1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4
5 #ifdef __KERNEL__
6
7 /*
8 * RCU-protected list version
9 */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12
13 /*
14 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
15 * @list: list to be initialized
16 *
17 * You should instead use INIT_LIST_HEAD() for normal initialization and
18 * cleanup tasks, when readers have no access to the list being initialized.
19 * However, if the list being initialized is visible to readers, you
20 * need to keep the compiler from being too mischievous.
21 */
INIT_LIST_HEAD_RCU(struct list_head * list)22 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
23 {
24 WRITE_ONCE(list->next, list);
25 WRITE_ONCE(list->prev, list);
26 }
27
28 /*
29 * return the ->next pointer of a list_head in an rcu safe
30 * way, we must not access it directly
31 */
32 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
33 /*
34 * Return the ->prev pointer of a list_head in an rcu safe way. Don't
35 * access it directly.
36 *
37 * Any list traversed with list_bidir_prev_rcu() must never use
38 * list_del_rcu(). Doing so will poison the ->prev pointer that
39 * list_bidir_prev_rcu() relies on, which will result in segfaults.
40 * To prevent these segfaults, use list_bidir_del_rcu() instead
41 * of list_del_rcu().
42 */
43 #define list_bidir_prev_rcu(list) (*((struct list_head __rcu **)(&(list)->prev)))
44
45 /**
46 * list_tail_rcu - returns the prev pointer of the head of the list
47 * @head: the head of the list
48 *
49 * Note: This should only be used with the list header, and even then
50 * only if list_del() and similar primitives are not also used on the
51 * list header.
52 */
53 #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev)))
54
55 /*
56 * Check during list traversal that we are within an RCU reader
57 */
58
59 #define check_arg_count_one(dummy)
60
61 #ifdef CONFIG_PROVE_RCU_LIST
62 #define __list_check_rcu(dummy, cond, extra...) \
63 ({ \
64 check_arg_count_one(extra); \
65 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \
66 "RCU-list traversed in non-reader section!"); \
67 })
68
69 #define __list_check_srcu(cond) \
70 ({ \
71 RCU_LOCKDEP_WARN(!(cond), \
72 "RCU-list traversed without holding the required lock!");\
73 })
74 #else
75 #define __list_check_rcu(dummy, cond, extra...) \
76 ({ check_arg_count_one(extra); })
77
78 #define __list_check_srcu(cond) ({ })
79 #endif
80
81 /*
82 * Insert a new entry between two known consecutive entries.
83 *
84 * This is only for internal list manipulation where we know
85 * the prev/next entries already!
86 */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)87 static inline void __list_add_rcu(struct list_head *new,
88 struct list_head *prev, struct list_head *next)
89 {
90 if (!__list_add_valid(new, prev, next))
91 return;
92
93 new->next = next;
94 new->prev = prev;
95 rcu_assign_pointer(list_next_rcu(prev), new);
96 next->prev = new;
97 }
98
99 /**
100 * list_add_rcu - add a new entry to rcu-protected list
101 * @new: new entry to be added
102 * @head: list head to add it after
103 *
104 * Insert a new entry after the specified head.
105 * This is good for implementing stacks.
106 *
107 * The caller must take whatever precautions are necessary
108 * (such as holding appropriate locks) to avoid racing
109 * with another list-mutation primitive, such as list_add_rcu()
110 * or list_del_rcu(), running on this same list.
111 * However, it is perfectly legal to run concurrently with
112 * the _rcu list-traversal primitives, such as
113 * list_for_each_entry_rcu().
114 */
list_add_rcu(struct list_head * new,struct list_head * head)115 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
116 {
117 __list_add_rcu(new, head, head->next);
118 }
119
120 /**
121 * list_add_tail_rcu - add a new entry to rcu-protected list
122 * @new: new entry to be added
123 * @head: list head to add it before
124 *
125 * Insert a new entry before the specified head.
126 * This is useful for implementing queues.
