  * Note: list_unhashed() on entry does not return true after this,
500  * the entry is in an undefined state. It is useful for RCU based
501  * lockfree traversal.
502  *
503  * In particular, it means that we can not poison the forward
504  * pointers that may still be used for walking the hash list.
505  *
506  * The caller must take whatever precautions are necessary
507  * (such as holding appropriate locks) to avoid racing
508  * with another list-mutation primitive, such as hlist_add_head_rcu()
509  * or hlist_del_rcu(), running on this same list.
510  * However, it is perfectly legal to run concurrently with
511  * the _rcu list-traversal primitives, such as
512  * hlist_for_each_entry().
513  */
514 static inline void hlist_del_rcu(struct hlist_node *n)
515 {
516 	__hlist_del(n);
517 	WRITE_ONCE(n->pprev, LIST_POISON2);
518 }
519 
520 /**
521  * hlist_replace_rcu - replace old entry by new one
522  * @old : the element to be replaced
523  * @new : the new element to insert
524  *
525  * The @old entry will be replaced with the @new entry atomically from
526  * the perspective of concurrent readers.  It is the caller's responsibility
527  * to synchronize with concurrent updaters, if any.
528  */
529 static inline void hlist_replace_rcu(struct hlist_node *old,
530 					struct hlist_node *new)
531 {
532 	struct hlist_node *next = old->next;
533 
534 	new->next = next;
535 	WRITE_ONCE(new->pprev, old->pprev);
536 	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
537 	if (next)
538 		WRITE_ONCE(new->next->pprev, &new->next);
539 	WRITE_ONCE(old->pprev, LIST_POISON2);
540 }
541 
542 /**
543  * hlists_swap_heads_rcu - swap the lists the hlist heads point to
544  * @left:  The hlist head on the left
545  * @right: The hlist head on the right
546  *
547  * The lists start out as [@left  ][node1 ... ] and
548  *                        [@right ][node2 ... ]
549  * The lists end up as    [@left  ][node2 ... ]
550  *                        [@right ][node1 ... ]
551  */
552 static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
553 {
554 	struct hlist_node *node1 = left->first;
555 	struct hlist_node *node2 = right->first;
556 
557 	rcu_assign_pointer(left->first, node2);
558 	rcu_assign_pointer(right->first, node1);
559 	WRITE_ONCE(node2->pprev, &left->first);
560 	WRITE_ONCE(node1->pprev, &right->first);
561 }
562 
563 /*
564  * return the first or the next element in an RCU protected hlist
565  */
566 #define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
567 #define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
568 #define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
569 
570 /**
571  * hlist_add_head_rcu
572  * @n: the element to add to the hash list.
573  * @h: the list to add to.
574  *
575  * Description:
576  * Adds the specified element to the specified hlist,
577  * while permitting racing traversals.
578  *
579  * The caller must take whatever precautions are necessary
580  * (such as holding appropriate locks) to avoid racing
581  * with another list-mutation primitive, such as hlist_add_head_rcu()
582  * or hlist_del_rcu(), running on this same list.
583  * However, it is perfectly legal to run concurrently with
584  * the _rcu list-traversal primitives, such as
585  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
586  * problems on Alpha CPUs.  Regardless of the type of CPU, the
587  * list-traversal primitive must be guarded by rcu_read_lock().
588  */
589 static inline void hlist_add_head_rcu(struct hlist_node *n,
590 					struct hlist_head *h)
591 {
592 	struct hlist_node *first = h->first;
593 
594 	n->next = first;
595 	WRITE_ONCE(n->pprev, &h->first);
596 	rcu_assign_pointer(hlist_first_rcu(h), n);
597 	if (first)
598 		WRITE_ONCE(first->pprev, &n->next);
599 }
600 
601 /**
602  * hlist_add_tail_rcu
603  * @n: the element to add to the hash list.
604  * @h: the list to add to.
605  *
606  * Description:
607  * Adds the specified element to the specified hlist,
608  * while permitting racing traversals.
609  *
610  * The caller must take whatever precautions are necessary
611  * (such as holding appropriate locks) to avoid racing
612  * with another list-mutation primitive, such as hlist_add_head_rcu()
613  * or hlist_del_rcu(), running on this same list.
614  * However, it is perfectly legal to run concurrently with
615  * the _rcu list-traversal primitives, such as
616  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
617  * problems on Alpha CPUs.  Regardless of the type of CPU, the
618  * list-traversal primitive must be guarded by rcu_read_lock().
619  */
620 static inline void hlist_add_tail_rcu(struct hlist_node *n,
621 				      struct hlist_head *h)
622 {
623 	struct hlist_node *i, *last = NULL;
624 
625 	/* Note: write side code, so rcu accessors are not needed. */
626 	for (i = h->first; i; i = i->next)
627 		last = i;
628 
629 	if (last) {
630 		n->next = last->next;
631 		WRITE_ONCE(n->pprev, &last->next);
632 		rcu_assign_pointer(hlist_next_rcu(last), n);
633 	} else {
634 		hlist_add_head_rcu(n, h);
635 	}
636 }
637 
638 /**
639  * hlist_add_before_rcu
640  * @n: the new element to add to the hash list.
641  * @next: the existing element to add the new element before.
642  *
643  * Description:
644  * Adds the specified element to the specified hlist
645  * before the specified node while permitting racing traversals.
646  *
647  * The caller must take whatever precautions are necessary
648  * (such as holding appropriate locks) to avoid racing
649  * with another list-mutation primitive, such as hlist_add_head_rcu()
650  * or hlist_del_rcu(), running on this same list.
651  * However, it is perfectly legal to run concurrently with
652  * the _rcu list-traversal primitives, such as
653  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
654  * problems on Alpha CPUs.