127 *
128 * The caller must take whatever precautions are necessary
129 * (such as holding appropriate locks) to avoid racing
130 * with another list-mutation primitive, such as list_add_tail_rcu()
131 * or list_del_rcu(), running on this same list.
132 * However, it is perfectly legal to run concurrently with
133 * the _rcu list-traversal primitives, such as
134 * list_for_each_entry_rcu().
135 */
list_add_tail_rcu(struct list_head * new,struct list_head * head)136 static inline void list_add_tail_rcu(struct list_head *new,
137 struct list_head *head)
138 {
139 __list_add_rcu(new, head->prev, head);
140 }
141
142 /**
143 * list_del_rcu - deletes entry from list without re-initialization
144 * @entry: the element to delete from the list.
145 *
146 * Note: list_empty() on entry does not return true after this,
147 * the entry is in an undefined state. It is useful for RCU based
148 * lockfree traversal.
149 *
150 * In particular, it means that we can not poison the forward
151 * pointers that may still be used for walking the list.
152 *
153 * The caller must take whatever precautions are necessary
154 * (such as holding appropriate locks) to avoid racing
155 * with another list-mutation primitive, such as list_del_rcu()
156 * or list_add_rcu(), running on this same list.
157 * However, it is perfectly legal to run concurrently with
158 * the _rcu list-traversal primitives, such as
159 * list_for_each_entry_rcu().
160 *
161 * Note that the caller is not permitted to immediately free
162 * the newly deleted entry. Instead, either synchronize_rcu()
163 * or call_rcu() must be used to defer freeing until an RCU
164 * grace period has elapsed.
165 */
list_del_rcu(struct list_head * entry)166 static inline void list_del_rcu(struct list_head *entry)
167 {
168 __list_del_entry(entry);
169 entry->prev = LIST_POISON2;
170 }
171
172 /**
173 * list_bidir_del_rcu - deletes entry from list without re-initialization
174 * @entry: the element to delete from the list.
175 *
176 * In contrast to list_del_rcu() doesn't poison the prev pointer thus
177 * allowing backwards traversal via list_bidir_prev_rcu().
178 *
179 * Note: list_empty() on entry does not return true after this because
180 * the entry is in a special undefined state that permits RCU-based
181 * lockfree reverse traversal. In particular this means that we can not
182 * poison the forward and backwards pointers that may still be used for
183 * walking the list.
184 *
185 * The caller must take whatever precautions are necessary (such as
186 * holding appropriate locks) to avoid racing with another list-mutation
187 * primitive, such as list_bidir_del_rcu() or list_add_rcu(), running on
188 * this same list. However, it is perfectly legal to run concurrently
189 * with the _rcu list-traversal primitives, such as
190 * list_for_each_entry_rcu().
191 *
192 * Note that list_del_rcu() and list_bidir_del_rcu() must not be used on
193 * the same list.
194 *
195 * Note that the caller is not permitted to immediately free
196 * the newly deleted entry. Instead, either synchronize_rcu()
197 * or call_rcu() must be used to defer freeing until an RCU
198 * grace period has elapsed.
199 */
list_bidir_del_rcu(struct list_head * entry)200 static inline void list_bidir_del_rcu(struct list_head *entry)
201 {
202 __list_del_entry(entry);
203 }
204
205 /**
206 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
207 * @n: the element to delete from the hash list.
208 *
209 * Note: list_unhashed() on the node return true after this. It is
210 * useful for RCU based read lockfree traversal if the writer side
211 * must know if the list entry is still hashed or already unhashed.
212 *
213 * In particular, it means that we can not poison the forward pointers
214 * that may still be used for walking the hash list and we can only
215 * zero the pprev pointer so list_unhashed() will return true after
216 * this.