655  */
656 static inline void hlist_add_before_rcu(struct hlist_node *n,
657 					struct hlist_node *next)
658 {
659 	WRITE_ONCE(n->pprev, next->pprev);
660 	n->next = next;
661 	rcu_assign_pointer(hlist_pprev_rcu(n), n);
662 	WRITE_ONCE(next->pprev, &n->next);
663 }
664 
665 /**
666  * hlist_add_behind_rcu
667  * @n: the new element to add to the hash list.
668  * @prev: the existing element to add the new element after.
669  *
670  * Description:
671  * Adds the specified element to the specified hlist
672  * after the specified node while permitting racing traversals.
673  *
674  * The caller must take whatever precautions are necessary
675  * (such as holding appropriate locks) to avoid racing
676  * with another list-mutation primitive, such as hlist_add_head_rcu()
677  * or hlist_del_rcu(), running on this same list.
678  * However, it is perfectly legal to run concurrently with
679  * the _rcu list-traversal primitives, such as
680  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
681  * problems on Alpha CPUs.
682  */
683 static inline void hlist_add_behind_rcu(struct hlist_node *n,
684 					struct hlist_node *prev)
685 {
686 	n->next = prev->next;
687 	WRITE_ONCE(n->pprev, &prev->next);
688 	rcu_assign_pointer(hlist_next_rcu(prev), n);
689 	if (n->next)
690 		WRITE_ONCE(n->next->pprev, &n->next);
691 }
692 
693 #define __hlist_for_each_rcu(pos, head)				\
694 	for (pos = rcu_dereference(hlist_first_rcu(head));	\
695 	     pos;						\
696 	     pos = rcu_dereference(hlist_next_rcu(pos)))
697 
698 /**
699  * hlist_for_each_entry_rcu - iterate over rcu list of given type
700  * @pos:	the type * to use as a loop cursor.
701  * @head:	the head for your list.
702  * @member:	the name of the hlist_node within the struct.
703  * @cond:	optional lockdep expression if called from non-RCU protection.
704  *
705  * This list-traversal primitive may safely run concurrently with
706  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
707  * as long as the traversal is guarded by rcu_read_lock().
708  */
709 #define hlist_for_each_entry_rcu(pos, head, member, cond...)		\
710 	for (__list_check_rcu(dummy, ## cond, 0),			\
711 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
712 			typeof(*(pos)), member);			\
713 		pos;							\
714 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
715 			&(pos)->member)), typeof(*(pos)), member))
716 
717 /**
718  * hlist_for_each_entry_srcu - iterate over rcu list of given type
719  * @pos:	the type * to use as a loop cursor.
720  * @head:	the head for your list.
721  * @member:	the name of the hlist_node within the struct.
722  * @cond:	lockdep expression for the lock required to traverse the list.
723  *
724  * This list-traversal primitive may safely run concurrently with
725  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
726  * as long as the traversal is guarded by srcu_read_lock().
727  * The lockdep expression srcu_read_lock_held() can be passed as the
728  * cond argument from read side.
729  */
730 #define hlist_for_each_entry_srcu(pos, head, member, cond)		\
731 	for (__list_check_srcu(cond),					\
732 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
733 			typeof(*(pos)), member);			\
734 		pos;							\
735 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
736 			&(pos)->member)), typeof(*(pos)), member))
737 
738 /**
739  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
740  * @pos:	the type * to use as a loop cursor.
741  * @head:	the head for your list.
742  * @member:	the name of the hlist_node within the struct.
743  *
744  * This list-traversal primitive may safely run concurrently with
745  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
746  * as long as the traversal is guarded by rcu_read_lock().
747  *
748  * This is the same as hlist_for_each_entry_rcu() except that it does
749  * not do any RCU debugging or tracing.
750  */
751 #define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
752 	for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
753 			typeof(*(pos)), member);			\
754 		pos;							\
755 		pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
756 			&(pos)->member)), typeof(*(pos)), member))
757 
758 /**
759  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
760  * @pos:	the type * to use as a loop cursor.
761  * @head:	the head for your list.
762  * @member:	the name of the hlist_node within the struct.
763  *
764  * This list-traversal primitive may safely run concurrently with
765  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
766  * as long as the traversal is guarded by rcu_read_lock().
767  */
768 #define hlist_for_each_entry_rcu_bh(pos, head, member)			\
769 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
770 			typeof(*(pos)), member);			\
771 		pos;							\
772 		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
773 			&(pos)->member)), typeof(*(pos)), member))
774 
775 /**
776  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
777  * @pos:	the type * to use as a loop cursor.
778  * @member:	the name of the hlist_node within the struct.
779  */
780 #define hlist_for_each_entry_continue_rcu(pos, member)			\
781 	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
782 			&(pos)->member)), typeof(*(pos)), member);	\
783 	     pos;							\
784 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
785 			&(pos)->member)), typeof(*(pos)), member))
786 
787 /**
788  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
789  * @pos:	the type * to use as a loop cursor.
790  * @member:	the name of the hlist_node within the struct.
791  */
792 #define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
793 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
794 			&(pos)->member)), typeof(*(pos)), member);	\
795 	     pos;							\
796 	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
797 			&(pos)->member)), typeof(*(pos)), member))
798 
799 /**
800  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
801  * @pos:	the type * to use as a loop cursor.
802  * @member:	the name of the hlist_node within the struct.
803  */
804 #define hlist_for_each_entry_from_rcu(pos, member)			\
805 	for (; pos;							\
806 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
807 			&(pos)->member)), typeof(*(pos)), member))
808 
809 #endif	/* __KERNEL__ */
810 #endif
811