217 *
218 * The caller must take whatever precautions are necessary (such as
219 * holding appropriate locks) to avoid racing with another
220 * list-mutation primitive, such as hlist_add_head_rcu() or
221 * hlist_del_rcu(), running on this same list. However, it is
222 * perfectly legal to run concurrently with the _rcu list-traversal
223 * primitives, such as hlist_for_each_entry_rcu().
224 */
hlist_del_init_rcu(struct hlist_node * n)225 static inline void hlist_del_init_rcu(struct hlist_node *n)
226 {
227 if (!hlist_unhashed(n)) {
228 __hlist_del(n);
229 WRITE_ONCE(n->pprev, NULL);
230 }
231 }
232
233 /**
234 * list_replace_rcu - replace old entry by new one
235 * @old : the element to be replaced
236 * @new : the new element to insert
237 *
238 * The @old entry will be replaced with the @new entry atomically from
239 * the perspective of concurrent readers. It is the caller's responsibility
240 * to synchronize with concurrent updaters, if any.
241 *
242 * Note: @old should not be empty.
243 */
list_replace_rcu(struct list_head * old,struct list_head * new)244 static inline void list_replace_rcu(struct list_head *old,
245 struct list_head *new)
246 {
247 new->next = old->next;
248 new->prev = old->prev;
249 rcu_assign_pointer(list_next_rcu(new->prev), new);
250 new->next->prev = new;
251 old->prev = LIST_POISON2;
252 }
253
254 /**
255 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
256 * @list: the RCU-protected list to splice
257 * @prev: points to the last element of the existing list
258 * @next: points to the first element of the existing list
259 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
260 *
261 * The list pointed to by @prev and @next can be RCU-read traversed
262 * concurrently with this function.
263 *
264 * Note that this function blocks.
265 *
266 * Important note: the caller must take whatever action is necessary to prevent
267 * any other updates to the existing list. In principle, it is possible to
268 * modify the list as soon as sync() begins execution. If this sort of thing
269 * becomes necessary, an alternative version based on call_rcu() could be
270 * created. But only if -really- needed -- there is no shortage of RCU API
271 * members.
272 */
__list_splice_init_rcu(struct list_head * list,struct list_head * prev,struct list_head * next,void (* sync)(void))273 static inline void __list_splice_init_rcu(struct list_head *list,
274 struct list_head *prev,
275 struct list_head *next,
276 void (*sync)(void))
277 {
278 struct list_head *first = list->next;
279 struct list_head *last = list->prev;
280
281 /*
282 * "first" and "last" tracking list, so initialize it. RCU readers
283 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
284 * instead of INIT_LIST_HEAD().
285 */
286
287 INIT_LIST_HEAD_RCU(list);
288
289 /*
290 * At this point, the list body still points to the source list.
291 * Wait for any readers to finish using the list before splicing
292 * the list body into the new list. Any new readers will see
293 * an empty list.
294 */
295
296 sync();
297 ASSERT_EXCLUSIVE_ACCESS(*first);
298 ASSERT_EXCLUSIVE_ACCESS(*last);
299
300 /*
301 * Readers are finished with the source list, so perform splice.
302 * The order is important if the new list is global and accessible
303 * to concurrent RCU readers. Note that RCU readers are not
304 * permitted to traverse the prev pointers without excluding
305 * this function.
306 */
307
308 last->next = next;
309 rcu_assign_pointer(list_next_rcu(prev), first);
310 first->prev = prev;
311 next->prev = last;
312 }
313
314 /**
315 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
316 * designed for stacks.
317 * @list: the RCU-protected list to splice
318 * @head: the place in the existing list to splice the first list into
319 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
320 */
list_splice_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))321 static inline void list_splice_init_rcu(struct list_head *list,
322 struct list_head *head,
323 void (*sync)(void))
324 {
325 if (!list_empty(list))
326 __list_splice_init_rcu(list, head, head->next, sync);
327 }
328
329 /**
330 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
331 * list, designed for queues.
332 * @list: the RCU-protected list to splice
333 * @head: the place in the existing list to splice the first list into
334 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
335 */
list_splice_tail_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))336 static inline void list_splice_tail_init_rcu(struct list_head *list,
337 struct list_head *head,
338 void (*sync)(void))
339 {
340 if (!list_empty(list))
341 __list_splice_init_rcu(list, head->prev, head, sync);
342 }
343
344 /**
345 * list_entry_rcu - get the struct for this entry
346 * @ptr: the &struct list_head pointer.
347 * @type: the type of the struct this is embedded in.
348 * @member: the name of the list_head within the struct.
349 *
350 * This primitive may safely run concurrently with the _rcu list-mutation
351 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
352 */
353 #define list_entry_rcu(ptr, type, member) \
354 container_of(READ_ONCE(ptr), type, member)
355
356 /*
357 * Where are list_empty_rcu() and list_first_entry_rcu()?
358 *
359 * They do not exist because they would lead to subtle race conditions:
360 *
361 * if (!list_empty_rcu(mylist)) {
362 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
363 * do_something(bar);
364 * }
365 *
366 * The list might be non-empty when list_empty_rcu() checks it, but it
367 * might have become empty by the time that list_first_entry_rcu() rereads
368 * the ->next pointer, which would result in a SEGV.
369 *
370 * When not using RCU, it is OK for list_first_entry() to re-read that
371 * pointer because both functions should be protected by some lock that
372 * blocks writers.
373 *
374 * When using RCU, list_empty() uses READ_ONCE() to fetch the
375 * RCU-protected ->next pointer and then compares it to the address of the
376 * list head. However, it neither dereferences this pointer nor provides
377 * this pointer to its caller. Thus, READ_ONCE() suffices (that is,
378 * rcu_dereference() is not needed), which means that list_empty() can be
379 * used anywhere you would want to use list_empty_rcu(). Just don't
380 * expect anything useful to happen if you do a subsequent lockless
381 * call to list_first_entry_rcu()!!!
382 *
383 * See list_first_or_null_rcu for an alternative.
384 */
385
386 /**
387 * list_first_or_null_rcu - get the first element from a list
388 * @ptr: the list head to take the element from.
389 * @type: the type of the struct this is embedded in.
390 * @member: the name of the list_head within the struct.
391 *
392 * Note that if the list is empty, it returns NULL.
393 *
394 * This primitive may safely run concurrently with the _rcu list-mutation
395 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
396 */
397 #define list_first_or_null_rcu(ptr, type, member) \
398 ({ \
399 struct list_head *__ptr = (ptr); \
400 struct list_head *__next = READ_ONCE(__ptr->next); \
401 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
402 })
403
404 /**
405 * list_next_or_null_rcu - get the next element from a list
406 * @head: the head for the list.
407 * @ptr: the list head to take the next element from.
408 * @type: the type of the struct this is embedded in.
409 * @member: the name of the list_head within the struct.
410 *
411 * Note that if the ptr is at the end of the list, NULL is returned.
412 *
413 * This primitive may safely run concurrently with the _rcu list-mutation
414 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
415 */
416 #define list_next_or_null_rcu(head, ptr, type, member) \
417 ({ \
418 struct list_head *__head = (head); \
419 struct list_head *__ptr = (ptr); \
420 struct list_head *__next = READ_ONCE(__ptr->next); \
421 likely(__next != __head) ? list_entry_rcu(__next, type, \
422 member) : NULL; \
423 })
424
425 /**
426 * list_for_each_entry_rcu - iterate over rcu list of given type
427 * @pos: the type * to use as a loop cursor.
428 * @head: the head for your list.
429 * @member: the name of the list_head within the struct.
430 * @cond: optional lockdep expression if called from non-RCU protection.
431 *
432 * This list-traversal primitive may safely run concurrently with
433 * the _rcu list-mutation primitives such as list_add_rcu()
434 * as long as the traversal is guarded by rcu_read_lock().
435 */
436 #define list_for_each_entry_rcu(pos, head, member, cond...) \
437 for (__list_check_rcu(dummy, ## cond, 0), \
438 pos = list_entry_rcu((head)->next, typeof(*pos), member); \
439 &pos->member != (head); \
440 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
441
442 /**
443 * list_for_each_entry_srcu - iterate over rcu list of given type
444 * @pos: the type * to use as a loop cursor.
445 * @head: the head for your list.
446 * @member: the name of the list_head within the struct.
447 * @cond: lockdep expression for the lock required to traverse the list.
448 *
449 * This list-traversal primitive may safely run concurrently with
450 * the _rcu list-mutation primitives such as list_add_rcu()
451 * as long as the traversal is guarded by srcu_read_lock().
452 * The lockdep expression srcu_read_lock_held() can be passed as the
453 * cond argument from read side.
454 */
455 #define list_for_each_entry_srcu(pos, head, member, cond) \
456 for (__list_check_srcu(cond), \
457 pos = list_entry_rcu((head)->next, typeof(*pos), member); \
458 &pos->member != (head); \
459 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
460
461 /**
462 * list_entry_lockless - get the struct for this entry
463 * @ptr: the &struct list_head pointer.
464 * @type: the type of the struct this is embedded in.
465 * @member: the name of the list_head within the struct.
466 *
467 * This primitive may safely run concurrently with the _rcu
468 * list-mutation primitives such as list_add_rcu(), but requires some
469 * implicit RCU read-side guarding. One example is running within a special
470 * exception-time environment where preemption is disabled and where lockdep
471 * cannot be invoked. Another example is when items are added to the list,
472 * but never deleted.
473 */
474 #define list_entry_lockless(ptr, type, member) \
475 container_of((typeof(ptr))READ_ONCE(ptr), type, member)
476
477 /**
478 * list_for_each_entry_lockless - iterate over rcu list of given type
479 * @pos: the type * to use as a loop cursor.
480 * @head: the head for your list.
481 * @member: the name of the list_struct within the struct.
482 *
483 * This primitive may safely run concurrently with the _rcu
484 * list-mutation primitives such as list_add_rcu(), but requires some
485 * implicit RCU read-side guarding. One example is running within a special
486 * exception-time environment where preemption is disabled and where lockdep
487 * cannot be invoked. Another example is when items are added to the list,
488 * but never deleted.
489 */
490 #define list_for_each_entry_lockless(pos, head, member) \
491 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
492 &pos->member != (head); \
493 pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
494
495 /**
496 * list_for_each_entry_continue_rcu - continue iteration over list of given type
497 * @pos: the type * to use as a loop cursor.
498 * @head: the head for your list.
499 * @member: the name of the list_head within the struct.
500 *
501 * Continue to iterate over list of given type, continuing after
502 * the current position which must have been in the list when the RCU read
503 * lock was taken.
504 * This would typically require either that you obtained the node from a
505 * previous walk of the list in the same RCU read-side critical section, or
506 * that you held some sort of non-RCU reference (such as a reference count)
507 * to keep the node alive *and* in the list.
508 *
509 * This iterator is similar to list_for_each_entry_from_rcu() except
510 * this starts after the given position and that one starts at the given
511 * position.
512 */
513 #define list_for_each_entry_continue_rcu(pos, head, member) \
514 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
515 &pos->member != (head); \
516 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
517
518 /**
519 * list_for_each_entry_from_rcu - iterate over a list from current point
520 * @pos: the type * to use as a loop cursor.
521 * @head: the head for your list.
522 * @member: the name of the list_node within the struct.
523 *
524 * Iterate over the tail of a list starting from a given position,
525 * which must have been in the list when the RCU read lock was taken.
526 * This would typically require either that you obtained the node from a
527 * previous walk of the list in the same RCU read-side critical section, or
528 * that you held some sort of non-RCU reference (such as a reference count)
529 * to keep the node alive *and* in the list.
530 *
531 * This iterator is similar to list_for_each_entry_continue_rcu() except
532 * this starts from the given position and that one starts from the position
533 * after the given position.
534 */
535 #define list_for_each_entry_from_rcu(pos, head, member) \
536 for (; &(pos)->member != (head); \
537 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
538
539 /**
540 * hlist_del_rcu - deletes entry from hash list without re-initialization
541 * @n: the element to delete from the hash list.
542 *
543 * Note: list_unhashed() on entry does not return true after this,
544 * the entry is in an undefined state. It is useful for RCU based
545 * lockfree traversal.
546 *
547 * In particular, it means that we can not poison the forward
548 * pointers that may still be used for walking the hash list.
549 *
550 * The caller must take whatever precautions are necessary
551 * (such as holding appropriate locks) to avoid racing
552 * with another list-mutation primitive, such as hlist_add_head_rcu()
553 * or hlist_del_rcu(), running on this same list.
554 * However, it is perfectly legal to run concurrently with
555 * the _rcu list-traversal primitives, such as
556 * hlist_for_each_entry().
557 */
hlist_del_rcu(struct hlist_node * n)558 static inline void hlist_del_rcu(struct hlist_node *n)
559 {
560 __hlist_del(n);
561 WRITE_ONCE(n->pprev, LIST_POISON2);
562 }
563
564 /**
565 * hlist_replace_rcu - replace old entry by new one
566 * @old : the element to be replaced
567 * @new : the new element to insert
568 *
569 * The @old entry will be replaced with the @new entry atomically from
570 * the perspective of concurrent readers. It is the caller's responsibility
571 * to synchronize with concurrent updaters, if any.
572 */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)573 static inline void hlist_replace_rcu(struct hlist_node *old,
574 struct hlist_node *new)
575 {
576 struct hlist_node *next = old->next;
577
578 new->next = next;
579 WRITE_ONCE(new->pprev, old->pprev);
580 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
581 if (next)
582 WRITE_ONCE(new->next->pprev, &new->next);
583 WRITE_ONCE(old->pprev, LIST_POISON2);
584 }
585
586 /**
587 * hlists_swap_heads_rcu - swap the lists the hlist heads point to
588 * @left: The hlist head on the left
589 * @right: The hlist head on the right
590 *
591 * The lists start out as [@left ][node1 ... ] and
592 * [@right ][node2 ... ]
593 * The lists end up as [@left ][node2 ... ]
594 * [@right ][node1 ... ]
595 */
hlists_swap_heads_rcu(struct hlist_head * left,struct hlist_head * right)596 static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
597 {
598 struct hlist_node *node1 = left->first;
599 struct hlist_node *node2 = right->first;
600
601 rcu_assign_pointer(left->first, node2);
602 rcu_assign_pointer(right->first, node1);
603 WRITE_ONCE(node2->pprev, &left->first);
604 WRITE_ONCE(node1->pprev, &right->first);
605 }
606
607 /*
608 * return the first or the next element in an RCU protected hlist
609 */
610 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
611 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
612 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
613
614 /**
615 * hlist_add_head_rcu
616 * @n: the element to add to the hash list.
617 * @h: the list to add to.
618 *
619 * Description:
620 * Adds the specified element to the specified hlist,
621 * while permitting racing traversals.
622 *
623 * The caller must take whatever precautions are necessary
624 * (such as holding appropriate locks) to avoid racing
625 * with another list-mutation primitive, such as hlist_add_head_rcu()
626 * or hlist_del_rcu(), running on this same list.
627 * However, it is perfectly legal to run concurrently with
628 * the _rcu list-traversal primitives, such as
629 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
630 * problems on Alpha CPUs. Regardless of the type of CPU, the
631 * list-traversal primitive must be guarded by rcu_read_lock().
632 */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)633 static inline void hlist_add_head_rcu(struct hlist_node *n,
634 struct hlist_head *h)
635 {
636 struct hlist_node *first = h->first;
637
638 n->next = first;
639 WRITE_ONCE(n->pprev, &h->first);
640 rcu_assign_pointer(hlist_first_rcu(h), n);
641 if (first)
642 WRITE_ONCE(first->pprev, &n->next);
643 }
644
645 /**
646 * hlist_add_tail_rcu
647 * @n: the element to add to the hash list.
648 * @h: the list to add to.
649 *
650 * Description:
651 * Adds the specified element to the specified hlist,
652 * while permitting racing traversals.
653 *
654 * The caller must take whatever precautions are necessary
655 * (such as holding appropriate locks) to avoid racing
656 * with another list-mutation primitive, such as hlist_add_head_rcu()
657 * or hlist_del_rcu(), running on this same list.
658 * However, it is perfectly legal to run concurrently with
659 * the _rcu list-traversal primitives, such as
660 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
661 * problems on Alpha CPUs. Regardless of the type of CPU, the
662 * list-traversal primitive must be guarded by rcu_read_lock().
663 */
hlist_add_tail_rcu(struct hlist_node * n,struct hlist_head * h)664 static inline void hlist_add_tail_rcu(struct hlist_node *n,
665 struct hlist_head *h)
666 {
667 struct hlist_node *i, *last = NULL;
668
669 /* Note: write side code, so rcu accessors are not needed. */
670 for (i = h->first; i; i = i->next)
671 last = i;
672
673 if (last) {
674 n->next = last->next;
675 WRITE_ONCE(n->pprev, &last->next);
676 rcu_assign_pointer(hlist_next_rcu(last), n);
677 } else {
678 hlist_add_head_rcu(n, h);
679 }
680 }
681
682 /**
683 * hlist_add_before_rcu
684 * @n: the new element to add to the hash list.
685 * @next: the existing element to add the new element before.
686 *
687 * Description:
688 * Adds the specified element to the specified hlist
689 * before the specified node while permitting racing traversals.
690 *
691 * The caller must take whatever precautions are necessary
692 * (such as holding appropriate locks) to avoid racing
693 * with another list-mutation primitive, such as hlist_add_head_rcu()
694 * or hlist_del_rcu(), running on this same list.
695 * However, it is perfectly legal to run concurrently with
696 * the _rcu list-traversal primitives, such as
697 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
698 * problems on Alpha CPUs.
699 */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)700 static inline void hlist_add_before_rcu(struct hlist_node *n,
701 struct hlist_node *next)
702 {
703 WRITE_ONCE(n->pprev, next->pprev);
704 n->next = next;
705 rcu_assign_pointer(hlist_pprev_rcu(n), n);
706 WRITE_ONCE(next->pprev, &n->next);
707 }
708
709 /**
710 * hlist_add_behind_rcu
711 * @n: the new element to add to the hash list.
712 * @prev: the existing element to add the new element after.
713 *
714 * Description:
715 * Adds the specified element to the specified hlist
716 * after the specified node while permitting racing traversals.
717 *
718 * The caller must take whatever precautions are necessary
719 * (such as holding appropriate locks) to avoid racing
720 * with another list-mutation primitive, such as hlist_add_head_rcu()
721 * or hlist_del_rcu(), running on this same list.
722 * However, it is perfectly legal to run concurrently with
723 * the _rcu list-traversal primitives, such as
724 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
725 * problems on Alpha CPUs.
726 */
hlist_add_behind_rcu(struct hlist_node * n,struct hlist_node * prev)727 static inline void hlist_add_behind_rcu(struct hlist_node *n,
728 struct hlist_node *prev)
729 {
730 n->next = prev->next;
731 WRITE_ONCE(n->pprev, &prev->next);
732 rcu_assign_pointer(hlist_next_rcu(prev), n);
733 if (n->next)
734 WRITE_ONCE(n->next->pprev, &n->next);
735 }
736
737 #define __hlist_for_each_rcu(pos, head) \
738 for (pos = rcu_dereference(hlist_first_rcu(head)); \
739 pos; \
740 pos = rcu_dereference(hlist_next_rcu(pos)))
741
742 /**
743 * hlist_for_each_entry_rcu - iterate over rcu list of given type
744 * @pos: the type * to use as a loop cursor.
745 * @head: the head for your list.
746 * @member: the name of the hlist_node within the struct.
747 * @cond: optional lockdep expression if called from non-RCU protection.
748 *
749 * This list-traversal primitive may safely run concurrently with
750 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
751 * as long as the traversal is guarded by rcu_read_lock().
752 */
753 #define hlist_for_each_entry_rcu(pos, head, member, cond...) \
754 for (__list_check_rcu(dummy, ## cond, 0), \
755 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
756 typeof(*(pos)), member); \
757 pos; \
758 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
759 &(pos)->member)), typeof(*(pos)), member))
760
761 /**
762 * hlist_for_each_entry_srcu - iterate over rcu list of given type
763 * @pos: the type * to use as a loop cursor.
764 * @head: the head for your list.
765 * @member: the name of the hlist_node within the struct.
766 * @cond: lockdep expression for the lock required to traverse the list.
767 *
768 * This list-traversal primitive may safely run concurrently with
769 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
770 * as long as the traversal is guarded by srcu_read_lock().
771 * The lockdep expression srcu_read_lock_held() can be passed as the
772 * cond argument from read side.
773 */
774 #define hlist_for_each_entry_srcu(pos, head, member, cond) \
775 for (__list_check_srcu(cond), \
776 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
777 typeof(*(pos)), member); \
778 pos; \
779 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
780 &(pos)->member)), typeof(*(pos)), member))
781
782 /**
783 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
784 * @pos: the type * to use as a loop cursor.
785 * @head: the head for your list.
786 * @member: the name of the hlist_node within the struct.
787 *
788 * This list-traversal primitive may safely run concurrently with
789 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
790 * as long as the traversal is guarded by rcu_read_lock().
791 *
792 * This is the same as hlist_for_each_entry_rcu() except that it does
793 * not do any RCU debugging or tracing.
794 */
795 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
796 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
797 typeof(*(pos)), member); \
798 pos; \
799 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
800 &(pos)->member)), typeof(*(pos)), member))
801
802 /**
803 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
804 * @pos: the type * to use as a loop cursor.
805 * @head: the head for your list.
806 * @member: the name of the hlist_node within the struct.
807 *
808 * This list-traversal primitive may safely run concurrently with
809 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
810 * as long as the traversal is guarded by rcu_read_lock().
811 */
812 #define hlist_for_each_entry_rcu_bh(pos, head, member) \
813 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
814 typeof(*(pos)), member); \
815 pos; \
816 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
817 &(pos)->member)), typeof(*(pos)), member))
818
819 /**
820 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
821 * @pos: the type * to use as a loop cursor.
822 * @member: the name of the hlist_node within the struct.
823 */
824 #define hlist_for_each_entry_continue_rcu(pos, member) \
825 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
826 &(pos)->member)), typeof(*(pos)), member); \
827 pos; \
828 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
829 &(pos)->member)), typeof(*(pos)), member))
830
831 /**
832 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
833 * @pos: the type * to use as a loop cursor.
834 * @member: the name of the hlist_node within the struct.
835 */
836 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
837 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
838 &(pos)->member)), typeof(*(pos)), member); \
839 pos; \
840 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
841 &(pos)->member)), typeof(*(pos)), member))
842
843 /**
844 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
845 * @pos: the type * to use as a loop cursor.
846 * @member: the name of the hlist_node within the struct.
847 */
848 #define hlist_for_each_entry_from_rcu(pos, member) \
849 for (; pos; \
850 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
851 &(pos)->member)), typeof(*(pos)), member))
852
853 #endif /* __KERNEL__ */
854 #endif
855